Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Identification of biomarkers of colitis to monitor effects of dietary omega-3 polyunsaturated fatty acids in the interleukin-10 gene-deficient mouse model of inflammatory bowel diseases

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in

Nutritional Science

at Massey University, Manawatū,

New Zealand.

Nadja Berger

2016
ABSTRACT

Inflammatory bowel diseases (IBD) are characterised by chronic inflammation of the gastrointestinal tract including the colon (colitis). Increased dietary intake of salmon, which is rich in eicosapentaenoic acid (EPA), was well tolerated by IBD patients, leading to a perceived decrease in symptoms. However, better knowledge of the mechanisms by which EPA-rich diets affect IBD severity, and appropriate biomarkers for assessing these effects, are needed for potential targeted nutritional interventions.

This dissertation aimed to determine the temporal effects (early (9 weeks of age) vs. established (12 weeks)) of a diet containing 3.7% EPA, and the dose-dependent effects (15% to 45%) of a salmon diet at 12 weeks of age, on the severity of colitis. Molecular responses in colon and/or liver of the interleukin-10 gene-deficient (Il10−/−) mouse model of IBD and healthy mice were assessed. Caecum digesta, urine and blood were mined to identify biomarkers (microbiota, metabolites and genes) of these responses.

The EPA diet reduced the severity of colitis only in 12-week-old Il10−/− mice. This response was associated with changes in gene expression associated with lymphocyte function, eicosanoid signalling and peroxisome proliferator-activated receptor gamma signalling. The blood immune cell gene expression profile did not correlate with reduced colitis in these mice, but the urine metabolite profile was related to changes in colonic tryptophan metabolism.

The effects of the salmon diets on colitis were dose-dependent in 12-week-old Il10−/− mice. The intermediate amount of salmon (30%) reduced the severity of colitis and lymphocyte-related gene expression, while enhancing genes in metabolic pathways. Tryptophan metabolism was not affected in these mice, but the urinary metabolite profile correlated with effects on hepatic tocopherol metabolism, as shown by reduced abundance of gamma-carboxyethylhydroxychroman glucoside. The abundances of V. akkermansia, Eubacterium spp., and an unclassified Rikenellaceae were further affected in these mice.

This is the first report describing molecular responses in the colon and liver of Il10−/− mice fed a salmon diet associated with reduced colitis. Ultimately these responses could be validated for use in humans, and potentially enable management of IBD with diet.
ACKNOWLEDGEMENTS

I would like to express my sincerest gratitude to my supervisors Assoc Prof Nicole Roy, Dr Emma Bermingham, Prof Warren McNabb (all AgResearch Grasslands, Palmerston North, NZ) and Dr Janine Cooney (Plant & Food Research Ruakura, Hamilton, NZ) for your guidance and support throughout this project. Thank you for your encouragement, wisdom and finally your patience. I could not possibly have reached this point without you. I also acknowledge AgResearch for funding this project within the Nutrigenomics New Zealand partnership.

I would like to thank Dr Matthew Barnett (AgResearch Grasslands) for letting me be part of the “EPA time-course experiment” after one of my own mouse experiments had failed. Your enthusiasm and positivity was much appreciated when I did not know how to continue.

I am grateful to Dr Wayne Young (AgResearch Grasslands), an expert in ‘Oomics’ and microbiota analyses, for providing various codes in R and helping with all enquiries. Also, thank you for proof-reading parts of this dissertation and providing valuable feedback.

Proteomics work was performed at Plant & Food Research in Auckland under the guidance of Ms Di Brewster. Thank you Di for taking the time to teach the art of 2D-DIGE and your ongoing technical advice. Also, thanks to all members from this laboratory for your welcoming attitudes which made an otherwise difficult process great. I am also grateful to Dr Janine Cooney for conducting MS identification.

A number of people behind this project deserve to be both acknowledged and thanked here: Mr Shuotun Zhu (University of Auckland, Auckland, NZ) for histological analysis. Ms Kelly Armstrong for the training in histology, RNA extraction and microarray analysis. Dr John Koolaard (AgResearch Grasslands) for statistical advice. Mr Paul Maclean (AgResearch Ruakura) for assistance with microarray data processing. Mr Jason Peters and Ms Leigh Ryan for help with animal work (AgResearch Grasslands). Mr Bruce Sinclair (AgResearch Grasslands) for reading various drafts of this dissertation and lending a helping hand during experiments. Dr Mark McCann (AgResearch Grasslands) for assistance with qPCR validation. Metabolomics experts Dr Karl Fraser and Dr Jan Huege (who sadly passed away during the course of this project) for their
valuable advice and sharing their expertise (AgResearch Grasslands). Thank you all for your help and contribution!

I am grateful to Prof Chris Evelo for giving me the opportunity to conduct parts of my last research chapter in the BigCaT Bioinformatics Group at the University of Maastricht in the Netherlands and would like to thank all the members from this group for making my stay in Maastricht a great one. Special thanks to Dr Lars Eijssen for assistance with data analysis, sharing his knowledge in R and the good times biking through the streets of Maastricht on the search for a beer (or two).

I have been very lucky to go through this process with a group of people that provided moral support and most importantly their friendship. Thank you to Ms Denise Martin (AgResearch Grasslands) for your encouraging words when I had already given up. You are an incredible person and have become a true friend. A huge thanks to my fellow postgraduate students for the chats around the lunch table and the many laughs we shared during road trips to Auckland or a girls-night-out. You truly made the day more enjoyable.

Finally I would like to thank my family with all my heart. My parents Nora and Wolfgang for your ongoing love and support. My brother Gerold for watching over me since 1987. My granny Waldtraud and aunt Traudi for your generosity. To my partner Paul thank you for being absolutely amazing throughout the last few years.
TABLE OF CONTENTS

Abstract i
Acknowledgements iii
Table of Contents v
List of Figures xi
List of Tables xiv
List of Abbreviations xvii
List of Appendices xvi
Introduction xix

Review of literature

1.1 Inflammatory bowel diseases 2
 1.1.1 Genetic susceptibility 4
 1.1.2 Mucosal immune-regulation 4
 1.1.2.1 Intestinal epithelium 5
 1.1.2.2 Intestinal inflammation 8
 1.1.2.3 The commensal microbiota 10
 1.1.3 The role of the environment 14
 1.1.4 Animal models of IBD 15
 1.1.4.1 The interleukin-10 gene-deficient mouse model 18
1.2 The concept of systems biology 19
 1.2.1 Nutrigenomics 21
 1.2.2 Exploration of biomarkers of intestinal inflammation 21
1.3 Dietary salmon and intestinal inflammation 23
1.4 Anti-inflammatory effects of specific salmon components 24
 1.4.1 Micronutrients 24
 1.4.2 Peptides 26
 1.4.3 Lipids 26
 1.4.4 Putative mechanisms of action of lipids 31
 1.4.4.1 Modulation of cell membrane lipid rafts 31
 1.4.4.2 Formation of lipid mediators 33
 1.4.4.3 Modulation of gene expression 33
 1.4.4.4 Modulation of protein expression 35
 1.4.4.5 Modulation of the intestinal microbiota 36
1.5 Conclusion and outlook 37
1.6 Hypothesis and aims of the dissertation 38
1.7 Approach and structure of the dissertation 38

Materials and Methods

2.1 Introduction 42
2.2 EPA time-course experiment 43
 2.2.1 Experimental design 43
 2.2.2 Mouse model and induction of colitis 43
 2.2.3 Experimental diets 45
 2.2.4 Sampling procedure and tissue collection 46
 2.2.5 Statistical evaluation of growth performance 48
2.3 Salmon diet experiment

2.3.1 Experimental design
2.3.2 Mouse model and induction of colitis
2.3.3 Experimental diets
2.3.4 Sampling procedure and tissue collection
2.3.5 Statistical evaluation of growth performance

2.4 Histopathological assessment

2.4.1 Tissue preparation and haematoxylin and eosin stain
2.4.2 Histological injury score
2.4.3 Statistical evaluation of histopathological changes

2.5 Isolation of peripheral blood mononuclear cells and RNA extraction

2.6 Extraction of RNA and protein from colon and liver

2.7 Transcriptomic analysis of colon, liver and peripheral blood mononuclear cells

2.7.1 Method overview
2.7.2 Sample preparation
2.7.3 CyDye-labelling and microarray hybridisation
2.7.4 Microarray data processing

2.8 Proteomic analysis of colon tissue

2.8.1 Method overview
2.8.2 Sample preparation
2.8.3 CyDye-labelling
2.8.4 Separation in the first dimension
2.8.5 Equilibration
2.8.6 Separation in the second dimension
2.8.7 In-gel protein digestion
2.8.8 Protein identification

2.9 Metabolomic analysis of urine

2.9.1 Method overview
2.9.2 Sample preparation and LC-MS analysis
2.9.3 MS data processing and statistical analysis

2.10 Microbiomic analysis of caecum digesta

2.10.1 Method overview
2.10.2 Extraction of metagenomic DNA and 454 pyrosequencing
2.10.3 Data analysis

2.11 Bioinformatic analysis

2.11.1 Ingenuity Pathway Analysis
2.11.2 Gene Set Enrichment Analysis
2.11.3 Integration of ‘Omics’ data

2.12 Conclusion and outlook

Effects of eicosapentaenoic acid-based diets on early and established colitis in the interleukin-10 gene-deficient mouse

3.1 Introduction
3.2 Hypothesis and aim
3.3 Methods
3.4 Results

3.4.1 Growth performance
3.4.2 Severity of intestinal inflammation at 9 and 12 weeks of age
3.4.3 Colon gene expression
Dose-response of salmon-based diets on established colitis and associated colonic gene expression in the interleukin-10 gene-deficient mouse

4.1 Introduction
4.2 Hypothesis and aim
4.3 Methods
4.4 Results
 4.4.1 Experimental diet composition
 4.4.2 Growth performance
 4.4.3 Severity of intestinal inflammation
 4.4.4 Colon gene expression
 4.4.4.1 Colon gene expression between mouse genotypes fed the AIN-76A diet
 4.4.4.2 Colon gene expression in mice fed the 15% salmon and 15% control diets
 4.4.4.2.1 Colon gene expression between mouse genotypes fed the 15% control diet
4.4.4.2 Effect of the 15% salmon diet (vs. 15% control diet) on colon gene expression in Il10−/− mice

4.4.4.3 Colon gene expression in mice fed the 30% salmon and 30% control diets

4.4.4.3.1 Colon gene expression between mouse genotypes fed the 30% control diet

4.4.4.3.2 Effect of the 30% salmon diet (vs. 30% control diet) on colon gene expression in Il10−/− mice

4.4.4.4 Colon gene expression in mice fed the 45% salmon and 45% control diets

4.4.4.4.1 Colon gene expression between mouse genotypes fed the 45% control diet

4.4.4.4.2 Effect of the 45% salmon diet (vs. 45% control diet) on colon gene expression irrespective of genotype

4.5 Discussion

4.5.1 Levels of LC n-3 PUFA

4.5.2 Severity of colitis in Il10−/− mice

4.5.3 Transcriptomic profiling of colon tissue

4.5.3.1 Pro-inflammatory gene expression in Il10−/− mice fed the 15% salmon diet (vs. 15% control diet)

4.5.3.2 Enhanced metabolic pathways in Il10−/− mice fed the 30% salmon diet (vs. 30% control diet)

4.5.3.3 Effect of the 45% salmon diet (vs. 45% control diet) dependent on genotype

4.6 Conclusion and outlook

Multi-'Omics’ approach to investigate the effects of a diet containing 30% salmon on the microbial community in the caecum and immune and metabolic pathways in colon and liver in the interleukin-10 gene-deficient mouse

5.1 Introduction

5.2 Hypothesis and aim

5.3 Methods

5.4 Results

5.4.1 Colon protein expression

5.4.1.1 Identification of proteins

5.4.1.2 Colon protein expression between mouse genotypes fed the 30% control diet

5.4.1.3 Effect of the 30% salmon diet (vs. 30% control diet) on colon protein expression in Il10−/− mice

5.4.2 Liver gene expression

5.4.3.1 Liver gene expression between mouse genotypes fed the 30% control diet

5.4.3.2 Effect of the 30% salmon diet (vs. 30% control diet) on liver gene expression in Il10−/− mice

5.4.4 Urinary metabolites

5.4.4.1 Metabolite identification

5.4.4.2 Metabolomic fingerprinting

5.4.4.2.1 Urinary metabolites between mouse genotypes fed the 30% control diet

5.4.4.2.2 Effect of the 30% salmon diet (vs. 30% control diet) on urinary metabolites in Il10−/− mice

5.4.5 Analysis of microbiota from caecum digesta

5.4.5.1 Species diversity estimate
5.4.5.2 Taxonomic differences
5.4.5.3 Beta diversity

5.5 Discussion

5.5.1 Proteomic profiling of colon tissue
5.5.1.1 Colon proteomic profile during colitis
5.5.1.2 Colon proteomic profile in response to the 30% salmon diet (vs. 30% control diet) in \(\text{Il10}^{-/-}\) mice

5.5.2 Transcriptomic profiling of liver tissue
5.5.2.1 Liver transcriptomic profile during colitis
5.5.2.2 Liver transcriptomic profile in response to the 30% salmon diet (vs. 30% control diet) irrespective of genotype
5.5.2.3 Liver transcriptomic profile in response to the 30% salmon diet (vs. 30% control diet) in \(\text{Il10}^{-/-}\) mice

5.5.3 Urine metabolomics
5.5.3.1 Urine metabolomic profile during colitis
5.5.3.2 Urine metabolomic profile in response to the 30% salmon diet (vs. 30% control diet) irrespective of genotype
5.5.3.3 Urine metabolomic profile in response to the 30% salmon diet (vs. 30% control diet) in \(\text{Il10}^{-/-}\) mice

5.5.4 Microbiomic analysis of caecum digesta
5.5.4.1 Microbial community profile during colitis
5.5.4.2 Microbial community profile in response to the 30% salmon diet (vs. 30% control diet) irrespective of genotype
5.5.4.3 Microbial community profile in response to the 30% salmon diet (vs. 30% control diet) in \(\text{Il10}^{-/-}\) mice

5.6 Conclusion and outlook

Integration of ‘Omics’ data to characterise the systemic responses to a diet containing 30% salmon in the interleukin-10 gene-deficient mouse

6.1 Introduction
6.2 Hypothesis and aim
6.3 Methods
6.4 Results
6.4.1 Tryptophan metabolism between mouse genotypes fed the 30% control diet
6.4.2 Tocopherol metabolism between mouse genotypes fed the 30% control diet
6.4.3 Microbial community profile between mouse genotypes fed the 30% control diet
6.4.4 Colon and hepatic gene expression and microbial community profile and their relationship to the urinary metabolite profile in \(\text{Il10}^{-/-}\) mice fed the 30% salmon diet (vs. 30% control diet)

6.5 Discussion
6.5.1 Novel insights into tryptophan metabolism during colitis
6.5.2 Novel insights into tocopherol metabolism during colitis
6.5.3 Novel insights into tocopherol metabolism in response to the 30% salmon diet (vs. 30% control diet) in \(\text{Il10}^{-/-}\) mice

6.6 Conclusion and outlook

General discussion

7.1 Background
7.2 Summary of results
7.3 General discussion 321
7.4 Future perspectives 325
7.5 Conclusion 326

Appendices 329
References 348
LIST OF FIGURES

Figure 1.1	Susceptibility loci for the disease phenotypes Crohn’s disease (CD) or ulcerative colitis (UC)	6
Figure 1.2	Structure of the colonic mucosa	7
Figure 1.3	Structure of tight junctions and adherens junctions	9
Figure 1.4	Overview of regulatory pathways involved in the cell-mediated immune response and the characteristic defects in the disease phenotypes Crohn’s disease (CD) and ulcerative colitis (UC)	12
Figure 1.5	From genes to metabolites in biological systems and the influence of microbial metabolism	20
Figure 1.6	Metabolism of omega-6 and omega-3 polyunsaturated fatty acids (n-6 and n-3 PUFA) from precursor fatty acids	28
Figure 1.7	Intestinal digestion and absorption of dietary lipids	30
Figure 1.8	Putative mechanism of action of omega-3 polyunsaturated fatty acids (n-3 PUFA) on immune cell functions	32
Figure 1.9	Overview of chapters in this dissertation.	39
Figure 2.1	Design for the “EPA time-course experiment”	44
Figure 2.2	Design for the “salmon diet experiment”	49
Figure 2.3	Transcriptomic analysis workflow	58
Figure 2.4	Principle of 2-dimensional (2D) gel electrophoresis	63
Figure 2.5	Proteomic analysis workflow	64
Figure 2.6	Metabolomic analysis workflow	72
Figure 2.7	Microbiomic analysis workflow	78
Figure 3.1	Design for the “EPA time-course experiment”	92
Figure 3.2	Mean body weights (g) for C57BL/6J and Il10-/− mice over the experimental period	94
Figure 3.3	Histological injury scores (HIS) obtained from the colon of Il10−/− mice at 9 and 12 weeks of age	97
Figure 3.4	Heatmap of colon gene expression profiles	100
Figure 3.5	Heatmap showing the set of genes comprising the KEGG pathway Tryptophan metabolism	109
Figure 3.6	Metabolism of tryptophan to xanthurenic acid (via kynurenine), tryptamine and serotonin	110
Figure 3.7	Colon gene expression changes in response to the eicosapentaenoic acid (EPA) diet (vs. oleic acid (OA) diet) in Il10−/− mice at early stages of colitis	113
Figure 3.8	Colon gene expression changes in response to the eicosapentaenoic acid (EPA) diet (vs. oleic acid (OA) diet) in Il10−/− mice with established colitis	114
Figure 3.9	Heatmap of peripheral blood mononuclear cell (PBMCs) gene expression profiles	117
Figure 3.10	15 highest p-value-ranked canonical pathways in peripheral blood mononuclear cells (PBMCs) from Il10−/− mice compared to C57BL/6J mice both fed the oleic acid (OA) diet	123
Figure 3.11	Ingenuity pathway for Primary immunodeficiency signalling	124
Figure 3.12	PBMC gene expression changes in response to the eicosapentaenoic acid (EPA) diet (vs. oleic acid (OA) diet) in Il10−/− mice at early stages of colitis	128
Figure 3.13	PBMC gene expression changes in response to the eicosapentaenoic acid (EPA) diet (vs. oleic acid (OA) diet) in Il10−/− mice with established colitis	129
Figure 3.14	Colon gene expression associated with early stages of colitis in Il10−/− mice	131
Figure 3.15	Peripheral blood mononuclear cell (PBMC) gene expression associated with early stages of colitis in Il10−/− mice	132
Figure 3.16	Colon gene expression associated with established colitis in Il10−/− mice	133
Figure 3.17	Peripheral blood mononuclear cell (PBMC) gene expression associated with established colitis in Il10−/− mice	134
Figure 3.18	Partial Least Squares-Discriminant Analysis (PLS-DA) of metabolite fingerprint from urine in positive and negative ionisation mode at 7.1 (T1), 9 (T2), 10.1 (T3) and 12 (T4) weeks of age	138
Figure 3.19	Venn diagram indicating numbers of significantly different ionisation products in the urine of Il10−/− mice compared to C57BL/6J mice	140
Figure 3.20	Venn diagram indicating numbers of significantly different ionisation products in the	140
urine of mice fed the eicosapentaenoic acid (EPA) diet compared to those fed the oleic acid (OA) diet

Figure 3.21 Partial Least Squares-Discriminant Analysis (PLS-DA) of metabolite fingerprint from urine of Il10−/− mice and C57BL/6J mice in positive and negative ionisation mode

Figure 3.22 Partial Least Squares-Discriminant Analysis (PLS-DA) of metabolite fingerprint from urine in positive and negative ionisation mode

Figure 3.23 Urinary metabolites associated with metabolism of tryptophan via kynurenine and indoleacetaldehyde

Figure 3.24 Urinary metabolites associated with metabolism of tryptophan via serotonin

Figure 4.1 Design for the “salmon diet experiment”

Figure 4.2 Mean body weights (g) for Il10−/− and C57BL/6J mice over the experimental period

Figure 4.3 Representative images of colon sections stained with haematoxylin and eosin

Figure 4.4 Scores of individual histological features in colon tissue of Il10−/− mice fed the 30% salmon diet and 30% control diet

Figure 4.5 KEGG pathway gene sets affected in the colon of Il10−/− mice compared to C57BL/6J mice (both fed the AIN-76A diet)

Figure 4.6 KEGG pathway gene sets affected in the colon of Il10−/− mice compared to C57BL/6J mice (both fed the 15% control diet)

Figure 4.7 Biological interaction network of differentially expressed genes associated with the ten most significant biological functions in Il10−/− mice fed the 15% salmon diet relative to those fed the 15% control diet

Figure 4.8 KEGG pathway gene sets affected in the colon of Il10−/− mice compared to C57BL/6J mice (both fed the 30% control diet)

Figure 4.9 Biological interaction network of differentially expressed genes associated with the ten most significant biological functions in the colon of Il10−/− mice fed the 30% salmon diet compared to those fed the 30% control diet

Figure 4.10 Biological interaction network of transcription factors

Figure 4.11 KEGG pathway gene sets affected in the colon of Il10−/− mice fed the 30% salmon diet compared to those fed the 30% control diet

Figure 4.12 Ingenuity pathway for Production of Nitric Oxide and Reactive Oxygen Species in macrophages

Figure 4.13 KEGG pathway gene sets affected in the colon of Il10−/− mice compared to C57BL/6J mice (both fed the 45% salmon diet)

Figure 4.14 Biological interaction network of differentially expressed genes associated with the ten most significant biological functions in the colon of C57BL/6J mice fed the 45% salmon diet

Figure 5.1 Representative gel image with selected spot-features corresponding to proteins for identification

Figure 5.2 Ingenuity pathway for Antigen presentation indicating molecular events that lead to the presentation of antigens to CD4+ and CD8+ T cells during colitis

Figure 5.3 Ingenuity pathway for Antigen presentation indicating molecular events that lead to the presentation of antigens to CD4+ and CD8+ T cells in Il10−/− mice fed the 30% salmon diet

Figure 5.4 Biological interaction network of differentially expressed genes associated with the ten most significant biological functions in the liver of Il10−/− mice compared to C57BL/6J mice both fed the 30% control diet

Figure 5.5 KEGG pathway gene sets differentially expressed in the liver of Il10−/− mice compared to C57BL/6J mice fed the 30% control diet

Figure 5.6 KEGG pathway gene sets differentially expressed in the liver of Il10−/− mice fed the 30% salmon diet compared to those fed the 30% control diet

Figure 5.7 Structural elucidation of xanthurenic acid

Figure 5.8 Structural elucidation of xanthurenic acid glucoside

Figure 5.9 Structural elucidation of γ-CEHC glucoside

Figure 5.10 Structural elucidation of α-CEHC glucuronide

Figure 5.11 Partial Least Squares-Discriminant Analysis (PLS-DA) of mouse urine in negative and positive ionisation mode at 6.2, 9 and 11.5 weeks of age

Figure 5.12 Peak intensities of the molecular ions corresponding to the urinary metabolites xanthurenic acid glucoside (negative ionisation mode) and xanthurenic acid (positive and negative)

Figure 5.13 Chao1 index [325] of caecal microbiota
Figure 5.14 Dominant phyla in the caeca of C57BL/6J mice and Il10−/− mice fed the 30% control diet and the 30% salmon diet.

Figure 5.15 Principal Coordinate Analysis (PCoA) using (A) an unweighted UniFrac method and (B) a weighted UniFrac method.

Figure 6.1 Biological pathway for Tryptophan metabolism indicating molecular events that lead to the biosynthesis of melatonin from tryptophan (via serotonin), or xanthurenic acid (via kynurenine) in Il10−/− mice fed the 30% control diet compared to C57BL/6J mice fed the same diet.

Figure 6.2 Correlation of urinary α-CEHC glucuronide (“M453.1T348” and “M472.1T347”) and γ-CEHC glucoside (“M425.1T334” and “M444.1T334”) abundance with hepatic expression of genes.

Figure 6.3 Relevance network indicating correlation of (A) negative and (B) positive ions and the caecal microbiota, with expression values of Il10−/− mice fed a 30% control diet (vs. C57BL/6J mice) overlaid.

Figure 6.4 Biological pathway for Tryptophan metabolism indicating molecular events that lead to the biosynthesis of melatonin from tryptophan (via serotonin), or xanthurenic acid (via kynurenine) in Il10−/− mice fed the 30% salmon diet compared to those fed the 30% control diet.

Figure 6.5 Correlation network of urinary α-CEHC glucuronide (“M453.1T348” and “M472.1T347”) and γ-CEHC glucoside (“M425.1T334” and “M444.1T334”) abundance with hepatic expression of genes.

Figure 6.6 Relevance network indicating correlation of (A) negative and (B) positive ions and the caecal microbiota, with expression values of Il10−/− mice fed the 30% salmon diet compared to those fed the 30% control diet overlaid.

Figure 6.7 Proposed hepatic molecular mechanisms that lead to the elimination of α-tocopherol in the form of α-CEHC glucuronide.
LIST OF TABLES

Table 1.1	Overview of factors that contribute to the pathogenesis of inflammatory bowel diseases (IBD) and the disease phenotypes ulcerative colitis (UC) and Crohn’s disease (CD)	3
Table 1.2	Characteristic changes in microbial community composition in inflammatory bowel diseases (IBD)	13
Table 1.3	Most commonly used mouse models of inflammatory bowel diseases (IBD)	16
Table 1.4	Nutritional profile of farmed New Zealand Chinook salmon fillets (*Oncorhynchus tshawytscha*).	25
Table 2.1	Formulation of the unmodified AIN-76A diet and AIN-76A-based eicosapentaenoic acid (EPA) and oleic acid (OA) diets for the “EPA time-course experiment”	47
Table 2.2	Formulation of salmon and control diets for the “salmon diet experiment”	52
Table 2.3	Preparation of solutions and buffers used for colon protein analysis	66
Table 2.4	Numbers of urine samples obtained from C57BL/6J mice and *Il10^-/-* mice fed AIN-76A diets, either unmodified, or enriched with oleic acid (OA) or eicosapentaenoic acid (EPA)	75
Table 2.5	Numbers of urine samples obtained from C57BL/6J mice and *Il10^-/-* mice fed 30% salmon or 30% control diets	76
Table 2.6	Overview of samples collected and measurements performed in the “EPA time-course experiment” and “salmon diet experiment” including contributions by the PhD candidate	84
Table 2.7	Analysis of growth performance for “EPA time-course experiment”	93
Table 2.8	Estimated mean histological injury scores (HIS) obtained from intestinal sections of *Il10^-/-* mice fed AIN-76A diets, either unmodified, or enriched with 3.7% oleic acid (OA) or 3.7% eicosapentaenoic acid (EPA)	96
Table 2.9	Numbers of differentially expressed genes in the colon of *Il10^-/-* mice and C57BL/6J mice fed AIN-76A diets, either unmodified, or enriched with oleic acid (OA) or eicosapentaenoic acid (EPA)	99
Table 3.1	Genes with the highest fold-changes (FC) between the colon from *Il10^-/-* mice and C57BL/6J mice fed the oleic acid (OA) diet (9 and 12 weeks of age)	102
Table 3.2	Most significantly affected biological functions in the colon of *Il10^-/-* mice compared to C57BL/6J mice fed the oleic acid (OA) diet (9 and 12 weeks of age)	103
Table 3.3	KEGG pathway gene sets affected in the colon of *Il10^-/-* mice compared to C57BL/6J mice sampled at 9 or 12 weeks of age	106
Table 3.4	Numbers of differentially expressed genes in peripheral blood mononuclear cells (PBMCs) of *Il10^-/-* mice and C57BL/6J mice fed the oleic acid (OA) diet	112
Table 3.5	Differentially expressed genes in peripheral blood mononuclear cells (PBMCs) from *Il10^-/-* mice compared to C57BL/6J mice fed the oleic acid (OA) diet that were in common at 9 and 12 weeks of age	116
Table 3.6	Most significantly affected biological functions in peripheral blood mononuclear cells (PBMCs) from *Il10^-/-* mice relative to C57BL/6J mice fed the oleic acid (OA) diet (9 and 12 weeks of age)	120
Table 3.7	Differentially expressed genes in peripheral blood mononuclear cells (PBMCs) from *Il10^-/-* mice	126
Table 3.8	Most significantly affected biological functions in peripheral blood mononuclear cells (PBMCs) from *Il10^-/-* mice	130
Table 3.9	Summary of gene expression changes in the colon and peripheral blood mononuclear cells (PBMCs) from *Il10^-/-* and C57BL/6J mice	135
Table 3.10	Permutation MANOVA of the urinary metabolite fingerprints	137
Table 3.11	Positive ionisation products significantly different in the urine from *Il10^-/-* mice compared to C57BL/6J mice	144
Table 3.17 Positive ionisation products with differential abundance in the urine of mice fed the eicosapentaenoic acid (EPA) diet

Table 3.18 Negative ionisation products with differential abundance in the urine of mice fed the eicosapentaenoic acid (EPA) diet

Table 3.19 Summary of urinary metabolites detected in Il10-/- and C57BL/6J mice fed AIN-76A-based diets, either enriched with eicosapentaenoic acid (EPA) or oleic acid (OA)

Table 4.1 Nutritional composition of diets salmon and control diets

Table 4.2 Analysis of growth performance for “salmon diet experiment”

Table 4.3 Numbers of differentially expressed genes in the colon of C57BL/6J and Il10-/- mice

Table 4.4 Most significantly affected biological functions in the colon of Il10-/- mice relative to C57BL/6J mice (both fed the AIN-76A diet)

Table 4.5 Most significantly affected biological functions in the colon of Il10-/- mice relative to C57BL/6J mice (both fed the 15% control diet)

Table 4.6 Most significantly affected biological functions in the colon of Il10-/- mice fed the 15% salmon diet relative to those fed the 15% control diet

Table 4.7 Most significantly affected biological functions in the colon of Il10-/- mice fed the 30% salmon diet relative to those fed the 30% control diet

Table 4.8 Most significantly affected biological functions in the colon of Il10-/- mice relative to C57BL/6J mice (both fed the 45% control diet)

Table 4.9 Most significantly affected biological functions in the colon of Il10-/- mice fed the 45% salmon diet relative to those fed the 45% control diet

Table 5.1 List of differentially expressed proteins in the colon of Il10-/- and C57BL/6J mice fed the 30% control or 30% salmon diet

Table 5.2 Numbers of differentially expressed genes in the liver of C57BL/6J and Il10-/- mice

Table 5.3 Most significantly affected biological functions in the liver of Il10-/- relative to C57BL/6J mice (both fed the 30% control diet)

Table 5.4 Differentially expressed genes associated with Xenobiotic metabolism in the liver of Il10-/- mice

Table 5.5 Differentially expressed genes associated with Lipid metabolism and Xenobiotics metabolism in the liver of C57BL/6J mice or Il10-/- mice fed the 30% salmon diet compared to those fed the 30% control diet

Table 5.6 Permutation MANOVA of the urinary metabolite fingerprints

Table 5.7 Ions with the ten highest Partial Least Squares-Discriminant Analysis (PLS-DA) loadings in Il10-/- and C57BL/6J mice fed 30% control or 30% salmon diets

Table 5.8 Average proportions of dominant genera in caecal digesta

Table 7.1 Summary of the main biological functions and microbiota affected in Il10-/- mice fed diets containing either 3.7% eicosapentaenoic acid (EPA) (“EPA time-course experiment”) or 30% salmon (“salmon diet experiment”)
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix I</td>
<td>Analysis of lyophilised salmon fillets</td>
<td>329</td>
</tr>
<tr>
<td>Appendix II</td>
<td>R codes applied for pre-processing of metabolomics data</td>
<td>330</td>
</tr>
<tr>
<td>Appendix III</td>
<td>Histological injury scores (HIS) obtained from the duodenum of C57BL/6J and II10−/− mice at 9 and 12 weeks of age</td>
<td>331</td>
</tr>
<tr>
<td>Appendix IV</td>
<td>Differentially expressed genes in the colon of II10−/− mice fed the oleic acid (OA) diet compared to those fed the AIN-76A diet at 12 weeks of age</td>
<td>332</td>
</tr>
<tr>
<td>Appendix V</td>
<td>Molecule shapes and relationship types used by Ingenuity Pathway Analysis</td>
<td>333</td>
</tr>
<tr>
<td>Appendix VI</td>
<td>Positive ionisation products with differential abundance in the urine of mice fed the eicosapentaenoic acid (EPA) diet compared to those fed the oleic acid (OA) diet</td>
<td>334</td>
</tr>
<tr>
<td>Appendix VII</td>
<td>Negative ionisation products with differential abundance in the urine of mice fed the eicosapentaenoic acid (EPA) diet compared to those fed the oleic acid (OA) diet</td>
<td>336</td>
</tr>
<tr>
<td>Appendix VIII</td>
<td>Biological pathway for Tryptophan metabolism indicating molecular events that lead to the biosynthesis of melatonin from tryptophan (via serotonin), or xanthurenic acid (via kynurenine) in II10−/− mice fed the oleic acid (OA) diet compared to C57BL/6J mice fed the same diet at 12 weeks of age.</td>
<td>338</td>
</tr>
<tr>
<td>Appendix IX</td>
<td>Biological pathway for Tryptophan metabolism indicating molecular events that lead to the biosynthesis of melatonin from tryptophan (via serotonin), or xanthurenic acid (via kynurenine) in II10−/− mice fed the eicosapentaenoic acid (EPA) diet compared to those fed the oleic acid (OA) diet.</td>
<td>340</td>
</tr>
<tr>
<td>Appendix X</td>
<td>Histology scores from (A) C57BL/6J mice and (B) II10−/− mice fed diets supplemented with 15%, 30% or 45% salmon and corresponding macronutrient-matched control diets</td>
<td>342</td>
</tr>
<tr>
<td>Appendix XI</td>
<td>qPCR validation of microarray results</td>
<td>343</td>
</tr>
<tr>
<td>Appendix XII</td>
<td>Unidentified ions with the ten highest Partial Least Squares-Discriminant Analysis (PLS-DA) loadings (“discriminant ions”) in II10−/− and C57BL/6J mice fed 30% control or 30% salmon diets</td>
<td>345</td>
</tr>
<tr>
<td>Appendix XIII</td>
<td>Proteins identified from previous experiments.</td>
<td>347</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Arachidonic acid</td>
</tr>
<tr>
<td>ALA</td>
<td>Alpha-linolenic acid</td>
</tr>
<tr>
<td>AMP</td>
<td>Antimicrobial protein</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>CAM</td>
<td>Cell adhesion molecule</td>
</tr>
<tr>
<td>CD</td>
<td>Crohn’s disease</td>
</tr>
<tr>
<td>CEBPB, CEBPD, CEBPE</td>
<td>CCAAT/enhancer binding protein (alpha, beta, delta)</td>
</tr>
<tr>
<td>CEHC</td>
<td>Carboxyethylhydroxychroman</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony-forming units</td>
</tr>
<tr>
<td>CIF</td>
<td>Complex intestinal microbiota</td>
</tr>
<tr>
<td>DHA</td>
<td>Docosahexaenoic acid</td>
</tr>
<tr>
<td>DIGE</td>
<td>Difference gel electrophoresis</td>
</tr>
<tr>
<td>DPA</td>
<td>Docosapentaenoic acid</td>
</tr>
<tr>
<td>DSS</td>
<td>Dextran Sodium Sulfate</td>
</tr>
<tr>
<td>EF</td>
<td>Enterococcus faecalis and E. faecium</td>
</tr>
<tr>
<td>EF×CIF</td>
<td>Solution for bacterial inoculation</td>
</tr>
<tr>
<td>EPA</td>
<td>Eicosapentaenoic acid</td>
</tr>
<tr>
<td>ESI</td>
<td>Electrospray ionisation</td>
</tr>
<tr>
<td>FC</td>
<td>Fold-change</td>
</tr>
<tr>
<td>FDR</td>
<td>False discovery rate</td>
</tr>
<tr>
<td>GIT</td>
<td>Gastrointestinal tract</td>
</tr>
<tr>
<td>GLA</td>
<td>Gamma-linolenic acid</td>
</tr>
<tr>
<td>GSEA</td>
<td>Gene Set Enrichment Analysis</td>
</tr>
<tr>
<td>GWAS</td>
<td>Genome-Wide Association Study</td>
</tr>
<tr>
<td>HE</td>
<td>Haematoxylin and eosin</td>
</tr>
<tr>
<td>HIS</td>
<td>Histological injury score</td>
</tr>
<tr>
<td>HMDB</td>
<td>Human Metabolome Database</td>
</tr>
<tr>
<td>IBD</td>
<td>Inflammatory bowel diseases</td>
</tr>
<tr>
<td>IEF</td>
<td>Isoelectric focussing</td>
</tr>
<tr>
<td>IL[number]</td>
<td>Interleukin [number]</td>
</tr>
<tr>
<td>II10⁻/⁻</td>
<td>Interleukin-10 gene-deficient</td>
</tr>
<tr>
<td>IPA</td>
<td>Ingenuity Pathway Analysis</td>
</tr>
<tr>
<td>KEGG</td>
<td>Kyoto Encyclopedia of Genes and Genomes</td>
</tr>
<tr>
<td>LA</td>
<td>Linoleic acid</td>
</tr>
<tr>
<td>LC</td>
<td>Long-chain</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>LysoPC</td>
<td>Lysophosphatidylcholine</td>
</tr>
</tbody>
</table>
LysoPE Lysophosphatidylethanolamine

m/z Mass-per-charge ratio

MANOVA Multivariate ANOVA

MDT Marine-derived tocopherol

MS Mass spectrometry

n-3 PUFA Omega-3 polyunsaturated fatty acid

n-6 PUFA Omega-6 polyunsaturated fatty acid

NCBI National Center for Biotechnology Information

NKT cell Natural killer T cell

NMR Nuclear magnetic resonance

OA Oleic acid

OTU Operational taxonomic unit

PAMP Pathogen-associated molecular pattern

PBMC Peripheral blood mononuclear cell

PBS Phosphate-buffered saline

PC Principal coordinate

PCA Principal Component Analysis

PCoA Principal Coordinate Analysis

pI Isoelectric point

PLS-DA Partial Least Squares-Discriminant Analysis

PPAR Peroxisome proliferator-activated receptor

PRR Pattern recognition receptor

QIIME Quantitative Insights Into Microbial Ecology

qRT-PCR Real-time reverse transcription polymerase chain reaction

REML Restricted maximum likelihood

REST Relative Expression Software Tool

RIN RNA integrity number

ROS Reactive Oxygen Species

RT Retention time

SCFA Short-chain fatty acid

SDS Sodium dodecyl sulphate

SDS-PAGE Sodium dodecyl sulphate polyacrylamide gel electrophoresis

SNP Single nucleotide polymorphisms

TG Triacylglycerol

Th cell T helper cell

TMAO Trimethylamine N-oxide

TNBS Trinitrobenzenesulfonic acid

Treg Regulatory T helper cell

UC Ulcerative colitis