Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Comparative genomics of
Butyrivibrio and *Pseudobutyrvibrio*
from the rumen

A dissertation presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy
in
Microbiology and Genetics

at Massey University, Manawatū, New Zealand.

Nikola Palevich
2016
Abstract

Determining the role of rumen microbes in plant polysaccharide breakdown is fundamental to understanding digestion, and maximising productivity, in ruminant animals. Rumen bacterial species belonging to the genera *Butyrivibrio* and *Pseudobutyryrivibrio* are important degraders of plant hemicellulose, an abundant heterogeneous, branched polymer, involved in crosslinking cellulose microfibrils to lignin. To investigate their genes required for hemicellulose degradation, the genomes of 40 *Butyrivibrio* and 6 *Pseudobutyryrivibrio* strains isolated from the plant-adherent microbiome of New Zealand bovine ruminants, were sequenced, and their CAZyme-encoding genes compared. Within the *Butyrivibrio* and *Pseudobutyryrivibrio* pan-genomes, respectively, there were a total of 4,421 and 441 glycoside hydrolases, as well as 1,283 and 122 carbohydrate esterases with predicted activities involved in the degradation of the insoluble plant polysaccharides such as xylan and pectin. To examine species differences, the genes of the previously characterised bacterium *B. proteoclasticus* B316 were compared in detail with those from the newly sequenced *B. hungatei* MB2003. B316 was found to encode a much more developed polysaccharide-degrading repertoire and it was thus hypothesised that B316 would out-compete MB2003 when grown in co-culture on the insoluble hemicellulose substrate, xylan. To test this hypothesis, the two strains were grown on xylan and pectin, either alone in mono-cultures, or in direct competition in a co-culture. The results showed that MB2003 had little ability to utilise xylan or pectin alone, but was capable of significant growth when co-cultured with B316. This indicates a commensalistic interaction between these species, in which B316 initiates the primary attack on the insoluble substrate, while MB2003 has a secondary role, competing for the released soluble sugars. This work provides the first systematic phenotypic, comparative genomic and functional analysis of ruminal *Butyrivibrio* and *Pseudobutyryrivibrio* species, which not only defines their conserved features involved in hemicellulose degradation, but is also beginning to differentiate their unique gene complements and growth characteristics that separate them as discrete species.
Acknowledgements

To my supervisors Dr Graeme Attwood, Dr Bill Kelly and Dr Jasna Rakonjac, thank you for taking me on first as a Masters and Doctorate student. Thank you for your encouragement, patience, wisdom and support throughout this journey and hope that you have enjoyed teaching me as I have enjoyed learning from all of you.

I wish to gratefully acknowledge AgResearch and the New Economy Research Fund (NERF) for funding this project and the research facilities that have allowed me to complete this study. I wish to thank Massey University and the Institute of Fundamental Sciences (IFS) for financial support. I would like to express my gratitude to the NZ Microbiological Society, also the IFS and NZ Society for Biochemistry and Molecular Biology for financial assistance to present this thesis work at the Australian Society for Microbiology annual meeting in 2015.

Thank you to the Rumen Microbiology team for all the assistance and support. I would like to extend my sincere gratitude to the following people for all their help: Dr Sinead Leahy, Dr Eric Altermann and Roger Moraga for your guidance with the bioinformatics and all things computational. Dr Peter Janssen, Dr Gemma Henderson, Dr Adrian Cookson and Dr Christina Moon for providing input and feedback throughout this project. Sarah Lewis and Bryan Treloar for help with VFA analysis. Dr Don Otter and Cornelis van Dijk for help with HPIC analysis. Siva Ganesh for guidance and support with the statistical analyses of the RNA-seq data. Joy Dick for help with referencing. I also wish to thank Dr Stuart Denman for collaborative efforts with the CAZyme analyses.

I have been blessed with a very loving and supportive family, for this I am the most grateful and thankful. My mum, Desanka Palevich, has always stressed the importance of education and I know that this respect for education has, in some unconscious way, shaped my values and made me the person that I am today. I am forever grateful to you for all of the sacrifices that you have made for me. My baba, Ruzica Radulovic, has been a source of constant and unconditional love for as long as I can remember. You have taught me about what it means to be both a “good person” and the “bigger person”, figuratively speaking. To my mother and father-in-law, Marilyn and Tom Cox, thank you for all the love and support over the past few years.

Finally, to my beautiful and loving wife Faith Palevich. You have encouraged me from the beginning and your support in harsh times is what got me to the end. For this you have my deepest gratitude.
Dedication

To the most beautiful woman in the world, Faith Palevich, I find it difficult to express into words my appreciation because it is so boundless. You are my best friend, my most enthusiastic cheerleader and an amazing wife. It has been an absolute privilege to work along side you over these past few years and you have undoubtedly matured me into the person I am today. You continually inspire me to work hard in all aspects of the game and to stand up for myself. I sincerely appreciate all of the sacrifices that you have made to make my career a priority in our lives. Without your love and support, I would be lost. You have shared this entire amazing journey with me and seen me through the ups and downs. So without question in my mind, I dedicate this dissertation to you.
Table of Contents

Abstract ... i
Acknowledgements .. iii
Dedication ... v
Table of Contents .. vii
List of Figures ... xi
List of Tables ... xvii
Non-Standard Abbreviations .. xx

Chapter 1 Introduction and Literature Review ... 1
1.1 Introduction.. 2
1.2 The ruminant digestive system ... 4
1.3 Forage composition ... 6
1.4 Plant fibre degradation ... 12
1.5 Rumen microbial diversity and the fibre degrading rumen microbiome......................... 18
1.6 Diversity of rumen Butyrivibrio and Pseudobutyrvibrio ... 22
1.7 Butyrivibrio proteoclasticus B316 .. 25
1.8 Thesis aims ... 30

Chapter 2 Materials and Methods ... 31
2.1 Materials .. 32
2.1.1 Bacterial strains ... 32
2.1.2 Buffers, reagents and solutions .. 32
2.1.3 Media components .. 37
2.1.4 Media .. 40
2.1.5 Enzymes, buffers and reagents .. 42
2.1.6 General laboratory equipment .. 44
2.1.7 Bioinformatic resources and software .. 44
2.2 Methods ... 47
2.2.1 Origin and selection of Butyrivibrio isolates ... 47
2.2.2 Bacterial culture revival and growth ... 47
2.2.3 Wet mounts and Gram staining .. 48
2.2.4 Long-term culture storage ... 48
2.2.5 Agarose gel-electrophoresis .. 48
2.2.6 DNA extractions ... 49
2.2.7 Nucleic acid extractions ... 51
2.2.8 Nucleic acid quantity and quality analysis 53
2.2.9 Sanger sequencing .. 54
2.2.10 Polymerase chain reaction (PCR) 55
2.2.11 Phylogenetic analysis of full-length 16S rRNA gene sequences 56
2.2.12 PCR amplification of enolase genes 58
2.2.13 Cloning Butyrivibrio marker genes 58
2.2.14 qPCR .. 60
2.2.15 Carbon source utilisation .. 62
2.2.16 Fermentation end product analysis 62
2.2.17 High-pressure ion chromatography (HPIC) 64
2.2.18 Electron microscopy ... 65
2.2.19 Cell motility assay .. 66
2.2.20 Pulsed-field gel electrophoresis (PFGE) 66
2.2.21 Whole-Genome Sequencing (WGS) 67
2.2.22 Butyrivibrio co-culture growth experiment 68
2.2.23 In silico analyses .. 70
 2.2.23.1 Butyrivibrio hungatei MB2003 genome project 70
 2.2.23.2 Comparative analysis of the pan-genome datasets 73
 2.2.23.3 RNA sequencing analysis .. 78

Chapter 3 Selection and characterisation of candidate Butyrivibrio strains 85
3.1 Introduction ... 86
3.2 Selection and taxonomic assignment of Butyrivibrio strains 87
3.3 Morphological characterisation ... 90
3.4 Genome size estimation and ApaI restriction fragment length
 polymorphism (RFLP) assessed by PFGE 96
3.5 Cell motility ... 101
3.6 Carbon source utilisation by Butyrivibrio strains 106
3.7 Analysis of fermentation end products after growth on cellobiose 112
3.8 Discussion ... 114
Chapter 4 Butyrivibrio and Pseudobutyrivibrio pan-genome analyses

4.1 Introduction

4.2 Genomic features of Butyrivibrio and Pseudobutyrivibrio

4.3 Genome-based reconstruction of phylogeny

4.4 Synteny, amino acid and codon usage comparison

4.5 Pan-genome analysis

4.6 Glycobiomes of Butyrivibrio and Pseudobutyrivibrio

4.6.1 Carbohydrate-Binding Modules (CBMs)

4.6.2 Glycoside Hydrolases (GHs)

4.6.3 Carbohydrate Esterases (CEs)

4.6.4 Polysaccharide Lyases (PLs)

4.6.5 Glycosyl Transferases (GTs)

4.7 Genotypic variation associated with selected phenotypes

4.7.1 Cell motility and flagellum-encoding loci

4.7.2 Lactate production

4.7.3 Enolase genes

4.8 Discussion

4.8.1 Proteins and domains involved in xylan and pectin breakdown

4.8.2 Enolase and the glycolytic pathway

4.8.3 Flagellar operons and motility

Chapter 5 Xylan and pectin utilisation by B. hungatei MB2003 and B. proteoclasticus B316

5.1 Introduction

5.2 Butyrivibrio hungatei MB2003

5.2.1 B. hungatei MB2003 genome properties and comparison to B. proteoclasticus B316

5.3 Mono- and co-culture growth experiments

5.3.1 Quantitative PCR assays

5.3.2 Butyrivibrio co-culture growth on xylan and pectin

5.4 Transcriptome profiling of mono- and co-cultures of B. hungatei MB2003 and B. proteoclasticus B316 grown on xylan or pectin

5.4.1 Global transcriptome dynamics

5.4.2 Transcriptome assembly and differential gene expression
5.4.3 Biological processes associated with differentially expressed genes........230
5.5 Carbohydrate degradation and metabolism ..233
5.6 Oligosaccharide transport and assimilation...239
5.7 Discussion ..243

Chapter 6 General discussion, conclusions and future directions247
6.1 Introduction ..248
6.2 Differentiation of the Butyrivibrio and Pseudobutyrivibrio genera248
6.3 Butyrivibrio and Pseudobutyrivibrio genome features..............................250
6.4 Cell motility and operons encoding flagella genes252
6.5 Plant fibre degradation by Butyrivibrio and Pseudobutyrivibrio253
6.6 Proposed models for degradation of xylan and pectin by Butyrivibrio258
 6.6.1 Proposed model for GAX degradation ...260
 6.6.1.1 Extracellular GAX degradation ...260
 6.6.1.2 Transport of xylo-oligosaccharides and monosaccharides264
 6.6.1.3 Cytosolic degradation of xylo-oligosaccharides266
 6.6.2 Proposed model for XGA and RG-I degradation267
 6.6.2.1 Extracellular XGA and RG-I degradation267
 6.6.2.2 Transport of pectic-oligosaccharides and monosaccharides271
 6.6.2.3 Cytosolic degradation of pectic-oligosaccharides272
6.7 Conclusions ..273
6.8 Future perspectives ..275

Appendices ..279
 Appendix I ..280
 Appendix II ..287
 Appendix III ...311

References ...387
List of Figures

Figure 1.1. Simplified diagram of the ruminant digestive tract ... 5
Figure 1.2. Generalised structure of the primary plant cell wall .. 8
Figure 1.3. Simplified chemical structures of cellulose, hemicellulose and pectin 11
Figure 1.4. Enzymes involved in plant fibre-degradation .. 16
Figure 1.5. Bacterial diversity of the rumen microbial ecosystem ... 18
Figure 1.6. Phylogeny of Clostridial Cluster I and subcluster XIVa strains based on near full-length 16S rRNA gene sequences ... 26
Figure 1.7. Ultrastructure of B. proteoclasticus B316 cells .. 27
Figure 1.8. Genome atlas of Butyrivibrio proteoclasticus B316 ... 29
Figure 2.1. Preparation pipeline used for prokaryotic strand-specific transcriptome analysis ... 54
Figure 2.2. Overview of B. hungatei MB2003 and B. proteoclasticus B316 co-culture growth experiment ... 69
Figure 2.3. Equations for calculation of ANI and AF .. 73
Figure 2.4. Overview of the workflow for RNA-seq in silico analysis 79
Figure 3.1. Phylogenetic tree of Butyrivibrio strains based on 16S rRNA full-length gene sequence data ... 89
Figure 3.2. Light micrographs of Gram-stained B. fibrisolvens strains grown on RM02 media containing cellobiose ... 93
Figure 3.3. Light micrographs of Gram-stained Butyrivibrio sp. 2 strains grown on RM02 media containing cellobiose ... 94
Figure 3.4. Light micrographs of Gram-stained Butyrivibrio sp. 3 strains grown on RM02 media containing cellobiose ... 95
Figure 3.5. PFGE profiles of uncut B. fibrisolvens genomic DNAs 98
Figure 3.6. PFGE profiles of uncut Butyrivibrio sp. 2 genomic DNAs 99
Figure 3.7. PFGE profiles of uncut Butyrivibrio sp. 3 genomic DNAs 100
Figure 3.8. Motility assays of control strains .. 101
Figure 3.9. Motility assays of B. fibrisolvens strains ... 102
Figure 3.10. Motility assays of Butyrivibrio sp. 2 strains .. 103
Figure 3.11. Motility assays of Butyrivibrio sp. 3 strains .. 104
Figure 3.12. End product analysis of Butyrivibrio strains grown on insoluble carbon sources ... 110
Figure 4.1. Pfam analyses of *Butyrivibrio* and *Pseudobutyrivibrio* genomes 127
Figure 4.2. Prokaryotic COGs analyses of *Butyrivibrio* and *Pseudobutyrivibrio*
genomes .. 129
Figure 4.3. FGD of *Butyrivibrio* and *Pseudobutyrivibrio* genomes 131
Figure 4.4. Genome clustering comparison of Pfam and COG domains from
Butyrivibrio and *Pseudobutyrivibrio* .. 133
Figure 4.5. ANI and AF analyses of *Butyrivibrio* and *Pseudobutyrivibrio*
genomes .. 134
Figure 4.6. Core- and pan-genomes of *Butyrivibrio* and *Pseudobutyrivibrio*
defined using BLAST analysis ... 137
Figure 4.7. Flowerplot diagram of unique, group-specific and core gene families
in the *Butyrivibrio* and *Pseudobutyrivibrio* genomes 138
Figure 4.8. CAZyme composition of *Butyrivibrio* and *Pseudobutyrivibrio*
genomes and cluster groups ... 140
Figure 4.9. Comparative analysis of annotated *Butyrivibrio* and
Pseudobutyrivibrio CAZymes .. 141
Figure 4.10. The distribution of each CAZyme class and family in *Butyrivibrio*
and *Pseudobutyrivibrio* genomes ... 142
Figure 4.11. Heatmap of normalised relative abundances for CAZyme families
determined for *Butyrivibrio* and *Pseudobutyrivibrio* genomes 145
Figure 4.12. Heatmap showing the abundances of CBM families in *Butyrivibrio*
and *Pseudobutyrivibrio* genomes ... 146
Figure 4.13. Heatmap showing the abundances of GH families in *Butyrivibrio*
and *Pseudobutyrivibrio* genomes ... 148
Figure 4.14. Predicted Pfam domains of GH5 endoglucanases 153
Figure 4.15. Predicted Pfam domains of GH51 α-L-arabinofuranosidases 155
Figure 4.16. Predicted Pfam domains of GH10 xylanases .. 159
Figure 4.17. Predicted Pfam domains of GH11 endo-xylanases 159
Figure 4.18. Heatmap showing the abundances of CE and PL families in
Butyrivibrio and *Pseudobutyrivibrio* genomes ... 162
Figure 4.19. Predicted Pfam domains of CE1 acetyl-xylan and ferulic acid
esterases .. 165
Figure 4.20. Predicted Pfam domains of CE4 polysaccharide deacetylases 168
Figure 4.21. Heatmap showing the abundances of GT families in *Butyrivibrio*

and *Pseudobutyrivibrio* genomes ... 170

Figure 4.22. Predicted Pfam domains of GTs ... 172

Figure 4.23. Motility assays and flagellar biosynthesis operons of control strains 174

Figure 4.24. Motility assays and flagellar biosynthesis operons of *B. fibrisolvens*

strains ... 175

Figure 4.25. Motility assays and flagellar biosynthesis operons of *Butyrivibrio*

sp. 2 strains ... 177

Figure 4.26. Motility assays and flagellar biosynthesis operons of *Butyrivibrio*

sp. 3 strains ... 179

Figure 4.27. Comparison of *ldh* Pfam domains in *Butyrivibrio* genome sequences.... 182

Figure 4.28. Phylogenetic tree of *ldhs* encoded in *Butyrivibrio* genomes 184

Figure 4.29. Enolases from *Butyrivibrio* genome sequences .. 186

Figure 4.30. Overview of possible carbohydrate metabolic pathways in

Butyrivibrio leading to the formation of butyrate, formate, acetate

and lactate from cellobiose.. 197

Figure 5.1. Transmission electron micrograph of a negatively stained

B. hungatei MB2003 cell ... 203

Figure 5.2. Genome atlas of *B. hungatei* MB2003 ... 205

Figure 5.3. qPCR of *B. proteoclasticus* B316 and *B. hungatei* MB2003

co-cultures grown on xylan and pectin .. 207

Figure 5.4. Mono- and co-culture growth of *B. hungatei* MB2003 and

B. proteoclasticus B316 grown on xylan and pectin as determined

by qPCR ... 208

Figure 5.5. pH measurements of mono- and co-cultures of *B. hungatei* MB2003

and *B. proteoclasticus* B316 grown on xylan and pectin.............................. 210

Figure 5.6. Monosaccharides released by *B. hungatei* MB2003 and

B. proteoclasticus B316 in mono- and co-cultures grown on xylan 212

Figure 5.7. Monosaccharides released by *B. hungatei* MB2003 and

B. proteoclasticus B316 in mono- and co-cultures grown on pectin 213

Figure 5.8. NMDS ordination showing transcriptional similarity between

B. proteoclasticus B316 samples ... 216

Figure 5.9. NMDS ordination showing transcriptional similarity between

B. hungatei MB2003 samples .. 217
Figure 5.10. Permutation-based test of multivariate homogeneity of group dispersions and variances ... 219
Figure 5.11. Network analysis of the subset *B. proteoclasticus* B316 dataset ... 221
Figure 5.12. CIM analysis of genes significantly up-regulated in
B. proteoclasticus B316 ... 227
Figure 5.13. CIM analysis of genes significantly up-regulated in
B. hungatei MB2003 ... 228
Figure 5.14. Network analysis of genes significantly up-regulated in
B. proteoclasticus B316 ... 229
Figure 5.15. COG classifications of DEGs from *B. proteoclasticus* B316 and
B. hungatei MB2003 grown in mono- and co-culture on xylan.............. 231
Figure 5.16. COG classifications of DEGs from *B. proteoclasticus* B316 and
B. hungatei MB2003 grown in mono- and co-culture on pectin.............. 232
Figure 5.17. CAZyme encoding DEGs up-regulated in xylan-grown cultures 234
Figure 5.18. CAZyme encoding DEGs up-regulated in pectin-grown cultures........ 236
Figure 5.19. GTs up-regulated during mono-culture growth on pectin.................. 238
Figure 5.20. Functional domains of DEGs encoding carbohydrate transport proteins and surrounding CAZymes identified in xylan- or pectin-grown cultures ... 242
Figure 6.1. Schematic diagrams of the structures of the main classes of xylan and pectin ... 259
Figure 6.2. Model for the degradation of GAX by *B. proteoclasticus* B316 and
B. hungatei MB2003 ... 262
Figure 6.3. Model for the degradation of XGA and RG-I by *B. proteoclasticus*
B316 and *B. hungatei* MB2003 ... 269
Figure A1.1. PFGE *Apa* I restriction profiles of *B. fibrisolvens* genomic DNAs 280
Figure A1.2. PFGE *Apa* I restriction profiles of *Butyrivibrio* sp. 2 genomic DNAs......... 281
Figure A1.3. PFGE *Apa* I restriction profiles of *Butyrivibrio* sp. 3 genomic DNAs......... 282
Figure A1.4. PFGE I-*Ceu* I restriction profiles of *B. fibrisolvens* genomic DNAs 283
Figure A1.5. PFGE I-*Ceu* I restriction profiles of *Butyrivibrio* sp. 2 genomic DNAs ... 284
Figure A1.6. PFGE I-*Ceu* I restriction profiles of *Butyrivibrio* sp. 3 genomic DNAs ... 285
Figure A2.1. TIGRfam analyses of *Butyrivibrio* and *Pseudobutyrivibrio* genomes ... 291
Figure A2.2. KEGG pathway analyses of Butyrivibrio and Pseudobutyrivibrio genomes.. 293
Figure A2.3. Genome clustering comparison of TIGRfam and KO domains from Butyrivibrio and Pseudobutyrivibrio... 295
Figure A2.4. MUMmer plots of B. fibrisolvens draft genomes versus B. proteoclasticus B316 as the reference genome... 296
Figure A2.5. MUMmer plots of Butyrivibrio sp. 2 draft genomes versus B. proteoclasticus B316 as the reference genome... 297
Figure A2.6. MUMmer plots of Butyrivibrio sp. 3 draft genomes versus B. proteoclasticus B316 as the reference genome... 298
Figure A2.7. Amino acid usage heatmap of the 40 Butyrivibrio and 6 Pseudobutyrivibrio based on their protein content.. 299
Figure A2.8. Codon usage heatmap of the 40 Butyrivibrio and 6 Pseudobutyrivibrio based on their protein content... 300
Figure A2.9. Predicted Pfam domains of GH67 α-glucuronidases.. 308
Figure A2.10. Predicted Pfam domain of GH8 oligosaccharide reducing-end xylanases.. 309
Figure A2.11. PCR amplification of enolase genes from Butyrivibrio and Pseudobutyrivibrio strains.. 310
Figure A3.1. PCR amplification of Butyrivibrio strain DNAs using TaqMan primer/probe assay oligonucleotides... 318
Figure A3.2. Standard curves derived from simplex real time PCR reactions.............. 319
Figure A3.3. Distribution of all genes in B. proteoclasticus B316 based on Q-value from Rockhopper transcriptome assembly............................... 334
Figure A3.4. Distribution of all genes in B. hungatei MB2003 based on Q-value from Rockhopper transcriptome assembly............................... 335
Figure A3.5. CA plots showing transcriptional homogeneity in B. proteoclasticus B316 at different treatment groups... 336
Figure A3.6. CA plots showing transcriptional homogeneity in B. hungatei MB2003 at different treatment groups... 337
Figure A3.7. CA bi-plots showing transcriptional homogeneity at different treatment groups for B. proteoclasticus B316... 338
Figure A3.8. CA bi-plots showing transcriptional homogeneity at different treatment groups for B. proteoclasticus B316 at Q < 0.05................................. 339
Figure A3.9. CA bi-plots showing transcriptional homogeneity at different treatment groups for *B. hungatei* MB2003 .. 340

Figure A3.10. CA bi-plots showing transcriptional homogeneity at different treatment groups for *B. hungatei* MB2003 at $Q < 0.05$ 341

Figure A3.11. CIM analysis of the entire *B. proteoclasticus* B316 dataset 347

Figure A3.12. CIM analysis of the entire *B. hungatei* MB2003 dataset 348

Figure A3.13. CIM analysis of the subset *B. proteoclasticus* B316 dataset 349

Figure A3.14. CIM analysis of the subset *B. hungatei* MB2003 dataset 350

Figure A3.15. Ordinate plots comparing BH-adjusted ANOVA and BH-adjusted KW analyses ... 351
List of Tables

Table 1.1. Ruminant livestock numbers and product export value in New Zealand2
Table 1.2. Composition of Type-I and Type-II primary and secondary plant cell walls ... 7
Table 1.3. Important fibre degrading enzymes involved in forage degradation in the rumen .. 13
Table 1.4. The major fibre degrading bacteria of the bovine rumen .. 20
Table 1.5. *B. proteoclasticus* B316 genome features and genes involved in polysaccharide breakdown ... 27
Table 2.1. Bacterial strains used in this thesis .. 33
Table 2.2. Anaerobic glycerol solution ... 32
Table 2.3. GenRFV ... 39
Table 2.4. Trace element solution .. 39
Table 2.5. Vitamin solution .. 40
Table 2.6. BY and RM02 media .. 41
Table 2.7. 16S rRNA gene primers ... 43
Table 2.8. TaqMan primers/probes ... 43
Table 2.9. Centrifuge specifications and suppliers ... 45
Table 2.10. Molecular weight size markers ... 45
Table 2.11. Bioinformatic resources and software used in this thesis 46
Table 2.12. Sampling times and isolate nomenclature .. 47
Table 2.13. Assembly of PCR reagents .. 55
Table 2.14. Thermal profile for PCR ... 56
Table 2.15. Assembly of reagents for LR-PCR .. 56
Table 2.16. Thermal profile for LR-PCR .. 56
Table 2.17. Reagents for PCR cloning .. 59
Table 2.18. Thermal profile of PCR for clone library ... 59
Table 2.19. Colony PCR reagents .. 60
Table 2.20. Thermal profile of the colony PCR reaction .. 60
Table 2.21. qPCR reagents .. 61
Table 2.22. qPCR thermal profile ... 62
Table 3.1. Taxonomic assignments and 16S rRNA gene sequence analyses of *Butyrivibrio* strains ... 88
Table 3.2. Growth and morphological characterisation of the *Butyrivibrio* strains 91
Table 3.3. Colony morphology of the *Butyrivibrio* strains ... 92
Table 3.4. Motility assay of *Butyrivibrio* strains .. 105
Table 3.5. Carbon source utilisation of the *Butyrivibrio* strains .. 107
Table 3.6. End product analysis of *Butyrivibrio* strains ... 113
Table 4.1. Additional strains for pan-genome analyses ... 121
Table 4.2. General features of *Butyrivibrio* and *Pseudobutyrivibrio* genomes 123
Table 4.3. Group specific CAZyme families .. 144
Table 4.4. Enolase gene occurrence in *Butyrivibrio* and *Pseudobutyrivibrio* genomes 185
Table 4.5. Summary of genes involved in the Methylglyoxyl Shunt pathway 188
Table 5.1. VFA analysis of mono- and co-cultures of *B. hungatei* MB2003 and *B. proteoclasticus* B316 grown on xylan and pectin .. 211
Table 5.2. List of *B. proteoclasticus* B316 subset genes from Network analysis 222
Table 5.3. Transcriptome assembly and differential gene expression analysis for growth on xylan ... 224
Table 5.4. Transcriptome assembly and differential gene expression analysis for growth on pectin ... 225
Table A1.1. Summary of the genomic properties based on PFGE ... 286
Table A2.1. Genome annotation features of *Butyrivibrio* and *Pseudobutyrivibrio* genomes ... 287
Table A2.2. CAZy families analysed and their known activities .. 301
Table A3.1. Classification and general features of *B. hungatei* MB2003 311
Table A3.2. Project information ... 312
Table A3.3. Genome statistics of *B. hungatei* MB2003 .. 312
Table A3.4. Assignment of MB2003 protein coding genes to COG functional categories 313
Table A3.5. Comparison of MB2003 and B316 protein coding gene percentages to COG functional categories ... 314
Table A3.6. List of top 20 candidate gene targets for the universal mono- and co-culture qPCR assays based on DBA .. 315
Table A3.7. List of top 20 candidate gene targets for the *B. proteoclasticus* B316 specific mono- and co-culture qPCR assays based on DBA ... 316
Table A3.8. List of top 20 candidate gene targets for the *B. hungatei* MB2003 specific mono- and co-culture qPCR assays based on DBA 317
Table A3.9. Quality of raw reads and FastQC results of trimmed reads 320
Table A3.10. Alignment details of trimmed reads to the *B. proteoclasticus* B316 genome .. 322
Table A3.11. Alignment details of trimmed reads to the *B. hungatei* MB2003 genome .. 324
Table A3.12. Transcript abundance for *B. proteoclasticus* B316 grown in mono- and co-culture on xylan and pectin ... 326
Table A3.13. Transcript abundance for *B. hungatei* MB2003 grown in mono- and co-culture on xylan and pectin .. 330
Table A3.14. List of *B. proteoclasticus* B316 subset genes from the network analysis ... 342
Table A3.15. List of genes significantly up-regulated during mono- and co-culture growth of *B. proteoclasticus* B316 on xylan ... 352
Table A3.16. List of genes significantly up-regulated during mono- and co-culture growth of *B. hungatei* MB2003 on xylan .. 353
Table A3.17. List of genes significantly up-regulated during mono- and co-culture growth of *B. proteoclasticus* B316 on pectin ... 362
Table A3.18. List of genes significantly up-regulated during mono- and co-culture growth of *B. hungatei* MB2003 on pectin .. 364
Non-Standard Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Auxiliary Activities</td>
</tr>
<tr>
<td>aa</td>
<td>Amino acid(s)</td>
</tr>
<tr>
<td>ABC</td>
<td>ATP-binding cassette</td>
</tr>
<tr>
<td>ACS</td>
<td>American Chemical Society</td>
</tr>
<tr>
<td>AF</td>
<td>Alignment fraction</td>
</tr>
<tr>
<td>ANI</td>
<td>Average nucleotide identity</td>
</tr>
<tr>
<td>ANOVA</td>
<td>One-way analysis of variance</td>
</tr>
<tr>
<td>BCVFA</td>
<td>Branched chain volatile fatty acids</td>
</tr>
<tr>
<td>BLAST</td>
<td>Basic Local Alignment Sequence Tool</td>
</tr>
<tr>
<td>bp</td>
<td>Base pair(s)</td>
</tr>
<tr>
<td>CA</td>
<td>Correspondence analysis</td>
</tr>
<tr>
<td>CAZY</td>
<td>Carbohydrate-Active enZYmes</td>
</tr>
<tr>
<td>CBM</td>
<td>Carbohydrate-Binding Module(s)</td>
</tr>
<tr>
<td>CBP</td>
<td>Carbohydrate Binding Protein(s)</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary DNA</td>
</tr>
<tr>
<td>CDS</td>
<td>Coding Sequences</td>
</tr>
<tr>
<td>CE</td>
<td>Carbohydrate Esterase(s)</td>
</tr>
<tr>
<td>CIM</td>
<td>Clustered Image Map</td>
</tr>
<tr>
<td>COG</td>
<td>Clusters of Orthologous Groups of proteins</td>
</tr>
<tr>
<td>CUT</td>
<td>Carbohydrate Uptake Transporter</td>
</tr>
<tr>
<td>DBA</td>
<td>Differential BLAST analysis</td>
</tr>
<tr>
<td>dbCAN</td>
<td>DataBase for automated Carbohydrate-active enzyme ANnotation</td>
</tr>
<tr>
<td>DEG</td>
<td>Differentially expressed genes</td>
</tr>
<tr>
<td>DEPC H₂O</td>
<td>Diethylpyrocarbonate-treated water</td>
</tr>
<tr>
<td>dH₂O</td>
<td>Distilled water</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DOE-JGI</td>
<td>United States Department of Energy’s Joint Genome Institute</td>
</tr>
<tr>
<td>EC</td>
<td>enzyme Comission</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediamine tetraacetic acid</td>
</tr>
<tr>
<td>EPS</td>
<td>Extracellular Polysaccharides</td>
</tr>
<tr>
<td>ER-IMG</td>
<td>Expert Review version of the IMG system</td>
</tr>
<tr>
<td>FGD</td>
<td>Functional genome distribution</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>FDR</td>
<td>False discovery rate</td>
</tr>
<tr>
<td>g</td>
<td>Gram(s)</td>
</tr>
<tr>
<td>Gb</td>
<td>Gigabase(s)</td>
</tr>
<tr>
<td>GB</td>
<td>Gigabyte(s)</td>
</tr>
<tr>
<td>GH</td>
<td>Glycoside Hydrolase(s)</td>
</tr>
<tr>
<td>GO</td>
<td>Gene Ontology</td>
</tr>
<tr>
<td>GT</td>
<td>Glycosyl Transferase(s)</td>
</tr>
<tr>
<td>h</td>
<td>Hour(s)</td>
</tr>
<tr>
<td>HMM</td>
<td>Hidden Markov models</td>
</tr>
<tr>
<td>HPIC</td>
<td>High-pressure ion chromatography</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>IMG</td>
<td>Integrated Microbial Genomes</td>
</tr>
<tr>
<td>Interpro</td>
<td>Intergrative Protein Signature Database</td>
</tr>
<tr>
<td>JGI</td>
<td>Joint Genome Institute</td>
</tr>
<tr>
<td>Kb</td>
<td>Kilobase(s)</td>
</tr>
<tr>
<td>KB</td>
<td>Kilobyte(s)</td>
</tr>
<tr>
<td>KEGG</td>
<td>Kyoto Encyclopedia of Genes and Genomes</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogram(s)</td>
</tr>
<tr>
<td>KO</td>
<td>KEGG Orthology</td>
</tr>
<tr>
<td>KW</td>
<td>Kruskal-Wallis</td>
</tr>
<tr>
<td>L</td>
<td>Litre(s)</td>
</tr>
<tr>
<td>LB</td>
<td>Luria-Bertani</td>
</tr>
<tr>
<td>MANOVA</td>
<td>Multivariate analysis of variance</td>
</tr>
<tr>
<td>Mb</td>
<td>Megabase(s)</td>
</tr>
<tr>
<td>MB</td>
<td>Megabyte(s)</td>
</tr>
<tr>
<td>μL</td>
<td>Microlitre(s)</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>MDS</td>
<td>Multidimensional scaling</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram(s)</td>
</tr>
<tr>
<td>min</td>
<td>Minute(s)</td>
</tr>
<tr>
<td>mL</td>
<td>Millilitre(s)</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter(s)</td>
</tr>
<tr>
<td>mM</td>
<td>Millimolar</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger RNA</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>mV</td>
<td>Millivolt(s)</td>
</tr>
<tr>
<td>ncRNA</td>
<td>Non-coding RNA</td>
</tr>
<tr>
<td>NDF</td>
<td>Neutral Detergent Fibre</td>
</tr>
<tr>
<td>NMDS</td>
<td>Non-metric multidimensional scaling</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogram(s)</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer(s)</td>
</tr>
<tr>
<td>nt</td>
<td>Nucleotide(s)</td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
<tr>
<td>ORF</td>
<td>Open reading frame(s)</td>
</tr>
<tr>
<td>OUT</td>
<td>Operational taxonomic unit(s)</td>
</tr>
<tr>
<td>PCoA</td>
<td>Principal component analysis</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>Pfam</td>
<td>Protein families</td>
</tr>
<tr>
<td>PFGE</td>
<td>Pulsed-field gel electrophoresis</td>
</tr>
<tr>
<td>PL</td>
<td>Polysaccharide Lyase(s)</td>
</tr>
<tr>
<td>PP</td>
<td>Permease protein</td>
</tr>
<tr>
<td>PRIAM</td>
<td>PRofils pour l'Identification Automatique du Métabolisme</td>
</tr>
<tr>
<td>qPCR</td>
<td>Quantitative polymerase chain reaction</td>
</tr>
<tr>
<td>RE</td>
<td>Restriction endonuclease</td>
</tr>
<tr>
<td>RFLP</td>
<td>Restriction fragment length polymorphism</td>
</tr>
<tr>
<td>RIN</td>
<td>RNA Integrity Number</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>RPKM</td>
<td>Reads per kilobase of gene per million reads mapped</td>
</tr>
<tr>
<td>SBP</td>
<td>Substrate-binding protein</td>
</tr>
<tr>
<td>SCVFA</td>
<td>Short chain volatile fatty acids</td>
</tr>
<tr>
<td>sec</td>
<td>Second(s)</td>
</tr>
<tr>
<td>SEM/TEM</td>
<td>Scanning/Transmission electron microscopy</td>
</tr>
<tr>
<td>SLH</td>
<td>S-layer homology</td>
</tr>
<tr>
<td>TE</td>
<td>Tris-EDTA buffer</td>
</tr>
<tr>
<td>TIGRfam</td>
<td>The Institute for Genomic Research's database of protein families</td>
</tr>
<tr>
<td>tRNA</td>
<td>Transfer RNA</td>
</tr>
<tr>
<td>UNG</td>
<td>Uracil N-Glycosylase</td>
</tr>
<tr>
<td>UPGMA</td>
<td>Unweighted Pair Group Method with Arithmetic means</td>
</tr>
<tr>
<td>V</td>
<td>Volts</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume per volume</td>
</tr>
<tr>
<td>v/v/v</td>
<td>Volume per volume per volume</td>
</tr>
<tr>
<td>VFA</td>
<td>Volatile fatty acid(s)</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight per volume</td>
</tr>
</tbody>
</table>