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Abstract 

Irrigation is the largest user of allocated freshwater, so conservation of water use should 

begin with improving the efficiency of crop irrigation. Improved irrigation management 

is necessary for humid areas such as New Zealand in order to produce greater yields, 

overcome excessive irrigation and eliminate nitrogen losses due to accelerated leaching 

and/or denitrification.  

The impact of two different climatic regimes (Hawkes Bay, Manawatū) and soils (free 

and imperfect drainage) on irrigated pea (Pisum sativum., cv. ‘Ashton’) and barley 

(Hordeum vulgare., cv. ‘Carfields CKS1’) production was investigated. These 

experiments were conducted to determine whether variable-rate irrigation (VRI) was 

warranted. The results showed that both weather conditions and within-field soil 

variability had a significant effect on the irrigated pea and barley crops (pea yield - 4.15 

and 1.75 t/ha; barley yield - 4.0 and 10.3 t/ha for freely and imperfectly drained soils, 

respectively).  

Given these results, soil spatial variability was characterised at precision scales using 

proximal sensor survey systems: to inform precision irrigation practice. Apparent soil 

electrical conductivity (ECa) data were collected by a Dualem-421S electromagnetic 

(EM) survey, and the data were kriged into a map and modelled to predict ECa to depth. 

The ECa depth models were related to soil moisture (θv), and the intrinsic soil differences. 

The method was used to guide the placement of soil moisture sensors. 

After quantifying precision irrigation management zones using EM technology, dynamic 

irrigation scheduling for a VRI system was used to efficiently irrigate a pea crop (Pisum 

sativum., cv. ‘Massey’) and a French bean crop (Phaseolus vulgaris., cv. ‘Contender’) 

over one season at the Manawatū site. The effects of two VRI scheduling methods using 

(i) a soil water balance model and (ii) sensors, were compared. The sensor-based 

technique irrigated 23–45% less water because the model-based approach overestimated 

drainage for the slower draining soil. There were no significant crop growth and yield 

differences between the two approaches, and water use efficiency (WUE) was higher 

under the scheduling regime based on sensors.  
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To further investigate the use of sensor-based scheduling, a new method was developed 

to assess crop height and biomass for pea, bean and barley crops at high field resolution 

(0.01 m) using ground-based LiDAR (Light Detection and Ranging) data. The LiDAR 

multi-temporal, crop height maps can usefully improve crop coefficient estimates in soil 

water balance models. The results were validated against manually measured plant 

parameters.  

A critical component of soil water balance models, and of major importance for irrigation 

scheduling, is the estimation of crop evapotranspiration (ETc) which traditionally relies 

on regional climate data and default crop factors based on the day of planting. Therefore, 

the potential of a simpler, site-specific method for estimation of ETc using in-field crop 

sensors was investigated. Crop indices (NDVI, and canopy surface temperature, Tc) 

together with site-specific climate data were used to estimate daily crop water use at the 

Manawatū and Hawkes Bay sites (2017-2019). These site-specific estimates of daily crop 

water use were then used to evaluate a calibrated FAO-56 Penman-Monteith algorithm to 

estimate ETc from barley, pea and bean crops. The modified ETc–model showed a high 

linear correlation between measured and modelled daily ETc for barley, pea, and bean 

crops. This indicates the potential value of in-field crop sensing for estimating site 

specific values of ETc.  

A model-based, decision support software system (VRI–DSS) that automates irrigation 

scheduling to variable soils and multiple crops was then tested at both the Manawatū and 

Hawkes Bay farm sites. The results showed that the virtual climate forecast models used 

for this study provided an adequate prediction of evapotranspiration but over predicted 

rainfall. However, when local data was used with the VRI–DSS system to simulate results, 

the soil moisture deficit showed good agreement with weekly neutron probe readings. 

The use of model system-based irrigation scheduling allowed two-thirds of the irrigation 

water to be saved for the high available water content (AWC) soil.  

During the season 2018 – 2019, the VRI–DSS was again used to evaluate the level of 

available soil water (threshold) at which irrigation should be applied to increase WUE and 

crop water productivity (WP) for spring wheat (Triticum aestivum L., cv. ‘Sensas’) on the 

sandy loam and silt loam soil zones at the Manawatū site. Two irrigation thresholds (40% 

and 60% AWC), were investigated in each soil zone along with a rainfed control. Soil 

water uptake pattern was affected mainly by the soil type rather than irrigation. The soil 



 

 

iii 

 

water uptake decreased with soil depth for the sandy loam whereas water was taken up 

uniformly from all depths of the silt loam. The 60% AWC treatments had greater irrigation 

water use efficiency (IWUE) than the 40% AWC treatments, indicating that irrigation 

scheduling using a 60% AWC trigger could be recommended for this soil-crop scenario. 

Overall, in this study, we have developed new sensor-based methods that can support 

improved spatial irrigation water management. The findings from this study led to a more 

beneficial use of agricultural water. 
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Chapter 1  

Introduction 

1.1 Overview 

Irrigated agriculture is the major consumer of allocated freshwater worldwide, accounting 

for 70% of the total freshwater use (FAO, 2015). Water shortage is a key concern for the 

future of agricultural production. This is more pressing when viewed in conjunction with 

climate change which is expected to bring more extreme climatic conditions including 

droughts (Perea et al., 2018). Thus, concerns over water availability and water quality 

increasingly require more efficient use of water resources in irrigated agriculture (Perea 

et al., 2018). 

In New Zealand, irrigation accounts for 78% of allocated freshwater (Booker et al., 2016). 

In 2017, irrigated agricultural land covered 3% (747,000ha) of New Zealand’s land area. 

The area of irrigated agricultural land in New Zealand almost doubled between 2002 and 

2017, from 384,000 ha to 747,000 ha (Statistics NZ, 2019). The use of irrigation in New 

Zealand has resulted in the significant expansion and intensification of a range of farming 

systems, with irrigation giving greater reliability of production, increased yields, and 

improved quality of production (e.g., larger and more consistent fruit size) (Kaye-Blake 

et al., 2014). In a number of primary industries, particularly cropping and horticulture, 

financial margins, and market demands are ‘tight’, and irrigation is the only means of 

ensuring a viable production system.  

The two key problems facing freshwater management in  in New Zealand are: (i) water 

is becoming scarce in certain catchments as demand for irrigation and urban water 

increases (Ministry for the Environment, 2014, Kaye-Blake et al. (2014)) (ii) water 

quality is deteriorating as water flows reduce and pollutant loads increase, with nitrate 

leaching being particularly problematic. Some important agricultural land on New 

Zealand’s east coast, located in the rain shadow of the mountains along New Zealand’s 

spine, receive less rainfall and are already limited by a shortage of available water (Kaye-



 

 

Chapter 1  2 

 

Blake et al. (2014); Dark et al., 2017). This includes regions such as Central Otago, 

coastal Canterbury and parts of the Hawkes Bay.  Here the potential growth in production 

is limited by available water so the competition for consumptive and non-consumptive 

water use has become a prominent issue in recent years, especially in Canterbury where 

water allocations have increased by 25 million cubic metres per week (11 percent) 

between 2006 and 2010 (Ministry for the Environment, 2014). 

Given the constraints on water availability, it is of paramount importance to increase the 

efficiency of water use in irrigation. Improved irrigation scheduling is the basis of greater 

water use efficiency. Irrigation scheduling is the process of determining the timing 

(frequency) and size of irrigation events. Such schedules are based on: climate, available 

water content (AWC) (Moghaddasi et al., 2010), soil water supply and infiltration rate, 

crop characteristics, the application rate and distribution uniformity (Delavar et al., 2011) 

of the irrigation equipment, and regional water allocations (the amount of water allocated 

to a farmer for irrigation). Freshwater needs to be conserved to maintain the 

environmental flow in rivers. An irrigation system could be highly efficient but if the 

allocation is too high – then this has a negative impact on the environment (Grafton et al., 

2018). Accurate scheduling maximizes irrigation efficiency by determining the exact 

amount of water needed to replenish the soil moisture content (SMC) to the desired level 

for optimal plant growth. 

Water needs vary spatially in fields because of spatial soil variability (texture, AWC, flow 

pathways, infiltration and drainage rate) (Al-Karadsheh et al., 2002; Evans et al., 2013). 

Therefore, the need for irrigation may differ between different zones of a particular field. 

With precision irrigation (PI), farmers can manage this discrepancy and irrigate 

differentially (e.g. targeting the lighter textured soils and avoid over-irrigating poorly 

drained zones) during the cropping season (Hedley et al., 2013). As PI equipment such 

as variable-rate irrigation (VRI) centre pivots become increasingly available to 

agricultural producers in New Zealand, research is needed to determine how to best 

manage these irrigation systems to optimize crop yield and water resources. However, 

optimising irrigation will depend not only on the use of PI systems but also on the tools 

that can help the farmer monitor, manage and automate irrigation scheduling, so that 

water is applied precisely to satisfy crop water requirements (Ekanayake & Hedley, 2018; 

Lea-Cox, 2012). 
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Wireless transmission of SMC and other site-specific parameters such as canopy-air 

temperature differences (Tc – Ta) and normalised difference vegetation index (NDVI) will 

inform and allow real-time water applications that precisely match the water needs in 

each area. In addition to wireless sensor networks (WSN), the use of remote (e.g. light 

detection and ranging (LiDAR)) and proximal sensing survey (e.g. electromagnetic 

induction (EMI)) technologies offers unique opportunities to make the non-invasive, non-

destructive and very reliable measurements required to map soil variability and monitor 

crop performance at high spatial resolution (i.e. 0.01 – 5 m) (Corwin & Lesch, 2003; 

Friedli et al., 2016; Zhang & Grift, 2012).   

1.2 Problem statement  

Irrigation water requirements vary spatially and temporally within fields depending on 

soil properties, crop type and stage of growth, and topography. Therefore, at any irrigation 

event, the water requirement is likely to differ between different zones of a particular 

field. When travelling irrigation systems apply water at constant rates, some areas of the 

field may receive too much water and others not enough.  

The use of VRI addresses this problem (i.e. it can vary the rate of water applied with 

individual sprinkler control), but farmers need a smart scheduling regime if they are to 

realise the benefits of these improved irrigation systems. In other words, precision 

scheduling methods are required to support the ability of VRI equipment to precisely 

apply water. Precision management is needed to match precision hardware. Research is 

needed to develop more accurate sensing methods and techniques, which are based on 

high resolution spatio-temporal information of soils and crops and/or modelling, to 

inform spatial VRI scheduling tools, models and other Decision Support Systems (DSS). 

In addition, research is needed to assess the relative benefits of smart scheduling to plant 

production, irrigation water use efficiency (IWUE) and nutrient leaching.   

Research Question: Is it possible to develop new sensing technology methods to improve 

the spatio-temporal resolution of VRI decision support systems? 
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1.3 Aim and objectives 

This research aimed to optimise the value of irrigation water by developing new sensing 

methods which could be practically adopted, or integrated into existing tools, to improve 

VRI scheduling.  

These sensing methods focus on the fundamental soil and crop parameters used by the 

soil water balance (SWB) i.e. soil water content, soil water status, crop height, crop 

evapotranspiration (ETc). Method development takes advantage of recent advances in 

connected sensor technologies to deliver high resolution spatio-temporal information to 

support the latest VRI hardware systems.   

Individual research objectives are as follows:  

1- Investigate the effects of spatial variability of water stress (waterlogging; drought) 

on crop growth and the possible benefits of implementing VRI strategies. 

2- Develop and validate a novel method for mapping and characterising soil physical 

property variability in the field with high spatial (6 m) and depth resolution (< 

0.15 m to 1.5 m) using EMI technology so that this variability can be accounted 

for in irrigation management.  

3- Compare the use or integration of real-time soil moisture monitoring with a SWB 

modelling approach for irrigation scheduling. 

4- Develop a novel sensing method for high resolution mapping of crop height 

(0.01m accuracy) to inform spatial VRI scheduling tools and models. 

5- Investigate the use of site-specific crop sensor data (NDVI; Tc) to simplify and 

improve spatial estimations of ETc in order to support latest VRI scheduling tools 

and models. 

6- Evaluate an existing spatially explicit, decision support software tool for VRI 

systems, and the potential and need to include high resolution spatio-temporal 

environmental data (rain, soil, crop) including data streams developed in this 

study.  

7- Implement the VRI software informed by high resolution spatio-temporal data 

streams (from Objective 6) to investigate the impact of two irrigation thresholds 

(i.e. criteria) on crop yield, irrigation demand, drainage and leaching risk. 
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1.4 Thesis design 

This thesis is presented in ten chapters. This thesis has been developed as a collection of 

seven manuscripts (Chapters 3, 4, 5, 6, 7, 8 and 9):   
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Chapter 2  

Literature Review 

2.1 Irrigated agriculture and water use efficiency 

Cultivated land under well-managed irrigation produces greater yields per unit area than 

non-irrigated agriculture, by reducing crop water stress under drought conditions. 

Without irrigation, the same level of crop production would require a far greater area of 

land under cultivation (El Chami et al., 2019). 

Agriculture accounts for roughly 70% of total freshwater withdrawals globally (FAO, 

2015). 38% of this irrigated area depend on groundwater (Siebert et al., 2013), which has 

contributed to a ten-fold increase of groundwater abstraction for agricultural irrigation 

over the last 50 years. Water-use efficiency (WUE) improvements are considered 

instrumental to address the projected 40% gap between demand and supply and to 

mitigate water scarcities by 2030 (UNEP, 2011). Well managed systems that lessen 

negative environmental impacts such as drainage and run-off with associated nutrient 

losses are urgently needed in many countries (Daccache et al., 2015), including New 

Zealand.  

The potential savings from increased WUE could be as high as US$115 billion annually 

by 2030 (Dobbs et al., 2011). Too much irrigation resulted in low crop WUE and effective 

irrigation using less water can lead to a higher yield and WUE (Daccache et al., 2015; 

Zhang et al., 2004). Irrigation delivery systems commonly include two broad categories; 

these are surface (gravity), and pressurized (e.g. centre pivot and linear move systems, 

sprinkler, and drip systems). Pressurized systems deliver water in smaller, more precise 

amounts than surface systems, which contributes to their greater WUE potential (Hedley 

et al., 2013). The WUE of pressurized systems can be enhanced by using variable rate 

water applicators (Perea et al., 2018), and through supervisory control and data 

acquisition (Ekanayake & Hedley, 2018; Ruiz-Garcia et al., 2009) to customize irrigation 
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based on root zone water content (AWC) in each portion of the field.  

Rapid irrigation development has taken place in New Zealand, particularly at the turn of 

the 20th century, with increasing levels of investment in irrigation systems and irrigation 

research (Dark et al., 2017). Some regions in New Zealand, such as parts of Hawke’s Bay, 

Canterbury, Otago, and the Wairarapa are seasonally drought limited, receiving less than 

800 mm rain per year (Fig. 2.1a). In general, the introduction of new irrigation systems 

into these regions has been highly successful and has driven agricultural intensification 

in the drier areas, improving and sustaining the general well-being of rural communities. 

Irrigation schemes in New Zealand currently cover some 650,000 ha of land (Fig. 2.1b). 

In 2012, spray systems were utilised on 74% of New Zealand’s land with 18% of farms 

still utilising flood systems (Connor, 2015), and the percentage of spray systems has 

probably continued to increase to the current day.  

 

Figure 2.1: (a) the wide range of annual regional rainfalls and allocation of surface water in New Zealand 

(NIWA, 2018) (b) irrigation schemes in different regions of New Zealand (Irrigationnz.co.nz) 

2.2 Variable-rate irrigation (VRI) 

The major driver for variable-rate irrigation (VRI) is the presence of spatial variability 

within an irrigated field that (i) affects water availability (sufficiency or excess) to a crop 

and limits crop yield or quality or (ii) regulates water application due to erosion, runoff, 

(a) 
(b) 



 

 

Chapter 2  8 

 

leaching or other environmentally sensitive problems (Daccache et al., 2015; El Chami et 

al., 2019). Common sources of within-field variability derive from variation in soil 

properties and topography, either naturally occurring or induced by human management 

(e.g., compaction, erosion, organic matter depletion) that in turn regulate AWC, soil, and 

terrain hydrologic properties, and nutrient supply (Perea et al., 2018; Pierce, 2010).  

Nielsen et al. (1973) were one of the first to quantify the within-field variability of field-

measured soil-water properties in an irrigated field. According to Evans et al. (2013), VRI 

is the ability to spatially vary water application depths across a field to address specific 

soil, crop, and/or other conditions (e.g. see Fig. 2.2).  

The majority of research into VRI deals with continuous move irrigation systems, 

primarily centre pivot and linear move systems as the platform on which sensing and 

control take place, recent advances have also been made for fixed irrigation systems, for 

example, in orchards (Coates & Delwiche, 2008). VRI in continuous move irrigation 

systems has evolved since the first system was reported in 1992 by Fraisse et al. (1993) 

and Duke et al. (1992) and most of the research at that time was for spatially variable 

application of water and fertilizers with databases of spatially referenced data being used 

for system control (Camp & Sadler, 1998; Duke et al., 1997; Evans et al., 1996; King & 

Kincaid, 1996; Sadler et al., 2000a). 

For centre pivots, VRI is currently complemented by two techniques: (i) speed control 

varies the fraction of time that the outermost tower is moving, so application depth can 

be different in each sector of the field (VRI Speed Control - One slice is one sector: Figure 

2.3a). (ii) nozzle control varies the fraction of time that each sprinkler or bank of 

sprinklers is turned on, so application depth can be different angularly and radially. Both 

mechanisms may be integrated for zone control VRI (VRI Zone Control -One block is one 

management zone: Fig. 2.3b).
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Figure 2.2: Different water application rates across a field using variable-rate irrigation (VRI) centre pivot 

under different conditions (Breneger et al. (2015), Irrigationnz.co.nz). 

  

Figure 2.3: Example prescription map for A) a speed control and B) a zone control variable-rate irrigation 

(VRI) centre pivot; each color indicates a different irrigation application depth (Breneger et al. (2015), 

Irrigationnz.co.nz).  

According to Sadler et al. (2000b), variations in water availability across a field because 

of different soil characteristics may cause farmers to 1) ensure that areas with the smallest 

AWC receive adequate water, 2) manage the whole field based on average soil water 

conditions, or 3) limit water application to avoid over-irrigating the wettest areas. All of 

these scenarios will cause over-irrigation or under-irrigation of other areas due to the 

inability of current irrigation systems to differentially apply irrigation water based on soil 

and plant factors within a single irrigated field. Chemical leaching below the root zone, 

surface runoff, or potential yield decreases in particular areas can occur under each 

management strategy. 

Over recent years, VRI (i.e., site-specific centre-pivot irrigation) has emerged as an 

effective and convenient means of customizing irrigation to parts of a field (Evans et al., 

2013).  With VRI, the application depth, intensity, and timing, as well as the spatial extent 

(a) (b) 
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of each management zone, can now be controlled at levels of precision that had been 

infeasible in the large fields of modern agriculture (Daccache et al., 2015).  

Hedley and Yule (2009a) reported that around 25% of the water savings can be achieved 

by efficient application of site-specific irrigation models. Oliveiria et al. (2005) reported 

that for tomato production in Tennessee, uniform management required 20% more 

applied water compared with site-specific management. Merely achieving a small but 

consistent yield improvement would make VRI adoption profitable (Marek et al., 1998), 

irrespective of water savings.  

The impact of VRI benefits can reach beyond field boundaries.  For example, reducing 

nitrogen (N) leaching with VRI not only decreases fertilizer budgets but may also improve 

the quality of drinking water and the environment. Meisinger and Delgado (2002) 

presented the principles for managing nitrate-N (NO3-N) leaching where one of the key 

principles to reduce NO3-N leaching is site-specific irrigation management. This was 

reported for the spatial variability of residual soil NO3-N and NO3-N leaching during the 

growing season (barley, canola, and potato) for centre-pivot irrigated systems. The 

residual soil NO3-N in a loamy sand zone was lower than that measured for the sandy 

loam zone. The NO3-N leached from the irrigated crops in the loamy sand zone areas was 

therefore assumed to be higher than for these crops grown on the sandy loam zone. 

Several research studies have been carried out in the past decade using variable irrigation 

centre-pivots or linear moves (King et al., 1999; Sadler et al., 1996; Sadler et al., 2000b; 

Wall et al., 1996). Omary et al. (1997) developed an automated system for centre pivots 

that enabled variable application depths within 9-m long segments at a given speed. The 

system used three-manifolds per segment that could be operated individually or in various 

combinations to provide eight different application rates at any given tower velocity. 

McCann et al. (1997) developed a control system for centre pivots and linear move 

systems that enabled spatially varied water application along the lateral in a stepwise 

manner, using electric solenoid valves and control modules to operate multiple sprinklers 

with different nozzle sizes. Signals to the control modules were transmitted along a single 

cable by a microprocessor according to the position of the irrigation system relative to a 

target application map. Buchleiter et al. (1995) developed a spatially variable application 

system for a linear move system that used computerized control to vary the travel speed, 

and hence application depth, in the direction of travel. VRI in each half-span along the 
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lateral was achieved by pulsing the flow to individual manifolds with an auxiliary 

controller interfaced with the primary control panel. 

 VRI‘s benefits were quantified on several intensely studied fields by conducting 

simulations (Daccache et al., 2015; DeJonge et al., 2007; El Chami et al., 2019; Hedley 

& Yule, 2009b; Nijbroek et al., 2003; Perea et al., 2018) or field experiments  (Hillyer & 

Higgins, 2014; Khalilian et al., 2008; King et al., 2006). 

The VRI systems generally consist of the following components as described by Breneger 

et al. (2015) (see Fig. 2.2 and 2.3): 

1- PC software: is used to create the VRI farm irrigation plan. The plan consists of 

management zones defined by layer type. Each layer defines the parameters (where/how 

much) that each substance is applied. This is loaded into the VRI controller; either 

manually via a communication cable, USB stick or through a wireless connection. Some 

advanced systems use web-based application software to reduce the need for the irrigator 

to have a high spec computer. This also allows the development company to 

upgrade/update the software without needing to visit the irrigator. 

2- VRI controller: generally mounted on the irrigator, it reads and interprets the 

irrigation plan and uses data from other inputs (such as Global Positioning Systems (GPS) 

coordinates) to calculate which valves need to be actuated at any one time. It controls 

water outlets including individual sprinklers and the end gun. The VRI controller also has 

the ability to record and report its status and events. 

3- Wiring loom: this consists of a cable that runs between nodes delivering power 

from the power source to the node. Different system types also use the wiring loom to 

connect the VRI controller to the valve nodes and transmit data along the length of the 

irrigator. 

4- Valve nodes: consisting of a watertight enclosure and a printed circuit board 

(PCB) containing the processor and drivers to control relays and in turn valves. 

5-  Manufacturers use different hardware in this area. Some use wireless technology 

to control the valve node while other manufacturers use a continuous cable system linking 

one node to the next along the length of the irrigator. 

6- Solenoid valves: require a signal from the node to actuate. There are two types of 

solenoids currently available:
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- Continuous powered solenoids require the signal current to be either continuously 

on or off depending on the desired state of the valve. 

- Latching solenoids require a polarity pulse to actuate the valve on or off. 

7- GPS unit: is mounted at the end of the pivot to send a signal back to the VRI 

controller notifying it of the position of the irrigator, and allowing it to calculate the valve 

control signals at this point. A lateral-move irrigator will have a GPS on each end of the 

irrigator.  

8- Speed control: is the part of the VRI software that calculates and matches the speed 

of the irrigator with the pulsing of the solenoid valves to maximise the application 

efficiency and minimise the return time of the irrigator. The combination of both the 

variation in ground speed and a number of nozzles operating reduces both the depth 

(mm/ha) and the rate (mm hr-1) near the centre point where normal uniform-rate irrigators 

over irrigate, thus improving instantaneous application rates on longer (+500 metre) pivot 

irrigators. 

2.3 Mapping the spatial variability of soil and crop 

characteristics  

It is necessary for VRI system presented in Section 2.2 to strategically account for the 

spatial variability of soil water and crop characteristics distribution in the field, therefore 

this Section explains how we can do this using proximal and remote sensing survey 

system.  

2.31 Identifying soil variability by electromagnetic induction 

(EMI) 

Identifying soil water content (SWC) and AWC variability in agricultural fields can be 

assessed in a variety of ways. Traditional core sampling provides very accurate 

information but induces very serious labour costs to generate high-resolution data. The 

geophysical technologies such as ground-penetrating radar (GPR), electrical resistivity 
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(ER), or electromagnetic induction (EMI) (Allred et al., 2008; Allred et al., 2010) have 

the potential to produce high-resolution data while reducing field monitoring costs and 

increasing efficiency. 

EMI is a highly adaptable non-invasive technique that measures the apparent bulk 

electrical conductivity (ECa) of the soil (De Jong et al., 1979). The principle of EMI 

sensors is to firstly generate a primary magnetic field that induces very small currents in 

the soil which in turn generate a secondary magnetic field. This secondary magnetic field 

is measured by a receiver coil in the sensor. Sensors are designed so that the secondary 

and primary magnetic field are linearly proportional to ECa (Corwin & Lesch, 2005). 

Measurement of soil ECa is a frequently used and very reliable method to indicate field 

variability in precision agriculture (Corwin & Lesch, 2003). Commercial examples of 

EMI sensors include the EM-31 and EM-38 soil conductivity meters (Geonics Ltd, 

Mississauga, ON., Canada) and Dualem systems (DualEM, Milton, ON, Canada). The 

depth of exploration of the soil profile is proportional (for homogeneous material) to the 

distance between the transmitting and sensing coils for EMI sensors. Four examples of 

EMI sensors are shown in Fig 2.4. Also, there are multi-coil EMI sensors e.g. “Dualem-

421” which incorporates an EM transmitter that operated at a fixed low frequency (9 kHz) 

and 3 pairs of horizontal co-planar (HCP) and perpendicular (PRP) receiver arrays. The 

depth of ECa measurement is, respectively, 0–1.5 (1mHcon), 0–3.0 (2mHcon) and 0–6.0 

m (4mHcon), and 1.1, 2.1 and 4.1 m (PRP) (Triantafilis et al., 2013a). The approximate 

incremental response by the depth of the HCP and PRP of the Dualem-2S and Veris 

2000XA is shown in Fig. 2.5A. The ECa measurement provided by the instrument is an 

integrated response to ECa with depth, as weighted by this instrument response function 

(McNeill, 1980). Theoretical considerations underlying the derivation of EMI instrument 

response functions are discussed by (McNeill, 1980). These include operation at low 

induction numbers (LIN) and the instrument being located on the surface of a 

homogeneous half space. Integrating the response curves with respect to depth gives the 

cumulative fraction of the total response to depth z and clearly shows the different soil 

volumes examined by the sensors (Fig. 2.5B). 
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Figure 2.4: Four electromagnetic induction (EMI) sensors commonly used in soil investigations are the 

Dualem-1 meter, the Dualem -2 meter, the EM38-MK2 meter, and the Profiler EMP-400 (Doolittle & 

Brevik, 2014). 

 

Figure 2.5: Incremental (A) and cumulative (B) response curves for the three apparent bulk electrical 

conductivity (ECa) datasets used in Sudduth et al. (2013) study.   

ECa is a variable that can be measured densely by on-the-go EMI sensor survey systems 

(Adamchuk & Rossel, 2011). The surveys could be carried out in the field with hand-held 

or vehicle-mounted sensor instruments with GPS unit and the measurements are read 

directly from an integrated datalogger. In theory, ECa relates to the number of conducting 

pathways through the soil. This is controlled by the number of charged surfaces (e.g. 

broken clay surfaces, soil solution); connecting pathways between minerals (including 
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the degree of compaction); and continuous soil solution (Rhoades et al., 1989). Variations 

in ECa principally affected by the type and concentration of ions in solution, the amount 

and type of clays in the soil matrix, water content, and the temperature and phase of the 

soil water (McNeill, 1980).  ECa increases with increases in insoluble salt, water and clay 

contents, and temperature (McNeill, 1980). The ECa value is dependent on the SWC, soil 

clay content, soil clay mineralogy, cation exchange capacity, soil bulk density and soil 

temperature (Dabas et al., 2001). 

In literature, there are many examples of research that include how the ECa data is used 

to delineate spatial variability (precision agriculture zones) in addition to soil properties. 

Ekwue and Bartholomew (2011) observed in their experiments a strong positive 

correlation between the ECa and the SWC for three soil types evaluated in laboratory and 

field conditions. Brevik et al. (2006) monitored the ECa and volumetric moisture content 

(θv) of soil and concluded that ECa is strongly influenced by θv. Doerge et al. (1999) 

suggested that ECa could be successfully related to AWC, which would be closely related 

to soil texture, so long as proper field verification is performed. Mertens  et al. (2008) 

recommended that ground truth verification be performed when using ECa data because 

the regression of ECa data versus clay percentage was found to vary from site to site. 

Doerge et al. (1999) noted that the relationship between ECa and crop yield was strongest 

when AWC was the main factor influencing yield differences; this suggests that ECa 

should also be related to AWC if other variables such as salinity are consistent. ECa is 

known to relate well to clay content (Sudduth et al., 2005a; B. Williams & Hoey, 1987). 

Sand particles have a low electrical conductivity while the charged surfaces of clay 

particles have a high conductivity; therefore, finely textured soils should produce high 

ECa values while coarse soils should produce low ECa values (Lund et al., 1999; Sudduth 

et al., 2005a). ECa can be used to improve the estimation of soil variables, when they are 

spatially correlated (Moral et al., 2010). Moral et al. (2010) found a high positive 

correlation between ECa and clay content. Sudduth et al., 2005a reported that soil ECa can 

be calibrated to any specific soil property so long as the soil property of interest dominates 

the other local soil properties that influence ECa readings. Corwin and Lesch (2003) found 

a correlation coefficient of 0.76 for ECa to percent clay. Similar work performed by Fulton 

et al. (2011) also showed correlation coefficients between ECa and percent clay, sand, and 

silt of around 0.75; however, the correlation success varied throughout the field.
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Hezarjaribi & Sourell, 2007 used ECa to predict AWC. This technique has been 

implemented using Geonics- EMI type sensors or Veris coulter type sensors.  Also, the 

ECa parameter had been used in many studies as an important secondary variable when 

performing in-field zoning (Fulton et al., 2011; Moral et al., 2010; Serrano et al., 2014). 

Hedley & Yule, 2009a used an indirect approach to first delineate the field into 

management zones based on the dense ECa data and then assign a uniform AWC to each 

management zone based on AWC of the sampled locations within that management zone. 

Hezarjaribi & Sourell, 2007 used a direct approach by using regression or geostatistics to 

predict AWC throughout the field based on the AWC and ECa datasets. Regardless of the 

approach, a strong relationship between AWC and ECa is critical to the success of this 

technique of making AWC maps. If such a relationship does not exist in the field of 

interest, then other dense geospatial datasets would be needed. Fortes et al., 2015 

indicated that ECa is a useful tool to improve guided soil sampling for the agricultural 

management of soils. This information may be helpful for the planning of more efficient 

irrigation management, through the adaptation of the design of the irrigation installation 

according to soil factors. 

The success of the research mentioned above that relates ECa to SWC, AWC and soil 

texture characteristics suggest that ECa has the potential to allow users to successfully 

identify precision management zones for irrigation management.   

2.32 Assessing crop growth using Light Detection and Ranging 

(LiDAR) 

Parameters such as crop height, leaf cover, and biomass density are relevant for the 

assessment of crop stands (e.g. crop yields; site-specific amount of water, fertilizers and 

pesticides) (Ehlert et al., 2010c). Remote Sensing (RS) systems have demonstrated 

capabilities for monitoring at finer spatial resolutions and over smaller extents, including 

identifying key variables relevant to crop. All proximal and RS information is then useful 

to guide soil and crop samplings and assist decision-making process regarding property 

management (Andreo, 2013).
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Considering the growing availability of data collected by low-cost sensors installed on 

satellites and/or in unmanned aerial vehicles, RS technology represents great promise (Jha 

& Chowdary, 2007) for use in monitoring and managing irrigation over long periods 

(Santos et al., 2010). Among RS sensors, the most used are cameras, scanners, video 

cameras, Light Detection and Ranging (LiDAR), infrared thermometers (IRT), and 

Normalised Difference Vegetation Index (NDVI) sensors. 

LiDAR is a non-contact optical device that measures the distance to an object in a scanning 

field with high accuracy (1 cm to 5 cm vertical accuracy) using a laser beam (Shrivastav, 

2015). Advantages of this active RS method are, e.g., its non-invasive and non-destructive 

measurements, its capability to capture crops area-wide in high geometric detail, its 

ability to partly penetrate (‘see-through’) objects like vegetation, and its independence of 

lighting conditions (Hofle, 2014; Lumme et al., 2008).  

LiDAR systems currently available on the market use various measuring principles: light 

time-of-flight, phase modulation, interferometry, and triangulation. In many cases, the 

first three principles are combined into the technique known as Time-of-Flight (TOF) 

measurement. Triangulation sensors measure short ranges (maximum a few meters) with 

high accuracy, while TOF sensors are suitable for both short and far range (Ehlert et al., 

2009a). 

LiDAR systems can be used in different ways:  

(i) Satellites and airborne LiDAR systems (ALS) for detecting medium-ranged areas 

from aircraft (500-1,000 m) and helicopters (200-300 m). These are very costly 

technologies, used mainly for mapping land topography (Krabill et al., 1984); forest road 

alignment (Akay et al., 2014); sustainable forest management (Akay et al., 2009; Hudak 

et al., 2009; Lefsky et al., 2002; Woods et al., 2011) ; estimating vegetation characteristics 

(Nelson et al., 1988); water depth measurement (Penny et al., 1989); measuring the 

distances from points on earth to satellites (Hecht, 2011). 

(ii) Terrestrial or ground-based LiDAR sensors (TLS) are e.g. suitable for surveying 

purposes such as architectural applications, for mobile road-mapping systems and for the 

determination of forest inventory parameters.  
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Agricultural crops have high growth dynamics and a short life cycle on the order of 

months, so with the aim to manage agricultural crop production, current information is 

needed - sometimes within hours or seconds. Therefore, using a low-cost sensor to 

perform real-time operations makes the use of TLS acceptable for agricultural purpose 

(Ehlert et al., 2009a). 

LiDAR is increasingly applied in precision agriculture-related studies (Hofle, 2014; 

Paulus et al., 2014; Saeys et al., 2009; Zhang & Grift, 2012). Ehlert conducted various 

studies (Ehlert et al., 2009b; Ehlert et al., 2010c, 2010d) for measuring the crop biomass 

by the use of different LiDAR sensors. Chatzinikos et al. (2013), found a high correlation 

between crop biomass and mean crop heights (R2 from 0.79 to 0.99). Hofle (2014) used 

LiDAR to detect single maize plant positions and their heights in a 132 m × 6 m field, for 

growth monitoring and site-specific plant treatment. 

Friedli et al. (2016) studied genotypic differences between canopy height growth during 

the season for maize (Zea mays), soybean (Glycine max) and wheat (Triticum aestivum) 

by using TLS. Eitel et al. (2014) also used both TLS radiometry and geometry to detect 

the N status of wheat for optimizing fertilizer applications. 

 2.33 Spatial analysis methods in precision irrigation 

Spatial analysis methods can be used to interpolate point measurements in order to create 

a continuous surface map or to describe the spatial pattern. Numerous studies have shown 

the benefits of spatial analysis techniques in agricultural management (Stewart et al., 

2002). This approach provides a multitude of powerful interpolation methods with 

advanced analytical tools for generating optimal interpolated surfaces from discrete 

spatial data measurements.  

There are mainly two groups of interpolation techniques: deterministic and geostatistical. 

Deterministic techniques use mathematical functions that form weighted averages of 

nearby measured values to create a surface, while geostatistical techniques use both 

mathematical and statistical methods and the autocorrelation of the attribute with their 

position in the landscape to assist the modelling process. 
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2.331 Deterministic interpolation technique 

Deterministic methods only use the geometric characteristics of point data to create a 

continuous surface. There are numerous techniques to characterize and model the spatial 

distribution of a data set: 

1- Inverse distance weighting (IDW) 

Inverse distance weighting (IDW) is a simple and intuitive deterministic method for 

multivariate interpolation with a known scattered set of points. The un-sampled points 

are calculated with a weight function of the known points that include more observations. 

So, it is an advanced nearest neighbour theory that considers more points than only the 

nearest observation. It estimates values by weighted average using nearby observations. 

The weight decreases as distance increases (Ly et al., 2013). Therefore, the closer points 

have more influence on the predicted point than the further distance point, which may 

cause a “bulls-eye” effect. IDW is a simpler interpolation technique in that it does not 

require pre-modelling like kriging (Tomczak, 1998). By using this technique, we can 

obtain maps with which it is possible to perform from simple mathematical operations to 

more complex geostatistical analysis (Best & Leon, 2006). 

1-  Nearest Neighbourhood (NN) 

The nearest neighbourhood (NN) is a simple and fast method of multivariate interpolation. 

The theory of NN method is to assign value to a certain grid cell from the nearest point 

(Sluiter, 2008). However, this method requires a dense dataset to be used successfully. 

2.332 Geostatistical interpolation technique 

All of the above described interpolation methods do not assume any parametric 

distribution for data. There is another technique; however, that assumes a continuous and 

normal distribution of values of a variable in the geographic space of a field. This 

technique is called Geostatistics. Mapping of the variables sampled using geostatistical 

methods and a reference grid (raster map or surface map), is a recommendable measure 

(Plant, 2001).  
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Geostatistics is a means to describe spatial patterns and to predict the values of spatial 

attributes at unsampled locations, where a sample is expected to be affected by its position 

and relationships with its neighbors. The basic concept in geostatistics is that there is a 

spatial correlation between two sample points that depends on the distance of the sample 

points, with points further apart being less likely to be related than points closer together. 

It is an intuitive concept that locations close to one another have values more alike than 

locations that are farther away. Detailed descriptions of the theory of geostatistics are 

given, for example, by (Cressie, 1989; Goovaerts, 1997; Journel & Huijbregts, 1978; 

Olea, 2000; Webster & Oliver, 2007)  

Geostatistics uses the variogram or semi-variogram, as a mathematical description of the 

relationship between pairs of observations, at different distances. Several models may 

then be fit to the experimental variogram (the one based on observations in the field) 

which are then used as a basis for the modelling, using kriging methods (Best & Leon, 

2006). 

Kriging is an optimal interpolation based on regression against observed values of 

surrounding data points, weighted according to spatial covariance values. The advantage 

of kriging over other interpolation methods such as IDW is that kriging estimates the value 

at unsampled locations using a minimized estimation variance derived from a semi-

variogram model, accounting for spatial correlation in the samples (Deutsch & Journel, 

1998). The estimation at an unsampled location is given as the linearly weighted sum of 

its surrounding points. Over the past several decades kriging has become a fundamental 

tool in the field of geostatistics (Isaaks & Srivastava, 1989). There are different types of 

kriging can be used, the commonly used methods are: 

1-  Ordinary kriging 

Ordinary kriging is the basic form of kriging interpolation. It measures values by linear 

combination, using a variogram to determine the weight of data and describe the spatial 

correlation (Yang, 2015).  

2- Co-kriging 

Co-kriging uses a multivariate variogram or co-variance model with additional co-

varying data (Sluiter, 2008). The theory of co-kriging is based on the linear weighted sum 
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of all the test data to estimate a location, so when there are two or more co-variables, the 

method may become more complex. Moreover, the result is better when both covariables 

and the spatial correlation are higher. 

 2.333 Inversion of EMI data 

Inversion of geophysical data is a mathematical procedure that seeks to obtain the 

distribution of one (or more) physical property in the survey area (or volume) to depth. 

In the EMI case, electrical conductivity (or resistivity) is the property of interest. 

Therefore, from a finite number of data (ECa values) at more than one depth of 

exploration, this method investigates the distribution with depth of the data set.  

Triantafilis and Santos (2010) illustrated that EM4Soil inversion software can be used to 

invert single frequency (EM38 and EM31) and multiple coil arrayed Dualem-421 data to 

produce a depth map of exchangeable sodium percentage (Huang et al., 2014), clay 

content (Triantafilis & Santos, 2013c) and θv (Huang et al., 2016)  

There are three model candidates: layered earth (1D); an earth model allowing the 

variation of conductivity in two directions (2D) or a more realistic model allowing that 

the conductivity varies in the three directions (3D) (EMTOMO, 2014). 

The parameterization of each model is obviously different, and the number of unknown 

parameters increases from 1D to 3D models. The model to be adopted depends on several 

factors but the most important is the geophysical array used in the data acquisition. 

Because this information is partial, several models can fit the data. The model can be 

improved and validated using additional information e.g. from boreholes or other 

geophysical indirect methods (EMTOMO, 2014). Appendix A shows the description of 

inversion algorithm (EM4Soil) by Santos (2004).
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 2.4 Monitoring the temporal changes of soil and crop 

water status  

Recent innovations in low-voltage sensor and wireless radio frequency technologies 

combined with advances in Internet technologies offer tremendous opportunities for 

development and application of real-time management systems for agriculture (Kim et 

al., 2008; Q. Liang et al., 2007; O'Shaughnessy & Evett, 2010). While quantifying 

differences between precision management zones for irrigation management using EMI 

technology in Section 2.3, wireless sensor networks (WSN) promise to give a higher yield 

and lower input cost by real-time monitoring of the field soil, crop and environment 

conditions using sensors placed in the field management zones which send the sensed 

data via a gateway to a cloud-based database so that a global decision can be taken 

spatially and temporally about the physical environment, within near real-time. 

WSNs are applied in agriculture for a variety of applications such as irrigation, cultivation, 

fertilizer management, pesticide spraying; animal monitoring, etc. They consist of a 

collection of sensor nodes used in real-time monitoring of the field soil, crop and 

environment conditions using different sensors and thereby improving crop cultivation, 

reducing time and labour costs. Each sensor node consists of five components: 

sensor/actuator, controller, communication device, memory, and power supply. The 

sensors gather the environment data, which are processed intelligently by an embedded 

system. The information is transmitted to a decision centre by a wireless communication 

network, which provides remote monitoring for management of the agricultural 

environment (Yu et al., 2013).  

Early research: 

Feedback networking control systems based on evaporation measurements were 

described by Phene et al. (1992) and Vermeiren and Jobling (1980). In both systems the 

control was accomplished by measuring the evaporation in a class “A” pan and triggering 

the irrigation when the water level dropped to a preset limit. The pan was refilled 

proportionally to the amount of water being applied through irrigation, and a feedback 
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networking system was installed so that the system switched off when the pan was 

refilled. 

Phene and Howell (1984) developed a high-frequency irrigation system that can be 

controlled accurately by the feedback of wireless sensor soil moisture sensor installed in 

the crop root zone. Automatic irrigation using feedback from soil sensors makes it 

possible to maintain almost constant soil water potential in the root zone. This produces 

the desired plant responses, and hence high yields while using the exact volume of water 

required to maintain the crop. 

Several network feedback irrigation control systems have been developed using 

microcomputers and data loggers as controllers (Meron et al., 1995; Phene & Howell, 

1984; Shock et al., 1998; Stone et al., 1985; Testezlaf et al., 1997; Torre-Neto et al., 2000; 

Wessels et al., 1995; Zazueta & Smajstrla, 1992). 

 Recent research: 

Recent major advances in WSN technology have been driven by the accessibility of the 

internet and cellular communication systems, leading to the development of low power, 

low cost, multifunctional sensor node systems. WSNs sense the environment and provide 

continuous data for processing elsewhere. Various sensors can be attached to the nodes, 

e.g. crop and soil sensors. The nodes coordinate and send sensor data to the base station. 

Hedley et al. (2012) developed a WSN soil moisture monitoring method in EM defined 

zones to provide information for irrigation scheduling. Data were presented in digital 

format for incorporating into the VRI controlling software. The irrigation was by a centre 

pivot irrigator with VRI modification. Each sprinkler was controlled individually by 

digital maps uploaded to a central controller. Data were relayed to a base station every 15 

minutes and processed in real-time and converted to the necessary format and 

immediately made available through a 3G cellular modem via the internet to a webpage. 

End users could access the web site. This WSN method provided a direct measure of the 

SWC status and the need for irrigation. It has the advantages of using site-specific real-

time SWC data and site-specific climatic conditions to schedule the irrigation.
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Figure 2.6: Schematic flowchart of wireless soil moisture sensor network (Hedley et al., 2012) 

Also, a number of WSN’s for SWC and IRT sensors with various topologies (e.g. star, 

mesh-network) have been developed and investigated by different researchers in the past 

decade (Ekanayake & Hedley, 2018; Ruiz-Garcia et al., 2009) including WSN’s for 

irrigation scheduling in cotton (Vellidis et al., 2008), centre-pivot irrigation (Ekanayake 

& Hedley, 2018; O’Shaughnessy & Evett, 2008) and linear-move irrigation systems (Kim 

et al., 2008). 

Ekanayake and Hedley (2018); Nikolidakis et al. (2015) reported the ideology of WSNs 

for data acquisition, Peijin et al. (2011) reported the ideology of using WSN to collect 

parameters of SWC and communicate with the master PC via e.g. an RS232 interface. 

Xuejun et al. (2013) reported on an automatic irrigation control system based on SWC 

meter. Xiao et al. (2010) reported that water-saving irrigation control is realized by using 

GSM (Global System for Mobile communication) technology, remote data transmission 

of soil moisture is realized by using General Packet Radio Service (GPRS), which was 

confirmed by Chen and Tang (2012). 

More recent work in the area of WSNs is the usage of IRT to develop automatic scheduling 

of irrigation and control (Ekanayake & Hedley, 2018; Evett et al., 2008; Peters & Evett, 

2004, 2005, 2008). Another important development in the area of VRI with WSNs is the  
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usage of radio transmitters and installation of Low Energy Precise Application (LEPA) 

and sprays on the same irrigation system (Camp et al., 2006). The application of water 

using non-stationary irrigation systems were studied in New Zealand (Hedley & Yule, 

2009a; Yule et al., 2008).  

2.5 Irrigation scheduling methods 

Irrigation scheduling ascertains when to irrigate the crop and how much water (time and 

quantity) to apply (Thompson et al., 2007). Its primary purpose is to maximize the 

irrigation efficiency by applying the exact amount of water needed to replenish the soil 

moisture to a level that meets the water demands of the crop. The FAO-56 modelling 

approach defines the irrigation water requirement for a well-watered crop as the depth of 

water needed to meet water loss through ETc of a disease-free crop under non-limiting 

soil conditions (Allen et al., 1998). 

The success of any irrigation method depends largely on utilizing irrigation scheduling 

principles to develop a management plan, and on efficiently implementing the plan. 

Excessive irrigation leaches salts from the root zone, which is beneficial for salinity 

control. However, excessive irrigation may also leach nutrients important to the crop; the 

leached nutrients can become pollutants in groundwater and streams. Under-irrigation 

may limit yields, especially if it occurs during flowering and fruit development stages. 

Previous studies with a variety of crops, ornamental and turf species have reported that 

the use of appropriate scheduling methods and VRI technologies can save a significant 

amount of water, while maintaining or increasing yield and product quality and minimise 

negative environmental impacts (Bacci et al., 2008; Beeson & Brooks, 2006; Blonquist 

et al., 2006; Fereres et al., 2003).  

Appropriate methods of irrigation scheduling are necessary to improve WUE, especially 

when faced with rising competition between protection of the environment and the 

various end-users of water resources (Jones, 2004a). Irrigation scheduling techniques can 

be divided into three categories: (i) soil moisture measurements-based approach involving 

direct measurements of soil moisture (e.g. with neutron probes, capacitative or TDR-type 

sensors, tensiometers; Smith (2000); (ii) soil water balance (SWB) calculated from  
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meteorological data (Allen et al., 1998); and (iii) direct measurement of plant water status 

(Jones, 2004b). 

 2.51 Soil moisture-based methods 

Soil moisture plays a major role in the growth of crops along with soil temperature, and 

knowledge of its status in the soil for irrigation scheduling is critical. SWC measurement 

methods include gravimetric and instrument sensing methods (Charlesworth, 2005). The 

instrument sensing methods measure other properties of the soil that vary with water 

content and relate it to the soil water content through calibration. There are various 

instrumental/sensors soil-water measurement tools available, most of which must be 

calibrated for the soil in which they are used.  

 2.511 Gravimetric method 

This is the traditional, most frequently used direct method of SWC measurement 

(Charlesworth, 2005).  The gravimetric method is the most satisfactory method for one 

time moisture-content data and for calibrating the equipment to be used in the other 

methods (Johnson, 1962). These methods often serve as references rather than a means 

for irrigation scheduling. The gravimetric method involves collecting a soil sample, 

weighing the sample before and after oven drying (to constant weight), and calculating 

its original moisture content. This moisture content is usually expressed as the ratio of the 

mass of water present in the soil sample to the oven dry weight of the soil sample, or on 

a volume basis, as the ratio of the volume of water in the sample to the total volume of 

the soil sample (Hillel, 1982). 

The measurement of the gravimetric moisture content by weight (e.g. g water per 100 g 

soil) only requires auger or bulk sampling while volumetric estimation, θv (e.g. cm3 water 

per 100 cm3 soil) requires the use of sampling cylinders of known volume to calculate 

soil bulk density (g cm-3). This method, which involves sampling (especially from depths 

greater than a few cms.), transporting and repeated weighing, is laborious and time-

consuming. The accuracy of this method depends on the accuracy of sampling and drying. 
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Many researchers prefer instrumental methods using sensors installed into the field, 

which once installed and calibrated (using the gravimetric or volumetric method as a 

reference), permit repeated or continuous measurements of SWC at the same points with 

minimal time and labour inputs and little soil disturbance (Hillel, 1998). 

 2.512 Instrumental/ sensor technologies 

Sensors for water content measurement require the installation of these instruments into 

the soil profile. Jones (2004a) noted the various types of soil moisture sensors available 

at that time. The variety of soil moisture sensors (e.g. tensiometric, neutron, resistance, 

heat dissipation, psychrometric or dielectric) has continually evolved since then; the 

choices are now overwhelming, since each sensor has specific strengths and weaknesses 

in specific situations. 

Tensiometers have long been used to measure matric potential in soils (Smajstrla & 

Harrison, 1998). Soil matric potential can be used to define the stress limit for the plant. 

White (2003) found that the stress limit for grapevines is set in the range -60 to – 400 

kPa, where the vines can extract water held at lower potentials, but the rate of supply is 

too slow for adequate physiological functioning. 

A number of next-generation soil moisture sensors have become available in the past 

decade from various manufacturers, e.g.Theta probe and SM300 (DeltaT, Burwell, UK) 

and EC5, 5TM and 10HS sensors (Decagon Devices Inc., Pullman, WA, USA) which 

provide precise data. These sensors determine the θv by measuring the apparent dielectric 

constant of the soil. These sensors are easy to use and provide highly reproducible data 

(van Iersel et al., 2009). All these sensors differ in terms of use and maintenance, 

calibration requirements, accuracy and price (Balendonck & Hilhorst, 2001). Table 1 

summarized the main indirect soil moisture methods that are currently used for irrigation 

scheduling.
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Table 2.1: Indirect soil moisture measurement methods with some examples of different types of 

soil moisture sensors that are available (Jones, 2004a) 

Soil moisture measurement method Soil moisture sensor 

Tension measurement sensors Tensiometers 

Electrical resistance 

Soil dielectric sensors Water content reflectometer 

Time-domain reflectometer (TDR) 

Frequency domain capacitance sensor (FD) 

• Time-domain reflectometry (TDR) 

This instrument determines the apparent dielectric constant of the soil matrix and 

empirically relates it to the θv. The use of TDR in soil science was pioneered by Topp et 

al., 1980. With TDR instruments, such as TRASE and Campbell, a waveguide, or probe, 

of known length is inserted into the soil and the travel time for a generated 

electromagnetic pulse to traverse this length is measured. Using empirical equations 

(Topp et al., 1980) or dielectric mixing models, the travel time is converted into a velocity 

of pulse propagation. The velocity of propagation is used to determine the soil’s bulk 

dielectric permittivity from which the θv is inferred.  The dielectric permittivity is directly 

related to θv. According to (Jones et al., 2002), some of the advantages of using TDR are: 

(i) accurate estimations of θv (to within ± 2% without soil-specific calibration), (ii) 

minimal calibration requirements in most soils, (iii) absence of radiation hazards that are 

associated with neutron probe or gamma-attenuation techniques, (iv) excellent spatial and 

temporal resolution, and (v) ease of measurements.   

• Frequency domain capacitance sensor (FD) 

This device measures the soil dielectric constant by placing the soil (in effect) between 

two electrical plates to form a capacitor. This explains the term ‘capacitance’, which is 

commonly used to describe what these instruments measure. When a voltage is applied 

to the electric plates a frequency can be measured. This frequency varies with the soil 

dielectric constant. The soil dielectric constant, an electrical property that is highly 

dependent on the moisture content. The dielectric constant for the water ≈ 80, compared 

to dry soil ≈ 5 to 15, wet soil ≈ 30 to 40 (Allred et al., 2005) and air ≈ 1. The dielectric 

constant of the soil has a strong influence on the applied field which is detected by the 
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 FD sensors (i.e. SM300), resulting in a stable voltage output that acts as a simple, 

sensitive measure of θv. 

The SM300 sensor has a sealed plastic body attached to two 51 mm long sensing rods 

which insert directly into the soil for taking readings. When an electrical field is applied, 

the soil around the electrodes (or around the tube) forms the dielectric of the capacitor 

that completes the oscillating circuit. Changes in θv can be detected by changes in the 

circuit operating frequency. The main advantages of FD sensors are the immediate and 

accurate reading, thus they are quite suitable for automated irrigation control (Pardossi et 

al., 2009) and allow for the deployment of multiple sensors to take measurements at 

different depths. 

SM200 and SM300 sensors, which are more recent than the Theta Probe, are suitable for 

many types of soil and substrates. Moreover, it is barely affected by soil salinity and can 

be used at extreme temperatures, since the operating range is between – 20 and + 60 °C. 

Measuring accuracy is ± 0.3% for θv from 0 to 0.50 m3 m-3; as a function of temperature, 

the accuracy is ± 0.07% at 20 °C and 0.13% in the 20 – 60°C range (Pardossi et al., 2009). 

2.52 Plant-based methods 

Proper monitoring of plant water stress is useful for efficient scheduling of irrigation 

(Yazar et al., 1999), and especially relevant in arid climates where intermittent rainfall 

events, that replenish soil storage, are not expected. By measuring the appropriate plant 

parameters, one can evaluate a plant's general health and use that information to make a 

decision about when to irrigate (Reginato & Howe, 1985). Neither soil water status nor 

the atmospheric demand accurately represents the plant water status as well as the plant 

itself. However, plant methods typically indicate only when to irrigate, implying that soil 

moisture measurements or other estimation procedures must be used to determine how 

much water to apply to optimize crop water use (Nielsen, 1990; Stockle & Dugas, 1992).  

The response of a plant to the combined effects of soil moisture availability, evaporative 

demand, internal hydraulic resistance and resistance/uptake capacity of the plant/root 

interface is principally measured in terms of the plant water status (Aladenola, 2014).  
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These methods measure water loss either from a whole single plant or from a small group 

of plants. The plant water status can be determined by measuring either the tissue water 

status (i.e. potential or content) or the plant’s response to a change in tissue water status 

(White & Raine, 2008). Plant-based sensing is classified based on what the sensors are 

measuring; they may measure a direct physiological indicator (e.g. plant water status) or 

an indirect physiological plant response induced by changes in plant water status (e.g. 

leaf temperature, plant organ diameter or growth) (Remorini & Massai, 2003). 

One method of assessing crop water stress condition is the use of canopy surface 

temperature (Tc) that has been shown to reflect subtle changes in physiological processes 

such as cell growth and biochemical reactions associated with the damaging effects of 

super optimal temperature (Conaty, 2010). Phene (1986) reported the most frequently 

used methods for automatic irrigation control are the Tc method and the sap flow method. 

Sap flow measurements also provide a unique and valuable way to quantify the time 

course of whole-plant water use under field conditions (Smith & Allen, 1996) and this by 

applying heat to the stem and detecting the rate of sap flow or sap-flux density by 

monitoring the stem’s thermal regime. The technology is utilized across a wide range of 

applications on diverse plant types including natural and urban forest trees (Čermák et 

al., 2004), woody horticultural trees and vines (Alarcón et al., 2003), and agricultural crop 

species (Cohen et al., 1988)   

The difference between Tc and air temperature (Ta) (Tc – Ta) is in some way related to 

plant water stress (Widmoser, 2010). The Tc – Ta was first studied by Ehrler (1973), who 

investigated the possibility of using Tc – Ta as a guide for irrigation scheduling. He found 

that the canopy-air temperature decreased after irrigation, reaching minimum several days 

following irrigation, and then increased as soil water became increasingly depleted. The 

linear relationship between Tc – Ta and vapour pressure deficit (VPD) led Ehrler (1973) 

to conclude that Tc – Ta has potential as an irrigation scheduling tools. Canopy to air 

temperature differences has been correlated to SWC and stem water potential for potential 

use in managing deficit irrigation of peach orchards; Wang and Gartung (2010) obtained 

correlations with R2 values of 0.67 to 0.70 between stem water potential and canopy to 

air temperature difference.
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Another use of Tc to estimate crop water stress is to measure the temperature variability 

of a crop (González-Dugo et al., 2006). Using the deviation of mid-day Tc as an irrigation 

scheduling tool was suggested by Aston and Van Bavel (1972) and has been implemented 

in various studies (Clawson & Blad, 1982; Clawson et al., 1989). The theory behind this 

method is that plants deplete the available water around their roots at different rates due 

to variability of soil properties, rooting depth and irrigation application. The spatial 

variability in Tc should be low for a well-watered, non-stressed crop but increase as plant 

water stress increases. 

 Idso et al. (1981) further observed a linear relationship between Tc (measured using IRT) 

and Ta and VPD, which they used to develop an empirical method for quantifying crop 

water stress. Jackson et al. (1981) also conducted theoretical research to develop a crop 

water stress index (CWSI). Jones (2004a) confirmed that irrigation scheduling can be 

improved by monitoring Tc using IRT.  The availability of precise, handheld IRT allows 

rapid monitoring of Tc to identify crop water stress (Colaizzi et al., 2003; Peters & Evett, 

2007) for irrigation timing and automatic scheduling (Irmak et al., 2000). 

2.521 Crop water stress index (CWSI) 

CWSI is calculated from Tc, Ta and atmospheric VPD. This approach is based on the 

principle that transpiration cools the leaf surface and as water becomes limited, stomatal 

conductance and transpiration decrease, leading to increases in leaf temperature. 

However, given that ambient conditions can have a large influence on Tc; Tc is, in fact, a 

reflection of both plant and environmental factors (Conaty, 2010; Jones, 2006).  Empirical 

(Idso et al., 1981) and theoretical (Jackson et al., 1988) CWSI approaches have been 

proposed to estimate the lower limiting Tc. The empirical CWSI uses two baselines (non-

water stressed and water-stressed). The lower baseline represents Tc – Ta of a well-watered 

crop transpiring at the maximum potential rate while the upper baseline represents Tc – 

Ta of a non-transpiring crop. The plot of Tc – Ta and VPD under fully watered and water-

stressed crop that was used to determine the non-water stressed and maximum stressed 

baselines respectively are used to quantify crop water stress. The empirical CWSI does 

not account for net radiation and wind speed whereas the theoretical method is estimated 

based on net radiation and the aerodynamics resistance factor. O'Toole et al. (1984)  
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conducted a study to assess eight different methods, namely, leaf water potential, leaf 

diffusive resistance, transpiration rate, photosynthesis rate, Tc, canopy-air temperature, 

CWSI and leaf rolling score for assessing plant water status and concluded that CWSI was 

the best technique. Yuan et al. (2004) also stated that CWSI is the most frequently used 

index to quantify crop water stress based on the Tc. This suggests that CWSI is a sensitive 

plant water stress index and a valuable tool for making irrigation decisions along with 

soil water measurements. 

CWSI has been widely used as a tool to indicate plant water status and for scheduling 

irrigation in many crops (Cremona et al., 2004; Erdem et al., 2010; Yildirim et al., 2012). 

Nonetheless, for CWSI to be an effective tool for scheduling irrigation predicting yield, it 

has to be determined for particular crops in specific climates, given that crop response to 

water stress depends on local environmental conditions (Orta et al., 2003). The 

application of CWSI in irrigation scheduling has been evaluated for different crops, 

including vegetables (Erdem et al., 2010; Erdem et al., 2006; Köksal, 2008). The 

physiological responses of plants to water stress and their relative importance for crop 

productivity vary with species, soil type, nutrients and climate (Akıncı & Lösel, 2012; 

Orta et al., 2003).  

The process for calculating CWSI using Idso et al. (1981) function is expressed in 

Equations (2.1), (2.2) and (2.3) 

CWSI =
(Tc − Ta)m − (Tc − Ta)l

(Tc − Ta)u − (Tc − Ta)l
                                                                               [2.1] 

Tc: is the canopy temperature (oC), Ta is the air temperature (oC), and m, l, and u, designate 

measured, lower baseline (well-watered), and upper limit (completely stressed) canopy-

air temperature differences, respectively 

(𝑇𝑐 − 𝑇𝑎)𝑙 = 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑆𝑙𝑜𝑝𝑒(𝑉𝑃𝐷)                                                                       [2.2] 

(𝑇𝑐 − 𝑇𝑎)𝑢 = 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑆𝑙𝑜𝑝𝑒(𝑉𝑃𝑠𝑎𝑡(𝑇𝑎) − 𝑉𝑃𝑠𝑎𝑡(𝑇𝑎 + 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡))       [2.3] 

VPD: is the vapor pressure deficit (kPa); VPsat is the saturated vapor pressure at air 

temperature (kPa) 
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2.53 Soil water balance modelling  

Many crop simulation models that have been used for calculating/predicting crop water 

use and irrigation scheduling are currently available i.e. CropWat (Smith, 1992b), APSIM 

(Keating et al., 2003), AquaCrop (Steduto et al., 2009), CROPSYST (Marsal & Stöckle, 

2012), DSSAT (Thorp et al., 2008) , STICS (Hadria et al., 2006; Weiss et al., 2001), 

SWAP (Van Dam et al., 1997), SWAT (USDA; Douglas-Mankin et al. (2010)), 

WOFOST (Diepen et al., 1989).  The governing equations and underlying theory of these 

models as such are very divergent.  

The mathematical formulation, structure and complexity of crop simulation models are 

also very different. For some models, empirical equations were sufficient to describe the 

processes of interest, while other models include complex mechanistic equations to 

capture a certain crop or soil water response (Hunink et al., 2011). However, most models 

contain a mixture of empirical and mechanistic concepts. 

For the crop growth components of the models, the main distinction that can be made in 

terms of their underlying equations is whether they are (i) radiation (or light) use 

efficiency based, (ii) photosynthesis based, or (iii) WUE based (Hunink et al., 2011). The 

concepts behind modelling of soil water dynamics range from the use of a simple bucket-

filling model to those that solve more complex and vertically algorithms, based on the 

Richards´ equations. Richards' equation has a clear physical basis at a scale where the soil 

can be considered to be a continuum of soil, air, and water. In principle, the uses of 

numerical solutions for the Richards´ equation are better for soils below field capacity 

(Hunink et al., 2011). 

With the SWB modelling approach to irrigation scheduling, the soil water deficit (SWD) 

is tracked by accounting for all water additions (inputs) and subtractions (outputs) from 

the soil root zone. Major inputs are precipitation and irrigation. Water might also be 

transported upward by the capillary rise (CR) from a shallow water table towards the root 

zone (Allen et al., 1998). Outputs include any form of water removal with the major 

removal being crop water consumption or crop evapotranspiration (ETc) (Fig. 7).
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Figure 2.7 The water balance of the root zone (Allen et al., 1998) 

Portions of rainfall and irrigation might be lost by surface runoff (RO) and by deep 

percolation (DP). DP losses increase depletion although this will eventually recharge the 

water table. The SWB approach is based on conservation of mass which states that the 

change in soil water storage (ΔS) of the root zone of a crop is equal to the difference 

between the amount of water added to the root zone (Qi), and the amount of water 

withdrawn (Qo) (Hillel, 1998) in a given time interval. This process is expressed in 

Equation (2.4) and (2.5). 

Irrigation is required when ETc exceeds the supply of water from both soil water and 

rainfall. The logic behind the SWB method is to apply irrigation with a net amount 

equivalent to the accumulated estimated ETc losses since the last irrigation. ETc is often 

determined as the product of reference evapotranspiration (ET) and crop coefficient (Kc) 

with the ET calculated from climatic parameters. At present, there are good estimates of 

Kc values for many horticultural crops, even though most research has been conducted on 

the major field crops (Allen et al., 1998). However, there are virtually no Kc values for 

ornamental species and most estimates of woody perennial crop water use are quite 

variable. Inaccuracies in Kc values can result in large potential errors in estimated SWC 

(Allen et al., 1998). The approach, therefore, works best where it is combined with regular 

monitoring techniques, for example of SWC, that can help reset the model. 
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The soil in the root zone has an upper and a lower limit for storing water that can be used 

by crops. The drained upper limit is called the field capacity (FC), which is the amount 

of water that can be held by the soil against gravity after the excess water has been 

drained. This is typically attained 1 – 2 days after precipitation or irrigation has saturated 

a soil. The time to reach FC increases from one for sandy soils to two to three days for 

heavier-textured soils that contain more silt and clay (Andales & Chavez, 2011). The 

lower limit is called the permanent wilting point (PWP), which is the soil moisture level 

at which plants can no longer absorb water from the soil. The AWC, or total available 

water-holding capacity, of the soil is the amount of water between these two limits (AWC 

= FC – PWP). Usually, the irrigator will set a management allowable depletion level 

(AD), which is used as a trigger to irrigate and prevents soil from reaching the yield 

threshold depletion level (refill point). This may be based on a percentage of available 

water. 

∆𝑆 = 𝑄𝑖- 𝑄𝑜                                                                                                            [2.4]                                                                                                                                

𝑆𝑊𝐷2  =  𝑆𝑊𝐷1 −  𝐼𝑅 −  𝑃 − 𝐶𝑅 + 𝑅𝑂 +  𝐸𝑇c +  𝐷𝑃                                      [2.5] 

Where, SWD1 and SWD2: beginning and ending total SWD (mm), respectively, IR: 

irrigation (mm), P: precipitation (mm) CR: capillary rise from the groundwater (mm), 

RO: runoff from the soil surface (mm), ETc: calculated crop water use, or 

evapotranspiration (mm d–1), and DP: deep percolation or drainage out of the root zone 

(mm).  

A particular strength of this approach is that it not only addresses scheduling issues about 

“when to irrigate” but also about “how much to apply”. Although useful for soil-based 

irrigation scheduling, there may be limitations on how quickly these calculations can be 

manually performed (Aladenola, 2014).  

It is imperative that we connect our capability for precision water applications with 

knowledge of real-time soil water supply and plant water use. In this study, we will work 

to improve our ability to predict plant water use in real-time using various technologies. 
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2.6 Decision support system (DSS) for irrigation 

management 

Optimal irrigation water management relies on accurate knowledge of plant water 

consumption, water flows and soil moisture dynamics throughout the growing season 

(Sections 2.51, 2.52, and 2.53). The temporal and spatial variability of rainfall, soils, and 

crops cannot be reconstructed fully from field measurements or RS, so dynamic 

simulation models (Section 2.6) are deemed necessary to describe soil physical processes, 

the surface water balance, and crop growth. The decision-supporting systems (DSS) via 

an open application programming interface can integrate these models with the irrigation 

scheduling monitoring and control functions (a mixture of model and measurement-

based). This will enable more predictive (feed-forward) management of water use, based 

upon the underlying plant and environmental water-use models.    

Numerous DSS for irrigation have been developed in the last decades. The main 

advantages of using a DSS are as follows: an increased number of alternatives can be 

examined, a better understanding of the business/processes, identification of unexpected 

situations, improved communication, cost savings, better decisions, time savings, and 

better use of data and resources (Rinaldi & He, 2014). 

DSS for irrigation are intended to utilize holistic approaches to irrigated crop 

management, which requires the seamless integration of the hardware (physical system), 

existing control and safety mechanisms, positioning systems (i.e., GPS), software 

interfacing with predictive crop models and other software tools, field data networks and 

various types of remotely sensed data, and wireless communications (Evans et al., 2011). 

DSSs (interactive software-based system) in irrigation management applications began in 

the early 1990s (Liping et al., 2002). Different DSS (e.g. (Bergez et al., 2001; Bing et al., 

2006; Brown et al., 2010; Chávez et al., 2010a, b and c; De Juan et al., 1996; Heeren et 

al., 2006; Kim & Evans, 2009; Kim et al., 2007; Oswald et al., 2006; Thysen & Detlefsen, 

2006; Zhu et al., 2003; Zhu et al., 2005) have been developed more or less widely in the 

most intensive agricultural areas in the world to enhance soil water management 
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approaches to irrigated crop management within a single field or several fields to 

maximize total yield over the area. 

Examples of Irrigation scheduling decision support systems at a field/farm scale on a 

daily basis   

Smith (1992b) developed an empirical DSS (CropWat) which is well known to farmers 

for its easy estimation of crop water demands under different irrigation practices. The 

model considers climate, soil, and crop data. The model is based on the FAO Irrigation 

and Drainage Papers No. 56 “Crop evapotranspiration” and No. 33 “Yield response to 

water,” The PM equation and respective Kc are used to calculate ETc rates. Crop growth 

is simulated by the so-called linear model where gross dry matter production of a standard 

crop is empirically calculated and crop-dependent correction factors for climate, growth, 

and yield are applied (Doorenbos & Kassam, 1979). Bergez et al. (2001) developed a 

management-oriented cropping system model (MODERATO). It has been developed for 

use by irrigation advisors. It simulates the plant-soil system with a dynamic biophysical 

model and takes into account within-field variability that results from sequentially 

irrigating the plots in a block of irrigation. The DSS components are related to hydraulic 

context, mode of action; agronomic models; and timer and agro-economic evaluator. 

Bazzani (2005) described a DSS (DSIRR) created for the economic evaluation of 

irrigation water in Italy. DSIRR is working for integrating agronomic, technical, and 

environmental aspects with economic theory in a multi-criteria framework using 

mathematical programming techniques. In Denmark, a DSS (PlanteInfo Irrigation 

manager) for irrigation was developed by Thysen and Detlefsen (2006). PlanteInfo 

Irrigation Manager has the characteristic to be entirely Web-based in terms of input of 

farm and field data, automatic supply of weather data, and consulting for advice. The 

model runs with daily time steps. Crop growth and development are driven by three state 

variables, root depth, phenological stage, and leaf area index (LAI). Soil water is 

calculated by a simple system keeping for daily input of water from precipitation and 

irrigation and daily outputs from ETc (evaporation from soil and crop transpiration). The 

DSS (HydroLOGIC) was designed in Australia (Richards et al., 2008), mainly to evaluate 

the consequences of several irrigation strategies and to explore options to optimize 

yieldand WUE at a field level in cotton. This information was subsequently used to assess 

economic and environmental consequences resulting from differences in irrigation  



 

 

Chapter 2  38 

 

production practice. The HydroLOGIC interface main components are crop profile, 

climate and weather, crop observations, scenario generator, and the report generator. The 

DSS (AquaCrop) developed by Steduto et al. (2009) from FAO Irrigation and Drainage 

Paper No. 33 “Yield Response to Water” (Doorenbos & Kassam, 1979). The model is 

used for developing a seasonal irrigation schedule for a specific crop and field, 

determining the date of next irrigation, determining the seasonal water requirements and 

its components for various crops on a farm, developing deficit and supplemental irrigation 

programs at a field scale, developing water production functions, and using them in 

economic decision tools (Rinaldi et al., 2011). Zhang and Feng (2009) developed a timely 

irrigation DSS (CropIrri) in China to operate the optimal allocation of water resources in 

irrigation districts. CropIrri system was designed for dryland crops (wheat, maize, and 

soybean) to provide a practical decision tool for irrigation management. CropIrri system 

combines environmental conditions, like climate and soil, with crop growth 

characteristics as a whole, and was established using SWB model, crop phenology model, 

root growth model, crop water production function, and irrigation decision-making 

model. CropIrri concerns the date and amount of irrigation and the impact of selected 

irrigation schedule on crop yield. The DSS (IrriSatSMS) developed in Australia. The 

model uses satellite-derived crop coefficients in a daily water balance approach (Car et 

al., 2012). The system generates the decision support based on (i) weather data, (ii) 

irrigation measurement and management unit, (iii) satellite image data of land surface 

reflectance values and (iv) irrigation application and rainfall data. The approach in this 

DSS is not told specifically when or how much to irrigate but rather just how much they 

will have to irrigate, on any given day, to return their crop water deficit to zero. Barradas 

et al. (2012) designed a DSS for a drip irrigation system and analyzed the influences, 

which are exerted by the components of soil and some other factors on the process of 

irrigation decision, on irrigation scheme. AquaTRAC™ was developed in New Zealand 

by Foundation for Arable Research (FAR) and Plant and Food Research.  Using data 

including crop type, soil type, weather and irrigation to date, it calculates when and how 

much irrigation to apply to optimise yield for each crop. It also calculates the potential 

economic loss if the soil moisture falls below the critical deficit. Growers need to 

setAquaTRAC™ up at the start of the season by inputting soil type, planting dates and 

crop types for each paddock. Weather data is imported throughout the season.  
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AquaTRAC™ provides a graphical representation of what has already happened in the 

paddock along with accurate forecasts of the amount of irrigation to apply and at what 

time. 

These studies helped to improve crop water management and irrigation decision-making 

level. In general, the DSS systems applied in agriculture are customised for specific areas, 

purposes and specific crops, so it is difficult to be applied in other areas and crops (Jinyao 

& Shaolong, 2003; Liu & Feng, 2006) also it is difficult to determine growth period 

accurately, complex model parameters or large database. However, despite the successful 

application of DSS over the past decades, there is little evidence in the literature of 

widespread adoption or use by farmers. McCarthy et al. (2010) reported that the adaptive 

control of centre pivot and linear move sprinkler irrigation systems requires the 

integration of a decision-making process and real-time monitoring of field conditions 

with the irrigation system controls.   

2.7 Summary of literature review and aim of this PhD 

study 

Irrigated agriculture will be expected to help meet the food demands of projected 

population growth in the coming decades. At the same time, competition for water 

resources, land area, and pressure to lessen environmental impacts will require irrigation 

techniques that will improve WUE. The variability of rainfall events requires the 

application of supplemental irrigation to meet crop water demands in New Zealand; 

irrigation needs vary by location and crop type. Canterbury accounts for 62% of all 

irrigated land, followed by Otago, Marlborough and Hawke's Bay (Statistics NZ, 2019). 

These regions are the largest producers of dairy, arable and horticultural crops.  

Variations in water availability across the field due to different soil types or crop water 

needs require VRI management to achieve optimum yields and maximise irrigation WUE. 

Determining appropriate VRI scheduling approaches for optimised crop production is 

necessary. Irrigation scheduling methods are typically based on soil moisture 

measurements, SWB calculations (Allen et al., 1998), and plant water stress indicators 

(Idso et al., 1981; Jackson et al., 1981).  Previous research indicated that the WUE of 
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 crops can be improved if irrigation is scheduled when water stress reaches a certain 

threshold and this threshold varies for different crops and different crop stages. Tc is a 

sensitive indicator of water stress and is easily measured using IRTs that do not contact 

the plant. The CWSI is a canopy temperature-based index that normalizes Tc for 

meteorological variability. A large body of research during the past two decades has 

investigated the CWSI and its ability to quantify water stress and aid irrigation scheduling. 

Although WUE can be improved by timing irrigations when a CWSI threshold was 

reached, there is no consensus on a set of threshold values appropriate for all possible 

crops, soils, and climates. In addition, the CWSI does not indicate the optimal amount of 

water needed per irrigation. Therefore, soil moisture sensors and SWB remain the basis 

for irrigation management. The CWSI may provide more meaningful information if it 

could be related to soil moisture. 

Recent innovations in low-power sensor and WSNs technologies combined with advances 

in internet technologies offer tremendous opportunities for development and application 

of real-time management systems for irrigation. Irrigation management in precision 

agriculture requires spatio-temporal information on soil water supply and crop water 

demand that is timely, frequent and has sufficient spatial resolution for the existing 

within-field variability. Present airborne and/or ground-based sensor technologies (e.g. 

LiDAR and NDVI) have potential to meet these information requirements. The recent 

availability of GPS, Geographic Information Systems (GIS), and high-speed personal 

computers would make on-site data processing feasible within minutes. 

Thus, the aim of this study is to develop and improve the adoption of new technology 

methods for scheduling VRI as a viable option to improve the management of irrigation 

scheduling to give greater WUE (greater yields, less water, and nutrient losses).
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Connecting text to Chapter 3 

Chapter 3 presents the results of trials to evaluate the impact of two different climatic 

regions and soils on irrigated pea and barley production. This assessment sought to 

determine whether this variability is sufficient to warrant the use of variable-rate 

irrigation.  
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Chapter 3  

Impact of climate and soil spatial variability on 

pea (pisum sativum) and barley (hordeum vulgare) 

production in New Zealand 

Abstract 

Exploring the responses of crop water use and yield to climate and soil available water 

variability could enable growers to understand and exploit spatial variations in crop 

growth and yield via variable input management. The objective of this study was to 

determine the impact of weather and soil variability (for both freely and imperfectly 

drained soils) on pea (pisum sativum) and barley (hordeum vulgare) production using soil 

and crop sensing data. A variable-rate irrigation scenario was also simulated by a water 

balance CROPWAT8 program to optimize the irrigation regime of the two soil 

management zones without undesirable reduction of yield.  

The study was conducted under centre pivot irrigation systems. The two field sites were 

located in contrasting climatic regions of New Zealand (site A, Manawatū and B, Hawke’s 

Bay). Heavy rainfall during the pea crop trial meant that site A required no irrigation 

during the growing season. At site B, hot and dry conditions meant that irrigation was 

uniformly applied to barley with maximum irrigation application of 15 mm at any one 

time at a fixed interval (7 days) during the growing season.  

Both weather conditions and soil variability had a significant effect on the crop growth 

and total yield of pea and barley. A period of waterlogging induced by 130 mm of heavy 

rainfall reduced pea yield by 58% in the poorly drained soil compared with the well-

drained soil at site A.  The irrigation application of 15 mm per week for the freely drained 

soil at site B was less than required to avoid water stress for barley. This led to reduced 

barley grain yield by 4 T ha-1 (60%) mainly through a reduction in the number of grains/  
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plants, compared with imperfectly drained soils.  

Overall, the results revealed that soil physical properties exhibited significant spatial 

variability within each study site. This caused crop growth in the different soils to respond 

differently to rainfall and irrigation resulting in different maturity rates and final yields.  

Keywords: Waterlogging; Water deficit; Wireless sensor network; Soil moisture sensors; 

Infrared radiometers; Variable rate irrigation; Water use efficiency; CROPWAT8 

3.1 Introduction 

Under New Zealand’s climate conditions, fluctuations in precipitation can cause water 

shortages or excesses at critical stages of crop growth. The water supply that can be stored 

in the soil profile and supplied to the crop, is often described as the available soil water 

content (AWC) (Wong & Asseng, 2006). In coarse textured soils with a very small AWC, 

excess water can percolate quickly past the root zone, and therefore these soils require 

more frequent irrigation with small applications to maximize yields.  Soils with a high 

AWC store more plant available water and therefore should be able to produce maximum 

yields with less irrigation in temperate climates, where some rainfall is expected during 

the period of irrigation. The AWC is directly related to soil texture which often varies 

spatially in agricultural fields (Hedley & Yule, 2009a). 

The under-irrigation of crops leads to unnecessary water deficit stress and reduced yield. 

Heavy rainfall or over-irrigation of crops can lead to waterlogging and increased leaching 

and surface runoff of nutrients, fertilizers, as well as increasing the overall cost of 

irrigation and reducing profit. There has been considerable research conducted overseas 

on the response of pea and barley crops grown on different soils to applied water. The 

effects of waterlogging or water shortage on plants depend on the stage of its development 

and duration of this stress (Svobodová & Misa, 2004). The major physiological effect of 

waterlogging is reduced uptake and transport of mineral ions by roots (Drew & Sisworo, 

1979; Slowik et al., 1979). With waterlogging, yield reductions have been reported in 

peas of 6-40% respectively (Belford et al., 1980; Cannell et al., 1984; Cannell et al., 

1980). This yield loss appears linked most closely to hypoxia and/or anoxia where shoot  
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and root growth decrease, and nutrient uptake becomes inhibited (Bacanamwo & Purcell, 

1999). The negative effects of water shortages on yield mainly depend upon the severity 

of the stress and the plant growth stage. In contrast, yield reductions due to water shortage 

might be due to various factors such as decreased rate of photosynthesis, disturbed 

assimilate partitioning, or poor flag leaf development (Jamieson et al., 1995). In an 

experiment in Canterbury, New Zealand, Jamieson et al. (1995) showed that water 

shortage caused a decrease in yield, grain number and size per spike. A significant 

reduction in the grain yield of barley was also observed by Samarah (2005) under drought 

conditions mainly because of smaller numbers of fertile tillers and grains along with less 

1000 grain weight. González et al. (1999) reported that water shortage affects spike 

number per plant or unit area more than grain number per spike for spring barley. 

Therefore, variations in water availability across a field due to different soil AWC and/or 

variation in crop needs may require site-specific management to achieve optimum yields 

and maximize water use efficiency (WUE) (Raine et al., 2007). Soil type and crop yield 

can now be mapped at the sub-field scale with commercially available technologies 

(Lawes et al., 2009; Wong et al., 2008). These technologies can be employed to develop 

the field management strategies, using precision irrigation equipment such as a variable 

rate irrigation (VRI) system, which has the potential to spatially optimize the irrigation 

regime, nutrient management, and thus yield, of areas with low AWC without an 

unnecessary reduction of yield in areas of high AWC (Evans et al., 2013).   

The Penman and Monteith (PM) equation used in FAO56 (Allen et al., 1998) is the 

standard procedure for calculating reference evapotranspiration (ETo) and subsequently 

plant water use ETc via a crop factor Kc. Crop models such as CROPWAT (Smith, 1992) 

and AquaCrop (Steduto et al., 2009), many of which are based on the PM approach and 

the soil water balance (SWB) ) (Allen et al., 1998), are often used as a practical tool to 

calculate the crop water use and manage irrigation.. 

The models are hindered with a major research shortcoming of high resolution spatial and 

temporal information. The actual size and duration of crop water stress need to be 

quantified for the development of models to describe relationships between 

cropproduction and field management. Recent technologies (e.g. wireless sensor 

networks (WSN)) can be used to quantify the potential impact of crop management and 
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soil-AWC on irrigation water use and crop production in the field (Hedley et al., 2012). 

This is because WSNs measure field soil and crop conditions in real-time (Ekanayake & 

Hedley, 2018), whether using direct soil moisture content (SMC) measurements with 

capacitance, neutron probe, TDR sensors (Topp & Davis, 1985) and tensiometers 

(Smajstrla & Harrison, 1998) or direct measurement of plant water status using infra-red 

radiometers (Jones, 2004a). 

Canopy surface temperature (Tc) measured with infrared radiometers (IRT) provides a 

well-established, and important tool to detect water stress in a crop. The crop water stress 

index (CWSI) is the most frequently used index to quantify crop water stress based on Tc 

(Sezen et al., 2014). Idso et al. (1981) observed a linear relationship between Tc (measured 

using IRT) and air temperature (Ta) and vapour pressure deficit (VPD), which they used 

to develop an empirical method for quantifying crop water stress. Research has been 

conducted to evaluate the application of the CWSI in irrigation scheduling for different 

crops in different places (Alderfasi & Nielsen, 2001; Cremona et al., 2004; Yeşim Erdem 

et al., 2010), However, little research has been undertaken to evaluate the use of CWSI 

for horticultural and cereals crops in New Zealand.  

The resulting information from crop models (e.g. SWB and APSIM) and WSNs can be 

used to support policies and incentives that help farmers adopt practices that reduce water 

and energy used for irrigation.  

Therefore, our study aimed to quantify the impact of temporal variability in weather and 

spatial variability in soil-AWC on pea and barley crops using soil and crop sensing data, 

and to determine whether this variability is sufficient to warrant the use of VRI systems. 

The research objectives were; (i) to compare the effects of freely and imperfectly drained 

soils on crop growth, final yield, WUE, CWSI, drainage and nutrient concentrations for a 

pea and barley crop grown for one season under centre pivot sprinkler irrigation, and (ii) 

to simulate the benefits of a VRI scenario using the CROPWAT8 model (Smith, 1992) 

where irrigation is scheduled to the two soil-AWC management zones in a manner that 

prevents any reduction in yield. 
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3.2 Materials and Methods 

3.21 Study sites 

The first experimental site (site A) is 1.2 ha in size and located on Massey University’s 

No.1 Farm near Palmerston North, New Zealand (latitude 40.22° S, longitude 175.36° E, 

altitude 37 m). The trial was conducted during the 2016/2017 growing season. According 

to the National Institute of Water and Atmospheric Research (NIWA) (www.niwa.co.nz), 

the climate is humid, and the average annual rainfall is approximately 980 mm. The soils 

are Fluvial Recent soils formed in greywacke alluvium (Hewitt, 2010). The existing soil 

map for this field (El-Naggar et al., 2017; Pollok et al., 2003) indicates the presence of 

two different soil types: a Manawatū fine sandy loam (free draining soil) and a Manawatū 

silt loam (moderated poorly drained soil) (Fig. 3.1).   

The second experimental site (site B) is 4 ha in size and located near Otane, Hawke’s Bay, 

New Zealand (-39. 533°S °N; 176.402°E, altitude 130 m). This site is on the east coast of 

the North Island of New Zealand, which is in a different climatic region to site A. The 

mean annual precipitation is 679 mm. Temperature is always the highest relative to what 

is typical for the time of year. There is a greater incidence that the dry summer led to the 

rapid depletion of soil moisture levels in this area. The trial was conducted during the 

2017/2018 growing season. The soils in this study area are alluvial soils. The existing soil 

database for this field indicates the presence of a Twyford sandy loam and a Kaiapo silt 

loam (Fig. 3.1). The Twyford sandy loam is distinguished by the presence of coarse, 

relatively un-cohesive sands throughout the profile, and topsoil with a sandy loam texture. 

It is an excessively well-drained soil. The Kaiapo silt loams have a finer texture, which 

contributes to relatively slow internal drainage. It is classified as a poorly drained soil. 

The physical characteristics of the soils at each site are given in Table 3.1

http://www.niwa.co.nz/
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3.22 Experimental setup 

Field peas (Pisum sativum., cv. ‘Ashton’) at site A and barley (Hordeum vulgare., cv. 

‘Carfields CKS1’) at site B were sown on 18 October 2016 and 2 August 2017, 

respectively. Each experiment consisted of a randomised block design with four plots (20 

x 10 m) or replicates in each soil zone (Fig. 3.1). The trial’s operation management was 

the same in each soil zone for peas and barley crops (Table 3.2). Both sites have centre 

pivot irrigators. The irrigator at site A is 86 m long and was run with an application rate 

of 2.54 mm hr-1. At site B, the irrigator has a length of 580 m and an application rate of 

1.8 mm hr-1 was used for irrigation. These application rates were lower than the 

infiltration rate into the topsoil.  

At site A, the plan was to schedule irrigation with the aid of a water balance calculation 

but the heavy rainfall during crop growth prevented the field from being irrigated. At site 

B, the irrigation was uniformly applied with a maximum application depth of 15 mm (due 

to insufficient water allocation) at a fixed interval (5-7 days) unless significant rainfall 

was received.
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Figure 3.1: Experimental design of study areas: Two soil management zones with 4 replicates plots (10 x 

20 m) in each zone based on the soil types at site A (block: 1.2 ha) (Zone 1: Manawatū sandy loam, Zone 

2: Manawatū silt loam) (Pollok et al., 2003) and site B (Zone 1: Twyford fine sandy loam, Zone 2: Kaiapo 

silt loams) (Manderson map “unpublished”). 

Table 3.1: Physical properties of the soil (0 – 1m). 

  Site A  Site B 

Properties 
 Soil types/ zones 

 Zone 1  Zone 2   Zone 1  Zone 2  

Available water capacity (mm m-1)  123 203  190 273 

Bulk density (g cm-3)  1.41 1.30  1.28 1.17 

Sand (%)  80.6 44.9  47.3 1.3 

Silt (%)  12.7 40.6  40 70.8 

Clay (%)  6.7 14.5  12.8 28 
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Table 3.2: Management records for the pea crop trail (2016/2017) at site A and barley trial (2017/2018) 

at site B. 

Pea trial 2016/2017 

30Sep-16 Weed control: Pre-Empt applied @ 1.7 l ha-1 and incorporated  

18Oct-16 Fertilizer: 250 kg Cropmaster 15 applied, power harrowed (fertiliser) 

18Oct-16 Planting: Peas sown @ 260 kg ha-1 (cultivar - Ashton) 

25Nov-16 Weed control: Sprayed with Bruno @ 2.5l ha-1 and MCPB @ 1l ha-1  

09Jan-17 Harvest 

Barley trial 2017/2018 

2/08/2017 Planting: Barley ('Carfields CKS1); 100 kg seed ha-1 

2/08/2017 Fertilizer: 200 kg ha-1 Yara ACTYVA (23-10-5) 

15/11/2017 Fertilizer: 326 kg urea ha-1 (150 kg N ha-1) 

24/01/2018 Harvest: Final barley harvest (10.5 t grain ha-1; 19.7 t DM ha-1) 

3.22 Measurements 

3.221 Soil and crop sensing data 

Soil moisture was measured during the crop season in each plot at the 0–10, 10–20, 20–

30 and 30–40 cm soil depths at daily intervals for site A using frequency domain 

reflectometry probe (SM300- DeltaT, Burwell, UK) connected with a WSN developed by 

Ekanayake and Hedley (2018). Measurements at weekly intervals for site B were made 

using neutron-probes down to a depth of 80 cm in 10 cm depth increments. The soil 

sensors were calibrated against the SMC determined gravimetrically. SMC measurements 

started after 5 and 16 days after cultivation for pea and barley, respectively. Canopy 

temperatures were measured in each plot with IRT (Apogee Instruments, Inc., model SI-

400). The instrument was installed about 1 m above ground level and directed vertically 

down at the plant (see Fig. 3.2). Real-time Tc measurements were recorded every one hour 

during most of the season using a WSN developed by Ekanayake and Hedley (2018). Data 

collection for Tc was initiated at 35 and 65 days after planting for the pea and barley crops, 

respectively when the plant cover percentage was nearly 70–85%. Measurements were 

made between 11:30 am- 2:00 pm (local standard time) to detect the crop water stress 

 



 

 

Chapter 3  50 

 

(Idso et al., 1981; Jackson et al., 1981) at maximum solar intensity because the sun will 

be directed on all plants during this time. Mean values of the Tc were used for calculating 

CWSI using Idso et al. (1981) function (Equation 3.1).   

𝐶𝑊𝑆𝐼 =
(𝑇𝑐 − 𝑇𝑎)m − (𝑇𝑐 − 𝑇𝑎)l

(𝑇𝑐 − 𝑇𝑎)u − (𝑇𝑐 − 𝑇𝑎)l
                                                                             [3.1] 

Tc is the canopy temperature (oC), Ta is the air temperature (oC), and m, l, and u, designate 

measured, lower baseline (well-watered), and upper limit (completely stressed) canopy-

air temperature differences, respectively 

(𝑇𝑐 − 𝑇𝑎)l = 𝑎 + 𝑏(𝑉𝑃𝐷)                                                                                             [3.2] 

(𝑇𝑐 − 𝑇𝑎)u = 𝑎 + 𝑏(𝑉𝑃sat(Ta) − 𝑉𝑃sat(Ta+a))       (3.3) 

Vapor pressure deficit (VPD, kPa) and saturated vapor pressure (VPsat, kPa) at air 

temperature were calculated by:  

𝑉𝑃𝐷 = (1 −
𝑅𝐻

100
) ∗ 𝑉𝑃sat                                                                                              [3.4] 

𝑉𝑃𝑠𝑎𝑡 = 𝑒
(
16.78∗Ta−116.9

Ta+237.3
)
                                                                                                   [3.5] 

L for the canopy–air temperature difference (Tc–Ta) versus the vapor pressure deficit 

(VPD) relationship was determined using data collected only from the unstressed 

treatments. U was computed according to the procedures explained by Idso et al. (1981). 

  

Figure 3.2: Typical infrared thermometers sensor arrangement in peas crop (site A) for measuring the crop 

stress. The infrared thermometers mounted at 0 degrees below horizontal which give a visible area of 1.2 

m2.
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Previously twenty-four drainage flux-meters (4 sensors each plot for plots 2 – 7) (Green 

et al., 2010) were installed for comparing the amounts of drainage and nutrient 

concentrations in soil water for each treatment in site A. The basic device design is similar 

to that of (Gee et al., 2003) and (Holder et al., 1991). The drainage volume was recorded 

manually in order to calculate an average drainage rate (mm/day) for the scheduling 

treatments. 

3.222 Experimental data 

The effects of the soil treatments on crop performance during the growing season were 

assessed. Crop assessments (i.e. height, length, number of nodes, flowers, and pods) were 

conducted manually on a weekly basis until harvest. Three replicates of 25 to 30 plants 

were monitored at each time for each plot.  

The actual yield difference between each soil zone was evaluated at crop maturity. In the 

pea trial, seed yield and aboveground plant material were measured by harvesting an area 

of 1 m2 (three replicates/plot). Seed and biomass weights were measured on subsamples 

from this harvest. Dry biomass and yield were estimated on an oven dry-weight basis 

(70⁰C). In the barley trial, the crop yield was determined from a yield map provided by 

the farmer. The map was derived from data collected by a yield monitor positioned on the 

harvester. The yield map was imported into Trimble Ag Software to load and analyse the 

performance of the plots. WUE (kg mm-1) (Gregory, 2004) was then calculated as dry 

seed yield per water used per unit area.  

3.23 Soil water balance model with variable rate irrigation 

scenario 

A SWB model (CROPWAT8, (Smith, 1992)) has been used to simulate the crop water 

needs for a VRI scenario with barley in two soil zones for Site B i.e. irrigation was varied 

to the two soil zones based on critical soil water deficit (SWD) at both sites. 

Irrigation scheduling in CROPWAT8 is based on a soil-water budget, where on a daily 

basis the SWD is determined, accounting for incoming and outgoing water in the root  
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zone (Hillel, 1998). The ETc was determined as the product of ETo and Kc. Daily weather 

data derived from a local on-farm climate station were used to calculate ETo for each day 

of the week, using the PM–FAO 56 method Equation (3.6 and 3.7) (Allen et al., 1998). 

The Kc function values were estimated as described by Allen et al. (1998). 

The initial SWD was derived from measured SMC using portable TDR sensor “The 

MiniTrase (6050X3)”.  The initial depletion was near field capacity (FC). Any excess 

water in the root zone was assumed to be lost through deep percolation (DP). Capillary 

rise (CR) was assumed to be zero because the water table was more than about 1 m below 

the bottom of the root zone (Allen et al., 1998). Runoff (RO) was assumed to be zero. 

Irrigation is triggered each time SWD in the roots zone reaches 50% of the total available 

water (TAW) Equation (3.8). This maximum allowable SWD will ensure that barley crop 

will not be subjected to any water stress that might affect crop productivity or quality 

(Allen et al., 1998). 

𝐸𝑇o =
0.408∗∆∗(𝑅n−𝐺)+𝛾∗

900

𝑇+273
∗𝑢2∗(𝑒s−𝑒a)

∆+𝛾(1+0.34∗𝑢2)
                                                     [3.6] 

 𝐸𝑇c  =  𝐾c 𝐸𝑇o                                                                                                     [3.7] 

Where, 𝐸𝑇o: reference evapotranspiration (mm d-1), 𝑅n: net radiation at the crop surface 

(MJ m-2 d-1), G: soil heat flux density (taken as zero for daily calculations) (MJ m-2 d-1), 

𝑇: mean daily air temperature at 2m height (ºC), 𝑢2: wind speed at 2 m height (m s-1), 𝑒s: 

saturation vapour pressure (kPa), 𝑒a: actual vapour pressure (kPa), 𝑒s − 𝑒a: saturation 

vapour deficit (kPa), Δ: slope of the saturated vapour pressure curve (kPa ºC-1), γ: 

psychrometric constant (kPa ºC-1), 𝐸𝑇c: crop evapotranspiration (mm d-1), 𝐾c: crop 

coefficient. 

  𝑇𝐴𝑊 = 1000 (𝜃FC − 𝜃WP)𝑖 ∗  𝑍r,i                                                                    [3.8] 

Here, 𝑇𝐴𝑊 is the total available soil water in the root zone (mm), 𝜃FC water content at 

field capacity (m3 m–3), 𝜃WP water content at wilting point (m3 m–3), 𝑍r is the rooting depth 

(m). 
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3.23 Soil sampling 

To determine whether the soil zone treatments impacted differently on soil nitrate content, 

soil levels of nitrate and ammonium (NO3-N, NH4-N) were measured at planting and 

harvest, by collecting three replicated soil samples at 0.15 m intervals to a depth of 0.45 

m (i.e. 0 – 0.15 m, 0.15 – 0.30 m; 0.30 – 0.45 m) from each plot. 

3.24 Laboratory analyses 

The plant available nitrogen was assessed using a mineral nitrogen analysis, estimated as 

the sum of NH4-N and NO3-N extracted with 2M KCl using a 1:10 soil: extractant ratio 

and a 1-hour end-over-end shake followed by filtration (Blackmore et al., 1987) and then 

quantified using a QuikChem 8500 flow injection analyser. 

Nutrient concentrations in soil drainage water (NO3-N, NH4-N, P) were determined using 

Lachat instruments (Lachat Instruments, 1998c 1998f ) based on Standard Methods for 

the Examination of Water and Wastewater (FWE & APHA, 2005). 

Plant nutrient concentrations of nitrogen (N) and phosphorus (P) from the harvested 

herbage cuts for pea crop were determined using the Kjeldahl determination method 

(McKenzie & Wallace, 1954). 

All soil preparation and laboratory analyses were undertaken at the Manaaki Whenua soil 

Laboratory (http://www.landcareresearch.co.nz/resources/laboratories/) and Massey 

University soil Chemistry Laboratory (http://flrc.massey.ac.nz), Palmerston North, New 

Zealand. 

3.25 Statistical analysis 

Kolmogorov-Smirnov test of normality (KS) was carried out at 5% significance. 

Analysis-of-variance (ANOVA) at P=0.05, Tukey’s HSD (data normally distributed) and 

Bonferroni (Dunn) (data non-normal distributed) were conducted to investigate 

significant differences in measured soil and crop measurements.

http://www.landcareresearch.co.nz/resources/laboratories/
http://flrc.massey.ac.nz/
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All of the data visualizations and analyses performed in this study were carried out using 

the R programing language (R Core Team, 2018). 

3.3 Results and Discussion 

3.31 Weather data 

Fig. 3.3 shows the weather data of the cropping trial season and the 10 years mean derived 

from a local climate station, located 50 m from site A (http://cliflo-niwa.niwa.co.nz/) and 

Te Aute Drumpeel Rd climate station situated adjacent to the site B. 

At site A the trial period was a relatively wet season where the rainfall for August-January 

was significantly higher than the mean. The rainfall received in the pea growing season 

(October through January) was 393.3 mm, which was higher than the long-term mean 

rainfall (325 mm) by 17.4%. At site B, rainfall in the barley growing season was 

significantly lower than in the mean. The rainfall in the growing season (August through 

January) was 214.4 mm, which was lower than the long-term mean rainfall (317.6 mm) 

by 32.5%. November was wetter than normal at site A and drier than normal at site B (Fig 

3). Mean evapotranspiration for the pea crop was significantly lower than expected from 

November-January. Mean evapotranspiration records for barley were a close match with 

the mean except in November. 

http://cliflo-niwa.niwa.co.nz/
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Figure 3.3: Weather data at site A for 2016/2017 and site B for 2017/2018 and 10 year mean climate data. 

3.32 Comparison of soil water content for the two soil zones 

during each experimental trial 

Profile SMC and SWD variations during the pea and barley growing seasons for each soil 

zone are shown in Fig. 3.4 and 3.5, respectively. 

During the pea trial, the results show a period of waterlogging in Zone 2 induced when 

131 mm rainfall occurred. During the development stage (emergence to bloom stage), 

SMC for Zone 2 was above FC (November 12-November 18) for around 7 days after 26 

days of planting (Fig. 3.4). In Zone 1, there was a very short period of water shortage in 

late-stage (bloom to harvest) (71 days after planting) and before harvest (65% AWC). The 

highest values of SWD were 79 and 48 mm for Zone 1 and Zone 2, respectively.  

During the barley trial, the quantity of irrigation applied to each soil zone treatment was 

based on a fixed interval (5-7 days). Ten irrigation treatments applied a total of 150 mm 

in each soil zone (Fig. 3.4). Weekly SWD determinations showed that TAW in the Zone 2 

treatment was frequently between 40% and 50% especially during early flowering (stem 

extension to heading) whereas under Zone 1 treatment it started to be below 50%.  

Soil-water extraction patterns differed among the soil zones treatments in both crop trials 

(Fig. 3.5). During the pea trial, the distribution of SMC occurred in the Zone 1 soil profile 
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during the experiment, showed the surface layers generally becoming wetter and deeper 

layers becoming drier except during the vegetative growth (waterlogging period). This 

increased SWD for Zone 1 could be explained by increasing rates of water use and to 

drainage during the season compared to Zone 2. For the Zone 1 treatment, this 

corresponded to a drainage loss of approximately 135 mm, or 40% of the used water over 

the season (see Fig. 3.8). During the barley trial, soil water uptake from Zone 1 treatment 

(Fig. 3.5) was mainly from the surface (0-0.4m) layers, but some extraction had occurred 

to 0.8 m depth by the end of the crop season. Soil-water extraction patterns for Zone 2 

treatment showed that the amount of water extracted from deep in the profile was much 

greater than in the Zone 1 treatment. This increased extraction to 0.8 m depth was 

probably the result of deeper rooting and reduced water availability in shallower layers. 

The period at development stage for pea and early flowering stage for barley were very 

sensitive stages where water stress through waterlogging and deficit just prior to these 

stages reduces the accumulated biomass and yield.  

 

Figure 3.4: Estimated soil water deficit (SWD, mm) for each soil zone at site A and site B. The SWD was 

estimated by subtracting the calibrated sensor measurements from the available water of the soil.  
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Figure 3.5: Daily average soil moisture content (SMC, %) at site A measured by SM300 sensors (3 sensors 

in each soil zone). Average soil moisture content trend (SMC, %) at site B measured by neutron probes (4 

sensors in each soil zone). 

3.33 Comparison of CWSI for the two soil zones during each 

experimental trial for Sites A and B 

The non-water stressed baselines for Tc–Ta versus VPD for pea and barley are illustrated 

in Fig. 3.6. The upper limit (U) and lower limit (L) equations were developed as follows: 

U = - 11.73 VPD + 23.79 and L = 2.67 VPD + 0.79 for pea. For barley, the upper limit 

(U) and lower limit (L) equations were: U = -8.15 VPD + 14.85 and L = 0.36 VPD + 

0.61.  

The variations in CWSI under each zone treatment during pea and barley growing seasons 

are shown in Fig. 3.7. When the stress becomes more severe, the canopy–air temperature 

difference will increase, and then the values of CWSI will increase (Sezen et al., 2014). 

In our study, with increasing water stress, the values of CWSI show the trend of increase, 

however, there are frequent day-to-day variations of CWSI. 

In the pea trial, CWSI values ranged between 0.11 and 0.59 in Zone 1 and ranged between 
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0 and 0.09 in Zone 2. The seasonal mean CWSI values were 0.24 and 0.1 for Zone 1 and 

Zone 2, respectively. The variation of CWSI between Zone 1 and Zone 2 indicates that 

the crop was under a short stress period (72 – 78 days after planting) where the crop 

wasn’t irrigated and the total rainfall (about 1.2 mm) wasn’t enough to meet the root zone 

water depletion (mm) which gives a quite similar indication to our SWD data (see Fig. 

3.4).  

In the barley trial, CWSI values ranged between 0.32 and 1.86 in Zone 1 and ranged 

between 0.02 and 0.78 in Zone 2.  Zone 1 had the highest CWSI among the treatments, 

indicating that the plants grown on this soil zone suffered greater water stress than Zone 

2 which agreed with SWD data (Fig. 3.4). The experimental results indicated that the 

CWSI 0.4 and 0.8 for pea and barley is more reasonable for quantifying the crop water 

deficit so irrigating at this level of CWSI would result in higher pea and barley yields for 

both field sites. 

 

Figure 3.6: Canopy–air temperature differential (Tc–Ta) versus air vapor pressure deficit (VPD) for well-

watered and fully stressed pea and barley. U is the upper limit base line (completely stressed), and upper 

limit and L is the lower limit (well-watered). 
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Figure 3.7: Estimated variations of CWSI values between the two soil zones for fresh peas at site A and 

spring barley at site B. 

3.34 Drainage volume/analysis for the two soil zones in pea 

crop trial 

Fig. 3.8 shows the drainage volume measured by 24 drainage flux-meters (4 sensors in 

each plot treatment) at site A and nutrient concentrations in soil water measured in the 

lab. 

Higher drainage volumes were in the highly porous soil (135 mm) and lower in textured 

soils (36 mm) (p< 0.05). However, there were no significant differences in NO3-N plus 

NH4-N and P between the two soil zones. 
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Figure 3.8: Drainage volume measured at site A by 24 drainage flux-meters (4 sensors in each plot 

treatment) and nutrient concentrations in soil water measured in the lab. "*"significant at p< 0.05. 

3.35 Soil nitrate content for the two soil zones in each 

experimental trial 

There was no significant difference in mean NO3-N and NH4-N in the top 0.45 m at pre-

planting for pea and barley (p > 0.05) while the mean values of NO3-N and NO3-N plus 

NH4-N levels were larger in Zone 1 than in Zone 2 (p < 0.05) at harvest (Table 3.3). This 

due to waterlogging impacts which reduce the levels of nitrates in the soil by 

denitrification. This is in agreement with Belford et al. (1980) who reported that 

waterlogging increases the rate of denitrification and reduces plant uptake of N, P, K, and 

some trace elements. 

Table 3.3: Average nitrate content (NO3-N (mg kg-1)) and Ammonia content (NH4-N (mg kg-1)) in the top 

0.4 m at harvest for pea and barley. "*"significant at p< 0.05 

Pea trial  NO3-N NH4-N NO3N+NH4N 

 

Zone 1 6.07 (0.41) 1.44 (0.29) 7.52 (0.54) 

Zone 2 4.07 (0.37) 1.04 (0.14) 5.12 (0.41) 

P value P,* NP P,* 

Barley trial     

 

Zone A 3.30 (0.61) 0.54 (0.12) 3.85 (0.72) 

Zone B 4.93 (0.74) 0.30 (0.08) 5.25 (0.73) 

P value P NP P 
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3.36 Crop assessment for the two soil zones in each 

experimental trial 

The effects of soil variations on crop growth and yield were evaluated for each crop trial. 

The results are summarized in Fig. 3.9 and Table 3.4.    

The pea trial results showed a reduction of crop growth in Zone 2 (where waterlogging 

occurred) comparing to Zone 1. There was a significant difference in mean crop height, 

number of flowers (see Fig. 3.9), number of nodes, and number of pods (results not 

included) between both soil zones at the probability level using ANOVA and Tukey’s 

HSD tests. Significant effects on seed yields were reflected mainly by the number of pods/ 

plants. Yield differences were observed between the two Zones: the yield of Zone 2 

treatment decreased by approximately 58% (Zone 1= 4.15 T ha-1, Zone 2= 1.75 T ha-1), 

and this can be explained by waterlogging through excessive rainfall to above FC in Zone 

2. Similar findings by Belford et al. (1980) showed that yield reductions in peas were 6-

40% due to waterlogging. Greenwood and McNamara (1987) found in their experiment 

in North Otago, New Zealand waterlogging through excessive irrigation or rainfall to 

above FC (1.5 FC and 2 FC) reduced seed yield by approximately 0.73 T ha-1 and 

treatments 3 FC and 4 FC by 1.1 T ha-1. Cannell et al. (1980) and Jackson (1979) found 

the yield reduction of 13 to 30% which resulted from waterlogging was mainly due to a 

similar reduction in the number of pods/plant; Similarly in our experiment, we found a 

reduction in filled pods/plant (Zone 1= 96%, Zone 2= 60%). Work investigating the effect 

of waterlogging at different growth stages has shown that waterlogging just before 

flowering is most damaging (Cannell et al., 1980). In our trial, the waterlogging occurred 

in the development stage (emergence to bloom stage) which led to a yield reduction of 

58% in Zone 2 compared to Zone 1. In Zone 1, the plant available water was below the 

trigger of irrigation for a short period (Fig. 4) at the maturity stage and this was before 

harvest (72 – 78 days after planting) compared to Zone 2 which was too wet. 

In contrast, during the subsequent year (2017), rainfall was less, and irrigation was needed 

in both soil zones. The irrigation was applied using VRI scheduling system. The total 

amounts of irrigation were 85 and 53 mm for Zone 1 and Zone 2, respectively, and there 
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was no significant difference in mean pea crop yield and biomass (see Chapter 5).   

The barley yield from site B varied between the two soil zone treatments. Irrigation with 

small insufficient quantities of water (15mm/7 days) by the farmer gave significant (P< 

0.01) yield reductions for Zone 1. Grain yields (at 14% moisture content) ranged from 

10.3 T ha-1 in the Zone 2 treatment to 4.0 T ha-1 in the Zone 1 treatment with the most 

severe water stress.  Water stress gradually decreased the plant height (Fig. 3.9) where a 

SWD at 65-70% TAW (Fig. 3.4) produced almost 40–60% decrease in plant growth.  

Samarah (2005) calculated a 57% reduction in barley grain yield at severe water stress. 

This reduction in grain yield might be due to the shortening of the crop growth cycle that 

leads to early flowering under water stress. This early flowering not only shortened the 

grain filling period but also affected the plant vegetative growth period. Thus, this resulted 

in lower plant height and biomass accumulation which failed to provide sufficient 

photosynthates to developing grains at the grain filling stage (Alghabari & Ihsan, 2018). 

The current experimental findings at site A and B are in agreement with the results of 

Greenwood and McNamara (1987) and Jamieson et al. (1995) who stated that water stress 

at the development stage for pea and early flowering stage for barley has the greatest 

negative impact on yield and quality for pea and barley.   

Concentrations of N and P in whole-pea samples from the two soil zones taken at harvest 

are given in Table 3.4 which shows reduced concentrations mainly of N and P and in the 

waterlogging soil zone (Zone 2). This in agreement with Cannell et al. (1980); Greenwood 

and McNamara (1987) reported that root growth appears most severely affected by 

waterlogging which may limit nutrient uptake.  

The WUE values were significantly influenced by soil zone treatments. Measures of WUE 

expressed as seed yield per mm of water applied ranged from 10.6 kg mm-1 (Zone 1) to 

4.4 kg mm-1 (Zone 2) for pea and from 9.10 kg mm-1 (Zone 1) to 22.8 kg mm-1 (Zone 2) 

for barley (Table 3.4).  

Overall, pea and barley growth appeared sensitive to small amounts of excessive or 

restricted water, respectively. Pea plants in Zone 2 showed a delay in growth which can 

be explained by lack of oxygen due to waterlogging and consequent nutrient deficiencies 

such as nitrate-N, phosphorus and potassium in topsoil (Table 3.4). Also, possibly due to 

the nitrogen-limiting conditions, root nodules were observed on the roots of plants. Seed 
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yield for barley in Zone 1 was 61% lower than Zone 2 with less grain fill. The SMC in 

Zone 1 fell below the irrigation trigger level of 65-70% TAW, and the observed crop 

growth and yield indicate a significant reduction at level P< 0.01 compared to Zone 2.  

 

Figure 3.9: Results from One-Way ANOVA, Tukey's Studentized Range (HSD) Test (data normally 

distributed) and Bonferroni (Dunn) t-Tests (data non-normal distributed) tests comparing, pea and barley 

measurements between the two soil zones. "**"significant at p< 0.05, "***"significant at p< 0.001, P= 

parametric test, NP= Non parametric test.  

Table 3.4: Comparison of (a) actual mean (standard error) yield for pea and barley (b) biomass and 

concentrations percentage of N and P between the two zones for pea. P= parametric test, NP= 

Nonparametric test. * indicate p > 0.05 (not significantly different).  

Pea trial  
Dry yield 

(T ha-1) 

Dry biomass 

(T ha-1) 

Nitrogen 

% 

Phosphorus 

% 

WUE 

kg mm-1 

 

Zone 1 4.15 (o.37) 5.92 (0.49) 2.57 (0.51) 0.26(0.01) 10.6 (o.37) 

Zone 2 1.75 (0.48) 6.05 (0.35) 1.95 (0.10) 0.17(0.01) 4.4 (0.48) 

P value P,* NP P,* P,* P,* 

Barley trial       

 

Zone 1 4 (0.61) - - - 9.10 (0.61) 

Zone 2 10.3 (0.74) - - - 22.8 (0.74) 

P-value P    P,* 
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3.37 Variable-rate irrigation scenarios for barley trial using 

CROPWAT 

Fig. 3.10 shows the VRI scheduling scenario in each soil zone for barley simulated by 

CROPWAT8 program.  The irrigation requirement for the season was estimated at 180 

and 135 mm for Zone 1 and 2, respectively. The average irrigation demand interval was 

about 3-4 days starting from the mid-season (considering the Max application depth 15 

mm) for Zone 1.  

In the vegetative growth stage (0 – 80 days after planting), sufficient rainfall meant that 

irrigation was not needed for Zone 2 and irrigation intervals varied from 7 to 15 days in 

Zone 1. Compared with the actual irrigation applied (fixed interval method), the VRI 

scheduling scenario used 25% less irrigation water on Zone 2.  

In general, these results indicate that the timing of irrigation was important for optimizing 

the irrigation regime in Zone 1 for avoiding the unnecessary reduction of yield. Thus, 

irrigation when SWD falls to 30–50 % TAW or at irrigation intervals of 4 days during the 

mid-stage would seem a sensible recommendation for Zone 1 and in this experiment, it 

may have given higher yields and a greater irrigation response. 

 

Figure 3.10: Variable rate irrigation (VRI) schedule scenario for barley crop 2017 to avoid crop water 

stress and to achieve optimum yield using CROPWAT.8 program (Penman-Monteith model). 
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3.4 Conclusions 

The spatial variation of crop productivity across farm fields is influenced in part by the 

amount and distribution of rainfall and the soil’s capacity to hold moisture. The present 

experiment was conducted to evaluate the effects of freely and imperfectly drained soils 

on crop growth, final yield, WUE, CWSI, amounts of drainage and nutrient concentrations 

for a pea and a barley crop using soil and crop sensing data. 

The results showed that peas were very sensitive to a short period of waterlogging under 

these field conditions. The excessive rainfall causing the imperfectly drained soil (Zone 

2) to become wetter than or at FC (7 days) caused substantial variations in maturity and 

yield at harvest, with an average of 1.75 T ha-1 in the imperfectly drained treatment, to 

4.15 T ha-1 in the freely drained treatment (Zone 1). At site B, the amount of irrigation 

applied by the farmer at a fixed interval (15 mm/7 days) wasn’t enough to fully restore 

plant available water for barley for the freely drained soil. The lower SMC in the freely 

soil profile after 83 days of planting (flowering stage) for barley resulted in both lower 

yield and crop growth due to water stress occurring prior to flowering compared with the 

other soil zone. The VRI scenario for barley trial indicated that irrigating when SWD at 

30–50 % TAW or at irrigation intervals of 15 mm/4 days would seem an efficient method 

for the freely drained soil which may have given higher yields and a greater irrigation 

response. The CWSI of 0.4 for pea and 0.8 for barley quantified the crop water deficit 

during the growing season so irrigating at this level of CWSI would be optimize yield 

production for pea and barley in both field sites.  

Overall, the current experimental findings for pea and barley yield variability, visual 

observations and crop measurements indicated significant AWC variability due to varying 

soil textures between the two soil zones at each site. Waterlogging and water stress 

adversely affected pea and barley growth and grain yield. The results for the early 

waterlogging for pea and crop water stress for barley could have important implications 

for models aiming to simulate the effects of stress types on cereal growth and water use. 

With declining water resources, future research must focus on using new technologies 

such as VRI systems and WSN with specific crop management options that increase 

irrigation WUE and crop production. 
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Connecting text to Chapter 4 

Given the results from Chapter 3, it is concluded that it is desirable to account for the 

spatial variability of soil water and crop characteristics at fine scales, if possible. If 

variable-rate irrigation (VRI) is advantageous, how can it be achieved or implemented? 

As a first step to answer this question, Chapter 4 develops a method using apparent soil 

electrical conductivity (ECa) survey data to investigate and quantify this soil variability. 

The ECa data was kriged into a map and modelled to predict ECa to depth, using an 

inversion modelling technique. This chapter was presented in conference proceedings: 

(i) New Zealand Society of Soil Science& Soil Science Australia (NZASSS) 

conference in Queens town, New Zealand (2016). Poster presentation. 

(ii) Fertilizer and Lime Research Centre conference (Report No. 30) in Massey 

University, Palmerston North, New Zealand (2017). Conference paper. 

(iii) 7th Asian-Australasian conference on precision agriculture in Hamilton, New 

Zealand (2017). Conference paper. 

This chapter is under review in March 2020 at the Precision Agriculture Journal. 
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Chapter 4  

Imaging the electrical conductivity of the soil 

profile and its relationships to soil water content 

Abstract 

A quasi-2dimensional (quasi-2D) apparent electromagnetic conductivity (ECa) model, 

capable of modeling ECa information down the entire soil profile, was developed using 

ECa data collected by a multi-coil Dualem-421S sensor. The optimal relationships 

between true electrical conductivity (σ) and volumetric soil moisture content (θv) were 

established by using all coil arrays of the Dualem-421S, a damping factor of 0.04, an 

initial model of 35 mSm−1, and with ten iterations. A leave-one-out cross-validation was 

used to assess the regression models. The predicted θv showed a significantly higher 

correlation and lower biases and errors with the measured θv (R
2 = 0.66, bias = 0.00 cm3 

cm−3, RMSE = 0.04 cm3 cm−3). These relationships were then used to derive soil profile 

images of these properties. As expected, θv and σ follow similar trends down the soil 

profile.  

The derived soil profile images for θv have potential use for irrigation scheduling to two 

ECa-derived soil management zones under a variable-rate irrigation system at this case 

study site. They reflect the intrinsic soil differences that occur between texture, texture 

transitions and drainage characteristics. The method can also be used to guide the 

placement of soil moisture sensors for in-season soil moisture monitoring to monitor 

spatiotemporal variations of θv. This soil σ imaging method showed good potential for 

predicting 2D depth profiles of certain soil properties and can support soil, plant and 

irrigation management. 

Keywords: Soil electrical conductivity; Dualem-421S; Soil volumetric water content; Soil 

texture; quasi-2D inversion; EM4Soil
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4.1 Introduction 

Recent developments in sensor technologies coupled with software packages are 

improving our ability to map the fundamental, yet spatially and temporally dynamic soil 

property, soil moisture (θ). The soil must contain adequate θ to maintain plant growth, 

avoid yield reduction and facilitate nutrient uptake. Thus, nutrient uptake and crop yield 

can be maximized when the θ is known, and well characterized across a field (Grote et 

al., 2010) and used to inform irrigation scheduling. 

For appropriate irrigation management, θ measurements should be taken frequently at 

least to the depth of the managed root zone. The soil water pattern in the topsoil may not 

match that of the subsoil and this spatial variability in soil water patterns down the soil 

profile as well as across the landscape needs to be determined. The spatial variability of 

θ is attributed to the influence of varying soil properties such as texture, structure and 

drainage characteristics, as well as topography (Hedley & Yule, 2009a; Vachaud et al., 

1985).  

The θ measurement methods include gravimetric and sensing techniques. Gravimetric 

measurement is the reference method against which other methods are compared 

(Charlesworth, 2005). It involves collecting a soil sample, weighing the sample before 

and after oven drying, and calculating gravimetric water content, (θg) (Hillel, 1982). This 

method, which requires physical soil sampling, transporting, laboratory analysis and 

repeated weighing, is laborious and time-consuming. It also needs to be converted to 

volumetric water content (θv) for irrigation scheduling to inform how much water to apply 

to soil (Evett et al., 2008). Sensing methods use a surrogate property (e.g. dielectric 

constant) that is then related to θv through a calibration (Evett et al., 2007). These sensing 

methods are rapid and provide highly reproducible data. In order of accuracy, they include 

neutron-probes (Kodikara et al., 2013), time domain reflectometry (TDR) methods 

(Wraith et al., 2005) and capacitance sensor techniques (van Iersel et al., 2009). Sensors 

measure soil water content at one position or in a network of positions (e.g. (Ekanayake 

& Hedley, 2018)) but for precision irrigation, the spatial variability of θv across the area 

to be irrigated is also important.
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Emerging technologies for estimating the spatial distribution of soil water include the use 

of satellite data (Corbari et al., 2019; Thi et al., 2019), although its use for precision 

irrigation has been limited by its spatial and temporal resolution. With the recent 

emergence of constellations of small CubeSat-based satellite systems, these constraints 

are lessening, with daily 3 km resolution optical data a reality for earth observation 

(Aragon et al., 2018). However, an enduring limitation of satellite data is that it largely 

responds to surface soil conditions. In contrast, electromagnetic induction (EMI) 

instruments can be used to map θv to depth. The sensor is affected by other soil properties 

as well as θv (de Lara et al., 2019). These include clay content, compaction, and cation 

exchange capacity in non-saline soils (Corwin & Lesch, 2003; Hedley et al., 2004; 

Sudduth et al., 2005a). These other factors often co-relate to moisture content so that 

researchers have successfully established correlations between apparent electromagnetic 

conductivity (ECa) and θv. Kachanoski et al. (1988) first established correlations between 

ECa and θv measured by a TDR. Ekwue and Bartholomew (2011) observed a strong 

positive relationship between the ECa and the θv for three soil types evaluated in laboratory 

and field conditions. Hedley et al. (2013) mapped θv (to 0.5 m) across an irrigated field 

of uniform sandy soils using an EM38 survey, and Robinson et al. (2009) mapped θv at a 

depth of 0.4 m. However, these EMI survey methods were unable to resolve the 

relationship of ECa to θv content with depth.  

Therefore, although the successful mapping of θv has been achieved, most correlations 

were established between ECa and profile-average θv. Characterisation of the depth 

specific variation in θv is ideally needed to guide the best placement of soil moisture 

sensors to accurately represent the variation that exists in a field, e.g. for precision 

irrigation scheduling.  

More recently studies have demonstrated how ECa data coupled with quasi-2 dimensional 

(quasi-2D) inversion modeling software (Santos et al., 2010) can be used to characterise 

depth specific variation of soil properties, including exchangeable sodium percentage 

(Huang et al., 2014), clay (Triantafilis et al., 2013a), θv (Huang et al., 2016; Huang et al., 

2017a), soil salinity (Davies et al., 2015; Huang et al., 2015), and cation exchange 

capacity (Koganti et al., 2017). 
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In principle, EM inversion is a mathematical procedure that aims to obtain the distribution 

of ECa property in soil volume (Santos, 2004).  The inversion modelling tools (i.e. Santos 

et al. (2010)) calculate the ECa changes with depth using Maxwell’s equations that are 

based on the low induction number approximation and because the measured ECa is a 

weighted average value over the coil configuration specific penetration depth; this 

enables the estimations for ECa over different depths (von Hebel et al., 2014). In general, 

there are three inversion models: a layered earth (1D), an earth model allowing the 

variation of conductivity in two directions (2D) and a more realistic model allowing that 

the conductivity varies in the three directions (3D). The parameterisation of each model 

is different, and the number of unknown parameters increases from 1D to 3D models. The 

model to be adopted depends on several factors, but the most important are the geology 

and the geophysical array used in the data acquisition (Santos, 2004; Triantafilis et al., 

2013a).  

The main focus of our research trial was to investigate the use of the EMI method and 

inversion algorithm approach (EMTOMO, 2014) for high-resolution imaging of vertical 

soil variability under a variable-rate irrigation (VRI) system to inform scheduling 

decisions for two ECa delineated irrigation management zones. Although the inversion 

algorithm approach has been shown to be successful in mapping depth-specific dynamics 

in homogeneous sandy soil (Huang et al., 2017a), and in a field with varying soil texture 

(Huang et al., 2017b), little work has been undertaken to relate the EMI image outputs to 

soil drainage characteristics in an area of different soil texture and drainage 

characteristics. Therefore, our study aimed to use EM4Soil inversion software 

(EMTOMO, 2014) to generate a two-dimensional depth profile model from the ECa 

values measured by a multi-coil EM sensor survey, and then develop a relationship 

between the calculated vertical profile of true electrical conductivity (σ) and the 

measurements of θv for two irrigation management zones of differing texture and drainage 

characteristics. We were interested to investigate its ability to interpret drainage 

characteristics because vertical and lateral distribution of soil water in a soil profile 

impacts on effective management of irrigated land. 
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4.2 Materials and Methods 

4.21 Study sites 

The study field is located at Massey University in Palmerston North, New Zealand, (lat. 

40°22′57″S, long. 175°35′38″E). The study field is 1.2 ha and was cultivated and sown with 

ryegrass (Lolium perenne L.) and white clover (Trifolium repens). According to the New 

Zealand Soil Classification (Hewitt, 2010), the soils are Fluvial Recent soils formed 

in greywacke alluvium, which correspond to Fluvisols in the FAO World Soil Reference 

Base (Michéli et al., 2006), and to Fluvents in the USDA Soil Taxonomy (USDA & Soil 

Conservation Service, 1975). This field is known to be non-saline and variable in texture, 

so it was expected that the EM survey data would be predominantly influenced by 

variation in the soil texture and soil water content. The existing soil map for this field 

(Pollok et al., 2003) indicated the presence of two different soil types: a Manawatū fine 

sandy loam (Zone 1) and a Manawatū silt loam (Zone 2) (Fig. 4.1b).  

4.22 EM survey 

The EM survey was carried out at 6 m swath widths across the field and along two 

transects using a Dualem-421S mounted on a wheeled frame at a height of 0.15 m above 

the surface (Fig. 4.1a). The Dualem-421S (Dualem Inc., Milton, Ontario, Canada) 

instrument incorporates an EM transmitter that operates at a fixed low frequency (9 kHz) 

with three pairs of horizontal, co-planar (HCP) and perpendicular (PRP) receiver arrays. 

The distances from the transmitters to the PRP receivers are 1.1, 2.1 and 4.1 m. The depth 

of ECa measurement is, respectively, 0–1.5 (1mHcon), 0–3.0 m (2mHcon) and 0–6.0 m 

(4mHcon), and 0.5, 1 and 2 m (PRP) (Dualem Inc 2008). The georeferenced ECa data 

were collected every second at six depths using a Trimble RTK GPS system with 2 cm 

accuracy. The elevation data collected by the RTK GPS system was also interpreted to 

predict slope angles and other topographic details.
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4.23 Soil sampling 

To calibrate the inverted ECa models, 20 sites 

were selected (Fig. 4.1a). Twelve of these sites 

were positioned along two transects (transect 1: 

locations 1 – 6; transect 2: locations 7 – 12) so 

that the calibration model could be used to predict 

longitudinal depth profiles of ECa for these two 

transects. The remaining eight sites were selected 

using stratified random sampling of the EM 

survey data. Undisturbed soil samples of known 

volume (intact cores) were taken at 0.30 m 

intervals to a depth of 1.5 m at each site, on the 

same day as the EM survey. On transect 1, soil 

samples were collected at 15.6 m intervals while 

on transect 2 they were collected at 17 m intervals. 

Both the soil sampling and the EM survey were 

carried out on September 22nd, 2016.  

4.24 Laboratory analysis 

Laboratory analyses of the calibration samples were 

(i) soil bulk density (ρb, g cm−3) and gravimetric soil 

water content (θg, g g−1) on an oven dry-weight basis 

(105◦ C), these calculations were then converted to 

θv (cm3 cm−3) (Gardner, 1986). 

All soil preparation and laboratory analyses were 

undertaken at the Manaaki Whenua Environmental Chemistry Laboratory, Palmerston 

North, New Zealand. 

(http://www.landcareresearch.co.nz/resources/laboratories/environmental-chemistry-laboratory) 

a 

b 

Figure 4.1: a) Google Map image of the 

study field with the locations of the Dualem-

421S measurements and 20 soil sampling 

points, b) Soil map for Massey University 

arable experimental field site (Palmerston 

North, New Zealand) where a variable rate 

irrigation (VRI) centre pivot has been 

installed (Zone 1: Manawatū fine sandy 

loam, Zone 2: Manawatū silt loam. Source: 

(Pollok et al., 2003) 

 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/environmental-chemistry
http://www.landcareresearch.co.nz/resources/laboratories/environmental-chemistry-laboratory
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4.25 EM4Soil and 2D inversion of ECa data 

EM4Soil is a software package (EMTOMO, 

2014) which was developed to invert ECa data 

acquired at low induction numbers. The 

algorithm is described by Santos et al. (2010). In 

this study, we used the quasi-2D inversion 

modeling approach to generate a model of the σ 

at specific depths and 2D electromagnetic 

images (EMIs) of both transects. Briefly, the 

algorithm generates EMIs by applying a 1D 

inversion algorithm with the σ constrained by 

neighboring locations in quasi-2D or -3D (Santos 

et al., 2011).  

To determine an optimal inversion, a number of factors were used including forward 

modeling, inversion algorithms, size of damping factor (λ), number of iterations 

(Triantafilis et al., 2013b; Triantafilis & Santos, 2013c; Triantafilis et al., 2013a). In our 

study, we selected the EM4Soil parameters which achieve the maximum coefficient of 

determination (R2) for the linear correlation between σ and soil properties θv. We varied 

the forward modeling (CF and FS), the value of λ (e.g., 0.04, 0.07, 0.3, 1, 1.5 and 3), 

available coil arrays (4, 2 and 1) and inversion algorithms (S1 and S2).  

The CF model is based on the ECa cumulative response and is used to convert depth- 

profile conductivity to ECa under low induction number conditions (McNeill, 1980). The 

FS model is based on the Maxwell equations (Kaufman & Keller, 1983) and is not limited 

to the low induction number condition. The inversion algorithms (S1 and S2) are based 

upon the Occam regularization method (e.g. (deGroot-Hedlin & Constable, 1990; Sasaki, 

1989)), where S2 constrains EMI around a reference model and produces smoother results 

than S1. 

Figure 4.2: Electromagnetic (EM) map at a 

5-m spatial resolution from the EM survey 

using ordinary kriging in R version 3.4 (R 

Core Team, 2018) in the gstat package 

(Pebesma, 2004). 
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The optimal combinations of inversion for the quasi-2D inversion of ECa were forward 

modeling based upon ‘full-solution’ of EM fields (FS), a damping factor of 0.04, an initial 

model (σ = 35 mSm−1), all available coil arrays data and with 10 iterations.  

4.26 Predicting θv and validation of prediction accuracy 

Analysis of variance on measured θv between the two soil zones was carried out, and the 

significance of differences was estimated using the Least Significant Difference (LSD) at 

5% probability level. In addition, a linear regression was performed to develop the 

calibration relationship between σ with θv for (i) both transects, and (ii) available data of 

20 sites (n= 99). The performance of the regression models was assessed using a ‘leave-

one-out’ cross-validation (LOOCV). In this case, the model was repeatedly refitted 

leaving out a single observation and then used to derive a prediction for the left-out 

observation. Within the literature, it is widely appreciated that LOOCV is a sub-optimal 

method for cross-validation, as it gives estimates of the prediction error that are more 

variable than other forms of cross-validation, but we consider that it is a useful and 

appropriate method for relatively small datasets, such as this one (Friedman et al., 2001). 

The predictive power of the model was described by the average coefficient of 

determination (R2), root-mean-square error (RMSE) and mean error (ME) as measures of 

the bias determined using LOOCV. 

All of the data visualizations and analyses performed in this study were carried out using 

R version 3.4 (R Core Team, 2018).
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4.3 Results and Discussion 

4.31 Comparison of θv data 

Table 4.1 shows the summary statistics for measured θv between the two soil zones. 

Significant differences were observed in four of the five soil layers for θv. In particular, 

θv of Zone 2 were significantly (p < 0.05) higher than those of Zone 1. However, there 

were no significant differences in the surface θv (0 – 0.3 m) between the two soil zones. 

Use of the skewness values of soil properties to inspect for normality suggests that the 

data for both soil properties are moderately skewed. 

The analysis of results shows considerably more variation in θv with depth in Zone 2 than 

Zone 1. In Zone 1, the larger θv for the 0 – 0.3 m depth compared to the rest of the profile 

is likely due to the coarser texture, higher organic matter content and higher available water 

content (AWC) of this soil depth as has been observed in a previous investigation (Pollok 

et al., 2003).    

Table 4.1: The summary statistics of volumetric water content (θv, cm3 cm−3) for Zone 1 (locations 

10 – 12 and 18 – 20) and Zone 2 (locations 1 – 9 and 13 –17). The mean values θv in depths with P 

values >0.05 are not significantly different between the two soil zones. 

 Zone 1 Zone 2 

Depth(m) Mean Min Max SD 
Skew- 

ness 
Mean Min Max SD 

Skew- 

ness 
P value 

volumetric water content (θv, cm3 cm-3) 

0 – 0.3 0.22 0.18 0.28 0.04 0.90 0.25 0.22 0.30 0.03 -0.35 0.067 

0.3 – 0.6 0.10 0.07 0.17 0.04 2.15 0.18 0.12 0.25 0.04 0.26 0.000 

0.6 – 0.9 0.09 0.07 0.12 0.02 0.58 0.15 0.09 0.24 0.05 0.53 0.011 

0.9 – 1.2 0.09 0.07 0.13 0.02 0.48 0.16 0.08 0.25 0.07 -0.02 0.034 

1.2 – 1.5 0.09 0.06 0.17 0.04 2.05 0.21 0.08 0.32 0.09 -0.71 0.008 
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4.32 Comparison of the ECa data   

Table 4.2 shows the mean ECa values were lower for the coarser textured soil (Zone 1) 

and higher for the finer- textured soils sites (Zone 2).  Similar to the soil properties data, 

the EM data distributions also appeared to be moderately skewed except Hcon (1.5m) 

which is right-skewed. The highest coefficient of variation (CV) was for Zone 1 and the 

smallest for Zone 2 showing that Zone 1 conductivity (0 – 1.5 m) was more variable than 

Zone 2 conductivity.  

With respect to the transects, ECa values for transect 2 (in the north-eastern section) are 

lower than those of transect 1 in Zone 2 (Fig. 4.3). We attributed these observed variations 

between the two sections to the varying texture of the soil profiles.  

In addition, elevation is a natural proxy for the underlying factors that could drive the 

observed differences in ECa. For example, in transect 2, ECa was larger at low elevation 

positions than in the higher elevations, which is possibly indicative of lateral water 

movement downslope at this position. 

The descriptive statistics of the measured θv (Table 4.1) for Zone 1 and Zone 2 can be 

used to confirm and explain the variation in ECa (Table 4.2, Fig. 4.2 and Fig 4.3) where 

the low values of ECa coincide with the lower θv of the coarser textured soil.   

Table 4.2: The summary statistics of apparent electrical conductivity (ECa, mSm-1) measured for the 

20 sites by a Dualem-421S. Zone 1 (locations 10 – 12 and 18 – 20) and Zone 2 (locations 1 – 9 and 13 

–17) 

  Zone 1   Zone 2 

 Mean Min Max SD CV 
Skew-

ness 
 Mean Min Max SD CV 

Skew- 

ness 

Pcond(0.5m) 1.73 0.20 6.42 0.80 0.49 1.02  4.43 2.20 10.1 1.12 0.26 0.42 

Pcond(1m) 1.30 0.13 4.51 0.80 0.66 1.20  4.10 2.40 10.9 1.00 0.25 1.31 

Hcon(1.5m) 1.60 0.10 4.80 0.92 0.57 0.94  4.3 2.70 11.4 1.30 0.31 1.45 

Hcon(2m) 2.19 0.50 3.70 1.10 0.55 -0.18  5.23 3.20 8.20 0.87 0.27 1.36 

Pcond(3m) 1.69 1.20 2.60 0.52 0.53 0.81  4.53 2.30 7.10 0.84 0.14 0.82 

Hcon(6m) 2.04 0.60 3.70 1.08 0.31 -0.01  4.93 3.20 7.80 0.68 0.19 0.93 
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Figure 4.3: Measured apparent soil electrical conductivity (ECa, mSm-1) along transects 1 and 2 using the 

Dualem-421S sensor in horizontal coplanar (Hcon) and perpendicular coplanar (Pcon) at exploration depth 

0.5 – 6 m. 

4.33 Regression modelling of θv using σ 

The relationships between σ derived using the inversion quasi-2D model, with measured 

θv in each transect, and for the 20 sites are explained in Fig. 4.4. The relationships were 

good, as indicated by R2 values. The imaging method for both transects produced similar 

correlations with θv. These relationships allowed the 2D profiles of θv to be modeled 

using σ. The model performed well (see Fig. 4.5) with θv, achieving a correlation of 0.66, 

and small RMSE values of 0.04 cm3 cm−3. Overall, the predicted θv points (n=99) were 

precise (low RMSE) and unbiased (Bias = 0.00 %). 
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Figure 4.4: The relationships of true electrical conductivity (σ, mSm−1) with volumetric water content (θv, 

cm³ cm ̄ ³) for the two transects and using the available data of 20 sites (99 samples) 

 

Figure 4.5: Predicted soil water content (θv, cm3 cm−3) derived from true electrical conductivity (σ, mSm−1) 

versus measured soil water content (θv, cm3cm−3), (n=99).
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4.34 2D depth profile modeling of predicted σ and θv along two 

transects 

Fig. 4.6 shows the 2D depth profile images for σ and θv along two transects. Along 

transect 1, the θv values were typically higher in the topsoil then decreased in the subsoil 

before increasing again in the deep subsoil. We hypothesise that this pattern reflects the 

effect of texture on water movement through the soil profile, as was also referred to by 

Clothier et al. (1977b) and explained in Section 4.35.  

A comparison of the measured and predicted top soil θv (0 – 0.3 m) at the 20 sites at Zone 

1 (0.18 – 0.28 cm3 cm−3) and Zone 2 (0.22 – 0.30 cm3 cm−3) with the θv values from AWC 

indicate that the topsoils were near field capacity. This is supported by the climate data 

which showed that on 18 September 2016 (three days before the survey); there was a 

heavy rainfall event (33.4 mm). Soil θv decreased in the subsoil at Zone 1 (0.07 – 0.17 cm3 

cm−3) although this is still likely to be at field capacity (FC) (measured FC were 0.8 – 

0.18 cm3 cm−3) as the texture is sand at this depth (Allen et al., 1998). In Zone 2, θv 

decreased in the 0.3 – 0.9 m depth (0.12 – 0.25 cm3 cm−3) and then increased in the 1.2 – 

1.5 m depth (0.08 – 0.32 cm3 cm−3). Considering the topographic elevation, the downward 

flow of water into lower-lying slope positions could explain differences of σ and θv in the 

topsoil along transect 1. In addition, the locations with higher elevation in transect 2 had 

less σ and θv than lower locations (Fig. 4.6) 

The 2-D depth profile of predicted θv along two transects suggests that the two soils zones 

at the research site may require irrigation at different times and that these differences 

seem to be related to changes in the depth of the observed sandy layer. If the same 

magnitude of soil water differences recurs every growing season, due to these intrinsic 

soil differences, then VRI can be managed to take advantage of these differences with a 

static prescription map even without sensor or using a time-lapse θv monitoring approach 

to monitor the spatiotemporal variations of θv and identify inefficiencies in water 

application rates and use, as was also discussed by Huang et al., 2017a.  
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Figure 4.6: a) True electrical conductivity (σ, mSm−1) derived from the quasi-2D inversion model for the 

two transects. P1–P12: positions/locations 1 – 12, and b) volumetric water content (θv, cm³ cm  ̄ ³) for the 

two transects as derived from the linear regression models.  

4.35 Predicted depth profiles of modeled σ with measured θv 

at specific positions 

The soil profiles of these Fluvisols are typically variable. They have formed over the last 

few 100 years in multiple flood deposits of varying textures and depth over a gravel 

surface – the texture and depth of each layer depending on the size of the flood event.  

Fig. 4.7 shows some examples of the depth profiles of σ and measured θv (for positions 

6, 9 and 19), with θv and σ following similar trends down the soil profile. The θv profiles 

showed different trends with depth below 0.6 m. A comparison of the results presented 

by Clothier et al., 1977b with the current study demonstrates the ability of the technology 

developed here to identify this variability in soil texture with depth and an interesting 

 

(a) 

(b) 
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consequence of this variability for water movement. There were similarities between the 

θv in Zone 1 for profiles both with (i.e. P5, P6, P14 (see, for example, P6 in Fig. 6)) and 

without (i.e. P10, P11, P19 and P20 (see, for example P19 in Fig. 6)) a gravelly coarse 

sand layer with the θv profiles shown in Clothier et al. (1977b) ((Clothier et al., 1977b); 

Fig. 8). Clothier et al (1977b) hypothesize that the decreasing and then increasing θv with 

depth is due to the textural break between the soil and the underlying gravel surface which 

impedes the flow of water into the gravels. This leads to an increase in θv in the finer layer 

above the coarse gravel surface (Clothier et al., 1977b) in some soils, as shown in the P9 

trace in Fig. 4.7. 

In general, these findings suggest a good relationship exists between ECa and the soil 

properties that control θv. This relationship can be used to guide the position and depth of 

placement of soil moisture sensors in the field, to improve the monitoring of the soil 

moisture profile which in turn informs soil and water management, e.g., for irrigation 

scheduling.  

 

Figure 4.7: True electrical conductivity (σ, mSm−1) using the inversion quasi-2D model compared with 

measured soil water content (θv, cm3cm−3) at specific depths for positions 6, 9 and 19
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 4.14 Conclusions 

The inversion model (EM4soil) has been shown to be a very useful tool for estimating σ 

continuously down the soil profile using all available coil array data values of ECa 

measured by a Dualem-421S sensor during a routine survey. Inversion modeling has also 

been used to relate σ to measured θv values for soil profiles to 1.5m depth, and to predict 

2D profile maps of these soil properties. The predicted θv showed a significantly higher 

correlation and lower biases and errors with the measured θv. In this study, the spatial 

variability of a coarser textured (Zone 1) and intermediate textured (Zone 2) Manawatū 

soil was characterized. The θv depth profile maps indicate the effect of texture and texture 

transitions on soil wetness. The predicted θv profile was able to identify water perching 

above a gravelly layer in the Manawatū fine sandy loam as described by earlier 

researchers (Clothier et al., 1977b). 

Integration of the EM data, which represents soil spatial variability, with soil moisture 

monitoring (reliable measurement of temporal changes in θv), could be used for improving 

irrigation management by guiding the position and depth placement of soil moisture 

sensors to best monitor the spatial and temporal variability of soil moisture profiles that 

typically occurs in alluvial soils.  

Future work could be undertaken to predict spatiotemporal changes in θv by developing a 

calibration of variable θv and ECa and generating quasi-3D models of σ. 
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Connecting text to Chapter 5 

The ability of electromagnetic (EM) technology, as discussed in the previous chapter, to 

assist in the delineation of precision irrigation management zones requires an 

accompanying method for dynamic irrigation scheduling to enable variable-rate irrigation 

(VRI). In this chapter, two VRI scheduling methods, water balance model and sensor 

networks, were assessed for a pea and a French bean crop over one season. This chapter 

was accepted for publication in November 2019 in Agricultural Water Management, 

https://doi.org/10.1016/j.agwat.2019.105901 

 

https://doi.org/10.1016/j.agwat.2019.105901
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Chapter 5  

Soil sensing technology improves application of 

irrigation water 

 
 

Abstract 

Dynamic irrigation scheduling for variable-rate irrigation systems is essential to 

accurately estimate the spatiotemporal pattern of irrigation water requirement. Real-time, 

sensor-based and soil-water balance scheduling methods were compared on a trial under 

a variable-rate centre pivot irrigation system. The soil-water balance scheduling used the 

FAO56-ET model to calculate daily soil-water deficits and to determine crop water 

requirements using climate data from a local climate station. The sensor-based scheduling 

system used a wireless soil moisture sensing network to trigger irrigation when soil water 

deficit reached a critical value in a web-based user interface. The scheduling was 

conducted on pea and French bean crop trials under one centre pivot, with two delineated 

irrigation management zones at Massey University’s No.1 Farm, Palmerston North, New 

Zealand. 

The results showed variation between the two scheduling methods where the soil water 

balance assumed that the soil is well drained. The sensor-based scheduling technique 

delivered 23–45% less water. As there were no significant crop growth and yield 

differences between the two approaches, irrigation-water-use efficiency was greater 

under the sensor-based scheduling regime. Further research is planned to assess the 

feasibility of including this monitoring system in a precision irrigation control system.  

Keywords: Precision irrigation; Variable rate irrigation; Wireless sensor network; Soil 

moisture sensors; Soil water balance; Irrigation water use efficiency; Water productivity.
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5.1 Introduction 

Variable-rate irrigation (VRI) systems make it possible to spatially vary water application 

depths across a field in a manner that addresses specific soil, crop, and/or other conditions 

(e.g. topography; sequential row crop sowing). By optimizing water application rates, VRI 

can meet the site-specific watering needs of plants while improving the environmental 

outcomes of irrigated cropland (Evans et al., 2013; Daccache et al., 2015). Some VRI 

systems use customized irrigation zones defined on dedicated software. The variable rate 

program is then loaded into the precision VRI controller that directs individual sprinklers 

through valve nodes (wireless or cable control system). For centre pivots, VRI is currently 

complemented by two techniques: (i) Speed control varies the– fraction of time that the 

outermost tower is moving, so application depth can be different in each sector of the 

field (VRI Speed Control - One slice is one sector). (ii) Nozzle control varies the fraction 

of time each sprinkler or bank of sprinklers is turned on, so application depth can be 

different angularly and radially. Both mechanisms may be integrated for zone control VRI 

(VRI Zone Control -One block is one management zone) (Evans et al., 2013). 

VRI management zones have been delineated using soil apparent electrical conductivity 

(ECa) maps (Corwin & Lesch, 2003). This method is considered to be a rapid, non-

destructive, inexpensive, and very reliable way to map soil variability at high spatial 

resolution (Corwin & Lesch, 2003). The ECa primarily relates to soil texture and moisture 

content (MC) in non-saline soils, and as these two soil properties relate to the soil water-

holding capacity, ECa surveys can be used to identify irrigation management zones 

(Hedley & Yule, 2009a; Sudduth et al., 2005b) 

In arid regions where irrigation supplies nearly all the crop’s water needs, irrigation 

scheduling is relatively straightforward because crop water demand can be estimated 

without having to take into account the effects of daily variable precipitation patterns and 

consequent changes in MC of different soil horizons with varying drainage characteristics 

(Fant et al., 2012). In humid regions such as New Zealand, irrigation is needed as a 

supplemental source of water for those times when rainfall is insufficient to meet crop 

water needs. 
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In these situations, scheduling irrigation can be a greater challenge because it aims to 

reduce or eliminate crop stress due to drought, as well as avoid excessive watering with 

the negative environmental impacts of increased drainage and nutrient leaching. Careful 

scheduling of VRI can maximize irrigation water use efficiency (IWUE) by determining 

the exact timing and amount of water needed to replenish the MC to a desired level in 

order to meet crop water demands. 

Three categories of scheduling techniques exist: (i) soil water balance (SWB) model 

calculated using meteorological data (Allen et al., 1998); (ii) soil sensor measurements of 

MC (Smith, 2000); and (iii) crop sensor measurements of plant water status (Jones, 

2004b). 

With the SWB-based approach, the soil water deficit (SWD) is tracked by accounting for 

all water additions (inputs) and losses (outputs) from the soil root zone. Major inputs are 

precipitation and irrigation. Water might also be transported upward by capillary rise from 

a shallow water table towards the root zone (Allen et al., 1998). Outputs include crop 

evapotranspiration (ETc), drainage, and runoff. Irrigation is required when ETc exceeds 

the supply of water from both soil water and precipitation or in other words when a critical 

SWD level (in millimeters) has been reached. ETc is often determined as the product of 

the reference evapotranspiration (ETo) and the crop coefficient (Kc) with the ETo 

calculated from climatic parameters (Allen et al., 1998). Accurate estimates of Kc and soil 

hydraulic properties values are essential because inaccuracies in Kc and field capacity 

values can potentially result in large errors in the estimated SWD (Allen et al., 1998).  

A standardized version of the Penman and Monteith (PM) equation (FAO56, Allen et al., 

1998) is the recommended procedure for calculating ETo and subsequently plant water 

requirements. Several water balance models refer to this approach, for example, the FAO 

AquaCrop model (Steduto et al., 2009) and CropWat (Smith, 1992), and it is also included 

in many farm-system models, e.g. Overseer (Wheeler & Rutherford, 2014) and APSIM 

(Keating et al., 2003; Probert et al., 1998). 

Another major potential source of error in the widely used FAO56 SWB method is the 

uncertainty of drainage characteristics (especially for poorly drained soils): the method 

assumes that the soil is well drained and that moisture cannot exceed field capacity, with 

free movement of soil water and other undetected fluxes in and out of the control volume 

(Fant et al., 2012; Nolz, 2016).  
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Other models exist that may be more accurate in estimating drainage (Miller & Aarstad, 

1972), but these were not evaluated in this study. 

The Kc derived from remotely sensed vegetation indices such as the Normalized 

Difference Vegetation Index (NDVI) makes it possible to account for variations in plant 

growth due to specific growing and weather conditions, and also improved SWB irrigation 

scheduling due to better estimation of water use and more appropriate timing of irrigations 

(Kullberg et al., 2017). Several studies have tested the potential use of NDVI to predict 

Kc and transpiration at the field scale (Duchemin et al., 2006; Er-Raki et al., 2007; 

González-Dugo & Mateos, 2008; Hunsaker et al., 2005). These studies concluded that Kc 

generated from NDVI determine ETc better than a tabulated Kc in terms of representing 

the actual crop growth conditions and capturing the spatial variability among different 

fields. 

Soil moisture can be directly measured via gravimetric sampling or estimated using a 

range of instruments (Charlesworth, 2005). The gravimetric method involves collecting 

a soil sample, weighing the sample before and after oven drying (for 24 hours), and 

calculating its MC. This MC is usually expressed as the ratio of the mass of water present 

in the soil sample to the dry weight of the soil sample (Hillel, 1982). This method, which 

involves sampling, transporting, and repeated weighing, is laborious and time-

consuming. Instruments based on the neutron-probe technique and dielectric methods 

(time domain reflectometry (TDR) and capacitance techniques) estimate the volumetric 

MC (Smith, 2000). These sensors are easy to use and provide highly reproducible data 

(van Iersel et al., 2009). The neutron-probe and TDR methods have been widely employed 

and are sometimes used as reference methods (Gardner, 1986; Vicente et al., 2003). 

Recent innovations in wireless radio frequency technologies and sensors (such as those 

mentioned above), along with advances in internet technologies, offer excellent 

opportunities for real-time monitoring of the field soil, crop and environmental 

conditions. A number of wireless sensor network (WSN) with various topologies (e.g. 

star, mesh-network) have been developed and investigated under irrigation by different 

researchers in the past decade (Ruiz-Garcia et al., 2009), including centre-pivot  irrigation 

(O’Shaughnessy & Evett, 2008), linear-move irrigation systems (Kim et al., 2008) and 

VRI centre-pivot (Barker et al., 2018; Hedley et al., 2013; Liang et al., 2016). 
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Research is required to refine decisions support tools for VRI systems. Thus, the 

objectives of this study were to: (i) investigate and compare the impact of two VRI 

scheduling methods – SWB model-based and sensor-based – on the quantity of water 

applied, crop growth, final yield, and IWUE for a pea crop and a French bean crop over 

one season under a VRI centre pivot; and (ii) discuss the potential improvement in the 

model scheduling method by using the NDVI derived from ground-based data, because 

to our knowledge, this is new work that is critically required to support efficient irrigation 

scheduling. 

 5. 2 Materials and Methods 

5. 21 Study site 

The study was conducted at a research site (1.2 ha) in Massey University’s No.1 Dairy 

Farm, near Palmerston North, New Zealand, during the 2017/2018 growing season. The 

farm is located at 40.22° South latitude and 175.36° East longitude, at an elevation of 37 

m above sea level. The field is currently irrigated with an 86-m VRI centre-pivot system 

(i.e. 1 span) containing 31 sprinklers, each with a spray radius of 5 m and a flow rate of 

26.3 m3 h-1. The water is sourced from groundwater in a nearby well. According to the 

New Zealand Soil Classification (Hewitt, 2010), the soils are Fluvial Recent soils formed 

in greywacke alluvium, which correspond to Fluvents in the USDA Soil Taxonomy 

(USDA, 1975).  

5. 22 Irrigation management zones 

The soil map for this field (Pollok et al., 2003) shows the presence of two soil types: a 

Manawatū fine sandy loam and a Manawatū silt loam. ECa maps were used to delineate 

the field precisely into irrigation management zones. The electromagnetic (EM) survey 

was carried out at 6-m swath widths using a Dualem-1S. ECa at an exploration depth of 

0.5 m was mapped at a 5-m spatial resolution from the EM survey using ordinary kriging 
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in R version 3.4 (R Core Team, 2018) in the gstat package (Pebesma, 2004). The ECa 

map was further split into two classes (irrigation management zones) using k-means 

clustering. 

 5. 23 Experimental setup 

Field peas (cultivar Massey, 260 kg ha-1) and French beans (cultivar Contender, 75 kg ha-

1) were sown on 15 November 2017 and 9 February 2018, respectively. The experiment 

comprised four plots (20 x 10 m) in each soil zone plus two plots in a non-irrigated corner 

of the field. The crop management details for the peas and beans are shown in Table 5.1.  

Table 5.1: Management operations for the pea and bean trials at the Massey pivot (2017/2018) 

Date Operation 

15 November 2017 Weed control: Pre-Empt applied @ 1.7 l ha-1  

15 November 2017 
Fertiliser: 250 kg ha-1 ‘Cropmaster 15’ applied (nitrogen 

(15.1%), phosphate (10%), potassium (10%) & sulphate (7.7%)) 

15 November 2017 Planting: Peas sown @ 260 kg ha-1 (cultivar - Massey) 

23 January 2018 Harvest: Peas  

7–8 February 2018 Chisel ploughed and power harrowed 

9 February 2018 Fertiliser: 250 kg ha-1 ‘Cropmaster 15’ applied & incorporated  

9 February 2018 Planting: Beans sown at 75 kg ha-1 (cultivar: Contender) 

12 April 2018 Harvest: Beans 

5. 24 Scheduling treatments 

The experiment consisted of two scheduling treatments in each zone, and a non-irrigated 

area. Each zone had two replicate plots per scheduling treatment. The two irrigation 

scheduling methods were (i) the SWB method and (ii) the sensor-based method. The non-

irrigated treatment was in the non-irrigated corner.  

For the SWB method, a daily time-step water balance model was developed. This model 

used daily weather data derived from a local climate station (http://cliflo-

niwa.niwa.co.nz/), located 50 m from the trial site, to calculate the daily ETo, ETc and 

http://cliflo-niwa.niwa.co.nz/
http://cliflo-niwa.niwa.co.nz/
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SWD values. The daily ETo was calculated from the PM equation (Allen et al., 1998) as 

in Equation (5.1):  

𝐸𝑇𝑜 =
0.408 ∗ ∆ ∗ (𝑅𝑛 − 𝐺) + 𝛾 ∗

900
𝑇 + 273 ∗ 𝑢2 ∗ (𝑒𝑠 − 𝑒𝑎)

∆ + 𝛾(1 + 0.34 ∗ 𝑢2)
                                [5.1] 

Here, 𝐸𝑇o: reference evapotranspiration (mm d-1), 𝑅𝑛: net radiation at the crop surface 

(MJ m-2 d-1), G: soil heat flux density (taken as zero for daily calculations) (MJ m-2 d-1), 

𝑇: mean daily air temperature at 2 m height (ºC), 𝑢2: wind speed at 2 m height (m s-1), 𝑒𝑠: 

saturation vapour pressure (kPa), 𝑒𝑎: actual vapour pressure (kPa), 𝑒s − 𝑒a: saturation 

vapour deficit (kPa), Δ: slope vapour pressure curve (kPa ºC-1), γ: psychrometric constant 

(kPa ºC-1) 

The FAO56 ETo model and a dual crop coefficient method (𝐾c = 𝐾s × Kcb + 𝐾e), which 

accounts for variations in soil water availability, inducing either stress and soil 

evaporation, were used to estimate ETc, Equation (5.2) (Allen et al., 1998):  

  𝐸𝑇c = (𝐾𝑠 × K𝑐𝑏 + 𝐾𝑒) × ET𝑜                                                                            [5.2] 

where, 𝐸𝑇c is the crop evapotranspiration (mm d-1), 𝐾cb is the basal crop coefficient, 𝐾𝑠 

is water stress coefficient, and 𝐾e is soil evaporation coefficient. 𝐾e and 𝐾s are calculated 

based on daily water balance computation in the surface soil evaporation layer of 

measured effective depth (𝑍e.i) and in the root zone (𝑍r.i), respectively, according to Allen 

et al. (1998).  

Crop coefficients (𝐾c and 𝐾cb) vary according to the crop growth stage and are also 

affected by the climate conditions. The standard tabulated coefficient values (Allen et al., 

1998) were modified to reflect local conditions at that time using Equation (5.3). Also, 

actual readings of crop height and root depth (𝑍r.i) were taken during the growing season 

to adjust the predictions. In soil data settings, maximum measured rooting depth of 0.4 

and 0.3 m for pea and bean, respectively, were used to match up with the sensor estimated 

SWD. 

𝐾cb Stage = 𝐾cb Stage (Tab) + [0.04 (𝑢2 − 2) − 0.004(𝑅𝐻min − 45)] (
ℎ

3
)

0.3

        [5.3] 

𝐾c Stage (Tab) is the standard value for basal crop coefficient according to the FAO56 

approach plant height (m) for each growth stage (0.1 m < h <10 m); 𝑢2 is the value for 
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daily wind speed at 2 m height over grass during the growth stage (m s-1); 𝑅𝐻min is the 

value for daily minimum relative humidity during the growth stage (%); ℎ is the mean 

plant height during that crop stage (m), and 𝐾c is crop coefficient. 

For the sensor-based method, the MC was monitored using frequency domain 

reflectometry probes (SM300- DeltaT, Burwell, UK) and calibrated, for each soil type, 

against weekly measurements of MC made gravimetrically and with a neutron probe 

(calibration equation was updated weekly). The SM300 probes were installed 

horizontally for each plot at 4 depths i.e. 0.10, 0.20, 0.30 and 0.40 m (Fig. 5.1 and 5.2). 

The neutron probes, which were 1 m long, were installed permanently in a vertical 

position, close to the SM300 sensors (about 1 m distance), and MC readings were taken 

to a depth of 0.80 m in 0.10 m depth increments. To calibrate the SM300 probes: (i) there 

were four replicate neutron access tubes in each of the four replicate plots in each soil 

zone for each crop, and (ii) three undisturbed soil sample replicates of known volume 

(intact cores) were taken close to the access tubes (about 1–3 m distance) at depths of 0.1, 

0.20, 0.30, and 0.40 m. The soil volumetric moisture content was determined by 

multiplying the gravimetric moisture content by the measured bulk density. The SM300 

is connected with a WSN developed by Ekanayake and Hedley (2018), which provides a 

direct continuous measurement of the MC in near real-time (at one-hour interval) and 

displays it on a web page (http://lcrmbei.com/index.php/massey/soil-moisture-zoom/).

http://lcrmbei.com/index.php/massey/soil-moisture-zoom/
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Figure 5.1: Wireless soil moisture sensing system at Massey University No.1 Farm. The system provides a 

direct continuous measurement of the soil moisture status in a real-time where the data are collected by the 

sensor node and then relayed to a gateway that collects and transmits the data to a cloud-based database 

which then extracts, processes and displays it on web pages (http://lcrmbei.com/index.php/massey/soil-

moisture-zoom/). The red cap of the neutron probe access tube is shown in the lower left-hand corner of 

the photo. 

5. 25 Scheduling process 

Irrigation of the plots was scheduled as follows:   

(i) For the SWB treatment, daily weather was used to calculate the SWD using equation                         

𝑆𝑊𝐷2  =  𝑆𝑊𝐷1 −  𝐼𝑅 −  𝑃 − 𝐶𝑅 + 𝑅𝑂 +  𝐸𝑇c +  𝐷𝑃                               [5.4] 

where, SWD1 and SWD2 is beginning and ending total SWD (mm), respectively, IR is 

irrigation (mm), P is precipitation (mm) CR is capillary rise from the groundwater (mm), 

RO is runoff from the soil surface (mm), ETc is calculated crop water use, or 

evapotranspiration (mm d-1), and DP is deep percolation or drainage out of the root zone 

(mm).  

The initial SWD was derived from measured soil moisture content using portable TDR 

sensor “The MiniTrase (6050X3)” by Equation 5.5. Any excess water in the root zone 

http://lcrmbei.com/index.php/massey/soil-moisture-zoom/
http://lcrmbei.com/index.php/massey/soil-moisture-zoom/
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(0.4 m for pea and 0.3 m for bean) was assumed to be lost through DP. CR was assumed 

to be zero because the water table was more than about 1 m below the bottom of the root 

zone (Allen et al., 1998). RO was assumed to be zero. 

(ii) For sensor treatments, data from the calibrated MC sensors were used to monitor daily 

MC and calculate SWD for each zone, through the entire cropping season. Based on the 

crop stage, average daily cumulative SWD at depths of 0.20, 0.30, and 0.40 m for pea and 

bean crops were calculated:  

𝑆𝑊𝐷 = ( 𝜃FC − 𝜃obs) ∗ 𝑍r,i                                                                                  [5.5] 

where, 𝑆𝑊𝐷 is daily soil water deficit (mm), 𝜃FC is soil moisture content at field capacity 

(expressed in mm/100mm), 𝜃obs is soil moisture content (expressed in mm/100mm) at 

the given layer and 𝑍r,i is the rooting depth (mm). i is crop stage of 0.20 (initial stage), 

0.30 (mid stage) and 0.40 (late stage). 

The MC sensors were installed 11 and 12 days after planting of pea and French bean 

crops, respectively, so the first irrigation event before installation of the sensors was based 

on the SWB method for all treatments. 

Critical SWD values for triggering irrigation and applied irrigation depths (IR) are 

expressed as proportions of the total available water (TAW) (Equation 5.6). For each 

treatment, when allowable deficit (AD) level was reached, an irrigation event was 

scheduled. AD levels were determined for both scheduling methods as 0.45 TAW, and IR 

was set at 0.75 AD. This aims to avoid drainage from irrigation and provide a buffer (25% 

deficit) in the soil for any rain event. TAW is defined as: 

𝑇𝐴𝑊 = 1000 (𝜃FC − 𝜃WP)𝑖 ∗  𝑍r,i                                                                       [5.6] 

where, 𝑇𝐴𝑊 is the total available soil water in the root zone (mm), 𝜃FC moisture content 

at field capacity (m3 m-3), 𝜃WP moisture content at wilting point (m3 m-3), 𝑍r is the rooting 

depth (m) (Table 3). The average measured TAW in each soil zone was used for irrigation 

scheduling. A destructive method was used for measuring the maximum effective rooting 

depth directly at different growth stages. The growth stage days were determined based 

on days after planting, and linear interpolation for crop parameters (𝐾cb, crop height 

and 𝑍r.i) were used between stages. For peas, 𝑍r.i= 0.2 (initial stage), 0.3 (mid stage) and 

0.4 (late stage); beans 𝑍r.i = 0.2 (initial stage) and 0.3 (mid and late stages). 
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5. 26 Assessment of scheduling treatments 

Crop assessments (i.e. height, length, number of nodes, flowers, and pods) were 

conducted manually on a weekly basis until harvest. Three replicates of 25–30 plants 

were monitored at each time for each plot, to distinguish the impact of irrigation 

scheduling treatments on crop growth.   

To investigate the impact of irrigation treatment on the final harvest yield, the following 

process was undertaken:  

• Cut three 1-m2 replicates of the aboveground plant material in each plot 

• Record number of plants, total biomass weight (fresh biomass)  

• Separate pods from vine, count number of pods, record weight (bean’s fresh yield) 

• Separate seeds from subsample pods and record their weight (pea’s fresh yield) 

• Dry biomass and yield were calculated on an oven dry-weight basis (70⁰C). 

To compare the effect of scheduling technique on crop water productivity, the IWUE 

(Howell, 2002) and water productivity (WP) were calculated: 

  𝐼𝑊𝑈𝐸 = (𝑌g  −  𝑌g𝑑)/𝐼𝑅                                                                                [5.7] 

   𝑊𝑃 = 𝑌g /𝐸𝑇c                                                                                                   [5.8] 

where IWUE is the irrigation water use efficiency (kg m-3), WP is the water productivity 

(kg m-3), Yg is the irrigated grain yield (g m-2), Ygd is the non-irrigated (rainfed) yield (g 

m-2), IR is the irrigation water applied (mm), and ETc is the total cumulative crop 

evapotranspiration (mm).  

5. 26 Recalibrating crop coefficient in FAO56 water balance 

As 𝐾cb derived from NDVI measurements reflects the local conditions, the feasibility of 

directly estimating the Kc and predicting ETc from sensor readings of NDVI was 

investigated and compared against the calculated 𝐾cb values using the FAO56 approach. 

A RapidSCAN CS-45 Handheld Crop Sensor (Holland Scientific, Lincoln, NE) was used 
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to measure the NDVI at 1-m intervals along transects 1 m apart in each plot on a weekly 

basis. The system is equipped with a GPS, so the data were collected and stored for 

analysing the NDVI differences between the plots. Markers were installed in each plot to 

allow the observations to be made at the same place from one date to another. The average 

and the standard deviation of NDVI were computed, from these measurements. 

Collected NDVI data were regressed against FAO56 estimated Kcb values to predict a Kcb 

curve for the whole season (Taherparvar & Pirmoradian, 2018). The curve was then used 

to predict daily Kcb values (Taherparvar & Pirmoradian, 2018). Furthermore, cross 

validation was applied to the model.  

5. 27 Soil sampling 

Soil samples were collected before the growing season, on 15 August 2016, to compare 

laboratory measurements of available water content (AWC) between the two soil zones 

(Zone 1 and Zone 2). Soil cores were taken from 18 locations (9 for each soil zone) at 

0.2-m intervals to a depth of 1 m.  

To compare levels of soil nitrate and ammonium between treatments and their impact on 

crop growth, three replicates of soil samples were taken at 0.15-m intervals to a depth of 

0.45 m from each plot at pre-planting and harvest. 

5. 28 Laboratory analysis 

Laboratory analysis included measurements of (i) AWC by draining a proportion of soil 

volume between pressure potentials of –10 and –1500 kPa (Gardner, 1986; McQueen, 

1993), (ii) Mineral nitrogen, ammonium and nitrate (NH4-N and NO3-N) were extracted 

with 2 M KCl using a 1:10 soil: extractant ratio and a 1-hour end-over-end shake followed 

by filtration (Blackmore et al., 1987)  

 All soil preparation and laboratory analyses were undertaken at the Manaaki Whenua 

Environmental Chemistry Laboratory, Palmerston North, New Zealand 

(http://www.landcareresearch.co.nz/resources/laboratories/environmental-chemistry-

laboratory). 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/environmental-chemistry
http://www.landcareresearch.co.nz/resources/laboratories/environmental-chemistry-laboratory
http://www.landcareresearch.co.nz/resources/laboratories/environmental-chemistry-laboratory
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5. 28 Statistical analysis 

The Kolmogorov-Smirnov test of normality (KS) was carried out at 5% significance. 

Analysis-of-variance (ANOVA) at P=0.05, Tukey’s HSD (data normally distributed) and 

Bonferroni (Dunn) (data non-normal distributed) were conducted to investigate 

significant differences in measured soil properties and crop measurements.  

All the data visualizations and analyses performed in this study were carried out using R 

(R Core Team, 2018). 

5. 3 Results and Discussion 

5. 31 Delineating the field into irrigation management zones 

The Dualem-1S sensor data were kriged into an ECa map and classified into two irrigation 

management zones (Zone 1 and 2, see Figure 5.2, Table 5.2).  

The relationships between ECa values and soil properties (MC and cation exchange 

capacity (CEC)) were established for this field site by El-Naggar et al. (2017), who 

measured linear relationships of ECa with MC and CEC (R2 = 0.66 for MC and R2 = 0.63 

for CEC). The form of linear regression was: (i) MC = 0.08 + 0.03 ECa and (ii) CEC = 

2.86 + 1.09 ECa. 
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Figure 5.2: Experimental plots  in each zone based on the soil types (Zone 1: Manawatū fine sandy loam 

(0.7 ha), Zone 2: Manawatū silt loam (0.6 ha)) (Pollok et al., 2003) and map of soil apparent electrical 

conductivity (ECa, mS m-1) at 0.50 m using a Dualem-1S. SWB treatments were in plots 1, 3, 6, and 8, and 

(ii) Sensor treatments were in plots 2, 4, 5 and 7. The non-irrigated treatment was at non-irrigated corner 

(plots 9 and 10). 

5. 32 Comparison of soil data for the two soil zones 

The significance of differences in these properties between the two soil zones was 

evaluated by both parametric and non-parametric statistical methods. The KS test only 

demonstrated non-normality in the AWC of samples at 0.8–1 m. There was no significant 

Zone 1 

Zone 2 
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difference in mean AWC in the top 0.2 m. At deeper depths (0.2–0.4, 0.4– 0.6, 0.6–0.8, 

and 0.8–1 m), the mean values of AWC were larger in Zone 2 than in Zone 1, with p 

values < 0.05 (Fig. 5.3). Zone 1 was a coarser textured sandy soil and had a relatively low 

AWC compared with Zone 2. Table 5.2 illustrates the textural distribution and 

classification of the 18 samples along with the ECa classes for the 0–0.4 m soil layer. For 

Zone 1, the sand percentage was always greater than 45%, the clay percentages were 

always lower than 14%, and the silt percentages ranged between 7 and 38%. For Zone 2, 

the sand percentage was always less than 42%; the clay percentages were lower than 23%, 

and the silt percentages ranged between 41 and 65%. These analyses gave weight to the 

claim that the soil differences between the two soil zones were practically and statistically 

significant. 

 

Figure 5.3:  Comparing available water content (AWC, cm3 cm-3), measurements between the two soil 

zones. * The mean difference is significant at the 0.05 level. ** The mean difference is significant at the 

0.01 level. 

Table 5.2: Soil apparent electrical conductivity (ECa, mS m-1) classes with particle size distribution 

(clay (%), silt (%), sand (%) and textural name of the average of 18 samples from the 0–0.5 m soil 

layer of the two zones. 

ECa class %clay %silt %sand USDA Texture NZ Texture 

 Zone 1 

Dualem-1S: 1.54–3.40 mS m-1 11.65 23.7 64.65 Sandy clay loam Sandy loam 

 Zone 2 

Dualem-1S: 4.32–5.25 mS m-1 17.85 48.15 34 Silt loam Loamy silt 
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5. 33 Irrigation scheduling for the two scheduling treatments in 

each zone 

The details of the AD and IR values for the two scheduling criteria are given in Table 5.3. 

Table 5.3:  Scheduling criteria for pea and bean crops, 2017/2018. θFC: moisture content at Field Capacity; 

θWP: moisture content at Wilting Point; TAW: total available water; AD: the allowable deficit; Int: initial, 

M: Mid, L: late.  

  Zone 1   Zone 2  

Soil 

characteristics 

 mm/ 

0.2m 

mm/ 

0.3m 

mm/ 

0.4m 

 mm/ 

0.2m 

mm/ 

0.3m 

mm/0.4

m 

𝜃FC  73 97 120  80 113 145 

𝜃WP  29 37 46  33 46 59 

TAW 44 60 74  47 67 86 

                                                            Scheduling criteria 

Crop stage  Int M L  Int M L 

AD (mm)  20 27 33  21 30 39 

Irrigation (mm)  15 20 25  15 23 29 

Sensors were calibrated weekly from neutron probe readings. Fig. 5.4 shows an example 

of the calibration curves for the sensors over the rooting depth of the crop (0 to 0.4m) 

against neutron measured volumetric data on 24 January 2018 and 3 April 2018 for pea 

and bean crops, respectively. Separate calibrations were needed for each soil type. The 

relationship between the two regression lines for Zone 1 and 2 was significantly different 

(p = 0.0312). The results showed good agreement for SWD in the top 0.40 m. An R2 value 

of 0.87 and 0.89 with Root Mean Square Errors (RMSE) of 1.8 and 1.95 (mm/400mm) 

were obtained for Zone 1 and Zone 2, respectively. The relationship for MC of the top 

0.20 m varied with the subsoil below 0.20 – 0.40 m for Zone 1 compared with Zone 2 

(Fig. 5.4 and Table 5.4), which was likely due to the variable soil texture and TAW below 

0.20 m at Zone 1 compared with Zone 2 as observed by El-Naggar et al. (2017). We 

suggest that the higher scatter in the 0.30 m depth in Zone 1 (R2 = 0.74, RMSE = 1.24 

(mm/10 mm)) was due to heterogeneity of the soil or poor installation of sensors.
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The average Mean Square Errors (MSE) for MC measurements for the 0 – 0.40 m depth 

during the crop season in each soil zone is given in Fig. 5.5. The associated standard error 

of the mean was less for the neutron-probe for both soil zones, due to its ability to integrate 

over a larger volume of soil and its higher tolerance of the heterogeneity of the soil (not 

shown).  The MSE was higher in Zone 2, especially in the control plots for the bean.  The 

error was, in general, less in the Zone 1 plots during the pea trial for both sensors, probably 

because greater water demand (summer season) helped homogenize soil moisture in the 

root zones. The soils under this condition retained water over a longer period after each 

irrigation event, leading to more stable moisture profiles by decreasing the rates of soil 

moisture loss. Similar findings by Heng et al. (2002) reported that the errors of a 

capacitance probe and neutron-probe were less under a higher fertility irrigation 

treatment, because of higher root water extraction giving more homogenized soil 

moisture. However, the corresponding error at each depth showed rather low MSE values 

especially at 0.10 – 0.20 m depths for both soil zones (not shown). Based on this, to obtain 

the same level of precision in Zone 2 as observed in Zone 1 more sensors are needed. 

 

Figure 5.4: The relationship of calibrated total soil water deficit (SWD, mm/400mm) and soil moisture 

content (MC, mm/100mm) at 4 depths (100, 200, 300, and 400 mm) measured by frequency domain 

reflectometry probes (SM300- DeltaT, Burwell, UK) and neutron probes in each soil zone on 24 January 

2018 and 3 April 2018 for pea and bean crops, respectively.



 

 

Chapter 5  101 

 

Table 5.4: Statistical results (R2 = coefficient of determination, MAD = mean difference, RMSE = root 

mean square error, MAPE = mean absolute percentage error, and bias = mean error) for calibrated MC 

at 4 depths (0.10, 0.20, 0.30 and 0.40 m) in each soil zone. 

 Zone 1  Zone 2 

Depth (m) 0.10 0.20 0.30 0.40  0.10 0.20 0.30 0.40 

R2 0.86 0.89 0.76 0.82  0.84 0.92 0.81 0.80 

MAD 0.69 0.57 0.99 0.93  0.78 0.60 0.76 0.86 

RMSE 0.78 0.68 1.24 1.12  0.98 0.77 0.89 1 

MAPE 2.74 2.38 5.23 7.03  2.94 2.21 3.16 4.02 

Bias 0.12 0 –0.08 –0.31  –0.02 0.09 –0.05 0.03 

 

Figure 5.5: The mean square error (MSE) performance of calibrated soil water deficit (SWD, mm) by soil 

moisture content sensors (SM300) for the two soil zones for 0–400 mm soil depth.  

Irrigation events for each zone under the two scheduling methods for the pea and bean 

crops are shown in Fig. 5.6 and 5.7.  

During the pea trial, the SWB method scheduled 6 and 5 irrigation events to Zone 1 and 

Zone 2, respectively, with a total amount of 110 and 97 mm for Zone 1 and Zone 2, 

respectively. The sensor method scheduled 5 and 3 for irrigation events to Zone 1 and 

Zone 2, respectively, with a total amount of 85 and 53 mm for Zone 1 and Zone 2, 

respectively. Most irrigation occurred in the first part of the season when rainfall was 

insufficient to meet the crop water demand. Compared with the water balance method, 

the sensor-based technique reduced withdrawal by 23% of the irrigation water in Zone 1 
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and 45% in Zone 2. We attributed these observed variations between the two methods to 

varying features of the soil profiles. Zone 2, with restricted drainage, stayed wetter than 

predicted by the SWB model (Fig. 5.6 and 5.8), which is likely due to the fact that the 

SWB model did not take into account the impact of the layering and ‘capillary break’ due 

to the coarse gravels below the subsoil, as described by Clothier et al. (1977a) for this soil 

type. This leads to an increase in MC in the finer layer above the coarse gravel surface 

that the sensors were able to measure but the SWB was unable to account for. 

During the bean trial, the rainfall was greater, so less irrigation was required. The SWB 

method scheduled only 2 and 1 irrigation events for Zone 1 and Zone 2, respectively, with 

a total amount of 35 and 20 mm for Zone 1 and Zone 2, respectively. The sensor method 

scheduled the same number of irrigation events and the same application depths as the 

SWB method.  

Following the bean trial, the sensors identified that the MC was above field capacity due 

to a heavy rainfall event of 75 mm that fell over 3 days. However, if daily rainfall wets 

the soil above field capacity then the SWB model assumes that the total amount of water 

surplus to field capacity is lost the same day by deep percolation, allowing the soil to 

return to field capacity (Fant et al., 2012).  In reality, the soils at this site did not drain 

this rapidly. This could also be related to the limitations of laboratory estimates of soil-

water limits (i.e. FC and AWC) used in SWB. Ratliff et al. (1983) suggested that 

laboratory-estimated MC limits should be used with caution in SWB calculations, and 

field-measured limits are preferred. Gebregiorgis and Savage (2006); Lukangu et al. 

(1999) concluded that for approximate estimation of MC limits, the laboratory method 

using undisturbed soil cores yields satisfactory results, but for more critical work, the use 

of the direct measurement is essential using MC or soil-water potential sensors. 

Ekanayake and Hedley (2018); Salter and Haworth (1961) also found that the sensors 

and/or field method for estimating MC are practical and give more accurate measurements 

for timing and amount of irrigation. 

In general, these results indicate that the timing of the irrigation events varied under the 

two methods and that the SWB method resulted in more water being applied to the pea 

crop.
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Figure 5.6: Soil water deficit (SWD, mm) for the SWB-based and Sensor-based scheduling treatments, 

respectively in each management zone for the pea crop trial. The three blue lines in the Sensor scheduling 

graphs represent the standard errors of the reported soil moisture content (MC) measured by the sensors.    

 

Figure 5.7: Soil water deficit (SWD, mm) for SWB and Sensor scheduling treatments, respectively in each 

management zone for bean crop trial. The three blue lines in Sensor scheduling graphs represent the 

standard errors of the reported soil moisture content (MC) measured by the sensors.



 

 

Chapter 5  104 

 

 

Figure 5.8: Comparing average total soil moisture content (MC) in the top 0.40 m obtained using soil 

moisture neutron-probe for the Sensor and SWB schedule treatments in each soil zone. The error bars 

represent the standard errors of the reported soil moisture content (MC) measured by the SM300 sensors. 

5. 34 Crop assessment for the two scheduling treatments in 

each zone 

For the pea crop, there was no significant difference in mean crop height, number of pods 

(see Fig. 5.9), length, number of nodes, and number of flowers (results not included) 

between the two scheduling treatments. During the pea crop trial, the non-irrigated crop’s 

height and number of pods were significantly less than those observed for the two 

scheduling treatments. Unsurprisingly, the greater rainfall experienced during the 

growing of the bean crop resulted in no significant differences in crop height and number 

of pods between the two scheduling treatments and the non-irrigated treatment.
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Figure 5.9: Comparing length, and number of pods on five and four measurement dates between the two 

scheduling treatments (SWB and Sensor) in each soil zone for peas and beans, respectively. * The mean 

difference is significant at the 0.05 level. 

The yield and biomass results indicated there were no significant differences (P >0.05) 

among the scheduling treatments for pea and bean crops (Table 5.5). The mean yields 

were 2.43 T/ha for the SWB treatments (standard deviation 0.01 T ha-1), and 2.33 T ha-1 

(standard deviation 0.02 T ha-1) for the sensor treatments. 

Yield differences in peas were observed between the two irrigation scheduling treatments 

and the non-irrigated treatment: the yield of the non-irrigated treatment decreased by 

approximately 80% for the pea crop (Table 5.5). 

Table 5.5: Average dry-mass yield, biomass, and irrigation applied for each scheduling method in 

each zone. * The mean difference is significant at the 0.05 level   

Treatment Irrigation 

 

 (mm) 

Avg. 

Yield  

(T ha-1) 

Avg. 

Biomass 

 (T ha-1) 

 Irrigation 

 

(mm) 

Avg. 

Yield  

(T ha-1) 

Avg. 

Biomass 

 (T ha-1) 

 Pea  Bean 

SWB, Zone 1 110 2.44 6.35  35 1.10 2.63 

Sensor, Zone 1 85 2.31 6.25  35 1.10 2.45 

SWB, Zone 2 97 2.41 6.05  20 1.15 2.44 

Sensor, Zone 2 53 2.34 6.05  20 1.13 2.34 

Non-Irrigated 0 0.46* 1.2*  0 0.87 2.27 
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5. 35 Irrigation water use efficiency for the two scheduling 

treatments in each zone 

In the pea trial, IWUE increased by 0.5 kg m-3 for Zone 1 and 1.5 kg m-3 for Zone 2 for 

the Sensor-based treatment compared with the model-based scheduling (Fig. 5.10). In the 

bean trial, IWUE was not significantly different between both scheduling treatments. 

There were no differences in crop WP between Sensor-based and SWB-based treatments 

for either crop.  

 

Figure 5.10: Comparing irrigation water use efficiency (IWUE, kg m-3) and water productivity (WP, kg m-

3) for the two scheduling treatments in each zone, and a non-irrigated treatment. The different lowercases 

indicate the mean difference is significant at the 0.05 level. 

5. 36 Soil nitrate content for the two soil zones 

All plots received the same adequate amount of N fertilizer at the beginning of the season 

to ensure any yield differences could be related to different irrigation schedules and not 

to fertility differences. 

We also measured the soil N content at pre-planting and harvest to check for any impacts 

of residual N differences. There was no significant difference in the quantities of NO3-N 
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and NH4-N in the upper 0.45 m of soil between the treatments at harvest for both crop 

trials (Table 5.6).  

Table 5.6: ANOVA and Tukey’s HSD test’s result (mean ± standard error) for nitrate content (NO3-

N (mg kg-1)) and ammonium content (NH4-N (mg kg-1)) in the upper 0.45 m of soil at harvest. The 

same lowercases represent no significant differences of two zones. 

Pea 2017/2018 

  SWB, Z1 Sensor, Z1 SWB, Z2 Sensor, Z2 

Pre-planting NO3N 26.89 ± 1.97a 23.209 ± 5.59a 37.31 ± 9.15a 30.43 ± 5.98a 

 NH4N 2.35 ± 0.53a 5.79 ± 1.70a 7.70 ± 4.37a 4.09 ± 0.84a 

At harvest NO3N 3.74 ± 0.90a 3.43 ± 0.50a 5.14 ± 0.54a 2.91 ± 0.35a 

 NH4N 5.21 ± 1.52a 3.64 ± 1.19a 6.44 ± 0.50a 6.58 ± 0.65a 

Beans 2017/2018 

Pre-planting NO3N 31.22 ± 7.38a 38.46 ± 4.97a 35.28 ± 6.77a 36.77 ± 2.20a 

 NH4N 6.38 ± 4.44a 12.55 ± 5.59a 2.99 ± 0.57a 3.33 ± 0.90a 

At harvest NO3N 7.74 ± 1.19a 12.96 ± 2.26a 13.30 ± 2.87a 14.66 ± 3.39a 

 NH4N 1.04 ± 0.10a 0.69 ± 0.11a 0.83 ± 0.19a 0.81 ± 0.12a 

5. 37 Evaluation of NDVI readings to refine FAO56 crop 

coefficient values. 

The results of the regression analysis between FAO56 estimated 𝐾cb values and NDVI 

values are provided in Table 5.7. These equations were used to predict more accurate pea 

and bean 𝐾cb and ETc estimates. The analysis shows that for NDVI, the estimated Kcb and 

predicted 𝐾cb had the same trend through the growing season (Table 5.7 and Fig. 5.11). 

The ETc was calculated by multiplying the 𝐾c values by the value of the ETo (see Equation 

5.2). The estimation of 𝐾cb and ETc using NDVI sensing data was essentially significant. 

The results show high R2 and adjusted R2 for the predicted values of 𝐾cb for pea and bean 

0.87 and 0.92, respectively.  

The NDVI minimum value was measured at the beginning of the growing season over the 

dry bare soil and was about 0.16 and 0.14 for the pea and bean crops, respectively. NDVI 

maximum values were 0.80 and 0.72 for the pea and bean crops, respectively. The NDVI 
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increased from crop emergence until maximum values were attained about 50 days after 

planting and then they began to decrease slightly through to the end of the season (Figure 

11). The NDVI curves flatten out at mid-season where the NDVI saturates with high values 

of leaf area index when the soil was almost totally covered by the canopy (Duchemin et 

al., 2006).  

The NDVI values were slightly higher for the pea irrigation treatments than the bean 

irrigation treatments, especially during the mid-season, and this is likely due to the dense 

canopy of the pea crop compared with the bean crop. At times, the heterogeneity of NDVI 

data in crops with low values was visible at high spatial scale resolution imagery, 

particularly for the non-irrigated treatment (not shown). 

𝐾cb–NDVI values were interpolated at a daily time step in order to compare them with 

the continuous series of 𝐾cb–FAO56 values for the entire growing season. The result of 

the comparison is displayed in Fig. 5.11. The 𝐾cb–FAO56 average values obtained at 

three stages (initial, mid-season, and late-season) were 0.15, 1.17, and 1.05, respectively. 

These values are only slightly different from those given by 𝐾cb–NDVI (𝐾cb,ini = 0.14, 

𝐾cb,mid = 1.10, 𝐾cb,end = 1.03), which reflect the local conditions.  

Overall, the estimated ETc by NDVI did not significantly improve the FAO56 approach. 

The FAO56 model has mainly been designed to plan irrigation schedules in arid to semi-

arid regions. Thus, the model requires a limited set of soil inputs, does not account for 

any vertical differences in soil moisture, and assumes that the soil moisture cannot exceed 

field capacity. In order to improve the utility of the model in the widest range of soil 

types, the model should include a multi-layer soil feature that accounts for slower 

drainage rates and the associated water storage, especially in temperate regions, when 

rainfall often occurs during the irrigation season. In some cases, the model should consist 

of detailed soil, crop, weather and management modules (e.g. APSIM (Keating et al., 

2003) and DSSAT (Jones et al., 2003)) that require very accurate and numerous inputs, 

all of which tend to vary dramatically from one field to another.



 

 

Chapter 5  109 

 

Table 5.7: The correlation between calculated (Kcb) by FAO56 and crop vegetation index (NDVI) for pea 

and bean. 

Crop  Prediction equation R2 Adj.R2 RMSE Signif. prob. 

Pea 𝐾cb = 1.42 × 𝑁𝐷𝑉𝐼 + 0.03 0.87 0.86 0.19 0.0006 

Bean 𝐾cb = 1.66 × 𝑁𝐷𝑉𝐼 − 0.005 0.92 0.91 0.13 0.0002 

 

Figure 5.11: Average crop vegetation index (NDVI) values measured at the study site. The Kcb–NDVI and 

ETc–NDVI values have been obtained from the linear relationships versus Kcb–FAO56 and ETc–FAO56 

values for pea and bean.  

5. 4 Conclusions 

Dynamic irrigation scheduling is required to help farmers meet the site-specific water 

requirements of plants and reduce the negative environmental impacts of irrigation.  SWB-

based and sensor-based techniques were used to schedule irrigations to pea and bean crops 

in two delineated irrigation management zones of contrasting soil texture, under a VRI 

system. In addition, a potential improvement of the FAO56 scheduling approach was 

evaluated by using Kcb derived from sensor readings of NDVI. 

Daily SWD was monitored using two contrasting techniques – SWB-based modelling and 
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sensors – and irrigation was triggered when a prescribed AD was reached. The SWB-based 

model relied on soil TAW and weather data. The sensor-based method, which used a 

wireless soil moisture sensor network, provided measurements of the actual soil water 

conditions in the field. The two scheduling methods showed a variation in timing and the 

quantity of irrigation applied to the pea crop: the SWB-based method resulted in more 

water being applied. The sensor-based technique saved about 23–45% of the irrigation 

water and produced the same pea yields as the SWB-based model.  

This difference can be attributed to some of the inherent limitations of a simple SWB. In 

the period following a rain event that wet the soils above field capacity, the SWB models 

predicted a faster drying rate than was actually measured with the soil moisture sensors. 

This is because the SWB model does not account for the restricted drainage that occurs in 

the Manawatū silt loam soil profile (Zone 2). This restricted drainage is due to the 

compact nature of the silt loam subsoil as well as the impact of the textural break that 

occurs between the base of the subsoil and the underlying coarser gravels. The estimated 

ETc by Kcb–NDVI did not significantly improve the FAO56 approach. Crop growth was 

not significantly different between the two scheduling treatments. Therefore, the IWUE 

for the pea crop was significantly more efficient for the sensor-based technique compared 

with the SWB technique for scheduling irrigation.  

Future research could be undertaken to extend the comparison of these two scheduling 

systems to different crops and for different climatic conditions. In addition, future 

research is required to investigate the value of including WSN monitoring systems into 

precision irrigation software control systems to increase options for automated adaptive 

irrigation scheduling.  
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Connecting text to Chapter 6 

The previous chapter includes the development of a method that used crop vegetation 

index (e.g. NDVI) data, collected by a crop sensor, to track crop stage in the field. This 

information as well as crop height, leaf cover, and biomass are relevant for the assessment 

of crop stands (e.g. crop yield, the site-specific amount of water, crop water use (Chapter 

5) and the development of agricultural water management models (Chapter 7, 8 and 9). 

In this chapter, a Terrestrial Laser Scanning system method was devised to establish multi 

crop surface height maps for barley, pea and bean. This chapter was presented in 

Irrigation New Zealand conference in Alexandra, New Zealand (2018). Conference 

presentation. 
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Chapter 6  

The use of Terrestrial LiDAR to monitor crop 

growth 

 

Abstract 

Monitoring the spatio-temporal distribution of crop height and biomass is important for 

crop management in terms of applying irrigation, fertilizer and pesticides. This paper 

reports the performance of a Terrestrial Laser Scanning (TLS) based system for measuring 

crop height and biomass for barley (Hordeum vulgare., cv. ‘Carfields CKS1’), pea (Pisum 

sativum., cv. ‘Massey’) and bean (Phaseolus vulgaris., cv. ‘Contender’) grown under 

field conditions. 

Four TLS-surveys were carried in the growing period 2017/2018 to monitor the plant 

height. The results were analysed using classical statistics and geostatistics by 

constructing (two-dimensional) maps of canopy surface height with a high resolution of 

0.01 m. Spatio-temporal differences of the measurements were obtained within and 

between subsequent surveys. The results were validated against manually measured plant 

heights and biomass. 

High coefficients of determination (R2) of the linear regression were achieved between 

manually measured and TLS-derived canopy height (R2 = o.95, 0.93 and 0.91 for barley, 

pea and bean, respectively). The method also showed potential to estimate bean biomass 

(R2 = 0.70). Overall, the results showed the TLS approach has the potential to measure 

crop height surface with a high spatio-temporal resolution for different crops under 

variable-rate scheduling of irrigation. This approach can be considered a very promising 

tool for site-specific management.   

 Keywords: Precision agriculture; Remote sensing; LiDAR; TLS; Data acquisition; Spatio-

temporal; Crop height; Biomass.



 

 

Chapter 6  113 

 

6.1 Introduction 

Information about the distribution of crop height and biomass on fine spatial and temporal 

scales is highly valuable for improving agricultural productivity and efficiency. This in 

turn can provide a means of improving food supply and of tackling crop production 

challenges related to climatic change (Lati et al., 2013). Furthermore, if these two 

parameters are known in real time then expected crop yields can be predicted, and the 

site-specific crop management of fertilisers, pesticides, and irrigation can be optimised 

(Ehlert & Dammer, 2006). The literature suggests that peas and barley are sensitive to 

small amounts of either excessive or limited water availability, and that water stress has 

the greatest effect on the biomass and grain yield which, in turn, is caused by a decrease 

in grain number and size (Belford et al., 1980; Greenwood & McNamara, 1987; Jamieson 

et al., 1995). Hence, precise field data acquisition and real-time monitoring methods are 

required.  

In precision agriculture fields, remote and proximal sensing methods can be used for 

accurate crop monitoring to improve the relation between in- and outputs (Mulla, 2013). 

Researchers have reported several techniques for monitoring crop height and biomass. 

Crop height is measured by rulers, light barriers (Fender et al., 2005), ultrasonic 

rangefinders (Scotford & Miller, 2003) and radar (Holmes et al., 2004). Crop biomass is 

measured manually by destructive harvest (Lokhorst & Kasper, 1998), and methods for 

non-destructive direct biomass determination are not available. Biomass can also be 

estimated indirectly using other parameters (Tilly et al., 2013). For these methods, canopy 

or plant height is recorded, and an empirical relationship between height and dry matter 

is developed (Pittman et al., 2015). Devices such as the rising plate meter (Dougherty et 

al., 2013; Sanderson et al., 2001), capacitance meter (Sanderson et al., 2001), and meter 

stick are examples of devices used for physical measurements of biomass estimation. 

These methods, which requires physical measurements are labour and time intensive. In 

addition, variations due to growth characteristics and spatial variability can be difficult to 

accurately represent by physical sample collection which limits the ability to develop a 

robust estimation model (Pittman et al., 2015).
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Besides hyperspectral and optical sensors, the use of the technology of light detection and 

ranging (LiDAR) offers a good opportunity to make non-invasive and non-destructive 

measurements of canopies to characterize plant growth and to analyze diverse 

architectural parameters (Friedli et al., 2016; Zhang & Grift, 2012). LiDAR measures the 

distance between the sensor and a target, based on the elapsed time between the emission 

and return of laser pulses (the time-of-flight method) or based on trigonometry (the 

optical-probe or light-section methods) so that 3-dimensional (D) information of the 

target can be obtained (Hosoi & Omasa, 2009). LiDAR systems can be used in different 

ways such as by satellites and airborne LiDAR systems (ALS) for detecting medium-range 

areas from aircrafts (500-1,000 m) and helicopters (200-300 m) (Woods et al., 2011), or 

by terrestrial or ground-based LiDAR sensors (TLS) which are suitable for surveying 

purposes such as architectural applications, mobile road-mapping systems, the 

determination of forest inventory parameters and agricultural purposes (Ehlert et al., 

2010d). The TLS measurements produces point clouds that depict the surface of the 

visible canopy oriented towards the observing device (Friedli et al., 2016). These point 

clouds can be further analyzed, as has been done already in the fields of forest ecology 

and precision agriculture (Friedli et al., 2016). 

Li et al. (2015) used ALS to measure the crop height of maize fields and found good 

correlations between the ALS data and manual field measurements. In recent studies, 

unmanned aerial vehicles (UAVs) with LiDAR laser scanners were used to estimate the 

height of maize (Anthony et al., 2014). Bendig et al. (2013) successfully used UAV-based 

imaging to generate a crop surface model (CSM) for rice. Friedli et al. (2016) used TLS 

to monitor crop growth of maize, soybean, and wheat under field conditions. 

Crommelinck and Höfle (2016) investigated the requirements in terms of TLS sensor 

resolution for deriving crop height models, aimed at low-cost devices for permanent crop 

monitoring. For estimating the biomass of small grain cereals like barley, oats, and wheat, 

Lumme et al. (2008) stated that TLS is a promising method. In another study, TLS was 

used to estimate crop density (Hosoi & Omasa, 2009; Saeys et al., 2009), or leaf area 

index (Gebbers et al., 2011).  

To our knowledge, little work has been undertaken to examine the spatial and temporal 

resolution of TLS to map crop growth during one growing season under field conditions. 
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Therefore, the objectives of this research were to (i) measure precisely the plant height of 

barley, pea and bean treatments with a TLS scanner so as to establish multi-temporal crop 

surface height maps and compare these heights with manual measurements; and (ii) 

evaluate the relationship between dry biomass for bean measured via destructive removal 

and a TLS- measured canopy height.  

6.2 Materials and Methods 

6.21 Study site 

The surveys were conducted at two field sites (Fig. 3.1, Chapter 3).  

The first experimental field (1.2 ha) is on Massey University’s No.1 Farm  (latitude 

40.22° S, longitude 175.36° E, altitude 37 m) which is located near Palmerston North, 

Manawatū, New Zealand. Measurements were made at this site during the 2017/2018 

growing season. The soil survey map for this field (El-Naggar et al., 2017; Pollok et al., 

2003) indicates the presence of two different soil types: a Manawatū fine sandy loam (free 

draining soil, Zone 1) and a Manawatū silt loam (imperfectly drained soil, Zone 2). Field 

peas (Pisum sativum., cv. ‘Massey’, 260 kg ha-1) and French beans (Phaseolus vulgaris., 

cv. ‘Contender’, 75 kg ha-1) were sown on 15 November 2017 and 9 February 2018, 

respectively. The seed yield was harvested on 23 January 2018 and 12 April 2018 for pea 

and bean, respectively. 

The second experimental field is in Otane, Hawke’s Bay, New Zealand (-39. 533°S °N; 

176.402°E, altitude 130 m). The existing soil database for this field indicates the presence 

of soil variability: a Twyford sandy loam (well-drained soil, Zone 1) and a Kaiapo silt 

loam (poorly drained soil, Zone 2). Barley (Hordeum vulgare., cv. ‘Carfields CKS1’) was 

sown on 2 August 2017 using 100 kg seed grain/ha and 50 cm row spacing. Grain yield 

was harvested on 16 January 2018.  

At the Manawatū site, both of the soil zones had four replicate plots (20 m x 10 m), along 

with two non-irrigated plots on the Zone 1 soil type. A variable-rate irrigation (VRI) 
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system was used for irrigating the plots. At the Hawke’s Bay site, four plots (20 m x 15 

m) were established for each soil zone. During the complete growth period irrigation was 

applied to both soil zone plots as applications of 15 mm at a fixed interval per stage (7 

days) with a total irrigation depth of 150 mm. 

6.22 TLS scanner 

A “Faro Focus 3D X 330” laser scanner (Faro Technologies Inc., Laker Mary, USA) 

(https://www.faro.com/) was used to assess crop height. The scanner allows the acquisition 

of point clouds (measurement resolution) up to 70-megapixel color. The scanning range 

of the device is up to 330 m and the accuracy at 10 m distance is 0.4 mm. The device uses 

a laser beam at 1550 nm and the “phase shift measurement technology” to detect 

distances. In this system, infrared laser light is sent out and reflected back to the system. 

The laser scanner emits a laser beam from a rotating mirror out towards the area being 

scanned. Then the unit distributes the laser beam at a vertical range of 300° and a 

horizontal range of 360°. The laser beam is then reflected back to the scanner by objects 

in its path. The distance to the objects in an area is calculated as well as their relative 

vertical and horizontal angles. The data is captured and transmitted via WLAN (WiFi) for 

the calculation of precise 3D renderings (Faro Scene, 2013). 

6.23 Data acquisition and field measurements 

The crops were scanned on four occasions throughout the season. The scan dates for each 

crop are shown in Table 1. The TLS scanner was mounted on a tripod, at a height of about 

1.5 m above ground. To capture all plots, the experiment sites were observed from nine 

scan positions for barley and seven positions for pea and bean. The crops were always 

scanned from the same positions. Three common tie points for each scan position were 

required to enable the merging of the point clouds in the processing of data. Six white 

spherical targets were distributed between every two scans to allow for the later merging 

of the single scans from the same point in time but from different positions of a field to a 

scan point cloud. These targets were fixed on poles (2 m in length for the barley; and 1.5 

https://www.faro.com/
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m in length for pea and bean) placed on the fences between the plots. The positions of the 

tie points and the spherical targets were georeferenced and remained constant during the 

season and defined a fixed coordinate system for all measurements.  

Manually measured plant heights (25–30 plants) were used to validate the TLS-derived 

results. To investigate the relationship between TLS readings and bean biomass, 

destructive crop sampling was used (three replicate areas within each plot, 1 m in length 

and 1 m wide). The whole plant samples were taken to the laboratory and oven-dried to 

constant weight at 70 oC, which took about three days to obtain the dry matter content. 

Table 6.1: Overview of the scanned crops, dates, and measurements per days after planting (DAP)  

Barley  Pea  Bean 

Date DAP  Date DAP  Date DAP 

1-Sep-17 31  4-Dec-17 20  1-Mar-18 21 

10-Oct-17 70  15-Dec-17 31  13-Mar-18 33 

19-Nov-17 110  29-Dec-17 45  26-Mar-18 46 

13-Dec-17 134  6-Jan-18 53  6-Apr-18 57 

6.24 Data post-processing 

Data post-processing was carried out in the “FARO SCENE” (Faro Technologies Inc., 

Laker Mary, USA) software which included the registration of the scan positions and 

merging of the point clouds (User Manual for Scene, 2019). Next, the CloudCompare 

software (CloudCompare, 2016) was used for filtering and extracting the area of each 

plot. For the spatial and statistical analyses, the filtered point clouds of the plots were 

exported as xyz-files (asci format) and later processed with CloudCompare. The point 

clouds were interpolated with the Nearest Neighbourhood (NN) algorithm to receive a 

raster for each plot with a consistent spatial resolution of 0.01 m. To calculate the plant 

heights, the point clouds from a reference surface (bare soil) were used to interpolate a 

Digital Elevation Model (DEM). After that, a CSM was generated for each plot. Then, the 

DEM was subtracted from each particular CSM. By subtracting the sequential CSMs, a 

CSM for each plot was generated with a high spatial resolution representing plant height 

at a specific time in the growing period.
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6.25 Data analysis 

For the statistical analyses, the plant heights of both measurement methods were averaged 

for each plot. To compare the impact of the treatments in each crop trial, the Bonferroni 

(Dunn) test, median values, and the probability-values were calculated for both 

measurement methods.  

Regression analyses for TLS readings with crop height and biomass were performed to 

evaluate relationships between measured and estimated values using the open-source 

software package R 3.5.1 (R Core Team, 2018). The accuracy of estimation models was 

evaluated on a percent basis by calculating the root mean square error (RMSE) 

6.3 Results and Discussion 

6.31 TLS measurements 

The TLS- derived temporal development of spatial patterns of crop height can be 

visualised as 2D maps. For all plots, the variability in plant height within the plot is 

visible. Figs. 6.1, 6.2 and 6.3 show the maps of eight plots of barley and ten plots for pea 

and bean. The raster data for each plot has a resolution of 0.01 m.  

6.311 Barley 

Four repetition plots were selected for each soil zone (Zone 1: 1, 2, 3 and 4; Zone 2: 5, 6, 

7 and 8). The lines of the wheel tracks within plots 1, 6, 7 and 8 are detectable. It is clear 

that the plant height patterns of Zone 2’s plots were taller than Zone 1, particularly at the 

last two sampling dates. The fourth repetition of Zone 2 (plot 8) always had the tallest 

plant height patterns. Considering that all plots received the same quantity of adequate 

irrigation and N fertiliser during the growing season (see Fig. 6.4) these differences are 

not easy to explain. The comment about adequate irrigation notwithstanding, perhaps, 
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these differences are due in some way to the larger water storage capacity of the Zone 2 

soil (Zone 1 = 190 mm m-1 and Zone 2 = 273 mm m-1). In the third repetition of Zone 2 

(plot 7) lower plant height values occur in the north-west corner while the northeast corner 

was the highest. This variability in this plot might be related to differences in seed 

germination or soil compaction.  

6.312 Peas 

Four plots for Zone 1 (plot 1, 2, 3 and 4) and four plots for Zone 2 (plot 5, 6, 7 and 8) are 

shown in Fig 2. The plants on the irrigated plots were taller than those on the rainfed plots 

(plot 9 and 10). This is due to no irrigation plus the low rainfall experienced during the 

growing of the pea crop specifically 30 days after planting (rainfall = 0.3 mm) which 

reduced crop height and consequently the yield and biomass (see Fig. 6.4). The 

development of plant height patterns were consistent within the plots during the season.  

6.313 Beans 

Plots 1 and 6 in Zones 1 and 2, respectively, had the tallest bean plants. After 21 days, 

taller plants were observed in plot 5. Whereas those patterns were not higher in the later 

campaigns which contrasted with plot 6. In plot 7, large numbers of weeds were detected 

at the northern edge of the plot. Poor seed germination was observed in the south part of 

plot 10 (non-irrigated plot).  

The plant heights were slightly higher for the pea irrigation plots than the bean irrigation 

plots, especially at the last two dates. This is likely due to the dense canopy of the pea 

crop compared with the bean crop. 
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Figure 6.1: Crop surface height for barley trial visualised as maps for each plot on each measurement date 

after planting.
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Figure 6.2: Crop surface height for pea trial visualised as maps for each plot on each survey days after 

planting.
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Figure 6.3: Crop surface height for bean trial visualised as maps for each plot on each survey days after 

planting.
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6.32 Manual plant height and biomass measurements 

6.321 Barley 

In the barley trial, measurements with a tape measure were carried out between 1 

September and 13 December 2017. The measurements of barley height started at the stem 

extension growth stage and finished at the heading growth stage. The LiDAR surveys 

show a continuously increasing plant density and height (Fig. 6.4). The last two 

measurements resulted in a significant increase (P <0.05) of height for Zone 2 compared 

to Zone 1 (Fig. 6.4). This can be explained by water stress occurring prior to flowering 

for Zone 1 which gradually decreased the plant height (Chapter 3, Fig. 3.9) where a soil 

water deficit at 65-70% total available water (Chapter 3, Fig. 3.4) produced almost 40–

60% decrease in plant growth. 

6.322 Peas 

The green pea crop was surveyed between 4 December 2017 and 6 January 2018. The 

measurements started at the bloom crop growth stage and finished at the flowering stage. 

The growth was clearly detected by an increase of mean crop height as assessed by both 

the TLS values and yield cuts. No significant difference (P >0.05) in crop height was 

observed between the two zones (Fig. 6.4). The rainfed crop’s height was significantly 

less than those observed for the two irrigated zones.  On days 45 and 53 after planting, 

the growth rate for irrigated plots was nearly twice as large as it was at the first two 

measurement dates. This difference in growth rate can probably be related to the 

characteristics of the genotype or due to the increase in air temperature in December 

compared to November. 

6.323 Beans 

The French beans were monitored from 1 March to 6 April 2018 i.e. from the trifoliolate 

stage to the beginning of flowering. A continuous increase of plant height and biomass 
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density was detected. The results showed no significant differences (P >0.05) in crop 

height and biomass between the two zones or between the irrigated and the rainfed plots 

(Fig. 6.4). The latter observation is due to the greater rainfall experienced during the 

growing of the bean crop. For the period from the second to the third measurement, the 

increase in canopy height was not large for both methods—according to the TLS and 

manual reference measurements— between 0.2 and 0.4 m. 

 

Figure 6.4: Mean manual plant height and biomass measurements for each crop on each campaign days 

after planting. ** The mean difference is significant at the 0.01 level. 

6.33 Relations between manually and TLS-derived canopy 

height and biomass 

Coefficients of determination (R2) and the RMSE for crop height and biomass 

relationships are compiled in Figs. 6.5 and 6.6. The results of the regression analysis were 

performed based on four measurement dates for each crop trial. 

Additionally, the mean plant height was calculated for each date for both measurement 

methods to execute correlation and regression analysis (Table 6.2).
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6.331 Barley 

The TLS-estimated height measurements were well correlated (R2 = 0.95) to physically- 

measured canopy height using all the measurements (Fig. 6.5). The R2 reached highest 

values for the last measurement date. At this date, the canopies of the barley plots reached 

the closure stage. Thus, most of the scan points were located on top of the canopy. In 

agreement with Friedli et al. (2016) who reported that the highest value of R2 was obtained 

when the canopies of the wheat crop were denser and the laser beam could not penetrate 

very deep into the canopies. 

6.332 Peas 

The R2 increased from 0.76 for the first date to 0.84 for the second date (Table 6.2) then 

decreased to 0.80 and 0.70 for the second and third date, respectively. Using the three 

dates combined in a regression, the relationship reflects higher coefficients of 

determination (R2 = 0.93) (Fig. 6.5).  

6.333 Beans 

The value of R2 between TLS-measurements and physically- measured canopy height was 

0.90 (Fig. 6.5). The R2 was comparable for the first (R2 = 0.76), the second date (R2 = 

0.70) and the third date (R2 = 0.71) but was higher (R2 = 0.80) for the fourth date (Table 

6.2).  

Furthermore, a good correlation between TLS- measurements and dry biomass was 

achieved (R² = 0.70) and the linear regression shows the dependence of biomass on plant 

height (Fig. 6.6). 

Overall, the results of the study show the ability of TLS to achieve canopy height maps 

with a high spatial resolution of up to 0.01 m. The TLS approach, therefore, can be 

considered as a valuable tool to measure the growth in canopy height of different crops 

under field conditions. The high correlation observed between the manually measured 

and the TLS-derived canopy heights of barley, pea and bean demonstrates the high 

accuracy of this applied method under these experimental sites. 
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Table 6.2: The correlation between manually measured and TLS-derived canopy height for each crop on 

each measurement date after planting. DAP is the days after planting.   

 Barley    Pea   Bean 

DAP R2 RMSE  DAP  R2 RMSE  DAP R2 RMSE 

31 0.75 4.59  20  0.76 1.07  21 0.76 1.31 

70 0.82 3.43  31  0.84 0.78  33 0.70 1.95 

110 0.85 7.00  45  0.80 2.91  46 0.71 1.86 

134 0.97 2.88  53  0.78 3.43  57 0.80 1.64 

 

Figure 6.5: Regression of the mean TLS-derived and manually measured plant heights (n = 32 for barley 

and 40 for pea and bean). 

 

Figure 6.6: Regression of the mean TLS-derived plant height and the dry biomass for bean (n = 40).
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6.4 Conclusions 

The TLS based system was used to monitor precisely the spatio-temporal differences of 

the height of barley, pea and bean crops on four occasion during the 2017/2018 growing 

season. The excellent correlation coefficients (R²) of o.95, 0.93 and 0.91 found for the 

TLS system and manual measurements of the height of barley, pea, and bean, respectively, 

as well as the small differences between the mean crop height-derived and manually 

measured plant heights show the ability of TLS to monitor plant height. The good 

correlation (R² = 0.70) between plant height and dry biomass confirms the applicability 

of plant height as a predictor for estimating the actual biomass for the bean. The results 

show the applicability of TLS to produce a 2D map of canopy surface height with a high 

resolution of 0.01 m  

Future research is needed to investigate the applicability of the TLS method for estimating 

crop height to other growth parameters such as biomass and leaf area index etc. for a 

range of crops and to explore how this method can be utilized in crop management. 
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Connecting text to Chapter 7 

The previous chapter described a new method for spatially tracking crop growth in a field. 

This chapter expands on this by integrating crop sensing methods (vegetation index, 

canopy surface temperature, crop growth) to measure accurately the daily crop water use 

and importantly to capture the spatial characteristics among different fields. In this 

chapter, crop sensor data is used to calibrate the FAO56 algorithm to estimate daily crop 

evapotranspiration (ETc) from barley, pea and bean crops. The potential benefits of 

calibrating a model with in-field sensor data are detecting the spatio-temporal differences 

in ETc and identifying the irrigation water demand which may vary over relatively small 

distances. This chapter was presented in Irrigation New Zealand conference in Alexandra, 

New Zealand (2018). Conference presentation.
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Chapter 7  

Using field-level proximal sensing data to 

improve crop evapotranspiration estimates 

 

Abstract 

In this study, proximal sensing was used to modify the FAO-56 Penman-Monteith 

algorithm to provide a site-specific estimate of crop evapotranspiration. This was carried 

out for barley, pea and bean crops managed within two irrigation management zones 

(Zone 1: sandy loam and Zone 2: silt loam) under variable-rate irrigation systems in New 

Zealand.  

Daily crop evapotranspiration estimates were calculated using data from a weather station 

situated at the field site combined with in-field crop sensing data (spectral reflectance, 

canopy temperature). In addition, soil moisture data was used with a soil water balance 

model to compare estimations of daily crop evapotranspiration with those estimated using 

the crop sensing method. 

The results indicated that variable crop responses to different irrigation strategies and soil 

types provided a good opportunity to quantify different levels of spectral reflectance, 

canopy temperature and consequently the estimation of crop water use. The statistical 

comparisons revealed that the modified FAO-56 Penman-Monteith (MPM) using crop 

sensor data compared well with the more conventional soil water balance approach using 

soil moisture data (SWB) (R2 = 0.70, 0.83, 0.91 for barley, pea and bean, respectively).  

Overall, the results from this study indicated that crop sensing approaches combined with 

the FAO-56 Penman-Monteith model have potential to provide a more easily determined 

site-specific field estimation of crop evapotranspiration than other methods, and it can 

take into consideration the spatial variability of crop growth in a field. 

Keywords: Field-level remote sensing; crop evapotranspiration; FAO-56 Penman–

Monteith; surface temperature; crop vegetation index; variable rate irrigation.
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7.1 Introduction 

Agriculture is the most important economic activity in New Zealand. Irrigation is the 

largest user (78%) of allocated freshwater, followed by industrial and domestic use 

(Booker et al., 2016). Therefore, developing new water management strategies is essential 

to use water more efficiently. To achieve that, it is necessary that farmers trial and adopt 

relevant new technologies for estimating crop water supply and demand more accurately 

(Reyes-González et al., 2018).  

Reliable estimates of evapotranspiration (ET) assist attempts to improve water use 

efficiency (WUE). ET includes water evaporation from land and water surfaces plus 

transpiration by vegetation (Gowda et al., 2008). The actual estimation and calculation of 

ET is of vital importance in water resource management and determination of irrigation 

demand (Hoedjes et al., 2008; Papadavid et al., 2011). Different ET methods computed 

from weather data exist: (a) temperature models (Doorenbos & Pruitt, 1977), (b) radiation 

models (Doorenbos & Pruitt, 1977; Hargreaves & Samani, 1985; Priestley & Taylor, 

1972), and (c) combination models such as Penman-Monteith (PM) (Allen et al., 1998). 

Due to the differences in assumptions, data requirements, and climatic conditions for 

which these ET models were developed, they may result in inconsistent values (Lu et al., 

2005). Thus, a number of studies have attempted to validate ET models for the different 

climatic and agricultural conditions. 

For crop-specific evapotranspiration (ETc), ET needs to be adapted by crop coefficient 

(Kc) values. Actual ETc is generally estimated by multiplying the ET by pre-determined 

Kc, which is dependent on many factors, including planting date, irrigation regimes and 

management (Djaman & Irmak, 2012). The Kc includes three parameters: a transpiration 

coefficient or basal crop coefficient (Kcb), the evaporative component of the bare soil 

fraction (Ke) (Wright, 1982), and the water stress coefficient (Ks), which is related to the 

soil water content (SWC) through the water balance in the root-soil layer. In this 

framework, the Kcb is defined as the ratio between ETc and ET in the absence of water 

stress. ETc can be estimated or measured using different methods, for example, weighing 
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lysimeters (Jia et al., 2006; Williams & Ayars, 2005) evaporation pan, soil water balance 

(SWB-PM) (Allen et al., 1998; Senay et al., 2011; Xu & Singh, 2005), atmometer (ET 

gages) (Chen & Robinson, 2009), Bowen Ratio Energy Balance System (BREBS) 

(Kabenge et al., 2013), and Eddy Covariance (EC) (Schume et al., 2005; Scott, 2010; 

Wilson et al., 2001). The most accurate methods for this estimation use lysimeter 

measurements (Xu et al., 2013) or mathematical models, such as the PM equation and 

iterative methods (Widmoser, 2009). However, lysimeter measurements are relatively 

difficult, expensive, and time-consuming (Irmak et al., 2003). The inaccuracies of Kc in 

the FAO56 PM equation can potentially result in significant errors in the estimated ETc 

(Allen et al., 1998). 

In recent years, remote sensing (RS) data have been widely used in the assessment of ETc 

and crop water stress to obtain accurate spatial information. RS imagery from cameras 

onboard satellites, aerial platforms, airplanes or ground-based systems has been 

recognized as an exceptional tool to produce spatial information about ETc (Calera et al., 

2017). Numerous studies have been conducted to estimate ETc based on RS. Three main 

RS approaches for ETc estimation have been applied: (a) based on surface energy balance 

(EB), (b) reflectance-based crop coefficient (reflectance-based Kcb) and (c) by directly 

applying RS-based parameters into the PM equation (Calera et al., 2017). The first 

approach is based on the rationale that ETc is a change of the state of water using available 

energy in the environment for vaporization (Su et al., 2005). The RS based EB models 

convert satellite sensed radiances into land surface characteristics such as albedo, leaf 

area index, vegetation indices, surface emissivity and canopy surface temperature (Tc) to 

estimate ETc as a ‘‘residual’’ of the land surface EB equation. In the second and third 

approaches, red (R) and near-infrared (NIR) reflectance measurements are used to 

compute a vegetation index such as Normalised Difference Vegetation Index (NDVI) 

(Rouse et al., 1974) and the vegetation index is then used in place of calendar days or heat 

units to drive or scale the Kcb. ET is then computed using local meteorological 

measurements of incoming solar radiation, air temperature (Ta), relative humidity or dew 

temperature, and wind speed. Kc generated from vegetation indices determine ETc better 

than a tabulated Kc because it represents the actual crop growth conditions and capture 

the spatial variability among different fields (Kullberg et al., 2017).
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Also, a reflectance-based Kc method has been studied (Hunsaker et al., 2005; Reginato & 

Howe, 1985). Furthermore, Kc has been related to vegetation indices such as PVI 

(Heilman et al., 1982), NDVI (Bausch & Neale, 1987; Neale et al., 1990), and SAVI 

(Bausch, 1993). D’urso and Santini (1996) attempted to derive the Kc analytically from 

RS estimated albedo, surface roughness, and aerodynamic resistance. This method does 

not require knowledge of the crop development stage. 

In New Zealand, Brown (pers. comm., September 21, 2018) has developed a method for 

using Tc measurements in an extended version of the Priestley and Taylor (PT) ET model 

that allows more accurate assessment of the ETc, even as the soil dries. The calculations 

use data from a standard automatic weather station together with radiometric 

measurements of Tc. The measurements could be made from sensors mounted in the field 

or a drone carrying the appropriate sensors, including GPS spatial data, so that variation 

within a crop could be identified and the information used to inform variable-irrigation 

applications (VRI). 

The objectives of the present study were to: (i) modify PM with in-field crop sensing of 

NDVI and Tc (MPM) (ii) compare daily estimation of ETc  by PM with those of MPM for 

barley, pea and bean crops, (iii) compare both PM and MPM with a soil water balance 

model informed by in field soil moisture monitoring (SWB) and (iv) investigate the impact 

of soil variability and VRI on ETc and WUE. 

7.2 Materials and Methods 

7.21 Study sites and experimental setup 

The study was carried out at two experimental sites in Manawatū and Hawke’s Bay, New 

Zealand as a part of a study investigating the efficient irrigation scheduling techniques in 

these areas. The sites are characterized by humid climatic conditions. The 10-year normal 

mean temperature is 13.3 and 14.3 oC and with mean annual precipitation of 980 and 679 

mm for Manawatū and Hawke’s Bay, respectively (NIWA) (www.niwa.co.nz). The 

 

http://www.niwa.co.nz/
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soils at the two sites were classified as Fluvial Recent soils formed in greywacke alluvium 

and alluvial soils, respectively. At each site the trial sites established two different soil 

zones (Table 7.1). 

The Manawatū site (1.2 ha) was at Massey University No.1 Farm, Palmerston North, New 

Zealand (latitude 40.22° S, longitude 175.36° E, altitude 37 m). It was sown with field 

peas (Pisum sativum., cv. ‘Massey’, 260 kg ha-1) followed by French beans (Phaseolus 

vulgaris., cv. ‘Contender’, 75 kg ha-1) on 15 November 2017 and 9 February 2018, 

respectively. The seed yield was assessed by harvest on 23 January 2018 and 12 April 

2018 for pea and bean, respectively. The experiment consisted of two soil management 

zone treatments, where irrigation was tailored to the demands of the crop that varied due 

to soil textural and drainage differences between the two soil management zones. Each 

zone had two replicate plots (20 x 10 m) where measurements were made. The irrigation 

scheduling was based on the SWB approach (following the PM approach of FAO56) using 

a VRI system.  

The Hawke’s Bay site was on a commercial mixed cropping farm (-39. 533°S °N; 

176.402°E, altitude 130 m). This site was planted with barley (Hordeum vulgare., cv. 

‘Carfields CKS1’) on 2 August 2017. 168 days after planting, the crop was harvested on 

16 January 2018. Four replicate plots (20 x 15 m) were established in each of two soil 

zones. Irrigation was applied uniformly for both soil zones at approximate applications 

of 15 mm per week with a total irrigation depth of 150 mm applied over the whole season. 
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Table 7.1: Physical properties of the soil (0 – 1m)  

7.22 Field measurements 

Daily weather data, which included Ta, relative humidity, incoming solar radiation, wind 

speed at 2 m high, vapour pressure, and precipitation were recorded by weather stations 

located at the two sites. For the Manawatū site, a CliFlo climate station (http://cliflo-

niwa.niwa.co.nz/) 50 m from the trial site was used. For the Hawke’s Bay site, Te Aute 

Drumpeel Rd climate station situated adjacent to the site was used.    

The SWC levels were recorded daily for the 0–0.10, 0.10–0.20, 0.20–0.30 and 0.30–0.40 

m soil depths for the field sites using frequency domain reflectometry probes (SM300- 

DeltaT, Burwell, UK) connected with a wireless sensor network (WSN) developed by 

Ekanayake and Hedley (2018). The soil moisture monitoring equipment was installed into 

the centre of each treatment plot for all three crop trials. Soil sensor calibration was 

performed for each soil type during the course of the experiment against weekly 

measurements of SWC made gravimetrically and with a neutron probe. The neutron 

probes, which were 1 m long, were installed permanently in a vertical position, close to 

the SM300 sensors (about 1 m distance), and SWC readings were taken to a depth of 0.80 

m in 0.10 m depth increments. To calibrate the SM300 probes: (i) there were four 

 

  Manawatū site  Hawke’s Bay site 

Properties 

 Soil zones (soil type name) 

 Manawatū 

fine sandy 

loam  

Manawatū 

silt loam  

 Twyford 

sandy loam  

Kaiapo 

silt loam  

 Zone 1 Zone 2  Zone 1 Zone 2 

Available water content 

(AWC, mm m-1) 

 
123 203  190 273 

Bulk density (g m-3)  1.41 1.30  1.28 1.17 

Sand (%)  80.6 44.9  47.3 1.3 

Silt (%)  12.7 40.6  40 70.8 

Clay (%)  6.7 14.5  12.8 28 

http://cliflo-niwa.niwa.co.nz/
http://cliflo-niwa.niwa.co.nz/
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replicates neutron access tubes in each of the four replicate plots in each soil zone for 

each crop, and (ii) three undisturbed soil sample replicates of known volume (intact cores) 

were taken close to the access tubes (about 1–3 m distance) at depths of 0.1, 0.20, 0.30, 

and 0.40 m to measure volumetric soil water content. The soil volumetric water content 

was determined by multiplying the gravimetric water content by the measured bulk 

density. 

A RapidSCAN CS-45 Handheld Crop Sensor (Holland Scientific, Lincoln, NE) was used 

to measure the NDVI at 1–m intervals along transects 1-m apart in each plot on a weekly 

basis. The system is equipped with GPS so the data was collected and stored for analysing 

NDVI differences between the plots. Markers were installed in each plot to allow the 

observations to be made at the same place from one date to another. The average and the 

standard deviation of NDVI were computed, from these measurements. Daily NDVI 

values were determined by using linear interpolation between the weekly collected NDVI 

data.  

The crop height was measured using Terrestrial Laser Scanning, validated with manual 

measurements, during the growing season to adjust the predictions. For details see 

Chapter 6. A destructive method was used for measuring the maximum effective rooting 

depth directly at different growth stages. Linear interpolation for measured crop height 

and root depth was used during the growing season.  

The Tc was continuously measured with non-contact thermal infrared radiometers (IRT) 

(Apogee Instruments, Inc., model SI-400). The radiometers were installed about 1 m 

above ground level and directed vertically down at the plant with a zenith angle of 0o, 

thus the area of the field of view was 1.2 m2. Real-time Tc measurements were recorded 

every one hour during most of the season using a WSN developed by Ekanayake and 

Hedley (2018) for all plots. The measurements were made for each plot and averaged to 

get a single value for each treatment.  
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7.22 Crop Evapotranspiration estimation models 

7.221 FAO-56 Penman Monteith estimation of ETc (PM) 

The standard daily ET estimated using the PM equation is expressed as in Equation 7.1. 

The FAO-56 PM is a hypothetical grass reference-based model that has the following 

characteristics: mean height of vegetation h = 0.12 m, measurement of temperature, 

humidity, and wind speed at the height of 2 m, latent heat transfer λ = 2.45 MJkg-1, bulk 

surface resistance 70 sm-1, and albedo = 0.23. The final form of the FAO 56 PM equation 

for a daily time-step is defined in Equation (7.1) (Allen et al., 1998). 

 

𝐸𝑇 =
0.408 ∗ ∆ ∗ (𝑅n − 𝐺) + 𝛾 ∗

900
𝑇 + 273 ∗ 𝑢2 ∗ (𝑒s − 𝑒a)

∆ + 𝛾(1 + 0.34 ∗ 𝑢2)
                                  [7.1] 

Here, 𝐸𝑇: reference evapotranspiration (mm d–1), 𝑅𝑛: net radiation at the crop surface 

(MJ m–2 d–1), G: soil heat flux density (taken as zero for daily calculations) (MJ m–2 d–1), 

𝑇: mean daily air temperature at 2 m height (ºC), 𝑢2: wind speed at 2 m height (m s–1), 

𝑒s: saturation vapour pressure (kPa), 𝑒a: actual vapour pressure (kPa), 𝑒s − 𝑒a: saturation 

vapour deficit (kPa), Δ: slope vapour pressure curve (kPa ºC–1), γ: psychrometric constant 

(kPa ºC–1).The FAO-56 ETo model and a dual crop-coefficient method (𝐾c = 𝐾s ∗ Kcb +

𝐾e) which accounts for variations in soil water availability, inducing either stress and soil 

evaporation were used to estimate ETc, Equation (7.2) (Allen et al., 1998).  

  𝐸𝑇c  = (𝐾s ∗ Kcb + 𝐾e) ∗ 𝐸𝑇                                                                               [7.2] 

Here, 𝐸𝑇c is the crop evapotranspiration (mm d–1), 𝐾cb is the basal crop coefficient, 𝐾𝑠 is 

water stress coefficient, and 𝐾e is the soil evaporation coefficient. The 𝐾e and 𝐾s are 

calculated based on daily water balance computation in the surface soil evaporation layer 

of effective depth (𝑍e.i) and in the root zone (𝑍r.i), respectively, according to Allen et al. 

(1998).
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7.222 Modified FAO-56 Penman Monteith estimation of 

ETc (MPM) 

In the modified daily ET estimation method (MPM), Rn, G, and Kcb were derived from 

the remotely-sensed data following the method of Brown (pers. comm.). Net radiation 

(Rn) was calculated as a function of measured solar radiation (Rs), Tc, surface albedo, and 

NDVI.  

An empirical relationship for G, depending on Rs and Ta was used. 

𝐺 = −𝑐 + 𝑑𝑅s ∗ (1 − 𝐾c) + ℎ𝑇a                                                                        [7.3] 

Where G the ground heat flux density (MJ m-2 day-1), c is 0.71 MJ m-2 day-1, d is 0.21, 

Rs: solar radiation (MJ m-2 day-1), Kc: cover factor (dimensionless), Ta: daily air 

temperature (ºC) and h is 0.07 MJ m-2 °C-1 day-1. 

The fPAR of radiation interception was calculated from NDVI measurements using a 

relationship derived from measurements in an earlier experiment (Equation 7.4). It is 

widely acknowledged that fPAR is a major determinant of the basal crop coefficient (Kcb) 

(Bellvert et al., 2018; Marsal et al., 2014; Picón-Toro et al., 2012). In this study, Kcb was 

empirically derived using the Kcb function from Brown (pers. comm.). The growth stage 

days were determined based on days after planting, and linear interpolation for crop 

parameters (𝐾cb, crop height and 𝑍r.i) were used between stages. 

𝑓𝑃𝐴𝑅 = (𝑁𝐷𝑉𝐼 − 0.1)/(0.9 − 0.1)                                                                    [7.4] 

𝐾cb,fPAR = 𝑀𝑖𝑛 (1,0.3 + 1.6 ∗ 𝑓𝑃𝐴𝑅)                                                                  [7.5] 

The modified ETc was calculated from: 

 𝐸𝑇c − 𝑀𝑃𝑀 = (𝐾s ∗ 𝐾cb,fPAR + 𝐾e) ∗ 𝐸𝑇                                                            [7.6]
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7.23 Assessment of the two ETc models 

The daily ETc calculated using the SWB budget approach (see Equation 7.7) was used to 

evaluate the predictive power of the two ETc models of PM and MPM for each crop trial. 

The latter SWB approach as described by Evett et al. (2012) and Koksal et al. (2019) is 

based on measurement of rainfall, irrigation water, and soil water content in the rooting 

zone and assumed no drainage.  

𝐸𝑇ci = 𝑃i + 𝐼i ± ∆ 𝑆𝑊𝐶i + 𝑅𝑂i                                                                         [7.7]  

Here, ETc is crop evapotranspiration (mm d-1), P is precipitation (mm), I is the irrigation 

water applied (mm), ∆ SWC is the soil moisture content difference between two 

consecutive measurements using a neutron moisture meter (mm), RO is the runoff (mm), 

and i is the day of calculation. RO was assumed to be zero. 

7.24 Yield and Water use efficiency  

Crop yield was measured in the replicated plots for each crop trial at crop maturity. In the 

pea and bean trials, seed yield and aboveground plant material were measured by 

harvesting an area of 1 m2 (three replicates/plot). Seed weights were measured on 

subsamples from this harvest. The dry yield was estimated on an oven dry-weight basis 

(70⁰C). In the barley trial, the crop yield was determined from a yield map provided by 

the farmer. The map was derived from data collected by a yield monitor positioned on the 

harvester. The yield map was imported into Trimble Ag Software to load and analyse the 

performance of the plots. 

The WUE, here referenced to crop water-use, was calculated by dividing the crop yields 

for each zone treatment by the total cumulative ETc for that treatment (Howell, 2001). 
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7.25 Statistical analysis 

Statistical measures were used to compare the two estimation methods for daily ETc (PM 

and MPM) against SWB budget approach. The statistical measures include coefficient of 

determination (R2), mean bias error and root mean square error (RMSE), referring to Liu 

et al. (2012).  

𝑅𝑀𝑆𝐸 = √∑
(𝑃𝑖−𝑂𝑖)2

𝑛
𝑛
𝑘=0                                                                                        [7.8] 

𝑀𝐴𝐸 = 𝑛−1√∑ (𝑃𝑖 = 𝑂𝑖)𝑛
1                                                                                     [7.9] 

Here, n = number of observations, Pi = estimated ETc by the modified model, Oi = SWB–

estimated ETc (actual).  

Analysis-of-variance (ANOVA) at P=0.05, Tukey’s HSD (data normally distributed) and 

Bonferroni (Dunn) (data non-normal distributed) were conducted to investigate 

significant differences in measured yields and WUE between the two soil zone treatments. 

Statistics were carried out using R version 3.5.1 (R Core Team, 2018). 

7.3 Results and Discussion 

7.31 Weather data 

Trends and magnitudes of climate variables, including PM–ET (mm day-1) and rainfall 

for barley, pea, and bean growing seasons during the study period are presented in Fig. 

7.1.  

The lengths of barley, pea and bean growing seasons in 2017/2018 were 169 and 72 and 

63 days, respectively. The bean crop was planted after the peas were harvested and grown 

between the dates 9 February 2018 to 12 April. The bean growing season was wet with a 

total precipitation of 209 mm occurring during their period of growth. Seasonal rainfall 

and mean temperature were 120 mm and 19 °C for peas, and 199.4 mm and 13.8 °C for  
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barley, respectively. Total rainfall from 15 November 2017 (1 day after planting (DAP)) 

to 18 December 2017 (34 DAP) was 5 mm (5% of the seasonal amount) in pea trial. Total 

rainfall from 30 October 2017 (90 DAP) to 4 January 2018 (156 DAP) was 33.6 mm 

(16.8% of the seasonal amount) in barley trial. This situation affected the crop water 

requirements during the growing season.  

Daily ET values, which reflect the climatic conditions of the crop growing season periods, 

fluctuated between 0.5–6.1 mm day-1 for the barley and between 1.6–6.9 mm day-1 for 

the peas, and between 0.5–4.9 mm day-1 for the beans, whereas total cumulative ET values 

were 495, 318.1, and 186.3 mm/season for barley, pea and bean, respectively. The 

relatively higher ET for the pea growing season was due to lower precipitation, higher air 

temperature and solar radiation (mean solar radiation = 16.8, 23.5, 14.9 MJ m-2 for barley, 

pea and bean, respectively). 

 

Figure 7.1: Seasonal trends of Penman Monteith evapotranspiration (ET, mm day-1) and rainfall (mm) 

during the growing season for barley, pea and bean crop.
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7.32 Field-level remote sensing data 

The trends and magnitude in the measured Tc and estimated fPAR values for barley, pea 

and bean crop with the irrigation management zone treatments are presented in Fig. 7.2. 

7.321 Tc 

During the barley trial, greater Tc values were associated with Zone 1 plots (sandy loam, 

smaller AWC see Table 7.1) compared with Zone 2 plots (silt loam, larger AWC see Table 

7.1). In general, as the soil dries out Tc values increased with this water stress – Tc being 

affected by a lower canopy cover percentage and stomatal closure as reported in the 

literature (Blonquist et al., 2009). The lowest Tc values were measured for the surface of 

Zone 2 treatment plots after 90 DAP due to enough transpiration from leaves and 

evaporation from soil surfaces. Measured Tc values varied between nearly 11.2 and 34.5 

oC for Zone 1 and from 8.5 and 29.3 oC for Zone 2. 

During the pea trial, Tc values fluctuated between 14.3 and 33.4ºC for Zone 1 (smallest 

AWC) and from 12.3 and 30.4ºC for Zone 2 (largest AWC). In the early part of the growing 

season, Tc values measured for Zone 1 plots were slightly higher than Zone 2 plots which 

is consistent with irrigation demand levels. 

During the bean trial, with adequate rainfall for the majority of the season, Tc values for 

the different treatment plots did not differ from each other as there was not much 

difference in the irrigation applied and NDVI values for the two treatments. As the fPAR 

and NDVI started diverging from each other as a result of irrigation applied, lower Tc 

values relate to greater NDVI values (Köksal et al., 2019). In general, Tc varied from ∼ 6 

during the early part of the season to ∼ 21 during the late-season. As expected, the Tc 

values during the wetter bean growing season were smaller than for the pea crop. 



 

 

Chapter 7  142 

 

7.322 fPAR 

The relevant canopy biophysical parameters involved in canopy transpiration can be 

described by the NDVI and fPAR (Bellvert et al., 2018; Rocha et al., 2012). In general, 

NDVI values at the initial stage were low around 0.08 – 0.20 in initial phase. Then the 

NDVI values increase as the crop develops reaching its maximum value (∼ 0.8 – 0.90) at 

mid-season stage followed by plateau from late (Fig. 7.2). 

During the barley trial, the fPAR value moves from a minimum of ∼ 0.08 to a maximum 

of 0.89 and 0.94 for Zone 1 and 2, respectively on the date of 111 DAP. The decrease in 

the NDVI and fPAR at the end of season was more notable in the barley trial probably 

because of senescence of the cover crop (Bellvert et al., 2018), while the NDVI and fPAR 

in the pea and bean remained quite constant until the end of the season. Although a 

somewhat similar trend was observed in Zone 1 and 2 for barley, the Zone 1 plots’ data 

showed consistently less NDVI and fPAR values after 90 DAP due to the water stress. The 

average fPAR for Zone 1 plots reached to 0.65 and 0.76 for Zone 2 treatments.  

Slight differences in seasonal patterns were observed between the pea and bean crops. 

These differences can be explained by differences in the fraction of ground cover. 

Maximum fPAR values were 0.89 (46 DAP) and 0.85 (55 DAP) for pea and bean, 

respectively.  

During the pea trial, although trends in measured fPAR for both treatments did not 

significantly differ, larger fPAR values were associated with highly vegetated conditions 

in the early part of the season (Zone 1 treatment), followed by Zone 2. Values of fPAR 

ranged from 0.13 and 0.89 for Zone 1 plots and from 0.13 and 0.86 for Zone 2 plots.  

During the bean trial, since there was greater rainfall during the growing season, 

magnitudes of fPAR were not significantly different between the two-zone treatments 

during the first half of the growing season. However, fPAR values in Zone 2 plots varied 

(not significantly) from the Zone 1 treatments later in the season. 
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Figure 7.2: Surface canopy temperature (Tc, oC), and the estimated fraction of radiation intercepted by the 

crop (fPAR), values for each zone treatment in each crop trial. 

7.33 Evaluating the two ETc methods 

The relationships between the PM and MPM estimation of daily ETc with daily ETc–SWB 

of barley, pea and bean are presented in Fig. 7.3.  

The statistical criteria of validation for estimating ETc using the SWB approach and the 

two ETc models are shown in Table 7.2. 

Performance statistics of ETc values for MPM and SWB were better than for daily values 

of PM and SWB. In the barley trial, the R2 was 0.70 and 0.66 (P<0.05) for MPM and PM, 

respectively with RMSE equals 0.70 mm day-1 and 0.92 mm day-1 for MPM and PM, 

respectively. Strong relationships were observed for the pea and bean growing seasons, 

with R2 values of 0.83 and 0.73 (P<0.05) for MPM and PM for pea, whereas, for bean R2 

values were 0.91 and 0.71 (P<0.05) for MPM and PM, respectively.  

Cumulative ETc–MPM, ETc–PM and ETc–SWB values of each irrigation management 

zone treatment were calculated for each crop trial (Fig. 7.4). 
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In the barley trial, cumulative ETc values for PM were greater than cumulative ETc values 

for MPM. The PM–algorithm yielded higher cumulative ETc values than estimated values 

by SWB (18% to 22%), and this over estimation reached nearly 65 mm.  

During the complete growth period (15 November 2017 until 25 January 2018) of the pea 

trial, the cumulative ETc–MPM was 118.87 and 114.81 for Zone 1 and Zone 2, 

respectively whereas ETc–PM was 116.20 and 126.88 for Zone 1 and Zone 2, respectively 

which underestimated (-) and overestimated by – 7%, – 8%, – 9% and 1.6%, respectively 

compared with ETc–SWB. 

In the bean trial, the differences between cumulative ETc values were very low (– 6.5%, 

– 6.4%, 3.1% and 6.4% for ETc–MPM and ETc–PM, respectively compared with ETc–

SWB) where they slowly increased with crop age and transpiration.  

Overall, The MPM was more sensitive to the crop as it directly senses crop stress 

(radiometer-temperature) and crop stage (NDVI) as also referred to by Köksal et al. 

(2019). 

 

Figure 7.3: Scatter plots of daily estimated crop evapotranspiration (ETc, mm d-1) using Penman–Monteith 

(ETc–PM) and modified Penman–Monteith (ETc–MPM) algorithms against estimated values by soil water 

budget (ETc–SWB) for each crop trial. The red line shows the ordinary least squares linear regression fits. 

In broken black is the 1-to-1 line.
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Table 7.2: Relationship of predicted values of ETc estimated by Penman-Monteith (PM) and 

modified Penman-Monteith (MPM) to those estimated by soil water budget (SWB) approach. 

 MPM  PM 

 Barley Pea Bean  Barley Pea Bean 

R2 0.70 0.83 0.91  0.66 0.73 0.71 

RMSE 0.70 0.29 0.28  0.92 0.39 0.50 

Bias 0.01 0.01 0.03  0 0 0.02 

 

 

Figure 7.4: Comparison of estimated cumulative crop evapotranspiration (ETc, mm d-1) between different 

models for each zone treatment in each crop trial. 

 7.34 Comparison of ETc between the two zones treatment 

Fig. 7.5 shows seasonal ETc values for the different irrigation zone treatments derived 

using the MPM method for barley, pea, and bean. The results show fluctuations of daily 

ETc throughout the crop season with respect to irrigation and rainfall for each treatment 

separately.
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7.341 Barley trial  

The ETc increased gradually from mid-October to end-October (73 to 90 days after 

planting (DAP)), when maximum values of ~ 5 and 4.5 mm day-1 were achieved. After 

end-October, the ETc dropped slightly until early December (123 DAP). After that, the 

ETc of Zone 1 dropped progressively until the end of the season. The decrease in ETc 

corresponded with the water stress period for Zone 1 treatment where the irrigation 

application at a fixed interval (15 mm/week) wasn’t enough to meet the crop water 

demand for barley in Zone 1 whereas ETc was much higher in Zone 2, suggesting more 

vigorous growth. During that period, transpiration declined to minimum values of 2.8 mm 

day-1 in Zone 1 compared to Zone 2.  

7.342 Pea trial 

During the pea trial most irrigation occurred in the first part of the season when rainfall 

was insufficient to meet crop water use. Irrigation was applied 6 and 5 times to the Zone 

1 and 2 plots, respectively. Average allowable deficit level was 45% of plant available 

water (PAW) (Allen et al., 1998). The ETc was very low (0.6 mm day-1 to 1.5 mm day-1) 

in early growth period during 15 November – 7 December). Then, it increased with crop 

age due to canopy development and the consumption rate was a maximum of 3 mm day-

1 on 12 December (27 DAP). The ETc trend for Zone 1 treatment was higher than Zone 2 

in the first part of the season and this might be caused by the irrigation water applied 

during this period (60 mm for Zone 1 and 30 mm for Zone 2). The difference between 

water used through ETc and that applied through irrigation and rainfall accounted for 

111.13 and 102.19 mm for Zone 1 and 2, respectively, which corresponds to the amount 

of water provided from soil storage for the growing season. 

7.343 Bean trial 

The total length of the growing season was similar in bean (63 days) and pea (70 days); 

however, rainfall patterns deviated between the two seasons, with the total rainfall for the 

bean growing season (209 mm) more than that for the pea growing season (120 mm). 
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Moreover, the rainfall was uniform during the bean growing season (Fig. 7.5). Due to 

these conditions, total irrigation varied significantly between the two experimental 

seasons. The irrigation events were scheduled only twice and once for Zone 1 and Zone 

2, respectively, with a total amount of 35 and 20 mm for Zone 1 and Zone 2, respectively. 

The ETc in Zone 1 followed the same trend as Zone 2, and ETc for bean was slightly 

higher than for pea (Fig. 7.5). Maximum values reached to ~ 3.6 mm day-1. 

Overall, these results indicate that the ETc trend patterns are strongly influenced by the 

specific weather conditions and confirm the requirement of site-specific ETc considering 

soil types and remarkable seasonality in precipitation during the growing seasons in the 

study area.   

 

Figure 7.5: Applied amount of irrigation water, amount of rainfall and comparison of daily estimated crop 

evapotranspiration (ETc, mm d-1) using modified FAO-56 Penman-Monteith (MPM) between the zones 

treatment for each crop trial.  

7.35 Yield and efficiency 

Yield, ETc, and WUE for the two soil zone treatments for each crop trial as well as the 

results of ANOVA tests are given in Table 7.3.  

Total yields for barley ranged from 4 t ha-1 and 10.3 t ha-1 for Zone 1 and Zone 2,  
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respectively, representing significant differences in yield-values between treatments at a 

95% confidence level. In the barley trial, WUE values for Zone 1 (1.5 kg m-3) were lower 

than Zone 2 (2.84 kg m-3). This is attributable to differences in ETc and yield values 

related to soil variability, atmospheric conditions, and irrigation applications. The 

relationship between barley yield and water stress observed in the present study is in line 

with the findings of previous studies by González et al. (1999); Jamieson et al. (1995); 

Samarah (2005), who reported water stress to significantly affect barley grain yield.  

For the pea and bean crops, yield results indicated there were no significant differences 

(P >0.05) among the two soil zone treatments (Table 7.3). The mean yields were 2.44 and 

2.41 t ha-1 for the pea treatments (standard deviation 0.01 t ha-1), and 1.10 and 1.15 t ha-1 

(standard deviation 0.02 t ha-1) for the bean treatments. WUE was not significantly 

different between both soil zone treatments for pea and bean crop.  

The WUE were 2.05 and 2.09 kg m-3 for the pea treatments and 0.91 and 0.91 kg m-3 for 

the bean treatments. 

Table 7.3: Barley, pea and bean yield, crop evapotranspiration (ETc) estimated by modified FAO-

56 Penman-Monteith (MPM) model and water use efficiency (WUE) under two soil management 

zones. * indicate significant differences (P < 0.05) between treatments for each crop trial. 

 Barley  Pea  Bean 

 Yield 

T  

ha-1 

ETc 

mm 

d-1 

WUE 

kg 

m-3 

 Yield 

T 

ha-1 

ETc 

mm 

d-1 

WUE 

kg 

m-3 

 Yield 

T 

ha-1 

ETc 

mm 

d-1 

WUE 

kg 

m-3 

Zone 1 4* 268.2 1.5*  2.4 118.9 2.01  1.1 120.5 0.91 

Zone 2 10.3* 362.8 2.8*  2.4 114.8 2.01  1.2 125.8 0.95 

7.4 Conclusions 

This study evaluated the performance of PM and MPM estimation of ETc of barley, pea, 

and bean grown under two irrigation management zones against ETc calculated by a SWB 

equation. The ETc–MPM was calculated using data from a site-specific weather data with 

measurements of Tc and surface reflectance in visible and near-infrared wavelengths 

(NDVI). The ETc–SWB was estimated from the water balance using the soil moisture 
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measurements and inputs of irrigation and rainfall and assumed no drainage. 

The results revealed that the barley crop (Zone 1) was sensitive to insufficient water, as 

determined by the use of crop sensing for direct estimation of physiological responses.  

Such measurements offer significant opportunity to detect the crop response to irrigation 

and soil variability impact. This is because when the water stress became more severe in 

the coarser textured soil (Zone 1), the Tc increased and NDVI decreased, and then ETc 

decreased.  

Our trials indicate that the ETc–MPM model is applicable for three quite different crops, 

showing a high linear correlation near the 1:1 line and yielding a high R2 (0.79, 0.83, 0.91) 

and a low RMSE (0.70, 0.29, 0.28 mm day-1) between SWB-estimated and MPM-modelled 

daily ETc for barley, pea and bean, respectively. The surface reflectance data could be 

used in a practical way to estimate the Kcb in spatially heterogeneous crops based on 

empirical equations with biophysical parameters such as fPAR.  

The WUE values, referenced between yield and ETc, were highest (2.8 kg m−3) for the 

Zone 2 treatment in barley and lowest (1.5 kg m−3) for the Zone 2 irrigation treatment. 

The WUE values for pea, ranged between 2.05 and 2.09 kg m−3 for Zone 1 and 2, 

respectively and 0.91 kg m−3 in bean, indicated VRI to be a reliable water management 

system to improve the WUE. 

Future work is needed with different crops under different climatic conditions for a 

thorough evaluation of the application of ETc–MPM model with remotely sensed data at 

field scales. 
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Connecting text to Chapter 8 

The previous chapters have presented new methods for mapping and monitoring soil and 

crop at high resolution to inform precision irrigation management. In Chapter 4 a field 

method for monitoring soil variability spatially and with depth was provided then Chapter 

5 presented and compared accurate methods for managing this variability by estimating 

irrigation water demand based on real-time soil moisture monitoring. In Chapter 6 a new 

crop sensing method with LiDAR sensor was used to assess crop height and biomass at 

high spatio-temporal resolution. In Chapter 7 a crop sensing approach was tested for 

estimating daily crop evapotranspiration (ETc) by integrating the remote sensing 

measurements (i.e. NDVI and canopy surface temperature (Tc)) with a FAO-56 Penman-

Monteith (PM) algorithm. All these sensing methods are required in precision irrigation 

control systems for effective and timely application of the information that they provide. 

Therefore, the main objective of this chapter was to test a model-based decision support 

software system to efficiently manage water to variable soils, multiple crops, and to 

compare its outputs with real-time sensing measurements. Also, the trial discussed the 

options for including real-time sensing data into VRI software control systems. This 

chapter was presented in conference proceedings: 

(i) Irrigation New Zealand conference in Alexandra, New Zealand (2018). 

Conference presentation. 

(ii) New Zealand Society of Soil Science& Soil Science Australia (NZASSS) 

conference in Napier, New Zealand (2018). Conference presentation. 
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Chapter 8  

A decision support system for variable-rate 

irrigation in New Zealand 

 

Abstract 

A model-based decision support software system for variable-rate irrigation that 

automates irrigation scheduling to variable soils and multiple crops was tested. The 

system is incorporated into a web-based irrigation scheduling tool to predict irrigation 

timing using soil and crop information, a virtual weather model, and applied irrigation 

inputs to a soil water balance model.  

The system, termed VRI–DSS, was evaluated in a commercial field irrigated by a variable-

rate irrigation centre pivot for maize and sweetcorn crops planted in two soil management 

zones under the grower’s operation. The evaluation process involved a comparison 

between outputs created by VRI–DSS using its default parameters (Scenario-virtual) and 

outputs simulated with local data (Scenario-local). 

The results indicate that the VRI-DSS performed well, and its virtual weather model 

provided an accurate estimation of evapotranspiration (R2= 0.79, bias= –0.19 mm d-1, 

MSE= 0.28 mm d-1 and RMSE= 0.53 mm d-1), except for some larger rainfall events when 

it overestimated total rainfall by +12%. Water use efficiency varied considerably for the 

two soil management zones, providing evidence for the benefits of variable rate irrigation 

at this site. The two zones produced similar yields but required different irrigation 

schedules, the finer textured soil zone having higher water use efficiencies than the 

coarser textured soil zones.  

Overall, the evaluation revealed that VRI–DSS with accurate climate data provides a 

practical tool to estimate the needs of irrigation for maize and sweet corn. It showed 
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potential as an effective VRI control system for complex soil-crop combinations that 

might occur under any one irrigation system. Further testing is required with other crops 

and soil types and with site-specific rainfall data to validate this decision software system. 

Keywords: Irrigation scheduling; VRI–DSS; Dynamic decision support system; Soil water 

balance; VFM climate models; Water stress; VRI centre pivot.  

8.1 Introduction 

Worldwide, irrigation uses about 70% of available freshwater resources (FAO, 2015). In 

New Zealand, irrigation accounts for 78% by total water allocated (Booker et al., 2016). 

Some important agricultural areas on New Zealand’s east coast, located in the rain 

shadow of the Southern Alps, and parts of Hawke’s Bay, are already facing limitations 

associated with a shortage of available water (Dark et al., 2017). 

The challenge for the agricultural sector is to maximize the economic return per unit of 

water used. This will involve more proper water allocation mechanisms (De Fraiture et 

al., 2007; Molden et al., 2007) such as appropriate methods to observe, measure, and 

respond to field and crop conditions.  

Variable-rate irrigation (VRI) systems precisely match water application with crop 

requirements, and they are especially useful where there are variations in soil, landscape, 

and plant performance (Evans et al., 2013). However, the success of VRI equipment relies 

on well-informed irrigation scheduling. Specifically, VRI requires correct irrigation 

timing and placement in order to maximise production and minimise adverse 

environmental impacts. Hedley and Yule (2009a) reported that VRI scheduling can save 

approximately 25% of the water applied compared with the uniform application of 

irrigation.   

Irrigation scheduling decision support systems (DSS) provide advice on when and how 

much to irrigate. Many DSS have been developed to enhance irrigated crop management 

within a single field or several fields to maximize total yield over the area (Rinaldi & He, 

2014). Here we define a DSS as an interactive, computational system that involves the 
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formulation and integration of three main components: a database; an administrator 

model; and a graphical user interface. In addition, a DSS should be able to incorporate the 

decision maker’s own insights (Rinaldi & He, 2014).  

Numerous DSS have been developed in the last decade (Rinaldi & He, 2014). Smith 

(1992) developed an empirical DSS (CropWat). The model, which considers climate, soil, 

and crop data, is based on the FAO Irrigation and Drainage Papers No. 56 “Crop 

evapotranspiration” and No. 33 “Yield response to water,” and uses the Penman-Monteith 

equation and respective crop coefficients to calculate crop evapotranspiration (ETc) rates.  

Steduto et al. (2009) developed a DSS (AquaCrop) based on FAO Irrigation and Drainage 

Paper No. 33 “Yield Response to Water” (Doorenbos & Kassam, 1979). The model is 

used for developing a seasonal irrigation schedule for a specific crop and field, identifying 

the date of the next irrigation, determining seasonal water requirements, and developing 

water production functions and using them in economic decision tools. In China, Zhang 

and Feng (2009) developed an irrigation DSS (CropIrri) to operate the optimal allocation 

of water resources in irrigation districts. The CropIrri system was designed for dryland 

crops (wheat, maize, and soybean).  

In Australia, the IrriSatSMS DSS model was developed. It uses satellite-derived crop 

coefficients in a daily water balance approach (Car et al., 2012). This DSS does not inform 

specifically when or how much to irrigate but instead suggests a fixed amount on any 

given day, to return soil water deficit (SWD) to zero. The DSS HydroLOGIC was also 

designed in Australia (Richards et al., 2008), mainly to evaluate the consequences of 

several irrigation strategies and to explore options to optimize yield and water use 

efficiency (WUE) in cotton at field level. 

In New Zealand, the Foundation for Arable Research (FAR) and Plant and Food Research 

developed the DSS AquaTRAC™. The system estimates crop water demands using a soil 

water balance (SWB) model with inputs related to crop type, soil type, weather, and 

irrigation to date. 

 Most of the current DSSs mentioned above were developed to output a single 

recommendation for when and how much irrigation to apply to optimise yield for any one 

crop. However, a dynamic DSS has recently been developed in a Geographic Information 

System (GIS) framework to be integrated with a VRI system to account for within-field 
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variability of soils, which often results in the delineation of soil management zones 

(http://www.myfieldnet.com/fieldnet-advisor). This DSS also manages multiple crops under 

one VRI system to give farmers the immediate ability both to activate or modify their 

irrigation decisions (e.g. irrigation depth). This type of system is required to improve 

WUE, e.g. (O'Shaughnessy & Evett, 2010; Vellidis et al., 2008). The DSS should 

incorporate up-to-date information on weather and crop demand predictions and irrigation 

scheduling options. The benefit of virtual climate forecast models (VFM) for irrigation 

scheduling DSS and crop production has been demonstrated by several authors (Gowing 

& Ejieji, 2001; Wang & Cai, 2009).  

The VFM (e.g. GDAS, GEFS, CFS; (Saha et al., 2010; Yuan et al., 2011) uses a global 

numerical weather prediction system to generate either short-term weather forecasts or 

longer-term climate predictions in different countries worldwide. It uses current weather 

observations relayed from weather satellites and/or other observing systems as inputs. 

The weather observations serve as input to the numerical computer models through a 

process known as data assimilation to produce outputs of temperature, precipitation, and 

other meteorological elements from the oceans to the top of the atmosphere. 

The objective of this study was, therefore, to determine whether a dynamic model-based 

and spatially structured DSS for variable-rate irrigation systems (VRI–DSS) can be 

reliably used as a scheduling tool for farmers in New Zealand.  

To do this we aimed to evaluate the ability of the VRI–DSS to predict the critical SWD at 

which irrigation is simultaneously scheduled to two crops in two soil management zones 

under one system.  

 An additional objective was to quantify differences in VRI-DSS outputs of soil moisture 

deficit against those predicted by local climate and moisture data inputs.  

http://www.myfieldnet.com/fieldnet-advisor
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8.2 Materials and Methods 

8.21 Study area 

The study area is a 101-ha commercially farmed field (39. 533° S; 176.402°E). The 

climate is humid, and the annual rainfall is about 679 mm (www.niwa.co.nz). Irrigation 

is needed to supplement rainfall in summer to meet crop water needs. The field is 

currently irrigated by a 580-m long VRI centre pivot system that applies water pumped 

from a nearby groundwater well. The weekly allocations described in Table 8.1 are 

typically related to the maximum volumes used during a dry summer. The total weekly 

allocation is 31,700 m3 per week. The crops irrigated by this system in the 2017/2018 

growing season are listed in Table 8.2. 

Table 8.1: Consented fresh water takes and water allocation at the field site.   

Weekly water allocation 

(m3/week) 

Centre pivot area 

(ha) 

Average application 

depth (mm d-1) 

Pivot rotation 

time (days) 

Max. 

irrigation 

depth (mm) 

31,700 102 4.5 2.5 25 

 

Table 8.2: Area, cultivation and harvest date of 2017/2018 crop year at the study site. 

Crop Area (ha) Cultivation date Harvest Date 

Squash 4.36 27 January 2017 16 May 2017 

Peas 21.18 5 July 2017 12 September 2017 

Spring Barley 8.08 2 August 2017 17 January 2018 

Baby Carrots 6.36 15 September 2017 23 December 2017 

Maize 23.46 18 October 2017 15 March 2018 

Sweet Corn 37.56 30 November 2017 29 March 2018 

http://www.niwa.co.nz/
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8.22 Irrigation management zones 

The soils at the study site have formed on an alluvial surface. An electromagnetic (EM) 

sensor survey was carried out at 12-m-swath widths using a Dualem-1S with an 

exploration depth of 0.5 m to measure their apparent electrical conductivity (ECa), which 

is a surrogate measurement of soil texture and moisture in non-saline soils (e.g. Doolittle 

and Brevik (2014). The ECa map was produced from the EM survey at a 5-m spatial 

resolution using ordinary kriging in R version 3.4 (R Core Team, 2018) using the gstat 

package (Pebesma, 2004). The ECa map was further split into two classes (irrigation 

management zones) using k-means clustering. This supported a conventional soil survey 

that ground-truthed the EM map and described the observed soil profile differences at a 

scale of 1:10,000.  

8.23 Experimental setup 

Maize (Zea mays., cv. ‘P1253’) and sweetcorn (Zea mays L., cv. ‘GSS8357’) were 

planted with a row spacing of 0.76 m into parts of the study area. To take measurements 

and observations of the soil and crop to evaluate the performance of VRI–DSS, four 

replicated plots (20 × 15 m) were established in each soil zone for each crop. All plots 

had the same fertilizer management during the crop season, and the farmer scheduled 

irrigation for the plots and the rest of the field using VRI–DSS. Four replicated neutron 

access tubes were installed into each of the four replicate plots in each soil zone for each 

crop (see Fig. 8.2). The SWD was determined by subtracting the average soil moisture 

content (SMC) of the four neutron-probe measurements from the field capacity value for 

that soil (Lenka et al., 2009). The SMC measurements started 58 and 15 days after 

cultivation for maize and sweetcorn, respectively. Local climate data were collected from 

a climate station situated on the farm. 

 During the experimental trials, VRI–DSS recommended irrigation amounts for each crop 

that can immediately be put into action, modified or declined by farmer decision. The 

VRI–DSS model was then automatically updated according to farmer decision and 
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reported any potential yield reduction with recommendations for the next irrigation event. 

Irrigation timing was based on the critical SWD (0.4 total available water (TAW)) for each 

treatment (i.e. soil-crop combination) with a maximum irrigation amount set at 25 mm 

(Table 8.1).  

8.24 Soil sampling 

Soil cores were extracted from 6 locations (3 for each soil zone) at 0.2-m intervals to a 

depth of 1 m to estimate available water content (AWC, cm3 cm-3), saturated hydraulic 

conductivity (Ksat, mm hr-1), cation exchange capacity (CEC, meq/100g), and soil organic 

carbon (C, %).   

Three replicate soil samples were also collected from each plot at harvest at 0.15-m 

intervals to a depth of 0.45 m to estimate mineral nitrogen, which is the plant available 

fraction of the total nitrogen in the soil profile. 

8.25 Lab analysis 

Laboratory analysis included measurements of (i) AWC by draining a proportion of 

collected intact soil cores between pressure potentials of –10 and –1500 kPa (Gardner, 

1986; McQueen, 1993), (ii) Ksat was determined by measuring the flow of draining water 

maintained under a head of 10 mm (Clothier & White, 1981; Klute & Dirksen, 1986), 

(iii) CEC was determined by the 1 M ammonium acetate (pH 7) method (Blackmore et 

al., 1987), (iv) total C was measured using a Leco TruMac which utilises the Dumas dry 

combustion principle (Leco, 2003), and (v) Mineral nitrogen (NH4-N and NO3-N);  

ammonium and nitrate were extracted with 2M KCl using a 1:10 soil: extractant ratio and 

a 1 hour end-over-end shake followed by filtration (Blackmore et al., 1987) and then 

quantified using a QuikChem 8500 flow injection analyser.  

All soil preparation and laboratory analyses were undertaken at the Manaaki Whenua 

Environmental Chemistry Laboratory, Palmerston North, New Zealand. 

(http://www.landcareresearch.co.nz/resources/laboratories/environmental-chemistry-laboratory)

http://www.landcareresearch.co.nz/resources/laboratories/environmental-chemistry-laboratory


 

 

Chapter 8  158 

 

8.26 Operation of the VRI–DSS software 

The VRI–DSS is a single integrated platform designed to schedule and control VRI 

sprinkler irrigation systems (http://www.myfieldnet.com/fieldnet-advisor). It automatically 

generates prescription maps that are dynamically optimized on a daily basis using a SWB 

modelling approach.  The SWB approach is a recommended and commonly used method 

for tracking crop water needs and irrigation scheduling (Allen et al., 1998). It is based on 

the conservation of mass, which states that the change in soil water storage (ΔS) of the 

root zone of a crop is equal to the difference between the amount of water added to the 

root zone (Qi), and the amount of water lost or withdrawn (Qo) (Hillel, 1998) in a given 

time interval as in Equation (8.1). The SWD is tracked by accounting for all water 

additions (precipitation, irrigation, and capillary rise) and subtractions (crop 

evapotranspiration, surface runoff, and drainage) from the soil root zone (Allen et al., 

1998) as in Equation (8.2). Irrigation is required when a critical SWD level of the root 

zone (in millimeters) has been reached. 

 ∆𝑆 = 𝑄𝑖- 𝑄𝑜                                                                                                          [8.1] 

 𝑆𝑊𝐷2  =  𝑆𝑊𝐷1 −  𝐼𝑅 −  𝑅 − 𝐶𝑅 + 𝑅𝑂 +  𝐸𝑇c +  𝐷𝑃                                  [8.2]                    

where SWD1 and SWD2: daily beginning and ending total available root zone soil water 

deficit (mm), respectively, IR: irrigation (mm), R: precipitation (mm), CR: capillary rise 

(only relevant where the water table is within 2–3 metres of the soil surface), ETc: 

calculated crop water use, or evapotranspiration (mm d–1), DP: deep percolation or 

drainage out of the root zone (mm) and RO is surface runoff.  

The initial depletion was measured and updated to the VRI–DSS model at the beginning 

of the season. RO was assumed to be negligible as the field was almost flat and irrigation 

was observed to easily infiltrate into the soil. CR was also assumed to be zero as the water 

table was > 1 m below the bottom of the root zone (Allen et al., 1998).  

VRI–DSS uses a global VFM (e.g. explained by Dueben and Bauer (2018); Yuan et al. 

(2011)) to predict daily potential evapotranspiration (ETo) values. The ETo model and 

locally calibrated crop coefficient (Kc) function values were used to estimate ETc, SWD 

 

http://www.myfieldnet.com/fieldnet-advisor
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and irrigation schedules.  

The average measured TAW (mm) values of 190 mm and 273 mm for Zone 1, and Zone 

2, respectively, were used for VRI–DSS irrigation scheduling.  

Irrigation was triggered when the SWD was equal to an average fraction of 0.4 TAW. The 

constant values for the irrigation trigger (critical soil moisture deficit) for each specific 

growing period were at 0.14, 0.44 and 0.6 TAW for initial, mid and late crop stage, 

respectively. Linear interpolation for crop parameters (Kc and rooting depth) and 

irrigation trigger values were used between growth stages. The measured effective rooting 

depths during the growing season were used, reaching a maximum value of 1 and 0.8 m 

for maize and sweetcorn, respectively.  

Following McMaster and Wilhelm (1997), VRI–DSS determines the growth stage of the 

crop using growing degree day units (GDDs) after emergence in preference to the number 

of days after emergence.  

 𝐺𝐷𝐷 =  
𝑇𝑚𝑎𝑥+ 𝑇𝑚𝑖𝑛 

2
−  𝑇𝑏𝑎𝑠𝑒                                                                                  [8.3] 

Where Tmax and Tmin are daily maximum and minimum air temperature, Tbase is the base 

temperature (oC) below which crop growth ceases; and it ranges from 0 to 10 oC. Tbase 

varies among crop species and likely varies with growth stage.   

Fig. 8.1 shows the VRI–DSS procedures and structure for scheduling irrigation at the trial 

site. A soil map of the irrigated area and information for the different crops (crop type, 

hybrid, planting date) is loaded into VRI–DSS platform, which then uses all this 

information along with the VFM data to generate an optimized irrigation recommendation 

and daily VRI prescription maps. In turn, these maps are actioned by software control. 

VRI–DSS also estimates the amount of yield that would be lost due to daily water stress, 

which varies based on the crop’s development stage and the severity of the stress (Steduto 

et al. (2012).
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Figure 8.1: Schematic of the VRI–DSS for irrigating maize and sweetcorn crops.  

8.27 Yield assessment 

Grain yield was measured in order to calculate the WUE for the different soil-crop 

treatments. The crop yields were assessed in each plot (Fig. 8.2) by harvesting the plants 

in a 5-m length of two adjacent rows. This process was repeated four times on each plot. 

The number of plants was counted, and the weight of the cobs and grain was measured 

(fresh yield). Yield is reported on an oven dry-weight basis (70⁰C).  

The water use efficiency (WUE) was estimated as the kilograms of crop yield per m3 of 

water (rainfall plus irrigation) applied (kg m-3) as described by (Gregory, 2004): 

𝑊𝑈𝐸 =
𝑌

𝐼𝑅 + 𝑅
                                                                                                      [8.4] 

Where Y: Yield per unit area (g/m2), IR + R: Water used to produce that yield per unit 

area (mm).
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8.28 Statistical Analysis 

ANOVA and Tukey’s honestly significant difference (HSD) test were conducted to 

investigate any significant differences of measured soil properties (AWC, Ksat, CEC, C 

and Mineral nitrogen), grain yield, and WUE data between the two soil management 

zones. The Kolmogorov-Smirnov test of normality (KS) was carried out. All significant 

differences were evaluated at the 0.05 level. Data analyses performed in this study were 

carried out using the ‘stats’ package in R version 3.4 (R Core Team, 2018). Linear 

regression relationships with performance indicators: coefficient of determination (R2), 

bias, mean absolute deviation (MSE), and root mean square error (RMSE) (Cohen Liechti 

et al., 2012; Moazami et al., 2013) were applied to compare outputs (temperature, solar 

radiation, humidity, ETo and ETc) from the VRI–DSS against on-farm measurement data.  

8.3 Results and Discussion 

8.31 Delineating the field into irrigation management zones 

The soil survey map for the field site showed two different soil types: a Twyford sandy 

loam and a Kaiapo silt loam (Fig. 8.2), which correspond to Fluvisols and Gleyic 

Fluvisols in the FAO World Soil Reference Base (Michéli et al., 2006), respectively. The 

Twyford sandy loam is distinguished by the presence of coarse, relatively un-cohesive 

sands throughout the profile, and topsoil with a sandy loam texture. It is excessively well-

drained soil. The Kaiapo silt loams have a finer texture, which contributes to relatively 

slow internal drainage. It is classified as a poorly drained soil. There was an agreement 

between field observations and ECa patterns (Fig. 8.2). Based on this information, the 

field was delineated into two irrigation management zones (Zone 1 and 2).  

Comparison of soil properties (AWC, Ksat, CEC, and C) between the two soil zones for 

the soil profile from 0 to 1 m are shown in Fig. 8.3. The statistical analysis showed that 

there is a significant difference (p values < 0.05) in mean AWC and CEC between the 
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two soil zones. The C values were small and not significantly different in the top 0.2 m 

(p values > 0.05).  These analyses support the claim that Zone 1 has a significantly coarser 

texture (sandy loam soil) and lower AWC, CEC and higher Ksat compared with Zone 2 

(silt loam soil).  

The soil survey map and site-specific measurements suggest that the variability in AWC 

and Ksat across the field is sufficiently large to warrant the use of VRI. This variability is 

mostly explained by the large differences in texture between the soils in the two zones 

described above. 

 

 

 

 

 

 

 

 

 

Figure 8.2: (a) soil survey map (Manderson map “unpublished”) and experimental plots (Otane, Hawke’s 

Bay, New Zealand) for two soil management zones defined for maize and sweetcorn crops. Zone 1: sandy 

loam, Zone 2: silt loam. Sweetcorn area: 37.56 ha, Maize area: 23.46 ha. (b) Delineated irrigation 

management zones based on the electric conductivity (ECa, mS m-1).

Hawke’s Bay 

region  

New Zealand 

(a) Soil map (b) EM map 



 

 

Chapter 8  163 

 

 

Figure 8.3: Comparing available water content (AWC, cm3 cm-3), saturated hydraulic conductivity (Ksat), 

cation exchange capacity (CEC) and organic carbon (C, %) measurements between the two soil zones. P= 

parametric test. NP = non-parametric test. * The mean difference is significant at the 0.05 level. 

8.32 Evaluating the VRI-DSS System 

The following section provides a comparison of the default VRI-DSS outputs (Scenario-

virtual) with simulated VRI-DSS outputs using local data (Scenario-local). 

8.321 Validation of virtual climate data 

To assess the potential impact of climate data on estimates of crop water use, the virtually 

predicted daily climate data (VRI–DSS) were compared with climate data measured on 

farm (Fig. 8.4). The average daily ETo predicted by VRI–DSS showed a significantly high 

correlation and low biases and error with the observed local data (R2= 0.79, bias= –0.19 

mm d-1, MSE= 0.28 mm d-1 and RMSE= 0.53 mm d-1). 
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Figure 8.4: The relationships of daily measured air temperature (⁰C), solar radiation (W m-2), humidity (%), 

and reference evapotranspiration (ETo, mm) at farm site with estimated values by VRI–DSS’s virtual 

weather model (VFM).  

The total amount of rainfall during the period of these trials was overpredicted by the 

virtual forecast model (VFM) in VRI-DSS by 12% (28 mm) compared with the local 

measurement (228 mm compared with 200 mm). This was mainly due to three large 

rainfall events. The largest discrepancies of virtually predicted rainfall were 15–25 mm, 

occurring after 85–87, 132, and 142 days planting, respectively. This illustrates the 

challenge of reliably predicting rainfall for a small area using climate models (Austin, 

1987; Gebrechorkos et al., 2018; Rico‐Ramirez et al., 2007; Schmidt et al., 2009) and is 

accentuated in areas such as New Zealand where the topography is complex and 

characterized by multiple and regionally variable rainfall regimes (Schmidt et al., 2009). 

On-going refinements to the VFM software component are occurring to reduce 

discrepancies between predicted and actual rainfall data. 
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Figure 8.5: Comparisons of daily rainfall (mm) events, estimated by VRI–DSS’s virtual model (VFM) and 

recorded by on-farm climate station. 

8.322 Comparison of irrigation scheduling for two 

scenarios 

We compared the irrigation schedules generated by VRI–DSS using virtual climate data 

(Scenario-virtual) with the schedule simulated with on-farm climate data (Scenario-local) 

(Figs 8.6 and 8.7); and the virtually predicted SWD against the SWD estimated using the 

SMC measured by a neutron-probe (Fig. 8.8). Figs. 8.6 and 8.7 show that the 

recommended irrigations of VRI–DSS’s scenarios and the actual irrigation applied by the 

farmer.  

During the maize trial, Scenario-virtual scheduled 9 and 7 irrigations events for Zone 1 

and Zone 2, respectively, with a total amount of 225 and 170 mm for Zone 1 and Zone 2, 

respectively. Scenario-local scheduled 13 and 10 irrigations events for Zone 1 and Zone 

2, respectively with a total amount of 280 and 210 mm for Zone 1 and Zone 2, 

respectively. During the sweetcorn trial, Scenario-virtual scheduled 3 and 2 irrigation 

events for Zone 1 and Zone 2, respectively with a total amount of 100 and 75 mm for 

Zone 1 and Zone 2, respectively. Scenario-local scheduled 7 and 6 irrigation events for 

Zone 1 and Zone 2, respectively with a total amount of 145 and 120 mm for Zone 1 and 

Zone 2, respectively. 
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Therefore, Scenario-virtual scheduled less irrigation than Scenario-local (Table 8.3), and 

we hypothesise that this is largely due to the overpredicted rainfall 80 – 87 days after 

planting (Fig. 8.5).  

Water-allocation restrictions and operational constraints of the system caused some actual 

amounts applied by the farmer to differ from amounts recommended by VRI-DSS for the 

maize crop (Figs. 8.6 and 8.7 and Table 8.3).  

Note the centre pivot was also managing irrigation to barley and carrot crops (Table 8.1) 

during the first 60 days of our trials. Insufficient water allocation from the regional 

council causes the farmer to reduce recommended irrigation to the maize and sweetcorn 

crops.  

In addition, due to the operational constraints of the 580-m long pivot, there was a delay 

in applied irrigation of one–two days from the recommended time. It takes approximately 

60 h for the pivot to complete one full circle applying 4.5 mm of water. Because AWC is 

relatively small in Zone 1, the delay in applied irrigation results in the SWD increasing 

rapidly and the crop experiencing water stress. Given the time it took to complete an 

irrigation event, it appears the irrigation trigger for Zone 1 could have been lower (e.g. 

0.30 TAW). In dry seasons and/or periods of reduced access to water resources (allocation 

restrictions), the VRI-DSS for long centre-pivot irrigation systems may need to be adapted 

to practice deficit irrigation– a strategy which maintains the soil profile in a drier 

condition, as described by (Liang et al., 2016; Vellidis et al., 2016). 

 

Figure 8.6: Comparing the irrigation recommendations of VRI–DSS’s scenarios and actual irrigation applied 

by the farmer for maize.
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Figure 8.7: Comparing the irrigation recommendations of VRI–DSS’s scenarios and actual irrigation applied 

by the farmer for sweet corn. 

Table 8.3:  Amounts (mm) of irrigation water applied for the VRI–DSS’s scenarios and actual 

irrigation applied by the farmer for sweet corn 

 Maize  Sweet corn 

 Scenario-

virtual 

Scenario-

local 

Actual 

irrigation  

 Scenario-

virtual 

Scenario-

local 

Actual 

irrigation 

Zone 1 225 280 131  100 145 82 

Zone 2 170 210 95  75 120 54 

8.323 Comparison of crop evapotranspiration for two 

scenarios 

The daily estimated ETc for each zone for Scenario-virtual compared with Scenario-local 

using actual irrigation is shown in Figure 8.  

The estimated ETc appears to increase as the rainfall or irrigation level increased, 

suggesting that evapotranspiration had not been occurring at its potential rate. Daily 

estimated ETc was similar for the two scenarios for the first 80 days after planting and 

after that, Scenario-local had less estimated ETc than Scenario-virtual due to lower rainfall 

impact until 128 days after planting. The rainfall had a significant effect on ETc 

calculations and the VRI–DSS’s scenarios correlation for maize crop. The cumulative 

estimated ETc did not differ significantly between the two scenarios for the sweet corn
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 crop (325.6 and 332.3 mm for Scenario-virtual and 301.4 and 316.7 mm for Scenario-

local) and this is because the period of water deficit was not significant between both 

scenarios (Figs. 8.7, 8.8, and 8.9). In contrast, there was a large difference between 

cumulative estimated ETc for the maize crop and Scenario-local (384.4 and 415.3 mm for 

Scenario-virtual and 345.4 and 374.6 mm for Scenario-local) due to the long stress period 

compared with Scenario-virtual (Figs. 8.7, 8.8 and 8.9).  

 

 

Figure 8.8: Comparisons of daily estimated crop evapotranspiration (ETc) in each zone for Scenario-virtual 

with Scenario-local using actual irrigation. 

8.324 Comparison of soil water deficit for two scenarios 

Fig. 8.9 show the progression of SWD estimated by VRI–DSS using actual irrigation 

compared with SWD calculated using the neutron-probe soil moisture data through the 

growing season.  

The overestimation of rainfall in Scenario-virtual (52 mm for virtual data and 3 mm for 

on-farm data) after 80–87 days of planting (Fig. 8.5) indicated that the SWD was less than 

the actual allowable amount, while Scenario-local showed the soil was drier.
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The maize crop initially went into stress (SWD > crop stress threshold) after 53 and 90 

days of planting for Zone 1 and Zone 2, respectively, in both scenarios. After 118 and 

125 days of planting, the rainfall and irrigation were enough to indicate non-water-stress 

conditions for Scenario-local and virtual.  

 In Scenario-virtual, sweetcorn was considered non-water stressed for both zones during 

the whole season. Scenario-local indicated that short water-stress conditions started 

between 60 and 80 days after planting for Zone 1 and Zone 2, respectively.  

The SWD in Scenario-local and the measured SWD showed very similar trends in each 

zone during the growing season for each crop trial. This indicates that VRI–DSS was able 

to track the SWD accurately when using local climate data.  

The above results indicate that the VRI–DSS model with local climate data was predicting 

SWD well enough to be used for making VRI irrigation scheduling decisions. The VRI–

DSS – sweetcorn model provided the depth of irrigation water needed to bring the SWD 

above the irrigation trigger, taking into account a maximum irrigation amount of 25 mm 

(Figs. 8.6, 8.7, and 8.9). For the sandy loam soil (Zone 1), soil water depletion was 

relatively rapid, and irrigation quantity was more. When the soil texture became finer (i.e. 

Zone 2), SWD was slowed down, and the irrigation requirement was less.
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8.33 Soil nitrate content for the two soil zones 

There was no significant difference in NO3-N and NH4-N levels in the upper 45 cm of 

soil at harvest, despite some evidence for higher soil nitrate content in Zone 2 than Zone 

1 (Table 8.4) for both crop trials. Therefore, we can conclude that N fertility was not a 

contributing factor and moisture differences played a major impact on crop growth and 

yield for this experimental trial.  

Table 8.4: ANOVA and Tukey’s HSD test’s result (mean ± standard error) for nitrate content (NO3-

N (mg kg-1)) and ammonium content (NH4-N (mg kg-1)) in the upper 45 cm of soil at harvest. P = 

parametric test. The same lowercases represent no significant differences between the two zones. 

 Zone 1 Zone 2 

                                              Maize 

NO3N P 14.3 ± 4.0 a 20.7 ± 2.6 a 

NH4N P 1.0 ± 0.2 a 0.5 ± 0.2 a 

                                          Sweet corn 

NO3N P 14.0 ± 5.4 a 25.9 ± 6.7 a 

NH4N P 0.4 ± 0.1 a 0.8 ± 0.1 a 

8.34 Yield assessment and water use efficiency for the two soil 

zones 

The actual yield difference between Zone 1 and Zone 2 for both crop trials is shown in 

Table 8.5. The responses of yield to water stress level were different between the two 

zones. Maize yield for Zone 1 = 1180.35 g m-2 (11.80 T ha–1) was lower than Zone 2 = 

1355.17 g m-2 (13.55 T ha–1), and significantly different. The sweetcorn yield was 

consistent = 1385.62 and 1408.20 g m-2 (37.5 and 38.5 T ha–1) for Zone 1 and Zone 2, 

respectively. This could be attributed to the non-significant difference in water-stress 

conditions (short period) for sweetcorn zones (Fig. 8.9).  

Actual water applied to the VRI–DSS, Zone 2 treatment was 27% and 34% less than the 

Zone 1 treatment for maize and sweetcorn, respectively. The WUE equals the amount of 
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grain produced by irrigation water divided by the amount of irrigation water applied. The 

VRI–DSS, Zone 2 treatment had the highest WUE because of the less irrigation water 

applied. This result showed the VRI–DSS management was able to use irrigation water 

more efficiently. 

Table 8.5: Average dry-mass yield and water use efficiency (WUE) (mean ± standard deviation) in 

each zone. * The mean difference is significant at the 0.05 level.  Same letters indicate P > 0.05 (not 

significantly different). 

Treatment Avg. Yield 

(T ha-1) 

WUE 

(kg m-3) 

 Avg. Yield 

(T ha-1) 

WUE 

(kg m-3) 

 Maize  Sweetcorn 

Zone 1 11.80 ± 0.59 a 9 a  13.86 ± 0.23 a 16.90 a  

Zone 2 13.55 ± 0.09 b 14.26 b  14.08 ± 0.30 a 26.07 b 

8.4 Conclusions 

A model-based VRI–DSS system was evaluated for maize and sweetcorn crops using local 

field measurements at a commercial farm in New Zealand.  

The case study showed that the VFM used for this study provided an adequate prediction 

of evapotranspiration and overestimate prediction of local rainfall (+12%). This is 

expected as rainfall events are very sporadic, with large local variations in the temperate, 

maritime climate conditions of New Zealand, and means that on-going improvements to 

the VFM are occurring and are a focus to improve overall recommendations. Therefore, 

due to variations in rainfall data, VRI–DSS underestimated SWD and ETc. However, when 

local data was used with VRI–DSS to simulate results the SWD had very similar trends 

with that derived from measured SMC data. Soil water increase was comparable to 

applied irrigation in each soil zone for the maize and sweetcorn crop trials, indicating 

effective use of irrigation by the plant. The soil water was extracted from the whole soil 

profile in each zone for both crop trials to meet the crop water demand and surface soil 

evaporation. WUE for maize and sweetcorn under variable irrigation rates were improved 

by the VRI irrigation strategy. Maximum values of WUE occurred at the Zone 2 

treatments, which had a high capacity for water storage. The use of VRI–DSS system-

based irrigation scheduling allowed two-thirds of the irrigation water to be saved for the 
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high AWC soil (Zone 2) with the same yields as the low AWC soil (Zone 1) under these 

experimental, soil, crop. and climatic conditions.  

Further research is required to use VRI–DSS with local weather stations and for a greater 

variety of crops and soil conditions at different sites.  In addition, further research is 

required to investigate the potential integration of the site-specific sensed data presented 

in Chapters 5, 6 and 7 to refine the VRI control software and make it more sensitive to 

spatial and temporal variability of field conditions. 
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Connecting text to Chapter 9 

This thesis has presented new sensing and modelling approaches that can be used to 

inform irrigation scheduling at high spatial and temporal resolution. Chapter 9 

investigates in more detail the appropriate timing to initiate irrigation based on soil 

moisture status. It compares two different soil moisture status thresholds for irrigation 

timing together with their respective water use efficiency performance indicators. The 

trial used two soil water content thresholds to adjust irrigation timing to field grown 

spring wheat. It also tests a new version of the VRI–DSS software, adapted to receive local 

rainfall data, based on recommendations from Chapter 8. 
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Chapter 9  

Response of spring wheat (Triticum aestivum L., 

cv. ‘Sensas’) to soil type and soil moisture status 

thresholds 

 

Abstract 

A model-based decision support software system (VRI–DSS) that automates irrigation 

scheduling was used to schedule irrigation to spring wheat (Triticum aestivum L., cv. 

‘Sensas’) using a VRI system. This experiment was conducted (1) to evaluate the VRI–

DSS–Wheat model for scheduling irrigation, and (2) to compare the effects of varying 

irrigation thresholds on spring wheat grain quality, yield, dry matter, soil water uptake, 

irrigation water use efficiency (IWUE) and crop water productivity (WP). Two irrigation 

threshold treatments at 40% and 60% AWC and a rainfed treatment were applied to the 

spring wheat growing in two different soil types; a sandy loam (Zone 1) and a silt loam 

(Zone 2) at Massey University’s No.1 Farm, Palmerston North, New Zealand.  

The results indicated that the crop evapotranspiration rates estimated by the VRI–DSS–

Wheat model data were similar to the values measured near the study site (R2= 0.91, 

RMSE= 0.22 mm d-1, and bias= 0.21 mm d-1). The plant height, grain yield, 1000-grain 

weight, percentage of dressing loss, grain density and total biomass variables were not 

significantly affected by soil type or by varying the irrigation schedule. Soil-water uptake 

pattern was affected mainly by the soil type, rather than irrigation. The soil water uptake 

decreased with soil depth for Zone 1 treatments. The soil water was uniformly taken up 

from all soil layers for Zone 2 treatments. The 60% irrigated treatments were very 

comparable to the 40% treatments in terms of IWUE and were therefore both applicable 

VRI strategies for increasing WP for spring wheat while using 40% less irrigation water 

due to the soil type effect. 
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Keywords: Water use efficiency, Irrigation water use efficiency, Variable rate irrigation, 

Irrigation schedule threshold, Decision support software system, Soil water balance. 

9.1 Introduction 

The concerns over water availability and water quality increasingly require irrigated 

agriculture to manage water resources more efficiently. The competition for existing 

freshwater supplies will require a paradigm shift from maximizing productivity per unit 

of land area to maximizing productivity per unit of water consumed (Evans & Sadler, 

2008), reducing the total amount of water used for irrigation across landscapes (Grafton 

et al., 2018). 

Precision irrigation equipment such as variable rate irrigation (VRI) has the potential to 

minimise the amount of irrigation needed to achieve a desirable yield (Perea et al., 2018). 

With VRI, the application depth, intensity, and timing, as well as the spatial extent of each 

soil management zone, can now be controlled at levels of precision that had previously 

been impossible in the large fields of modern agriculture (Evans et al., 2013; Daccache et 

al., 2015). The VRI system is necessary in humid areas such as New Zealand to reduce 

the risk of excessive irrigation and eliminate many associated problems, where excessive 

water can increase nitrogen (N) losses due to accelerated leaching and/or denitrification. 

In other words, irrigation scheduling is a critical element in reducing deep percolation 

and improving water quality downstream.  

Several researchers have reported on the main approaches to irrigation scheduling in soils 

and the available techniques available over the years. A range of reviews has concentrated 

on measuring soil moisture content (SMC) (e.g. Bittelli (2011); Dane and Topp (2002), 

physiological measurements (e.g. Cifre et al. (2005); Jones (2004a) or water balance 

calculations (e.g. Allen et al. (1998). The sensor-based approach has typically scheduled 

irrigation events on the basis of SWC status, whether using direct SMC measurements 

with capacitance devices, neutron-probes or TDR-type sensors (Topp & Davis, 1985), 

tensiometers (Smajstrla & Harrison, 1998). 
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Best-practice irrigation scheduling requires accurate threshold values for individual crops 

and soil types (Thompson et al., 2007). These threshold values for scheduling are often 

expressed as a percentage of soil available water content (AWC).  A range of AWC 

threshold values (25-70%) has been investigated by many researchers in order to obtain 

maximum crop yield, and/or water use efficiency (WUE) (Allen et al., 1998; Coolong et 

al., 2012; Yadav et al., 2018). AWC threshold values require site-specific assessment as 

there is considerable uncertainty when fixed values for irrigation scheduling are used 

(Girona et al., 2002).  

The quality and yield response of spring wheat to irrigation is very dependent on how the 

irrigation is scheduled. The timing and amount of irrigation required by wheat varies with 

soil type and season (Kang et al., 2002). Kang et al. (2002) concluded that the grain yield 

response to irrigation varied considerably between seasons due to differences in soil 

moisture contents and irrigation scheduling. Al-Kaisi et al. (1997) and Xue et al. (2003) 

reported that the grain yield of wheat was significantly increased with increasing 

irrigation frequency. Yadav et al. (2018) found that when different quantities of irrigation 

were used at different growth stages, there was no significant difference in plant height, 

spikes m-2, grains per spikes, spike length, grain yield and total biomass variables while 

1000 grain weight, and harvest index were significantly affected. Khan et al. (2007) 

reported no difference in yield and yield components when the crop was irrigated 

according to the full evaporation and half pan evaporation. In contrast to these results, 

Salunkhe et al. (2014) found significant yield difference between different irrigation 

scheduling regimes. Khan et al. (2007) also concluded that there was a significant effect 

of irrigation intervals on grain yield, number of grains per spike, grain weight per spike, 

and number of tillers per plant.  

To increase both the feasibility and acceptance of VRI systems, research is required to 

develop VRI decision support systems (DSSs) including the AWC thresholds at which 

water should be applied to crops to improve irrigation water use efficiency (IWUE) and 

yield. Numerous DSSs have been developed in the most intensive agricultural areas in the 

world to enhance irrigated crop management within a single field or over several fields 

to maximize total yield over the area (Rinaldi & He, 2014). The DSS generally provides 

a daily or seasonal irrigation schedule for a specific crop and field, determines the date of 
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the next irrigation and the seasonal water requirements, develops water production 

functions, and uses them in economic decision support tools. Most DSSs estimate the crop 

water needs on the basis of (i) a water balance which uses local climate, soil, and crop 

data (e.g. CropWat (Smith, 1992), AquaCrop (Steduto et al., 2009), CropIrri (Zhang & 

Feng, 2009), and PlanteInfo Irrigation manager (Thysen & Detlefsen, 2006)), (ii) wireless 

sensor networks (e.g. Barker et al. (2018); Hedley et al. (2013); Kim et al. (2008); Liang 

et al. (2016); O’Shaughnessy and Evett (2008)), and recently (iii) satellite-derived image 

data (e.g. IrriSatSMS (Car et al., 2012), CubeSat-based satellite systems (Aragon et al., 

2018) 

To our knowledge, no study has been conducted to determine the effects of AWC 

threshold for scheduling irrigation to spring wheat on different soil types  in New Zealand. 

In this study, our objectives were (i) to evaluate a VRI–DSS system in a research field 

irrigated by a VRI centre pivot system and planted to spring wheat, and (ii) to investigate 

the relationship between soil type and irrigation schedule threshold for spring wheat. 

9.2 Materials and Methods 

9.21 Study site 

The experiment was conducted during the 2018/2019 growing season under a 4-ha VRI 

centre-pivot system on Massey University’s No.1 Dairy Farm, near Palmerston North, 

New Zealand (40°22'56.28"S, 175°36'24.72"E, elevation 37 m). The site is located on 

New Zealand’s west coast and has an annual mean rainfall of 980 mm and a mean 

temperature of 13.3 °C (NIWA, 2018) (www.niwa.co.nz). The soils were formed in 

greywacke alluvium, and are classified as a Fluvial Recent (Hewitt, 2010). A soil survey 

of this field site indicated two different soil types: a Manawatū fine sandy loam (Zone 1) 

and a Manawatū silt loam (Zone 2) (Pollok et al., 2003) (Fig. 9.1). The physical 

characteristics of the soils are given in Table 9.1 (El-Naggar et al., 2017).  

http://www.niwa.co.nz/
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Figure 9.1: Soil map and the experimental plots in each zone based on the soil types (Zone 1, Mnsl: 

Manawatū fine sandy loam (0.7 ha), Zone 2, Mnsil: Manawatū silt loam (0.6 ha)) (Pollok et al., 2003) 

Table 9.1: Physical properties of the soil (0 – 1 m)  

Properties 
Soil types/ zones 

Zone 1 (sandy loam) Zone 2 (silt loam) 

Available water content (mm m-1) 123 203 

Bulk density (g cm-3) 1.41 1.30 

Sand (%) 80.6 44.9 

Silt (%) 12.7 40.6 

Clay (%) 6.7 14.5 

9.22 Experimental design and irrigation treatments 

The experiment consisted of two irrigation treatments - corresponding to irrigation at 

thresholds of 40% and 60% AWC - and a rainfed treatment. The plots had dimensions of 

20 m x 10 m. All treatments were replicated two times in a randomized complete block 

design (Fig. 9.1 and Table 9.2).  At each irrigation event, 25 mm of water was applied 

each time the soil water in the root zone was depleted by about 40% or 60% of the AWC 

for the two treatments.  
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Spring wheat (Triticum aestivum L., cv. ‘Sensas’) was planted on 17th November 2018 at 

a row spacing of 20 cm and a rate of 260 kg. ha-1. The plants emerged on November 25, 

2018 and were harvested on February 28, 2019. All treatments were fertilized equally 

(260 N kg ha-1).  

Irrigation water was applied by an 86-m VRI centre pivot system (1 span, 31 sprinklers, 

spray radius of 5 m and a flow rate of 26.3 m3 h-1) using the VRI–DSS scheduling program. 

All treatments received the same depth of water from spring rainfall at the beginning of 

the crop trial until the midpoint of the season, bringing the SWC to field capacity for all 

treatments and providing adequate and uniform soil moisture for planting, crop 

germination and establishment. 

 Table 9.2: Experimental design and irrigation treatments 

 Treatments (% AWC) 

Zone Zone 1  Zone 2 

Treatments I40_Z1 I60_Z1 Rainfed_Z1  I40_Z2 I60_Z2 Rainfed_Z2 

% AWC 40 60 -  40 60 - 

Replicated plots 2 and 4 1 and 3 9 and 10  5 and 7 6 and 8 11 and 12 

9.23 VRI–DSS scheduling program   

The VRI–DSS is a single, integrated platform designed to schedule and control VRI centre 

pivot and lateral sprinkler irrigation systems. It automatically generates VRI prescription 

maps that are dynamically optimized daily using a water balance modelling approach 

(http://www.myfieldnet.com/fieldnet-advisor) 

The VRI–DSS is using a virtual global weather forecast model (as explained by Das et al., 

2010; Dobbs et al., 2003) to predict daily evapotranspiration (ETo) values. The virtual 

model joins up different weather forecast models of up-to-date information to identify 

which one works best for different locations. The model contains hourly weather forecast 

data for 4-day and 14-day periods with a forecast of maximum crop water needs. The 

forecast information is (i) rainfall amounts; (ii) minimum and maximum temperatures; 

(iii) cloudiness; (iv) wind speed; (v) solar radiation, and (vi) relative humidity. The model 

calculates the daily reference evapotranspiration (ETo), using day-to-day weather  

http://www.myfieldnet.com/fieldnet-advisor
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forecasts based on the Penman-Monteith (PM- ETo) model. The PM- ETo model and the 

FAO-56 crop coefficient function (Allen et al., 1998) are used to estimate the crop 

evapotranspiration (ETc) and then the daily soil water balance model (Allen et al., 1998) 

is used to calculate the soil water deficit (SWD) and schedule irrigation. Following a 

method similar to that described by McMaster and Wilhelm (1997), VRI–DSS uses 

growing degree day units after emergence, in preference to the number of days after 

emergence, to determine the growth stage. As it is a challenge for climate models to detect 

rainfall for a small area in New Zealand (Schmidt et al., 2009), the accumulated daily 

rainfall data were obtained from a rain gauge located at the study site and automatically 

updated in the VRI–DSS system. This refinement was added as a potential improvement 

for VRI–DSS after, and as a result of, our trial results in Chapter 8. 

The constant values for the irrigation trigger (critical soil moisture deficit) for the 40% 

AWC in each specific growing period were at 0.11, 0.40 and 0.70 total available water 

(TAW) for initial, mid and late crop stage, respectively. The constant values for the 

irrigation trigger (critical SWD) for the 60% AWC in each specific growing period were 

at 0.11, 0.60 and 0.93 TAW for initial, mid and late crop stage, respectively.  

Linear interpolation for crop parameters (Kc and rooting depth) and irrigation trigger 

values were used between growth stages. The measured effective rooting depths during 

the growing season were used. 

The soil map of the study site (Fig. 9.1 and Table 9.1) and information for spring wheat 

crop (crop type, hybrid, planting date) was loaded into the VRI–DSS platform, and all this 

information along with the virtual weather data and rain gauge data were used to simulate 

the water balance under spring wheat and generate daily VRI prescription maps. In turn, 

these maps were actioned manually using the software control.  

9.23 Measurements 

Meteorological data, including daily air temperature, wind speed, relative humidity, 

rainfall, solar radiation, and  ETo were collected from the Palmerston North CliFlo climate 

station (http://cliflo-niwa.niwa.co.nz/) (lat. -40°22′55″S, long. 175°36′32″E and 21 m 

elevation, located 0.2 km from the trial site) and used to assess the predictive power of  
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the virtual weather data predicted by VRI–DSS. 

The SMC was measured at 0.1 m depth intervals to 0.8 m in all irrigation treatments using 

a neutron-probe. Measurements were recorded once each week. The SWD was 

determined by subtracting the mean of neutron meter measurements of SMC from the 

AWC (Lenka et al., 2009).  AWC values are reported in Table 9.1. 

The length of 60 plants was measured manually at harvest for each plot to distinguish the 

impact of treatments on final crop height. The impact of treatments on the harvest grain 

yield was determined by weighing the grain harvested from each plot using a plot 

harvester (Fig. 9.2).  

  

Figure 9.2 Yield measurement using a plot harvester at the field site. 

Yield data were adjusted to 14% moisture content. Whole plot samples were weighed, 

and a sub-sample from each plot was collected and dried at 70° C for four days to 

determine grain moisture concentration. Yields were reported as dry grain yields. Also, 

the following wheat quality parameters were assessed: 

• Mass of plant (total biomass) in g m-2 (three replicates with a dimension of 

1 m2) 

• After discard seeds that removed by cleaning/grading, the percentage of 

dressing loss and seed size (triplicate 500 g sub-sample) was measured by 

weighing 1000 grains, known as the 1000-grain weight.  

• Grain density (kg hL-1) or Hectolitre weight was obtained with a Shopper 

chondrometer equipped with a 250 ml cylinder.
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The IWUE was calculated as the ratio between total yields (marketable yield) harvested 

(kg) and the total volume of irrigation applied (m3). The WP was calculated by dividing 

the mean plot yield by the total water applied (irrigation + rainfall). 

Three replicates of soil samples were collected at 0.15-m intervals to a depth of 0.45 m 

from each plot at harvest for a comparison of the levels of soil nitrate and ammonium 

between treatments and their impact on crop growth. Laboratory analysis included 

measurements of mineral nitrogen (NH4-N and NO3-N); ammonium and nitrate were 

extracted with 2 M KCl using a 1:10 soil: extractant ratio and a 1-hour end-over-end shake 

followed by filtration (Blackmore et al., 1987) and then quantified using a QuikChem 

8500 flow injection analyser. 

9.24 Statistical Analysis 

To evaluate the VRI–DSS model, the outputs created by the model (temperature, wind, 

solar radiation, humidity and ETc) were calibrated and validated against the field 

experimental data using coefficient of determination (R2), bias, and root mean square 

error (RMSE) (Cohen Liechti et al., 2012; Moazami et al., 2013). 

Biomass, yield, and yield components data were statistically analyzed for the treatment 

effects and year using analysis of variance (ANOVA). Means were separated by 

calculating the least significant difference (LSD) in R version 3.5.1 (R Core Team, 2018). 

All significant differences were evaluated at the 0.05 level. 

9.3 Results and Discussion 

9.31 VRI–DSS model evaluation 

The model validation showed that the predicted weather data, using rainfall data from the 

trial area, agreed closely with the measured data across the crop season. The average 

predicted air temperature showed a significantly high correlation and lower biases and 
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errors (R2= 0.87, RMSE= 0.83 ⁰C, and bias= 0.63⁰C) (Fig. 9.3a). The simulated wind 

speed values were generally higher than the measured speeds (R2, RMSE, and bias values 

of 0.79, 0.52 m s-1 and – 0.46) especially during the beginning and later growth stages 

(Fig. 9.3b). The predicted solar radiation values were closer to the measured data (Fig. 

3c): the overall R2, RMSE, and bias values were 0.90, 4.33 w m-2 and 2.12 w m-2, 

respectively.  

The ETc predicted by VRI-DSS agreed closely with ETc calculated using measured data 

(Fig. 9.3e): the corresponding R2, RMSE, and bias values for predicted ETc were 0.91, 

0.22 mm d-1, and 0.21 mm d-1, respectively. These results are comparable with previous 

simulation study (Chapter 8) by VRI–DSS model with RMSE values of 0.17 ⁰C, – 27.30 

w m-2, 3.27 % and 0.53 mm for air temperature, solar radiation, humidity and ETc at farm 

site in Hawke’s Bay region in New Zealand, but improved by the use of local rainfall data 

instead of rainfall predicted by a global model. 

 

Figure 9.3: Comparisons between (a) average air temperature (Temp, oC), (b) wind speed (Wind, m s-1), (c) 

solar radiation (Rad, w m-2), (d) Humidity (Humd, %), and (e) daily crop evapotranspiration (ETc, mm d-1) 

estimated by VRI–DSS–Spring wheat model and measured values from Palmerston North CliFlo climate 

station (http://cliflo-niwa.niwa.co.nz/) for the wheat trial (17Nov2018 to 28Feb2019). 

http://cliflo-niwa.niwa.co.nz/
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9.32 Irrigation application and soil water uptake for each 

treatment 

The SMC was often wetter than field capacity because of excessive precipitation from the 

beginning of the crop trial until the midpoint of the season i.e. from approximately 6 to 

41 days after planting (stage 7, fully extended to stage 8, flag leaf emerged). After the 

mid-point of the season, less rainfall meant that irrigation was required until the grain 

maturity stage (see Fig. 9.4). The total number of irrigations during the experiment were 

5, 3, 3 and 1 for I40_Z1, I60_Z1, I40_Z2, and I60_Z2, respectively. Accumulated irrigation 

water amounts for the treatments I40_Z1, I60_Z1, I40_Z2, and I60_Z2 were 125, 75, 75 and 

25 mm, respectively (Fig. 9.4). The SWD showed differences by soil layer and irrigation 

application (Fig. 9.4 and 9.5). The greatest SWD occurred under the rainfed treatments, 

and the rainfed_Z1 extracted the least soil water in the root zone.  

Plant water uptake in Zone 1 was mostly from the two surface soil layers (0 – 0.2 m and 

0.2 – 0.4 m) (Table 9.3) whereas water uptake in Zone 2 was more uniform down the 

profile (Table 9.3). The rainfed treatments experienced the greatest SWD up to near 

wilting point at late season (85% and 76% of AWC for Zone 1 and Zone 2, respectively). 

Considering the wheat root zone of 0.7 – 1 m (Allen et al., 1998; Fan et al., 2016) only 

the rainfed_Z1 treatment exhibited a high rate of water stress (Fig. 9.4). 

Under Zone 1 irrigated treatments (Fig. 9.5a, b, and c), the topsoil layer (0 – 0.2 m) was 

the most depleted during the growing season. The largest SWD of the topsoil (0 – 0.2 m) 

was about 33 mm (28% of AWC) for I40_Z1 and 38 mm (33% of AWC) for I60_Z1 at 88 

days after planting (stage 15, hard dough to stage 16, ripe (kernel hard)). The decrease in 

soil water extraction from the 0.4 – 0.6 m and 0.6 – 0.8 m layers could have been caused 

by low capacity for water storage in the sand as observed by El-Naggar et al. (2017) so 

that fewer roots will grow down through them. The SMC was relatively stable at field 

capacity in the 0.4 – 0.6 m and 0.6 – 0.8 m soil layers for I60_Z1 and rainfed_Z1 treatments 

while it was above field capacity in the 0.4 – 0.8 m layer after the first irrigation event for 

I40_Z1 (57 days after planting). Similar to the rainfed_Z1 treatment, less water was 

depleted from the deeper layers by root uptake and evaporation.
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Under Zone 2 irrigated treatments (Fig. 9.5d, e, and f), water use was uniformly 

partitioned between the soil layers (0 – 0.8 m) and this due to the greater root depth allows 

water extraction from all soil layers (Wasson et al., 2014). This agrees with Joffre et al. 

(2001) who observed that when heavier textured soil layers lose water by transpiration, 

the water potential reduces, and the extraction moves toward deeper layers. The largest 

SWD of the topsoil (0 – 0.2 m) was about 25 mm (14% of AWC) for I40_Z2 at 88 days 

after planting and 39 mm (23% of AWC) for I60_Z2 at 94 days after planting (stage 16, 

Ripe (Kernel Hard)). Similar to the rainfed _Z2, water depleted uniformly between the 

soil layers and the largest SWD was in the topsoil (0 – 0.2 m and 0.2 – 0.4 m).  

Overall, the greatest water uptake due to both soil evaporation and plant transpiration 

through roots was from the top layers (0 – 0.4 m) for Zone 1 and from the whole soil 

profile (0 – 0.8 m) for Zone 2. The I40_Z1 treatment was the highest irrigated treatment, 

and the 0.6 – 0.8 m soil layer was always its maximum AWC. 

 

Figure 9.4: Soil water deficit (SWD) for each soil zone estimated by VRI–DSS and irrigation application 

under different irrigation treatments: (a) I40, (b) I60, (c) rainfed 
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Figure 9.5: Average soil water deficit at different depths (0 – 0.8 m) as calculated using the neutron probe 

data from each irrigation treatment: (a) I40_Z1, (b) I60_Z1, (c) rainfed_Z1 (d) I40_Z2 (e) I60_Z2, and (f) 

rainfed _Z2 during the spring wheat growing season. 

Table 9.3: The fraction of total soil profile water deficit (SWD) per depth calculated from neutron-probe 

measurements under the irrigation and rainfed treatments in each soil zone 

 fraction Total SWD 

Depth (m) 0-20 20-40 40-60 60-80 

I40_Z1 0.48 0.34 0.11 0.07 

I60_Z1 0.45 0.36 0.10 0.08 

rainfed_Z1 0.55 0.36 0.04 0.05 

I40_Z2 0.25 0.26 0.25 0.24 

I60_Z2 0.27 0.26 0.23 0.24 

rainfed _Z2 0.31 0.34 0.20 0.14 

9.33 Wheat crop assessment for each treatment 

The effects of soil type and irrigation thresholds of 40 and 60% AWC on final plant height, 

grain yield, and total biomass were evaluated. The results are summarized in Table 9.4. 

I40_Z1, I60_Z1, I40_Z2, and I60_Z2 produced a marketable yield of 4.8, 4.7, 6.5 and 5.4 T 

ha-1 against applied water depth of 125, 75, 50 and 25 mm, respectively. There was no 
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significant difference in grain yield between the irrigation treatments at the 0.05 

probability level using ANOVA and Tukey’s HSD tests. Marketable yields from rainfed 

treatments had a significantly lower value (P < 0.05) than the irrigated treatments. In 

comparison with average of the irrigation treatments, the yield reduction percentages in 

rainfed_Z1 and rainfed_Z2 were 55 and 38%, respectively.  

There were no significant differences in the plant height, biomass, 1000-grain wt and 

grain density observed amongst the different irrigation treatments. Rainfed treatments 

resulted in biomass reductions compared to those with irrigated treatments. In general, 

the percentage of seeds dressings was slightly lower with increasing irrigation water 

amounts. Dressing loss under rainfed_Z1 treatments were significantly different, while 

I40_Z1, I60_Z1, I40_Z2, I60_Z2, and rainfed_Z2 treatments showed no significant differences. 

The results indicated that while yield was maximized in I40_Z1 and I40_Z2, the slightly 

lower yields in the I60_Z1 and I60_Z2 were similar with approximately 40% less water 

used to achieve those yields. Although less irrigation water was applied for Zone 2 

treatments in comparison to Zone 1 treatments, the greater root depth allows increased 

water uptake and higher yields for Zone 2 which agree with Gao et al. (2016); Lilley and 

Kirkegaard (2011); Lynch (2013) who reported the deep rooting is a useful trait and likely 

to be associated with better exploration of surface layers and water or nutrient uptake. 

Similar findings by Wasson et al. (2014) showed that the soil type had the greatest effect 

on the distribution of roots with depth for the wheat crop, with one of the soils 

encouraging a much greater root length density. 

Table 9.4: Statistical analysis of wheat quality parameters as influenced by each treatment.  Means 

followed by the same letter are not significant (p<0.05) 

Treatments Plant  

height  

(cm) 

Yield 

 

(T ha-1) 

Biomass 

 

 (T ha-1) 

1000- grain 

wt 

 (g) 

Dressing 

loss 

(%) 

Grain 

density 

Kglha-1 

I40_Z1 81.9ª 4.8ª  9.2ª 39.3ª 0.9ª 82.2ª  

I60_Z1 80.2ª 4.7ª  8.9ª  38.7ª 1.1ª 80.5ª 

I40_Z2 83.5ª 6.5ª  10.1ª  40.5ª 0.9ª 81.4ª  

I60_Z2 83.9ª 5.4ª  10ª  38.2ª 1.3ª 80.6ª  

rainfed _Z1 75.1b 2.4b  6.2b  30b 2.6b  77.1b 

rainfed _Z2 77.6b 3.7b  7.8b  37.5ª 1.4ª  79.9ª  
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   9.34 Irrigation water use Efficiency (IWUE) and Water 

productivity (WP) 

The greatest amount of irrigation water was applied to Zone 1 at 125 and 75 mm for 

I40_Z1 and I60_Z1 treatments, respectively. The IWUE and WP values varied depending 

on the treatment and the soil type (Table 9.5). The IWUE was 3.8 and 6.3 kg m-3 for 

I40_Z1 and I60_Z1, and 8.7 to 21.6 kg m-3 for I40_Z2 and I60_Z2, respectively. The WP 

values were 1.3 and 1.2 kg m-3 in Zone 1 treatments and 1.6 kg m-3 in Zone 2 treatments. 

The rainfed_Z1 treatment had the lowest WP in both soil zones. In comparison to I40_Z1, 

less water (40 to 80%) was used by I60_Z1 and I60_Z2, respectively. 

Generally, both IWUE and WP increased as the irrigation threshold increased. This was 

due to the fact that although less irrigation was applied to the 60% AWC treatment, this  

did not result in a significant decrease in grain yield. The findings in Table 9.4 and 9.5 

indicate that the highest irrigation volume does not necessarily result in higher yields and 

the highest IWUE (Sezen et al., 2006) which agrees with (Howell, 2001) who reported 

that the highest IWUE with less irrigation, implying full use of the applied water and 

perhaps a tendency to promote deeper soil water uptake to make better use of both the 

stored soil water and the growing seasons rainfall. The highest IWUE and water-saving 

were obtained with AWC threshold of 60% in both soil zones because much of the water 

consumption was to meet ETc needs, and the effect of soil texture on water retention 

(Clothier et al., 1977a; El-Naggar et al., 2017) and water uptake in Zone 2 enhanced yield. 

Overall, varying the irrigation between the two soil zones with a VRI system and a 

threshold of 60% AWC was a viable strategy for scheduling irrigation to spring wheat at 

this site under the weather conditions experienced here. The effects of AWC thresholds 

investigated in this study showed the importance of determining this value under different 

soil types and its practical use in irrigation scheduling.
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Table 9.5: Irrigation water amount, irrigation water use efficiency (IWUE) and water productivity (WP) 

for each treatment. The same lower cases represent no significant differences of the treatments. 

Treatments Water use 

 (mm) 

Water-saving 

 (%) 

IWUE 

 (kg m-3) 

WP 

 (kg m-3) 

I40_Z1 125 - 3.8 c 1.1 b 

I60_Z1 75 40 6.3 b 1.2 b 

I40_Z2 75 40 8.7 b 1.6 a 

I60_Z2 25 80 21.6 a 1.6 a 

rainfed _Z1 0 0 0 0.8 c 

rainfed _Z2 0 0 0 1.2 b 

9.35 Soil nitrate content for the two soil zones 

All plots received the same adequate amount of N fertilizer (260 N kg ha-1) at the 

beginning of the season to ensure any yield differences could be related to different 

irrigation schedules and not to fertility differences. We also measured the soil N content 

at harvest to check for any impacts of residual N differences. There was no significant 

difference in the quantities of NO3-N and NH4-N in the upper 45 cm of soil between the 

treatments at harvest for both crop trials (Table 9.6). 

Table 9.6: ANOVA and Tukey’s HSD test’s result for mean (standard error) nitrate content (NO3-

N (mg kg-1)) and ammonium content (NH4-N (mg kg-1)) in the upper 45 cm of soil at harvest. Means 

followed by the same letter are not significant (p<0.05). 

Treatments NO3N NH4N 

I40_Z1 5.9 (1.8)ª 1.1 (0.6)ª 

I60_Z1 5.5 (1.2)ª 1.3 (0.4)ª 

I40_Z1 6.7 (0.9)ª 2.5 (0.1)ª 

I60_Z1 5.9 (1.2)ª 0.5 (0.0)ª 

rainfed _Z1 5.5 (1.8)ª 0.4 (1.1)ª 

rainfed _Z2 4.8 (1.3)ª 0.2 (0.2)ª 
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9.4 Conclusions 

An irrigation scheduling program “VRI–DSS–Wheat model” has been tested and used to 

quantify the impact of soil type and irrigation threshold strategies on a spring wheat crop 

grown under variable irrigation application. Results showed that, with the use of 

measured rainfall, the VRI–DSS–Wheat model was able to simulate the spring wheat 

water balance very well. The greatest depths of irrigation water were applied to Zone 1 at 

125 and 75 mm for 40 and 60% AWC treatments, respectively. The amount of irrigation 

water applied to Zone 2 were 75 and 25 for 40 and 60% AWC treatments, respectively. 

There weren’t significant differences in biomass, yield and yield components between the 

two irrigation strategies. Soil type impacted the soil water uptake pattern, which 

decreased markedly with depth for the coarser textured soil (Zone 1) but was uniform 

with depth for the intermediate texture soil (Zone 2). The IWUE and WP for spring wheat 

under variable irrigation rates were affected by soil type and VRI irrigation strategies.  

Maximum values of IWUE and WP occurred at the treatments for which the irrigation 

threshold strategies were 60% AWC. The I60_Z2 resulted in the largest IWUE of 21.6 kg 

m-3. Water saving was about 40% under this experimental, soil and crop, and climatic 

conditions. 

Future research should be conducted to evaluate the VRI irrigation strategy with different 

AWC threshold values (30–70%) with other crops, soil types, and climate conditions to 

obtain maximum crop yield and WUE. 
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Chapter 10  

Overall summary and conclusions 

10.1 Summary and Conclusions 

Irrigated cropping systems depend on the use of water resources. With depleting global 

freshwater resources, it is essential to develop precise methods for estimating soil water 

supply and crop water demand so as to inform the scheduling of precision irrigation (PI). 

Frequently, variations in water availability across a field due to different soil types or crop 

water needs require site-specific irrigation management to achieve optimum yields and 

improve irrigation water use efficiency (IWUE). In this context, this study developed new 

sensing technology methods to deliver high resolution spatio-temporal information to 

support variable-rate irrigation (VRI) scheduling. 

Therefore, in Chapter 3 this study established two sites to investigate the impact of short-

range soil variability on crop growth. The first site is (i) a 4-ha experimental plot irrigated 

by a VRI pivot at Massey University, Palmerston North, Manawatū, and the second site 

is (ii) a 102-ha field irrigated by a VRI pivot on a commercial farm near Otane, Hawkes 

Bay. An irrigated pea crop trial at the Manawatū site evaluated the different responses of 

the crop to waterlogging in an imperfectly drained soil zone adjacent to a well-drained 

soil. Waterlogging in the imperfectly drained soil resulted in a substantial reduction in 

pea crop growth and yield at harvest, with an average of 1.75 T ha-1 compared with 4.15 

T ha-1 in the free draining soil. Assuming the value of fresh peas is $400 per tonne this 

crop yield reduction equates to a financial loss of $960/ha. This difference provides some 

evidence for the importance of varying irrigation amounts to two soil zones of contrasting 

drainage characteristics. In the barley trial, undertaken on the Hawkes Bay commercial 

farm, the amount of irrigation applied at a fixed interval (15 mm/7 days) was insufficient 

to fully restore plant available water for barley on the free draining sandy soil. The 

observed barley growth and yield was reduced (P level < 0.01) compared to the 

imperfectly drained silty soil. A novel crop water stress index (CWSI) for pea and barley 
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crops was also developed in these trials using in-field radiometer measurements. The 

highest CWSI values of 0.6 (Manawatū site) and 1.7 (Hawkes Bay site) were obtained in 

the free draining soils. These pea and barley trials provided evidence of the effects of soil-

climate combinations at very small scales (i.e., within fields) on crop growth, supporting 

the need for precision irrigation methods.  

Given the results of Chapter 3, the study in Chapter 4 developed a quasi-2D inversion 

algorithm field method using electromagnetic induction (EMI) data for identifying soil 

spatial variability, both across the field (resolution 6 m) and with depth (resolution < 0.15 

m to 1.5 m). The quasi-2D algorithm is developed to invert the apparent electrical 

conductivity (ECa) data at low induction numbers to generate a model of volumetric 

moisture content (θv) at specific depths and produce two-dimensional (2D) images of the 

soil profile. The predicted θv showed a significantly high correlation and low biases and 

errors with the measured θv (R
2 = 0.66, bias = 0.00 cm3 cm−3, RMSE = 0.04 cm3 cm−3). 

The θv depth profile maps indicate the effects of texture and texture transitions on soil 

wetness. The predicted θv profile was able to identify water perching above a gravelly 

layer in the Manawatū fine sandy loam as described by earlier researchers (Clothier et al., 

1977). This research provides an improved method to identify and map, spatially and with 

depth, the soil properties that influence irrigation scheduling decisions at precision scales. 

The ‘multi soil layer’ outputs developed by this method could improve the ability of water 

dynamic models to account for drainage characteristics and associated water storage at 

fine scales. 

In Chapter 5, this study investigated and compared accurate methods for estimating 

irrigation water demand for a pea crop followed by a French bean crop over one season 

under a VRI centre pivot. Methods developed in the ECa imaging study (Chapter 4) were 

used to delineate soil zones and guide placement of soil moisture sensors (Chapter 5). 

The irrigation scheduling methods were based on real-time soil moisture monitoring 

(Sensor-based) and the FAO-56 water balance model (SWB). In addition, the local crop 

coefficient (Kcb) derived from ground-based normalized difference vegetation index 

(NDVI) measurements were assessed for their ability to improve the SWB predictions of 

crop evapotranspiration (ETc) and soil water deficit (SWD). The SWB model predicted a 

faster drying rate than was actually measured with the soil moisture sensors. The Sensor-

based technique saved about 23–45% of the irrigation water and produced the same pea 
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yields as the SWB-based model. The 23–45% water saving using real-time soil moisture 

monitoring of a pea crop equates to 25–44 mm water saved. Assuming that the cost of 

irrigation water applied is $2/mm/ha (https://www.irrigationnz.co.nz), this would equate 

to a $50 - $88/ha cost saving on irrigation. The ETc estimated using the NDVI values did 

not significantly improve the FAO 56 approach. In the bean trial, due to sufficient rain 

during the growing season, IWUE was not significantly different between the scheduling 

treatments. These trials provide evidence to support the benefits of site-specific soil 

moisture monitoring to inform precision irrigation decisions under a VRI system.  

Given the model results of Chapter 5, The study developed a novel sensing method for 

high resolution mapping of crop height (0.01 m accuracy) to inform spatial VRI 

scheduling tools and models. Terrestrial Laser Scanning (TLS) was used to assess the 

height and biomass of barley, pea and bean crops at high spatio-temporal resolution. Four 

campaigns were carried out periodically with the TLS scanner throughout the season to 

map vegetative growth. 2D mapping of canopy surface height with a high resolution of 

0.01 m was obtained from the TLS-derived results. Linear regression between manually 

measured and TLS-derived canopy height showed excellent correlation (R2 = 0.95, 0.93 

and 0.91 for barley, pea, and bean, respectively). Furthermore, a good correlation between 

TLS- measurements and dry biomass was achieved (R² = 0.70) and the linear regression 

showed the dependence of biomass on plant height. The TLS multi-temporal, crop height 

maps were used to improve crop coefficient and ETc estimates for the SWB model in 

Chapter 7. This research has developed a new method which has significant potential for 

improved high resolution (in time and space) monitoring of crop growth (height, biomass) 

which could critically improve model-based prescription maps that underpin VRI 

scheduling decisions. 

Chapter 7 presented field data that tested a new crop sensing approach (modified Penman-

Monteith algorithm, MPM) to estimate daily ETc by integrating remote sensing 

measurements (NDVI and canopy surface temperature (Tc)) with an FAO-56 Penman-

Monteith (PM) algorithm. The new ETc algorithm was used to estimate ETc of barley, pea 

and bean plots managed with two different irrigation treatments. The ETc –SWB was 

calculated from the water balance using the θv measurements and inputs of irrigation and 

rainfall and assumed no drainage. This was then used to compare estimations of daily ETc 

with those estimated using the two algorithms (PM and MPM). The results indicated that 

https://www.irrigationnz.co.nz/
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the barley crop was sensitive to restricted water, and the physiological responses were 

determined through remote sensing data. The MPM method outperformed the classic 

FAO-56 PM (MPM: R2 = 0.81 and RMSE = 0.42 mm day−1; PM: R2 = 0.70 and RMSE = 

0.60 mm day−1). This study evaluated a new approach that estimates daily crop water use 

using site specific crop sensor data and shows that it gives very good agreement with 

more conventional approaches that parameterise ETc models with climate data and lookup 

tables for crop growth. It therefore has the potential to use crop sensors to monitor varying 

site-specific crop growth differences, that would otherwise be missed by more 

conventional modelling approaches. 

In Chapter 8, this study then went on to report on which of the sensing methods 

investigated and developed in this research study could best inform the model-based 

approach. A model-based decision support software system (VRI–DSS) that automates 

irrigation scheduling to variable soils and multiple crops was evaluated. The VRI–DSS 

uses a virtual climate forecast models (VFM) to predict daily ET with a SWB model. Data 

from the soil zones and maize, sweet corn and wheat were utilized to calibrate and 

validate the model at the Hawkes Bay commercial farm study site. In addition, the 

differences in the outputs of the VRI-DSS were investigated when the VFM data that it 

ordinarily employs in its SWB is replaced with measured, site-specific climate data. The 

VFM provided an adequate prediction of ET (R2= 0.79, bias= –0.19 mm d-1, MSE= 0.28 

mm d-1 and RMSE= 0.53 mm d-1) but overestimates local rainfall (+12%). When local 

data was used with the VRI–DSS to simulate results, the SWD had very similar trends to 

those derived from measured θv data. This field trial showed that the use of this VRI–DSS 

system allowed two-thirds of the irrigation water to be saved for the high available water 

content (AWC) soil (imperfectly drained) with the same yields as the low AWC soil (free 

draining). 

Furthermore, Chapter 9 reported the use of VRI-DSS software in a field trail to investigate 

the effects of irrigating at thresholds of 40% AWC and 60% AWC compared with a non-

irrigated (rainfed) control treatment for a spring wheat crop. The ET estimated by VRI–

DSS–Wheat model data were similar to the values measured at the study site (R2= 0.91, 

RMSE= 0.22 mm d-1, and bias= 0.21 mm d-1). Soil type impacted soil water uptake 

pattern, which decreased with soil depth for the coarser textured soil and was uniformly 

proportioned with soil depth for the intermediate texture soil. There were no significant
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 differences in the plant height, grain yield, biomass, 1000-grain wt, and grain density 

observed amongst the different irrigation threshold treatments. Generally, both IWUE and 

crop water productivity (WP) increased as the irrigation threshold increased. The rainfed 

treatment had the lowest WP in both soil zones. The trial provided evidence to show that 

in comparison to 40% AWC threshold treatment, less water (40 to 80%) was used by the 

60% AWC threshold treatment with no negative impact on yield. This study in Chapter 8 

and 9 discussed the potential to include high resolution spatio-temporal environmental 

data (rain, soil, crop) with VRI-DSS under different irrigation thresholds. 

10.2 Recommendations for future research 

1- Development of dynamic DSS integrated with wireless sensor network (WSN)  

Wireless soil and crop sensor networks will allow real-time water applications that 

precisely match the water needs in each area of the field minimising leaching of nutrients 

or agrichemicals or surface runoff. Future research is needed to evaluate and do a 

sensitivity analysis to see which sensing technologies should best be integrated into a DSS 

for VRI systems equipped with special management and control software.  

2- Testing the VRI management system with a wider range of soil-topographic 

associations 

This research has tested two VRI irrigation systems at different scales on flat land. Future 

research is recommended to test VRI systems under a wider range of topographic, soil, 

climate and crop combinations to understand their performance and control needs under 

a wider range of conditions.  

3- Irrigation scheduling using CWSI 

Further research should be conducted using the canopy-air temperature differences 

approach in conjunction with other scheduling methods developed in this study to see if 

this combination of methods approach could possibly improve irrigation scheduling 

methods.  

4- Improvements to the VRI–DSS 

The research undertaken in this study has developed new methods and demonstrated how 
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irrigation decisions can be accurately made at the local level informed by site-specific 

needs. The inclusion of site-specific rainfall (VRI – DSS) is an obvious recommended 

improvement, but also site-specific soil and crop sensing could possibly also improve this 

product, and more research is required to investigate opportunities for this.  

5- Determination of societal, environmental and cost benefits for VRI 

By improving IWUE, decreasing deep percolation (DP) and the accompanying N 

leaching, adapting VRI to spatial heterogeneity of AWC and site-specific soil drainage 

characteristics could reduce not only N fertilizer expenses but also N loading into 

groundwater. Further research should be undertaken to verify these positive effects and 

provide simple methods to quantify the resulting societal and environmental benefits.  

6- More dynamic approaches for measuring the impact of crop water stress/status 

on crop production.  

Soil and crop models do not always provide reliable information on the impact of water 

stress on crop production at sufficient spatial and temporal resolution for precision 

irrigation methods. In addition, these models do not fully consider the impact of drought 

on Kcb and this leads to inaccurate estimation of the yield reduction. Also, with 

overwatering and waterlogging, the models consider all water above field capacity goes 

to DP without taking into account the possibility of waterlogging, which consequently 

effects final yield. Future research is recommended to develop more dynamic approaches 

using proximal and remote sensing techniques (e.g. soil moisture WSNs, LiDAR, NDVI) 

for measuring this stress impact on crop production.   In addition, the incorporation of 

site-specific sensor data into modelling approaches needs further investigation due to the 

potential benefits illustrated by this study.
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 Appendix 

The description of inversion algorithm (EM4Soil) by Santos (2004) 

The nonlinear, smoothness-constrained inversion algorithm described by Santos (2004) 

was adopted in EM4Soil. The earth model used in the inversion process consists in a set 

of 1D models distributed according to the locations of the measurement sites. All the 

models have number of layers whose thickness is kept constant. Two forward modeling 

subroutines, one based on the cumulative response (McNeill, 1980; Wait, 1962) and 

another based on the full solution of the Maxwell equations (Kaufman & Keller, 1983), 

are used optionally to calculate the σa responses of the model.  

Two inversion algorithms are available: in the S1 algorithm the optimization equations 

are represented as follows (Sasaki, 1989): 

[(𝐽𝑇𝐽 + 𝜆 𝐶𝑇𝐶)]𝛿𝑝 = 𝐽𝑇𝑏                                                                                              [1] 

In the second algorithm S2 the equations are (Sasaki, 2001):  

[(𝐽𝑇𝐽 + 𝜆 𝐶𝑇𝐶)]𝛿𝑝 = 𝐽𝑇𝑏 + 𝜆 𝐶𝑇𝐶(𝑝 − 𝑝𝑜)                                                              [2] 

where 𝛿𝑝 is the vector containing the corrections applicable to the parameters (logarithm 

of block conductivities, pj) of an initial model, 𝑝𝑜 is a reference model, b is the vector of 

the differences between the logarithm of the observed and calculated σa [bi = ln(σao) – 

ln(σac)], J is the Jacobian matrix whose elements are given by (σj/σai
c)(∂σai

c/∂σj), the 

superscript T denotes the transpose operation, and λ is a Lagrange multiplier that controls 

the amplitude of the parameter corrections and whose best value is determined 

empirically. The value can be determined empirically by comparing the models calculated 

using different values with the available information. The elements of the matrix C are 

the coefficients of the values of the roughness in each parameter, which is defined in 

terms of the four neighbors parameters. The elements of C are -4, 1, or 0. An iterative 

process allows the final model to be obtained, with its response fitting the data set in a 

least square sense. 
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The misfit between data and model response is measured through the rmse (expressed in 

mS m-1) defined by:  

𝑟𝑚𝑠𝑒 = √
1

𝑁
∑(𝜎𝑎𝑖

𝑜 − 𝜎𝑎𝑖
𝑐 )2                                                                                         [3] 

Cumulative Response of a Multilayered Earth 

At low induction numbers, the magnetic coupling between ground current loops induced 

by the primary field is negligible and, for this reason, the secondary magnetic field 

measured at the receiver is the sum of the independent magnetic fields from each 

individual induced current loop (McNeill, 1980). In this case, and properly normalizing 

the measured fields, the depth of investigation depends only on the transmitter–receiver 

separation and not on the frequency or σ (Kaufman & Keller, 1983). It is then possible to 

construct a mathematical function of depth that describes the relative contribution to the 

secondary magnetic field, measured at the receiver, due to the homogeneous material 

within a thin horizontal layer at a depth d (Callegary et al., 2007; Gómez-Treviño et al., 

2002; Kaufman & Keller, 1983; McNeill, 1980). It is worth mentioning that this approach 

is only valid for fairly resistive environments. For highly conductive structures, the 

instrument response is not linear and the use of the cumulative function will produce 

biased models (the conductivity of deeper layers will be underestimated if covered by 

highly conductive layers). In the presence of a layered-earth model, the relative 

contribution to the secondary magnetic field from all material up to a depth d below the 

sensor can be expressed by the cumulative function R (for HCP or PRP configurations 

used in the DUALEM instruments) as defined the (McNeill, 1980) and (Wait, 1962): 

𝑅𝐻𝐶𝑃 = 1 −
1

√4𝑧2 + 1
                                                                                                   [4] 

𝑅𝑃𝑅𝑃 = 1 −
2𝑧

√4𝑧2 + 1
                                                                                                    [5] 

where z (= d/s) represents the depth normalized by the coil spacing s. Taking into account 

these definitions, the response of an M-layer earth is calculated by adding the contribution 
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from each layer independently, weighted according to its conductivity and depth as 

 

𝜎𝑎
𝑐 = 𝜎1𝑅(𝑧1) + ∑ 𝜎𝑖[𝑅(𝑧𝑖) − 𝑅(𝑧𝑖−1)] + 𝜎𝑀[1 − 𝑅(𝑧𝑀−1)]

𝑀−1

𝑖=2

                           [6] 

 

The derivatives of the apparent conductivity σac with respect to the layer conductivities 

are 

𝜕𝜎𝑎
𝑐

𝜕𝜎1
= 𝑅(𝑧1)                                                                                                                      [7] 

𝜕𝜎𝑎
𝑐

𝜕𝜎1
= [𝑅(𝑧1) − 𝑅(𝑧𝑖−1)]   𝑖 = 2, … . 𝑀 − 1                                                               [8] 

𝜕𝜎𝑎
𝑐

𝜕𝜎𝑀
= [𝑅(𝑧𝑀−1)]                                                                                                              [9] 

Similar equations can be written for GEONICS instruments, EM31, EM38 and EM34 

(McNeill, 1980): 

𝑅𝑉𝐷𝑀 =
1

√4𝑧2 + 1
                                                                                                             [10] 

𝑅𝐻𝐷𝑀 = √4𝑧2 + 1 − 2𝑧                                                                                                    [11] 

and, 

𝜎𝑎
𝑐 = 𝜎1[1 − 𝑅(𝑧1)] + ∑ 𝜎𝑖[𝑅(𝑧𝑖) − 𝑅(𝑧𝑖−1)] + 𝜎𝑀[1 − 𝑅(𝑧𝑀−1)]

𝑀−1

𝑖=2

                   [12] 
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For the apparent conductivity calculations 

Usually the initial thickness of the layers is kept constant in the inversion process. The 

use of the cumulative response to calculate the model response at each measuring site 

means that we are not considering the EM interaction between constituent blocks of the 

model; however, the smooth inversion algorithm constrains each block 𝜎 to be somewhat 

dependent on its neighbours. That is, the method represents a one-dimensional, laterally 

constrained approach and the final model is a rough representation of a two-dimensional 

model (Quasi-2D). 

Full Solution of the Maxwell Equations 

Forward calculations based on the work of Keller and Frischknecht (1966), Wait (1962) 

and Anderson (1979) are used to calculate sensor responses at each measuring site, 

assuming a 1-D model. For a vertical dipole as primary source the secondary components 

of the magnetic field measured at a site with coordinates (x, y, h) over a N-layer model 

are given by Keller and Frischknecht (1966)  

𝐻𝑧𝑠 = −
𝑚

4𝜋𝛿3
𝑇𝑜(𝐴, 𝐵)                                                                                                 [13] 

𝐻𝑥𝑠 = −
𝑚

4𝜋𝛿3

𝑥

𝑟
𝑇1(𝐴, 𝐵)                                                                                              [14] 

where m is the magnetic moment of the source and r is the transmitter-receiver distance. 

A, B and 𝛿 are given by 

𝐴 =
ℎ

𝛿
                                                                                                                                   [15]                                                                                                                  

𝐵 =
𝑟

𝛿
                                                                                                                                   [16] 

𝛿 = √2/𝜎1𝜇0𝜔                                                                                                                   [17]  

and
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𝑇𝑜 = − ∫ 𝑅0(ℊ)ℊ2𝑒−ℊ𝐴𝐽0(ℊ𝐵)𝑑ℊ

∞

0

                                                                                [18] 

𝑇1 = − ∫ 𝑅0(ℊ)ℊ𝑒−ℊ𝐴𝐽1(ℊ𝐵)𝑑ℊ

∞

0

                                                                                   [19] 

Here, 𝐽0 ( ) and 𝐽1 ( ) are Bessel functions of the first kind of order 0 and 1, respectively. 

𝑅0(ℊ) is calculated recursively taking into account the conductivity and thickness of each 

layer.  

Integrals in Equations (36) are evaluated using a subroutine developed by Anderson 

(1979).  

The predicted values of the Quadrature component for HCP and PRP configurations at 

height h above the ground are given by 

𝑄𝐻𝐶𝑃 = Im (
𝐻𝑧𝑠

𝐻𝑧𝑝
)                                                                                                                 [20]  

𝑄𝑃𝑅𝑃 = Im (
𝐻𝑦𝑠

𝐻𝑧𝑝
)                                                                                                                  [21] 
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