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Abstract 
 
 

At the gallop, high loading forces are experienced in the equine distal limb, resulting in 

stresses to the soft tissue structures of the distal forelimb. Ligaments and tendons attenuate 

and reduce the concussive effects of the forces acting on the limb and their injury is the 

most frequent cause of musculoskeletal injury (Clayton, 2016; Clegg, 2012; Woo et al., 

2000).  

 

Computer models of equine motion estimate the forces in the equine distal limb during 

motion, providing insight into the biomechanical factors that cause musculoskeletal injury. 

However, currently models do not account for all structures in the distal limb (Bullimore et 

al., 2006; Farley et al., 1993; Harrison et al., 2010; McGuigan et al., 2003), particularly the 

collateral ligaments (CL). This study aimed to determine the biomechanical properties of the 

collateral and distal sesamoid ligaments of the equine distal forelimb.  

 

CL and the straight and oblique distal sesamoid ligaments were harvested from the proximal 

interphalangeal joint (PIP), metacarpophalangeal joint (MCP), carpus and elbow joints of the 

forelimbs of 10 Thoroughbred and 9 other equine breeds (total: 19 horses). The elastic 

moduli (EM) were determined by tensile testing the ligaments with a strain rate of 1 mms-1 

after 10 cycles of preconditioning load.   

 

The EM of the ligaments differed significantly between the joints, according to position and 

function. The highest EM was for Thoroughbred MCP joint CL (63 ± 45 MPa, p < 0.05) and 

the lowest EM for all breeds was the lateral collateral elbow ligament (3 ± 2 MPa, p = 0.14). 

Thoroughbred horses had a significantly higher EM in the CL of the PIP (27 ± 14 MPa vs. 12 ± 

7 MPa) and MCP (63 ± 45 MPa vs. 35 ± 15 MPa) joints than the other breeds in the study (p 

< 0.05). There was a large variation in EM, negatively affected by age and, in the distal 

ligaments, wither height (p < 0.05). The mechanical properties described here will be of use 

in creating the ‘Anybody’ model of the equine distal forelimb being developed at Massey 

University to determine the effect of ground surface perturbations on the distal limb.  
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Introduction 

Thoroughbred industry 

The Thoroughbred racehorse industry is of major economic importance worldwide. In 2009, 

there were 162,891 Thoroughbred races held in 47 countries with over a quarter of a million 

different horses starting a race (McManus et al., 2013). The economic impact of the racing 

industry includes employment, export income and gambling and in the US is estimated to be 

US$26.1 billion (Peterson et al., 2008). It is one of the largest industries in Australia, 

contributing 0.5% to gross domestic product (GDP) (Bailey et al., 1997). In NZ, there are 71 

Thoroughbred racing clubs, and approximately 500 race meetings held annually, with over 

800 trainers, 140 jockeys and 5,800 horses participating in flat and jumps racing (Bolwell et 

al., 2016, 2017; Perkins et al., 2005a; Rosanowski et al., 2015). The racing sector is 

estimated to generate over NZ$1.4 billion (approximately 1%) in GDP (Bolwell et al., 2017). 

Numerous injuries result from racing and training which can significantly alter the ability of a 

horse to continue to race or result in loss of the animal (Jeffcott et al., 1982; Peloso et al., 

1994; Williams et al., 2001). Therefore, wastage is of high economic importance as well as a 

growing health and welfare concern within the Thoroughbred racing industry.  

 

Wastage can consist of losses by retirement, loss of training days or even death (Bailey et 

al., 1997; Perkins et al., 2005a). The major reason for wastage is voluntary retirement due to 

lack of talent or poor performance, accounting for approximately 33% of all loss (Bolwell et 

al., 2017). Involuntary retirement encompasses injury, illness or accident, and of these, 

musculoskeletal injury is the next most common reason for loss (Back et al., 2012; Bolwell et 

al., 2017; Clegg, 2012; Moffat et al., 2008; Perkins et al., 2005c). Musculoskeletal injury 

accounts for 80% of involuntary interruptions to training and 25% of horses exiting the 

industry through death or retirement from racing (Perkins et al., 2005b). Musculoskeletal 

injury results in economic loss due to lost training time, incurring the costs of veterinary 

visits, diagnosis, treatment, rehabilitation and spelling, and of loss of horses from racing 

through either retirement or euthanasia due to severe injury (Firth et al., 2004; Harrison et 

al., 2010).  
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Over 90% of musculoskeletal injuries involve the distal limb (Perkins et al., 2005c; Williams 

et al., 2001). A number of risk factors for musculoskeletal injury to the distal limb have been 

identified in racehorses including: horse age, race type and distance, horse shoe 

characteristics, training surface and trainer/training schedule (Clegg, 2012; Perkins et al., 

2005c; Peterson et al., 2008; Reardon et al., 2013; Williams et al., 2001). These factors 

indicate that chronic fatigue and ground reaction forces are significant contributors to distal 

limb injury. Training surface is an important factor that is able to be modified. Softer 

surfaces are associated with a reduced incidence of distal limb (especially tendon and 

ligament) injury (Williams et al., 2001). Similarly, there is a reduction in the odds of injury in 

winter (wet) relative to summer (dry) (OR = 0.53, p < 0.001) (Perkins et al., 2005c). In 

addition, surface perturbations are thought to cause acute, or indirect, loading to the 

structures in the distal limb, leading to musculoskeletal injury (Riemersma et al., 1996).  

 

The high-speed gallop places large stresses on the musculoskeletal system of the 

Thoroughbred racehorse (Peterson et al., 2008). The normalised ground reaction forces on 

the forelimb equate to approximately 100 - 120% of the equine body weight at trot (3.7 ms-

1), 120 - 150% at canter (5 - 9 ms-1) and 170% at gallop (14 ms-1) (Hjertén, 1994; Kai et al., 

2000; Swanstrom et al., 2005). At racing speeds of 14 - 16 ms-1, these loads are even greater 

and likely contribute to the high incidence of musculoskeletal injuries observed in 

racehorses. Musculoskeletal injuries accounted for 82% of injuries in UK racehorses 

(Williams et al., 2001), 80 - 83% of fatalities in California racehorses (Johnson et al., 1994), 

and accounts for three times more wastage than all other medical problems in the 

Thoroughbred industry (Rossdale et al., 1985). The forelimb is the most common site for 

musculoskeletal injury and fracture, with approximately 80 - 90% of musculoskeletal injuries 

sustained in racehorses involving the forelimbs (Cogger et al., 2008; Johnson et al., 1994; 

Perkins et al., 2005c; Williams et al., 2001). 

 

Injuries to the tendons and ligaments are one of the most frequent causes of 

musculoskeletal injury and early retirement in the Thoroughbred racehorse (Clegg, 2012). 

They accounted for 46% of all limb injuries in a 3 year surveillance study of UK racehorses 

between 1996-1998 and were identified as the most frequent cause of injury during racing 

(6.9/1000 starts) in a cohort study undertaken at 6 racecourses in 2000 and 2001 (Clegg, 
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2012; Perkins et al., 2005c; Williams et al., 2001). They were the second most common limb 

injury in NZ after shin soreness - accounting for 17% of lower limb injuries in a selection of 

1,571 NZ racehorses from 20 trainers between the years of 1997-2000 (Perkins et al., 

2005c).  

 

Tendon and ligaments are mainly injured by overstrain or percutaneous trauma (Avella et 

al., 2012). Due to low blood supply, ligaments and tendons do not recover as quickly from 

micro trauma (from training effects) as muscle and bone (Hodgson et al., 2014). Once 

injured, ligaments and tendons are permanently compromised to a greater or lesser extent, 

with numerous different treatments and a high reliance on rehabilitation (Avella & Smith, 

2012; Back & Clayton, 2012). Indeed, the risk of musculoskeletal injury is higher in horses 

that have sustained a previous musculoskeletal injury than those without (relative risk 1.4, 

95% CI = 1.2 – 1.7; p < 0.001) (Perkins et al., 2005b). One of the major efforts in equine 

research is investigation of factors which can reduce injury during training and racing (Firth 

et al., 2004). Reducing the incidence of tendon and ligament injury would decrease the 

monetary costs of wastage and rehabilitation from the racing industry in addition to 

improving equine welfare.  

 

Anatomy of the equine distal forelimb 

In order to investigate the causes of musculoskeletal injury, it is important to understand 

the anatomy of the equine distal forelimb. Horses are cursorial animals and have unique 

physiological adaptations to exercise (Hodgson et al., 2014). The four limbs have evolved 

with heavy musculature confined to the proximal limbs, while the distal limbs (below the 

carpus and tarsus) have long, lightweight ligaments and tendons to move and support the 

single functional digit. The limb acts like a spring, storing energy in the palmar soft tissue 

structures from early stance to end of stance phase, optimized by having a hyperextended 

metacarpophalangeal (MCP) joint (Avella & Smith, 2012). These energy storing ligaments 

and tendons also reduce the concussive effects of the forces acting on the horse during 

movement (Woo et al., 2000). The equine forelimb supports approximately 60% of the body 

weight of the horse, whilst the more angulated hind legs provide propulsion (Clayton, 2016). 

This arrangement of proximal muscle mass and light limbs reduces the moment of inertia of 

the limb and the amount of energy expended in locomotion, allowing the horse to reach 
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high speeds (Clayton, 2016); but means the ligaments and tendons are the sole soft tissue 

support mechanisms for the distal limb.  

 

The forelimb has a pillar-like structure specialised for weight bearing with the antebrachial 

and metacarpal segments aligned at the carpus (Clayton, 2016). The suspensory apparatus is 

an important component of the forelimb, supporting the MCP joint which is constantly 

under pressure from the body weight of the horse. The suspensory ligament, check 

ligaments on the flexor tendons and fibrous bands of annular ligaments create a suspensory 

sling to support the hyperextended MCP joint. The proximal interphalangeal (PIP) joint lacks 

a suspensory apparatus, so overextension is limited by the distal sesamoid ligaments of the 

MCP joint attached to the middle phalanx (PII) (Goody et al., 2000). During the stance phase, 

body weight exerts a force on these tendons and ligaments which hold the MCP and PIP 

joints steady allowing the horse to stand and graze with no effort (Hermanson et al., 1992). 

Therefore, the ligaments and tendons of the equine distal forelimb are constantly under 

stress and are an integral part of both rest and locomotion. 

 

The functions of the musculotendinous system of the equine forelimb include connecting 

the forelimb to the trunk, supporting the body mass, stabilizing the joints in opposition to 

the force of gravity during stance phase, generating forces used in locomotion (propulsion, 

braking, turning) and flexing the joints during the swing phase of movement (Clayton, 2016). 

At the beginning of stance phase during movement, the limb is passively adducted, resulting 

in efficient locomotion as the limbs support the body closer to its centre of mass (Back & 

Clayton, 2012). Power generated at the elbow in early swing phase has been shown to drive 

the movements of the more distal segments with the amount of motion being controlled 

passively by the surrounding soft tissues (Lanovaz et al., 1999). The joints of the equine 

forelimb distal to the elbow are constrained by supporting structures such as collateral 

ligaments to move in the sagittal plane with relatively small amounts of 

abduction/adduction and internal/external rotation when under load (Back & Clayton, 2012; 

Degueurce et al., 1996).  

 

Collateral ligaments (CL) have the important role of supporting each joint medially and 

laterally, preventing lateral movement to maintain maximum energy transmission and 
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correct limb function (Davankar et al., 1996). Any movement outside the sagittal plane 

places additional stress on these ligaments. Their possible role in the attenuation of load in 

the distal limb is largely unknown. CL injuries, though uncommon, are difficult to treat and 

have limited recovery success (Lamb et al., 2012).  

 

Mechanical properties of ligaments 

The structures of the ligaments and tendons in the distal limb are optimised to perform 

their mechanical roles of force transmission and skeletal support (Avella & Smith, 2012). 

Ligaments act passively to link bones and resist their disturbance, whereas tendons connect 

muscle to bone and transform mechanical force from the muscle into movement (Hodgson 

et al., 2014; Woo et al., 2000). Ligaments and tendons are both composed of linearly 

arranged collagen fibrils and elastin in a matrix of ground substance composed of water, 

proteoglycans and other non-collagenous proteins (Hodgson et al., 2014; Rapoff et al., 

1999). However, they differ significantly in morphological appearance, biochemical contents 

and tensile properties (Woo et al., 2000). 

 

Collagen fibres in ligaments are more elastic than tendons and are architecturally oriented 

to effectively control and constrain joint motion (Martin et al., 2015; Woo et al., 2000). They 

have a lower strength and stiffness than tendons (lower elastic modulus), but higher 

extensibility (Ozkaya et al., 1991). Within an animal, ligaments have different mechanical 

properties and healing responses which relate to structural demands, relative magnitudes of 

load experienced and their biochemical composition (Hart et al., 1999; Martin et al., 2015; 

Shetye et al., 2009; Woo et al., 2000).  

 

Both ligaments and tendons are viscoelastic, which means their mechanical properties vary 

as they are stretched (Avella & Smith, 2012). However, when loaded they produce 

characteristic load-deformation patterns with a linear region which represents the stiffness 

of the material (Martin et al., 2015). The elastic modulus (EM) of the ligament substance is 

dependent on the organisation, orientation and type of collagen fibres and the interaction 

among tissue constituents such as ground substance (Woo et al., 1990a). It characterises the 

stiffness of a material irrespective of its geometry, and is the ratio of stress to strain in the 
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elastic region of an uniaxial loading curve. In a uniform uniaxially loaded sample, it can be 

related to the stiffness of the ligament as follows (Ozkaya & Nordin, 1991):  

𝐸𝐸𝐸𝐸 =
𝑘𝑘𝑘𝑘
𝐴𝐴

 

Where EM is the elastic modulus, k is the stiffness of the ligament substance, A is the cross 

sectional area (CSA) and l is the length of the sample between the opposing forces. The EM 

can be determined from the slope of the linear region of an in vitro stress-strain curve 

(Bowser et al., 2011; Ozkaya & Nordin, 1991; Woo et al., 2000).  

 

Injury to ligaments and tendons may occur when the functional load equals the elastic limit 

or ultimate stress, the load at which the tissue ruptures or breaks. This margin is called the 

biological safety limit. Rupture load is subject to inherent variability between structures and 

is influenced by factors such as strain rate, so is difficult to estimate. However, tensile 

strains of the equine flexor tendons of a horse with a rider have been recorded as 

approximately 3% at walk, 6 - 8% at the trot and 12 - 16% at gallop (Stephens et al., 1989). 

This is close to measured in vitro tendon rupture strains of 12 - 16% (Martin et al., 2015), 

indicating that tendons and ligaments experience functional strains that are very close to 

failure loads during peak performance (Back & Clayton, 2012). Therefore, knowledge of the 

mechanical properties of the ligaments and tendons in the equine distal limb and how they 

are affected by disparate forces during locomotion is of paramount importance in 

understanding the effects of ground reaction force on distal limb injury.  

 

Variation in ligaments 

A complication in the study of the behaviour of ligaments and tendons is that the variability 

in mechanical properties between individuals is high (Germscheid et al., 2011; Gijssen et al., 

2004; Rapoff et al., 1999; Woo et al., 1983). In a population of normal horses, there is more 

than a twofold variation in the ultimate strength of the superficial digital flexor tendon 

(Avella & Smith, 2012; Thorpe et al., 2010). The coefficients of variation of the elastic moduli 

of medial CL in one species of rabbit ranged from 13% to 52% (Woo et al., 1990b). This 

variance is most likely caused by genetic components such as horse height/mass or ligament 

CSA, and environmental factors such as ageing and exercise but it could also arise from 

inaccuracies in measurement of mechanical properties in vitro (Avella & Smith, 2012).  
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It has long been acknowledged that accurate and reproducible measurement of ligament 

tensile properties is notoriously difficult. In vitro measurements depend on many factors, 

including fibril orientation, temperature and hydration of the ligament or tendon specimen, 

strain rate and previous storage (Martin et al., 2015; Woo et al., 2000). In addition, 

measurements in vitro do not completely predict in vivo action (Hodgson et al., 2014). This 

was confirmed by findings that the tendon strain measurements in vivo were different to in 

vitro findings for the same pony used in a study measuring tendon strain in the forelimbs of 

ponies (Riemersma et al., 1996). However, it was hypothesized that the differences were 

due to the restrictions necessary to complete in vitro tests -  where normal muscular tension 

was absent during movement simulation and the humerus length was compromised to fit in 

the testing apparatus. Investigation of the disparate structures in the equine distal limb and 

how they interact could be integral to the understanding of ligament and tendon injury. 

 

Genetic components and environmental factors affecting ligament and tendon properties 

include age, exercise, height or mass and breed. The mechanical properties of ligaments 

change with age - increasing to maturation and declining in old age (Martin et al., 2015; 

Woo et al., 1990a). Exercise has been shown to increase tensile strength in extensor 

tendons in pigs (Woo et al., 1980), but in horses differences are small and more evident in 

young animals and when compared with immobilisation (Martin et al., 2015; Moffat et al., 

2008). There are a number of studies that have highlighted that increased size (wither 

height) may predispose the horse to musculoskeletal injury (Ducro et al., 2009; Dyson, 2017; 

Murray et al., 2010; Parkes et al., 2013). Larger animals have an associated faster growth 

rate which may be an intrinsic factor shaping structural limb quality, perhaps weakening the 

mechanical durability of the structures in the limb and affecting ligament and tendon quality 

(Barneveld et al., 1999; Ducro et al., 2009; Hodgson et al., 2014). Indeed, the development 

of the CSA of equine flexor tendons has been reported to vary significantly in four different 

breeds of 2 year old horses during a year of observation, perhaps reflecting their different 

growth rates (Koster et al., 2014). However, these effects are difficult to distinguish due to 

the high variability between individuals. 
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Both ligaments and tendons have been demonstrated to have large variations in mechanical 

properties that reflect the functional demands put upon them (Avella & Smith, 2012; Martin 

et al., 2015; Shetye et al., 2009; Woo et al., 2000). The mechanical environment during 

maturation is thought to drive the growth of ligaments and tendons, so their structural 

properties at maturity relate to their function (Avella & Smith, 2012; Rogers et al., 2008a). 

Significant differences in collagen fibril diameter distributions were observed between nine 

different ligaments and tendons in the equine carpus, indicating that their composition and 

thus properties are dependent on their function and position in the carpus (Davankar et al., 

1996). In five species (sheep, monkey, goat, horse and dog), the EM of the anterior cruciate 

ligament was greater than the posterior (Vysotskii, 1975). These differences were 

comparable between individuals and across species despite the high individual variation in 

mechanical properties.   

 

Thoroughbred horses have been bred specifically for racing and typically have a deep chest, 

lean body, long flat muscles, slender legs and a light build (Willoughby, 1974). The high 

forces experienced by the distal limb at speed coupled with these attributes may 

compromise the structural stability of the Thoroughbred musculoskeletal tissues, causing 

Thoroughbreds to be more at risk of musculoskeletal failure (Hodgson et al., 2014). 

Therefore, determination of the load distribution in the structures of the equine distal 

forelimb during high-speed locomotion could provide insight into the causative factors 

contributing to musculoskeletal injury in the Thoroughbred racehorse. 

 

Gait models 

Dynamic gait models have been designed in order to understand the biomechanics of 

locomotion and the forces in the distal limb of mammals. These models use the mechanical 

properties of ligaments and tendons to determine leg stiffness in order to model the distal 

limb as a passive spring in mammals of differing species and size (Bullimore & Burn, 2006; 

Farley et al., 1993; McGuigan & Wilson, 2003; Meershoek et al., 2001). Ligament and tendon 

properties are assumed to act similarly in all species (Bullimore & Burn, 2006), with the 

effect of breed and size on distal limbs largely unknown. The EM of the ligaments and 

tendons is required to accurately model the forces in the distal limb.  
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Simple models represent the distal limb as a passive elastic strut or simple spring-mass 

system, similar for all sizes and species of quadrupeds, with larger animals having stiffer leg 

springs (Bullimore & Burn, 2006; Farley et al., 1993; Herr et al., 2002). However, relative 

stride length (a dimensionless parameter used to normalise the movements of differently 

sized animals) measurements of experimentally observed and modelled horses found that 

the assumed effect of size on leg stiffness to be greater than that expected from the model 

(Bullimore & Burn, 2006). Due to the complexity of the many integrated structures in the 

equine distal limb and observed discrepancies of movement between real and modelled 

horses, it is evident that there are unknown factors in the leg affecting the assumed stiffness 

for biomechanical use. 

 

The complementary actions of the passive suspensory apparatus and active muscular 

activation during movement provide challenges to computer modelling in quantifying the 

passive and active forces of each (Harrison et al., 2012). Few studies have considered the 

mechanical interactions that affect the function of the entire structure of the equine 

forelimb.  McGuigan and Wilson (2003) modelled the forelimb as 2 springs, determining that 

most of the length change during the stance phase of locomotion occurred in the distal limb 

(from elbow to hoof), mainly at the MCP joint. A pulley model was used to determine the 

forces in the flexor tendons during movement in the sagittal plane (Meershoek et al., 2001) 

and was expanded to a 3D model by Rollot et al. (2004) which indicated that PIP joint flexion 

plays an important role in decreasing the strain in the distal sesamoid ligaments. More 

complex models represent the forelimb in 8 parts with 9 muscle-tendon structures and 6-16 

ligaments (Brown et al., 2003; Harrison et al., 2012; Swanstrom et al., 2005). These models 

are restricted to motion in the sagittal plane, but indicate that the passive ligament and 

tendons in the distal limb may have a larger contribution to torque generation and strain 

dispersal during movement than previously thought. In particular, the distal sesamoid 

ligaments limit PIP joint overextension and their role in strain dispersal is little studied.  

 

A new computer model of the equine forelimb, using the ‘Anybody’ platform, is currently 

under development at Massey University. The biomechanical properties of bone, muscle, 

tendon and ligament structures will be used to accurately model the forces in the forelimb 

during equine motion. This will be used to investigate the effects of surface perturbations 
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on the gait and compliance of the equine distal limb – one of the risk factors for tendon and 

ligament injury in Thoroughbred racehorses. 

 

In order to understand the contribution of individual ligaments to the overall stiffness 

characteristics of the distal limb, data on the tensile properties of each ligament are 

essential. The specific properties of the CL in the equine distal limb have not been studied. 

This contrasts with our knowledge of the larger ligaments and tendons (deep digital flexor 

tendon, superficial digital flexor tendon, accessory ligament) (Becker et al., 1994; Harrison 

et al., 2010; Pourcelot et al., 2005; Riemersma et al., 1996; Thorpe et al., 2010). CL play a 

critical role in limb stabilisation, bracing each joint to restrict medial/lateral movement 

(Abramowitch et al., 2003b). In addition, little is known about the properties of the distal 

sesamoid ligaments, despite their important interaction with PIP and  MCP joint flexion 

during locomotion (Rollot et al., 2004). The addition of collateral and distal sesamoid 

ligaments to the ‘Anybody’ dynamic gait model will provide a more accurate representation 

of the forces in the distal forelimb than is currently known. 

 

Aims 

The aim of this study was to determine the elastic modulus of the collateral ligaments and 

distal sesamoid ligaments of the equine distal forelimb. A secondary aim was to determine if 

and how the elastic modulus of the collateral ligaments of the equine distal forelimb are 

influenced by horse breed and size. 
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Methods 

 

Ligament selection 

Collateral ligaments were collected opportunistically from the forelimbs of horses that were 

humanely euthanized for post mortem with no orthopaedic issues in their harvested limbs 

at Massey University’s School of Veterinary Science. Horses with any obvious pathology of 

the ligaments were excluded from the study as not representative of the population of 

‘normal’ ligaments. The height, weight, breed, reason for euthanasia and background of 

each horse was measured and recorded. 

 

Sample size 

The sample size estimates were calculated using data of the EM from the equine superficial 

digital flexor tendon (1217.0 ± 199.4 MPa, range 819.4-1635.8 MPa) (Thorpe et al., 2010) as 

there were no published values for the EM of equine CL within the literature. Using this 

reference data, it was estimated that ligaments from 15 horses were required to give 85% 

power to fit a regression line with an effect size of 0.35 (measured by Cohen's f2 = r2 / (1  - 

r2)) (Snedecor et al., 1980). 

 

Ligament harvest 

The medial and lateral CL from the PIP, MCP, carpal and elbow joints in addition to the 

straight and oblique distal sesamoid ligaments of the two forelimbs were harvested post 

mortem within hours of euthanasia where possible, otherwise as soon as possible after 

refrigeration at 3°C. The ligaments were cut from their attachment sites on either side of the 

joint, ensuring that the band of parallel ligament fibres was left intact. The ligaments were 

kept hydrated in water and frozen in labelled airtight plastic bags at -20°C until subsequent 

testing in the materials lab (Woo et al., 1986). 

 

Measurements 

The CSA of the frozen and thawed ligament samples were measured using dial callipers with 

a precision of ± 0.02 mm (Mitutoyo series 505-633-50). The ligaments were assumed to have 

a rectangular cross section following the methods of Germscheid et al. (2011); Shetye et al. 

(2009); Woo et al. (1983). Measurements were taken in the middle of the ligament. On 6 
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ligaments, the CSA was measured in 5 different places to investigate the consistency of the 

measurement.  

 

Samples were thawed at room temperature for a minimum of 6 hours before testing. 

Ligaments were blotted on paper towels to remove excess fluid before being placed in 

serrated jaw clamps in a materials testing machine (Stable Microsystems TA.XT plus texture 

analyser) to elongate the ligament to failure in a controlled environment with room 

temperature of 20°C. The cross sectional dimensions of the ligaments were measured again, 

under a physiologically low tension (10 N) – a negligible load of < 1% of biological failure 

load (Thorpe et al., 2010) and in all cases between 1 - 20% of the maximum load reached. 

Width and depth measurements were taken from the mid-substance of the ligament and 

subsequently compared with the frozen measurements. The resting length of the ligament 

was taken as the gauge length - the distance between the crossheads of the clamps when 

the sample was under 10 N of tension. 

 

Each sample was exposed to 10 cycles of preconditioning load from 0-50 N at a crosshead 

speed of 1 mms-1 to ensure a consistent strain history was applied to each specimen (Martin 

et al., 2015; Thorpe et al., 2010; Woo et al., 2000). Immediately following these cycles, the 

sample was tested to failure at a stretch rate of 1 mms-1. The crosshead displacement and 

applied force were recorded simultaneously at a rate of 200 pps (data points per second) 

with Exponent software (TEE32, version 6). Sample rupture or slip from the clamp was 

recorded for each test. Each test was conducted within 3 minutes of removal of the thawed 

hydrated ligament from the plastic bag kept at room temperature.  

 

Mechanical properties of ligaments 

The mechanical properties of the CL were determined using engineering definitions. Stress-

strain relationships were calculated for each ligament (Figure 1.) showing a toe region 

where the collagen crimps were removed by elongation and linear region where the 

collagen fibres were stretched (Martin et al., 2015). The EM was measured from the linear 

region between a minimum of 2% and maximum of 35% of strain before the linear region 

was exceeded.  
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Figure 1. Typical curve showing the stress-strain relationship of the right medial collateral 

ligament in the MCP joint of horse 7. There is a clear linear region between the toe region 

and failure region, from which the elastic modulus was calculated. 

 

The tensile stress was found from the applied force using the following equation: 

𝜎𝜎 =
𝐹𝐹
𝐴𝐴

 

Where F is the applied force (N) and A is the cross sectional area (mm²) of the tendon under 

10 N of tensile force. Stress (σ) is expressed in megapascals (1 Mpa = 10⁶ Nm-²). 

Strain was calculated as: 

𝜀𝜀 =
∆𝑘𝑘
𝑘𝑘

 

Where Δl is the change in length (taken as the crosshead displacement in mm) and l is the 

resting length of the ligament (mm), taken as crosshead distance at 10 N. Strain (ε) is a 

dimensionless parameter.  

 

The stress-strain curves were examined to determine the EM (Bowser et al., 2011; Woo et 

al., 2000). The linear region of slope of the stress – strain curve (between the toe region and 

failure/slippage) was used to determine the EM by finding the slope of the line of best fit. 

The EM has units of pressure and is expressed here in megapascals (MPa). 
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Repeatability of tests 

The repeatability of the EM measurement was determined in 6 different ligaments (left 

lateral collateral PIP joint, left medial oblique sesamoid, left straight sesamoid, right medial 

collateral MCP joint, right lateral collateral carpus, right lateral collateral elbow). For each, 

the stress-strain measurements were taken 5 times consecutively by immediately re-

clamping and re-testing the slipped end of the ligament. The EM was calculated separately 

from the CSA measurement taken before each of the runs, and compared for that sample.  

 

Data analysis 

Data were initially examined using descriptive statistics and boxplots to determine if there 

were any significant differences between the EM of the left and right leg, anatomical site, 

lateral/medial differences or breed. Data were tested for normality using the Shapiro-Wilks 

test. All data were not normally distributed and differences between groups were tested 

using the non-parametric Kruskul-Wallis test. Selective comparisons were made using 

pairwise Wilcox non-parametric tests.  

 

The EM and CSA of the ligaments from each joint were regressed against measures of horse 

size, age, sex and breed. A stepwise multiple linear regression model and two-way analysis 

of variance (ANOVA) were used to determine relationships between these variables (p < 

0.05).  

 

Simple linear correlations were used to compare both horse height and weight and CSA 

measurements of the frozen and thawed (under 10 N of tension) ligaments. 

 

All statistical tests were performed using ‘R Studio’ (Version 1.0.143) (RStudio, 2015). 
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Results 

 

Horses 

Ligaments from 39 forelimbs of 20 horses were sampled. Horse data are summarised in 

Table 1. The horses ranged in withers height from 102 cm – 175 cm. Height data from 2 

horses were not recorded, so were estimated by extrapolating the linear height-weight 

correlation graph. Live weight ranged from 180 kg – 637 kg. Breeds included Thoroughbred 

(n=10), Standardbred (n=2), Miniature horse (n=1), Shetland (n=1) and 

Crossbred/Warmblood (n=6). The miniature horse was excluded from the statistical analysis 

due to the clinical diagnosis of laxity of the ligaments in the hind limbs, leaving 37 forelimbs 

from 19 horses. The horses were aged 1 to 19 years (median 12 years). Reasons for 

euthanasia included colic (n = 3), laminitis (n = 3), neurological disorders (n = 3), lameness (n 

= 2), distal limb fracture (n = 2), failed surgical recovery (n = 2) and untreatable medical 

conditions (n = 4). A range of horses with both active (such as race training or eventing) and 

inactive backgrounds (paddock mates, teaching horses) were included in the study. 

 

 Table 1. Summary of horses included in the study 

 
 

Horse Height Weight Age Gender Breed Reason for Euthanasia Background
cm kg yrs

1 161 535 7 Gelding Thoroughbred Laminitis Pleasure riding
2 160 480 7 Mare Thoroughbred Unwanted paddock mate Hacking
3 151 400 2 Mare Thoroughbred Hind Limb fracture Race training
4 140 400 18 Mare Thoroughbred Neurological Disorder Eventer
5 149 450 19 Mare Quarterhorse Cross Recurring Uveitis Pleasure horse/hack
6 152 488 16 Gelding Stationbred Heart problem LATU teaching horse
7 169 564 8 Gelding Thoroughbred Chronic Laminitis Race training
8 637 12 Gelding Stationbred Lesion on deep digital flexor tendon -
9 175 631 8 Gelding Crossbred Colic SJ/Hunting

10 156 410 14 Gelding Stationbred Choker Eventer
11 147 330 1 Gelding Thoroughbred Wobbler - Spinal Ataxia Yearling
12 162 485 19 Gelding Thoroughbred Broken Pelvis Pleasure riding
13 102 180 10 Mare Shetland Laminitis -
14 157.5 505 13 Mare Standardbred Chronic Hoof Abscess LATU teaching horse
15 163.5 552 17 Gelding Thoroughbred Laminitis Ex Eventer
16 153 400 1 Gelding Thoroughbred Wobbler - Spinal Ataxia C5/6 Yearling
17 495 15 Mare Warmblood Colic Broodmare
18 158 450 16 Mare Warmblood Ruptured abdominal tendon 10 mths pregnant
19 170 600 11 Gelding Thoroughbred Colic -
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Consistency of measurement 

Ligaments were harvested from within 6 hours of euthanasia in 13/19 cases, after 1-3 days 

of refrigeration in 5/19 cases and after more than 1 week of refrigeration in 1/19 cases. The 

ligament slipped out of the clamps in the majority (372/388) of cases before failure. 

However, a clear linear region was observed in the stress-strain curve prior to slippage or 

failure, allowing the EM to be calculated.  

 

The coefficient of variation (CV) of the width measurements for the frozen ligament was 9% 

and that of thickness was 12%. The CV of the width measurements of the thawed ligament 

under 10 N of tension was 9% and that of thickness was 10%. There was a strong positive 

correlation between the two measurements (CSA at 10 N = 0.83* CSA frozen – 9.45, r = 0.73, 

p < 0.05). The CSA of the thawed ligaments varied by an average of 14% along their length. 

The pooled CV of the EM measurements was 32%. 

 

Elastic modulus 

There were no significant differences in EM between left or right leg. The EM of the CL 

differed significantly between the different joints studied (p < 0.05), with the MCP joint CL 

having the highest EM of 49.4 ± 36.5 MPa (mean ± SD) for all breeds (Figure 2) and highest 

EM of 63 ± 45 MPa (mean ± SD) for Thoroughbreds only.  
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Figure 2. Elastic modulus of the CL for the PIP joint (PIP), distal sesamoid ligaments (Ses), 

CL for the MCP (MCP), carpal (Car) and elbow (Elb) joints of the equine distal limb. * 

denotes significant differences between joints (pairwise Wilcox tests, p < 0.05). 

 

The mean and standard deviation (SD) of the EM and CSA of the CL for each joint is 

presented in Table 2 for Thoroughbreds separate from the other breeds included in the 

study. There were significant differences between the EM of the lateral and medial CL for 

the carpus and elbow. Lateral and medial differences between CL are presented separately 

where significant differences exist. The lateral elbow CL has the lowest EM (3 ± 2 MPa) for 

all breeds of horse. The EM of the collateral and sesamoid ligaments showed a wide 

variation between individual horses (Table 2.).  

 

Thoroughbreds (n = 10) had a significantly higher EM and smaller CSA in their CL for the PIP 

and MCP joints than the other breeds (6 Crossbreeds, 2 Standardbreds and 1 Shetland) used 

in the study (Table 2).  

 

 

* * * 



18 
 

Table 2. Mean ± standard deviation values for the elastic modulus and cross sectional area 

of the collateral ligaments from the distal forelimb of 19 horses. Thoroughbred (n = 10), 

Other – includes Crossbreeds (n = 6), Standardbreds (n = 2) and Shetland (n = 1). Kruskal-

Wallis test for difference between breeds with significance level of 0.05. pbreed values < 0.05 

show statistical significance between the breeds. 

 

 
 

Collateral Ligament pbreed pbreed

PIP Joint 8.4E-06 2.0E-05
Thoroughbred 27 ± 14 65 ± 35
Other 12 ± 7 123 ± 60

All breeds 19 ± 13 96 ± 57
Oblique Sesamoid 0.31 0.94
Thoroughbred 37 ± 18 38 ± 11
Other 34 ± 22 39 ± 15
All breeds 35 ± 20 38 ± 13
Straight Sesamoid 0.22 0.02
Thoroughbred 50 ± 25 59 ± 12
Other 39 ± 18 49 ± 12
All breeds 44 ± 21 53 ± 13
MCP Joint 1.4E-04 1.80E-03
Thoroughbred 63 ± 45 35 ± 13
Other 35 ± 15 48 ± 20
All breeds 49 ± 36 41 ± 18
Lateral Carpus 0.43 0.60
Thoroughbred 47 ± 21 64 ± 46
Other 40 ± 14 58 ± 18
All breeds 44 ± 18 61 ± 35
Medial Carpus 0.57 0.95
Thoroughbred 42 ± 35 80 ± 32
Other 26 ± 12 80 ± 14
All breeds 34 ± 27 80 ± 24
Lateral Elbow 0.14 0.01
Thoroughbred 4 ± 3 304 ± 87
Other 3 ± 1 376 ± 84
All breeds 3 ± 2 338 ± 92
Medial Elbow 0.06 0.30
Thoroughbred 64 ± 99 69 ± 41
Other 33 ± 55 94 ± 64
All breeds 51 ± 84 79 ± 52

Cross Sectional Area 
(mm²)

Elastic Modulus 
(Mpa)
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Horse height had a weak negative relationship with the EM of the PIP joint CL only (r = -0.29, 

p = 0.02) as shown in Figure 3.  

  

  

Figure 3. Elastic modulus of PIP joint CL vs horse height for Thoroughbreds and other equine 

breeds, TB – Thoroughbred (n = 10), Other – includes Crossbreeds (n = 6), Standardbreds (n 

= 2) and Shetland (n = 1). P value from linear regression model. 

 

The EM for the MCP joint, carpus and elbow CL and the oblique and straight distal 

sesamoids of the equine distal forelimb were independent of horse height. There was a 

weak, though significant (p = 0.04) negative relationship between MCP joint EM and height 

for Thoroughbreds only (Figure 4). This relationship was driven by 3 outlying values, each of 

which came from 1 year old Thoroughbred geldings. With these values omitted, no 

relationship existed between MCP joint EM and horse height for Thoroughbreds.  
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Figure 4. Elastic modulus of MCP joint CL vs horse height for Thoroughbred and other 

breeds of horses, TB – Thoroughbred (n = 10), Other – includes Crossbreeds (n = 6), 

Standardbreds (n = 2) and Shetland (n = 1). P value from linear model. 

 

There was a significant positive correlation between the EM of the CL of the PIP, MCP and 

carpal joints. Figure 5 shows the inter-horse correlation between the PIP and MCP joint CL 

with the carpal CL.  
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Figure 5. PIP and MCP joint elastic modulus plotted against carpus elastic modulus for 

the collateral ligaments.  

 

Age had a weak negative correlation with the EM of the CL of the PIP, MCP joint, carpus, and 

medial elbow CL. Mares had a significantly lower EM (39 ± 19 MPa) than geldings (57 ± 44 

MPa) in the MCP joint only for all horses (mare n = 8, gelding n = 11, p = 0.02), however 

when breed was taken into account there were no significant differences. 

 

Cross sectional area of the collateral ligaments 

The CSA of the CL differed significantly with each joint, and medially - laterally for the carpus 

and elbow as shown in Figure 6 and Table 2. The CSA of the PIP joint, oblique sesamoid 

ligaments and lateral elbow CL all had a weak, though significant positive relationship with 

horse height (p < 0.05). The CSA of the straight sesamoid ligaments, MCP joint, carpus, and 

medial elbow CL were independent of horse height.  
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Figure 6. Cross sectional area (CSA) under 10 N of tensile force for the lateral and medial CL 

of each joint. Kruskal-Wallis and Wilcox pairwise tests with significance level of 0.05 show 

that there were significant differences (as denoted by *) between the lateral and medial CSA 

of the CL in the carpus and elbow only. 

  

* * 
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Discussion 

 

This study provides an assessment of the biomechanical properties of the collateral 

ligaments from the PIP, MCP, carpal, and elbow joints as well as the distal sesamoid 

ligaments of the equine forelimb.  

 

Mechanical properties of ligaments and their function 

There were significant differences between the elastic moduli of the ligaments. The 

differences were consistent with the joint position and function of each ligament and 

reflected the disparate forces experienced by the ligaments in each of the joints of the 

equine distal forelimb. These findings complement previous research that has shown that 

the mechanical properties of ligaments vary according to their position and functional 

demands (Hart et al., 1999; Martin et al., 2015; Shetye et al., 2009; Woo et al., 2000). For 

example, Davankar et al. (1996) described that the differences between structures (and thus 

imputed biomechanical properties) of nine ligaments in and around the equine carpus were 

more significant than the differences in the same structure between horses.  

 

This is the first study of equine limbs to show that ligament EM varied distally to proximally 

along both forelimbs. Previous studies have shown that the MCP and carpal joints 

experience the highest peak joint forces in the distal limb during locomotion (Harrison et al., 

2010) and that the distal sesamoid ligaments are the main limiter of PIP overextension, 

experiencing a large amount of force (Goody & Goody, 2000). Therefore, the higher EM 

observed in the CL of the MCP joint, carpus and distal sesamoids are likely a direct result of 

their biological function and the higher stresses to which they are exposed. 

 

The present study also showed that the EM of the lateral and medial CL were similar in the 

PIP and MCP joints. Lateral-medial similarity in the PIP and MCP joints could reflect the 

function these ligaments play in supporting the suspensory apparatus of the equine 

forelimb. They form part of the network of soft tissues that tightly wraps the distal 

extremities and is constantly loaded with the force of body weight. These joints are less able 

to move due to the structure of the bones, and thus the CL experience equal stresses. 

Indeed, minimal extra sagittal motion has been measured in the PIP and MCP joints during 
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trot in a straight line, as opposed to both the carpus and elbow which experience a greater 

degree of lateral-medial motion (Back & Clayton, 2012; Clayton et al., 2004).  

 

The EM of the medial elbow and lateral carpal CL were higher (and less elastic) than their 

counterparts. This was in agreement with canine carpal CL studies in which the EM of the 

lateral CL was greater than the medial CL, though the differences were not significant (p = 

0.196) (Shetye et al., 2009). The size disparity between horses and canines could result in an 

exaggeration of these differences which are consistent with their function to constrain extra 

sagittal movement and attenuate disparate concussive forces. During locomotion, passive 

adduction of the distal limb is constrained by the lateral elbow CL, which requires elasticity 

to allow the radius and ulna to rotate slightly outwards in flexion, supported by the stiffer 

medial elbow CL. The hoof then impacts the ground on the lateral side, followed by a medial 

rocking motion of the hoof during landing (Chateau et al., 2006). This initial impact places 

the majority of strain on the lateral aspect of the carpus as the joint furthest from the hoof 

unsupported by the trunk of the body, and the high EM of the lateral carpus CL is in 

accordance with this function. This effect was also found in the collagen fibril distribution of 

Thoroughbred carpal ligaments which indicated that the lateral carpal CL was subject to 

significantly higher early long term stress than the medial, although this was only evident 

before the age of 2.5 years (Davankar et al., 1996). 

 

Genetic and environmental variation in ligament elastic modulus 

In addition to EM differences between anatomical sites, wide variation in mechanical 

properties between individuals was found in the present study, as has been observed in 

previous studies of mammalian ligaments (Becker et al., 1994; Brett et al., 2014; 

Germscheid et al., 2011; Qian et al., 2014; Siegler et al., 2016; Thorpe et al., 2010; Woo et 

al., 1990a). Breed, height, and age had some influence on the EM, notably the CL from the 

more distal PIP and MCP joints. Thoroughbreds had a significantly higher EM than other 

equine breeds for the CL of these joints, and a weak negative relationship with horse height 

and age. Thoroughbred horses have a light build with proportionally longer, more slender 

distal limbs than other equine breeds (Willoughby, 1974). Differences in EM with breed has 

also been observed in two breeds of pigs, where the EM of the carpal CL of the lighter 

weight breed were higher than the heavier breed (400.0 ± 47.5 MPa vs 327 ± 54.4 MPa, p = 
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0.03) (Germscheid et al., 2011). In addition, a higher EM in the CL could produce a tighter, 

better performing joint with less deflection, resulting in selective breeding for these higher 

performing racehorses. 

 

Another explanation for the higher EM values in Thoroughbreds could be the adaptation of 

ligaments to the higher forces that early race training experienced by most racehorses 

impose (Rogers et al., 2008b). Adaptive response of ligaments and tendons to exercise is not 

well documented, but evidence suggests that musculoskeletal tissues can be conditioned 

during the early growth phase of the animal (Avella & Smith, 2012; Helminen et al., 2000; 

Moffat et al., 2008; Rogers et al., 2008a). The high outlying EM values for the MCP joint CL 

were from two 1 year old Thoroughbred geldings. Horses reach appendicular skeletal 

maturity at approximately 3 years, with the closure of the epiphyses in the MCP joint 

occurring between 8 - 14 months (Strand et al., 2007; Yoshida et al., 1982). Skeletal maturity 

has been shown to influence the mechanical properties of rabbit CL, with the EM increasing 

by 30 - 50% until maturity and then gradually declining with age  (Woo et al., 1990a). 

Training data were unavailable, so it was unknown whether the yearlings experienced early 

training prior to euthanasia. However, if they did, the high EM values could be an early 

adaptive response of the ligaments to this training. This effect could interact with the effects 

of breed and age of the horse. Unfortunately there were no data available for skeletally 

immature horses that were not Thoroughbreds, so this was unable to be investigated.  

 

The decline in the mechanical properties of ligaments with age is a well-documented 

phenomenon (Back & Clayton, 2012; Martin et al., 2015; Woo et al., 1990a) and was evident 

in the EM of the PIP, MCP, carpus and medial elbow joint CLs of this study.  This is due to 

accumulative micro damage and degeneration of the ligament substance (Avella & Smith, 

2012). The absence of a relationship in the distal sesamoid ligaments and lateral elbow CL 

could be due to their inherent properties, or may be affected by introduced errors from the 

limitations of the study and difficulties of in vitro ligament property measurement. This 

could also be the reason for the lower EM observed in the fetlock CL of mares, although this 

finding is consistent with generally more compliant ligaments in female humans and pigs 

(Kiapour et al., 2015; Martin et al., 2015). 
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The negative relationship with horse height and EM in the PIP and MCP joints contrasts with 

previous findings of elastic property independence between tendons and body mass 

(Pollock et al., 1994). However, in the larger CL studied, this independence was supported.  

The smaller, more distal ligaments could be more affected by the faster growth rate 

associated with greater wither height in horses than the larger proximal CL, which would 

lead to the observed compromise in ligament properties (Hodgson et al., 2014). Larger 

horses are likely to have greater bending moments in the distal aspect of their limbs 

(Murray et al., 2010). As the larger moments lead to higher stresses in the ligament, the lack 

of increase in ligament EM may account for the higher rates of injury observed in taller 

horses as they operate closer to the safety margins of their ligaments (Dyson, 2017; Murray 

et al., 2010; Parkes et al., 2013). 

 

Methodological limitations 

Data were limited by the opportunistic nature of collection to 37 forelimbs from 19 horses 

of varying breeds. However, despite high individual variation, this was sufficient to 

demonstrate the aforementioned significant differences in elastic moduli of ligaments 

between the joints of the distal forelimb, the lateral or medial aspect, breed, height and age 

of the horse. The dataset provided a good cross-section of horses, being representative of 

horses in both active work (such as race training or eventing) and those not (paddock mates, 

teaching horses).  The ligaments were harvested from their attachment sites in a band of 

parallel fibrils and tensile tested in vitro. 

 

The in vitro measurement of EM is influenced by a number of variables, including the 

geometry of the tissue (CSA, length and shape), strain rate/elongation, temperature and 

hydration. Equine ligaments were assumed to have a rectangular CSA, following the 

methods of Germscheid et al. (2011), Shetye et al. (2009) and Woo et al. (1983) in studies of 

CL in pigs, dogs and rabbits. Due to the proportionally long limbs of the horse, deviations 

from a rectangular CSA may be greater than in other species, and the CSA was found to vary 

by 14% along the length of the sample. This variation likely accounted for some of the large 

uncertainty in the EM. However, mid-substance width and thickness measurements were 

used to calculate CSA of the ligaments and the CSA of the PIP and MCP joint CL and distal 

sesamoid ligaments were in agreement with MRI/CT data from a single Thoroughbred mare 
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as shown in Table 3 (Swanstrom et al., 2005). The difference in oblique sesamoids is likely 

attributable to their measurement of the broad origin of the ligament as opposed to the mid 

substance measurement (mean ± SD) used in this study.  

 

Table 3. CSA measurements from the present study (mean ± standard deviation) in 

comparison with those measured by Swanstrom et al. (2005). 

 

 
 

The resting length of the ligament was defined as the length of the ligament under 10 N of 

tension. This represented a physiologically low load (between 1 - 20% of the max load 

reached), and follows tension loads and protocol used within the literature (Thorpe et al., 

2010; Woo et al., 1983). Sample elongation was determined by using the displacement 

value of the crosshead of the testing machine. Measurements of tensile strain using 

crosshead displacement have been known to yield erroneously high strain values due to the 

ligament slipping at the grips and machine deformation (Martin et al., 2015). However, 

negligible differences were observed between grip-to-grip extension and that observed 

using markers, or a strain gauge, in previous studies of the mechanical behaviour of 

ligaments (Hoffman et al., 2005; Siegler et al., 2016). The pooled CV of repeated EM 

measurements was 32%, indicating that slip may have contributed to a portion of the final 

error in EM. However, visual inspection of the data indicated that the variability in EM were 

random, and there was a positive correlation between the EM of the PIP and MCP joint with 

the carpal joint ligaments within a horse, indicating that the results were consistent with the 

in vivo situation. It would be recommended in future experiments to employ digital imaging 

technology or an external strain gauge to measure mid-substance strain as this would 

eliminate potential error from ligament slip and any deformation inherent in the testing 

machine. 
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The ligaments were tested at a very low strain rate which may not be representative of the 

high strain rates to which they are exposed during locomotion. However, strain rate has 

been shown to have less influence on the biomechanical properties of ligaments than age, 

which had a weak effect in the present study (Woo et al., 1990b). Nevertheless, EM did 

increase with increasing strain rates, so the EM presented in this study may be lower than 

expected in vivo.  

 

The collagen fibrils of the lateral elbow CL were oriented in a diagonal cross. This made it 

impossible to tensile test the ligament as an entire parallel band of fibrils, as was done with 

the other ligaments. The tensile force was applied vertically according to the position of the 

ligament in the leg – i.e. parallel to the middle of the diagonal cross. In addition, the lateral 

elbow CL was very short and thick, and had a large CSA compared to the other ligaments in 

the study. This made it difficult to grip in the clamps as it slipped out more easily, and so it 

experienced a lower tensile strain and a smaller linear region of the stress-strain curve was 

obtained. Testing was not conducted at the different angles of the parallel collagen fibrils 

due to the difficulties in gripping the ligament in the testing device. These factors may have 

resulted in an abnormally low reported EM value, as collagen fibrils are strongest along their 

axes (Weintraub, 2003). In addition, the reported EM was calculated using the CSA for the 

entire specimen, whereas in reality the collagen fibrils under direct load are only a 

proportion of the total CSA, thus contributing to the abnormally low EM value (due to the 

inverse relationship of EM and CSA). Elongation in non-uniform ligaments could be 

measured more accurately in two or three dimensions using speckle techniques to 

appreciate local variations in strain (Martin et al., 2015). However, the direction of applied 

force approximated the ground reaction force during the stance phase of locomotion.  

 

Both temperature and hydration affect the mechanical behaviour of ligamentous tissue 

(Martin et al., 2015). All the ligaments were harvested by the same person using a 

consistent technique and kept hydrated during storage by freezing with water. Freeze 

thawing has been shown not to affect the mechanical properties of rabbit medial CL or 

equine tendons (Martin et al., 2015; Thorpe et al., 2010; Woo et al., 1986). However, the 

testing environment of 20°C did not approximate the body temperature (38°C) of an in-vivo 
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situation. Since there is an inversely proportional relationship of tensile load and 

temperature for a given strain level (Woo et al., 1987), this may have resulted in higher than 

normal values for the EM. Ligaments were tested in the controlled air environment and 

there was a visible loss of tissue water content during loading and gripping in the clamps. 

This dehydration would also result in an over estimation of EM (Hoffman et al., 2005; 

Lavagnino et al., 2005). In the present study, the ligaments were kept hydrated in water 

until testing. This contrasts with the saline buffer solution used in other ligament studies 

(Germscheid et al., 2011; Woo et al., 1990a) and could have resulted in gradual enzymatic 

degradation of the collagen molecules, reducing material strength (Martin et al., 2015).  The 

effect of freezing and the short length of the test minimised these effects, however 

immersion in a physiologic saline solution before and during testing at body temperature 

would better approximate the in vivo environment of the ligaments as well as mitigate 

dehydration and degradation effects. 

 

The ligaments were not tested until failure. Prior to slippage from the serrated jaw clamps, a 

linear region was observed in the stress-strain curve, allowing the EM to be calculated. 

Failure or slip occurred between strains of 7 - 35%. This was above the accepted values for 

the toe region of the curve of 1.5 - 3% (Martin et al., 2015), indicating that the linear region 

of the stress strain curve was reached for each ligament. Previous findings record that 

ligaments with high elastin content can be strained to 30% and up to 60% without damage 

(Martin et al., 2015; Woo et al., 2000). Therefore, the results from this study fall within the 

predicted range of elastic behaviour for ligaments. The EM of equine carpal CL were 

comparable to that of adult humans of 50 - 60 MPa (Mo et al., 2012) and canines of 

approximately 50 - 80 ± 40 MPa (Shetye et al., 2009), but significantly less than the carpal 

MCL in pigs of 327.6 ± 54.4 – 477.8 ± 47.5 MPa (Germscheid et al., 2011) and goats 516 ± 

158 MPa (Abramowitch et al., 2003a). These differences may reflect the more locomotory 

nature of the former species having more flexible and elastic CL to allow for greater 

movement in their distal limbs and highlight the importance of accurate breed specific EM 

values for use in musculoskeletal modelling. 
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The collateral ligaments of the distal interphalangeal joint and shoulder were not included in 

this study due to harvesting difficulties. Therefore, the data in this study does not represent 

the entire equine distal limb, and further studies are required to determine the properties 

of these ligaments.  

 

Any inaccuracies in methodology due to methodological limitations were consistent 

throughout the study (pooled CV of 32% for each ligament) and similar to the observed high 

individual variability between mechanical properties of ligaments (CV of 13 - 52%) (Avella & 

Smith, 2012; Rapoff et al., 1999; Shetye et al., 2009; Thorpe et al., 2010; Woo et al., 1990b). 

In addition, the ligament property data agrees with similar data from the literature (Mo et 

al., 2012; Shetye et al., 2009; Swanstrom et al., 2005). Thus, despite all the above 

methodological issues, the data in the present study is considered valid and of use for gait 

modelling. 

 

Gait models 

Gait models often use a single stiffness value (Bullimore & Burn, 2006; Farley et al., 1993; 

Herr et al., 2002; Herr et al., 2000) or biomechanical data for the major tendons and 

ligaments only (Brown et al., 2003; Harrison et al., 2012; Meershoek et al., 2001; Rollot et 

al., 2004; Wilson et al., 2001). The findings of the present study suggest that this may be 

inappropriate as it has found that the EM differs according to position and function in the 

equine distal limb, even between ligaments performing a similar function. However, due to 

high individual variation in ligament properties, average data is unlikely to be adequately 

representative of every horse. Despite this, common trends in the EM of the CL at specific 

joints exist in the data between horses, enabling the distribution of forces in the distal limb 

to be accurately modelled.  

 

The property data for CL obtained in the present study will be within the ‘Anybody’ 

computer model of equine motion being developed at Massey University to investigate how 

ground surface changes interact with dynamic forces in the equine distal limb. Ground 

reaction forces in the equine distal forelimb will be distributed differently according to the 

differences in elasticity of each tendon and ligament in the limb. The addition of CL to this 
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model will allow a more accurate representation of the path of force in the distal limb to be 

determined.  

 

An accurate representation of limb loading pattern changes will help to determine factors 

which cause injury to the distal limb. This could lead to development and maintenance of 

racetrack surfaces or horseshoes which could reduce injury incidence in Thoroughbred 

racehorses.  In addition, rehabilitation techniques for distal limb injuries could be improved 

as understanding of the force transmission in the limb increases. For the Thoroughbred 

racing industry, this information could significantly reduce wastage and rehabilitation costs 

from ligament and tendon injuries. 

 

The present study has shown that a better understanding of the structures and their 

interactions in the equine distal forelimb is needed. Further knowledge of the properties of 

every ligament and its’ function in the equine distal forelimb will increase the understanding 

of factors leading to equine musculoskeletal injury. Ultimately, a complete model of an 

entire horse may be able to be modelled, allowing accurate simulations to pinpoint 

structures that are at risk of injury and determine factors which could minimise 

musculoskeletal injury or lead to appropriate methods of rehabilitation. 
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Conclusions 

 

Significant differences were found between the elastic moduli of the collateral and distal 

sesamoid ligaments from the different joints of the equine distal forelimb. These were in 

accordance with the disparate forces to which the joints are subjected. The EM varied 

distally to proximally along the limb, lower at the extremities (EM of the lateral elbow 3 ± 2 

MPa) with the highest EM of the CL in the MCP joint (49 ± 36 MPa).  

 

Individual variation in the elastic moduli was high. Thoroughbred horses had a significantly 

higher EM in the PIP and MCP joint CL only, perhaps due to their lightweight build or early 

race training. The EM of the CL in the equine distal limb were mainly independent of horse 

height, except for those from the PIP joint which had a weak linear negative relationship 

with height. This negative relationship and biomechanical property size independence of the 

collateral and distal sesamoid ligaments may contribute to the higher incidence of injury 

seen in larger horses.  

 

The differences and variation of EM found in the present study further our understanding of 

the equine distal forelimb. Their addition to the ‘Anybody’ dynamic gait model will help to 

explain the dynamics of ground reaction forces in the equine distal forelimb at speed. This 

will afford a better understanding of soft tissue and skeletal mechanics in the equine distal 

limb and their reaction to surface perturbations. 
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