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Abstract

High-dimensional data sets, particularly those where the number of variables ex-

ceeds the number of observations, are now common in many subject areas includ-

ing genetics, ecology, and statistical pattern recognition to name but a few. The

sample covariance matrix becomes rank deficient and is not invertible when the

number of variables are more than the number of observations. This poses a se-

rious problem for many classical multivariate techniques that rely on an inverse

of a covariance matrix. Recently, regularized alternatives to the sample covari-

ance have been proposed, which are not only guaranteed to be positive definite

but also provide reliable estimates. In this Thesis, we bring together some of the

important recent regularized estimators of the covariance matrix and explore their

performance in high-dimensional scenarios via numerical simulations. We make

use of these regularized estimators and attempt to improve the performance of the

three classical multivariate techniques in high-dimensional settings.

In a multivariate random effects models, estimating the between-group covariance

is a well known problem. Its classical estimator involves the difference of two

mean square matrices and often results in negative elements on the main diago-

nal. We use a lasso-regularized estimate of the between-group mean square and

propose a new approach to estimate the between-group covariance based on the

EM-algorithm. Using simulation, the procedure is shown to be quite effective and

the estimate obtained is always positive definite.
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Multivariate analysis of variance (MANOVA) face serious challenges due to the un-

desirable properties of the sample covariance in high-dimensional problems. First,

it suffer from low power and does not maintain accurate type-I error when the

dimension is large as compared to the sample size. Second, MANOVA relies on

the inverse of a covariance matrix and fails to work when the number of variables

exceeds the number of observation. We use an approach based on the lasso reg-

ularization and present a comparative study of the existing approaches including

our proposal. The lasso approach is shown to be an improvement in some cases,

in terms of power of the test, over the existing high-dimensional methods.

Another problem that is addressed in the Thesis is how to detect unusual future

observations when the dimension is large. The Hotelling T 2 control chart has

traditionally been used for this purpose. The charting statistic in the control chart

rely on the inverse of a covariance matrix and is not reliable in high-dimensional

problems. To get a reliable estimate of the covariance matrix we use a distribution

free shrinkage estimator. We make use of the available baseline set of data and

propose a procedure to estimate the control limits for monitoring the individual

future observations. The procedure do not assume multivariate normality and

seems robust to the violation of multivariate normality. The simulation study

shows that the new method performs better than the traditional Hotelling T 2

control charts.
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Chapter 1

Introduction

1.1 Introduction

High-dimensional data, particularly those where the number of observed variable,

p, is greater than the sample size, n, is becoming increasingly prevalent in many

subject areas. For example, because of the high-throughput technology, a greater

number of features can be observed in a microarray data set whereas the sample

size cannot be increased. In this kind of high-dimensional data set, the sample

covariance is either not invertible (if n < p) because of its rank deficiency; or,

the inverse of a covariance matrix is unstable (n is comparable to p) and is not

reliable.

The situation is challenging to any multivariate statistical procedure, especially

those that rely on the inverse of the covariance matrix, and has attracted the atten-

tion of many researchers in the recent years. Regularized procedures for estimating

the covariance matrix have been proposed. These include ridge regularization; the

shrinkage method that shrinks the sample covariance towards a target; and the

lasso regularization among others. These regularized estimates are not only guar-

anteed to be positive definite (even when n < p) but have also been proven to be

more reliable than the sample covariance when n is comparable to p. However,

it has been only recently that the regularized covariance matrix is used as an in-

gredient in other statistical techniques. In this Thesis, we bring together some of

the important high-dimensional covariance estimation methodologies and extend

their utility to three different multivariate statistical techniques. The contents of

each chapter are outlined here.

1



Chapter 1. Introduction 2

1. In Chapter 2, we cover some of the important procedures to estimate the

high-dimensional covariance matrices (or the inverse covariance matrices).

These procedures include Moore-Penrose generalized inverse, shrinkage esti-

mation of the covariance matrices, and the procedures based on the penalized

likelihood approach (ridge, lasso, adaptive lasso, and SCAD regularization).

The performance of different regularization procedures, to estimate the true

covariance matrix, is assessed via simulation studies. To quantify the ac-

curacy of each estimator, we use three different loss functions. Some other

factors that can potentially affect the behavior of different regularization

procedures are taken into account. The lasso estimator, although computa-

tionally expensive and assume multivariate normality, maintains the highest

accuracy in most of the cases. The shrinkage estimator, on the other hand,

is computationally inexpensive and does not make distributional assumption

about the underlying set of data.

2. In Chapter 3, we address the problem associated with a multivariate random

effect model that is used when a same set of characteristics is measured in

several different groups. To fit the model, one need to estimate the within-

group covariance and the between-group covariance. The estimation of the

between-group covariance involves the difference of two mean square ma-

trices: the between-group mean square and the within-group mean square.

For a sufficiently large sample size, both mean squares are individually non-

negative definite, however, their difference is not and often results negative

elements on the diagonal. The probability of negative elements on the main

diagonal increases as we increase p. This makes the analysis impracticable

and the model cannot be fitted unless we have a very large sample size. In

this part of the Thesis, we propose a strategy that overcome the problem.

The difference of the two mean square matrices to obtain the between-group

covariance is avoided, rather an EM-algorithm is used. The positive defi-

niteness of the covariance matrices is ensured by using the lasso-regularized

estimates. The performance of the method is illustrated by a number of

simulated examples and a real glass chemical composition data set.

3. Chapter 4, is allocated to Multivariate Analysis of Variance (MANOVA).

The traditionally available MANOVA tests such as Wilks lambda and Pillai-

Bartlett trace start to suffer from low power and do not preserve accurate

Type-I error rates, as the number of variables approaches the sample size.
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Moreover, as the number of variables exceeds the number of available ob-

servations, these statistics are not available for use. Using regularized es-

timates of covariance matrices not only allow the use of MANOVA test in

high-dimensional situations but has also been shown to exhibit high power.

In this part of the Thesis, we bring together the previously used approaches

for high-dimensional MANOVA and present an approach based on the lasso

regularization. The comparative performance of the different approaches has

been explored via an extensive simulation study. The MANOVA test based

on the lasso regularization performs better in terms of power of the test in

some cases. The methods are also applied to real data set of soil compaction

profiles at various elevation ranges.

4. In Chapter 5, we present an overview of Hotelling T 2 control charts and high-

light their inapplicability in high-dimensional settings. These charts have

been used to monitor a stochastic process for out-of-control signals. The

Phase-I analysis involves the clean up process of historical data, calculat-

ing baseline parameters and establishing control limits for Phase-II analysis.

Once the control limits are established, the next Phase is to monitor the pro-

cess for special cause. For each individual observation (i.e. the sub-group

size is 1), Hotelling T 2 statistic is calculated and an out-of-control signal

is issued if it goes beyond the control limits. A problem arises when the

number of variables, p, approaches the number of baseline observations n:

the Hotelling T 2 control chart becomes unreliable and even impractical when

n < p. In this part of Thesis, we devise a procedure to improve the process

monitoring in the high-dimensional setting. We use a shrinkage estimate of

the covariance matrix as an estimate of the baseline parameter. A leave-

one-out re-sampling procedure is used to obtain independent T 2 values. The

upper control limit for monitoring the future observations is then calculated

from kernel smoothed empirical distribution of the independent T 2 values.

The performance of the proposed approach is tested, and compared to the

Hotelling T 2 and the hypothetically “best possible” results, via an exten-

sive simulation study. The procedure outperforms the standard Hotelling

T 2 method and gives comparable results to the one based on true parame-

ters. The procedure is also applied to a real gene expression data set and a

chemical process data that has been analyzed in literature to demonstrate

the principal component approach for process monitoring.
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5. Finally, we conclude in Chapter 6 by providing a discussion about the main

findings of this Thesis, and highlight areas of future work.



Chapter 2

Regularized estimation of

high-dimensional covariance

matrices

2.1 Introduction

The covariance matrix is the key input for most of the classical multivariate sta-

tistical techniques. Some of these techniques are Principal Component Analysis,

Multivariate Analysis of Variance, Linear Discriminant Analysis, and Gaussian

Graphical Models. Consider an n× p matrix Y of observations. The n rows of Y

have a p-dimensional normal distribution with mean vector µ and positive definite

covariance matrix Σ = (σij)1≤i,j≤p i.e. Y ∼ Np(µ,Σ) . Without loss of generality

we assume that the observations are centered, so that, µ = 0. The log-likelihood

function for estimating the covariance matrix is given by

l(Σ; Y) = Const− n

2
log det (Σ)− 1

2

n∑

i=1

YtΣ−1Y, (2.1)

where det (A) is the determinant of a matrix A and At denotes the transpose

of a matrix A. The global maximizer of l(Σ; Y) is the sample estimate of the

covariance matrix given by Σ̂ = (σ̂ij)1≤i,j≤p = 1
n
YtY. The maximum likelihood

estimate Σ̂ or its related unbiased estimate S = n
n−1Σ̂ = (sij)1≤i,j≤p is a widely-

employed estimator of the covariance matrix.

5
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High-dimensional data sets, where the sample size, n, is smaller relative to the

dimension, p, are now common in many fields. Examples of high-dimensional data

include gene expression arrays, high resolution images, and high-frequency finan-

cial data. The classical multivariate statistical techniques are designed to deal

with the applications where n is large relative to p, and face significant challenges

when n is comparable to p. One obvious reason is because these techniques rely on

accurately estimated covariance matrices or on the inverse of it. The two undesir-

able properties of the sample covariance matrix in high-dimensional applications

are well-known. First, for a fixed p, as we decrease n, the spread of the eigenvalues

of the sample covariance matrix increases; therefore, Σ̂ becomes unstable (Ledoit

& Wolf, 2004). Consequently, the traditional multivariate techniques can be mis-

leading. Second, the sample covariance matrix is singular, if n < p. As a result,

those multivariate techniques that rely on the inversion of a sample covariance are

not applicable at all. The behavior of sample covariance matrix relative to the

true and some regularized alternatives is demonstrated in Figure 2.3 for a fixed

p = 40 and n ∈ {20, 40, 1000}. For more discussion about this Figure, the readers

are referred to Section 2.5.

To overcome these issues, different methods of regularizing the sample covariance

matrix have been proposed in the literature. Some of these methods are restricted

to the cases where sample covariance matrices are invertible (n ≥ p). For example,

an estimator that is inspired by the empirical Bayes approach is introduced by

Haff (1980). Dey & Srinivasan (1985) derive an estimator based on the Stein’s

entropy loss function. These regularization techniques break down when n < p.

Recently, new regularization procedure have been proposed with the emergence

of high-dimensional data sets. These regularization procedures not only overcome

the singularity issue of the sample covariance in n < p setting but are also more

stable. Pourahmadi (2013) reviews these recent regularization based estimation

methods of the covariance matrix including banding, tapering, and thresholding

estimation of the covariance matrix. Some of these regularization procedures are

presented in the following sections.

2.2 Moore-Penrose generalized inverse

When the number of variables, p, is more than the number of observations, n,

then some of the eigenvalues of the sample covariance matrix are zero and it is
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not invertible. In this situations, Moore-Penrose generalized inverse is often used

(Penrose, 1955). It is an approximation to the true inverse covariance matrix and

is based on the singular value decomposition. The singular value decomposition

of the sample covariance, Σ̂, is given by

Σ̂ = UDVt (2.2)

where the columns of U and V are, respectively, the orthonormal eigenvectors of

Σ̂Σ̂
t

and Σ̂
t
Σ̂, and D is diagonal with the square root of the eigenvalues from

Σ̂Σ̂
t

(or Σ̂
t
Σ̂) on the main diagonal. Note that the diagonal elements of D are

in descending order and the columns of U and V are ordered according to their

respective eigenvalues as well. The Moore-Penrose generalized inverse is obtained

by restricting D to non-zero eigenvalues. That is, it reduces the dimension of D

from p to the rank of Σ̂. Those columns in U and V that correspond to zero

eigenvalues are also eliminated. The generalized inverse is then calculated using

Σ̂
−1

= VD−1Ut (2.3)

It can be shown that Σ̂
−1

is the shortest length least-squares solution of Σ̂Σ̂
−1

= I

and whenever rank(Σ̂) ≥ p, the Moore-Penrose generalized inverse reduces to the

standard matrix inverse (Golub & Kahan, 1965). In this Thesis we use the built-

in R function ginv() in “MASS” package to calculate Moore-Penrose generalized

inverse (Venables & Ripley, 2002).

2.3 Shrinkage Estimate

The idea of shrinkage estimation dates back to 1960s when Stein demonstrated that

the performance of an estimator may be improved via shrinking it towards a struc-

tured target (Stein, 1956; James & Stein, 1961). Ledoit & Wolf (2004) consider

the idea of shrinkage estimation and propose a shrinkage estimator of a covariance

matrix that is the convex linear combination of a sample covariance and a tar-

get matrix. They provided a procedure for finding the optimal shrinkage intensity,

which asymptotically minimizes the expected quadratic loss function, E‖Σ̂ρ−Σ‖2,
where ‖A‖2 is the squared matrix norm of A. The expected quadratic loss func-

tion measures the mean-squared error summed over elements; an estimator with

minimal mean-squared error is desired. The Ledoit-Wolf estimator is shown to be
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well-conditioned in high dimensional problems. It is important to note that the

estimator does not make any distributional assumptions about the underlying dis-

tribution of the data and its performance advantages are, therefore, not restricted

to Gaussian assumptions.

Consider the maximum likelihood estimate of a high-dimensional covariance ma-

trix Σ̂ and let T = (tij)1≤i,j≤p be a target estimate towards which we want to

shrink our estimate. The target estimator, T, is required to be positive definite

and its specification needs some assumptions about the structure of the true co-

variance matrix, Σ. For example, Ledoit & Wolf (2004) uses a diagonal matrix as

a structured target estimate (presuming that all the variances are equal and all the

covariances are zero) which is also positive definite. A Steinian-class of shrinkage

estimators is obtained by the convex linear combination of Σ̂ and T, given by

Σ̂ρ = ρT + (1− ρ)Σ̂ (2.4)

where ρ ∈ [0, 1] is the shrinkage intensity. Note that, for ρ = 0 we get Σ̂ρ = Σ̂

while for ρ = 1, we have Σ̂ρ = T. The regularized estimate, Σ̂ρ, obtained in this

way is more accurate and statistically efficient than the estimators Σ̂ and T in the

problems with n comparable to p (see Ledoit & Wolf, 2004).

2.3.1 Computation of the shrinkage intensity ρ

The value of ρ is critical to choose because it in turn determines the properties

of the shrinkage estimate, Σ̂ρ. Schäfer & Strimmer (2005b) take the formulation

of Ledoit & Wolf (2003) and derive analytic expressions to compute the optimal

shrinkage intensity for six commonly used targets. To be more specific, they follow

Ledoit & Wolf (2003) and minimize the risk function

R(ρ) = E‖Σ̂ρ −Σ‖2 (2.5)

to compute the value of ρ. Minimizing (2.4) with respect to ρ, the following

expression has been obtained for the optimal value of ρ

ρ̂∗ =

∑p
i=1

∑p
j=1 V ar(σ̂ij)− Cov(tij, σ̂ij)−Bias(σ̂ij)E(tij − σ̂ij)∑p

i=1

∑p
j=1E [(tij − σ̂ij)2]

. (2.6)
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It is possible from the above expression to obtain a value of ρ̂∗ that is either

greater than 1 (over shrinkage) or even negative. This is avoided by using ρ̂ =

max(0,min(1, ρ̂∗)). If Σ̂ is replaced by the unbiased estimate, S, in (2.3) then the

expression for ρ in (2.5) reduces to

ρ̂∗ =

∑p
i=1

∑p
j=1 V ar(sij)− Cov(tij, sij)∑p
i=1

∑p
j=1E [(tij − sij)2]

. (2.7)

It is worth noting at this point, that the shrinkage intensity varies as we change the

target estimator. Schäfer & Strimmer (2005b) provide a detailed discussion about

the six commonly used targets. A natural choice for T is I, the identity matrix

(used by (Ledoit & Wolf, 2003) and (Ledoit & Wolf, 2004) ) or its scalar multiple.

This choice not only assumes sparsity which is more intuitive in high-dimensional

applications but also remarkably simple because it require no parameters or one

parameter to be estimated. Using the identity matrix as a target estimate reduces

the expression in (2.6) to

ρ̂∗ =

∑p
i=1 V ar(sij, i 6= j) +

∑p
i=1 V ar(sii)∑p

i=1(s
2
ij, i 6= j)

. (2.8)

This target shrinks both the off-diagonal elements (covariances) and the diagonal

elements (variances) of the sample covariance matrix, therefore alters the complete

eigenstructure of the sample covariance matrix. Another, more complex choice,

which has been the focus of Schäfer & Strimmer (2005b) is Sd, where Sd is a diago-

nal matrix with diagonal elements of S on the main diagonal and zero elsewhere (it

is complex because it requires p parameters to be estimated). This target shrinks

only the off-diagonal elements, therefore, shrink only the eigenvalues and leave the

eigenvectors unchanged. The expression in (2.6) for T = Sd simplifies to

ρ̂∗ =

∑p
i=1 V ar(sij, i 6= j)∑p

i=1(s
2
ij, i 6= j)

. (2.9)

An advantage of using I (or its scalar multiple) and Sd as target estimates is that

they are positive definite. Since (2.3) becomes a convex linear combination of

positive definite target matrix, T, and positive semidefinite matrix S, therefore

the obtained shrinkage estimate Σ̂ρ is guaranteed to be positive definite.

In this Thesis, we use the function cov.shrink() with the default options, avail-

able in contributed R package “corpcor” (Schaefer et al., 2010), to calculate the
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shrinkage estimate of the covariance matrix. The cov.shrink() function shrinks the

sample correlation matrix, R = (rij)1≤i,j≤p, towards the identity target estimate,

I. Replacing Σ̂ by R and T by I in (2.3), the expression for shrinkage intensity

in (2.6) simplifies to

ρ̂∗ =

∑p
i=1 V ar(rij, i 6= j)∑p

i=1(r
2
ij, i 6= j)

. (2.10)

The shrunken covariance is then obtained using the equation

Σ̂ρ = S
1/2
d R̂ρS

1/2
d , (2.11)

where R̂ρ is the regularized version of R̂. This formulation is more appropriate

when variables are measured on different scales. Note that, the cov.shrink() func-

tion also allows the diagonal elements to shrink (this is the default option) with

separate shrinkage intensity calculated by

ρ̂∗ =

∑p
i=1 V ar(sii)∑p

i=1(s
2
ii −median(s))2

, (2.12)

where median(s) is the median of sample variances.

2.4 Penalized Normal Likelihood

A likelihood-based approach, using penalized multivariate normal likelihood, pro-

vides another class of regularized estimators of the covariance matrices. The fol-

lowing log-likelihood function, based on a random sample, Y, of size n from a

multivariate normal distribution, Y ∼ Np(0,Σ), has been optimized subject to

the positive-definiteness constraint of Ω = Σ−1 = (ωij)1≤i,j≤p

l(Ω) = Const− n

2
log det (Σ)− 1

2

n∑

i=1

YtΩY −
p∑

j=1

p∑

k=1

p(ωjk), (2.13)

where p(a) > 0 is a penalty function. Some well-known penalty functions include

the ridge penalty, lasso penalty, adaptive lasso penalty, and SCAD penalty. These

penalty functions are discussed in the following subsections.
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2.4.1 Ridge Regularization

Ridge regularization which uses the L2 penalty, has been adopted by Warton

(2008). The solution to equation (2.13) with penalty function pκ(ωjk) = κ(ωjk)
2

is

Σ̂κ = Σ̂ + κI, (2.14)

where Σ̂κ is the ridge regularized estimator of covariance matrix and κ > 0 is a

ridge parameter. For κ = 0, we simply get the maximum likelihood estimator.

Alternatively consider the sample estimate of the correlation matrix, R that can

be obtained as

R̂ = Σ̂
−1/2
d Σ̂Σ̂

−1/2
d (2.15)

where Σ̂d is the diagonal matrix with corresponding diagonal elements of Σ̂ on

the diagonal. The regularized version R̂ρ of R̂ can be obtained using the following

convex linear combination of R̂ and I

R̂ρ = ρR̂ + (1− ρ)I (2.16)

and the corresponding regularized estimate Σ̂ρ is as

Σ̂ρ = Σ̂
1/2

d (ρR̂ + (1− ρ)I)Σ̂
1/2

d , (2.17)

where ρ = 1/(1 + κ) ∈ (0, 1] is the ridge parameter. For any choice of ρ ∈ (0, 1]

the regularized estimator Σ̂ρ of the covariance matrix is guaranteed to be positive

definite. An additional interesting property of R̂ρ is that it can be derived as the

penalized likelihood estimate of R for multivariate normal data, with a penalty

term proportional to the trace of R−1 (see Warton (2008) for detailed proof).

2.4.1.1 Selection of the ridge parameter ρ

Warton (2008) use the normal likelihood in (2.1) as an objective function and the

cross-validation procedure to obtain the optimum value of ridge parameter ρ. The

n rows of Y are partitioned into K disjoint sub-samples i.e. Yt = [Yt
1,Y

t
2, ...,Y

t
K ],

where Yt
k has nk rows for k = 1, 2, ..., K. The size of nk is roughly the same for

all K sub-samples i.e. nk ≈ n/k. For example, if n = 25 and we use 6-fold cross-

validation then there are total 6 sub-samples. The size of the 5 sub-samples is 4
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and the fourth sub-sample will have 5 observations (the rest). The kth sub-sample

is retained as a holdout set and the rest of the data, Y\k, is used as a training

data. The sample size affects the penalty parameter; it is generally kept roughly

the same across different sub-samples and we want the size of the training data

set not too different from the original sample size, n. Let us write the index of

the observations in kth-fold as Tk, the estimated covariance matrix of Y\k as Σ̂
\k
ρ

and the estimated mean vector of Y\k as µ̂\k, then the cross-validation score is

calculated using

CV (ρ) =
K∑

k=1

[
nk log det(Σ̂

\k
ρ ) +

∑

i∈Tk
(yi − µ̂\k)t(Σ̂

\k
ρ )−1(yi − µ̂\k)

]
. (2.18)

The optimal value of ρ is one which gives the highest score i.e. ρ̂ = arg max
ρ

CV (ρ).

A built-in R function, ridgeParamEst(), to choose the optimal value of ρ is available

in contributed R package “mvabund” (Y. Wang et al., 2012). In this thesis, we

use ridgeParamEst() to obtain the optimal value of ρ.

2.4.2 Lasso Regularization

In a multivariate normal distribution, the inverse of a covariance matrix determines

the conditional independence structure among variables. A zero off-diagonal ele-

ment in the inverse covariance matrix means that the corresponding variables are

conditionally independent given the rest. Identifying zero off-diagonal elements in

the inverse covariance matrix are therefore termed as model selection for Gaus-

sian graphical models (Cox & Wermuth, 1996). Denote the inverse covariance

matrix by Ω, then the natural estimator of Ω is Σ̂
−1

or S−1. These estimators

are unlikely to produce an estimated inverse covariance matrix, Ω̂, with exactly

zero off-diagonal entries. However, in high-dimensional problems, we believe that

there are frequently superfluous parameter estimates (they are zero in population)

which make the model unnecessarily more complex and unstable. The prediction

accuracy and model interpretability can be substantially increased by setting some

of the parameter estimates to zero, which is called covariance selection introduced

by Dempster (1972). Moreover, in high-dimensional problems, fitting a sparser

model provides more power to accurately estimate the important parameters.

A well-known problem due to high-dimensionality is the collinearity among pre-

dictors in multiple regression. To remedy this issue, Tibshirani (1996) proposed
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the lasso in the regression setting, a popular model selection and shrinkage esti-

mation method, which has the ability to shrink some coefficients towards zero and

sets the others as exactly zero. It is, therefore, simultaneously selecting important

variables and estimating their effects. This idea was extended by Yuan & Lin

(2007) to the likelihood-based estimation of the inverse covariance matrix Ω. The

log-likelihood function in (2.13) with penalty function, pρ(ωjk) = ρ |a|, where ρ is

a penalty parameter and |a| denotes the absolute value of a, has been optimized.

Friedman et al. (2008) have proposed the fastest algorithm, known as graphical

lasso algorithm, to solve the lasso problem. Here are the details of the algorithm:

Partition the estimate W = S + ρI of Σ and S as

W =

(
W11 w12

wt12 w22

)
, S =

(
S11 s12

st12 s22

)
(2.19)

then the lasso problem is given by

minβ

{1

2
‖W1/2

11 β − b‖2 + ρ‖β‖1
}
, (2.20)

where ‖A‖1 is L1 norm and b = W
−1/2
11 s12/2. The algorithm works as follows:

1. Start with W without changing the diagonal in the following steps.

2. For each j = 1, 2, ..., p, 1, 2, ..., p, ..., permute the rows and columns of W

and S in such a way so that the target column is always the last and solve

the problem in (2.20), which gives a p− 1 vector solution β̂.

3. Fill in the corresponding row and column of W using w = 2W11β̂.

4. Continue until convergence.

The algorithm gives the regularized estimate of the covariance matrix Σ̂ρ = W

at the convergence. The regularized estimate of the inverse covariance matrix

Ω̂ρ = W−1 is also recovered after convergence utilizing the relation WΩ = I

partitioned as (
W11 w12

wt12 w22

)(
Ω11 ω12

ωt12 ω22

)
=

(
I 0

0t 1

)
(2.21)

from this the expression

ω̂22 =
1

w22 − wt12β̂
(2.22)
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and

ω̂12 = −β̂ω̂22 (2.23)

is derived. The lasso problem in step (2) of the above algorithm is solved by the

coordinate descent algorithm (Friedman et al., 2007). For j = 1, 2, ..., p, 1, 2, ..., p,

..., and with V = W11 the following update is cycled through the predictors until

convergence:

β̂j ← S(s12j − 2
∑

k 6=j
Vkjβ̂k, ρ)/(2Vjj) (2.24)

where S(x, t) = sign(x)(|x| − t)+ is the soft-threshold operator with (a)+ =

max(0, a). The algorithm stops when the average absolute change in W is less

than t.ave
∣∣S\diag

∣∣, where S\diag are the elements of the sample covariance matrix

S, excluding the diagonal elements, and t is a small positive constant. For exam-

ple, the glasso() function in the contributed R package “glasso” uses t = 0.0001

(Friedman et al., 2013).

2.4.3 Adaptive lasso and SCAD penalty functions

Clearly the lasso penalty discourages superfluous parameters estimates from ap-

pearing in the model. However, it has been criticized for its linear increase in

penalty, which produces stringly biased estimates for large parameters (Fan & Li,

2001). This problem is alleviated by Fan et al. (2009), who use the extended ver-

sions of lasso penalty known as the adaptive lasso (Zou, 2006) and the Smoothly

Clipped Absolute Deviation (SCAD) penalty Fan & Li (2001). The adaptive lasso

penalty is given by:

pρ(ωij) =
ρ

|ω̃ij|γ
|ωij| (2.25)

for some initial estimator Ω̃ = (ω̃ij)1≤i,j≤p and some γ > 0. For adaptive lasso the

initial estimator Ω̃ is required to be a consistent estimator of Ω. The choice of a

consistent initial estimator is an issue for the adaptive lasso penalty. As mentioned

earlier, the sample variance-covariance matrix for high-dimensional problems is not

invertible in p > n settings and therefore cannot be used as an initial estimator.

Following Fan et al. (2009) we use a lasso estimate as an initial estimator and keep

γ = 0.5.
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The first-order derivative of SCAD penalty is:

p′ρ(ω̃ij) =




ρ when |ω̃ij| ≤ ρ

(aρ−|ω̃ij |)+
(a−1) when |ω̃ij| > ρ

(2.26)

and the resulting solution is given by:

ω̂ij =





sign(ω̂ij)(|ω̂ij| − ρ)+ when |ω̃ij| ≤ 2ρ

{(a−1)ω̂ij−sign(ω̂ij)aρ}
(a−2) when 2ρ < |ω̃ij| ≤ aρ

ω̂ij when |ω̃ij| > aρ

(2.27)

for some a > 2 and (x)+ = max(0, x). Fan & Li (2001) recommend to use

a = 3.7 and it is later used by Fan et al. (2009). Unlike the lasso penalty, these

penalty functions leave large coefficients not excessively penalized. Ultimately,

they not only produce sparse solutions but also produce the parameter estimates

as efficient as if the true model were known, i.e. they enjoy the so called oracle

properties (Fan & Li, 2001). Figure 2.1 shows the regularized estimates against the

maximum likelihood estimates for the elements of the inverse covariance matrix.

Note that, the ridge penalty does not produce zero estimates and also excessively

penalizes the large coefficients. The lasso penalty forces small coefficients to be

exactly zero, however, it still produce bias by excessively penalizing the large

coefficients. Adaptive lasso and SCAD penalty resolve both these issues i.e. they

produce sparse solutions and also eliminate the bias issue for large coefficients.

Since our objective is to estimate the covariance matrix rather than model selection

(identifying zero elements in the inverse covariance matrix), the estimator based

on the lasso penalty perform better than the estimator based on the adaptive lasso

and the SCAD penalties (see simulations in Section 2.5). Fitch et al. (2014) have

also noticed that the lasso regularization and even the adaptive lasso do not do a

great job of model selection compared to model selection procedures.

In our analysis, we use the glasso() function to calculate lasso regularized covari-

ance matrix. It is is available in the contributed R package “glasso” (Friedman et

al., 2013). The glasso() function allows us to use weighted L1 penalty like adap-

tive lasso and SCAD penalty. Note that, the lasso regularization (like shrinkage

regularization) also allows to change the complete eigenstructure (eigenvalues and

eigenvectors) by penalizing both diagonal and off-diagonal elements. This is the

default option in the glasso() function.
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Figure 2.1: A schematic diagram showing the regularized estimates against the
maximum likelihood estimates for the elements of the inverse covariance matrix
(a) the ridge, (b) the lasso, (c) the adaptive lasso, (d) the SCAD regularized

estimates.

2.4.4 Choosing the optimal value of the penalty parameter

ρ

Like in ridge and shrinkage regularizations, the choice of ρ is critical for lasso reg-

ularization, as it controls the properties of the estimator. This is also essential for

adaptive lasso and SCAD penalties to hold the aforementioned properties (Fan &

Li, 2001; Fan et al., 2004; H. Wang et al., 2007). Larger values of ρ will produce

sparser solutions. Smaller values of ρ, on the other hand, will encourage more

non-zero off-diagonal elements to appear in the inverse covariance matrix. Tradi-

tionally, two automatic data-driven methods have been used to select the optimal
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value of tuning parameter:

1. Bayesian information criterion (BIC) proposed by H. Wang et al. (2007) and

was further investigated by Gao et al. (2009) for Gaussian graphical models.

2. Cross-validation used by Friedman et al. (2008) and Fan et al. (2009).

BIC is computationally less expensive and its empirical performance is shown

to be advantageous over cross-validation in Gaussian graphical models (Gao et

al., 2009), where the objective is to identify zero off-diagonal elements in the

inverse covariance matrix. In our experience, BIC generally chooses larger values

of the regularization parameter than cross-validation and therefore forces more

of the off-diagonal elements to be equal to zero. Since the lasso penalty heavily

penalizes the large coefficients, it aggravates the problem if BIC is used to choose

the penalty parameter. Cross-validation typically performs well with lasso penalty

as compared to BIC, when the objective is to estimate covariances.

We follow Fan et al. (2009) and use K-fold cross-validation to select the optimal

value of ρ via a grid search over a grid of values produced by ev/10, where v ∈
[−100, 10]. To reduce the computational effort we stop the search at a value

of ρ if the cross-validation score is decreasing over the next three consecutive

values of ρ in the grid. We partition the n rows of Y into K disjoint sub-samples

Yt = [Yt
1,Y

t
2, ...,Y

t
K ], where Yt

k has nk rows for k = 1, 2, ..., K. The size of nk is

roughly the same for all K sub-samples i.e assume that n is a multiple of K then

nk = n/K. The kth sub-sample is retained as a holdout set and the rest of the

data, Y\k, is used as a training data. Denote the covariance matrix of Y\k by Σ̂
\k
ρ

then the cross-validation score is calculated using

CV (ρ) =
K∑

k=1

nk

(
log det

(
Σ̂
\k
ρ

)
+ tr(Sk(Σ̂

\k
ρ )−1)

)
, (2.28)

where Sk is the sample covariance calculated from the kth sub-sample and tr(A)

is the trace of a matrix A. The optimal value of ρ is one which gives the highest

score i.e. ρ̂ = arg max
ρ

CV (ρ).
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2.5 Numerical simulations

To evaluate the performance of the shrinkage, ridge, lasso, adaptive lasso, and

SCAD regularizations, in how well they estimate the true covariance matrix, a

large simulation study is conducted. We draw n observations from a p-variate

normal distribution with mean vector, µ = 0, and covariance matrix, Σ. Three

different covariance structures are used: the exchangeable structure given by

σij =





1 when i = j

b when i 6= j
for 1 ≤ i, j ≤ p, (2.29)

the AR(1) structure given by

σij = b|i−j| for 1 ≤ i, j ≤ p, (2.30)

and the method of Schäfer & Strimmer (2005a), which guarantees the generated

matrix to be positive definite. We refer to the covariance matrices generated in

this way as being from the random method. The algorithm to generate random

covariances proceeds as follows:

1. Start with a null p× p matrix.

2. Choose randomly a suitable proportion of the off-diagonal positions, and

fill them symmetrically with a value drawn from the uniform distribution

between -1 and 1.

3. Set the rest of the off-diagonal elements as zero. To generate high-dimensional

sparse inverse covariance matrices a smaller proportion of the off-diagonal

positions would be required to fill in with non-zero elements in step 2.

4. Sum up the absolute values for each column plus a small constant and fill

them in their respective diagonal positions. This is our inverse covariance

matrix Ω.

5. The inverse of Ω is the covariance matrix Σ.

Figure 2.2 presents the off-diagonal elements of some typical correlation matrices

generated using the random method. The Figure shows that for a fixed value
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of p as we increase the proportion of the non-zero elements in the off-diagonal

positions, the size of the off-diagonal elements in the correlation matrix decreases.

The inverse covariance matrix of AR(1) structure is sparse while the inverse covari-

ance for exchangeable structure does not have zeros on the off-diagonal positions.

These choices of covariance structures allow us to test the methods at two ex-

tremes. The random method stands in the middle and allows us to control for the

amount of sparsity.

Figure 2.3 gives the general picture of how these regularization procedures over-

come the problem of over-dispersion of the eigenvalues of a sample covariance.

It compares the eigenvalues of the three regularized estimates of the covariance

matrix (shrinkage, ridge, and lasso) to the sample estimate and true covariance

matrix, for p = 40 and n ∈ {20, 40, 1000}. The estimated eigenvalues of a true

covariance matrix, generated using the random method with the proportion of the

non-zero off-diagonal elements equals to 50%, are averaged over 1000 simulations.

In general, for a very large sample size, the eigenvalues for the sample estimate

of the covariance matrix and for the three regularized estimates are all close to

the true eigenvalues values. The sample covariance over estimates the large eigen-

values and under estimates the small eigenvalues when p is large relative to n

(see Ledoit & Wolf (2004) for theoretical demonstration). The regularization of

a sample covariance matrix deflates the large eigenvalues and inflates the small

eigenvalues; therefore, overcome the defect of the sample covariance. The lasso

and the shrinkage estimate recover the true eigenvalues more accurately on the av-

erage, however, the ridge regularization does not do a great job in the simulation

experiments conducted here.

We draw 1000 sample of size n = 20 from a multivariate normal distribution with

different choices of p ∈ [10, 20, 40, 80] and consider all the three covariance struc-

tures mentioned above. For both AR(1) and exchangeable covariance structures,

we show the results for b = 0.6. The random covariance matrix is different for each

of the 1000 samples and the proportion of non-zero positions is kept as 40%, 30%,

20%, and 10%, respectively, for p = 10, p = 20, p = 40, and p = 80. Three differ-

ent loss functions are used to make the assessments. The first two loss functions,

known as the entropy loss function and the quadratic loss function, are given by

loss1 = tr
(
Σ−1Σ̂

)
− log det

(
Σ−1Σ̂

)
− p, (2.31)
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where tr(A) is the trace of A and det(A) denotes the determinant of a matrix A,

and

loss2 = tr
(
Σ−1Σ̂− I

)2
, (2.32)

respectively. These two loss functions are common to asses the performance of

the covariance estimators (see for example, (James & Stein, 1961) and (Ledoit et

al., 2012)). The third loss function, which measures how well the five competing

procedures recover the eigenvalues of the true covariance matrix, is given by

loss3 =

p∑

i=1

∣∣∣λ̂i − λi
∣∣∣ , (2.33)

where λ is the true eigenvalue, λ̂ is the respective estimated eigenvalue and |a|
denotes the absolute value of a. The value of each of the above three loss functions

is 0 when Σ−1Σ̂ = I and is positive otherwise. An estimator, Σ̂, with minimum

average loss is considered the best.

The distributions of the three loss functions for the exchangeable, random, and

AR(1) covariance structures are shown in Figures 2.4, 2.5, and 2.6, respectively.

Since, the shrinkage, lasso, adaptive lasso, and SCAD regularization allow to pe-

nalize the diagonal elements, we arrange the results with diagonal elements un-

penalized in column (a) of the figures while the results for the diagonal elements

penalized are presented in column (b) of the figures. The ridge regularization does

not allow to penalize the diagonal elements; therefore, the distributions in (b) are

the replicates of the results in (a) for ridge regularization.

In general, the estimation error increases as we increase the number of variables.

The lasso regularization maintains the highest accuracy in most of the cases, when

the diagonal elements are not penalized (see column (a) of the figures). Its perfor-

mance becomes weak when the diagonal elements are penalized that is more clear

under the quadratic loss function. The diagonal elements (variances) in the covari-

ance matrices are larger as compared to their respective off-diagonal elements and

the lasso penalty increase linearly for large coefficients. The poor performance of

the lasso penalty, when the diagonal elements are penalized, is due to its increased

bias for large coefficients. The adaptive lasso and SCAD penalty do not heavily

penalize the large elements, so the difference in their performance when the diago-

nal elements are not penalized to when the diagonal elements are penalized is not

huge.
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Figure 2.2: Off-diagonal elements of simulated correlation matrices for p = 20
using the algorithm of Schäfer & Strimmer (2005a). The proportion of non-
zero off-diagonal elements in step 2 of the algorithm is (a) 20%, (b) 30%, and
(c) 40%. For a fixed value of p as we increase the proportion of the non-zero
elements in the off-diagonal positions, the size of the off-diagonal elements in

the correlation matrix decreases.



Chapter 2. Regularized estimation of high-dimensional covariance matrices 22

Comparing the performance of shrinkage and ridge regularization, there is a lit-

tle difference for exchangeable structure if the diagonal elements are unpenalized

for shrinkage regularization. Penalizing the diagonal slightly improves the perfor-

mance of shrinkage estimate over the ridge estimate with respect to the entropy

loss function while the improvement is substantial with respect to the quadratic

loss function (even better than lasso and its weighted versions). For random struc-

ture, however, ridge regularization performs well for small p and its performance

becomes worse, under loss1 and loss3, for large p compare to the other coun-

terparts. In our simulation study, the reason for the poor performance of ridge

regularization is that it tends to underestimate the shrinkage intensity as compared

to the shrinkage estimation.

2.6 Summary and conclusion

The Moore-Penrose generalized inverse is commonly used in applications where

the sample covariance matrix is not invertible. It is obtained by restricting the

dimensionality to the number of non-zero singular values and reduces to the stan-

dard matrix inverse whenever rank(Σ̂) ≥ p, which is known to be ill-conditioned

when p is close to n. Shrinkage regularization is an improvement over Moore-

Penrose generalized inverse in terms of mean square error (Schäfer & Strimmer,

2005). It shrinks the sample covariance matrix towards a target estimate and

therefore converts the unstable but unbiased sample covariance into a biased but

more stable estimate. The target matrix determines the properties of the shrink-

age estimate and its specification requires some structural information about the

true covariance matrix. If the specified target matrix is positive definite then the

shrinkage estimate is guaranteed to be positive definite. The ridge regularization

can be viewed as a special case of the shrinkage estimate because the target ma-

trix is always identity matrix (it shrinks the sample correlation matrix towards an

identity target matrix). It only shrinks the eigenvalues and leave the eigenvectors

as unchanged. The shrinkage regularization, on the other hand, allows other tar-

get estimators and therefore together with shrinking the eigenvalues also allows to

alter the eigenvectors. Another difference in the shrinkage and ridge regularization

is that in ridge regularization the ridge parameter is chosen via cross-validation

while shrinkage regularization minimizes the quadratic loss function to calculate

shrinkage intensity.
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A zero off-diagonal element in a true inverse covariance matrix can never be esti-

mated as exactly equal to zero by the sample estimator (the inverse of the sample

covariance) no matter how large the sample size. The shrinkage and ridge esti-

mator do not hold this property either. The distinguishing property of the lasso

(and its weighted versions: adaptive lasso and SCAD) regularization is that it sets

some of the elements of the inverse covariance matrix as exactly zero. However,

the lasso regularization has been criticized for its excessive penalty for large coef-

ficients. This bias in the large coefficients becomes more clear when we penalize

the diagonal elements as we saw in our simulation experiments. Adaptive lasso

and SCAD penalty overcome this problem and they can produce sparse solutions

without heavily penalizing the large coefficients. In our simulation, we found that

lasso (if we do not penalize the diagonal elements) perform the best in most cases

as long as the objective is to estimate the covariance matrix or its inverse (rather

than model selection). Therefore, we do not consider adaptive lasso and SCAD

penalty in the rest of the Thesis.

2.7 Contributions of the Chapter

A number of high-dimensional covariance estimation methodologies have been de-

veloped in recent decades. While each of these procedures has undergone some

assessment in the literature, we bring together the most promising recent pro-

cedures (and the conventional Moore-Penrose generalized inverse), for a compre-

hensive comparison via simulation. Three different loss functions based on the

eigen structure of the covariance matrix are used, and three different sparsity sce-

narios are considered. Our conclusions in this chapter guide us in our choice of

regularization techniques in the rest of the thesis.

Note: The next three chapters: Chapter 3, Chapter 4, and Chapter 5 are for-

matted as papers. Some of the material presented in this chapter are repeated as

needed.
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Figure 2.3: Ordered eigenvalues of a true and estimated covariance matrices.
A true covariance matrix is generated using the random method with proportion
of non-zero off-diagonal elements equals to 50% and p = 40. The covariance ma-
trix is estimated 1000 times, using 1000 samples for each n ∈ {20, 40, 1000} from
a multivariate normal distribution and the average eigenvalues of the estimated
covariance matrices are presented. The diagonal elements of the estimated co-

variance matrices are not penalized in any of the regularization procedures.
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Figure 2.4: An exchangeable covariance structure is used with b = 0.6. The
box-plots show the distributions of the three loss functions for the five competing
procedures. The three loss functions are calculated for each of 1000 samples of
size n = 20 from a multivariate normal distribution with p ∈ {10, 20, 40, 80}.
Since the shrinkage, lasso, adaptive lasso, and SCAD regularization allow to
penalize the diagonal, the diagonal elements in (a) are left unpenalized while
in (b) they are penalized for all the four methods. As ridge regularization does
not allow to penalize the diagonal elements; therefore, the distributions in (b)

are the replicates of the results in (a) for ridge regularization.
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Figure 2.5: A random covariance structure is used with the proportion of non-
zero edges equals to 50%, 30%, 20%, and 10%, respectively, for p equals to 10,
20, 40, and 80. The box-plots show the distributions of the three loss functions
for the five competing procedures. The three loss functions are calculated for
each of 1000 samples of size n = 20 from a multivariate normal distribution
with p ∈ {10, 20, 40, 80}. Since the shrinkage, lasso, adaptive lasso, and SCAD
regularization allow to penalize the diagonal, the diagonal elements in (a) are left
unpenalized while in (b) they are penalized for all the four methods. As ridge
regularization does not allow to penalize the diagonal elements; therefore, the
distributions in (b) are the replicates of the results in (a) for ridge regularization.



Chapter 2. Regularized estimation of high-dimensional covariance matrices 27

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a)

p

lo
ss

1
p

10 20 40 80

Shrinkage
Ridge
LASSO
aLASSO
SCAD

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b)

p

lo
ss

1
p

10 20 40 80

Shrinkage
Ridge
LASSO
aLASSO
SCAD

0.
0

0.
5

1.
0

1.
5

p

lo
ss

2
p

10 20 40 80

Shrinkage
Ridge
LASSO
aLASSO
SCAD

0.
0

0.
5

1.
0

1.
5

p

lo
ss

2
p

10 20 40 80

Shrinkage
Ridge
LASSO
aLASSO
SCAD

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

lo
ss

3
p

10 20 40 80

Shrinkage
Ridge
LASSO
aLASSO
SCAD

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

lo
ss

3
p

10 20 40 80

Shrinkage
Ridge
LASSO
aLASSO
SCAD

Figure 2.6: An AR(1) covariance structure is used with b = 0.6. The box-
plots show the distributions of the three loss functions for the five competing
procedures. The three loss functions are calculated for each of 1000 samples of
size n = 20 from a multivariate normal distribution with p ∈ {10, 20, 40, 80}.
Since the shrinkage, lasso, adaptive lasso, and SCAD regularization allow to
penalize the diagonal, the diagonal elements in (a) are left unpenalized while in
(b) they are penalized for all the four methods.As ridge regularization does not
allow to penalize the diagonal elements; therefore, the distributions in (b) are

the replicates of the results in (a) for ridge regularization.



Chapter 3

Hierarchical covariance

estimation

3.1 Introduction

In many applied problems we come across multivariate data sets that come from

multiple groups. One special case is when there are few observations in each group

but many groups. An example of this kind can be found in Aitken & Lucy (2004)

where multivariate replicate measurements are taken on the elemental composition

of glass from different windows. A data set of similar nature has been collected by

Bennett (2002): who made twenty replicate measurements of five elements on each

of six different Heineken beer bottles. In both of these cases, since the within-group

variation is because of measurement error our emphasis is on the between-group

variation while controlling for the within-group variation. A multivariate random-

effect model has been used by Aitken & Lucy (2004) to summarize the data.

We measure p variables from m different groups and there are r measurements from

each group. Denote the n = mr observations by Xij = (Xij1,Xij2, · · · ,Xijp)
t,

i = 1, 2, · · · ,m, j = 1, 2, · · · , r. Let θi be the mean vector of the ith group and

U be the within-group covariance matrix. Then, given θi and U, the distribution

of Xij is assumed to be normal with Xij ∼ Np(θi,U). Similarly, assume that µ

is the between-group mean vector and C is the between-group covariance matrix.

Then θi is assumed to be normally distributed with θi ∼ Np(µ,C).

28
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Denote the within-group sum-of-squares and cross-products matrix by Sw, then

Sw is given by

Sw =
m∑

i=1

r∑

j=1

(Xij − X̄i)(Xij − X̄i)
t, (3.1)

where X̄i is the mean of the ith group, and the within-group covariance matrix is

calculated by

Û =
Sw

n−m. (3.2)

Similarly, denote the between-group sum-of-squares and cross-products matrix by

Sb, then Sb is obtained by

Sb =
m∑

i=1

(X̄i − X̄)(X̄i − X̄)t, (3.3)

where X̄ is the overall mean, and the between-group covariance matrix, C, is

estimated using

Ĉ =
Sb

m− 1
− Sw
r(n−m)

. (3.4)

To analyze the data, one needs reliable estimates of both within-group and between-

group covariance components. The problem of estimating the large covariance

matrices has long been known in the literature of multivariate statistics. The es-

timates of covariance matrices become ill-conditioned (when n is slightly greater

than p) or even singular (when n is less than p). The problem is exacerbated

when we estimate the between-group covariance matrix. The standard estima-

tion procedure in (3.4) involves the difference of two mean square matrices: the

between-group mean square and the within-group mean square (we refer to this

method of estimation as a standard method). For a sufficiently large sample size,

both mean squares are individually guaranteed to be nonnegative definite, how-

ever, their difference is not and often results negative elements on the diagonal.

This is pointed out by Hill & Thompson (1978), who shows that the probability

of the negative variances increases with increasing the number of variables and

also that how it affects the estimates of genetic covariance matrices. Others have

addressed the same problem (see for example, Amemiya (1985), Shaw (1991),

Phillips & Arnold (1999)).

To constrain the estimated covariance matrices to the parametric space, regular-

ized alternatives have been proposed over time to deal with the problem for a single

population, see for example Bickel & Levina (2007) and the references therein for
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detailed discussion. Dempster (1972) adopted parsimonious approach to estimate

the covariance matrix. He called his approach covariance selection models, where

the objective is to identify zero elements in the off-diagonal of the inverse covari-

ance matrix. The resulting estimate is interpretable as well as regularized. Zero

elements correspond to the pairs of variables that are conditionally independent

given the others. We find this interpretability appealing and pursue an estimate

of this type.

Tibshirani (1996) proposed the lasso in the regression setting, a popular model

selection and shrinkage estimation method, which has the ability to force some

parameters to be exactly zero. This idea was extended by Yuan & Lin (2007)

to the likelihood-based estimation of the inverse covariance matrix Ω = Σ−1 =

(ωij)1≤i,j≤p. The following log-likelihood function based on a random sample of

size n from a multivariate normal distribution X ∼ Np(0,Σ) has been optimized:

l(Ω) = Const− n

2
log |Σ| − n

2
tr
(
Σ̂Ω

)
− ρ

∑

i 6=j
|ωij| , (3.5)

where Σ̂ = 1
n

∑n
i=1(Xi−X̄)(Xi−X̄)t and ρ is the penalty parameter which shrinks

some coefficients towards zero and sets the others as exactly zero. Larger value

of ρ produces sparse solutions. Smaller value of ρ, on the other hand, encourages

more non-zero off-diagonal elements to appear in the inverse covariance matrix.

Traditionally, cross-validation, an automatic data-driven method, has been used

to select the optimal value of the tuning parameter ρ (Friedman et al., 2008).

In this Chapter, our objective is to summarize a high-dimensional data set in

which the same set of variables is measured in many different groups. The method

of penalized likelihood is extended to the hierarchical covariance estimation via

the EM algorithm in order to get reliable estimates for both the within-group

and the between-group covariance structure. Our primary reason for using EM

algorithm is to avoid the difference of two covariance components while calculating

the between-group covariance. We use a positive definite estimate of the between-

group covariance matrix as an initial estimate and update in such a way that the

matrices remain positive definite. The second reason for using EM algorithm is

that it allows us to use regularized estimate of the between-group covariance as

we will see in the next section.
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3.2 Hierarchical covariance estimation via EM

algorithm

Since, Xij ∼ Np(θi,U) and θi ∼ Np(µ,C), the joint density can be written as:

f(Xi1,Xi2, ...,Xir,θi) =
∏

j

f(Xij|θi)f(θi). (3.6)

Using (3.6), the conditional distribution of θi given Xi1,Xi2, ...,Xir can be derived

as follows:

f(θi|Xi1,Xi2, ...,Xir) ∝ exp

{
− 1

2

{∑

j

(Xij − θi)tU−1(Xij − θi)+

(θi − µ)tC−1(θi − µ)
}}

. (3.7)

Expending the exponents and completing the quadratic form for θi gives

f(θi|Xi1,Xi2, ...,Xir) ∝ exp

(
−1

2
(θi − θ̃i)t

(
C−1 + rU−1

)−1
(θi − θ̃i)

)

∼ Np(θ̃i,C
−1 + rU−1) (3.8)

where

θ̃i =
(
C−1 + rU−1

)−1 (
C−1µ+ rU−1X̄i

)
. (3.9)

An EM algorithm iterates between the Expectation-step and the Maximization-

step. It is designed to compute the maximum likelihood estimate in the presence

of incomplete data. In the Expectation-step, the missing data is estimated using

the conditional distribution of the missing data given the observed data. In the

Maximization-step, new estimates of the parameters are computed using the com-

plete data from the Expectation-step. The process is repeated until a convergence

is obtained that is when the change in the parameter estimates is smaller than

a given specified threshold. For a detailed description of the EM algorithm see

Dempster et al. (1977).

The EM algorithm has been used for the estimation of covariance components. An

example of using EM algorithm to estimate the variance components in a univari-

ate random effect model is discussed in Dempster et al. (1977). An iterative REML



Chapter 3. Hierarchical covariance estimation 32

estimation procedure (Harville, 1977) is described by Calvin & Dykstra (1991) for

balanced multivariate variance components models. Calvin (1993) extend the ap-

proach to estimate the covariance components in a general unbalaced multivariate

mixed model, using an EM algorithm. He utilizes the algorithm of Calvin & Dyk-

stra (1991) in the Maximization-step of the algorithm. In the Expectation-step,

he consider the missing obsevations, the data that is needed to make the problem

balanced and the conditional distribution of the missing data given the observed

data is used to estimate the covariance components for the completed data set.

We present am EM algorithm that works in high-dimensional setting. Unlike

Calvin (1993), who uses REML estimation procedure, we use lasso-regularized

estimator to restrict the covariance components to the parametric space. Let k

denotes the kth iteration for k = 0, 1, 2, . . . ,∞, with k = 0 denotes the initialized

values before the first iteration. The maximum likelihood estimate of the overall

mean vector, µ, is given by

µ̂ = X̄ =
1

mr

m∑

i=1

r∑

j=1

Xij, (3.10)

and the mean vector for the ith group, θi, is initialized as

θ̂
(0)

i = X̄i =
1

r

r∑

j=1

Xij. (3.11)

The estimate of the within-group covariance matrix, U, at the kth iteration is

obtained by

Û(k) =
1

n−m
m∑

i=1

r∑

j=1

(Xij − θ̂
(k)

i )(Xij − θ̂
(k)

i )t. (3.12)

The estimate of the between-group mean square is used as an estimate for the

between-group covariance at the kth iteration, given by

Ĉ(k) =
1

m− 1

m∑

i=1

(θ̂
(k)

i − µ̂)(θ̂
(k)

i − µ̂)t. (3.13)

The estimated mean square, Ĉ, obtained using (3.13) is likely to be rank deficient,

or nearly so, if m and p are comparable. To avoid this we use a regularized estimate
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obtained by maximizing the penalized likelihood function

l(C−1) = Const− m

2
log |C| − m

2
tr
(
ĈC−1

)
− ρ

∑

i 6=j

∣∣c−1ij
∣∣ , (3.14)

where c−1ij is the ijth element of C−1 and Ĉ as in (3.13). We use graphical lasso

algorithm proposed by Friedman et al. (2008) to solve the problem presented in

(3.14) and use cross-validation to choose ρ as described in Section 2.4.4. This

provides a positive definite estimate of the between-group mean square. Note

that, the optimum value of ρ is allowed to change over different iterations. The

algorithm terminates at a local optima (see Figure 3.2).

In the E-step, given X and the estimates of µ, U, and C, we find the conditional

expectation of the distribution of θi, as given in (3.9). At the M-step, we assume

that θi is known, which allows us to update the value of Û using (3.12) and

estimate C by maximizing l(C−1) given in (3.14). Here is the detailed description

of the algorithm.

1. Initialize θi as X̄i and estimate µ using (3.10).

2. Obtain the estimate of U using (3.12).

3. Obtain the estimate of C from (3.14), using cross validation to select the

value of ρ (see Figure 3.2).

4. Update the estimate of θ as θ̂
(k)

using (3.9).

5. Repeat step 2-4 until convergence.

The algorithm terminates when |l(C(k+1))− l(C(k))|/|l(C(k+1))| < τ , where l(C(k))

is the penalized log-likelihood value at the kth iteration as in (3.14) and τ = 10−5.

3.3 Applications

In this section, we assess the performance of the method and report the results of

our simulation study and a real data analysis.
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3.3.1 Numerical experiments

In our simulation experiments, we first generate U and C using the random method

of Schäfer & Strimmer (2005a), which guarantees the generated matrix to be

positive definite. The method proceeds as follows:

1. Start with a null p× p matrix.

2. Choose randomly a suitable proportion of the off-diagonal positions (at least

one position in each column), and fill them symmetrically with correlation

values drawn from the uniform distribution between -1 and 1.

3. Set the rest of the off-diagonal elements as zero. To generate high-dimensional

sparse inverse covariance matrices a smaller proportion of the off-diagonal

positions would be required to fill in with non-zero elements in step 2.

4. Sum up the absolute values for each column plus a small constant and fill

them in their respective diagonal positions. This is our inverse covariance

matrix, Ω.

5. The inverse of Ω is the true covariance matrix, Σ.

The m p-dimensional group means, θi, are drawn from a multivariate normal

distribution i.e. θi ∼ Np(µ,C). The r observations, Xij, for each group are

then generated from a multivariate normal distribution i.e. Xij ∼ Np(θi,U).

We consider three types of situations while taking into account the nature of the

within-group and the between-group covariance matrices. At first, we examine

the performance of the model in the situation when the between-group variation

is dominant and the within-group covariance is relatively on smaller scale. This

is the easiest case in the sense that the EM algorithm converges quickly and

the estimated covariances are relatively closer to the true covariances. This is

obtained by scaling down U in (3.15) and (3.17) by a factor of 1/30. In the second

example, we allow the within-group covariance to spread out from a relatively

smaller to a moderate size (we use U as it is in (3.15) and (3.17)). In the third

case, we make the within-group variation dominant, which is comparatively hard

case and the algorithm needs few more iterations to converge. This is achieved by

rescaling U in (3.15) and (3.17) by 10. Note that, we keep C fixed as in (3.16) and

(3.18), and rescale U to produce data of the three cases. The three cases: easiest,
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moderate, and hard, are illustrated in Figure 3.1, where we plot the data on the

first two principal components with 30 groups represented by numbers 1-30 and

with different colors. The number observations in each group are 20.
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Figure 3.1: Simulated data on first two principle components for the three
cases (a) easiest, (c) moderate, and (e) hard.
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Two other factors that have the potential to affect the behavior of the model are

the number of groups, m, and the number of observations in each group, r. We did

the experiments for different combinations of m and r and report the results for

m ∈ {10, 30} and r ∈ {5, 20}. For each combination of m and r, we generate 1000

data sets and estimate the between-group covariance using the proposed method,

therefore, obtain 1000 estimates for each of the 15 different elements (5 diagonal

and 10 off-diagonal) of C.

Figure 3.2 shows the typical cross-validation score obtained over the first five

iterations of the proposed EM algorithm. The cross-validation scores becomes

stable as the algorithm converges to a stationary value.
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Figure 3.2: Typical cross-validation scores obtained over the first five itera-
tions of the proposed EM algorithm. We use 100% non-zero off-diagonal ele-
ments in U−1 and C−1. The elements of U are of a moderate size. In (a) p = 5,

m = 10, r = 5 and in (b) p = 15, m = 10, r = 5.
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We judge the performance of the method in the following two ways:

1. First, we see how well the method estimates the elements of a between-group

covariance matrix. Since the results are consistent across different choices of

U and C, generated using the above method, we give the results for a single

draw of U and C with the dimension p = 5 and 100% non-zero elements in

the U−1 and C−1, given by

U =




0.74 - - - -

0.41 0.90 - - -

-0.49 -0.24 1.12 - -

-0.09 -0.38 -0.05 0.71 -

-0.46 -0.50 0.35 0.31 0.85




(3.15)

and

C = 5×




0.80 - - - -

-0.09 1.09 - - -

0.04 -0.28 0.67 - -

-0.34 0.20 0.13 0.78 -

0.26 0.14 -0.33 -0.31 0.73



. (3.16)

Figures 3.3, 3.4, and 3.5 present the results for how well the proposed method

estimate the elements of C in the three cases. The elements of C, as given

in (3.16), are estimated using 1000 different data sets for each combination

of m and r. In all the three cases, as we increase m, the variability of

the estimates decreases and the accuracy increases. Increasing the value of

r (from 5 to 20) does not make a noticeable difference in the variability

of the estimates, however, it does increase the accuracy of the estimated

elements of the covariance matrix. As expected, the estimates becomes more

inaccurate and less precise for the hard case as compared to the easy and

moderate cases. The algorithm sometime does not reach the convergence if

the diagonal elements are not penalized. This happens more frequently in

the hard case. To avoid the convergence problem we penalize the diagonal

elements in our simulations. The reason for underestimation of the diagonal

elements in Figure 3.5 is that the lasso penalty heavily penalize the larger

elements (that are usually the diagonal element in our simulation setup).

This suggest to replace the lasso penalty by the adaptive lasso or SCAD

penalty in the hard case, especially when m is very small.



Chapter 3. Hierarchical covariance estimation 39

2
4

6
8

r=

m=
−−− −−−5 20 5 20

10 20

−
4

−
1

1
3

r=

m=
−−− −−−5 20 5 20

10 20

−
2

0
2

r=

m=
−−− −−−5 20 5 20

10 20

−
5

−
2

0
2

r=

m=
−−− −−−5 20 5 20

10 20

−
2

0
2

4

r=

m=
−−− −−−5 20 5 20

10 20

−
4

−
1

1
3

r=

m=
−−− −−−5 20 5 20

10 20

2
6

10

r=

m=
−−− −−−5 20 5 20

10 20

−
5

−
2

0
2

r=

m=
−−− −−−5 20 5 20

10 20

−
2

0
2

4

r=

m=
−−− −−−5 20 5 20

10 20

−
3

0
2

4

r=

m=
−−− −−−5 20 5 20

10 20

−
2

0
2

r=

m=
−−− −−−5 20 5 20

10 20

−
5

−
2

0
2

r=

m=
−−− −−−5 20 5 20

10 20

1
3

5
7

r=

m=
−−− −−−5 20 5 20

10 20

−
2

0
2

r=

m=
−−− −−−5 20 5 20

10 20

−
4

−
2

0

r=

m=
−−− −−−5 20 5 20

10 20

−
5

−
2

0
2

r=

m=
−−− −−−5 20 5 20

10 20

−
2

0
2

4

r=

m=
−−− −−−5 20 5 20

10 20

−
2

0
2

r=

m=
−−− −−−5 20 5 20

10 20

2
4

6
8

r=

m=
−−− −−−5 20 5 20

10 20

−
5

−
3

−
1

1

r=

m=
−−− −−−5 20 5 20

10 20

−
2

0
2

4

r=

m=
−−− −−−5 20 5 20

10 20

−
3

0
2

4

r=

m=
−−− −−−5 20 5 20

10 20

−
4

−
2

0

r=

m=
−−− −−−5 20 5 20

10 20

−
5

−
3

−
1

1

r=

m=
−−− −−−5 20 5 20

10 20

2
4

6
8

r=

m=
−−− −−−5 20 5 20

10 20

Figure 3.3: Estimates of different elements of the between-group covariance
matrix in an easy case. Each box-plot is made up of 1000 estimates of the same
element using 1000 different data sets. The gray boxes represent the estimate
of five diagonal elements and the horizontal line in each panel represents the

true value.
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Figure 3.4: Estimates of different elements of the between-group covariance
matrix in a moderate case. Each box-plot is made up of 1000 estimates of
the same element using 1000 different data sets. The gray boxes represent the
estimate of the five diagonal elements and the horizontal line in each panel

represents the true value.
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Figure 3.5: Estimates of different elements of the between-group covariance
matrix in a hard case. Each box-plot is made up of 1000 estimates of the same
element using 1000 different data sets. The gray boxes represent the estimate
of five diagonal elements and the horizontal line in each panel represents the

true value.

2. Here we compare the new method with the standard method in how well

they estimate the true eigenvalues. We use another single draw of U and C

with the dimension p = 10 and 50% non-zero elements in the U−1 and C−1,
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given by

U =




0.61 - - - - - - - - -

-0.21 0.43 - - - - - - - -

0.04 -0.03 0.45 - - - - - - -

-0.02 0.06 -0.14 0.67 - - - - - -

-0.00 -0.12 0.02 -0.03 0.58 - - - - -

-0.02 0.11 -0.10 0.23 -0.02 0.43 - - - -

-0.04 -0.02 -0.09 0.07 0.10 0.04 0.36 - - -

-0.01 -0.02 0.12 -0.09 0.12 0.00 0.06 0.37 - -

-0.24 0.21 -0.05 0.04 -0.08 0.05 0.09 -0.00 0.53 -

0.28 -0.07 0.06 0.03 -0.01 0.08 -0.03 -0.02 -0.11 0.79




(3.17)

and

C = 5




1.60 - - - - - - - - -

-0.50 1.26 - - - - - - - -

0.56 0.19 1.26 - - - - - - -

0.99 -0.75 0.31 1.27 - - - - - -

-1.18 0.22 -0.84 -0.72 1.68 - - - - -

0.56 0.19 1.25 0.30 -0.84 4.06 - - - -

0.10 0.65 0.78 -0.15 -0.38 0.78 2.20 - - -

-0.56 -0.19 -1.25 -0.30 0.84 -4.05 -0.78 5.58 - -

-0.78 0.29 -0.77 -0.79 0.78 -0.77 -0.31 0.77 1.81 -

0.14 -0.89 -0.55 0.39 0.14 -0.55 -1.59 0.55 0.07 2.12




.

(3.18)

The results for how well the proposed method perform in comparison with

the standard procedure are shown in Figures 3.6, 3.7, and 3.8. We estimate

the eigenvalues of C, as given in (3.18), using 1000 different data sets for each

combination of m and r. In each panel of the three figures, the box-plots

for the smallest eigenvalues go below the zero line for the standard method.

It happens for more eigenvalues as we go from easy to hard case and for

less eigenvalues as we increase either the value of r or m (especially m).

This makes it clear that the estimated between-group covariance obtained

using the standard procedure often appears with negative eigenvalues. The

new method not only provide positive definite estimate of the between-group

covariance (non of the box-plots for the smallest eigenvalues goes below the
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zero line), but also gives improved estimates of the true eigenvalues that is

the estimated eigenvalues are closer to true eigenvalues on the average (see

Tables 3.1, 3.2, and 3.3).
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Figure 3.6: The distributions of the estimated eigenvalues of a between-group
covariance matrix with 1000 different data sets. We use C as in (3.17) and U in
(3.15) is scaled to the easy case: (a) m = 10 and r = 5, (b) m = 10 and r = 20,
(c) m = 30 and r = 5, and (d) m = 30 and r = 20. See the mean squared errors

of the estimated eigenvalues in Table 3.1.
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Figure 3.7: The distributions of the estimated eigenvalues of a between-group
covariance matrix with 1000 different data sets. We use C as in (3.17) and U
in (3.15) is scaled to the moderate case: (a) m = 10 and r = 5, (b) m = 10
and r = 20, (c) m = 30 and r = 5, and (d) m = 30 and r = 20. See the mean

squared errors of the estimated eigenvalues in Table 3.2.
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Figure 3.8: The distributions of the estimated eigenvalues of a between-group
covariance matrix with 1000 different data sets. We use C as in (3.17) and U in
(3.15) is scaled to the hard case: (a) m = 10 and r = 5, (b) m = 10 and r = 20,
(c) m = 30 and r = 5, and (d) m = 30 and r = 20. See the mean squared errors

of the estimated eigenvalues in Table 3.3.

3.3.2 Real data example

To further evaluate the proposed method, we use glass chemical composition data

collected by Bennett (2002) and is also available in R packages “Hotelling” and

“dafs”. The data are the measurements of elemental concentration of the five dif-

ferent elements namely Manganese, Barium, Strontium, Zirconium, and Titanium.

Twenty replicate measurements are taken from six different Heineken beer bottles.

Thus, there are 5 variables measured in 6 different groups with 20 replicates in
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Table 3.1: Mean squared errors of the estimated eigenvalues presented in
Figure 3.6.

m r method
order of the eigenvalues

1 2 3 4 5 6 7 8 9 10

10
5

standard 334.2 34.6 7.4 2.8 5.6 6.8 6.7 3.5 2.3 1.2
proposed 275.6 26.4 5.4 2.3 0.9 0.3 0.2 0.7 1.2 1.5

20
standard 259.0 38.2 8.9 2.5 5.5 7.0 6.8 3.6 2.3 1.2
proposed 211.3 28.2 6.6 1.9 0.9 0.4 0.2 0.7 1.2 1.5

30
5

standard 74.3 12.3 3.5 1.7 1.3 1.4 1.4 0.6 0.4 0.3
proposed 66.3 10.1 2.7 2.7 0.9 0.8 0.8 1.4 1.6 1.6

20
standard 71.2 13.5 3.0 1.5 1.2 1.4 1.4 0.5 0.4 0.3
proposed 64.2 11.0 2.3 2.7 1.0 0.9 0.9 1.4 1.7 1.6

Table 3.2: Mean squared errors of the estimated eigenvalues presented in
Figure 3.7.

m r method
order of the eigenvalues

1 2 3 4 5 6 7 8 9 10

10
5

standard 284.3 38.6 8.1 3.0 5.7 7.0 6.9 3.9 2.6 1.4
proposed 229.5 29.2 5.9 2.5 0.9 0.4 0.2 0.8 1.3 1.5

20
standard 253.2 41.0 7.8 2.8 5.4 6.7 6.7 3.7 2.4 1.2
proposed 204.3 31.5 5.8 2.3 0.8 0.4 0.2 0.8 1.2 1.6

30
5

standard 78.4 14.6 3.9 1.8 1.3 1.4 1.5 0.6 0.4 0.3
proposed 67.2 12.0 3.0 3.4 1.2 1.1 1.1 1.7 1.9 1.8

20
standard 75.0 13.5 3.5 1.5 1.3 1.4 1.5 0.6 0.4 0.3
proposed 65.5 11.2 2.7 2.6 0.9 0.8 0.9 1.4 1.5 1.5

each group. The data is plotted on the first two principal components in Figure 3.9

where different groups are represented by numbers 1-6.

The between-group covariance obtained by the method followed by Aitken & Lucy

(2004) is 


26.13 - - - -

89.09 354.03 - - -

66.54 216.19 171.24 - -

59.71 183.26 152.67 144.95 -

19.12 30.20 51.05 62.73 47.65
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Table 3.3: Mean squared errors of the estimated eigenvalues presented in
Figure 3.8.

m r method
order of the eigenvalues

1 2 3 4 5 6 7 8 9 10

10
5

standard 293.2 51.9 11.1 3.8 6.2 8.5 9.4 6.4 5.7 6.5
proposed 247.5 45.3 10.2 4.9 1.0 0.5 0.4 1.3 1.7 1.9

20
standard 280.2 42.2 9.0 3.2 5.9 7.5 7.5 4.3 3.0 1.8
proposed 230.1 33.0 6.9 2.7 0.9 0.4 0.2 0.9 1.3 1.6

30
5

standard 89.6 15.5 3.9 2.2 1.4 1.7 2.0 1.1 1.2 1.5
proposed 74.8 14.9 5.6 8.3 3.6 3.7 3.5 5.2 5.0 4.3

20
standard 71.6 15.3 3.6 1.7 1.3 1.5 1.6 0.7 0.6 0.5
proposed 63.1 12.8 3.0 3.8 1.3 1.4 1.4 2.2 2.3 2.2

which is not non-negative definite (two of the eigenvalues are negative) and the

one obtained by the new method is




26.58 - - - -

90.05 358.61 - - -

67.26 220.23 175.00 - -

60.02 186.20 154.56 148.18 -

21.09 37.47 57.49 66.50 60.41




which is positive definite. Because m is small, we use leave-one-out cross-validation

to choose penalty parameter ρ.

Note that, the log-likelihood for some folds in the cross-validation does not exist

for a very small value of ρ in the grid where the optimal value is expected. This is

because the graphical lasso algorithm does not produce a positive definite between-

group covariance matrix when ρ is very small. We use the smallest value of ρ that

produce positive definite between-group covariance.
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Figure 3.9: First two principle components of glass chemical composition data.

3.4 Conclusion

The standard method of estimation for the between-group covariance often results

in negative variances. The main advantage of the proposed estimation procedure

is that, in our examples, the estimated between-group covariance matrix obtained

by using this method is positive definite. This is demonstrated by both the sim-

ulation experiments and the real world data example. Both the simulation study
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and analysis of the real world glass chemical composition data show that the devel-

oped method performs well even in the difficult situation where the within-group

variation is substantial relative to the between-group variation. The estimates are

more precise and less biased when there are more groups. Increasing the number

of observations within groups also improve the accuracy of the estimates. It is

also shown via simulation that the proposed method improve over the standard

method in terms of accuracy in the estimated eigenvalues of the covariance matrix.

The algorithm needs less iterations to converge in easy case where the between-

group covariance is dominant and is a good replacement in the situations where

the traditional analysis of variance technique fails to work. In the hard case, where

the within-group covariance is dominant, the algorithm some time fails to converge

if we do not penalize the diagonal elements of the covariance matrix. Penalizing

the diagonal elements using lasso penalty increase bias in the diagonal elements.

The bias can be avoided if we replace lasso by adaptive lasso or SCAD penalty.

We leave it to future work.

It should be noted that the results presented in this Chapter are based on a limited

simulations and may not be true in general. However, our simulations suggest this

is a promising technique worthy of further investigation.

3.5 Contributions of the Chapter

In this Chapter, we use the EM algorithm to optimize a lasso-penalized likelihood

to create a procedure for estimation of the between-group covariance. To our

knowledge, EM has not been used with a penalized likelihood before. We com-

pare this estimator to one based on differencing the observed between and within

group covariances. Simulation study demonstrates that the new procedure is an

improvement in the sense that the estimated between-group covariance is positive

definite.



Chapter 4

Regularized MANOVA for

high-dimensional data

4.1 Introduction

The hypothesis of group effects on multiple response variables is simultaneously

tested using MANOVA, the multivariate analogue of ANOVA. The classical MANO-

VA tests are large-sample approximations and perform well as long as we have a

large number of observations, n, compared to the number of variables, p. As in

other multivariate techniques, high-dimensionality poses serious problems for the

classical MANOVA tests. First, it suffers from low power and does not maintain

an accurate Type-I error rate, as p approaches n. Second, the classical test statis-

tics involve the inversion of the sample covariance matrix, which is not possible if

p exceeds n.

A common approach to improve the estimates of a high-dimensional covariance

matrix is regularization. We present a procedure based on the lasso regularization

of a covariance matrix. We compare the power of lasso-regularized MANOVA

to four other competing procedures, including two ridge-type penalties that have

not been assessed head-to-head before. Our consideration of lasso regularization

is motivated by the fact that the estimated eigenvalues obtained from lasso reg-

ularization of a covariance are generally more accurate than those produced by

the ridge regularization procedures previously used with MANOVA (see Figure

4.1). The lasso estimator of the inverse covariance matrix has also performed well

50
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in other contexts, such as model selection to produce a sparse inverse covariance

(Hastie et al., 2009).

Denote an n× p matrix of observations by Y, then the general linear multivariate

model is given as

Yn×p = Xn×mBm×p + εn×p (4.1)

where X is an n×m design matrix, B is an m× p matrix of unknown parameters

and ε is an n× p matrix of errors. The n row vectors, εi, of ε are assumed to be

independent observations drawn from a p dimensional multivariate normal distri-

bution with mean vector zero and covariance matrix Σp×p i.e. εi ∼ Np(01×p,Σp×p).

Denote the inverse of a covariance matrix by Ω = Σ−1 = (ωij)1≤i,j≤p then the log-

likelihood for the multivariate normal distribution is well known to be

l(B,Σ; Y) = Const− n

2
log |Σ| − 1

2

n∑

i=1

(Y −XB)tΩ(Y −XB) (4.2)

The maximum likelihood estimates of Bm×p and Σp×p are

B̂ = (XtX)−1XtY (4.3)

and

Σ̂ = n−1E (4.4)

respectively, where

E = (Y −XB̂)t(Y −XB̂)

= ε̂tε̂ (4.5)

is the p × p estimated matrix of the error sums of squares and cross-products

(Seber, 2009). Consider the problem of testing the general linear hypothesis

H0 : LB = 0 versus H1 : LB 6= 0, (4.6)

where L is a k ×m matrix of rank(L) = k ≤ m specifying k linear combinations

of the parameters. For instance, if the data comes from two groups and we want

to test for the group effect, then the standard linear hypothesis would be

H0 : B1 = B2 = 0 (4.7)
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and in matrix notation it can also be written as

H0 : LB =

(
0 1 0

0 0 1

)



B0

B1

B2


 =

(
B1

B2

)
=

(
0

0

)
. (4.8)

Let H be the p × p matrix of the sums of squares and cross-products due the

hypothesis defined by

H = (LB̂m×p)
t
[
L(XtX)−1Lt

]−1
LB̂m×p. (4.9)

Under the assumption of normality, E is distributed according to a central Wishart

distribution Wp(Σp×p, q), where q = n−k and H is distributed according to a non-

central Wishart distribution Wp(Σp×p, k,DDt), where D is a p × k matrix such

that

DtD = (LB)t
[
L(XtX)−1Lt

]−1
LB, (4.10)

and E and H are independent. The likelihood ratio criterion Λ (also known as

Wilks’ Lambda) to test the hypothesis in equation (4.7) is given by

Λ =
|E|

|H + E| =
s∏

i=1

1

1 + λi
, (4.11)

where s = min(p,m) and λ1 (.) ≥ ... ≥ λs (.) are the ordered non-zero eigenvalues

of a p × p matrix HE−1 and |A| denotes the determinant of a matrix A. Wilks’

Lambda can be converted into an F -statistic using Rao’s approximation; that is,

the statistic

F =
ν2
ν1

(Λ−1/b − 1), (4.12)

where ν1 = p(m − 1), ν2 = b
[
(n− 1)− p+m

2

]
− p(m−1)−2

2
, and b =

√
p2(m−1)2−4
p2+(m−1)2−5 ,

converges in distribution to the F -distribution with v1 and v2 degrees of freedom

(Anderson, 2003). Three other well-known classical statistics are Bartlett-Nanda-

Pillai’s Trace, the Lawley-Hotelling Trace and Roy’s Maximum Root Criterion.

All these classical tests use large-sample approximations. We concentrate on two

problems associated with the traditionally available MANOVA tests. First, these

tests start to suffer from low power and do not maintain accurate Type-I error

rates as the sample size n approaches the number of variables p. Second, the

sample estimates of covariance matrices become singular when p > n. Since these
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tests rely on the inverse of a covariance matrix, they cannot be calculated when p

exceeds n.

4.2 Previous works

Procedures have been proposed to regularize covariance matrices and a few of them

have been adopted in the context of MANOVA. One way to account for singularity

is to use a generalized inverse. In this situation, we do not have a closed form for

the null distribution of the modified statistic; permutation methods are proposed

as suitable alternatives to approximate the p-values. The performance of this

test, however, is reported to be poor, see for example, Warton (2008). Another

approach is to perform the classical test on the first q principal components, which

account for most of the variation in the data (see Kong et al. (2006) and Tomfohr

et al. (2005) for details). This approach performs well only if the group effect is

along the first q eigenvectors.

Some more recent proposals are based on the idea of shrinking the elements of the

covariance matrix towards some target estimator. These approaches include the

Ledoit-Wolf shrinkage estimator (Ledoit & Wolf, 2003) and the ridge regularization

as used by Warton (2008). Both approaches are very similar in that they both

shrink the covariance or correlation matrix towards a pre-specified target estimator

to get a corresponding regularized version. Let S = n
n−1Σ̂ = (sij)1≤i,j≤p be the

unbiased estimate of the covariance matrix and T = (tij)1≤i,j≤p be the target

estimate towards which we want to shrink S. The Ledoit-Wolf shrinkage estimator

is given by

Σ̂ρ = ρS + (1− ρ)T, (4.13)

where ρ ∈ [0, 1] is the shrinkage intensity. Note that, for ρ = 1, we get Σ̂ρ = S

while for ρ = 0, we have Σ̂ρ = T. Ledoit & Wolf (2003) derive an analytical

expression to calculate the value of ρ by minimizing the quadratic loss function

R(ρ) = E‖Σ̂ρ −Σ‖2, (4.14)

where ‖A‖2 is the squared matrix norm of A. Schäfer & Strimmer (2005b) extend

the work of Ledoit & Wolf (2003) and propose a method to calculate the value of

ρ that only relies on the observed data. To be specific, they follow Ledoit & Wolf
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(2003) and minimize the risk function in (4.14) with respect to ρ. The expression

obtained for the optimal value of ρ is

ρ̂∗ =

∑p
i=1

∑p
j=1 V ar(sij)− Cov(tij, sij)∑p
i=1

∑p
j=1E [(tij − sij)2]

. (4.15)

It is possible from the above expression to obtain a value of ρ̂∗ that is either greater

than 1 or even negative. This is avoided by using ρ̂ = max(0,min(1, ρ̂∗)). Note

that, the shrinkage intensity varies as we change the target estimator. Schäfer &

Strimmer (2005b) provide detailed discussion about the various potential targets.

A natural choice for T is I, the identity matrix (used by (Ledoit & Wolf, 2003)

and (Ledoit & Wolf, 2004) ). This choice not only assumes sparsity, which is more

intuitive in high-dimensional applications but also remarkably simple because it

requires no parameter to be estimated. Another advantage of using I as target

estimate is that it is positive definite. Since (4.13) becomes a convex linear com-

bination of positive definite target matrix, T, and positive semidefinite matrix S,

therefore the obtained shrinkage estimate, Σ̂ρ, is guaranteed to be positive defi-

nite. Replace S by the correlation matrix, R = (rij)1≤i,j≤p, and T by I in (4.13),

the expression for shrinkage intensity in (4.15) solves down to

ρ̂∗ =

∑p
i=1 V ar(rij, i 6= j)∑p

i=1(r
2
ij, i 6= j)

. (4.16)

The shrunken covariance is then obtained using the equation

Σ̂ρ = S
1/2
d R̂ρS

1/2
d , (4.17)

where R̂ρ is the regularized version of R̂. This formulation is more appropriate

when variables are measured on different scales.

This shrinkage estimator has been studied by Tsai & Chen (2009) in the context

of MANOVA and later adopted by Shen et al. (2011) to overcome the problem of

singularity of the sample covariance and improve the power of the MANOVA test.

The penalized normal likelihood with L2 penalty is given by

l(Ω) = Const+
n

2
log |Ω|− 1

2

n∑

i=1

(Y−XB)tΩ(Y−XB)−κ
p∑

j=1

p∑

k=1

(ωjk)
2 (4.18)
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where κ > 0 is the penalty parameter (Huang et al., 2006). Maximizing (4.18)

with respect to Ω reduces to a ridge-regularized covariance matrix given by

Σ̂ρ =
1

ρ
(ρΣ̂ + (1− ρ)I), (4.19)

where I is a p × p identity matrix and ρ = 1
1+κ
∈ [0, 1] is the regularization

parameter. Alternatively consider the sample estimate of the correlation matrix

R that can be obtained as

R̂ = Σ̂
−1/2
d Σ̂Σ̂

−1/2
d (4.20)

where Σ̂d is a diagonal matrix with diagonal elements corresponding directly to

the diagonal elements of Σ̂ and zero elsewhere. The regularized version R̂ρ of R̂

can be obtained as

R̂ρ = ρR̂ + (1− ρ)I (4.21)

and the corresponding regularized estimate Σ̂ρ is obtained by

Σ̂ρ =
1

ρ
Σ̂

1/2

d (ρR̂ + (1− ρ)I)Σ̂
1/2

d . (4.22)

Warton (2008) has used (4.22) to estimate the covariance matrix. He used the

normal likelihood in equation (4.2) as an objective function and cross-validation

to obtain the optimum value of the ridge parameter, ρ.

In this part of the Thesis, we propose to use the lasso-regularized covariance ma-

trix to replace Σ̂. This approach to regularization was first introduced in Yuan

& Lin (2007) for the purpose of model selection in Gaussian Graphical models.

It forces some of the off-diagonal elements in the inverse covariance matrix to be

exactly zero. Zero elements correspond to pairs of variables that are conditionally

independent given the others (Dempster, 1972); the resulting estimate may there-

fore be interpretable. Although the goal of Yuan & Lin (2007) is to calculate a

sparse estimate of the inverse covariance matrix, their method can also be used

to regularize covariance matrices. We look at its performance both when the true

inverse covariance is sparse and when it is dense to examine if the degree of spar-

sity has any effect on the quality of the estimate. The method is compared with

the aforementioned four competing methods.
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4.3 LASSO Regularization

Tibshirani (1996) proposed the lasso in a regression setting, and it has subse-

quently become a popular tool for model selection and estimation. It is based

on penalizing the absolute size of the coefficients and will shrink some coefficients

towards zero but set others as exactly zero; therefore, it simultaneously selects

important variables and estimates their effects. This idea was extended by Yuan

& Lin (2007) to estimation of the inverse covariance matrix, Ω. The following

log-likelihood function based on a random sample from a multivariate normal dis-

tribution, Y ∼ Np(XB,Σ), is optimized subject to positive-definiteness constraint

for Ω:

l(Ω) = Const+
n

2
log |Ω|− 1

2

n∑

i=1

(Y−XB)tΩ(Y−XB)− ρ
p∑

j=1

p∑

k=1

|ωjk| , (4.23)

where ρ is a shrinkage parameter that controls the sparsity of Σ̂
−1

. An efficient

solution to the problem in (4.23) is the graphical lasso algorithm proposed by

Friedman et al. (2008).

4.3.1 Selection of ρ

The performance of regularized estimator depends on the choice of regularization

parameter. We follow Fan et al. (2009) and use K-fold cross-validation to select

the optimal value of ρ via a grid search over a grid of values produced by ev/10,

where v ∈ [−100, 10]. To reduce the computational effort, we stop the search at

a value of ρ if the cross-validation score decreases over the next three consecutive

values of ρ in the grid. We partition the n rows of ε̂ into K disjoint sub-samples

ε̂t =
[
ε̂t1, ε̂

t
2, ..., ε̂

t
K

]
, where ε̂tk has nk rows for k = 1, 2, ..., K. The size of nk is

roughly the same for all K sub-samples i.e assume that n is a multiple of K then

nk = n/K. The kth sub-sample is retained as a holdout set and the rest of the

data, ε̂\k, is used as training data. Denote the covariance matrix of ε̂\k by Σ̂
\k
ρ

then the cross-validation score is calculated using

CV (ρ) =
K∑

k=1

nk

(
log det

(
Σ̂
\k
ρ

)
+ tr(Sk(Σ̂

\k
ρ )−1)

)
, (4.24)
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where Sk is the sample covariance calculated from the kth sub-sample and tr(A)

is the trace of a matrix A. The optimal value of ρ is one which gives the highest

score i.e. ρ̂ = arg max
ρ

CV (ρ).

4.4 Simulation study

In this section, we demonstrate the performance of the lasso regularized MANOVA

test in comparison to four competing procedures. We follow Warton (2008) and

consider a number of different factors that can affect the performance of the tests.

In each simulation, we draw a sample of size n observations from a p-variate normal

distribution with a mean vector B = 0 and a covariance matrix, Σ. We make a

shift of size δ for half of the sample therefore making two groups each of size n/2.

The null hypothesis of no group effect H0 : LB = 0 is tested using −2 log Λ as a

test statistic. The estimate of Σ, on which Λ is based, is computed using each of

the following five competing regularization procedures:

Generalized Inverse: The test statistic is calculated using the Moore-Penrose

generalized inverse as a plug-in estimator of the inverse covariance ma-

trix. We use the built-in R function ginv() in “MASS” package to calculate

Moore-Penrose generalized inverse (Venables & Ripley, 2002). Note that,

the Moore-Penrose generalized inverse reduces to standard matrix inverse

for a full rank sample covariance matrix.

Principal Component: We run the classical likelihood ratio test on the first q

principal components of the standardized data. The value of q is chosen

using eigenvalue-greater-than-one rule.

Shrinkage Estimator: The shrinkage estimator has been used to calculate the

regularized estimate of inverse covariance matrix. We use the function

cov.shrink() with default options, available in contributed R package “corp-

cor” (Schaefer et al., 2010), to calculate shrinkage estimate of the covariance

matrix. The cov.shrink() function shrink the sample correlation matrix, R,

towards the identity target estimate, I. Note that, the cov.shrink() function

also allows to shrink the diagonal elements (this is the default option) with
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separate shrinkage intensity calculated by

ρ̂∗ =

∑p
i=1 V ar(sii)∑p

i=1(s
2
ii −median(s))2

, (4.25)

where median(s) is the median of sample variances.

Ridge Estimator: We use the ridge-regularized estimate of the inverse covari-

ance matrix proposed by Warton (2008). A built-in R function, ridgeParamEst(),

to choose the optimal value of ρ is available in contributed R package “mv-

abund” (Y. Wang et al., 2012). We use ridgeParamEst() to obtain the

optimal value of ρ.

LASSO Regularization: We use lasso regularization to estimate the inverse co-

variance matrix as described in Section 2.2. We use the glasso() function

to calculate lasso regularized covariance matrix. It is available in the con-

tributed R package “glasso” (Friedman et al., 2013). Note that, we do not

penalize the diagonal elements of the covariance matrix.

The classical procedure is viable for the principal component method; in other

cases the reference distribution of the test statistic was approximated using 999

permutations of group labels. This is a Monte Carlo approximation to the exact

test; so preserve an accurate Type-I error rates (Edgington & Onghena, 2007).

Since the penalty parameters in shrinkage, ridge, and lasso regularization are con-

trolled by the data in hand, they are allowed to change from one permutation to

another.

We set n = 20 and p ∈ [2, 30] in order to show the characteristics of all procedures

for a range of p to n ratio. We did the experiments for two different covariance

structures: the exchangeable structure given by

σij =





1 when i = j

b when i 6= j
for 1 ≤ i, j ≤ p. (4.26)

and an AR(1) structure with

σij = b|i−j| for 1 ≤ i, j ≤ p (4.27)
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An obvious reason for this selection is that for the AR(1) stricture, the inverse

covariance matrix is sparse, while for the exchangeable structure it is dense, there-

fore comparing the procedure in two totally contrasting scenarios. For the AR(1),

we do the experiments for b ∈ {0.4, 0.8}, while for the exchangeable structure we

do the experiments for b ∈ {0.4, 0.7}. In the exchangeable covariance structure

most of the error variation lies along one dimension. This becomes more extreme

in high dimensions and with larger value of b. In the AR(1) structure the amount

of error variation declines gradually from dominant to small eigenvectors if the

dimension is low and the value of b is relatively small. We chose a suitable value

of the shift parameter, δ, in order to examine cases where we expected moderate

power. Since, most of the error variance lies along the dominant eigenvectors, a

comparatively larger shift is required along those eigenvectors to identify the shift.

The values of δ used in the simulation study are arranged in Table 4.1.

The orientation of the shift across different eigenvectors also affects the results. In

our experiments, we placed the shift along all eigenvectors, the first, the second,

and the pth eigenvectors in separate trials. In all of our experiments, we used the

significance level α = 0.05.

4.4.1 Simulation results

The simulation results are presented in Figures 4.2-4.5. Some simulation results

for a slightly different value of δ (we increase the values of δ in Table 4.1 by 20%)

are given in Appendix A. Note that, the point for each value of p on a power

curve is the average of the results from 1000 simulated datasets. The power pat-

tern does not seem to be heavily dependent on covariance structures. Overall, the

power decreased as we increased p for all five competing procedures except when

the shift is produced in all dimensions. This is because a shift cumulates across

all p dimensions and a large value of p makes it more pronounced. The principal

component method performed well when the shift is along first few eigenvectors.

The lasso, ridge, and shrinkage approaches all perform well, with none universally

superior across scenarios. Lasso regularization is always the best (by a narrow

margin) when the shift is along all eigenvectors, consistent with its accurate re-

capture of all the eigenvalues in Figure 4.1. The power of the method based on

the generalized inverse decreases sharply for 2 ≤ p ≤ 17. In this range the general-

ized inverse reduces to the maximum likelihood estimate of the inverse covariance
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matrix, which is well known to be unstable as p approaches to n. Many scenarios

show the generalized inverse power curve bouncing back at p = 18. This was

also observed by Schäfer & Strimmer (2005a) who attribute it to a “dimensional-

ity resonance effect” (see Schäfer & Strimmer (2005a) and references therein for

details).

Figure 4.6 presents the computational time comparison. Clearly, lasso is compu-

tationally very expensive and its computational time increases dramatically with

increasing number of variables for a fixed sample size. The computational time of

ridge regularization is moderate and far less than lasso regularization. Principal

components, generalized inverse and shrinkage are the least computationally ex-

pensive procedures. The computational time is also dependent on the structure

of the covariance matrix for lasso regularization. The lasso is designed for sparse

situations, and on average it takes longer to fit for the exchangeable structure than

AR(1), with the difference increasing with the number of variables. The effect of

changing the covariance structure on computational time is not noticeable for ridge

and shrinkage regularization and therefore we show only the time for exchange-

able structure. The computational times for principal components and generalized

inverse are not shown on the graph but lie below the shrinkage estimate.
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Figure 4.1: Distribution of the sum of absolute errors
(
∑p

i=1

∣∣∣λ̂i − λi
∣∣∣ /
∑p

i=1 λi) in the estimated eigenvalues under (a) exchangeable

and (b) AR(1) covariance structures both with b = 0.6. For each value of
p ∈ {10, 20, 40, 80}, 1000 samples of size 20 are simulated from a multivariate
normal distribution. Eigenvalues of the true covariance matrix are estimated
using shrinkage, ridge, and lasso regularization and the sum of absolute errors
are calculated for each of the 1000 samples. Note that, the estimation error
increases as we increase p and the lasso regularization maintains the highest

accuracy.
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Table 4.1: Values of the shift parameter, δ, used in the simulation study to
obtain a moderate power.

Orientation

of δ

Covariance structure

AR(1) Exchangeable

b = 0.4 b = 0.8 b = 0.4 b = 0.7

along 1st eigenvector 3.40 4.00 4.20 4.00

along 2nd eigenvector 1.90 4.00 1.90 2.00

along pth eigenvector 1.30 1.00 1.30 1.00

along all eigenvectors 0.43 0.35 0.42 0.30
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Figure 4.2: Power comparison of MANOVA test based on 5 competing pro-
cedures under AR(1) covariance structure with b = 0.4. For each value of
p ∈ [2, 30], the point on a power curve is the average of 1000 experiments. The

significance level is 0.05.
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Figure 4.3: Power comparison of MANOVA test based on 5 competing pro-
cedures under AR(1) covariance structure with b = 0.8. For each value of
p ∈ [2, 30], the point on a power curve is the average of 1000 experiments. The

significance level is 0.05.



Chapter 4. Regularized MANOVA for high-dimensional data 64

5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

po
w

er

PC
Shrinkage
LASSO
Ridge
G.inverse

Shift along 1st eigenvector

5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

po
w

er

PC
Shrinkage
LASSO
Ridge
G.inverse

Shift along 2nd eigenvector

5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

po
w

er

PC
Shrinkage
LASSO
Ridge
G.inverse

Shift along pth eigenvector

5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

po
w

er

PC
Shrinkage
LASSO
Ridge
G.inverse

Shift along all eigenvectors

Figure 4.4: Power comparison of MANOVA test based on 5 competing proce-
dures under exchangeable covariance structure with b = 0.4. For each value of
p ∈ [2, 30], the point on a power curve is the average of 1000 experiments. The

significance level is 0.05.
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Figure 4.5: Power comparison of MANOVA test based on 5 competing proce-
dures under exchangeable covariance structure with b = 0.7. For each value of
p ∈ [2, 30], the point on a power curve is the average of 1000 experiments. The

significance level is 0.05.
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Figure 4.6: Time comparison of 3 competing regularization procedures under
two different covariance structures: exchangeable and AR(1). Each point in the
graph is averaged over 10 replicates. The covariance structure does not make big
difference in computational time for ridge and shrinkage therefore only shown
for exchangeable. The computational time for principal components and and

generalized inverse is not shown but lie below the shrinkage estimate.

4.5 Practical application

In this section, we considered soil compaction profiles from three different positions

(high, medium and low) along sunny ridge slopes. The data is from 7 different

ridges in the eastern Qilian Mountans (China), a rangeland habitat. The measure-

ments are of soil compaction at 18 different depths, ranging from 2.5 cm to 45 cm

with an interval of 2.5 cm, so there are 18 variables, each variable corresponding to

a particular depth, and 21 observations per variable. These 21 observations were

divided into three groups of seven, corresponding to the position relative to the

ridge top (high, medium and low). Initial investigations indicated the blocking
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structure (the seven ridges) was unimportant and we have ignored it. The attrac-

tive property of this data set, for our purposes, is that the number of variables are

comparable to the number of observations.

After centering each group, the measurements at adjacent depths are highly corre-

lated, but with the correlation falling away with more intervening distance (Figure

4.7), suggesting our AR(1), b = 0.8 simulations (Figure 4.3) are the best reference

for selecting a regularization method. The plot of the data projected onto the first

two principal components of the within group correlation matrix (Figure 4.8) does

not even hint at a separation between the elevation groups, so we will concentrate

on the lower left panel, where the shift was in the direction of the pth component.

This suggests lasso will produce the best results, followed fairly closely by ridge

and shrinkage, with principal components the worst procedure.

Our results are largely consistent with these predictions, (although ridge and

shrinkage reverse their rankings). The p-values for each of the five techniques

are provided in the top row of Table 4.2. Using all 21 observations with 7 obser-

vation in each group, the effect turns out to be non-significant at a 5% level of

significance for principal components, ridge, and generalized inverse with p-values

0.156, 0.058, and 0.096 respectively, while it is significant for shrinkage and lasso

regularization with p-value 0.023 for both of them.

To check the stability of the results, we repeated the analysis with the data from

six ridges rather than seven, deleted each ridge in turn to get 7 new data sets with

18 observations each (3 groups of 6). The p-values for all 7 replicates are arranged

in Table 4.2 with significant effects at α = 0.05 shown in bold. The shrinkage

approach and lasso regularization gave similar results in most cases, with ridge not

far behind (but typically just missing the significance threshold). The performance

of the generalized inverse became superior by reducing the sample size from 21

(where the covariance estimate is just the standard MLE) to 18. This is in close

agreement with the power bump seen in our simulation for the generalized inverse

procedure just after p exceeds the degrees of freedom for estimating the covariance.

As predicted principal components is the least able to detect differences.
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Table 4.2: Table of p-values for five competing procedures.
Significant effects at α = 0.05 are shown in bold.

deleted

observation

regularization procedure

G.inverse PC ridge shrinkage lasso

none 0.096 0.156 0.058 0.023 0.023

1st 0.001 0.013 0.009 0.002 0.011

2nd 0.042 0.142 0.190 0.063 0.128

3rd 0.101 0.232 0.112 0.061 0.060

4th 0.018 0.171 0.108 0.039 0.037

5th 0.000 0.126 0.054 0.015 0.030

6th 0.008 0.618 0.093 0.079 0.074

7th 0.005 0.390 0.080 0.057 0.046
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Figure 4.7: Serial correlation coefficients of soil compaction at shallower
depths with soil compaction at all the deeper depths after adjusting for group
means. Each sequence of joined points of the same color represents the correla-
tion of the measurements at a certain depth with the measurements at deeper
levels (with the depth value given on the x axis). Note that for each of the 18

depths (variables) we have 21 observations.
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4.6 Conclusion and discussion

In this Chapter, we have used normal likelihood with a lasso penalty to estimate

the inverse covariance matrix in the context of high-dimensional MANOVA. This

was originally motivated by the relatively good performance of the lasso estima-

tor in other areas like Gaussian graphical models. The method was tested by

extensive simulations with two different covariance structures: exchangeable and

AR(1). The approach based on lasso regularization is also compared with some

other competing procedures including shrinkage approach of Schäfer & Strimmer

(2005b) and ridge regularization approach used by Warton (2008). All three of
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these regularization procedure perform well, and perform better than the more con-

ventional generalized inverse and principal component approach when the shift is

not along the first few eigenvectors. Lasso regularization is always the best when

the shift is along all the eigenvectors but the difference is not dramatic. The

difference, however, increases as we increase the number of variables. We know

that the lasso does well at recovering all p eigenvalues. The fact that the lasso is

always the best method when the shift is in all directions suggests that accurate

estimation of all eigenvalues is important in this case. The connection between

accurately estimating the eigenstructure and increased power is a topic for further

investigation.

In terms of computational time, however, there are big differences. The lasso

approach is much more expensive than its other counterparts, because lasso reg-

ularization is an iterative procedure even before considering the computationally

cumbersome tasks of cross-validation to choose a penalty parameter, and compu-

tation of the permutation based reference distribution. While not computationally

prohibitive its computational time increases dramatically with the number of vari-

ables for a fixed sample size. Generally, the adaptive lasso (Zou, 2006) has been

preferred over lasso for recovery of eigenvalues but it further increases computa-

tional time. Ridge regularization is comparatively less expensive than lasso but its

implementation also involves cross-validation. The principal component approach,

generalized inverse and shrinkage approach are all very fast. For principal compo-

nents and the generalized inverse, this comes at the cost of poor performance in

many cases, particularly when p is close to or exceeds n. However, shrinkage was

typically at or near the top in power, and would be our recommendation whenever

both power and computational time must be considered.

4.7 Contributions of the Chapter

Recently the shrinkage estimator and ridge regularization of the covariance matri-

ces have been used to allow the use of MANOVA test in high-dimensional situa-

tions. While lasso regularization is a natural alternative, a lasso based MANOVA

procedure has not yet been described. We provide the outline of such a procedure.

The comparative performance of different approaches (lasso, ridge, shrinkage, and

the more traditional generalized inverse and principal component approaches) is

then explored via an extensive simulation study. The methods are also applied to
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real data set of soil compaction profiles at various elevation ranges. Note that this

also provides a head-to-head comparison of the ridge and shrinkage approaches,

which has not previously existed. The MANOVA test based on the lasso regu-

larization performs better in terms of power of the test in some cases. We also

see that the shrinkage intensity chosen by the closed form shrinkage approach is

typically competitive with the cross validation based ridge procedure.



Chapter 5

Monitoring future observations in

the high-dimensional setting

5.1 Introduction

Multivariate control charts are often used to detect unusual behavior in a pro-

cess from which several quality characteristics are simultaneously measured in

discrete sampling stages. The Hotelling T 2 statistic, which measures the distance

of each sub-group mean from the process mean, is used as a charting statistic. The

procedure is divided into two phases: Phase-I and Phase-II. In Phase-I analysis,

historical data is tested retrospectively to establish the behavior of the process

when it is in-control. The parameters are estimated using the in-control historical

data and control limits are calculated. In Phase-II analysis, the continuation of the

process is monitored for out-of-control signals using the control limits determined

in Phase-I. For each future sub-group, the Hotelling T 2 statistic is calculated and

plotted on the control chart. An out-of-control warning is issued when there is a

departure from the limits established in Phase-I analysis (see Bersimis et al. (2007)

and the references in there for details about multivariate control charts).

In those applications where the data generating process is too slow or it is impossi-

ble to make natural sub-groups, individual observations are monitored. A number

of papers have been published on multivariate control charts for individual obser-

vations (for example, see Tracy et al. (1992), Lowry & Montgomery (1995) and

Chou et al. (1999)). The methods described in these papers do not allow the

72
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monitoring process to start until the sample size, n, is more than the number of

variables, p. Moreover, these methods are unreliable in high-dimensional problems

unless we use a large sample size (see Champ et al. (2005) and Lowry & Mont-

gomery (1995) for sample size recommendations). Here, we provide a more reliable

and practical method for monitoring individual high-dimensional observations.

Consider an n×p matrix X of n individual baseline observations and assume that

the p variables in X follow a multivariate normal distribution with a mean vector

µt = (µ1, µ2, ..., µp) and a p× p covariance matrix Σ, i.e. X ∼ Np(µ,Σ). Denote

the ith row of X by Xi; then the squared Mahalanobis distance of a point, Xi,

from the process mean in a multidimensional space, is generally used as a charting

statistic for multivariate control charts. If µ and Σ are known, then the statistic

χ2
p = (Xi − µ)tΣ−1(Xi − µ) (5.1)

follows a chi-square distribution with p degrees of freedom and the corresponding

control chart is usually called a chi-square control chart. In multivariate control

charts, it is common to set the lower control limit to zero because the value of

charting statistic in (5.1) is always positive and a shift in the mean vector always

results in an increase in the value of the statistic. The upper control limit of the

chi-square control chart is the (1 − α)th percentile of the chi-square distribution

with p degrees of freedom, that is

UCL = χ2(α; p). (5.2)

Generally, the parameters µ and Σ are unknown and are estimated from the

retrospective data in Phase-I analysis. It is assumed that the process is in Phase-I

stage, and X̄ and S are, respectively, the estimated baseline mean and unbiased

sample covariance matrix. Then, the Hotelling T 2 statistic

T 2
i = c1(Xi − X̄)tS−1(Xi − X̄) (5.3)

where c1 = n/(n− 1)2, follows a beta distribution with p/2 and (n− p− 1)/2 as

shape parameters. The upper control limit for Phase-I analysis is

UCL = beta(α; p/2, n− p− 1/2), (5.4)

where beta(α; a, b) is the (1− α)th percentile of beta distribution with parameter
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a and b (see Chou et al. (1999) for the proof of (5.4)). Denote a future observation

by Xf . Since Xf is independent of X̄ and S (because X̄ and S are estimated from

baseline set of data), the statistic

T 2 = c2(Xf − X̄)tS−1(Xf − X̄), (5.5)

where c2 = n(n− p)/p(n− 1)(n + 1), follows an F -distribution with p and n− p
degrees of freedom. The upper control limit for future observations is therefore

the (1− α)th percentile of F distribution with p and n− p degrees of freedom i.e.

UCL = F (α; p, n− p) (5.6)

(see Tracy et al. (1992) for the detailed proof of (5.6)). Generally, an out-of-control

signal is issued if the calculated statistic in the above three cases goes beyond the

corresponding upper control limits. The control charts based on the statistics in

(5.3) for the Phase-I analysis and in (5.5) for the Phase-II analysis are termed as

Hotelling T 2 control charts.

Estimation of the true parameters (µ and Σ) from the baseline data causes the T 2

for Xi and Xf to follow different distributions, even though Xi and Xf follow the

same multivariate normal distribution. The reason for this difference is that the

T 2 statistics calculated for Xi are not independent of the estimated mean vector

and sample covariance matrix, whereas the T 2 for Xf are independent (Tracy et

al., 1992). Note that this difference exists only under a limited sample size, n.

Asymptotically, as n approaches infinity, the distribution of T 2 for both baseline

and future observations converges to a chi-square distribution with p degrees of

freedom.

The Hotelling T 2 control charts are reasonably effective as long as the number of

process variable, p, is small. Difficulties arise in finding an upper control limit when

the number of process variables, p, is comparable to n. Firstly, as p approaches n,

the estimate S (of Σ) becomes unstable. As a result, the power to detect out-of-

control signals progressively decreases. Secondly, the estimated covariance matrix

S is rank-deficient if p exceeds n. Consequently, S−1 cannot be calculated and the

Hotelling T 2 procedure fails to work. Data sets where p is large relative to n arise

in many fields. We will consider a case where many gene expression measurements

are taken on a limited number of patients.
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In this Chapter, we propose a novel scheme for detecting one-off unusual changes

in the process mean vector in a high-dimensional setting. We estimate the variance

covariance matrix using a distribution free shrinkage estimator (lasso regulariza-

tion is avoided because it assumes multivariate normality). We use a leave-one-out

re-sampling procedure, with n baseline samples, to create n independent T 2 statis-

tics. The empirical distribution of the T 2 statistics for future observations and the

UCL for Phase-II analysis is estimated using a kernel smoothing technique.

5.2 Shrinkage estimate of a covariance matrix

The sample estimate of a covariance matrix is known to be unstable when p and

n are comparable (Johnstone, 2001). Procedures have been proposed to regular-

ize the sample covariance matrix. These procedures include the Steinian-class of

shrinkage estimators that shrinks an estimator towards a pre-specified target to

get a corresponding regularized version. Ledoit & Wolf (2004) take the idea of

James & Stein (1961) and propose a shrinkage estimator of a covariance matrix

that is the convex linear combination of the sample covariance and a target ma-

trix. Consider the unbiased sample covariance, S, of a high-dimensional data and

let T = (tij)1≤i,j≤p be a target estimate towards which we want to shrink our

sample covariance. The target estimator, T, is required to be positive definite and

its specification needs some assumptions about the structure of the true covari-

ance matrix, Σ. For example, Ledoit & Wolf (2004) uses a diagonal matrix as a

structured target estimate (presuming that all variances are of the same size and

all covariances are zero which make sense in high-dimensional scenarios) which is

also positive definite. A Steinian-class of shrinkage estimators is obtained by the

convex linear combination of S and T, given by

Σ̂ρ = ρT + (1− ρ)S (5.7)

where ρ ∈ [0, 1] is the shrinkage intensity. Note that, for ρ = 0 we get Σ̂ρ = Σ̂

while for ρ = 1, we have Σ̂ρ = T. The regularized estimate, Σ̂ρ, obtained in this

way is more accurate and statistically efficient than the estimators Σ̂ and T in

problems with n comparable to p (see Ledoit & Wolf (2004)).

Ledoit & Wolf (2004) provided a procedure for finding the optimal shrinkage

intensity which asymptotically minimizes the expected quadratic loss function,
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E‖Σ̂ρ − Σ‖2, where ‖A‖2 is the squared matrix norm of A. The expected

quadratic loss function measure the mean-squared error and an estimator with

minimal mean-squared error is desired. Schäfer & Strimmer (2005b) applies the

Ledoit & Wolf (2003) formulation to different target estimators and derive closed-

form analytical expressions for computing the value of ρ. To be more specific, they

minimize the risk function

R(ρ) = E‖Σ̂ρ −Σ‖2 (5.8)

to compute the value of ρ. Minimizing (5.8) with respect to ρ, the following

expression has been obtained for the optimal value of ρ

ρ̂∗ =

∑p
i=1

∑p
j=1 V ar(sij)− Cov(tij, sij)∑p
i=1

∑p
j=1E [(tij − sij)2]

. (5.9)

It is possible from the above expression to obtain a value of ρ̂∗ that is either

greater than 1 (over shrinkage) or even negative. This is avoided by using ρ̂ =

max(0,min(1, ρ̂∗)). It is worth noting at this point, that the shrinkage intensity

varies as we change the target estimator. Schäfer & Strimmer (2005b) provide

a detailed discussion about the six commonly used targets. A natural choice for

T is I, the identity matrix used by Ledoit & Wolf (2003) or its scalar multiple.

This choice not only assume sparsity which is more intuitive in high-dimensional

applications but also remarkably simple because it require no or one parameter to

be estimated. Using identity matrix as a target estimate reduces the expression

in (5.9) to

ρ̂∗ =

∑p
i=1 V ar(sij, i 6= j) +

∑p
i=1 V ar(sii)∑p

i=1(s
2
ij, i 6= j)

. (5.10)

Since (5.7) becomes a convex linear combination of positive definite target matrix,

T, and positive semidefinite matrix S, therefore the obtained shrinkage estimate

Σ̂ρ is guaranteed to be positive definite.

In this Thesis, we use the function cov.shrink() with the default options, available

in contributed R package “corpcor” (Schaefer et al., 2010), to calculate shrinkage

estimate of the covariance matrix. The cov.shrink() function shrink the sample

correlation matrix, R = (rij)1≤i,j≤p, towards the identity target estimate, I. Re-

placing S by R and T by I in (5.7), the expression for shrinkage intensity in (5.9)

solves down to

ρ̂∗ =

∑p
i=1 V ar(rij, i 6= j)∑p

i=1(r
2
ij, i 6= j)

. (5.11)
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The shrunken covariance is then obtained using the equation

Σ̂ρ = S
1/2
d R̂ρS

1/2
d , (5.12)

where R̂ρ is the regularized version of R̂. This formulation is more appropriate

when variables are measured on different scales. Note that, the cov.shrink() func-

tion also allows us to shrink the diagonal elements (this is the default option) with

separate shrinkage intensity calculated by

ρ̂∗ =

∑p
i=1 V ar(sii)∑p

i=1(s
2
ii −median(s))2

, (5.13)

where median(s) is the median of sample variances.

Figure 5.1 shows the ordered eigenvalues of a true covariance matrix (AR(1) with

b = 0.5) in comparison with the sample covariance and shrinkage estimate, calcu-

lated for a sample of size 25 with dimension p = 20, drawn from a multivariate

normal distribution (this is concordant with the results from Schäfer & Strim-

mer (2005b)). The eigenvalues for the sample covariance and shrinkage estimate

are averaged over 1000 realizations. The figure illustrates that the sample covari-

ance is likely to overestimate the larger eigenvalues and underestimate the smaller

eigenvalues when p is large relative to the sample size. The shrinkage estimate de-

flates the large eigenvalues downwards and inflates the small eigenvalues upward,

thereby overcoming the problem posed by dimensionality. Warton (2008) gives

a schematic like that of Figure 5.2 to demonstrate the implications of using the

shrinkage estimate of the covariance matrix. Geometrically, the shrinkage esti-

mate reduces the eccentricity of the 100(1−α)% confidence ellipse. This increases

the power if the shift is along the dominant eigenvector as illustrated by Figure

5.2(a). The power, however, will decrease if the shift is along the non-dominant

eigenvector as shown in Figure 5.2(b). The diagram also shows that a larger shift

is required along the dominant eigenvector to obtain a particular level of power as

compared to if the shift is along non-dominant eigenvector.

It is important to note that the shrinkage estimator does not make any distribu-

tional assumptions about the underlying distribution of the data and its perfor-

mance advantages are, therefore, not restricted to Gaussian assumptions. This is

also the main reason why we avoided other regularization procedures (ridge and

lasso) discussed in Chapter 2 because they use normal likelihood to select the

tuning parameter, ρ.
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Figure 5.1: Ordered eigenvalues of a shrinkage estimate, Σ̂ρ, in comparison
with the eigenvalues of a true covariance, Σ, and the sample covariance matrix,
S. Σ is of AR(1) structure with b = 0.5, and S and Σ̂ρ are calculated from a
sample of size n = 25 drawn from a multivariate (p = 20) normal distribution

with µ = 0 and covariance matrix Σ.
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(a)

True
Shrinkage
Shifted

(b)
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Figure 5.2: A hypothetical diagram illustrating the shrinkage effect for bi-
variate data (Warton, 2008). The lines are the 99% probability contours based
on the true covariance (the solid lines) and shrunken covariance (the dashed
lines). The shrinkage estimate reduces the eccentricity of the ellipse (the ellipse
represented by solid black line is squashed along the major axis and make the
ellipse represented by dashed line). The diagram also illustrates how the shift
in different orientation can effect the power of a method to detect it. The red
ellipse shows the shifted true distribution. It is shifted along the (a) first eigen-
vector (b) along second eigenvector. A larger shift is required along the first
eigenvector to be detected as compared to the shift along second eigenvector.
Note that “detected” means those red points that are outside the black ellipses.
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5.3 Proposed procedure

Assume that we have a set of in-control baseline data, and also that p is large

relative to n. The true parameters (µ and Σ) are unknown and are required to be

estimated from the baseline data. Since the sample covariance, S, is either rank

deficient (if p > n) or unstable (if p is comparable to n), it can be replaced by

the shrinkage estimate described in the previous section (it makes the calculation

of T 2 possible even when p > n). The distribution of T 2 when calculated using a

shrinkage estimate of the covariance matrix is, however, unknown. The classical

reference distributions (Beta distribution for Phase-I analysis and F distribution

for Phase-II analysis) discussed in section 1, are no longer applicable because of the

replacement of the sample covariance by its regularized counterpart. An obvious

alternative is to use an empirical distribution of the T 2 values as an estimate of the

reference distribution, and (1−α)th quantile as an estimate of the UCL for Phase-I

observations. However, this is possible for Phase-I analysis but cannot be extended

to Phase-II analysis because we do not have future observations. An alternative

procedure is therefore required to obtain the UCL for Phase-II monitoring, as

outlined below.

The T 2 for baseline observations, Xi, and future observations, Xf , follow different

distributions. The reason for this difference is that the T 2 statistics calculated for

the baseline observations are not independent of the estimated mean vector and

sample covariance matrix while T 2 for future observations are independent (Tracy

et al., 1992). This difference between the T 2 for baseline observations and T 2 for

future observations can be exploited to generate T 2 values from the n available

baseline observations, similar in properties to the T 2 values for future observations.

This can be done by leaving one observation out at a time and using the rest of

the n − 1 baseline observations to estimate the mean vector and the covariance

matrix. The T 2 statistic is calculated for the holdout observation using the mean

vector and regularized estimate of covariance matrix calculated from the n − 1

observations. The process is repeated, keeping each observation as a holdout in

turn, and using the rest as a baseline data. The T 2 values obtained in this way are

now independent of the estimated mean vector and sample covariance matrix and

have the same properties as those of the T 2 values for future observations given

that the process is in-control. Once we have n independent T 2 values, we use the

empirical distribution of these T 2 values as an estimate of the reference distribution
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for Phase-II analysis. The (1 − α)th quantile of this empirical distribution is the

estimate of UCL for Phase-II monitoring.

Note that the empirical distribution obtained in this way is of a discrete nature.

This can sometimes inflate or deflate the type-I error. A continuous distribution

is desirable, especially if one is interested in the tail probabilities. This can be

achieved using kernel density estimation (Polansky & Baker, 2000). We estimate

the kernel distribution function using a built-in R function kcde() provided in

contributed R package “ks” with default options (Duong, 2014).

Assuming that we have n p-dimensional observations and Xf denotes a future

observation, then the step-by-step procedure is as follows:

1. Choose an observation in turn from the baseline data and call it Xf , the

future observation.

2. Calculate the mean vector and shrinkage estimate of a covariance matrix

based on the remaining n− 1 baseline observations excluding Xf .

3. Calculate the T 2 statistic for Xf using the parameter estimates calculated

in step 2.

4. Repeat steps 1-3 for each baseline observation to get n independent T 2 values,

one for each observation.

5. Apply the kernel smoothing method to the T 2 values obtained in step 4 and

estimate the distribution function.

6. The UCL of the control chart, for monitoring future observations, is the

(1− α)th quantile of the kernel smoothed distribution function.

Note that we expect α% T 2 values for future observations to be above the UCL,

because the UCL is determined using an empirical distribution function. An ex-

amination of the algorithm reveals that we can, in fact, use it for Phase-I analysis

as well, and we do this in a simulation study in the next section. We note that the

procedure does not anywhere explicitly rely on normality of the data, although

our assessments at this stage focus on multivariate normal data. Our reference

distribution is based on an empirically generated distribution, it is valid even if the

data are not normal. The shrinkage approach is also distribution free. It seems a

promising non-parametric alternative and might work well for non-normal data.
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5.4 Simulation study

In this section, we present a simulation study conducted to quantify the perfor-

mance of the proposed method. We considered a number of different factors that

could potentially affect the performance of the method: dimension, sample size,

covariance structure, significance level α, and the orientation and size of the shift

parameter δ for out-of-control observations.

In each simulation, we drew n baseline observations from a p-variate normal dis-

tribution with mean vector µ and covariance matrix Σ. We used n = 30 and

p ∈ [2, 60] for baseline observations in order to show the characteristics of the

proposed method for a range of p in relation to n. For the n baseline observations,

we set µ as 0 and considered two different covariance structures: the exchangeable

structure given by

σij =





1 when i = j

b when i 6= j
for 1 ≤ i, j ≤ p (5.14)

and the AR(1) structure given as

σij = b|i−j| for 1 ≤ i, j ≤ p. (5.15)

For both AR(1) and exchangeable structures, we did the experiments with b ∈
{0.3, 0.4, 0.6, 0.7}. We show the results for b ∈ {.3, .7} because of the similar

pattern of results across different values of b (the results for b ∈ {.4, .6} are given in

the AppendixB of the Thesis). The UCL obtained from the empirical distribution

was in the far right tail and was sensitive to the largest T 2 values. To assess

how the tail behavior affects the false alarm rate, we did the experiments with

α ∈ {.01, .05}. Other important aspects to consider were the size and orientation

of shift parameter, δ. We did the experiment while making shift along the first,

second, and last eigenvectors, and a shift along all eigenvectors. We varied the

values of δ across different scenarios to examine cases of intermediate power that

discriminate between the proposed and the classical methods. For the AR(1)

structure, intermediate power was achieved with δ values 1, 7, 7, and 5 along all,

1st, 2nd, and pth eigenvector, respectively. For the exchangeable structure this was

achieved with delta values 1, 14, 4, and 4 along all, 1st, 2nd, and pth eigenvector,

respectively. Since most of the noise (error variation) lay along the dominant
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eigenvectors, a relatively larger shift was required to obtain the moderate power.

On the other hand, a smaller shift was required to obtain a moderate power if it

was along non-dominant eigenvectors.

Note that, for the AR(1) structure, the required δ value when looking at a shift

along the second eigenvector was the same as that for shifting along the first

eigenvector; for the exchangeable structure, the second eigenvector used the same

δ as the pth eigenvector. This grouping of examples (shift along second eigenvector

similar to first eigenvector for AR(1), similar to pth eigenvector for exchangeable)

persisted in the other features of the power curves, so the second eigenvector

simulations have been diverted to the supplementary material in Appendix B.

We used the proposed method and estimate the UCL using the baseline set of

data to monitor future observations. For comparison, we present the correspond-

ing results with T 2 values calculated using the true parameters as in (5.1). These

are the best possible results one could hope to achieve. In practice, however, these

parameters are unknown and are estimated from the baseline data. We also pro-

vide the results for the Hotelling T 2 method wherever possible (for p < n) using

(5.5) with parameters estimated from baseline data. Note that the UCL for these

two classical procedures are obtained from their respective known distributions

discussed in section 1 (see (5.4) and (5.6)). A set of 5000 in-control future ob-

servations were generated to estimate α, the false alarm rate. A shift of size δ

was created along different orientations using the same set of 5000 observations

to make the data out-of-control. The false alarm rate and power were calculated,

respectively, as the percentage of 5000 T 2 values for in-control observations that

exceeded the UCL and the percentage of 5000 T 2 values for out-of-control obser-

vations that exceeded the UCL. This was repeated 5000 times, each time with a

new set of baseline observations, to obtain 5000 values of false alarm rate and 5000

values of power. The averages over 5000 values of false alarm rate and power were

examined and the typical results in different setups are presented in Figures 5.3

and 5.4.

The results were consistent across the two covariance structures. The power de-

creased as we increased p relative to n except if the shift was along all eigenvectors.

This is not surprising because the shift cumulates across p dimensions and will be

easily detected for larger value of p. On the other hand, a shift along a single

dimension is masked by dimensionality and is harder to detect. The power of
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Figure 5.3: Power (solid lines) and false alarm rate (dashed lines) for AR(1)
covariance structure. The black lines are based on the true parameters and
therefore are the best possible results one can achieve. The green lines are the
results for the Hotelling T 2 control chart (uses sample covariance matrix) and

the blue lines are the results from new method.
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Figure 5.4: Power (solid lines) and false alarm rate (dashed lines) for exchange-
able covariance structure. The black lines are based on the true parameters and
therefore are the best possible results one can achieve. The green lines are the
results for the Hotelling T 2 control chart (uses sample covariance matrix) and

the blue lines are the results from new method.
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the standard method deteriorated faster with increasing p compared to the new

method and was not applicable for p > n.

The proposed method performed well throughout simulation study and was com-

parable to the results based on the true parameters. In fact, the power was higher

than the results based on the true parameters if the shift is along first eigenvector.

This was expected because of the shrinkage effect that is explained in Figure 5.2.

The false alarm rate (Type I error) was slightly lower than the nominal value on

the average for larger value of α because the extreme values in the far tail of the

empirical distribution are less likely to occur and UCL is sensitive to these extreme

values. This problem, however, was not very serious for moderate values of α (see

results for α = 0.01 and α = 0.05).

5.5 The in-control run length performance

An average run length (ARL) is a measure to describe the performance of the

control charts. In the context where the individual observations are monitored,

the run length is the number of in-control observations that must be collected

before an out-of-control signal appears (Montgomery & Woodall, 1999).

The ARL loses much of its attractiveness as a summary because it follows a geomet-

ric distribution which is positively skewed (Montgomery, 2007). Instead a median

run length (MRL) is used to quantify the performance of control charts. We con-

ducted simulation experiments to calculate the MRL of the proposed procedure.

A random sample of size n ∈ {50, 100} were simulated from a multivariate nor-

mal distribution, Np(0,Σ), where Σ is either an AR(1) structure or exchangeable

structure with b = 0.6. This was used to estimate the control limits for monitoring

the future observations using the proposed method. Another in-control sample of

size 100,000 was simulated to calculate MRL. This process was repeated 5,000

times, each time the control limit was estimated using a new set of baseline data.

The median MRL over 5000 replications with their respective lower and upper

quartiles are presented in Table 5.1 for n = 50 and in Table 5.2 for n = 100. The

experiments are conducted for different choices of p and α (the nominal false alarm

rate), p ∈ {50, 100, 150} and α ∈ {0.01, 0.02, ..., 0.10}.
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The covariance structure does not have a noticeable effect on the MRL perfor-

mance. The MRL values are closer to the desired MRL values (with lower in-

terquartile range) for the higher values of alpha. For lower values of α the in-

control MRL is higher than the desired MRL and the degree of departure from

the desired MRL increases as we decrease the value of α. The higher median

MRL is better in the sense that it checks less on false alarms than the nominal

one, but there is a lot of variability, with more much frequent false positives for

a substantial number of cases (see the lower quartile). The MRL values becomes

closer to the desired MRL if we increase the sample size from 50 to 100. The

variability reflects the varying quality of the covariance estimates based on the

baseline observations.

5.6 Practical applications

In this section, we illustrate our method using two different real data sets. The first

data set is a high-dimensional gene expression application (271 variables). The

second data set, although not high-dimensional (4 variables), has been analyzed

in previous literature.

5.6.1 Example 1: Gene expression data

We tested the method on a gene expression data set constructed from two studies

(Pawitan et al. (2005), Miller et al. (2005)). Both studies took population samples

of breast cancers from women treated in Sweden, but in different time periods,

1987-1989 and 1995-1996 respectively. Measurements of low quality or without

associated survival data were eliminated, leaving 232 cases for the earlier data

collection period and 159 for the later one.

The data are measurements of gene expression in breast cancer tumors using H133

A affymetrics chips. The composition of the samples is similar in terms of the tu-

mour molecular subtypes and estrogen receptor status (Chisquared tests of associ-

ation p=0.593 and 0.394 respectively). There are some differences in the descrip-

tions of the protocols used to collect the tissues; the earlier samples (232 patients)

are described as “frozen” while the later ones (159 samples) are “frozen immedi-

ately on dry ice or in liquid nitrogen and stored in -70C freezers.” We treated
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the differences between the groups as examples of differences that might arise if a

specified protocol was deviated from or a different protocol was mistakenly used.

We did not use all the gene expression measurements, but rather a subset of

scientific interest, 271 genes associated with the ERBB2 pathway. These were

measured on 391 patients in total. A plot of the data on the first two principle

components of the 271 variables is shown in Figure 5.5. The data from the different

studies are represented by numbers 1 (1987-1989) and 2 (1995-1996) in the plot.

The PCA plot shows a clear separation between the two studies.

We analyzed the data using our method while considering the data from study

1 as the baseline data and the one from study 2 as hypothetical out-of-control

observations, as might result from a change in laboratory conditions or a mistake

in protocol. The multivariate control chart in Figure 5.6 shows both the base-

line data (black) and future data (red) with 842.4466 as the UCL at 5% level

of significance. There are 12 points out of total 232 points, in the baseline data

above the UCL. Unlike the classical procedure, where the UCL is obtained from

a known distribution, the UCL here is obtained from the empirical distribution,

and 12 points are constrained to be above the UCL at α = 0.05. These 12 points

(encircled 1’s in Figure 5.5) should be investigated to ascertain reasons for their

departure from the normal state. However, none of the 12 points were found to

be largely influential and we retained them in the sample.

As shown in Figure 5.6, 72% of study 2 observations were identified as out-of-

control. These out-of-control observations are encircled in the PCA plot in Figure

5.5. We identify some points that are different in ways not obvious by looking

at first 2 PC’s in Figure 5.5. Note that the classical control charts methods

could not be applied here because there are more genes (variables) than patients

(observations) in each group, so the sample covariance matrix is not invertible.
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Figure 5.5: First two principle components of the gene expression data. All
out-of-control points in Figure 5.6 (including 12 out-of control points from base-

line set of data) are encircled.
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Figure 5.6: Multivariate control chart using study 1 data as a baseline set
of data (black) and study 2 as a future set of data (red). The solid line at

T 2 = 853.504 represent the UCL at 5% level of significance.

5.6.2 Example 2: Chemical process data

Here we apply the method to chemical process data with four variables and 30

observations. The data set is given in Table 5.3 and was originally used by Mont-

gomery (2007) to demonstrate the method of principal component analysis for

multivariate process monitoring. Following Montgomery (2007), the first 20 ob-

servations were used as Phase-I data and the last ten observations were used for

testing and monitoring (Phase-II). The scatter plot of the first two principal com-

ponent scores computed using the Phase-I observations is shown in Figure 5.7.

The Phase-II observations are projected onto the PCA plot of Phase-I observa-

tions. The Phase-II observations are represented by a different plotting symbols

together with the numbers from 21 to 30, to show the sequence of points. The

observations outside the 99% confidence ellipse are considered the out-of-control

signals and indicates that there has been a shift in the process mean. We analyze
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the data using our method and present the control chart in Figure 5.8. It is clear

that our method shows more sensitivity and detects the shift one point in time

earlier than the principal component trajectory plot.

To further assess our method in comparison with the principal components ap-

proach under a smaller sample size, we drop the first 10 observations of the baseline

data and re-analyze the data using the middle 10 observations as a baseline set

of data. The resultant PCA plot shown in Figure 5.9 while the control chart pro-

duced by our method is in Figure 5.10. The PCA performance is poor – because it

fails to identify most of the out-of-control observations as only three observations

(24rd, 26th, and 29th) are outside the 99% confidence ellipse. On the other hand,

our method seems to be robust to the change in the sample size. It has detected

23rd the out-of-control signals even with the smaller Phase-I sample size (n = 10).
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Figure 5.7: Principal components trajectory plot for the chemical process data
with 99% confidence ellipse. Only the first 20 baseline observations are used to
compute the principal components. The 10 future observation are plotted with
star symbols and are numbered from 21 to 30 in order to show the natural

sequence of the points.
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Figure 5.8: Control chart produced by the proposed method for monitoring
the chemical process data shown in Figure 5.7. The first 20 observations are
used to estimate the control limits. The solid line at T 2 = 11.1887 indicates the

control limit of the chart at 1% level of significance.
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Figure 5.9: Principal components trajectory plot for the chemical process
data with 99% confidence ellipse. Note that the first 10 baseline observations are
dropped from the analysis and the principal components are computed from the
middle 10 observations. The last 10 observations are plotted with star symbols
and are numbered from 21 to 30 in order to show the natural sequence of the

points.
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Figure 5.10: Control chart produced by the proposed method for monitoring
the chemical process data shown in Figure 5.9. Only the middle 10 observations
are used to estimate the empirical reference distribution. The solid line at T 2 =
13.1733 indicates the control limit of the chart at at 1% level of significance.

5.7 Summary and Conclusion

In this Chapter, we propose a method to detect unusual observations or changes

in a high-dimensional stochastic process. In high-dimensional problems, the T 2

statistic is impossible to calculate if p > n and even when p < n the standard

theory (Hotelling T 2 control charts) leads to a procedure with low power. We

chose the shrinkage estimation of the covariance matrix to not only make the cal-

culation of T 2 possible, but also reliable. Other regularization techniques for the

covariance matrix (e.g. ridge or lasso regularization) could be used, but they are

computationally expensive, typically relying on cross validation and use normal

likelihood to select the value of the penalty parameter. One reason for choosing

the shrinkage estimate is that it is based on a fully automated and computationally

inexpensive data driven method. Other reason for choosing shrinkage estimator is
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that it does not make any distributional assumptions about the underlying distri-

bution of the data and its performance advantages are potentially not restricted

to Gaussian assumptions. This was combined with a leave-one-out re-sampling

procedure to obtain n independent T 2 values. To estimate the distribution of T 2

for future observations, we used kernel smoothing. The UCL for monitoring future

observations was the (1− α)th quantile of the kernel smoothed distribution.

The performance of the procedure was evaluated using extensive Monte Carlo

simulation. The method was compared with the standard procedure wherever

possible and also with a hypothetically best case, based on the true parameters. We

showed numerically that the new procedure competes well and had considerable

power to detect signals under various simulations. The ability of the procedure to

accurately characterize the shift in mean vector is also shown by applying it to a

gene expression data, where we use data from two studies with different protocols

to demonstrate detecting a protocol change or error. One natural competitor of

the proposed method is the principal component approach. We use the chemical

process data (previously used to demonstrate the principal component approach)

to show the advantages of the proposed method.

The method may perform well in multivariate non-normal data, as it does not

assume the data to be normally distributed. Further simulation, however, would

be required to investigate the performance of the method in this more general

setting. We leave assessment of this to future work.

The control charts generally use much lower false alarm rates. Our procedure

works well for larger significance values (e.g., 5%). Therefore, this approach will

be useful in situations where there is a high priority of quickly detecting any shift

in the process, or where the follow-up to a detected outlier is easy and inexpensive,

so that a higher false alarm rate can be tolerated. Note also that the proposed

procedure relies on kernel estimation, it is sensitive to the quality and size of the

training sample.

5.8 Contributions of the Chapter

The Hotelling T 2 control chart becomes unreliable and even impractical when

n < p. In this Chapter, we propose a procedure to improve process monitoring in

the high-dimensional setting. We use a shrinkage estimate of the covariance matrix



Chapter 5. Control charts in high-dimensional setting 98

as an estimate of the baseline parameter. A leave-one-out re-sampling procedure

is used to obtain independent T 2 values. The upper control limit for monitoring

the future observations is then calculated from kernel smoothed empirical distri-

bution of the independent T 2 values. The performance of the proposed approach

is tested, and compared to the Hotelling T 2 and the hypothetically “best possi-

ble” results, via an extensive simulation study. The procedure outperforms the

standard Hotelling T 2 method and gives comparable results to the one based on

true parameters. The procedure is also applied to a real gene expression data set

and a chemical process data that has been analyzed in literature to demonstrate

the principal component approach for process monitoring.
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Table 5.3: Chemical process data. There are total 30 observations. The first
20 observations constitute the baseline set of data and the last 10 observations

are the new observations used for testing and monitoring.

Observation x1 x2 x3 x4
1 10.00 20.70 13.60 15.50
2 10.50 19.90 18.10 14.80
3 9.70 20.00 16.10 16.50
4 9.80 20.20 19.10 17.10
5 11.70 21.50 19.80 18.30
6 11.00 20.90 10.30 13.80
7 8.70 18.80 16.90 16.80
8 9.50 19.30 15.30 12.20
9 10.10 19.40 16.20 15.80
10 9.50 19.60 13.60 14.50
11 10.50 20.30 17.00 16.50
12 9.20 19.00 11.50 16.30
13 11.30 21.60 14.00 18.70
14 10.00 19.80 14.00 15.90
15 8.50 19.20 17.40 15.80
16 9.70 20.10 10.00 16.60
17 8.30 18.40 12.50 14.20
18 11.90 21.80 14.10 16.20
19 10.30 20.50 15.60 15.10
20 8.90 19.00 8.50 14.70
21 9.90 20.00 15.40 15.90
22 8.70 19.00 9.90 16.80
23 11.50 21.80 19.30 12.10
24 15.90 24.60 14.70 15.30
25 12.60 23.90 17.10 14.20
26 14.90 25.00 16.30 16.60
27 9.90 23.70 11.90 18.10
28 12.80 26.30 13.50 13.70
29 13.10 26.10 10.90 16.80
30 9.80 25.80 14.80 15.00



Chapter 6

General Conclusions

In recent years, there has been intense activity in improving estimation of the

covariance matrix when n < p, or they are of comparable size. Despite this,

the regularized estimators can be rarely seen in practice. One reason is because

the covariance is merely an ingredient of the common multivariate procedures.

Replacing the sample covariance by its regularized alternatives does not guarantee

that the procedure still works. There is a need to adapt procedures to allow the

use of regularized estimators, and assess these new techniques. When regularized

estimators have found their way into multivariate techniques, their assessment

is frequently restricted to the applications that were the original motivation for

its development. For example, lasso-type regularization has been used primarily

when a sparse covariance is expected, while the shrinkage estimate is common

in portfolio optimization problems. There is a need for a more comprehensive

comparison, to broadly characterize the situations where each method performs

well.

The main objective of this Thesis was to explore some of the important regulariza-

tion techniques for estimation of high-dimensional covariance matrices and their

properties in different high-dimensional multivariate methods. We have investi-

gated the behavior of the regularized alternatives to the sample covariance in three

different multivariate techniques. These are summarized in Sections 6.2, 6.3, and

6.4 with common themes and future directions highlighted in Section 6.5.

100



Chapter 6. General Conclusions 101

6.1 Regularized estimation of the high-dimensional

covariance matrices

The behavior of the sample covariance in high-dimensional problems is well-known

to be poor. In recent years various regularization techniques have been developed

to improve over the sample covariance in a high-dimensional setting. Chapter 2

reviews some of the important recent regularization techniques. These techniques

include the shrinkage estimation of the sample covariance matrix, the ridge regular-

ization, the lasso regularization, and weighted versions of the lasso regularization.

To assess how well different regularized estimators perform to estimate the true co-

variance matrix, a simulation study was conducted. The lasso estimator, although

computationally intensive and assuming multivariate normality, has the compet-

itive accuracy. The shrinkage estimator, on the other hand, is computationally

inexpensive and does not make distributional assumption about the underlying

set of data. The ridge estimator differs from the shrinkage estimator in that it

chooses the shrinkage parameter using cross-validation. In our simulations, we

found no advantage of the cross-validation over the computationally fast closed

form expression used to estimate the shrinkage intensity for the shrinkage esti-

mator. Our simulations show that the covariance matrix can be more accurately

estimated using lasso penalty (if diagonal elements are not penalized) rather than

using adaptive lasso and SCAD penalties that are shown to be superior to the

lasso penalty in model selection.

6.2 Hierarchical covariance estimation

Multivariate random effect models need proper estimates of the within-group and

the between-group covariance matrices. The computation of a between-group co-

variance involves the difference of two mean-square matrices and often results nega-

tive elements on the diagonal. The probability of negative elements increases as we

increase the number of variables. This makes it difficult, in the high-dimensional

setting, to obtain a proper between-group covariance matrix. In Chapter 3, a hi-

erarchical model is proposed based on the EM-algorithm. The Lasso-regularized

estimates of the covariance matrices are embedded in the algorithm to ensure es-

timates of covariance matrices are positive definite. Our simulation study showed
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that the proposed model performs well and returns a positive definite estimate of

the between-group covariance. We applied the method to a glass chemical compo-

sition data. In this data set, we are interested in the between-group covariance and

the standard estimate is not positive definite. We show that using the proposed

method one can obtain a proper between-group covariance. In our simulation

experiments, the algorithm needed few iterations to converge (especially in cases

where the between-group variation is dominant) and is a good replacement in the

situations where the traditional analysis of variance technique fails to work.

6.3 Regularized MANOVA for high-dimensional

data

MANOVA is used to test hypothesis of group effects on multiple response variables

simultaneously. High-dimensionality poses a serious problem to MANOVA tests.

We have shown that the estimation error in terms of eigenvalues of covariance

matrices is the least, on average, for the lasso-regularized covariance matrix in

comparison with ridge and shrinkage estimates. In Chapter 4 of the Thesis, we

propose an approach based on the lasso regularization. We investigate the behav-

ior of the novel approach via extensive simulations taking into account a number

of different factors. The new approach is also compared with other existing ap-

proaches.

In our simulation experiments, the three recent high-dimensional regularization

procedures of the sample covariance: the shrinkage, the ridge, and the lasso regu-

larization perform well, and in many cases perform better than the more conven-

tional generalized inverse and principal component approach. None of the shrink-

age, the ridge, and lasso is universally superior across scenarios considered in our

simulation study. Lasso regularization is always the best when the shift is along

all the eigenvectors but the difference is not dramatic. The difference, however,

increases as we increase the number of variables. The better performance of lasso

regularization seems to be because of its better recovery of the true eigenvalues.

Lasso regularization, however, is computationally expensive than the other com-

peting procedures we have considered in this study. This is because lasso regular-

ization by itself is an iterative procedure. The two computationally cumbersome
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jobs, cross-validation to choose penalty parameter and permutation test, add sub-

stantially to its computational time. While not computationally prohibitive its

computational time is increasing dramatically with the number of variables for a

fixed sample size. Ridge regularization is comparatively less expensive than lasso

but its implementation also involves cross-validation. Principal component ap-

proach, generalize inverse and shrinkage approach are computationally simple and

very fast. However, the performance of principal component approach have been

very poor both in our simulation experiments and the real data. The performance

of generalized inverse has been very poor in the zone where p is large but close to

n. Taking both things — power and computational time— into consideration the

shrinkage approach has an excellent balance.

6.4 Monitoring individual future observations in

the high-dimensional setup

The Hotelling T 2 control chart is used to detect unusual changes in the mean

vector of a stochastic process while monitoring individual future observations. In

high-dimensional problems the T 2 statistic is impossible to calculate if n < p and

even for n > p, the UCL of the Hotelling T 2 control chart for monitoring future

observations is unknown. In Chapter 5, a new method is proposed for monitoring

future observations in high-dimensional setting. The method is superior to the

standard Hotelling T 2 control chart in practice.

We evaluate the performance of the novel procedure using extensive Monte Carlo

simulation. The method is also compared with the standard procedure wherever

possible and also with a hypothetical “best case” that is based on the true pa-

rameters. We show numerically that the new procedure competes well and gains

considerable power to detect signals under various simulations. The ability of

the procedure to accurately characterize the shift in mean vector is also shown

by applying it to a gene expression data, where we use data from two studies

with different protocols to demonstrate detecting a protocol change or error. One

natural competitor of the proposed method is the principal component approach.

We use the chemical process data (previously used to demonstrate the principal

component approach) to show the out-performance of the proposed method.
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It is important to note that we do not make any particular assumption about

the distribution of the data. The method may perform well in multivariate non-

normal data. Further simulation, however, would be required to investigate the

performance of the method in multivariate non-normal data. Although the new

method is proposed to monitor future observations, it can be used for Phase-I

analysis as well.

6.5 Commonalities and future work

Lasso regularization is being used for identifying zero elements in the inverse co-

variance matrix (model selection in the context of Gaussian graphical models). It

can be used to obtain a regularized estimate of a covariance matrix. The shrinkage

and ridge regularization are being used to estimate high-dimensional covariance

matrices but always produce dense estimate of the inverse covariance matrix. In

Chapter 2 and Chapter 4, the lasso regularization was expected to have a bigger

advantage on the AR(1) structure (because its inverse is sparse) as compared to

the exchangeable structure but it is not true in our simulation. The performance

of the regularized covariance matrix obtained using lasso regularization is better

even if the inverse covariance matrix is not sparse. The computational time of

lasso regularization is, however, less for the covariance structure whose inverse is

sparse.

Chapter 4 and 5 both involve creating reference distributions. In Chapter 5,

we drop one observation from the baseline set of data at a time and estimate

the parameters from the rest. The Hotelling T 2 statistic is calculated for the

observation that was dropped. This gives us only n different T 2 values. The

empirical distribution of the T 2 values is more of a discrete nature (we avoid this

using kernel density estimate) and is not suitable for estimating the p-value. This

is totally different from the permutation test we have used in Chapter 5 because

there are many possible permutations even for a small sample size that produce

many values of the test statistic. The empirical distribution in this case is smoother

and is suitable to estimate p-value.

The first problem that needs to be further investigated is related to the two dimen-

sionality reduction techniques we have considered in Chapter 4, namely, Moore-

Penrose generalized inverse and principal component approach. The generalized
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inverse exhibit rather surprisingly good behavior outside the critical zone (when

n is just less than p) relative to other methods we have considered in Chapter 4.

On the other hand, the performance of the approach based on principal compo-

nents has been poor. Both these methods reduces the dimension of the data. The

generalized inverse reduces the dimension from p to the rank(Σ̂). It reduces to

standard matrix inverse when rank(Σ̂) ≥ p. The performance of the standard

inverse covariance matrix is already known to be poor in high-dimensional prob-

lems. The principle component approach reduces the dimension of the data to

first q principal components (q is the number of principal components chosen us-

ing the eigenvalue-greater-than-one rule). The two methods becomes similar and

are expected to provide similar results when the rank(Σ̂) = q. The performance

of generalized inverse might improve in the critical zone if we use it with fewer

dimensions than the rank(Σ̂) and do not allow it to reduce to the standard matrix

inverse. A different criteria to choose an intermediate number of dimensions would

be required rather than the rank(Σ̂) or eigenvalue-greater-than-one rule.

Another problem that needs to be investigated is related to the method we pre-

sented in Chapter 5 for monitoring future observations. To obtain the UCL, a

kernel density approach is used that is good to estimate central quantiles. Another

possibility is to estimate the quantiles using extreme value distribution (Beirlant

et al., 2006). This approach is preferred to estimate the extreme quantiles and

may perform better than the kernel density approach. It needs to be explored.

Finally, real data is frequently non-normal. The Hotelling T 2 control chart method

for detecting unusual future observations assume that the observations follow a

multivariate normal distribution. In the procedure presented in Chapter 5, our

reference distribution is based on an empirically generated distribution, it is valid

even if the data are not normal. The shrinkage approach is also distribution free. It

seems a promising non-parametric alternative and might work well for non-normal

data. Further investigation would be required to study the procedure for different

flavors of non-normality.
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Supplementary Figure for

Chapter 4

Table A.1: Values of the shift parameter, δ, used in the simulation
experiments whose results are presented in Figure A.1 and Figure A.2.

Orientation

of δ

Covariance structure

AR(1) Exchangeable

along 1st eigenvector 4.080 5.040

along 2nd eigenvector 2.280 2.280

along pth eigenvector 1.560 1.560

along all eigenvectors 0.516 0.504
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Figure A.1: Power comparison of MANOVA test based on 5 competing pro-
cedures under AR(1) covariance structure with b = 0.4. For each value of
p ∈ [2, 30], the power is estimated using 1000 samples and the significance level

is kept as 0.05.
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Figure A.2: Power comparison of MANOVA test based on 5 competing pro-
cedures under exchangeable covariance structure with b = 0.4. For each value
of p ∈ [2, 30], the power is estimated using 1000 samples and the significance

level is kept as 0.05.
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Figure B.1: Power (solid lines) and false alarm rate (dashed lines) for AR(1)
covariance structure with b = 0.3. The black lines are based on the true param-
eters and therefore are the best possible results one can achieve. The green lines
are the results for standard method (using sample mean and sample covariance

matrix) and the blue lines are the results from new method.
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Figure B.2: Power (solid lines) and false alarm rate (dashed lines) for AR(1)
covariance structure with b = 0.4. The black lines are based on the true param-
eters and therefore are the best possible results one can achieve. The green lines
are the results for standard method (using sample mean and sample covariance

matrix) and the blue lines are the results from new method.
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Figure B.3: Power (solid lines) and false alarm rate (dashed lines) for AR(1)
covariance structure with b = 0.6. The black lines are based on the true param-
eters and therefore are the best possible results one can achieve. The green lines
are the results for standard method (using sample mean and sample covariance

matrix) and the blue lines are the results from new method.
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Figure B.4: Power (solid lines) and false alarm rate (dashed lines) for AR(1)
covariance structure with b = 0.7. The black lines are based on the true param-
eters and therefore are the best possible results one can achieve. The green lines
are the results for standard method (using sample mean and sample covariance

matrix) and the blue lines are the results from new method.
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Figure B.5: Power (solid lines) and false alarm rate (dashed lines) for ex-
changeable covariance structure with b = 0.3. The black lines are based on the
true parameters and therefore are the best possible results one can achieve. The
green lines are the results for standard method (using sample mean and sample

covariance matrix) and the blue lines are the results from new method.
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Figure B.6: Power (solid lines) and false alarm rate (dashed lines) for ex-
changeable covariance structure with b = 0.4. The black lines are based on the
true parameters and therefore are the best possible results one can achieve. The
green lines are the results for standard method (using sample mean and sample

covariance matrix) and the blue lines are the results from new method.
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Figure B.7: Power (solid lines) and false alarm rate (dashed lines) for ex-
changeable covariance structure with b = 0.6. The black lines are based on the
true parameters and therefore are the best possible results one can achieve. The
green lines are the results for standard method (using sample mean and sample

covariance matrix) and the blue lines are the results from new method.
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Figure B.8: Power (solid lines) and false alarm rate (dashed lines) for ex-
changeable covariance structure with b = 0.7. The black lines are based on the
true parameters and therefore are the best possible results one can achieve. The
green lines are the results for standard method (using sample mean and sample

covariance matrix) and the blue lines are the results from new method.
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