Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

POTENTIATION OF SPRINT CYCLING PERFORMANCE: The Effects of a High-Inertia Ergometer Warm-Up

A thesis presented in partial fulfilment of the requirements for the degree of

Master of Science in Sport and Exercise Science

at Massey University, Auckland, New Zealand.

Lynne Anne Munro

APRIL 2013

Abstract

Assimilating current knowledge in the field of acute post-activation potentiation (PAP) of athletic performance, this study attempted to ensure optimal conditions for performance gain, by utilising highly-trained sprint-athletes, a biomechanically similar conditioning activity and following recommendations for the most appropriate conditioning protocol. Employing a randomized, counterbalanced, cross-over design with repeated measures, 4 male and 2 female national and international competitive sprint cyclists (age 19.2 ± 3.2 years; height 175.2 ± 7.0 cm; body mass 75.5 \pm 9.8 Kg; training years (sprint cycling) 4.0 \pm 1.5 years; training years (strength) 3.5 \pm 1.2 years; peak isometric pedal torque 255.85 \pm 37.75 Nm) executed multiple sets of short maximal contractions on a custom-built high-inertia ergometer as a potentiating stimulus prior to sprint cycle performance. Three trial conditions were completed on three separate days: a standardised warm-up followed by either dynamic (DYN: 4 x 4 complete crank cycles), or isometric (ISO: 4 x 5-second MVC) conditioning contractions (CC), or a control condition (CON) where subjects actively rested for the total equivalent time post-warm-up. Performance was assessed in a short (~6 seconds) maximal acceleration from standing start to maximum velocity on an inertial-load ergometer at baseline (Pre), 4 (Post4), 8 (Post8) and 16 (Post16) minutes following the CC protocol. Torque-cadence and power-cadence relationships were derived from crank data recorded throughout the sprint. Performance time and peak and average biomechanical measures were assessed over 4 discrete sprint segments. Outcomes were assessed using 2-way repeated measures ANOVA and magnitudebases inferences. DYN Post4 was the only trial improving performance time, affecting a 3.91 ± 3.74% (92% likelihood of exceeding smallest worthwhile change (SWC)) decrease in time over the first segment of the sprint such that overall performance time was substantially improved. Biomechanical improvements in this trial were predominantly on the ascending limb of the power-cadence

relationship, affecting an increase of 6.24 ± 5.95% in peak torque (94% likelihood of exceeding SWC) and 4.04 ± 6.52% (87% likelihood of exceeding SWC) in average power during initial acceleration. Conversely, ISO Post16 enhanced performance over the descending limb of the power-cadence relationship, affecting an increase in optimal cadence (~3.1% increase when compared to change from baseline in control condition, 82% likelihood of exceeding SWC) and augmenting average power (~5% improvement when compared to change from baseline in control condition, 76% likelihood of exceeding SWC) during the maximal velocity phase of the sprint. DYN Post16 affected only small improvements at either extremity of the relationship, while few changes were observed in the remaining trial conditions. Results imply that each trial-time combination presented distinct performance conditions characterised by the predominance of different PAP mechanisms. This study provisionally suggests the efficacy of a including a high-inertia ergometer component in the sprint warm-up. Improvements at the functional extremities of the sprint would benefit starting acceleration or finishing speed, where compromise in gear and pedal length selection strategies would, otherwise, impose limitations on performance.

Keywords: post-activation potentiation, sprint cycling, neuromuscular performance, warm-up

Acknowledgements

My heartfelt thanks go to the staff and athletes of the BikeNZ High Performance sprint programme whose contribution made this project a memorable life experience and whose passion and professionalism were a source of inspiration. Particular thanks to Justin Grace (Head Coach) for ensuring this project was supported by his team and for prioritising testing time within, already hectic, training and competition schedules; Angus Ross (Lead Strength and Conditioning Coach) for his counsel and direction in getting the project underway; Grant Davidson and the Technical Support Team for helping in the preliminary testing and providing me with engineering know-how; and, most especially, Damian Wiseman (Sport Scientist) whose time and assistance throughout the course of the project was totally invaluable. To the athletes who gave their time and energy in the testing sessions, my deepest gratitude for your contribution and commitment. Sincere thanks and appreciation for the mentoring provided by my primary supervisor, Dr. Andrew Foskett, who gave me his full and unabated support and encouragement throughout the study. Thanks also to my supporting supervisors, Dr. Phil Fink, whose mathematical and biomechanical wisdom has been truly enlightening, and Professor Steve Stannard, whose mechanical genius and passion for cycling made this research possible. Further thanks to Simon Bennett, Massey University Laboratory Manager, for ensuring my testing sessions were completed with minimum levels of stress and maximum standards of service. To my parents, Laura and Angus, you have been my enduring foundations in so many aspects of my life. Your unwavering and tireless support can never be fully repaid, and I thank you from the bottom of my heart for everything you do and have done. My partner, Karen, who made sure I had all the support and belief needed to complete, that is no small feat and I truly thank you with all my heart for always being there for me. The support, love and belief of those passed have equally contributed, and my thanks are with them also.

And to my dad, who has been alongside me every step of the way.

Table of Contents

Abstract	ii
Acknowledgements	iv
Table of Contents	v
List of Figures	viii
List of Tables	х
List of Abbreviations	xiii
CHAPTER 1 - INTRODUCTION	1
1.1 Hypothesis	7
CHAPTER 2 – LITERATURE REVIEW	8
2.1 Introduction	8
2.2 Influence of Prior Activity on Subsequent Performance	8
2.3 Underlying Physiology	11
2.3.1 Established Characteristics	14
2.3.2 Mechanisms of Potentiation	20
2.4 Exploitation of Post-Activation Potentiation for Performance Gain	27
2.4.1 Optimising Sports Performance	31
2.4.2 Optimising Sprint Cycling Performance	34
2.5 Acute Effects of Post-Activation Potentiation on Performance	37
2.5.1 Evidence of Potentiation in a Performance Setting	38
2.5.2 Performance Outcomes	43
2.5.2.1 Jumping	43
2.5.2.2 Upper Body Power	58
2.5.2.3 Sprinting	65
2.5.2.4 Other Sports	75

2.5.3 Summary of Characteristics	78
2.5.3.1 Protocol Factors	78
2.5.3.2 Participant Factors	80
2.5.3.3 Performance Outcomes	82
CHAPTER 3 - METHODOLOGY	84
3.1 Experimental Approach to the Problem	84
3.2 Participants	84
3.3 Protocol	85
3.4 Potentiation Protocol and Ergometer	89
3.5 Data Analysis	91
3.6 Statistical Analysis	94
CHAPTER 4 – RESULTS	96
4.1 Overview of Sprint and Conditioning Performances	96
4.2 Segment and Overall Performance Measures	96
4.3 Instantaneous Measures	104
4.4 Metabolic Measures	126
4.5 Summary of Trial Outcomes	127
CHAPTER 5 – DISCUSSION	128
5.1 Conclusion	160
5.2 Limitations of the Study	162
5.3 Recommendations For Future Research	163
REFERENCES	165
APPENDICES	198
APPENDIX 1 – Participant Information Sheet	199
APPENDIX 2 – Health Screening Questionnaire	201
APPENDIX 3 – Participant Consent Form	204
APPENDIX 4 – Ethics Approval	205

APPENDIX 5 – Supplementary Results	206
APPENDIX 6 – Summary Of Trial Outcomes	213

List of Figures

Figure 2.1 Effect of PAP on the Isometric Force-Frequency Relationship.	10
Figure 2.2 Hypothetical Force-Calcium Relationships Demonstrating Combinations of Potentiatio	n
and Fatigue.	13
Figure 2.3 Adapted Fitness-Fatigue Model.	29
Figure 3.1 Summary of the Experimental Method.	86
Figure 3.2 Custom-built Potentiation Ergometer.	90
Figure 4.1 Trial Conditions of Final Cadence.	97
Figure 4.2 Trial Conditions for Change in PTA Over S4 (half crank cycles 11-20).	98
Figure 4.3 Trial Conditions for Change in PTA Over S1-4 (half crank cycles 1-20).	98
Figure 4.4 Trial x Time Conditions for Final Cadence.	99
Figure 4.5 Trial x Time Conditions for Final Velocity.	100
Figure 4.6 Instantaneous Torque-Cadence Plot for a Representative Participant.	105
Figure 4.7 T_i and T_{rev} Versus Cadence for the Instantaneous Data Presented in Figure 4.6.	105
Figure 4.8 Instantaneous Power-Cadence Plot for the Representative Sprint Shown in Figure 4.6.	106
Figure 4.9 P_i and P_{rev} Versus Cadence for the Instantaneous Data Presented in Figure 4.8.	106
Figure 4.10 T _i Versus Cadence for Pre-CC Trials.	108
Figure 4.11 T _i Versus Cadence for Post4 Trials.	109
Figure 4.12 T _i Versus Cadence for Post8 Trials.	110
Figure 4.13 T _i Versus Cadence for Post16 Trials.	111
Figure 4.14 T _{rev} Versus Cadence for Pre-CC Trials.	112
Figure 4.15 T _{rev} Versus Cadence for Post4 Trials.	114
Figure 4.16 T _{rev} Versus Cadence for Post8 Trials.	115
Figure 4.17 T _{rev} Versus Cadence for Post16 Trials.	116

Figure 4.18 P _i Versus Cadence for Pre-CC Trials.	117
Figure 4.19 P _i Versus Cadence for Post4 Trials.	119
Figure 4.20 P _i Versus Cadence for Post8 Trials.	120
Figure 4.21 P _i Versus Cadence for Post16 Trials.	121
Figure 4.22 P _{rev} Versus Cadence for Pre-CC Trials.	122
Figure 4.23 P _{rev} Versus Cadence for Post4 Trials.	123
Figure 4.24 P _{rev} Versus Cadence for Post8 Trials.	124
Figure 4.25 P _{rev} Versus Cadence for Post16 Trials.	125

List of Tables

Table 2.1 Possible Effects of a Warm Up.	34
Table 2.2 Summary of Literature Providing Evidence of Potentiation in a Performance Setting.	40
Table 2.3 Summary of Literature Examining Jump Performance Post Execution of a Resistance	
Exercise Pattern as Conditioning Activity.	44
Table 2.4 Summary of Literature Examining Jump Performance Post Execution of a Loaded Jump	
Pattern as Conditioning Activity.	47
Table 2.5 Summary of Literature Comparing Different Modes of Conditioning Activity Prior to Jur	np
Performance.	48
Table 2.6 Summary of Literature Comparing Different Modes of Jump Performance Post Execution	on of
a Conditioning Activity .	50
Table 2.7 Summary of Literature Examining Upper Body Power Performance Post Execution of a	
Conditioning Activity.	59
Table 2.8 Summary of Literature Examining Sprint Performance Post Execution of a Conditioning	3
Activity.	66
Table 2.9 Summary of Literature Examining Sports Performance Post Execution of a Conditioning	5
Activity.	73
Table 3.1 Summary of Participant Characteristics.	85
Table 3.2 Standardised Warm-Up Protocol.	87
Table 3.3 Summary of Instantaneous Measures Analysed.	93
Table 3.4 Sprint Segments of Analysis.	94
Table 3.5 Summary of Segment and Overall Measures Analysed.	94
Table 4.1 Torque Production During Conditioning Protocols.	96
Table 4.2 Meaningful Changes in Overall Measures.	101
Table 4.3 Meaningful Changes in S1-4 Measures.	102
Table 4.4 Meaningful Changes in S1 Measures.	103

Table 4.5 Meaningful Changes in S4 Measures.	104
Table 4.6 Meaningful Changes in T_i and f_i for Post4 Trials.	109
Table 4.7 Meaningful Changes in T_i and f_i for Post16 Trials.	112
Table 4.8 Meaningful Changes in $T_{\rm rev}$ and $f_{\rm rev}$ for Post4 Trials.	114
Table 4.9 Meaningful Changes in $T_{\rm rev}$ and $f_{\rm rev}$ for Post16 Trials.	117
Table 4.10 Meaningful Changes in P_i and f_{qi} for Post4 Trials.	119
Table 4.11 Meaningful Changes in P_i and f_{qi} for Post8 Trials.	120
Table 4.12 Meaningful Changes in P_{rev} and f_{qrev} for Post4 Trials.	123
Table 4.13 Meaningful Changes in P_{rev} and f_{qrev} for Post16 Trials.	126
Table 4.14 Meaningful Changes Pre- to Post- CC in Metabolic Measures.	127
Table 4.15 Meaningful Changes DYN to ISO in Metabolic Measures.	127
Table A5.1 Segment and Overall Measures Showing Significant Decline from Pre to Post4 and Pos	st4
to Post8 Time Points.	206
Table A5.2 Segment and Overall Measures Showing Significant Decline from Post4 to Post8 Time	
Points.	206
Table A5.3 Segment and Overall Measures Showing Significantly Lower Post- Versus Pre- CC Value	es.
	207
Table A5.4 Instantaneous Power Measures Showing Significant Main Effect for Time.	207
Table A5.5 Meaningful Changes in T _i for Post4 Trials.	208
Table A5.6 Meaningful Changes in T _i for Post8 Trials.	208
Table A5.7 Meaningful Changes in T _i for Post16 Trials.	208
Table A5.8 Meaningful Changes in T _{rev} for Post4 Trials.	209
Table A5.9 Meaningful Changes in T _{rev} for Post8 Trials.	209
Table A5.10 Meaningful Changes in T _{rev} for Post16 Trials.	209
Table A5.11 Meaningful Changes in P _i for Post4 Trials.	210
Table A5.12 Meaningful Changes in P _i for Post8 Trials.	210

Table A5.13 Meaningful Changes in P _i for Post16 Trials.	210
Table A5.14 Meaningful Changes in P _{rev} for Post4 Trials.	211
Table A5.15 Meaningful Changes in P _{rev} for Post8 Trials.	211
Table A5.16 Meaningful Changes in P _{rev} for Post16 Trials.	212
Table A5.17 Metabolic Measures Showing Main Effects for Time.	212

List of Abbreviations

ADP	adenosine diphosphate
АТР	adenosine triphosphate
BP	bench press
ВРТ	bench press throw
BS	back squat
Ca ²⁺	calcium ion
сс	conditioning contractions
CMJ	counter movement jump
DJ	drop jump
ECC	excitation-contraction coupling
EMD	electromechanical delay
EMG	electromyography
EPSP	excitatory post-synaptic potentials
ES	effect size
F ₀	peak isometric force
FVP	force-velocity-power
GTO	golgi-tendon organ
H-reflex	Hoffman reflex
нс	hang cleans
HFF	high-frequency fatigue
JS	jump squat

LFF	low-frequency fatigue
MA	musculoarticular
МВ	medicine ball
MF	metabolic fatigue
MGL	gastrocnemius
МНС	myosin heavy chain
MLCK	myosin light chain kinase
MRLC	myosin regulatory light chains
ΜΤυ	muscle-tendon unit
MU	motor unit
MVC	maximal voluntary contraction
NMF	non-metabolic fatigue
PAD	post-activation depression
PAP	post-activation potentiation
pCa ²⁺	plasma ionized calcium
PS	power snatch
ΡΤΑ	peak torque angle
РТР	post-tetanic potentiation
RFD	rate of force development
RM	repetition maximum
RP	reflex potentiation
SEC	series elastic components
SJ	squat jump
SOL	soleus

SSC	stretch shortening cycle
SWC	smallest worthwhile change
TDC	top dead centre
L	tuck jump
ТР	twitch potentiation
тт	twitch torque
Vo	maximum unloaded shortening velocity
LΛ	vertical jump
VO ₂	oxygen consumption
VO _{2max}	maximal oxygen consumption