Copyright is owned by the Author of the thesis. Permission 1s given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced eisewhere without

the permission of the Author.

SADL

A SYMBOLIC ARCHITECTURE DESCRIPTION LANGUAGE

A Thesis Presented in Partial Fulfilment
of the requirements for the Degree of
Master of Arts in Computer Science

at Massey University

Thomas William Livingstone

1985

Abstract

This thesis develops a new language capable of specifying computer

architecture at the symbolic, or assembly language level.

The thesis first provides a representative sample of current, or
proposed, computer description languages and discusses four of the
languages and their merits with regard to the symbelic approach. Next,
a model is proposed of computer architecture at the level which is
visible to an exescuting sequence of instructions. This model is based
on the assembly language level of computer architecture. Next, the
Symbolic Architecture Description Language (SADL) is described.
Finally, Build, a LISP program which takes SADL architecture
descriptions and generates functions and data structures for use in

simulating architesctures, is described.

Acknowledgements

I would like to thank the following for their support and assistance

during this thesis:

Wola Simpson, for being my supervisor;

Paul Lyons, for his excellent criticisms of the manuscript;

The staff of the Massey University Computer Centre for their

cooperation.

1

Table of Contents

Introduction.ess e toserarsranrsarsersnsanasns . .1
1.1 Multi-level Architectures and Virtual Machines..ecvesacscrcsaasesd
1.2 Current Architecture Descripiion LanglageS.esescerrestsseseressad

1e2:e17 I8PSerinecaranns feseencsesnresarsraarsrsarrsarersrerensasaiO
1.2.2 The Vienna Deflnltlon Language. coeeeearescnensnans ceraneat
1.2+ LISPuweesnnsasnssnasanras rsestarr e teetrrratrerareenr e 29
124 PASCAL. tev et vt ntnsorancsranansas 1 o

1¢3 SummMaTy.eesnssenarss taressssesassasesrunatanironsonnannvonssnssd]
A Conceptual Model of Architecturescsievesssens D
2.1 A Model of Instruction Execution e isescrorirsvrvarsosovarensasd?
2.2 The Hegister Set Domain.c.veceeeas S he i rvae b et b et 45
2.5 The Instruction Set Domain....... Her e s s e Er Nt T et st et r e e 49
2,4 The Access Method DOmMBilNeece s veatveassersossearsvsnceensnna waaea BT
2.5 The Data Type Domain..ieveeserarronsananss B e
SADL - The Symbolic Architecture Description language....eieevses. b2
3.1 The Basics of the Language..... faenrsacainanesanvasrnsensnenn s 63
3.2 The Processer Descriptioneseeiciniieieriaiierinsriiernnenanaonss 68
3.2.1 The Register DomaiNessssetsnvsesnanrressasararnsanas san e 70
Z.2.1.1 The Array ClausSeievscvrvosreersnnns heesrerarareasT]

3.2.71.2 The Word ClausSe. s .eeverreancocarnoes saarrareresnan 74

3.2.1.3 The Mapping Clause.c.vranererareans T

3.2.2 The Access Method Domain...cvsensn reeaassasrensaersnsesB0
3.2.2.1 The Access Method DeSlepthH--...............-..81

3.2.2.2 The Access Method Class SectioD.icieviceisrornnseae 85

3.2.3 The Instruction Domain..eivecavses. O = 19)
Z.2.3.1 The Instruction StatementecesvevevscnscnnrsanseaasBT

3.2.3.2 The Asynchronous Instruction Sefeceeceeerenarasnes 90

5.2.3.3 The Synchronous Instruction Sef.eresvivvesriansnanss 93

5.5 The Executor Description..scvcesirierevennnennanas Crreresccasaan ag
B304 UsSing SADL.uevvanssarerssssnsssiessnsasarenassnsannennnns saeaen 100
Building Programs from SADL.«.i vt et ivrernrnoncranssaassnaeana N 102
4.1 Data SLrUCEUrES e rrerrarsnrssnascnnsrsssasassnns tarsreneasnresa103
4.1.1 The Register Domain..seesansesenn serrresereasetavanonns .. 105
4.1.2 The Access Method Domaine.reecacecarscavascrenansncnssenslOF
4.1.3 The Instruction Set domMaiN.ceecavsssensonossnsovasannesa 109

4.2 Constructing Tokens......u. e emrsrrrseastarer st a e anen s 111
4.3 Handling Symbolic HumberS..cvecreisvnorrersserasnsossnerascannasns 113
4.4 Building LISF functions and PROGs........... Gereararaana cerren 115
4.4.1 Converting Value Expressions £0 LISP.s.civaaiinaronesaenilb
4.4.1.1 The Valu® GrOUDs«vereossrareas e A)

4.4.2 The Destination Selectoris e iiisvssvrvtnsassesnsansnnsns 119
4.4.3% SADL statements.s.... S remeieaaraear et e et 121
2,4,.3.1 COBD ST T e suvaarerarenersronssasansansssnnas v 123

4.4.3.2 CODEM STMT+vvveunvensraneansens RO 174

4.4.3.3 WHILEﬂﬁTMT......................................126
4.4 SADL Instructions in LISP.iiieessnnrertsarescreansensres 127
4.5 The Access Method FunctioNeeevessesscvssnssarssnvesnsanaslz0
4.6 The Code Macro FunctioNesseveesorveorvssassssssossssnessl sl
4.7 The Executor FUnctionesssceeetiasencsasnnsosssnsnsaransos 1314
DL Operators as Functions......... treanteneriraens B I 4

0 Examplessisersas Cererrrerennarann virearaecens . 138

D ConCluSioNSeseerscsnsas f e it i s e s tarer e PR R Rt A s et et b ae 146
D el UMMAT Y e e useononseosensenssassasnsanstnsanstiosnanenns crreaas .. 146
5.2 The Realization of Design GoalSiesseieertrcssarcaans B K
5.7 Future DirectionS.ssvssesasasnessnssnnenorvane I A

Appendix 1..eerinennne the e b enarte e et e e I Y2

Appendix Zeeuu i irsraar ittt ettt terrecaaan 159

BibliographyessosasscaroassnsrssranosnarsassasnasarassassssssrrsrsaeslB8Y

Chapter 1 INTRODUCTION 1

1 Introduction

This thesis proposes a language for symbolically =specifying the
executien environment of assembly language programs. The assembly
language level of description was chosen as it is +the most abstract
level which 1is still capable of specifying +the instruction set
functionality of & computer. Higher level abstractions, such as
compilers and interpreters, ne¢ longer allow explicit access to the
physical machine state, while lower level descriptions have little

meaning to the software engineer.

Computer Design, once an area of individual artistic expression, is
becoming the result of systematic cooperaticn between the members of a
team, often a large team, frequently aided by auvtomated design tools.
Members of the design team must be able to communicate with each other,
and with their design +tools, without ambiguity, and to this end a
number of formal languages have been developed for the description of

computer systems.

It has become a %ruism that a computer system consists of a number of
layers, each describable in terms of a particular model. In this
thesis, we shall find the level described by the ISP (Instruction Set
FProcessor) model [391171] to be the most useful. A computer

architecture defined in terms eof this model would comprise:

Chapter 1 INTRODUCTION 2

(i) a set of registers,
(ii) a memory which contains the encoded instructions,
(iii) a set of functions which
(a) produce the effective address for obtaining and
storing the operands and
(b) specify the acticns required to implement the
instructions.
(iv) a finite state machine which defines the loading,
interpretation and execution of instructions defined for

the architecture.

There are two approaches to modelling an architecture at the ISP level.
The traditional method (adopted in the specification language ISPS
[Barb81]) is a mechanical view: the architecturs 1is viewed as a
structure consisting of registers and decoding functions which operate

on the machine code of the architecture.

The second approach is a symbolic view: it is derived from the
Assembly Language model of architecture. It ignores the mechanics of
encoding and decoding - the instruction is only ever represented in
symbolic form - and models the decode and execute cycle as a language

interpretaiicon cycle.

Why use the symbolic approach ?

t. It is the natural tool for software engineers.

A software engineer who programs an architecture directly (as

Chapter 1 INTRODUCTION 3

opposed to wusing a high level language) makes use of the symbolic
level and an Assembler. The costs of programming in machine code
versus assembly language and the functional equivalence of the two
means that machine code pregramming has been superceded by assembly
language programming, except possibly for some extremely

specialised applications.

It is a natural pedagogic tool.

Because people are familiar with the symbolic approach to
architecture, it 1s easier +to comprehend architectures when
expressed symbolically. This is important when attempting to learn
new architectures, when comparing twoe architectures or when

evaluating an architecture.

It allows direct simulation of the symbolic program.

The normal process when simulating the execution of programs on a
particular architecture is +to write the oprograms (normally in
assembly language), translate them into the machine code for the
target architecture and run them on a simulator which emulates the

instruction and register sets of the target machine.

Having the architecture specified symbolically bypasses the
translation phase as the assembly language program may be executed
directly by the simulator. This saves programmer time and
therefore saves money. Balanced against this is the increased cost
in processor time of executing an interpreted program rather than a

Eal

compiled progranm. Also, the symbolic tracing of instruction

Chapter 1 TNTRODUCTION 4

execution is simplified and protection mechanisms against faulty
Programs are easier %o install; for instance it would be
impossible for a running program to try executing data, an

occurrence common in out-of-control machine code programs.

4. It can fully specify the register set of an architecture, and
external lines may also be modelled indirectly as registers. The
symbolic approach allows the register set of an architecture to 1be
specified to the same detail 2as the mechanical approach to ISP
specification. Thus there is no expressive capability 1lest when

using the symbolic approach over the mechanical approach.

5. Fundamental tc¢ the symbolie approach is the fact that each machine
instruction has one equivalent symbolic instruction and that the
functionality ¢f both is the same. This is a widely recognised
view of pure assembly language (as opposed 1o macro-assembly

language).

Section 1.2 of chapter 1 examines four languages which are used, or
have been proposed for use in describing the instruction set processcer
level. Two of the languages, LISP and VDL, deal with instruction set
processors at the symbolic level while the other two languages, Pascal

and ISPS, dezl with the machine code level.

Chapter 2 proposes a model of computer architecture which is centred on
the view of an execufting program within 2 machine. The model is Thased

upon the stored program concept with a single execution unit and single

Chapter 1 INTRODUCTION 5

instruction and data streams; this excludes architectures based upon

array and vector processing as well as systolic architectures.

Chapter 3 defines both the syntax and semantics of the Symbolic

Architecture Description language (SADL) and shows the capabilities and

restrictions of the current version of the language.

Chapter 4 describes software which processes a description in SADL and
produces a set of data siructures and functions which may be used to
simalate the architecture when provided with an assembly language

program. It is an application intended to test the validity of SADL.

1.1 Multi-level Architectures and Virtual HMachines

One of the major concepts that has evolved in compuiing in the Ilast
fifteen years has 'heen the view of a computer system as a layered
hierarchy of abstract machines. At the top of the hierarchy are user
applications and at the bottom is the physical specification of the

electronic components which combine to form the hardware.

Each level may be viewed (more or less) as a complete architecture
independent of those levels 1in the hierarchy either above or below
it. This view is invaluable in simplifying the fask of designing or

analysing computer systems.

Chapter 1 INTRODUCTION 6

There are differing views as to what constitutes each layer, Dbut
Siewiorek, Bell and Newell [Bell?1,Siewiorek82] have proposed a
layering that suits +the author's purposes and is quite widely

recognised. I shall refer to this as the Bell model.

In the Bell model there are four main levels which are subdivided
intce sublevels. The main levels are: Circuit level, Logic level,

Program level, PMS level.

The only level of relevance to the software engineer is the program
level, because this 1level is broken down into the ISP {Instruction
Set Processor) sublevel, and the High Level Language sublevel which
is itself ©broken down intc Operating System, Run-time Systemn,

Application Routines and Applications 3ystems sublevels.

Chapter 1 INTRODUCTION 7

Example 1.1
___ !
PHMS !
___ !
Program ! High Level | Applications Systems |
! Language . !
} ! &pplications Routines |
! ' I
i | =TT T T e s e e I
i E Run-time System :
i 1 !
I [~ m s e m e i
i I Operatiﬁg System i
I ! 1
i ittt | e e e e — |
f Instruection I
! Set Processor {
___ |
Logic f
___ !
Circuit |

The Assembly Language sublevel fits into the hierarchical wview just
above the ISP sublevel and below the Operating System sublevel
{although Tanenbaum ETanenbaum76] views the assembler level as being

above the operating system level).

The reascns for placing Assembly Language at this point in the

hierarchy are these:

Chapter 1 INTRODUCTION 8

(1) In the abstraction process, information is hidden or
lost. Anything that may be specified by an Assembly
Language program may be specified in greater detail at
the ISP sublevel; this dindicates that the Assembly

level is an abstraction of the ISP sublevel.

(ii) Similarly, an Operating System is a composition of
concepts expressible in Assembly Lanzuage. Its
component subroutines, coroutines, and programs are
built up from assembler-level instructions, either

directly or {as in the case of UNIX and Burroughs' MNCP

which are written in high level languages) indirectly.

Where do compilers, which hypass the assembler level and directly
produce code at the ISP level, fit inte the model? Their mapping
from a particular level in the hierarchy of abstract machines +to
annther, lower level may Dbypass one or more levels. However the
numher of levels which a compiler bypasses does not invalidate the

hisrarchical structuring of abstract machines.

Chapter 1 INTRODUCTION 9

1.2 Current Architecture Description Languages

There currently exist a considerable number of languages for
describing computer architectures at various levels. Most of these
straddle the Register Transfer and the I3F levels. There seem to be
almost no generally recognised languages which approach the ISP level

from the language (or symbolic) direction.

Subrata Dasgupta [Dasgupt382] surveys a group of languages which he
calls Computer Design and Description Languages (or CDDLs). The
survey concentrates on ISP3, S*¥A and the CONLAN extensible language

systen.

Two points made by Dasgupta are significant. The first 1is that at
the time of writing (1982) CDDLs had not been generally accepted by
the computer design community. The second point is that the majority
of CDDLs that have been provosed have <fallen into +the Register
Transfer level of description. This is partly true of most of the
languages described here although they all have applicability at the
ISP level. Only LISP and VDL have the ability to specify

architecture at the symbolic level.

Chapter 1 INTRODUCTION 10

1.2.1 I3P3

ISPS is the single most influential 1language for specifying

processcr architecture in terms of +the instruction set and

registers.

When Bell and Newell first formuzlated their layered model of
abstract machine descriptions they developed a pedagogic language
with which they illustrated the instruction set processor model.
The language that they created was called ISP, the same name as the
level of abstract machine that was ©being described. ISP was a
descriptive tool rather than a formal language and thus suffered
from shortcomings which 1led +to a short period of evolution. The
resulting language was adopted for use in various applications
[Barb81] and has come t¢ be known as ISPE. In its most recent form
it was used by Bell, Newell and Siewiorek in the update of the

original Bell and ¥Newell text.

In ISPS an architecturs consists of collections of entities and
carriers the interfaces Ybetween which and behaviour of which are
described. An entity is a2 unit of hardware. A carrier dis a
storage location (register or memory) used for communicating

£

between entities. The interface describes the number and types of

carriers used to store and transmit information between entities.

Chapter 1 INTRODUCTION 1N

The behavioural aspects of entities are described by procedures

which specify the operations carried out by each entity.

A carrier is described by naming the carrier and specifying its

word dimension and array dimension.

Example 1.2 - M\Memory| 0:4095]<0:11>.

specifies a carrier named M with an alias Memory; the alias 1is
intended to document the meaning or usage of a carrier's name. The
square brackets indicate +that +the carrier is an array of cells
where the first cell is named O and the last cell is named 4095;
N.B. +the cell indices are names not numbers. The angle brackets
indicate the structure of the individual words to he 12 bits named

Oy 1, ovr , 11.

Procedures contain data, control operations, and 1local entities
which may %be of arbitrary complexity. Each procedure has
associated with it a carrier of the same name as the procedure and
with a structure specified by the procedure. This is the mechanism
for explicitly returning information from procedures; when a
procedure is invoked it performs 1its operations and the wvalue
returned from the ©procedure is accezsible from the carrier of the

Sdame name.

ISPS is designed to describe more than just the instruction set

processor view of the architecturs, 1t is able to describe

Chapter 1 INTRODUCTION 12

architecture from the logical level up to the ISP level. In this
respect ISPS has Ybeen significantly expanded in its purpose from

the original language ISP.

However, the following description of ISPS will deal only with

those aspects of the language that are used to describe instructien

set processors.

An ISPS description is broken into a series of sections of the

form:

*% gection.name ¥¥
{declaration>,
{declaration>,
¥ gection.name *¥
{declaration>,

{declaration>,

This grouping of sections is purely a deocumentation device and
section headings have no semantic content. Section names are
arbitrary names intended to convey information about the
declarations immediately following. A section is & 1list of

declarations separated by commas.

Chapter i INTRODUCTION 13

There are two types of declaration: the carrier declaration and
the procedure declaration - The carrier declaration has the form of
the memory declaration given previously with the additional feature
that a carrier may be associated {(as a synonym) with part of

another carrier:

Example 1.3 - The PDP-8 extended accumulator is defined thus

LAC <0:12,
I\Link<> = LACKO>,
ACMNAccumulator = LAC<1:12>

The expression <> indicates a single, unnamed Dbit. Notice that
there are three distinet declarations in the above example and that
the indentation is purely a typographical fool chosen to convey the
idea that +the second +two declarations are associated with the

first.

Example 1.4 - PDP-8 Page zero format:

P.0O\Page.Zero[0:127]<0: 11> Mf0:127]<0:11 >,

H

A.I\Auto.Index[0:7]<0:11> p.0[8:15]<0:11>

In this example the first declaration associates a carrier with a
part of the memory array (see Example 1.2) while the second
declaration associates another carrier with part of the first

carrier. This illustrates how carriers may be hierarchically

Chapter 1 INTRODUCTION

structured.

FProcedures are of the form:

procedure.name :=
BEGIN

{statements>

END

Statements may be grouped either sequentially or
sequential ordering is indicated by the

concurrent clustering is indicated by a semicolon { ";").

4 sequential group of statements:

<{statement group 1> NEXT

<{statement group 2> NEXT

A concurrent group of statements:

(statement 1>

{statement 2> ;

The statements separated by semicolons may execute concurrently

an asynchronous manner but all statements immediately preceding a

concurrently.

14

A

KELT while

in

Chapter 1 INTRODUCTION 15

NEXT must be completed before any statements following may begin

executing.

The following example is a complete ISPS function and 1illustrates

several aspects of the langunage.

Example 1.5 - PDP-8 effective address calculation:

eadd\effective.address<0: 11> :=

begin

Decode pb =>

begin
0 := eadd = '00000 @ pa, !page zero
1 1= eadd = last.pc<0:4> @ pa 'current page
end NEXT

if ib => lindirect bit
begin
if eadd<0:8> eqv #001 'auto index

=> M[eadd] = M[eadd] + 1 EEXT
eadd = M{eadd] tindirect addr.
End
End,

ib is the indirection bit; pb is the page bit.

The Decode operation is equivalent to the Pascal CASE statement.
The => +token serves as a delimiter for both the Decode and the

conditional constructs; In the former it delimits the carrier

Chapter 1 INTRODUCTION 16

being decoded (and is redundant), in the 1latter it is the
equivalent of then in Pascal. The := token delimits constants in
the Decode construct. The IF test is false if the expression being

tested resolves to czero. The operator @ 1is the concatenation

operator.

Note that esadd has a carrier component as part of its declaration.

A typical use of the carriers associated with procedures would be:

Example 1.6 - PDP-8 Increment and Skip if Zero instruection
BEGIN
M[eadd] = M{eadd ()] + 1 NEXT
IF M[eadd] eql O => PC = PC + 1

END
This instruction increments the addressed memory.

The effective address is compnted once Dby invoking the function
eadd() and from then on the value of the effective address is

avallable from the carrier eadd.

In BExample 1.5 the memory is accessed in an assignment statement
where both sides of the assignment refer to the carrier eadd not
the function eadd. One of the problems with ISPS is this ambiguity
as to whether the function is being dinveked or the associated

carrier is belng referenced.

Chapter 1 INTRODUCTION 17

Hote that procedures may have parameters, though this is not shown.

Other components of ISPS are:

logical operators: and or not xor egv

arithmetic operators: + - * / mod

relational operators: egl lss leg neg geq gtr tst

shift operators: sl10 sl1 sld slr sr0 sr! srd srr

mumber bases: ' (binary), # (octal), " (hexadecimal).

= is the logical assignment operator. Truncation or zero
extensicn is performed on the value on the right hand
side to fit the destination on the left hand side.

{= is the +transfer operator. Truncation or sign
extension is performed on the right hand side +to Tfit

the destination on the left.

The three ways of exiting a procedure invocation are leavs,

restart, and resume.

Leave entityname -
terminates the named entity. The only restriction is that
the statement must occur within the ¢ynamic scope
(activation) of the named entity.

resume entityname -
returns control to the specified entity.

restart entityname -~

terminates and reactivates the named entity (effectively a

Chapter 1 INTRODUCTION 18

combined leave and resume).

The arithmetic operators are modified in their function by re-

presentation modifiers. The following arithmetic representations

are supported:

Modifier Representation
{rc} Two's complement
{oc} One' complement
{SM} Signed magnitude
{US} Unsigned magnitude

The usage is:

Mleadd] = Mleadd()] +ism} 1

The modifier affects the arithmetic operator immediately preceding

it.

The control clauses are specified by IF, REPEAT and DECODE.

IF <{expression> => <{stmt>

If the expression does not evaluate to zero then <stmt> is

invoked.

Chapter 1 INTRODUCTION 19

REPEAT <stmt>

The statement is continously executed. If it is fo terminate then
one of the control transfer statements LEAVE, RESTART, RESUME must

be present within <{stmtd>.

DECODE <ecarrier> => <{selector block>

This statement evaluates the contents of <carrier> and executes

the appropriately labelled branch of the <{selector block>.

ISPS is a flexible language with considerable expressive power
both for instructicn set processor descriptions and for the lower

levels of the abstract machine hierarchy.

I3PS has been highly successful and has heen applied to:

The evaluvation and certification of instruction set processors.
VL3I design automation.

Automatic generation of assemblers.

Production Quality Compiler Compilers.

Symbolic execution of ISPS descriptions.

Functional faulft simulation.

Despite this wide application ISPS is not perfect. Dasgupta lists
several drawbacks of the language, two of which are relevant to

this thesis.

Chapter 1 INTRODUCTION 20

The first is stylistic. ISP5 employs familiar symbols in an
unfamiliar manner. The examples given are := and ;. The firs{y is
normally used as the assignment operator whereas ISPS uses it to
delimit the mnames of entities or labels. The ; 1is almost

universally used to denote sequential ordering but in ISPS it is

used for the opposite purpose of specifying concurrent execution.

The second drawback is g more limiting one - I3PS has few data
types. Dasgupta identifies the "register" and the "memory" as the
only data +types supported by ISPS. The auvthor feels that a type
"bit", the one indivisible unit of storage should be included too.
There is no facility in ISP3 for producing composite data
structures from collections made up of the base types as in Pascal
and this doces tend to limit the ease with which complex register

structures may be described.

The main limitation of I3P3, in the context of <this thesis, is
that ISPS has no facilities for integrating the symbolic Assembly
Language level into the ISPS description. The essence of ISPS is
to describe +the machine code view of the ISP model. The lack of
Assembly Language constructs means that an Assembly Language
program is unable to be represented within ISPS withcut extensions

to the language.

Because ISPS represents a machine code description, the extension
to ISP3 would need to be a complete description driven Assembler.

This is a non-trivial exercise. There are problems of instruction

Chapter 1 INTRODUCTION 21

naning, access methods and their assembler formats, as well the
generality necessary to support a wide variety of architectures
that indicate it 1is easier +to ©build the assenbly language
definition and then derive the ISPS description from it. Attempts
at standardising even Assembly Language mnemonics have not
produced entirely satisfactory results [Fischer79,Dist1er82];

standardisation of access methods would be much more difficult.

1.2.2 The Vienna Definition language

The Vienna Definition Language {VDL) was originally designed to
specify the syntax and the semantics of PL/1. It is a language
“for defining interpreters rather than compilers” [Wegner72].
LISP, and in particular +the technique of language definition
illustrated by the APPLY function, was an important influence in
determining the approach +to language definition of VDL. This is

noticeable when examining VDL expression trees.

VDL has subsequently been applied to the specification of other
languages such as Algol-68 but has not generally been widely
applied. One author [Spitzen76) derides the VDL description of

PL/1 as being "lengthy, unintuitive, and itself a program.'

Chapter 1 INTRODUCTION 22

Another, [Lee?}], describes the wuse of VDL as a +tool for
describing a machine at varicus levels of abstraction down to the
register transfer level. The architecture of the example given in
Lee's paper was too limited to fully evaluate the applicability of
VDL to describing arbitrary computer systems but there is

certainly reason +to believe that VDL dces indeed have the power.

The stumbling block appears to be the general lack of acceptance
of VDL and the “unintuitive” structure of the language. This
structure would probably not be so much of a problem to people who
have extensive grounding in Language Theory. It is also possible
that VDL has Dbeen ignored not because of inherent limitations of
the language itself but rather because it is associated with the

generally unsuccessful languages PL/1 and Algol 68.

In VDL an architecture is modelled as a finite state machine with
a set of states containing information on the data being
manipulated (registers) and +the instructions which define the
transformations to he executed over the data. A function will
interpret and execute the instructions in the current state of the

machine.

Within the definitional machine (the VDL program defining the
target architecture) +there is a component known as the "control
stack™. This stack contains the set of instructions which are
awaiting execution and which, when executed, model the exscution

of instructions in the target architecture. The "control stack”

Chapter 1 INTRODUCTION 23

may be viewed as a tree in which +the nodes are definitional

instructions.

Only instructions at the leaf nodes may be executed; this means
that an instruction at 2 given node in the tree is inhibited from
execution until all its offspring instructions have been executed

(and therefore removed).

Definjitional instructions are executed either as macro-expansions
or as state~modifiers. In a macro-expansion +the instruction
replaces itself in the control stack (tree}) by & subtree, thus
modelling the +transition in definitional level or the sequencing
of cperation. State modifiers alter the state of the machine
(other than +the control stack), thus modelling operations upon

registers.

A definitional insftruction may contain several definitions Dbut

only one is applicable at any one time.

Chapter 1 INTRODUCTION 24

The general form of a definitional instruction is:

instr{qt, g2, «+«s ,qn) =

pt -» groupl

pm -> groupm

pi+..pm are predicate expressions that select alternative actions

(groupt...groupm). gl...gn are parameters that may occur in pi or

groupi and that are replaced by values before the instructicn is
executed. The execution of the instruction causes the current
state to be transformed by the action groupi corresponding to the

firgt true predicate pi.

Where a group is a macre-expansion, the notation shows the set of
instructions which replace the instruction being executed. The
form which is used indicates the sfructural relations between the
instructions.
- indentation indicates a lower level in the tree.
- comma {",") indicates continuation of a level.
- semi-colon (";") indicates completion of a level except
where the instruction that the semi-colon follows is the
last in the macro-expansion in which case it is

unnecessary.

Chapter 1 IHTRODUCTION 25

Example 1.7

inst-1;
inst-23
inst-5;

inst-4

The order of execution is from the leaf node (inst-4) to the root

node {inst-1).

Exanple 1.8

inst-1:
inst-2,
inst-3,

inst-4

Instructions at the same level are executed asynchronously, =so
inst-2, inst-3, 1inst-4 will each execute independently but inst-?
will not be able to execute until all of +the other instructions

have completed.

Normally, the control tree structure is represented linearly using

braces to indicate subtrees:

Chapter 1 INTRODUCTION 26

Example 1.9

inst-1;
inst-2,
inst-3;
inst-4,

inst-5

is equivalent to:

{inst-1 {inst-2 inst-3 {inst-4 inst-5} } }

State-modifying definition groups specify changes to the state of

the definitional machine. Each group consists of a set of

selector : value pairs. 3Selectors represent states in the machine

and the values are functions with parameters. A typical state

modifying instruction would he:

pc_to_mar =

s-mar : s-pc{ E)

which means "replace the contents of the s-mar component of the

state E by the contents of the s-pc component of the state E.

Tec overcome preblems of +timing with +the pairs (which are
asynchronous) the new state is defined to be a copy of the old

state rather than a modification of it.

Chapter 1 INTRODUCTICH 27

Example 1.10 - 3-bit rotate

shift =
bit-O.gs-acec : bit-1.s-acc(B)}
bit-1.s-ace : bit-2.s-acc(E)
bit-2.s-acc : bit-0.s-acc(E)

{ "." means component of)

If the new state were not defined to be a copy of the o0ld state
then the above instruction group would be meaningless because the
original value of one of the bit components must be 1lost, there
being no guarantee that all operations will {(or can) occur at the

same instant.

In [Lee73] a simple computer architecture (the "Blue Machine") is
described which 1is similar to that of a FPDP-8. Its state may be

defined by the predicates:

Chapter 1 INTRODUCTION 28

Example 1.11

is-BE = { <s-mem : is-memory>,
{s~mbr : is~word>,
<g~acc : { {(s~link : is-bit>,
<s-body : is-word>) >,
(s~mar : (<s-ma : is-word-address),

{gs-pa : is-page-address>) >,

where each of the pairs specifies the name of the branch on which
the component is located and the structure of the component. The
above example describes the architecture at the register transfer

level.

is-word = ({ <bit(i) : is~bit> | O <=1 <=111)

defines a stracture composed of a set of pairs, the object of each
of which is a bit and the selector of which is the form bit{i)
where the value of i is in the range {O,11]. This effectively

defines a 12-bit word.

This explanation cannot do Jjustice to the power of VDL and is only
intended to impart a feeling for the way that VDL may be applied

to architecture description.

Chapter 1 INTRODUCTION 29

1.2.% LISP

Lisp has been put forward as a langusge suitable for specifying

computer instruction sets [Cragon83]. It is stated that the LISP
envirenment has the ability fo describe components of the
architecture, such as regiéters, operations and control,
symbolically with the Tbenefit of ©being able to edit the
architecture using the interactive editor available as part of the
LISP environment. The example architecture given in Cragon's
paper indicates that +this is so, but the architecture being

modelled is reasonably simple.

The basis of the argument is that the functionality of the

instructions may he directly encoded using LISP functions.

Example 1.12 - for the RISC~1 instruction: ADD BRS,52,RD

the defined operation is : RD <- RS + 32

this may be encoded in LISF as

(DEFUN ADD (RS S2 DEST)
(SETQ RD (+ RS S2}) RD <~ RS + 52
(STORE (REG (EARD DEST)) RD) store RD

(SETQ PC {ADD1 PC)) advance Program Counter

Chapter 1 INTRODUCTION 30

The RISC architecture is described in [PattersonBZ].

The operations specified (such as addition, subtraction and the

logical operators) are performed using the operators available

within MACLISP. The implementation restricts the wordlength of
the architecture being modelled to 1less +than the wordlength

supported by the LISP environment.

Memory and array registers are defined by declaring them to be

LISP arrays.

Example 1.13

(ARRAY MEM T (EXPT 2 16})

{ARRAY REG T 138)

The T indicates <that each element may contain an arbitrary

s-expression (list).

Writes to memory are accomplished by:

{STORE (MEHM EA) X)

where A is the data and FA is the effective address.

Chapter 1 INTRODUCTION 21

A geries of functions specifies the control operations of the

architecture; The assembly language format (contents of MEM) is:

(OP SCC DEST SOURCE1 IMM SOURCEZ2)

0P is the opcode mnemonic;

SCC is the "set condition codes" enable bi%;

DEST is the destination register address;

SOURCE1 is the first source operand register address;

IMM indicates whether or not the SOURCE2 field is a register

address or constant value.

The functions:

(DEFUN IFS (PC) ...) - loads the instruction register with the
symbolic instruction located 1in the memory location

pointer to by the program counter.

(DEFUN DECODE (IR) ...) - extracts the values from +the field

entries for the instruction.

(DEFUN DISPATCH () ...) -~ This is a single case statement which
invokes a different function for each instructiom ¢f +the

architscture.

(DEFUN SET-PSW (RD) ...) - A two bit program status word was

defined in the article with this function being used to

Chapter 1 INTRODUCTION 32

set the values. The model of the architecture is
dependent for its informaticn on the fact that the LISP
precision is greater than the precision of the destination
register in the target architecture as the psw is modified
separately from, and after, each instruction execution.
This could neot apply te a two, or less, operand

architecture as information would be lost.

The function RUN emulates the finite state machine which causes
the initial status of the machine to be set up and the IFS5,
DECODE, DISPATCH loop to be continucusly executed until a STOP

instruction is encountered.

The result is a specification of the ISP for RISC-! which is
directly executable within a LISP environment and so may be

immediately evaluated and modified in an iterative manner.

This solution appears to be an ad-hoc one. It has a aumber of
limitations, some of which are not mentioned in the paper. The

limitaticons are:

i. The RISC architecture 1is not +typical of computer
architectures as the register structure, the effective
address calculations, and the operations performed by
the instructions are unusually simple; the RISC-1 is
only slightly more complex +than a Hotorola 6800 or

Intel 8085 microprocessor.

Chapter 1

INTRODUCTION 33

Using the arithmetic precision of MACLISP limits the

architectures which may be specified. Architectures
with words longer than 32 bits may not be specified
using the numeric precision available in MACLISP.
This eliminates the CDC 6600 and +%the Burroughs 6000

family, for example.

The use of LI3P arrays for defining register arrays
would cause problems in specification. This 1is
admitted in the paper where a 64 Kword subset of the
32 bit address space is used because of MACLISP's
inability to support arrays larger than 64 Kwords. A
sparse matrix implementation could be one approach to

solving this problem.

The assembler format is not properly defimed. There

is no mapping from the assembly language format shown
in the instructicn specification table to the
representation stored in the memory registers. 4
front-end would be reaquired to take assemhly language
statements and extract the operands {from text
indicating the effective address calculation method)

that are stored in the memory word.

411 instructions fit within a single word; this 1is
increasingly unrepresentative of modern computer

architectures where the number of operands varies from

Chapter 1

INTRODUCTION 34

instruction to instruction. Processors which would be
unable to he defined because of this limitation
include most microprocessors and some minicomputers,

such as the Prime 750.

LISP is not an intuitive language for specifying
instructicn set precessors. It is possible to specify
very similar architectures using completely different
specification functions. The converse may alse Dbe

true.

The reasons for this are twofold: first is that LISP
is not one single language buf a group of dialects,
each with their own peculiarities; specifications
written in LISP would have no hope of being portable.
Second is that LISP is a general purpose language with
functional redundancy built into it; in different
dialects of LISP there are three forms of choice
function (COND, IF, CASE)}, a similar number of loop
functions, and wvariocus methods of extracting items
from lists and performing assignments. Special
purpose languages, such as ISPS, have the bepnefit of
being targeted at a specific applicaticn and being

able to eliminate the redundancy in LISPF.

If LISP is to be used as a specification language then the

following aspects of ifs use should be standardised:

Chapter ! INTRODUCTION %5

1. A non-redundant subset of LISP functiomns to be used
when specifying an architecture.

2. The register specification technigue (LISP arrays or
sparse arrays).

2. The calculation of effective addresses.

4. The numeric precision of arithmetic and logic

operations.

The final points made in [Cragon83] are that +the functional
specification in LISP may %be expanded in detail as the model
descends through the levels of abstract machine description. LISP
shares this feature in common with VDL and as such has much +to
recommend its use as a specification langnage. It is al=sc a
significantly more flexible language for describing architectures

than the traditional approaches such as ISPS and Pascal.

Even if the drawbacks of LISP were removed, the author feels that
LISF is not an attractive description tool Decause of its visual
style and textual density; people who are not used to LISP
notation would find it an impossibly obscure way of specifying an

architecture.

Chapter ! INTRODUCTION 36

1.2.4 PASCAL

[WakerlySO] has suggested that the Pascal programming language,
with some extensions, could ©be suitable for specifying computer
instruction sets and points out that, although the extended Pascal
has no more power or functionality than ISPS, it is a more
familiar tc0l and g0 is more useful in teaching situaticns. The

extensions are the following:

Numbers: wunsigned binary, octal and hexadecimal numbers are

recognised.

Data types: the data type BIT has been added to the language.

Arrays: Pascal has been extended to allow for subarrays, defined
as "an ordered, contiguous subset of the array" to be
referenced. Subarrays are restricted to one dimensional

ATTays.

has been added. It

njnu
i

Operavors: the concatenation operator
produces a bit array the length of which is the sum of the
lengths of +the arrays that have been concatenated. The
addition ("+") and subtraction ("-") operators have been
extended to perform +two's complement arithmetic on bit

arrays.

Chapter 1

INTRODUCTION 37

Built-in Functions: The following standard functions have been

added to the language -

BINT - converts a bit array inte an unsigned integer.

BITS -~ converts a non-negative integer into a bit array
of specified length.

BCOM - complements the elements of a bit array.

BSHL - performs a left shift on the elements of a bit
array.

BSHR - performs a right shift.

BAND - performs a logical AND on the elements of two Tbit
arrays of the same length.

BOR - performs a logical OR on two bit arrays.

BICR - performs the exclusive-0R on the two arrays.

BADD - converts two bit arrays to unsigned integers and

performs an unsigned addition upon them.

Type conversion: The elements of an expression with a mixture of

bit arrays, integers and constants are converted to bit
arrays before bheing evaluated. For assignment of a bit
array to an integer, the bit array 1is converted %o an
integer before being assigned. For a&assignment of an
integer te a bit array, the integer is converted to a Dit

array before being assigned.

In many respects Pascal is a good language for specifying ISP's.

It is

a mainstream language well enough known not te cause pesople

Chapter 1 INTRODUCTION 38

too much trouble in comprehending descriptions. It has a rich set
of data types and strucitures capable of expressing complex machine
states. It is capable of structural abstraction with its TYPE
facility and i%t is capable of defining functional behaviour of

arbitrary complexity.

The language is reasonably compact. A fully functional
specification of the PDP-8 architecture was 144 lines of Pascal
code [WakerlySO] versus 175 lines of ISPS code [Siewiorek82] 50
the two are approximately equal in information density, the

difference being attributable to differing coding styles.

The limitations of Pascal are mainly those ones designed into it
by Nicklaus Wirth; its lack of flexibility regarding data type
coercion, its 1lack of string handling facilities and its

limitations with regard to inpuf and output.

A mere important flaw with the proposed extensions as they stand
{for the purposes of this thesis) is that there is no facility for
tying Assembly Language descripiions into the model of the
architecture. Pascal is not a good language for performing that
function largely ©because of its 1lack of string manipulation

capabilities.

Pascal is intended to describe the ISP level only although, 1like

ISPS, it is able to express lower aspects of the architecture.

Chapter 1 INTRODUCTION 39

Architectures which may be modelled are limited by the arithmetic
precision and wordlength of the host architecture. In the paper
this iz defined to be 64 bits or greater and as such would be
unlikely to limit the range of architectures able to be described

by the language.

Like LISP, +the extended Pascal computer description may be
directly executed and evaluated, but unlike LISP it needs to go
through a translation process first. Also unlike Cragon's LISP
appreoach the extended Pascal system works purely at the ISF level
and so an assembly language program must also go through a process
of translation to turn it into a bit stream which is then leoaded

into the appropriate registers before execution.

In the description of the PDP-S8 architecture given in [WakerlySO]
the states of +the machine are represented by variables while the

behavioural aspects are represented by procedures and functions:

Chapter 1 INTRODUCTION 40

Example 1.14 - The PDP-8 Effective Address calculation procedure.

{Calculate Bffective Address Registerl
PROCEDURE CalcEAR;
BEGIN
IF IR {pb] = O
THEN {page O}
EAR := 0 [0::4] ! IR [pa]
EL3E {current page}

BAR := lastPC [0::4] | IR [pa];

IF IR [ib] = 1 THEN {indirect address!)
BEGIN
IF BAR [0::8] = 1 THEN

MEM [EAR] := MEM [EAR] + 1; {auto increment}
EAR := MEM [EAR];
END:

END;

4 comparison of this example with Example 1.5 shows immediately

the similarities and differences between extended Pascal and ISPS.

The major value of extended Pascal is in the +wealth of data

structures available and the resulting structural complexity that

may be described along with the struetural abstraction capability

available with the TYPE facility. These itwo facilities are shared
P

only with the programming language C. C has the additional

advantages, though, of having flexible string handling facilities.

Chapter 1 INTRODUCTION LA

P1/1 has more flexible string handling facilities and better I/0

facilities than Pascal but lacks the data abstrasction capability.

1.7 Summary

In this chapter I have stated the goal of this thesis and have
described the way in which some existing languages contribute to
this goal. FEach language has been shown to be deficient in some
particular way for our opurposes: ISPS and Pascal are mechanistic
languages without the language structures %o support symbolic
specification; VDL, +though a powerful symbolic language for
specifying interpreters, is not widely known and has a structure
which is widely dissimilar to the mainstream programming languages;
LISP is less powerful than VDL ©but has a similar functiomality
although the style is again sufficiently dissimilar to mainstiream

pregramming languages to bhe difficult to learn.

The goal of the thesis has been stated as being an attempt to devise
a language which allows the symbolic definition of arbitrary ISP
architectures. HNome of the langnuages described present a ccherent
model of symbolic ISPs although VDL comes close by subsuming the ISP

model into its general medel of language interpreters.

Chapter 2 THE SYMBOLIC MODEL 42

2 A Conceptual Model of Architecture

The medel as formulated is intended to describe the parts of a computer
that a running program “sees" at the level of symbolic machine
instructions (the "assembler" level). There is & one for one
correspondence between instruections at this level and the instructions
executed by the physical machine but the detail of how the instructions
are enceoded i1s agvoided and so the model is significantly simpler than
other descriptive models such as ISPS. This wview of architecture is

oriented toward the software engineer.

In the conceptual model an architecture consists of four domains:

the instruction set domain
the register set domain
the access method domain

the data types domain

4 domain 1is an autonomous component of an architecture; the name is
drawn from an analogy with a four dimensional matrix where the

instruction set, register set ete. =cach make up a single domain.

The execution of an instruction involves making changes to the register
domain (also called the state space). Instruction execution starts
from a known state in the register domain and continues until ancther

position is reached which inhibits execution. Each domain is discussed

Chapter 2 THE SYMBOLIC MODEL 43

separately below, as is the model of instruction loading and executian.

2.1 A Model of Instruction Execution

Fundamental to our model of execution is the concept that an
"instruction execution ecycle" is indivisible. This is actually the
case in many computers, especially microprocessors, but not din some

more complex computers, such as those with virtual memory.

The reason for this is that the model is sequential: +the instruction
cycle consists of loading the next instruction o be executed,
checking the asynchronous instructions (interrupts ete.) and
executing any which are wvalid, then executing the synchronous
instruction which has been 1loaded. During execution of the

instruction, no other instruction may be active.

There is no facility at all in the model for describing concurrent
processing. All instructions are processed segquentially in the
model, and the primitive operations within each instruction are
executed sequentially. If concurrency does exist in the real

architecture it may be converted to an equivalent sequential model.

The architecture starts in some arbitrary but known state in which

the Instruction Pointer points at the first instruction. The

Chapter 2 THE SYMBOLIC MODEL 44

instruction is interpreted and executed and the Instruction Pointer
is modified +to point +to the next instruction to be executed. This
continues until an instruction is executed which inhibits further
interpretation and execution of instructions. Before the execution
of each synchronous instruction any pending asynchronous instructions

are interpreted and executed.

The above requires there to be a special register designated as the
Instruction Pointer. There is only one of these at any point in

time, although any register may act as the Instruction Pointer.

In an orthogenal model the instruction sequencing must hbe described
in terms of access methods and register sets. Instruction sequencing
is the specification of the method and order of accessing of

ingtructions within the register space.

Instructions may explicitly modify the Instruction Pointer and thus
cause changes 1in the normal flow of contrel. If the change in the
flow of contrel is to bte temporary (as in the case of a subroutine
call followed by a return instruction) the current instruction must
have available the address of the next instruction before the current
instruction is executed. This is achieved in I3FS by assigning the
value of the Instruction DPointer (PC) to a register called LAST.PC
immediately before modifying +the instruction pointer: in this

instance the true instruction pointer is LAST.PC not PC .

Chapter 2 THE SYMBOLIC MODEL 45

2.2 The Register Set Domain

The register set domain represents the state space of an
architecture. All locations explicitly addressable by a program plus
those registers regquired to model external events or implicit

internal events are contained in this domain.

The Register is the indivisible addressable unit for the

architecture. A register has a single dimension of word size.

A Register Array is a contigucus group of registers with a generic

name. The whole register array may be referred to by name alone
while individual registers within the array may be referred to by the
name followed by an expression yielding a positive index into the

array. Hegisters are & special case of the register array.

In the model there is no distinction made between register arrays
that are contained within the processor and those external to it.
This adds versatility when considering non-Von Neumann architectures
without adding undue complexity to the simpler architectures. This
is because of the increased flexibility in such things as addressing

and instruction location.

Chapter 2

Example

It is

THE SYMBOLIC MODEL 46

2.1

The Intel 8051 microprocessor has three distinet address
spaces - the BROM, on-chip RAM, and off-chip RAM. The same
address may refer to any one of +the three address spaces
depending upon the value of a selectien register; a program
may be located in any or all of these address spaces. It is
in this sort of architecture <that the distinction between
on—chip register arrays and ¢ff-chip register arrays is shown

to be invalid.

convenient to divide the register domain up into three

organisational classes:

- The "explicit" register array which is specified in the
manufacturer's data sheets and is explicitly addressable by
instructions. This is the programmable state space of the

architecture.

- The "impliecit"™ register array which is used by
instructions though not specified in the manufacturer's
data. Impliecit register arrays are used to model state
changes vhich are not part ¢f the explicit register set.

An example of ifs use is to model external interrupis.

Chapter 2 THE SYMBOLIC MCDEL 47

- The "referred" register array which provides a mechanism
for reerdering the explicit and implicit register arrays
into logical groups for addressing PUrpOSES. The
specification of <the mapping of referred register arrays
onto the physical state space should be in terms of access
method expressions in order +to maintain flexibility.
Referred register arrays complete the modelling of a

computer's state space.

No distinction need be made in the model between any of the register
classes. In the model they cc-exist and operate in the same manner;
their membership o¢f an Individual <¢lass 1is +transparent to the
operation of instructions. Data may be moved from any register to
any other register as 1long as the normal register transfer

restrictions are adhered to.

When data is transferred to any register i1t will alse be implicitly
transferred to all other registers which map ontc the target
register. This is an important point To remember during any

implementation of the model.

A1l register arrays may be described in terms of two dimensions:

- word size - this describes the width of individual
registers in ©bits. This size may be a bit count or it
could specify the range of selectable bits within the word

thus giving an dimplicit ordering to the %bits 1in the

Chapter 2 THE SYMBOLIC MODEL 48

register (indicating whether the most significant bit is

the right-most or left-most bit).

- array size - this describes the number of registers in the
register array. Again, the array size may be a size

indicator or an address range indicator.

The word size dimension is distinct from the array size dimension in
that the ordering of the bits contains an implicit ranking of
impertance with the largest numbered bit being defined as the most

significant.

In addition, it is possible for register arrays to overlap. If this

is the case then the intersection must be specified.

The model requires that any intersection between two register arrays
must be complete: one must be a subset of the other. It is partly

for this reason that referred register arrays are necessary.

Because there is n¢ resiriction on the number of registers which may
refer to the same physical location, the partial intersection of two
register arrays may be specified by making them both be semi-~disjoint
subsets of a third {referred) register array. This enables the model

of regisfer intersection to be implemented without undue complexity.

Chapter 2 THE SYMBOLIC MODEL 49

Implicit registers may be treated as real registers; they may often
reflect a real register in +the internal structure of the
architecture. They are needed because there are state transitions in
an architecture which are not reflected directly in the explicit
register domain, but which affect the operation of the architecture

and so must be modelled.

The register set domain is probably the least complex domain of the

symbelic instruction set processor model.

2.3 The Instruction Set Domain

An instruction is a specification of the way in which the state space
is to be modified. This specification is normally in the form of

assignment coperations with either unary or binary operators
Example 2.2

assignment R[n] <{- R[n-1]

unary operator H[n] <- NOT R[n]

binary op. R[n] <= R[n] -1

The right hand side of the assignment is an expresgion which yields a

value; there 1is no linit on the complexity of the expression. The

Chapter 2 THE SYMBOLIC MODEL 50

left hand side must be a register or the concatenation of several
registers. If more than one operation is performed by the
instruction then each operation is expressed individuaslly with the

separate operations forming a segquential list:

Example 2.3 - Z8000 LDD instruction

MEM | R[n]] <- MEM [R[m] J;
R[n] <- R[na] - 2 ;
Rlm] <~ R[m] - 2 ;

Rlo] <~ Rlo] - 1

-y

0 <~ {(Rlo] =0)

As there is no facility in +the model for expressing concurrent
operations those operations which are concurrent must be converted to

a sequential model before being expressed.

Bxample 2.4 - 8085 exchange instruction:

xchg HL <{-> DE

To model this segquentiazlly it is necessary to introduce a new

register:

TEHP <- HL ;
HL <- DE ;

DE <~ TEMP

Chapter 2 THE SYMBOLIC MODEL 51

There are two c¢lasses of instruction; they have been named

synchronous and asynchronous.
A synchronous instruction occupies register space, is located by the
Instruction Pointer and is interpreted and executed. It is the

programmable component of an architecture.

An asynchronous instruction dees not occupy register space; it 1is

not dependent on being selected by the Imstruction Pointer before
being executed but 1is event driven. It is associated with an
instantiation expression {a boolean expression generally invelving a
value in a ceontrol register) and is executed when that expression
becomes true. It is generally limited +to executing before the
interpretation and execution of a synchronmous instruction, although
in some architectures some asynchronous instructions are able to
break in on an executing instruction. Interrupts and ftraps are

agsynchronous instructions.

Before the interpretation of any synchronous instruction all pending
asynchronous instructions must be executed. An asynchronous
instruction is pending when its instantiation expression is true.
Very cften registers associated with asynchronous instructions and
tneir instantiation expressions are not listed in the manufacturer's
data; they may be implicit registers needed to satisfy the

requirements of the model.

Chapter 2 THE SYMBOLIC MODEL 52

Asynchronous instructicns often cause a2 temporary transfer of control
and so they must be able +to store the location of the next
instruction (i.e. the Instruction Pointer) in order %o return
control to the original instruction sequence. This is why <they are
defined to occur before the next synchronous instruction. If this
condition did not apply then it would be impossible for asynchronous
instructions {such as an INT instruction) to alter the Instruction

Pointer in a controlled manner to cocrdinate program execution.

In the event of more than one instantiation expression becoming true
at the same time, the model is indeterminate. For this reason each
asynchronous instruction must have a priority associated with it.
The priority ordering may be expliecitly encoded in the instantiation
expression or it may be implieit in the ordering of the asynchronous

instructions.

In any implementation of the above model of instructions the

following components would be essential:

-~ a name for the instruction

- a description of the operations performed

In addition synchronous instructions regquire the following:

- a list of the access method combinations permitted (every

element in the list would contain an access method name for

each variable in the instruction)

Chapter 2 THE SYMBOLIC MODEL 53

- a list of data type combinations permitted
- An instruction template which describes how the
instruction appears within the program text and 1lists the

operands associated with it

Asynchronous operations require:

- An instantiation expression description

Depending on the needs of the implementation a way of distinguishing
between synchronous and asynchronous instructions is necessary; the
exact mechanism is not pertinent to the discussion of the model but

rather to the language used to implement the model.

All operations performed by the instructions are specified by a small
group of primitive operators from which more complex operations mnay

be built. These operations are as follove:

addition + and AND
subtraction - QT CR
multiplication * not NoT
division / concatenation ||
modulus MOD exponentiation *¥
assignment {= exclusive or I0R
left shift LSH right shift RSH

sign extension EXT

Chapter 2 THE SYMBOLIC MODEL 54

Note that the problem of differing data types has not been resolved.
According to the medel all data type information is contained within
the data type domain but common experience with the above operators

indicates that they are used only with specific data types.

A distinction needs %o be made between operand data types within the

model and data types associated with the primitive operators.

The primitive operators interpret a particular wvalue differently
depending on whether they are logical or arithmetic operators. All
operators treat operands as vector values (the values are pure binary
magnitude values with no sign component) except for the subtraction

operator { - } which treats operands as two's complement numbers.

The only operator which causes the state space to be modified is the
assignment operator (<=). 411 other operators are functional;
they return a value which is a function of the operator as aprlied to

the operands.

In concatenation, two or meore registers of 1n bits are logically
concatenated along the word boundary to produce a éingle register of
n times m bits where m is the number of registers being concatenated.
There is no requirement that any of the registers being concatenated
be of the same word size but all register arrays must have the same
array size. Thus two register arrays, one eight bits by four words
and the other sixteen bits by four words may be successfully

concatenated to form a single register array of twenty-four bdits by

Chapter 2 THE SYMBOLIC MODEL 55

four words.

The left shift operator propagates each bit in a register one
position to the left. The original value of the left-most bit is

lost and the value of the right-most bit remains unchanged.

With right shift each bit is simultaneously copied to the next bit to
the right. The left-most bit remains unaltered and the original

value of the right-most bit is lost.

Both left and right shifts are independent of the most significant
bit polarity of the register. Left and right shift are unary

operators.

Assignment is possible between registers of differing sizes. When
the assignment 1is necessary between two different length locations
then the value held in the source register is either truncated or
extended as may be required to match exactly the size of the target
register. The fruncation or extension is with respect of the most

significant bit.

Assignment recognises vector values only, so if the source register
must be extended it will be zerc extended. The EXT operator extends
the most significant bit of the socurce register or expression to an
arbitrarily long wordsize which is then truncated tﬁ fit into the

target register.

Chapter 2 THE SYMBOLIC MODEL

Example 2.5

ACCA is an B bit register, ACCX is a 16 bit register:

after ACCA <~ &10001011;

ACCK <- ACCA

ACCX will contain &Q00Q00C0010001011

after ACCA <~ &10001011;

ACCE <- ext ACCA

ACCX will contain &1111111110001011

after ACCA <- &00001011;

ACCX <{- ext ACCA

ACCX will contain &00000000000C1011

56

Chapter 2 THE SYMBOLIC MODEL ST

2.4 The Access Method Domain

When an instruction is interpreted and executed it may have variable
operands. If so then there must exist an access method for

specifying how each actual operand value is derived from the variable

selector.

Bach access method description contains an access method expression

which indicates the transformations required to obtain the operands.
The expression +tree consists of register specifiers, constants,

parameter substitutes and basic operators.

A register specifier locates an individuzl element of a particular

register array.

Because the instruction opefands are variables which are assigned
specific values in a program, actual values must be substituted for
the formal parameters of each iﬁstruction occurring within a program.
Parameter substitutes are the formal parameters. When a program 1is
executed by the architecture the formal parameters of the instruction
are replaced by the actual parameters of the instruction and an

operand constant is derived.

In modern complex instruction set computers, the number of operands
for each instruction and even the number of components of each

operand may vary considerably. This 1is because many modern

Chapter 2 THE SYMBOLIC MCDEL 58

architectures, especially microprocesser architectures tend to cram
as mach functionality intoe each instruction as possible. The

following are examples of modern, complex instructions:

Example 2.6

Motorola 68000: LINK and UWNLINK instruections
Intel 8086: REPT MOVS and LOOP instructions
VAX: CASE SOBGEQ INSQUE REMQUE

In many computers the state space may be medified as a side effect of
using a particular access method; thus access methods are able (like
instructions) to perform operations affecting the state space. At
this point the difference between instructions and access methods
becomes somewhat blurred (although the side effects are generally

less complex than for instructions).

The primitive operations specified in instructions alter the register
space in a manner indevendent of the access methods used whereas the

side effects of access methods alter the register space in a manner

independent of the instructions using them.

It is gquite possible that both the access methed and the instruction
will alter the same registers. The alierations cannot be concurrent

ag that would make the system inconsistent, thus we require temporal

Chapter 2 THE SYMBOLIC MODEL 59

information incorporated into the access method expression. This
could be done by splitting the access method expression into three
related components; the first component would contain operations
performed before the instruction is executed, the second would
contain the operand derivation expression, and the third part would
contain the operations performed subsequent to the execution of the

instruction.

Another approach would be to have a special identifier representing
the derived operand value and +to have an arbitrary sequence of
operations of which one, and only one, must assign a wvalue to the

derived-operand identifier.

This medel is designed to be equivalent to ISP architecture at the
symbholic (assembler) level and so each instruction will indicate, for
each operand, +the access method associated with that operand.
Because there are many assembler languages in the world (more than
one per machine architecture) it is necessary for the access method
model to contain a template which enables it to determine the access
methed being used by a particular instruction in a program and to

extract the actual parameter values from the operand expression.

It is probably the implementation of the access method descriptions
which will provide the greatest scope for variation in terms of

implementation possibilities.

Chapter 2 THE SYMBOLIC MODEL 60

2.5 The Data Type Domain

Of the four addresses described earlier, the first three may take on
a variety of data types. The data types of source and target and
even sourcel and source2 need not match although it is extremely rare

for them not to.

Some common data types are:

unsigned binary

two's complement

one's complement

binary coded decimal (packed or unpacked)
ascii (seven/eight bits)

ebcdic (eight bits)

floating point (a whole host of these)

Data types are significant to the architecture because they alter the
side effects of an instruction (such as the status registers

affected) and they alter the operations of instructions themselves.

In the model cof the data type domain, there are no assumptions about
the data +type and any side effects caused by the use of a particular
data type must be explicitly stated. BEvery value 3is nominally an
absolute binary value. Once the instruction has been executed

normally the data type expression is invoked to coerce the Target to

Chapter 2 THE SYMBOLIC MODBL 61

have the correct value for the appropriate data type. As the data
type expression may be required to perform arbitrary manipulations on
the target it must have +the same expressive capacity as the
instruction specification expression with the same primitive
operations affecting the register space and possessing full parameter

substitution capabilities.

The distinction between an instruction expression and a data type
expression is marginal and it is quite possible to restrict the model
to three domains by including Dboth the instruction domain and the
data type domain together. In fact +this 1is normally done when
specifying ISP's so that for each separate data type there is a
separate instruction +to perform any given function. This is
demonstrated in the Motorola 68000 where the MOV instruction (for
example) is specified separately for 8-bit, 16-bit and 32-bit data

words.

In assembly language models of architecture the problem of data types
as a separate domain is rarely apparent due to the restricted set of
data types available and the tendency to specify a single permissibdble
data type for each instruction. The data type domain has been
included in this initial exposition of the model for completeness and

may not be included in implementations of the model.

Chapter 3 SADL 62

3 SADL - The Symbelic Architecture Description Language

SADL has been created to implement the model of computer architecture
proposed in the previous chapter. There are some deviations from the
model for the purposes of ease of implementation but the bulk of the

language conforms to the model.

The full syntax of SADPL is given in Appendix 1 but the following
description utilises extracts from the syntax to illustrate the use of
the language. The syntax uses extended Backus Naur Form where sguare
brackets { []) are used to indicate optional items and braces { {})
are used to indicate items that may be iterated zero or more times. 1In
addition, parentheses are used o override the normal precedence
associated with BNF. Terminal symbols of the language being defined
are underlined for clarity. This is to help distinguish terminal
symbols from non-terminals in +the BNF description and is not part of

SADL.

The SADL description consists of a processor specification {Pdesecr)

optionally followed by the execution cycle specification (Executor).

<{sadl> ::= <(pdescr> [{executor>] .
Pdescr provides a symbolic description of the register set, addressing
medes, and instruction set of the architecture. In situations where

the instruction execution cycle must also be modelled, a description of

Chapter 3 SADL 63

the load and execute locop for the architecture may be provided by the

executor section of SADL.

3.1 The Basics of the Language

The following components of SADL are so pervasive that it is
necessary to explain them before a comprehensive description of the

language and its relationship to the model of Chapter 2 is poasible.

The alphabet of SADL consists of the ASCIT character set from " " to
"M (ASCIT characters 32 to 126) inclusive. All other characters are
treated as spaces; SADL is a free format language except that

end-of~line is a token separator.

Kumbers are unsigned constants using decimal, hexadecimal, or binary

representation.
{number> ::= <{dec num> l <{bin num> : <hex num>
Coin mum> ::= & (01 1)y {ol 1}

<dec num> ::= <digit> { <digit> |}

| =t

¢hex numd :i= # <hdigit> { <hdigit> }

Chapter 3

<digit> ::= 0 | 1

<hdigit>

SADL

P20 30

<digit> | A

4

64

|xn

|
{ca

A prefix of "&" signals a binary number while a prefix of "#" signals

a hexadecimal number.

There are two classes of

binary operators.

{unop~

not

1sh

rsh

ext

sizeof

operator: the unary operators and the
t1= :‘! :_i not E 1sh 1 rsh I ext } sizeof
positivity operator (redundant)
negation operator (two's complement)
logical complement
logical left shift by one bit
(right most bit remains unaltered)
logical right shift by one bit
(1eft most bit remains unaltered)
sign extension to arbitrary length
length of operand, either minimum number of bits
necessary to store the value or the defined bit
length of & register location
The unary operators have the highest precedence of the operators.

All unary operaters have the same precedence.

Chapter 3 SADL

<{binop> ::= :_i - E_: 1_‘ **

and | or | ;i | mod |
<hoolop>
e _ i 1 i - 1 — |
boolop> ::= = | > | < | >= | &= 1 O
+ unsigned addition

- two's complement subtraction

* unsigned multiplication
/ unsigned division

and logical product

Qr logical sum

bit string concatenation

*% exponentiation

mod remainder of divisicn

<(boolop> these operators return one (1) if the relation
between their operands is true otherwise they

return zero (0).

Chapter 3 SADL 66

The order of precedence for the binary operators is:

A% highest priority
* / mod

+ -

> o= ((=

= &

and

or

lowest priority

The parameter substitution symbol serves the role of a placeholder

indicating that some other text is to be substituted for the
placehelder during evaluation. It is important +tc note that the
substitution is textual and that the text is evaluated only after all

substitutions have been performed.

{param substn> ::= §‘[<dec num> |

The optional decimal number is necessary where there is more than one

parameter substitution within a given context.

Example 3.1 - 31 <- 32 + 83

The value expression is central to the functional specification eof

architectures.

Chapter 3 SADL 67

{value exprn> :i= [(unop)] {value group>

l <binop> [(unop)] {value group> }

The value expression describes how a velue is obtained from an
architecture to be used in statements and conditions. It is the SADL
analogue of an arithmetic expression in a programming language such
as Pascal or PL/1. The value expression yields a bit string of the

minimum length necessary to represent the value produced.

The value group specifies where each value is obtained from:

(value group> ::= <reg selector> |
{param substn> |

£'<value eXPIIL>)_]

<number>

The parentheses are for altering the order of evaluation of value
expressions from that required by the coperator precedence rules. The
{param substn> indicates that a value is to be substituted into that
position during evaluation; the wvalue must be sither a numeric

constant or a valid name within the specified context.

The <reg selector> specifies that the value is to be obtained from a

particular element of a named register array:

{reg selector> ::= <{r name> [L_(value exprn> l']

Chapter 3 S5ADL 68

The <value exprn> 1in Dbrackets returns a numerical index that
specifies which element of +the register array contains the desired
value. If the register array contains only a single element, +then

the selector expression may be omitted.

Example 3.2 ~ some value expressions:

REG!
REG1 [A]

REG1 [$ + 6]

REG! + REG2 [81 + 1 + REG3] - 32 - 4
REGI * (4 + REG2 [81 |)

$1 + #F

&0110

3.2 The Processor Description

The processcr description associates a name for the architecture with
three sections which describe respectively the register set, the
access methods {addressing modes) and the instruction set. Each of

these is referred to as a domain.

Chapter 3 SADL 69

{pdescr> ::= architecture <ar name> is

{rset domain>
<amset domain>

{iset domain>

Bach domain consists of a header followed by one or more domain
entries. HNone of the domains may be omitted, nor may any of them be

null, or the architecture would not be capable of %being programmed.

The first domain describes the register space of +the architecture.
A1l state variables defined for +the architecture are described in

this domain.

The second domain describes the access methods available to
synchronous instructions in the architecture. It is broken up into
two secticons; in the first, the access methods themselves are
declared while an optional sub-domain allows groups of access methods

to be collectively referred to using a single name.

The final domain describes both the asynchronous and the synchronous
instructions. It 1s ©broken up into two sub-domalins with the first
sub-domain, which describes the asynchronous instructions, being
optional. The wsecond sub-domain, the synchrenous instructions, is

mandatory.

Chapter 3 SADL

3,2.1 The Register Domain

This section consists of &a series of one o¢r more

declarations of the form:

(reg defn> ::= <«r name> is
{dim exprn>
[<mapping exprn>]
end

<dim exprn> ::= <array spec> <word spec>

All register names must be unique within the register domain.

Typical register declaraticons would loock like:

Example 3.3

MEM is [O #FFFF] < 7 0 > end

I0 is [O #FF] <7 0 > end

A register array contains n elements where each element has

70

register

a word

length of m bits. The square brackets { []) denote the size of the

array while the angle brackets { <>) denote the size of words

the array.

within

Chapter 3 SADL 71

3.2.1.1 The Array Clause

The array component of a register is descrihed with:

{array spec> ::= [

[{range bounds> !

<cell list>

{range bounds> ::= <{lower bound> <upper bound>
<cell list> ::= <cell name> { , <cell name> }
There are three legal ways of specifying the size of the array. The

first one is to explicitly state the index numbers of the first and

last elements of the array as in:
Bxample 3.4 - REGT is [0 7 J<> end
This indicates that REGI is an 8 element array with the first element

accessed by an index of O and the last element sccessed by an index

of 7: indices cutside the range O - 7 are not valid.

Chapter 3 SADL 12

The other method of defining the array parameters is to label each

cell of the arrey expliecitly, thus:
Example 3.5
REG! is | CELL1 , CELL2 , CELL3 , CELL4 <> end
REG1 is defined to be a four element array where CELL1 refers to the
first element of the array and CELL4 refers to the last element of

the array.

It was shown in the description of register selectors that it is

necessary to allow the elements of REG! +to be accessed using a
numerical index as well as by cell name. For this reason an
enurerated register array is defined to have an index of O for the
first element and a final index of n where n*t 1is the number of
elements in the array; so for REG! the element REGI! [CELLY] is the

same as REGI [0] and REG1 [CELL4] is the same as REG! [3].

It is important to note that the names used to enumerate the elements
of a register array have a scope restricted to that register. This
means that the same name may be used for a register name as well as
being repeatedly used within different register definitions to

enumeraete elements.

Chapter 3 SADL 73

Example 3.6 - for the following definitions:

REGY is [4, B, C]<> end
REG? is [D, B, A]<> end

A is [7, & 1< end

The name A used fo enumerate REG! is distinct from the name 4 used to
enumerate REGZ and both are distinct from the register array A and
its enumerator name A. It is not legal to use the same name twice

within the enumeration list of a single register array so:

Example 3.7 - REG1 is [&, X, B, X, C J< end

is not correct because a reference to REGI [X] would not be
sufficient to locate an individual element. However, as long as the
X elements are never going to be uniquely accessed this problem would
never arise. This sitwnation is common among computer architectures
for special purpose registers such as the Status register in which
not all elements of +the array have meaning. In this context
non-unique element enumerators could be valid but the author feels
that the ambiguity created is undesirable in a formal specification

language.

When a register array has only one element its index need not be

supplied and the sheorthand form_Ll may be used; thus:

Chapter 3 SADL T4
Example 3.8 - REG1 is []<> end
specifies a register array with a single element (called simply a

register). This is +the +third 1legal wey of describing the array

dimensions of a register.

%.2.1.2 The Word Clause

The word clause describes the dimensions of the individual elements

of a register array:

(word spee> ::= < [<msb> <1sb> | >

There are two ways of specifying the word size of & register. The
first methoed is to explicitly state +the number of the most
significant bit and the number of the 1least significant bit of a

register. Thus:

Example 3.9 - REG1 is [](7 Q> end

specifies a register with an 8 bit wordsize where the most
significant bit is numbered 7 and the least significant bit is

numbered Q.

Chapter 3 SADL 75

Note that the order of significance for the array specificaticon and
for the word specification a&are different. For the array
specification the elements have an increasing significance from left
to right but the bits specified by the word clause have an increasing
priority from right to left. The reason for this is that it follows
the convention of custom; it is almost universally adopted that the
bits of a word (like the digits of a number) have an increasing
significance as they progress to the left. For arrays though, the
elements are conventionally ordered so that the first element is on
the left and the index number of the elements increases as the array
is scanned to the right; this is in accordance with the way people
write and parse text. As the choice of ordering is arbitrary the
author settled on a form which is consistent with the way people are
used to treating the respective structures. This is irn contrast with
ISPS in which both the word and the array description are based on
the left most element/bit being associated with the lowest numerical

value.

The second method of specifying the wordsize of a register is to omif

the explicit delimiters of the word as in:

Example 3.10 - REGT is [] < end

This indicates a register size of one bit and is directly analagous

to the shorthand form for the array specification.

Chapter 3 SADL 76

3.2.1.3 The Mapping Clause

The mapping clause describes the area of intersection between the

array being defined and those other registers which occupy the same

register space in the architecture:

{mapping exprn> ::= maps
{r mapdef>
{ 1l <r mapder> |}
{r mapdef> 1::= <r name> [<m array spec>]

<m array specr :1:t= L' {init addr> <term addr> ‘l

{init addr> {number>] {cell name>

{term addr> <number> | <cell name>

Chapter 3 SADL 77

The following illustrates the possible use of mapping to define

register synonyms:

Example 3.11

B is [J<7 0> ena
¢ is [J<7 0> end
D is [J<7 0> end
E is [J<7 0> end
H is []<7 0> end
L is [J<7 O> end
RP is [B, D, H J<15 O>

maps ¢ {| B {{ B {{ D {i L || H end

The virtuazl register array RP is declared as being a three element
array where each element has a word length of 16 bits and this is
defined to map onte +the concatenation of the 8-bit registers

B,C,D,E,H,L.

This method of specifying the intersection between registers differs
significantly from the model proposed in chapter 2. The mapping
mechanism is much simpler and allows a straightforward implementation
with only a small less in <flexibility; the new mechanism 1is
effectively a2 subset of the access method expression mechanism and

may be expanded in a susbsequent version of SADL.

Chapter 3 SATL 78

To perform this mapping, the model of a register array in chapter 2
is expanded so that, in addition to being an array of n elements
vhere each element has m bits, we must view the register array as a
contiguous bit stream from the least significant bit of the first
element to the most significant bit of the last element of the
register array. Thus, for RP (above) bit 15 of RP[B] is adjacent to

and one position less significant than bit O of RP[D].

The concatenation of registers ¢ |} ... || H where C is the least
significant register and H is the most significant register mey then

be mapped to RP by a simple superimposition of bits:

H D B RP[B, D, H] maps

HiL{iDJIE|B]C cHlBeilEND L] H end

To simplify the implementation there are scome restrictions that need

to be enforced.

1. All registers named in the mapping expression wmust have been
previously defined; this 1is necesary to allow oane pass

validatieon of the mapping expression.

2. One or more ftarget registers or register arrays must map to each
element of the source register array and must map exactly on word

boundaries.

Chapter 3 SADL 79

This means that for each element of the source register there are
exactly n target register elements with no bits in either the

source or the target registers remaining unassigned.

3. Closure is enforced. All elements ¢of s register array which 1is

mapped must be assigned to target registers.

Registers arrays C, D, E (below) illustrate the rossible combinations
allowed for mapping. Essentially, the rule is that the number of
contiguous bits represented by the mapping expression {the
concatenation of registers and part registers) must be equal to E.*.E
where m is the number of elements in the source register array and n

is the length (in bits) of each word in the source register array.

Example 3.12

4 is [J<7 0> end

B is [0 3]<7 O> end

€ is [K7 0> end

D is [0 1]<7 0> maps B[1 2] end

is [0 4](7 0> maps 4 || B end

=1

eal

is [1 4J<7 0> maps & || B[O 2] end
G is [0 2]<15 0> maps A {| B |} C end

His [0 1]<15 0> maps ¢ |} & || B[1 2] ena

As shown above, a subset of the elements of a register array may be

involved in the mapping expression; where this is the case the first

Chapter 3 SADL BO

number or identifier is the first element included in the mapping and
the secend number or identifier is the last element included in the
mapping. All elements between the first and last indicated elements

are included in the mapping.

In addition to all the explicit registers (those directly accessible
to the assembly language programmer) there may be registers which are
either implicit {as in the case of the Interrupt Emable register on
the Intel 8080) or are necessary to define the behaviour of certain
aspects of the architecture (such as external inputs, interrupt
lines, reset lines etc.). These implicit registers are included in
the declared register set of the architecture and use the same syntax

and semantics as explicit registers.

3.2.2 The Access Method Domain

Once all the registers of an architecture have been defined, the access
methods, which describe the derivation of operands, must %be defined.
The Access Methed domain contains a series of one or more access method
declarations; these declarations define all access methods aveilable
to the architecture, their functicnality, their parameters and how the
values associated with those vparameters may be extracted from the

operand field of an assembly language program.

Chapter 3 SADL 81

When all access methods have been declared, an opticmal subsection of
the Access Method domain may be declared. This section is called the
Access Method Class and is an organisational tool te enable a group of
access methods to be referred to by a single name. This reduces the
amount of coding required for architectures which have regular

instruction sets with large numbers of access methods.

3.2.2.1 The Access Method Description

The Access Method domain consists of one or more access method

declarations of the form:

(am descr> ::= <am name’ is <am exprn seg>
from <template>

[gize <bitsize>] end

An access method description associates a name with a sequence of
access method statements, a template indicating how the values of the
operands are to be extracted from the operand field, and the
additional length of the instruction attributable to the selection of

the particular acceas method.

With most microprocessor based architecturss the instructions are of

varying length each dependent upon the choice of access method used

Chapter 3 SADL a2

for the instruction. The <bitsize)> is the number of %bits by which
the instruction length is increased by selection of the specific

access method.

The <{template> is a pattern matching tool whereby the text of the
operand is extracted from surrounding constant text, which serves

merely to indicate which of several potential access methods has been

selected.

The Access Method Statement

The access method statement sequence is a series of assignment
statements of which one and only one derives the operand for an
instruction; the others cause side effects to the use of the access

method.

The syntax of the access method statement is:

{am exprn seq> ::= { {am assign stmt> 3]
{am param stmt>

[3 <am assign stmt>]

{am param stmt> ::= OPERAND
<

{dest selector>

Chapter 3 SADL 83

<am &ssign stmt> ::= <reg selector>
<~

<{value exprn>

{dest selector> ::= <dest exprn>
{ 1l <dest exprn> }

<{dest exprn> :i:= <reg selector> !

{param subsin>

FPor statements which describe side effects the destination of the
assignment must always be a register and the source is always a value

expression.

The assignment which derives +the operand is recognised by the
presence of the keyword OPERAND as the destination of the assignment;
the source 1is a destination selector which means that OPERAND is
assigned either a concatenation of register locations where operands
may be extracted from or placed, or the explicit value of the cperand
parameter as extracted from the template. The latter represents the
access method known as immediate addressing, where the instruction

operand is part of the insftruction itself.

The statements are temporally ordered, so that +the first statement
occurs before the second statement which occurs before the third

statement and so on. Statements defined before the assignment of

Chapter 3 SADL 84

OPERAND represent side effects preceding the derivation of the access
method operand and statements following the assignment of the OPERAND

represent succeeding side effects.

The Template

The template is a series of one or more parameter substitutions

optionally surrounded by arbitrary text:

(template> ::= <const item> ! <param substn>

{ {const item> } {param substn> }

{const item> ::= <special char> !

¢identifier> |

{number>

Any non-blank text may surround the parameters with the exception of
the "$" symbol which must be represented by "$3". If there is more

than one parameter substitution then they must be numbered wuniquely.

Chapter 3 SADL 85

Example 3.13

Motorola 68000 pre-decrement access method is indicated by:

- (48)

where the $ (or $<number>) indicates the portion of the text

which. is the actual operand value.

For an actual operand of the form:

-{46) the operand value is 6.

3e2.2.2 The Access Method Class Section

The Access lMethod Class section is intended to be an organisational
mechanism for referring collectively to a group of access methods.
It is a shorthand form which asscciates a name with several access

methods.

{am class> ::= access classes

{amc descr>

{ 3 <amc descr> l

Chapter 3 SADL 86

<amc descr> ::3= <amc name?
is

{am name>

{ {am name> }

The only restriction necessary is that the AMC is viewed as part of

the Access Method domain and for this reason the AMC names must hbe

distinct from the names of the individual access methods.

Whenever an access method name occurs in the access method field of
an instruction it is equivalent to listing the access methods named
by that access method class within the field; 1in this sense it can

be viewed as a macro-definition.

%.2.% The Instruction Domain

The Instruction domain consists of two sections. The first section is
optional; +this is +the Asynchronous Instruction Set and describes all
instructions which conform to the model of asynchronous instructions

proposed in Chapter 2.

The second section, which is necessary for the architecture %o be
programmable, describes the explicit, synchronous instructicn set of

the architecture. The instructions described in this section conform

Chapter 3 SADL 87

to the Chapter 2 mcdel of synchronous instructions.

Common to both forms of dinstruction 1is +the 1nstruction stetement

sequence. This 1s a set of instruction statements which cause changes

to the register space of the architecture. Because they are common to

both instruection sets they are described first.

2.2.35.1 The Instruction Statement

The instruction statement defines the functionality of the assembly
language instructions in terms of the operator set of SADL. There

are four forms of instruction statement:

{istmt> ::= <assign stmtd '
{cm simt> }
<cond stmt> |

{loop stmt>

Instructions may be temporally ordered as an instruction sequence:

¢istmt seq> ::= <istmt> { ; <istmt> }

The assignment statement (<assign stmt> } effects changes to the

register space Dy assigning the result of a value expression to a

Chapter 3 SADL 88

register or concatenation of registers.

{assign stmt> ::= <dest selector> <- <value exprn>

Parameter substitutions may occur on either the right or left hand
sides of the assignment operator. Parameter substitutions within the

value expression were described in Section 3.1 .

The destination selector must be either a register or a concatenation

of registers.

{dest selector> ::= <dest exprn> { {dest exprn> }

{dest exprn> ::= <{reg selector> } {param substn>

Any parameter substitution that occurs within a destination selector
must evaluate to a register selector. It is possible to determine
the validity of the parameter substitution as all access methods must

have been defined before the instruction domain is evaluated.
Note that for asynchronous instructions, parameter substitutions are
not legal Dbecause there are no instruction operands to substitute

into the value expression or the destination selector.

The codem statement (<cm stmt>) invokes the named code macro:

Chapter 3 SADL 89

<em stmt> ::= do {cm nane>
[(<param exprn>

{ + fparam exprn> }

)]

{param exprn> ::= <oumber> !

{reg selector> !

{param substn>

The code macro declaration is described in Section 3.2.3.3 (below);
its use is analagous to that of a procedure call in Pascal though its
operation is not. The parameters are textually substituted into the

macro for evaluation purposes.

The conditional statement allows a sequence of instructions tTo be
performed dependent upon a condition as expressed by a value

expression:

{cond stmt> ::= if <value exprn>
then <istmt seq>

[else <(istmt seq?] endif

If the value expression produces a non-zerc result then the condition
is deemed t¢ be true, otherwise the condition is deemed to be false.
Alternatively, the conditional statement may be used to select
between two separate instruction sequences depending on whether the

result is true or false.

Chapter 3 SADL 90

The loop statement causes a sequence of statements to be repeatedly

executed while the value expression yields a non-zerc result.

{loop stmt> ::= while <value exprn>

do <{istmt seq> done

The value expression will generally be a register value which must be
explicitly modified within the 1loop 1in order to terminate the
repetition. The value expression 1is evaluated before execution of
the instruction statement sequence parenthesised by the do and done

keywords sc¢ that the minimum number of times the locop is executed may

be zero.

%.2,%.2 The Asynchronous Instruction Set

The Asynchronous Instruction Set consists of a series of asynchronous

instruction declarations:

{asynch instr> ::= <i name> is <istmt seg>

upon <value exprn>

end

The instructions model events and are hardwired into the

architecture. They are described indirectly by the manufacturer

Chapter 3 SADL N

under such headings as interrupt handling, reset operations etc.

The order of definition of the Asynchronous instructions is important
because the priority of evaluaticn is based upon the ordering. This
departs from the model in Chapter 2 because the priority encoding is
implicit in the order of declaration rather than being an explicit

part of the instantiation expressiocn.

The first asynchronous instruction defined has the highest priority
while the 1last instruction defined has the lowest priority. No two
instructions can have the same priority; this is ©because the
instructions are executed upon the occurrence of an event (such eas
external interrupts, or overflow from an addition) and if the
priority of all possible concurrent events was not strictly defined
then the architecture would exhibit nondeterministic Dbehaviour when

two or more events occurred simultanecusly.

Though asynchronous instructicns do not occupy register space they do
alter it since the body of the asynchronous instruction is a sequence

of assignment statements.

There are no parameters and therefore no access methods associated

with asynchronous instructions.

Chapter 3 SADL gy

The Instantiation Expression

The activation clause of an asynchronous instruction (signified by
the keyword UPON) defines the condition which signals that the
instruction may be executed. The instantiation expression is a value

expression where a non-zero result indicates a current instruction.

FPhysical events external to the architfecture, such as an interrupt
line going low, are modelled within the architecture by the presence
of registers which contain wvalues representing the state of the
external components. This is consistent with the abstract view of
the architecture. Thus an dinterrupt pin on a processor may be
modelled as a register which is O when the register is not asserted

and 1 when the interrupt has hbeen asserted.

Note that there is no implicit resetting of event registers within
the architecture; either the register is reset externally when the
event is no longer true {as in the case of signal~level-~based
interrupts) or the register must be explieitly reset by the
asynchronous instruction handling the event {(as is the case with
signal-transition-based interrupts). The distinction is between the
use of registers to model states (pin level high, pin level low)} and

discrete events (a transition has occurred signalling an interrupt).

Chapter 3 SADL 93

3.2.3.3 The Synchronous Instruction Set

The Synchronous Instruction Set consists of a series of declarations
of code macros and assembler instruction descriptions. 411 code
macros must be declared before the firzst synchronous instruction

declaration:

{synch domain> ::= gynchrencusg

instructions

[{ecodem list>]
{synch instr>

{ {synch instr>]

The Code Macro List

The code macro list consists of a sequence of all code macros defined

for the architecture:

{codem liztd

{code macro> { {code macro> }

{eode macro> ::= codem <cm name’
[{cm param>]

is <istmt seq> endm

Chapter 3 SADL g4

<cm param> ::= (<param substn>
{ {param substn> o)

A code macro declaration associates a name with a .sequence of
instruction statements. The code macro may have parameters; if so,
the text of the actual parameters is substifuted for the formal
parameters, which are enclosed in parentheses. The normal rules
which apply to instruction statements elsewhere in the synchronous

instruction set also apply here.

The code macro is a way of reducing the amount of coding necessary to
describe an architecture by extracting commonly wused seguences of
instructions and referring to them by & single name. Formal
parameters are included Ybecause 1t was found that sequences of

instructions tended to recur but utilised different registers.

Example 3.14 - Motorola 6800 instructions:

ADDA is ACCA <~ ACCA + B

ADDH is ACCE <~ ACCH + #1

both cause the same seguence of operations to be performed upon the
status pits of the processor as side effects but the registers in
question are different in each case. With parameters it i1s possibdble
to avoid the duplication of effort necessary to describe the

architecture.

Chapter 3 - SADL g5
Example 3.15 - the sign macro Tor the M6800 would be:
CODEM sign ($1) IS
cer{n) <- ($1 and #80) = 0
ENDM

and its invocation would be:

DO sign (ACCA) ;

DO sign (ACCB)

The Synchronous Iunstruction

Each synchronous instruction associates a unigue {within the

instruction domain) name with a sequence of instruction statements.

{synch instr> ::= <i name> ig
{istmt seq>
[from <template>

using <amlist> }

[sizre <bitsize>] end
The instruction statement sequence has already been described.
The optional "from" clause specifies how operands are extracted from

the operand field of the instruetion, using the template mechanism

described in Section 3.2.2.1, and the combinations of access methods

Chapter 3 SADL 96

that may legally be ugsed with the instruction.

The optional "size" clause indicates the length, in bits, of the

instruction before taking into account the extra length necessitated

by the use of some of the access methods.

Parameter Substitution

¥hen an assembly language instruction has c¢perand variables there
mist be a "from" clause in the instruction declaration to indicate
how the operand values may be extracted from the cperand field text
and also a Tusing” clause +to indicate what combinations of access

methods are legal for the instruction.

The operands are extracted from the operand field using the template
mechanism as wused for access methods. Again, the substitution is a
textual one; all interpretation of text is performed in the value

expression and the destination selector expressions.

The access method list is a series of tuples where the number of
elements in the tuple equals the number of parameter substitutions in
the template. Each tuple is a series of access method names or

access method class names:

Chapter 3 SADL 97

(amlist> = <am tuple> { 3 fam tuple> }
<am tuple> ::= <am name> ! <amc name>
{ {am name> : {amc name> }

The following two examples illustrate the declaration of

instructions:

Example 3.16 - Motorols. 6800 ADDA instruction declaration

ADDA is
ACCA <- ACCA + 3
from §
using IMMEDSB;
DIR;
INDEX;
EXTND

size 8 end

The above instruction declaration states that the instruction named
ADDA assigns the sum of register ACCA and the operand variable ($) to
the register ACCA. The operand field has no text surrcunding the
operand and there are four access methods which are valid for the
instruction. The instructicn is 8 bits long plus however many bits

are contributed by the different access methods.

Chapter 3 SADL 98

Example 3.17 ~ Intel 8085 MOV instruction

MOV is
31 <~ B2
from $1,382
using REGS8 REGE;
REG8 INDIRECT;
INDIRECT REGB

size 8 end

In this instruction there are two operand variables separated by a
comma in the c¢perand field of the instruction. The value of the
second operand is assigned to the first operand, which must therefore

be a destination selector. The size is 8 bits.

There are three valid combinations of access methed. There is a
cne-to-one correspondence between the parameter substitutions and the
elements of each tuple. In +the above example this means that the
text before a comma in the operand field of the inatruction is passed
to the access method REGZ, or INDIRECT while the text following the

comma is passed to the access method INDIRECT or REGS.

Chapter 3 SADL 99

3.3 The Executor Description

The executor section of SADL is optional and necessary only when the
load and execute cycle of an architecture is to be modelled; this
would be the case whenever a simulation of the architecture is to Dbe

carried out.

The executor defines an implicit loop which loads the instruction and

then executes it.

{executor> ::= executor

[<istmt seq>]

load <reg selector>

[(istmt seq>]

exec

[<istmt seq>]

end
The load keyword specifies where the next instruction is located while
the exec keyword causes the instruction to be evaluated. Before and
after the load and after the exec an arbitrary number of primitive
instructions may Dbe specified for various housekeeping chores that are
not part of individual instructions, such as incrementing the

instruction pointer.

MASsey UNIVERSITY
LIBRARY

Chapter 3 SADL 100

The asynchronous instruction list is scanned as the first action by

exec. This is in accordance with the model of Chapter 2.

3.4 Using SADL

SADL has been used to describe four complete architectures and a fifth
architecture has been partially explored. The feour fully described
architectures are the Intel 8085 and 8086 microprocessors, the National
Semiconductor SC/MP, and the Motorola 6300. The 8085 SADL description

is included as Appendix 2 of this thesis.

With the exception of the BOB6, all the above architecturses are first
generation 8-bit microprocessors. The architecture which was partially

explored was the Motorola 68000,

Experience with the 8086 and 68000 architectures has indicated possible

shortcomings in the language that require further study.

bccess method specification inm SADL can quickly become unwieldy because
of the lack of variable length data structures or data <typing. Both
the 68000 and the 8086 allow structures of differing lengths for each
of their major access methods and this translates into many more access
method specifications than are desirable; for both architectures the

number of access methods could be cut in half if a separate clause

Chapter 3 SADL ' 101

indicating the possible lengths of the operand were included in SADL.

The 8086 also indicates that SADL's simple approach to the calculation
of instruction Jlength may not always be satisfactory. SADL calculates
the instruction length as the sum of the length components of the
instruction and the access methods it uses. The 8086 instruction
length is calculated on the combination of access methods wused. For
instance, a particular access method on the 8086 contributes O bits to
the length of instruction when used by itself (in & single operand
instruction) but contributes 3 bits to the length of instruction when
used in combination with some, but not all, of the other access

methods.

Finally, improvements may be necessary with regard to the parameter
substitution mechanism if the practice, fostered by Intel, of allowing
the components of a particular access method to be specified in any
order, beccmes common. This 1is not a problem of architecture
specification but of the formats for the assembler. A fully
generalised facility for accepting arbitrary assembly languages is
beyond the scope of this thesis; the current approach by SADL is that
it does not attempt to be able to handle any arbitrary assembler format
but provides an 1interface which will allow the most widely used style

to be recognised.

Chapter 4 BUTLD 102

4 Building Programs from SADL

Build is a program written in Salford LISP version 17 [Salford83], on a
Prime 750, with the purpose of generating data structures and functions

for simulating a symbolic architecture specified using SADL.

Build works by parsing e SADL description using the top down approach

and builds the data structures and functions as it parses.

LISP was chosen as the implementation language largely because of its
ability te generate programs which may be executed within the LISP
environment. The interactive debugging facilities provided by Salford

LISP were also a major consideration.

Build is not a simulator. Rather it constructs the machine dependent
routines upon which a simulator interface may be provided. This
splitting of the simulation routines from the simulator interface means

that the same interface may be used for any architecture.

Chapter 4 BUILD 103

4.1 Data Structures

LISP has a single data structure, the s~expression. There are two
substructures of the s~expression : +the atom and the list. An atom
is a name; numbers are pseudo-atoms, as they are +treated for the
most part in the same way as atoms. A name is an arbitrary string of
characters while a number in Salford LISP is held in Prime double
precisicon floating point form. The distinction between names and
numbers is the scurce of some preblems in LISP as will be shown in

Section 4.3 .

In SADL each register, access method, and instruction is named. This
simplifies implementing the data structures in LISP as each domain
may be a list of names where each name has associated with it several

properties which are relevant tec the demain.

Example 4.1

an asynchronocus instruction has a name, an instruction
sequence and an instantiation expression. The last two items
may be treated as properties of the name by using the LISF

property list facilities.

Asynch name - property: instruction segquence

- property: instantiation expression

Chapter 4 BUILD ' 104

There are six global variables containing lists of declared names:

REG LIST@,
AM_LIST@,AMC LISTe,
ASYNC LIST@,

CODEM LIST@, SYNC LIST@.

LISP atoms are global except when declared explicitly within =& PROG
or as formal oparameters of a LAMBDA or NLAMBDA expression. As SADL
permits the same name to be used in each of the domains, a mechanism
must be used +to ensure that the properties assigned to each name by
each domain do not conflict. This is done by using the Property List
mechanism of LISP? and naming the properties such that every property

over the entire architecture is unique.

The Property List mechanism in LISP works by creating a 1list of
property names and the values associated with that property; the
first and all other odd-numbered members of the property list are the
property names while the second and all other even-numbered members
of the preperty 1list are 1ists of values associated with the

property. The property list always has an even number of members.

The following describes the data structures for the individual

domains.

Chapter 4 BUILD

4.1.1 The Register Domain

REG_LIST@ - a 1list of register array names:

{... HLHL B C BC ...)

Each name has a property 1list with the following properties:

LSW - index of the beginning array element

M3W index of the terminating array element

L3E - index of the least significant bit
M3SB ~ index of the most significant bit for the register

CELLS -~ an ASSOC list of registers and their values

105

MAPLIST - a list of register arrays that the named register array

maps onto

MSW, LSW, MSB, LSE each have a hexadecimal number as their value.

An ASSOCiation 1list is a 1list of two-slement 1lists such

as

(vo. (¢ 1) (b 2) (&2 3)) which may be used by the LISP ASSOC

Fal

function. ASS0C searches the 1lists <trying to. match the {first

e

member of each sublist with a specified value; the second element

of the first sublist to successfully match the value is returned;

this is peculiar to version 17 of Balferd LISP. If none of the

sublists match then NIL is returned. This is a fast ang

easy

technique for implementing a sparse array, one solution to the

problem of implementation restrictions with arrays that

was

Chapter 4 BUILD 106
described in Chapter 1 [CragonB}}.

The contents of the 1ist which represents the value of +the CELLS
property varies with time and the declaration of the register. If
the register array contains only one element the 1list will be
initially empty. If the register array contzins more than one
element then each of the elements will be present with an initial

value of HNIL:
((B nil) (¢ nil) ...}

As each register becomes initialised by being written to, the
second value will ©be replaced by the binary representation of the

value so that the above will hecome:
{ (B &01001110) {C &00Q011101)

For the special situation where a register array contains
instructions, the registers which hold those instructions heve, as

their value, a link to the instruction being held:

SCRIE
o

S ~>(instr opri,opr2)

The above is for the case where MAPLIST is null (an empty 1list).

If MAPLIST is not null +then it contains a list of the register

Chapter 4 BUILD 107

names that are mapped. Bach member of the MAPLIST may be a2 name,
in which case it must already be declared as a register, or it may
be a three member list in which the first member is the predeclared
register name while the second and third members are the lower and

upper array elements for mapping.

Example 4.2

- maps A || B]! C end gives (ABC)
-maps A || B[03] || ¢ gives { 4 (BO3)C)
- maps A II B [X Z] i: C gives (a4 {(BXZ)C)

Where a register mapping exists, only the register(s) which are
mapped onto hold actual values. Those which are mapped from have
NIL value fields in +their CELLS entries and +their wvalues are

obtained by indirect reference to the target registers.

4.1.2 The Access Method Domain

This domain is represented by two lists:

AM LIST@ - a list of access method names:

(DIR8 DIR16 IMMEDS ...}

AMC#LIST@ -~ a list of access method class names

Chapter 4 BUILD 108

Each name in the AM LIST@ has three properties:

AM MATCH - a template for exitracting the operands from the text
for a specific access method.

AM SIZE - a hexadecimal value specifying how many extra bits long
the instruction is because of the access method used.

AM EXPRN - this is a LAMBDA expression which simulates the
behaviour of +the access method. The functional aspects

are discussed in Section 4.4.5 .

The AM MATCH list consists of a series of parameter identifiers

geparated by lists containing constant items which surround the

parameters.

Example 4.3
- 68000 (A$)+ AM MATCH: (("("a) s (") +))
- 8080 3 : (%)
- Sc/KP $1(%2) o (st (M) s2 (M)

AMC LIST@ has a single property AM CLASS. The wvalue of the
property is simply a list of the access method names which are

considered to be part of the access method class.

Chapter 4 BUILD 109

4,1.3 The Instruction Set domain

This domain has three lists representing subdomzins:

ASINC LIST® - a list of asynchromnous instruction names;
CODEM LIST@ - a 1list of code macro names;

SYNC LIST®@ - a list of synchroncus instruction names;

The names in ASYNC LIST@ have two properties associated with them:

ASTRC EXPEN - a PROGN which implements the instruction sequences
defined for the asynchronous instruction.
UPON - the value expression which determines whether the

instruction is able to be invoked or not.

It is essential that the ASYNC LIST@ contains the instructions in
the order that they are declared as the simulator should pass down
the list evaluating the UPON property vealue until a nen-null wvalue
is returned upon which the ASYNC EXPRN is invoked. If the order of
the asynchroncus instructions is not maintained then the implicit

pricrity contained within the declaration order is lost.

Each name in CODEM LIST@ has a single property associated with it:
CM EXPRE. The value is an NLAMBDA expression which simulates the
operation of the code sequences specified in SADL. The NLANBDA is

necessary because text is TDbeing passed which must be substituted

Chapter 4 BUILD 110

into the code macro when it 1s executed.

SINC_LIST@ names have four properties:

I SIZE - the size in bits of the instruction (stored in

Hexadecimal)

I MATCH - a template for recognising the instruction and
extracting operands. The template has the same format as

AM_MATCH.

AM LIST - a list containing one or more lists. Each sublist
contains the names of +the access metheds for the

instruction’'s operands.

SYNC EXPREN -~ a LAMBDA expression which simulates the operation of

the instruction.

Chapter 4 BUILD 111

4.2 Constructing Tokens

The functions GET CHAR and GET TOKEN provide a clean interface
through which the remainder of the parsing routines may obtain the
next valid token. After an initial call on GET TOKEN, the next valid
token will always be available as well as +the next character

subsequent to that token.

There are three classes of SADL token:

Identifiers - all strings starting with a letter and
containing only letters, numbers or the

characters ".", "3" and . Identifier

tokens include SADL keywords.

Numbers - any string of characters conforming to the BSADL

syntax for numbers.

others - any string of characters forming valid SADL tokens

but are not included in the above two categories.

The functioun GET TOKEN skips over leading blanks, and uses the firsi
non-blank charzcter encountersd to select +the appropriate token
building reoutine. The function has a single input parameter which
may be used to restrict the range of tokens that may be recognised.

f the input parameter is not specified then every token that is

Chapter 4 BUILD 112

successfully constructed will be returned as a velid token. TIf the
input parameter is the atom ID then the token that i1s constructed
must be a member of the set of valid identifiers. If the input
parameter is the atom NUMBER then the token must be a member of the
set of valid numbers. If the input parameter is any other atom then

the token and the paramefer must be the same.

Example 4.4
(GET TOKEN) with <token> returns <token>
(GET_EOKEN 'ID) with <identifier> returns <identifier>
(GE?#TOKEN "WUMBER) with <number}? returns <npumber>

(GET_TOKEN 'end) with "end" returns "end"

If the token is not valid, either because it is not a wvalid SADL
symbol or ©because it is not of the expected type as indicated by the
input parameter, them a value of NIL is returned by GET TOKEN
otherwise the token is returned. In either case the position of the

input stream is updated.

The token, regardless of whether or not it is valid within GET TOKEW,
is stored in the global variable TOKEN® for access by the parsing
routines. If the character stiream was not a legal SADL token then

TOKEN@ will be NIL.

Chapter 4 BUILD 13

4.% Handling Symbolic Numbers

A major problem in modelling arbitrary architectures with any
programming language is the possible inadequacy of number
representation in the language. In Salford LISP numbers zllow exact
representation of integers up to 2 *¥* 45, VWhile this precision may
be adequate for the majority of architectures it is unable 1o
represent all architectures (e.g. Burroughs B6T00, CDC Cyber
series). To overcome this problem all numbers are stored in Build as
names and are manipulated symbolically. This does have an adverse
effect on performance and for this reason, Build currently performs
all arithmetic in decimal. With the ability <to compile LISP
expressions it would be feasible to perform the arithmetic
symbelically. & bug in the version of LISP used to develop Build

prevented use of the compilation facility.

The three classes of number (binary, hexadecimal and decimal) ars
stored the same way that they are represented in SADL: a binary
number is prefixed by "&" and a hexadecimal number is prefixed by

"#", decimal numbers have no prefix.

The prefixes for binary and hexadecimal numbers cause them to be
treated as names rather than numbers by LISP so their manipulation is
straightforward. Decimal numbers are a significant problem because
of LISP's distinction between names and numbers. The arithmetic

operators in Salford LISP only work on atoms stored in numeric

Chapter 4 BUILD 114

format; 6 is a number whereas "6" is not. If a 1list of numeric
digits is imploded intoc a single atom (1 2 3) -> 123 then the atom is
treated as a non-numeric atom. On the other hand, if a nanme
consisting of digits only is exploded then the digits in the list are

converted to numeric format even though the original atom was not.

This inconsistency has led to the inconsistency in the current
version of BUILD, that hexadecimal and binary numbers are non-numeric
atoms vwhile decimal numbers are numeric atoms. This decision is
partly because it was the easiest to implement and partly because it
results in improved performance. The disadvantage is that while the
precision of the binary and hexadecimal numbers is unlimited, the

precision of decimal numbers is limited.

With the three different types of number, the system needs to be able
to convert numbers from one format to another. This is performed by

the function CONVERT.

CONVERT has two input parameters. The first parameter is the TO TYPE
argument indicating what type of number is to be returned. Values
are: BIN to return a binary number; HEX to return a hexadecimal
number and any other value returns a decimal number. The second
input parameter is the number to be converted. The number in the

required format is returned as the value of CONVERT.

Chapter 4 BUILD 15

4.4 Building LISP functions and PROGs

The censtruction of LISP funections, PROGs and PROGNs is very

siraightforward since both LISP expressions have very well defined

and similar constructs.

For functions it is:

(LAMBDA <parameter list> <expression list)>)

For PROGs it is:

(PROG <local variable list> {expression list>)

For PROGNs it is:

(PROGK <expression list>)

Before describing the techniques of constructing the above

expressions it is necessary 1o show how a LISP sxpression can be

generated from 3SADL instruction statements.

Chapter 4 BUILD 116

4.4.1 Converting Velue Expressions to LISP

The function PREFIX converts infix SADL expressions into a prefix,

LISP-oriented representation using the shunting yard algorithm.

Example 4.5 - A+B¥C-1D

becomes (- {(+ &4 (* BC)) D)

The output has the form of a LISP expression. Because each of the
SADL operators is a function in Build, the above expression may be

evaluated to return a result.

The routines which generate the above expressions are the parsing
routines VALUE EXPRN and VALUE GROUP. VALUE EXPRN parses the
right-hand side of an assignment statement and calls PREFIX with
either an operator or the result of invoking VALUE GROUP. This

process follows the structure of the syntax definition for 3ADL.

Chapter 4 BULILD 117

4.4.7.1 The Value Group

A value expression is a series of value groups separated by
binary operators with optional unary operators prefixing each
value group. Each of the identifiers A, B, C, D in Example 4.5

iz & value group.

A value group is either a register selector, a numeric consiant,

a parameter substitution or a parenthesised value expressicn.

Register selectors are the most complex members of the value

groups. The formats which a register selector may take are:

{rname> or <rname> £‘<selector expression> l
The general form of a register selector is the NLAMBDA

expression:

{ VALUE OF <rname> <selector>)

VALUE OF is a function which extracts the value from the named
register or from the specified element of the register array when
<{selector> is not null. It is also able %o accept and return
numbers; this is necessary when handling parameter
substitutions. VALUE OF performs the indirection necessary for

registers which are mapped and always returns the binary

Chapter 4 BUILD 118
representation of the register contents.

The selector expression may be & numeric constent, a symbolic
constant when the register array is enumerated, or a value
expression returning a value within the valid addressing range

for the register array.

Parameter substitutions, when occcurring as part of a value group,
may represent either a register selector (as returned by the

access method) or they may be numbers.

In either case they are prefixed with the function VALUE OF which
must be able to interpret +the parameter and return the
appropriate value. This is due to the necessity of being able to

extract the value from a register selector.
Example 4.6 - 8080 MOV is $1 <- §2

generates: (LAMBDA [$1 82)
("<-" (1) (VALUE OF $2))

) T

Y,
M value group

Value expressions are straightforwvard as they become LISP

function expressions through recursive parsing:

Chapter 4 BUILD 119

Example 4.7 - 6800 NEGA is ACCA <~ O - ACCA

generates: (LAMBDA ()

("<-" {acca) (=" 0 (VALUE OF acca)))

value groups

Decimal constants may be included directly into the LISE
expression {the O in example 4.7 above) but binary and
hexadecimal numbers must be gquoted to force the name rather Than
the value c¢ell of the name to be passed to the operator

functions. Decimal constants may be quoted or unguoted.

4.4.2 The Destination Selector

Whereas the right hand side of an assignment statement represents a
value, the left hand side represents a location, or a series of

locations, where the value is to be stored.

In SADL the destination selector is a register or the concatenation
of several registers. It may alsoc be a parameter substitution

which equates to & register selector.

Chapter 4 BUILD 120

The function DEST SELECTOR produces the data structure representiing
the destination of an assignment. DEST SELECTOR processes the
current token and continues tc build a destination list while the
next token is the concatenaticon operatoer. When +the token 1is a

register the <function REG SELECTOR 1is called. This function
returns either the register name or (if the register is an array) a
list where the first member is the register name and the second is

the selector expression.

Example 4.8 - register: REG_SELECTOR returns:
HL hl
MEM [0] (mem O)
MEM [HL] (mem (VALUE OF hl)
REGS [B] (reg8 b)

Note that in line four of the above example B is an enumerated cell

name, not a register name.

DEST SELECTOR produces a list of destinations in the order that

they are specified:

Example 4.9 - HL |} uBM [0] |} DB <~ ...

would return {(hl (mem O) de)

Chapter 4 BUILD

121

The NDEFUN "<-" scans the 1list in reverse order assigning the
result of the value expression to the target registers. The
function also handles the indirection due to register mapping so
that the model remains consistent.
Where a destination is a parameter substitution it is evaluated in
order tc extract the real target registers.
4.4.% SADL statements
Instruction statements in SADL have one of the follewing forms.

{target> <(- <(value expression>

IF <value> THEN <{statement sequence>

LSE <statement sequence> ENDIF

DO <code macro> <parameters>

WHILE <value> DO <{statement sequence> DONE
The basic SADL statement 1is the assignment statement. Section

4.4.2 indicates how a value expression and a destination selector

may be combined ito construct the two sides of the assignment.

It

Chapter 4 BUILD 122

is then a matter of enclosing the two expressions within a list

with the assignment operator.

The functions I 3TMT, for instructions, and AM STMT, for access
methods, convert SADL statements into LISP expressions through the
invocation of DEST SELECTOR and VALUE EXPRN. The local variables
DEST and VAL hold +the destination expression and +the wvalue

expression respectively and the final statement:

(RETURN (LIST ""“<-" DEST VALUE))

combines them into a single LISP expression.

I STMT is more complex than AM STMT as it must provide for the IF,
DO and WHILE statements as well as the assignment statement. The
first token of the statement determines which 1s +the appropriate
function to handle a particular statement. The functions are

described below.

Chapter 4 BUILD 123

4.4.3.1 COND STMT

This function constructs a conditional expression using Salford

LISP's IF function.

COND STMT has three local variables for temporary storage. They
are IF PART, THEN PART and ELSE PART. Each variable holds the
expression for the appropriate clause of the IF statement.
IF PART holds +the value expression. Both the THEN PART and the
ELSE PART are 1lists where each member of the 1list is an
expression corresponding fto a single statement. They are of the

form:

(vo. { statement2) (statement! })

The ELSE PART may be null if there is no else clause to the IF

statement.

Finally, when the IF statement has been successfully parsed the
component parts are amalgamated into a single expression. The
following is executed as the final statement of COND STMT. The
ELSE section {lines six and seven) is omitted if there is no else

clause.

Chapter 4 BUILD 124

{RETURN (LIST 'IF
(LIST 'NEQUAL
(LIST 'CONVERT '"'DEC" IF PART)
0)
(REVERSE THEN PART)
'ELSE

(REVERSE ELSE PART)

)y

Note that the THEN PART and ELSE PART lists are accumulated in
reverse order and so must be resversed +to produce a correct

ordering.

The result of the value expression is converted to decimal so as
to allow the inbuilt function NEQUAL to be used. This improves

performance but restricts the values which may be tested.

The following example shows how the SADL if-then-else construct

is converted to LISP:

Chapter 4 BUTILD 125

Example 4.10 - 8080 JM $ instruction

The SADL IF statement

IF ccr [s] then

pe <~ 3§ endif

is expressed in Salford LISP as:

(IF (NEQUAL (CONVERT 'DEC (VALUE OF cer s)}) O)

("<-" (pc) (VALUE OF $))

4.4.3.2 CODEM STMT

The presence of the keyword "do" causes the function CODEM STMT
to be called. The next token is the name of the code macro being
invoked while the presence of parentheses indicates actual

parameters to the code macra.

Chapter 4 BUILD 126

Example 4.11

do ACplus (ACCA)

translates to: (DO CM acplus acca)

DO CM evaluates a parameter list containing the name of the code

S

macrto followed by the actual parameters to it. DO CM is an

NLAMBDA and so its arguments are not evaluated Dbefore being

passed.

If there is more than one parameter to the code macro then all

parameters must he combined in a list.

Example 4.12

do SOME (ACCX ACCY) : (DO _CM some (accx acey))

4.4.53.3 WHILE STMT

This function is the analogue of the COND STMT. It makes use of

Salford LISP's WHILE expression:

{ WHILE <condition> <{statement list>)

Chapter 4 BUILD 127

The function WHILE STMT has two 1local variables WH PART and
DO PART. The first takes the list returned by VALUE EXPRN, which
is invoked for the conditicnal expression of the While statement.
The DC PART is a 1list whose members each make up a SADL

statement.

The expression returned is:

(WHILE (NEQUAL (CONVERT 'DEC <value exprn>) O)

{statement sequence>

The statement sequence should modify registers in the wvalue

expression otherwise the loop will execute indefinitely.

4.4.4 SADL Instruetions in LISP

How that the method of constructing SADL statements has been
described it is possible to show an entire instruction. For

example:

Chapter 4 BUTILD 128

Example 4.13 -~ 8080 instructiocon

XCHG is TMP <- HL;
HL <~ DE;
DE <- TMF

gize 8 end

This causes the following to be generated:

{LAVMBDA ()
("<=" (tmp) (VALUE OF hl))
("<=" (n1) (VALUE OF de))

("<=" (de) (VALUE OF tmp))

Example 4.14 - 8080 LDA &

IDA is 4 <~ &

from § using DIR8

size 3 end

generates the following function:

(LAMBDA ($)

("¢<-" {a) (VALUE OF $))

Chapter 4 BUILD _ 129

The above is created by the function ADD SYNC which builds
synchronous instructions. Asynchronous instructions are different
as they have no paremeters and can therefore be FROGNs rather than

LAMBDAS .

Local variables are: EXPRN SEQ which holds the sequence of
statement expressions; PARAM LIST which contains the parameters
declared in the "from" clause; AM LIST and AM TUPLE which are used

tc construct the access method tuple l1ist.

When the instruction has been successfully parsed the following
statement ties the components into a LAMBDA expression which is

placed on the instruction's property list:

(APPEND (LIST 'LAMBDA (REVERSE PARAM LIST))

(REVERSE EXPRN SEQ))

Note the use of the REVERSE function again.

The instantistion expression is a value expression which returns T
or NIL depending upon its truth. It is extracted from the property
list, evaluated and, if not null, the PROGN is extracted and

evaluated.

Chapter 4 BUILD 130

4.4.5 The Access Method Function

Access methods have the form of LAMBDA expressions but in addition
they have an internal PROG expression. This is because the SADL
keyword OPERAND is treated as a local variable which takes on the
text of the destination selector and is the value returned when the

access method LAMBDA is called. The format is as follows:

(LAMBDA <parameter list>
(PROG (OPERAND)
{statement list>
(SETQQ OPERAND <destination selector>)
{statement list>

(RETURN OPERAND)

The SETQQ function quotes both its arguments and so assigns OPERAND
the text of the destination selector rather than its wvalue. This
is necessary as the 1tfext must be insertad into the instruction

LAMBDA when the instructlon is evaluated.

Chapter 4 BUILD 131

4,4.6 The Code Macro Function

This is an HLAMBDA function as the parameters, if any, are text
which should be substituted into +the appropriate places in the
statement list. If there are no parameters, the parameter
variables referred to 1in the code macro reference those variables
within the scope of the calling instruction. This is in accordance

with the scoping rules of LISP.
The format of the code macro is identical to the format of the

SYNC EXPRN (see section 4.1.3) except for the substitution of

NLAMBDA in place of LAMBDA.

4.4,7T The Executor Function

This 1s a PROG function attached to the global variable EXEC@. The
expression contains a PROG expression with the 1local variable
INSTR. This variable holds the text of the next instruction to be

exzscuted.

Chapter 4 BUILD 132

{PROG (INSTR)
{statement sequence>
(SETQ INSTR (LOAD (REG SELECTOR)))
{statement sequence?>
(EXEC INSTR)

<statement sequence>

The EXEC function causes INSTR to be parsed and executed. It also
causes the asynchronous instruction 1ist to be scanned for valid

instructions.

EXEC® must be called each time an instruction is to be executed. A
call to EXEC@ is equivalent teo starting an instruction cycle in the

hardware of the architecture.

4.5 BADL Operators as Functions

The binary and unary operators of SADL as well as the assignment
operator ("<-") are all functions in Build. All of the functions are
LAMBDA expressions except for the assignment cperator which is a

special case.

Chapter 4 BUILD 133

The assignment operator must be an NLAMBDA expression because it must
not evaluate the destination list. It evaluates the right hand side
by subjecting the value expression tc the EVAL function thus forcing

an extra level of evaluation.

Both binary and unary cperators accept any number and return a number
in symbolic binary format. The length of the binary number returned
depends on the operatoer. Boolean operators return a binary zero or
binary one, a single digit. The length coperator returns a decimal
value. The ext operator returns a binary number of "infinite
length”; this is actually some long implementation dependent length
like 128 or 256 characters. In Salford LISP the length is in excess

of 600 characters.

The remaining operators return & result that is the same length eas
the operand, or the larger of the two operands. If the operands were
decimal or hexadecimal then the binary format contains as many bits
as are necessary.to represent the number as passed; %this means that
leading zeros in decimal and hexadecimal numbers are significant to

the representation.

" 1

Note that the unary operators "+" and "-" invoke the same functions

as the binary operators "+" and "-". The functions check to see

whether the second parameter is null to decide whether to behave as a

unary operation or a binary operation.

Chapter 4 BUILD 134

Some operators process the symbolic binery numbers in that form while
others (the arithmetic operators) first convert the input into
decimal before applying the inbuilt LISP operators and then convert
the result back to binary. This dis a temporary solution to the

problem of performance.

The operators which process symbolic binary first split the numbers
inte lists of digits and then perform list walks in combination with
list surgery. HNothing more sophisticated than comparison or cutting

and pasting is involved.

Example 4.15 - the right shift operator

(DEFUN rsh (OP)
(SETQ 0P (CDR (EXPLODE (CONVERT 'BIN OP))))
{SETQ 0P (CDR {(REVERSE (CONVERT 'BIN OP))))
{SETQ OP (REVERSE OP})
(SETQ OP (CONS (CAR OP) OP))

(IMPLODE {(CONS ‘& OP)}

Chapter 4 BUILD 135

Example 4.16 - the logical AND operator

(DEFUN and (OP1 0P2)
/* ensure the operands are binary
(SETQ OP1 (CDR (EXPLODE (CONVERT 'BIN OP1))))
(SETQ OP2 (CDR (EXPLODE (CONVERT 'BIN OP2))))
/* extend the shorter operand to the length of the larger
(WHILE (LESSP (LENGTH OP1) (LENGTH 0P2))
(SETQ OP1 (CONS O OP1)}
)
(WHILE (LESSP (LENGTH OP2) {LEWGTH OP1))
(SETQ OP2 (CONS 0 0P2))

)
(SETQ OPi (REVERSE OP1))
{SETQ OP2 (REVERSE 0P2))
/¥ perform the and operation
(SETQ OP1 (MAPCAR (LAMBDA (X Y)

(COND {((OR (ZEROP X)

(ZEROP Y))
)
(T 1)
))

0P1 OP2

))

{IMPLCDE (CONS ‘& (REVERSE 0P1)))}

Chapter 4 BUILD 136

The assignment ocperator is by far the most sophisticated operator as
it must perform several <functions. It causes evaluation of its
second parameter to extract a value which is assigned to the local
variable RSLT. It then parses the destination 1list accessing

locations in which to store the value. Because of the possibility

that each of the destination registers is mapped, a functicn GET BASE
is called. The function accepts a register name or register selector
expreszion and returns a name or expression which consists of the
registers which are mapped to by +the input register array. As
GET BASE is recursive any level of mapping is supported; this is
consistent with the semantics of SADL. After GET BASE has Dbeen
applied to every member of the destination list a new destination

list exists with only unmapped registers.

Scanning the destination list also requires Processing any
substitution parameters which may be part of the destination list.
Any member of the destination list which starts with a § must be

evaluated to obtain the true destination.

Example 4.17

dest: 1
value of $1: (mem O)
true desi: (mem 0)

Once the new, unmapped destination list has %heen constructed, the

value must be placed into the appropriate registers and zero extended

Chapter 4 BUILD 157

where necessary. This is a matter of scanning the destination list
in reverse order (as left to right is most significant to 1least
significant order) assigning the digits from RSLT, least significant

first.

Where a register array is named without any selector expression, all

registers in the array are assigned values.

As each bit, or multiple of bits, is aszigned from +the RSLT it is
dropped from the list. When RSLT is null the remaining registers are

assigned zeros.

The complexity of the above description is necessary to support the
full semantics of the SADL assignment. The most common case is not a
destination list but rather a single destination register. In this
case GET BASE is called once with the register selector and the value

may be assigned directly.

Chapter 4 BUILD 138

4.6 An BExample

Tc tie this description together an example of how an instruction
would be processed is given. The example is the INC instruction from
the Motorola 6800 microprocessor. This instruction causes the memory
location specified by the single instruction parameter to be

ineremented by one.

The 3ADL definitions for the registers used are:

PC is []<15 0> end /* 16-bit register

MEM is [0 #FFFF <7 0> end /* 8-bits * 64K words

The SADL instruction definition for INC is:

INC is $ <- % + 1

from /* entire operand field
using INDEX; /¥ Index and
EXTHND /* Extended addressing

gize 8 end /¥ instruction length

Chapter 4 BUILD 139

The SADL description for the access method used is:

EXTHD is
OPERAND <- MEM [$]
from $ /¥ entire operand field

size 16 end /¥ 8+ 16 = 24 bit instr.

When the SADL description has been processed by BUILD +the following
properties of the varicus names are defined. The following is the
output of DUMP, a procedure which prints out the names of fhe

properties and their velues in a {reasonably) pleasing format:

jue

MSB #f LSB #0 LSW #0 MSW #0
MAPLIST ()

CELLS ()

For the example at least two of the registers of the register array
MEM must be occupied. One must contain an instruction while the

other contains the value that is being incremented.

Chapter 4 BUILD 140

mem

MSB #7 LSB #0 LSW #0 MSW #ffff
MAPLIST ()
CELLS ((#f000 &10001001)

(#0 (inc #£000))

(#1 (inc #£000))

(#2 (inc #£000)))

The first member of the CELLS list is the register which 1is to 1he
modified while the second,third and fourth members are the registers
vhich hold the instruction. Three registers are required because of

the access method used by the instruction.

Only the EXTND access method is shown:

Chapter 4 BUILD i1

extnd

AM SIZE 16
AM MATCH ($)
AM EXPRN
(LAMBDA ($)
{PROG {OPERAND)
(SETQQ OPERAND (mem $))

(RETURN OPERAND)

And the INC instruction:

inc

I SIZE 8
I MATCH ($)
AM LIST ({ extnd) (index))
I_EXPRN
(LAMBDA (3)

(<~ (%) (+ (VALUE OF 8) 1))

The lcoading of instructions into the register space is the
regponsibility of +the interface which sits on top of the LISP

architecture generated by Build. It is assumed that +the interface

Chapter 4 BUILD 142

procedure which 1loads the instructions into the register array also

converts constants to hexadecimal representation.

The invocation (EXEC@) causes the instruction to be locaded from the

register array element specified. The SADL declaration is:

executor
load MEM [PC];
PC <- PC + 13
exec

end

which is represented in LISF as:

EXEC@

{PROG (INSTR)
(SETQ INSTR (LOAD (mem {VALUE OF pc))))
(<= P¢ (+ (VALUE OF pe) 1))

(EXEC INSTR)

The BZEC function locates the instruction in the SYNC LIST@ and
locates the appropriate access method. In +this case the access
method is EXTND. The operands of the instruction are passed to the
EXTND proverty function which returns the value of OPERAND. OPERAND

for this particular instance would be:

Chapter 4 BUILD 143

{mem #£0O00)

This is then passed into the INC instruction which then evaluates as

if it were:

(LAMBDA ()

(<~ { (mem #£000)) (+ (VALUE OF (mem #f000)) 1))

The VALUE OF function parses the register selector, extracts the
value from the register data structure zand returns 1the wvalue
&10001001., If mem had mapped to several smaller registers, then the
values returned from those registers would be concatenated into a

single number.

The "+" function is evaluated with the parameters &10001001 and 1.

It returns the value &10001010.

The assignment function parses the destination list for the single
target register expression. The function GET BASE returns the same

expression (mem #¥000) indicating no mapping.

The first member of the expression is extracted and used to locate

the register data structure in REG LIST@. The properties of the

register are then used in the following manner.

Chapter 4 BUILD 144

A search of the members of the CELLS 1list is wused +to attempt to
locate the correct cell wusing the value returned by the selector
expression (in this case #f000}. If that fails then the number of
elements in the list is compared with the number specified using the
MSW and L3W oproperties; if they are +the same then it dis an
enumerated 1list and +the INDEX function may be used to extract the

value, otherwise the element has not yet been written to.

If the element is not yet written to, it is CONSed to the beginning
of the 1list, otherwise direct surgery is performed using RPLACA to

replace the o0ld version of the cell with the new version of the cell.
In the example the cell #f000 is located and RPLACA is performed on:
{ {#£O00 &10001001)
(#0 (inc #£o00))
(#1 (inec #£000))

(#2 (inc #£0O00)))

with (#f000 &10001010) being the substitute list.

Chapter 4 BUILD 145

The final result is that CELLS looks like:

((#£000 &10001010)
(#0 {inc #£000))
{# (inc #f000Q))

(#2 (ine #£000)))

This example has shown a simple instruction which has a value
expression involving a SADL operator and an assignment. No other
examples have been given as no new concepts are necessary to build up

more complex instructions.

Chapter 5 CONCLUSIONS 146

5 Conclusions

5.1 Summary

In the four preceding chapters I have provided & representative
sample of +thinking in instruection set Processor description
languages, have develaped my own model of the environment of
executing instructicn sequences and have produced an architecture

description language and an application using that language.

Chapter One explored several types of architecture description
language, and cited examples from each area. The advantages and
disadvantages of each of the approaches were examined. The most
influential of the languages examined has been ISPS and this language

was examined in rather greater detail because of this.

Chapter Two developed a medel of architeciure at the level .which is
visible to an executing seguence of instructions. The medel was
influenced by the approaches described in Chapfter One Tbut was not
based specifically on any of them. It was used as the basis for the

language described in Chapter Three.

Chapter 5 CONCLUSIONS 147

Chapter Three described tThe syntax and semantica of SADL, +the
Symbolic Architecture Description Language. The syntax description
given in the chapter is incomplete but is sufficient +to allow the
semantics of the language to be fully specified. A full syntax using

extended BNF notaticn is included as Appendix 1.

Chapter four described the LISP program Build, an application using
SADL., The description of Build showed how z SADL description may be
processed to produce data structures and procedures which may form
the basis of a simulator, 1thus allowing architecture-independent

simulation.

5.2 The Realization of Design Goals

This thesis had two design goals. The major goal was to design a new
language capable of describing instruction set processers in e
symbolic form. The Ilanguage should aveid the details af
implementation, but should be able to express the functicnality of
the architecture fully. SADL accomplishes +that goal with some

success.

SADL is able to describe a range of architectures without exploring
the implementation details and has been successfully used to describe

the Intel 8085 and 8086 microprocesscrs, as well as the National

Chapter 5 CONCLUSIONS 148

Semiconductor SC/HMP and Motorola 6800 architectures. The language
does have limitatiocns +though, and these have been described in
Chapter Three. Possible improvements to the language outlined in the
chapter, included the addition of support for wvariabdble length
opérands and a more sophisticated technique for describing the

operand field of assembly language instructions.

The secondary gecal was to produce a tool which could serve as the
basis for &an architecture independent simulator for use in
interactive study of architectures from a software engineer's
viewpoint. Chapter Four describes 3Build and provides an example
showing how an assembly language instruction is converted into data
structures and LISP functions which may then be evaluated to simulate
the operation of +the instruction. This example indicates the
feasibility of Build as the basis of a description driven simulator.
Therefore I feel that Build goes some way to satisfying the secondary

goal of this thesis.

Chapter 5 CONCLUSIQNS 149

5.% Future Directions

The approach to SADL was based very much on the principle that an

architecture consists of several independent domains. While this
view has been supported by SADPL it has resulted in a large languacge.
An interesting possibility is to migrate SADL more towards the
approach taken in ISPS (while still retaining the symbolic nature of

SADL).

ISPS has a different approach from that of SADL. It recognises a
dichotomy between “carriers" (registers) and procedures. Procedures
describe all “hehavioural aspects of the architecture without
distinction betweén access method procedures or instruction
procedures. This means that the same syntax and semantics are shared
between instructions and access metheods, as well as enabling
procedures to 1invoke other procedures {1like the SADL code macro

statements). This makes the language guite compact.

The disadvantage of this approach is that the distinctiocon hetween
access methods and instructions that exists at the symbolic level is
largely lost. In a pedagogic situation +this could be a major
drawback and it is certainly not the ideal situation for a software
engineer whe is used to thinking of instructions and their access

methods as independent entities.

Chapter 5 CONCLUSIONS 150

There are two areas of potential for the development of applications
using SADL. One 1is the application started with the deﬁelopment of
Build, that of a symbolic simulator for software engineers to use.
This would be a useful toel for two reasons. First, its approach to.
the architecture is at the Jlevel +that a software engineer Thas
experience with and so can relate +to without extensive training.

Second, it is useful as a pedagogic tool for a aimilar reason.

The other area in which applications cculd be developed depends upon
the fact +that the architecture 1is Dbuilt up into LI3F functions.
Because of this it is possible for development engineers to edit an
architecture and then immediately simulate the modified architecture
to evaluate it. This is esasentially the Justificaticn +that Cragon
[CragonB}] put forward for the use of LISP as an architecture

specification language.

The other applicstion, and the one that sparked the idea for this
thesis originally, 1is that of automatic translaticn of instruction
sequences from one architecture to functicnally equivalent
instruction sequences on ancother architecture. This is an
application which keeps recurring as people need %o move scoftware

from ageing architectures to new systems.

The important phrase is "functionally eguivalent”. This means that
the c¢ode sequences may be quite dissimilar so long as their
operations, and the registers which hold the values, are consistent

within the SADL specification.

Chapter 5 CONCLUSIONS 151

During this thesis I have come to realise the size of this task, but

I believe that SADL is & reascnable contribution to its solution.

Appendix 1 THE SYNTAX OF SADL 152

{sadl> 1= <pdescr> [<executor>] .

R

{pdescr> architecture <ar name> is <(rset domain>

amzet domain>

{iset domain>

{ar name> ::= <(identifier>
<{rset domain> ::= registers : <reg defn> { {reg defn> }

{reg defn> {r name> is <dim exprn’> [{mapping exprn?>] end

]

{identifier>

Ti

{r name> ::

{dim exprn> ::= {array spec> <word spec>

<array spec> ::= [[<range bounds> | <cell list>]]
{range bounds> ::= <{lower bound> <{upper bound>
{cell list> ::= <cell name> { + Ccell name> }

{cell name> ::= <{identifier>

1]

{lower bound> {npumber>

<upper bound> ::= <{number>

Appendix 1 THE SINTAX OF SADL 153

{word spec> 1:= 5_[<msb> <lsb>] >

{msb> ::= <{number>

11

{1lsb> {number>
<mapping exprn> ::= maps <r mapdef> { || <r mapdef> }

<{r mapdef> ::= <r named [<{m array spec>]

{m array spec> ::= L_<init addr> <{term addr>_l

{init addr> {number> ; <cell name>

{term addr> {number> ;| <cell name>

{amset domain> ::= access methods : <am descr>

{ <am descr> }

[{am class> J

Cam descry> ::= <{am name> is <am exprn seq>
from <template>

[size <bitsize>] end

{am name> ::+= <identifier>

Appendix 1 THE SYNTAX OF SADL 154

{am exprn seg> ::= { {am assign stmt> i.}
<am param stmt>

{ ; <am assign stmt> }

{am param stmt> ::= OPERAND <- {dest selector>

{am assign stmt> ::= <reg selector> {- <value exprn>

<dest selector> ::= <dest exprn> { || (dest exprn> |

<{dest exprn> ::= {reg selector> I {param substn>

{template> ::= <const item> 1 (param substn>

{ {const item> l {param substn>]

{pitsize> ::= <number>

(am class> ::= access classes : <amc descr> { ;: <am¢ descr> }

<amc descr> ::= <amc named> is <am name> { <am name> }

{identifier>

{amc name>

{iset domaind> ::= [(asynch domain)] {synch domain>

Appendix 1 ~ THE SYNTAX OF SADL 155

{asynch domain> ::= asynchronous instructions : <asynch instr>

{ <asynch instr> }

asynch instr> ::= <i name> is <istmt seq> upon <value exprn> end

{i name> ::+= <{identifier>

(istmt seq> ::= <istmt> { ; <istmt> |

(istmt> ::= <assign stmt> | <cm stmtd | <cond stmt> | {lecp stmt>

<assign stmt> ::= {dest selector> <- <value exprn>

{em stmit> ::= do <cm name> [£'<param exprnd> i , Cparam exprn> } l]

{param exprn} ::= <number> | <reg selector> | <{param substn>

H

<cond stmt> if <value exprn> then <{istmt seq>

[else {istmt seq>] endif

<loop stmid while <value exprn> do <istmt seq> dcne

<{synch domain> ::= gynchroncous instructions i.[{codem list>]

{synch instr>

[<synch instr>]

{codem list> ::= <code macro> { <code macrod I

Appendix 1 THE 3YHNTAX OF SADL 156

{code macro> ::= codem <cm name> [{cm param>].ii {istmt seqg> endm
{cm name> ::= <{identifier>
{cm param> ::=‘L <param substn> { {param substn> } l
<synch instr> ::= <i name> is <istmt seq>
[from <template> using <amlist>]
[size <bitsize>] end

<amlistd ::= <am tuple> | 5 <am tuple> }

{am tuple> ::= <am name> ! <ame name) { <am name> | <amc named }

i

{executor> ::+ executoer
[(istmt seq>]
load <reg selector>
[<istmt seq>]
exec
[<istmt seq>1
end
{value exprn> ::= [(un0p>1 {value group>

{ <binop> [<unop>] <value group> |}

Appendix 1 THE SYNTAX OF SADL 157

{value group? ::= <reg selector> l
{param substn> !

{ <value exprn> 2_}

{number>

{reg selecteor> ::= <{r name> [_L {value exprn> j_]

]

<{param substn> :: §_[{dec num> |

{number> ::= <{dec num> f <bin num> | <hex num>
<identifier> ::= <(letter> | <letter> | <digit> | . | 8§ | |}
<pin num> ::= & (0 [1) {0} 1]

I

{dec num> ::= <digit> { {digit> }

¢hex mum> ::= # <hdigit> { <haigit> }
<boolop> t:= = | > | & | > | &= | O
{unop> ::= :_} :_] not i 1lsh 1 rsh E ext 1 sizeo?f
hinopd st= + | = | * | /| ¥)

and | or | || | mod | <boolop>

<const item> ::= <special char> ! <identifier> | <number>

Appendix 1 THE SYNTAX OF SADL 158

|54

<{special char> ::=

|-
F
i®

joa
| +
1
ey
| *

f—a
|
[[¥e]

Qigitd> ::=0 | 1 213 14151]6]|

|t
-
.
.
»

<hdigit> ::= <digit> | A |

Appendix 2 4 SADL DESCRIPTION 159

architecture 18035 is

/* This description is not authoritative but is
/¥ for illustrative purposes only.

/* It is taken from [Danhof81].

registers :

CCR is [CY,X1,P,X2,AC,%3,%Z,5]<> end
Adis [J<7 0> end

PSW is [}<15 0> maps CCR || A end

B is [](7 0> end
C is [J<7 0> end

! B end

BC is [](15 0> maps C

D is [J<7 0> end
E is []<7 O> end

DE is [](15 0> maps E || D end

His []<7 0> end
L is []<7 0> end

HL is []<15 0> maps L || H end

3P is []<15 0> end

PC is []<15 0> end

Appendix 2 4 SADL DESCRIPTION 160

/* external registers

MEM is [0 #FFFF <7 0> end

IC is [0 #FF <7 0> end

/* virtual registers

R is [A,B,C,D,E,H,L]<7T 0> maps A !} B il c!I DI/ E ! B !| L end
RP is [B,D,H,SPJ<i5 OO maps ¢ [B!l B]} DIl L] H || SPend
INX is [B,D]<15 0> maps BC |! DE end

RPP is [B,D,H,SP,PSW]<15 0> maps RP || PSV end

IMREG is [M5.5,M6.5,M7.5,KSE,R7.5,%,S0E,S0D <> end

/* Asynchronous Instruction Activation registers

INTR is []<> end
TRAP is [[<> end
RST7.5 is [<> end
RST6.5 is []<> end

RST5.5 is [|<> end

Appendix 2 A SADL DESCRIPTION

IEREG is []<> end
RSTREG is []<> end
HALTREC is [J<> end
TRAPREG is [|<> end
RSTTREG is []<> end
RST6REG is [<> end

RSTSREG is [J<> end

/* Temporary storage registers

TMP6 is |]<15 0> end
TMP8 is [|<7 0> end

BITS is [0 7]<> end

access methods

REGS is
OPERAND <- R [8]
from 3
size O end
REG16 is
OPERAND <- RP [$]
from $

size O end

161

Appendix 2 A SADL DESCRIPTION 162

REG16P is
OPERAND <~ RPP [§]
from §
size O end
INDIRECT is
OPERAND <~ MEM [HL]
from M
size O end
INX is
OPERAND <~ MEM [INX [$]]
from §
size O end
TMMED3 is
OPERAND <- $1 and #7
from 3
size O end
IMMEDE is
OPERAND <~ $ and #FF;
PC ¢<- PC + 1
from $
size 8 end
IMMED16 is
OPERAND <- $ and #FFFF;
PC <= PC + 2
from &

size 16 end

Appendix 2 A SADL DESCRIPTION

DIRB is
OPERAND <- MEM [$];
PC <- PC + 2
from $
size 16 end
DIRI6 is
OPERAND <- MEM [$+1] || MEM [$];
PC <- PC + 2
from $

size 16 end

access classes 3

DIR is DIR16 DIR8 end
IMMED is IMMEDS IMMED!IE& end

INDEX is INX INDIRECT end

asynchrenous instructions :

RESET is
PC <~ 0O
IEREG <¢- O /¥ enable interrupts
RSTREG <- O

upon RSTREG end

163

Appendix 2
TRAP is
IEREG <- 1;
MEM [sP-1] |}
SP <- 8P - 2;
PC <- #24;
TRAPREG <~ O

upon TRAPREG end
RST7.5 is
IEREG <- 13
MEM [sP-1] |
SP <~ SP -~ 2;
PC <~ #3C;

RSTTREG <- ©

A SADL DESCRIPTION

MEM [sP-2] <- PC;

MEM [SP-2] <~ PC;

164

upon RSTTREG and not (IMREG [M7.5] or IEREG) end

RST6.5 is
IFREG <~ 1;
MEM [sP-1] ||
SP <~ SP -~ 2;
PC <~ #34;

RSTEREG <~ O

upon RST6REG and not (IMREG [M6.5] or IEREG)

MEM [SP-2] <- PC;

end

Appendix 2 A SADL DESCRIPTION

R3T5.5 is
TEREG <~ 1;
MEM [SP-1] || MEM [sP-2] <- PC;
SP ¢~ SP - 2;
PC <- #2C;
RSTSREG <~ O

upon RSTSREG and not (IMREG [M5.5] or IEREG) end

synchronous instructions :

codem Z (%) is
CCR [CY] <~ 8 =0
end
codem S ($) is
CCR [S] <- (3% and #80) = #80
end
coden P ($) is
BITS <~ $;
CCR [P] <~ 1 + BITS [0] + BITS [1] + BITS [2] + BITS [3]
+ BITS [4] + BITS [5] + BITS [6] + BITS [7]
end
codem ACplus ($1 $2) is
CCR [AC] <~ (3t and #F) + (32 and #F) > #F

end

165

Appendix 2 A SADL DESCRIPTION 166

codem ACminus ($1 $2) is
CCR [AC] <- (31 end #F) < ($2 and #F)
end
coden CY {31 $2) is

CCR [CY] <~ %1 < $2

end
MOV is
$1 <- %2
from $1,3%2

using REG8 REG8;
REGE INDIRECT;
INDIRECT REGS
size 8 end
XCHG is
TMP6 <- HL;
HL <- DE;
DE <- THP6
size 8 end
KVI is
S1 - 82
from $1,%2
using REGZ IMMEDS;
INDIRECT IMMEDS

size 8 end

Appendix 2 A SADL DESCRIPTION
LXI is
31 <~ 82
from 31,%2

using REG16 IMMED16

size B end

LDA is
i <~ $t
from $1
using DIRS

size 8 end

LHLD is
HL <- 31
from $t
using DIR16

size 8 end
LDAX is
A <= B
from $1
using INX
size 8 end
ST4 is
31 <~ A
from 31
using DIR8

gsize B end

167

Appendix 2 4 SADL DESCRIPTION

SHLD is
$1 <~ HL
from $1
using DIR16
size 8 end
STAX is
31 (- 4
from 31
using INX
size B end
ADD is
do ACPLUS (4 $1);
CCR [CY] |1 & <= & + 31;
do P (4);
do Z (4);
do S (&)
from $1
using REGS;
INDIRECT

size 8 end

168

Appendix 2 A SADL DESCRIPTIORN 1689

ADI is
do ACPLUS (A $1);
CCR [CY] }] & <~ & + 81;
do P (4);
do Z (A);
do 5 (&)
from $1
using IMMEDB
gize & end
ADC is
do ACPLUS (& 81);
CCR [CY] |} A <- A + $1 + CCR [CY];
do P (A);
do Z (4);
do S (&)
from $1
using REGS;
INDIRECT

size & end

Appendix 2 A SADL DESCRIPTION 170

ACT is
do ACPLUS (& $1);
ccr [cY] |l A ¢~ & + 81 + CCR [CY];
do P (A);
do 2 (4);
do 5 (4)
from §1
using IMMEDS
size B end
SUB is
do ACMINUS (& $1);
ccr [cY] 1} A <~ & - 813
do P (A);
do 72 (A);
do 8 {(4)
from &1
using REGS;
INDIRECT

size B end

Appendix 2 A SADL DESCRIPTION 171

SUI is
do ACMINUS (4 $1);
cer eyl |1 & <- & - $1;
do P (4);
do Z (A);
do 3 (A)
from $1
using IMMEDS
size 8 end
SBB is
do ACMINUS (4 81);
ccr [cY] |l A <~ A - 81 - CCR [CY];
do P (4);
do 2 (4);
do 8 (&)
from $1
using REGSB;
INDIRECT

size 8 end

Appendix 2 A SADL DESCRIPTION 172

SBI is
do ACMINUS (A 81);
ccr [cY] | A <- A - 81 - CCR [CY];
do P {(4);
do Z (A);
do S (&)
from i
using IMMEDS
size 8 end
INR is
do ACPLUS ($1 1);
$1 <- B1 + 1,
do P ($1);
do Z (31);
do S (81)
from 31
using REGB:
INDIRECT
size 8 end
INX is
B1 <- 81 + 1
from &1
using REG16

size B end

Appendix 2 A SADL DESCRIPTION

DCR

Dex

DAD

is
do ACMINUS (31 1);
1 < 81 - 15
do P (31);
do 2 ($1);
do S (81)
from 31
using REGB;
INDIRECT
gize B end
is
1 <- 81 - 1
from 31
using REG16
size 3 end
is
cCR [cY] |} HL <- HL + $1
from $1
using REG16

size 8 end

173

Appendix 2 A SADL DESCRIPTION 174

DAA is
if (A and #OF) > 9 then
cer [CY] |] 4 <- & + 6
CCR [AC] <- 1 endif;

if (A and #F0) > #90
then CCR [CY] |] 4 <= & + #60 endif;
do P (4);
do Z (a);
do S (&)

size B8 end

ANA is

A <- A and 31;
do P (4);
do Z (&)
do S (4);
cer [cY] <~ O3
CCR [AC] <- 1

from 1

using REGH;

| INDIRECT

size B end

Appendix 2 A SADL DESCRIPTION 175

ANT is

A <~ A and 31;
do P (A);
do Z (4);
do S (A);
CCR [CY] <~ ©O;
CCR [AC] <~ 1

from $1

using IMMEDS

size 8 end

XRA is

A <~ {A and not 31) or (not A and 3$1);
do P {4);
do Z (4);
do S (A);
COR [CY] <- 03
CCR [AC] <= ©

from $1

using REGB;

INDIRECT

size 8 end

Appendix 2 A SADL DESCRIPTION 176

XRI is

A <- (A and not $1) or {not A and $1);
do P {a});
do Z (A);
do S (A);
cer [cY] <- 03
CCR [ac] <~ 0

from $1

using IMMEDS

size B end

ORA is

A <« A or $1;
do P (A);
do 2 (A);
do S (A);
CCR [cY] <- 0;
CCR [aC] <~ 0O

from 31

nsing REGE;

INDIRECT

size B end

Appendix 2 A SADL DESCRIPTION 177

ORI is

A ¢~ A or $1;
do P (A);
do Z (4);
do S (4);
COR [CY] <- 03
CCR [AC] <- O

from $1

using IMMED8

size 8 end

CMP is

TMPS <- &4 - $1;
do CY (A %1);
do P (TMP8);
do ACMINUS (& $1);
do Z (TMP8);
do 5 (TMPS)

from $1

using REGS;

INDIRECT

size 8 end

Appendix 2 A SADL DESCRIPTICN

CPI i=s

RLC

RRC

RAL

RAR

TMPB <- A - $1;
do CY (A $1);
do P (TMP8);
do ACMINUS (A $1);
do % (TMP8);
do § (TMPS)
from $1i
using IMMEDS

size 8 end

is
ccR [cY] |} & <- lsh 4;
if CCR [cY]
then A ¢- A or 1 endif
size 8 end
is

A1} ocer [cY] <~ 4;
if ceR [cY]
then A& <- A& or #80 endif
size 8 end
is
ocr [cy] !} A <-4)] cer [cY]
size 8 end
ias
A 11 ocer [cy] <- ccr [ex] 1) a

size 8 end

178

Appendix 2 A SADL DESCRIPTION

CMA

CMC

STC

JNZ

is
A <{- not &
size 8 end
is
GCR [CY] <- not CCR [cY]
size 8 end
is
cer [CY] <= 1
size 8 end
is
PC <- §1
from 31
using IMMED16
size 8 end
is
if CCR [2] = ©
then PC <~ §1 endif
from 31
nsing IMMED16

size & end

JZ is
if Cor [2] = 1
then PC <- $1 endif
from 31

using IMMED16

size & end

179

Appendix 2 A SADL DESCRIPTION

JHC

is
if CCR [CY]} = O
then PC <~ $1 endif
from $1
using IMMED16

size B end

JC is
if ccr [cY] = 1
then PC <- $1 endif
from $!

JPO

JPE

using IMMEDI6

size 8 end

is

if CoR [P] = ©

then PC <~ §1 endif
from &1

using IMMED16

size B end

is

if ¢CR [P] = 1

then PC <- 31 endif
from $1

using IMMED16

size 8 end

180

Appendix 2 A SADL DESCRIPTION

JP is
if CCR [8] = 0O
then PC <- 31 endif
from $1
using IMMED16

size B8 end

JM is
if CCR [8]
then PC <- 31 endif
from 31

using IMMEDI16
size 8 end
CALL is

MEM [SP-1] || MEM [SP-2] <- PC;
3P <~ 3P -~ 2;
PC <- §1

from $1

using IMMEDIG6

size 8 end

181

Appendix 2 A SADL DESCRIPTION

CNZ is
if CCR [Z] = O then
MEM {sP-1] || MEM [SP-2] <~ PC;
SP <- SP - 2;
PC <- $1 endif
from $1
using IMMED16
size 8 end
CZ is
if CCR [2] = 1 then
MEM [sP-1] || MEM [sP-2] <- PC;
SP <- SP - 2;
PC <- $1 endif
from $1
using IMMED16
size B end
CNC is
if COR [CY] = O then
MEM [SP-t] || MEM [sP-2] <~ PC;
SP <~ SP - 2;
PC <- $1 endif
from $1
using IMMED16

size B end

182

Appendix 2 A SADL DESCRIPTION 183

CC is
if CCR [CY] = 1 then
MEM [sP-1] || MEM [sP-2] <~ PC;
SP <- SP - 2;
PC <- $1 endif
from #1
using IMMED16
size 8 end
CPO is
if CCR [P] = O then
MEM[SP-1] || MEM [sp-2] <~ PC;
8P <~ SP - 23
PC <- $1 endif
from 81
using IMMED16
size B end
CPE is
if CCR [P] = 1 then
MEM [SP-1] || MEM [sSP-2] <~ PC;
SP <~ 3P - 2;
PC ¢~ $1 endif
from §1
using IMMED16

size 8 end

Appendix 2 A SADL DESCRIPTION 184

CP is
if CCR [Ss] = O then
MEM [sP-1] || MEM [sp-2] <- PC;
SP <~ SP - 2;
PC <~ $!1 endif
from $1
using IMMED16
size 8 end
CHM is
if CCR [S] = 1 then
MEM [SP-1]} || MEM [sp-2] <- PC;
SP <- SP - 2;
PC <~ $1 endif
from 31
using IMMED16
size 8 end
RET is
PC <~ MEN [sp+t] || MEM [SP];
SP (- SP + 2
sire 8 end
RHZ is
if CCR [%2] = O then
PC <- MEM [sP+1] || MEM [sP];
SP <~ 3P + 2 endif

gize 8 end

Appendix 2

RZ is

if CCR

gize 8
RNC is

if CCR

size 8
RC is

if CCR

size 8
RPO is

if CCR

size 8
RPE is

if CCR

size B

A SADL DESCRIPTION 185

[2]

PC <~ MEM [sp+i] |{ MEM [SP];

1 then

SP {~ SP + 2 endif

end
[cY] = O then
PC <- MEM [SP+1] !l mEM [sP];

SP <~ 8P + 2 endif

end
[CY] = 1 then
PC <- MEM [8P+1] || MEM [SP);

SP <- 8P + 2 endif

end
[P] = O then
PC <- MEM {SP+i] || MEM [SP];

SP ¢~ 8P + 2 endif

end

[p]

PC <- MEM {sP+1] || MEM [SP];

i

1 then

SP (-~ 8P + 2 endif

end

Appendix 2

RP is
if cCr [8]
PCc
sP
size 8 end
RM is
if CCR [5]
PC
5P
size 8 end

R3T is

A SADL DESCRIPTICHN

= 0 then
<- MEM [sP+1] || MEM [sP];

{- BP + 2 endif

= 1| then
<- MEM [SP+1] || MEM [SP];

{- 3P + 2 endif

MEM [sP-1] || MEM [sp-2] <- PC;

3P <~ 3P -~ 2;

PC <~ 81 ¥ 8

from &1

using IMMED3

gsize B end

PCHL is

PC <~ HL

size 8 end

PUSH is

MEM [sP-1] || MEM [sP-2] <- 81;

8P <- 3P - 2

from $1

using REG16P

size B end

186

Appendix 2 A SADL DESCRIPTION

POP is
$1 <- MBEM [sp+1] |] MEM [SP];
SP <~ SF + 2
from &1
using REG16P
size 8 end
LTHL is
TMP& <- HL;
HL <- MEM [sp+i1] || MEM [sP];
MEM [SP+i] || MEM [SP] <- THPS
size 8 end
SPHL is
SP <~ HL
size 8 end
IN is
A <~ 81
from &1
using IO
size 8 end
QuT is
1 <~ A
from &1
using IO

size B end

187

Appendix

EI i

DT i

HLT

NOP

RIM

SIM

executor
load
PC <
exXec

end

2 4 SADL DESCRIPTION

8
IEREG <- ©
size 8 end
3
IEREG <~ 1
size 8 end
is
HALTREG <~ 1
size B end
is
PC <- PC
size 8 end
is
A <~ IMREG
size 8 end
is
if IMREG|MSE]

then IMREG <- A

else IMREG <- (IMREG and #07) or (A and #F8) endif

size 8 end

MEM [PC]

- PC +1

188

[Barbat]

[Bell71]

[cattell78]

[Catte1180]

[Cragon83 |

BIBLIOGRAPHY

Instruction Set Processor Specifications (ISPS):

The Notation and Its Applications

- Mario R. Barbacci

IEEE Trans. Comp., Vol. C-30, No. 1, Jan 1981

Computer Structures: Readings and Examples

-~ C. G. Bell

- A. Newell

MceGraw~-Hill Publ. 1971

189

Formalization and Automatic Derivation of Code Generators

- R. G. G. Cattell-

Carnegie-Mellon University (April 1978) CMU-CS-78-115

(Ph.D thesis)

Automatic Derivation of Code Generators

from Machine Descriptions

- B. G. G. Cattell

ACM Trans. Prog. Lang. Syst. Vol. 2, No. 2, April 1580

Executable Instruction Set Specification

- Harvey Cragon

Computer Architecture News, Vol. 11, Ne. 1, March 1983

BIBLIOGRAPHY 190

[Danhof81] Computer System Fundamentals

~ Kenneth J. Danhof
- Carol L. Smith

Addison-Wesley Publ. 1981

[Dasgupta82] Computer Design and Description Languages

- Subrata Dasgupta

Advances in Computers, Vol. 21, 1982

[Distler82J Trial implementation reveals errors in IEEE standard

- R. J. Distler
~ M. A. Shaver

Computer, July 1982, pp 76-77

[Fischer79] Microprocessor Assembly Language Draft Standard

(IEEE Task P694/D11)

- Wayne P. Fischer

Computer, Dec. 1979, pp 96-109

[Intel81] iAPX B8 Book

Intel Corp. 1981

[Inte184] Microsystem Components Handbook, Vol. 1

Intel Corp. 1984

BIBLIOGRAPHY 161

[Lee?3] VDL - A definition System For All Levels

- John 4. N. Lee
Proc First Ann. Symp. on Comp. Arch.

Univ. Florida, Gainsville 1973

[MotorolaB1] Motorcla Microprocessors Data Manual

Motorola Inc. 1981

[Mueller?ﬁ] A Generator for Microprocessor Assemblers

and Simulators

- Robert A. Mueller
- Gearold R. Johnson

Proc. IEEE, Vol. 64, Ho. 6, June 1976

[OsborneB!] Osborne 16-bit Microprocessor Handbook

Adam Oshorne

Gerry Kane

Osborne/McGraw Hill Publ. 1981

[Patterson82] A VLSI RISC

David A. Patterson

Carlo H. Sequin

Computer, September 1982, pp 8-21

BIBLIOGRAPHY 182

[Purdum83] C Programming Guide

- Jack Purdum

Que Publ. 1983

[Salford83] The University of Salford Lisp/Prolog Reference Manual

— David Baily

Univ. Salford 1983

£SC/MP76] SC/MP Technical Description

National Semiconductor Corp. 1976

[Siewiorek82] Computer Structures: Principles and Examples

-~ Daniel P. Siewiorek
- C. Gordon Bell
- Allen Newell

McGraw-Hill Publ. 1982

[Spitzen76] The Specification of Assemblers

- Jay M Spitzen

IEEE Trans. Soft. Eng. Vol. S8E-2, No. 1, WMarch 1976

[Tanenbaum?S] Structured Computer Orgenisation

-~ Andrew S. Tanenbaum

Prentice Hall Publ. 1976

BIBLIOGRAPHY 195

[WakerlyBO] Pascal Extensions For Describing

Computer Instruction Sets

- John F. Wakerly

Computer Architecture News, Vol. 8, No. 7, Dec 1980

[Wegner72] The Vienna Definition Language

- Peter Wegner

Computing Surveys, Vol. 4, Ho. 1, March 1972

[Winston81] LISP
-« Patrick Henry Winston
- Berthold Klaus Paul Horn

Addiscn-VWesley Pudbl. 1981

