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Abstract 

This thesis develops a new language capable of specifying computer 

architecture at the symbolic, or assembly language level. 

The thesis first provides a representative sample of current, or 

proposed, computer description languages and discusses four of the 

languages and their merits with regard to the symbolic approach. Next, 

a model is proposed of computer architecture at the level which is 

visible to an executing sequence of instructions. This model is based 

on the assembly language level of computer architecture. 

Symbolic Architecture Description Language (SADL) is 

Finally, Build, a LISP program which takes SADL 

Next, the 

described. 

architecture 

descriptions and generates functions and data structures for use in 

simulating architectures, is described. 
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Chapter 1 INTRODUCTION 

1 Introduction 

This thesis proposes a language for symbolically specifying the 

execution environment of assembly language programs. The assembly 

language level of description was chosen as it is the most abstract 

level which is still capable of specifying the instruction set 

functionality of a computer. Higher level abstractions, such as 

compilers and interpreters, no longer allow explicit access to the 

physical machine state, while lower level descriptions have little 

meaning to the software engineer. 

Computer Design, once an area of individual artistic expression, is 

becoming the result of systematic cooperation between the members of a 

team, often a large team, frequently aided by automated design tools. 

Members of the design team must be able to communicate with each other, 

and with their design tools, without ambiguity, and to this end a 

number of formal languages have been developed for the description of 

computer systems. 

It has become a truism that a computer system consists of a number of 

layers, each describable in terms of a particular model. In this 

thesis, we shall find the level described by the ISP (Instruction Set 

Processor) model [Bell71] to be the most useful. A computer 

architecture defined in terms of this model would comprise: 
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(i) a set of registers, 

(ii) a memory which contains the encoded instructions, 

(iii) a set of functions which 

(a) produce the effective address for obtaining and 

storing the operands and 

(b) specify the actions required to implement the 

instructions. 

(iv) a finite state machine which defines the loading, 

interpretation and execution of instructions defined for 

the architecture. 

There are two approaches to modelling an architecture at the ISP level. 

The traditional method (adopted in the specification language ISPS 

[Barb81]) is a mechanical view: the architecture is viewed as a 

structure consisting of registers and decoding functions which operate 

on the machine code of the architecture. 

The second approach is a symbolic view: it is derived from the 

Assembly Language model of architecture. It ignores the mechanics of 

encoding and decoding - the instruction is only ever represented in 

symbolic form - and models the decode and execute cycle as a language 

interpretation cycle. 

Why use the symbolic approach? 

1. It is the natural tool for software engineers. 

A software engineer who programs an architecture directly (as 
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opposed to using a high level language) makes use of the symbolic 

level and an Assembler. The costs of programming in machine code 

versus assembly language and the functional equivalence of the two 

means that machine code programming has been superceded by assembly 

language programming, except possibly for some extremely 

specialised applications. 

2. It is a natural pedagogic tool. 

Because people are familiar with the symbolic approach to 

architecture, it is easier to comprehend architectures when 

expressed symbolically. This is important when attempting to learn 

new architectures, when comparing two architectures 

evaluating an architecture. 

3. It allows direct simulation of the symbolic program. 

or when 

The normal process when simulating the execution of programs on a 

particular architecture is to write the programs (normally in 

assembly language), translate them into the machine code for the 

target architecture and run them on a simulator which emulates the 

instruction and register sets of the target machine. 

Having the architecture specified symbolically bypasses the 

translation phase as the assembly language program may be executed 

directly by the simulator. This saves programmer time and 

therefore saves money. Balanced against this is the increased cost 

in processor time of executing an interpreted program rather than a 

compiled program. Also, the symbolic tracing of instruction 
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execution is simplified and protection mechanisms against faulty 

programs are easier to install; for instance it would be 

impossible for a running program to try executing data, an 

occurrence common in out-of-control machine code programs. 

4. It can fully specify the register set of an architecture, and 

external lines may also be modelled indirectly as registers. The 

symbolic approach allows the register set of an architecture to be 

specified to the same detail as the mechanical approach to ISP 

specification. Thus there is no expressive capability lost when 

using the symbolic approach over the mechanical approach. 

5. Fundamental to the symbolic approach is the fact that each machine 

instruction has one equivalent symbolic instruction and that the 

functionality of both is the same. This is a widely recognised 

view of pure assembly language (as opposed to macro-assembly 

language). 

Section 1.2 of chapter 1 examine8 four languages which are used, or 

have been proposed for use in describing the instruction set processor 

level. Two of the languages, LISP and VDL, deal with instruction set 

processors at the symbolic level while the other two languages, Pascal 

and ISPS, deal with the machine code level. 

Chapter 2 proposes a model of computer architecture which is centred on 

the view of an executing program within a machine. The model is based 

upon the stored program concept with a single execution unit and single 
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instruction and data streams; this excludes architectures based upon 

array and vector processing as well as systolic architectures. 

Chapter 3 defines both the syntax and semantics of the Symbolic 

Architecture Description Language (SADL) and shows the capabilities and 

restrictions of the current version of the language. 

Chapter 4 describes software which processes a description in SADL and 

produces a set of data structures and functions which may be used to 

simulate the architecture when provided with an assembly language 

program. It is an application intended to test the validity of SADL. 

1.1 Multi-level Architectures and Virtual Machines 

One of the major concepts that has evolved in computing in the last 

fifteen years has been the view of a computer system as a layered 

hierarchy of abstract machines. At the top of the hierarchy are user 

applications and at the bottom is the physical specification of the 

electronic components which combine to form the hardware. 

Each level may be viewed (more or less) as a complete architecture 

independent of those levels in the hierarchy either above or below 

it. This view is invaluable in simplifying the task of designing or 

analysing computer systems. 
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There are differing views as to what constitutes each layer, but 

Siewiorek, Bell and Newell [Bell71,Siewiorek82] have proposed a 

layering that suits the author's purposes and is quite widely 

recognised. I shall refer to this as the Bell model. 

In the Bell model there are four main levels which are subdivided 

into sublevels. The main levels are: Circuit level, Logic level, 

Program level, PMS level. 

The only level of relevance to the software engineer is the program 

level, because this level is broken down into the ISP (Instruction 

Set Processor) sublevel, and the High Level Language sublevel which 

is itself broken down into Operating System, Run-time System, 

Application Routines and Applications Systems sublevels. 
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Example 1.1 

I -----------------------------------------------------------, 
PMS 

I -----------------------------------------------------------, 
Program High Level 

Language 

Applications Systems 

I I ,------------------------, 
Applications Routines I 

I I ,------------------------, 
Run-time System 

I I ,------------------------, 
Operating System 

I I I ,-------------------,------------------------, 
Instruction 

Set Processor 

I -----------------------------------------------------------, 
Logic 

I -----------------------------------------------------------1 
Circuit 

I -----------------------------------------------------------, 

7 

The Assembly Language sublevel fits into the hierarchical view just 

above the ISP sublevel and below the Operating System sublevel 

(although Tanenbaum [Tanenbaum76] views the assembler level as being 

above the operating system level). 

The reasons for placing Assembly Language at this point in the 

hierarchy are these: 
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(i) In the abstraction process, information is hidden or 

lost. Anything that may be specified by an Assembly 

Language program may be specified in greater detail at 

the ISP sublevel; this indicates that the Assembly 

level is an abstraction of the ISP sublevel. 

(ii) Similarly, an Operating System is a composition of 

concepts expressible in Assembly Language. Its 

component subroutines, coroutines, and programs are 

built up from assembler-level instructions, either 

directly or (as in the case of UNIX and Burroughs' MCP 

which are written in high level languages) indirectly. 

Where do compilers, which bypass the assembler level and directly 

produce code at the ISP level, fit into the model? Their mapping 

from a particular level in the hierarchy of abstract machines to 

another, lower level may bypass one or more levels. However the 

number of levels which a compiler bypasses does not invalidate the 

hierarchical structuring of abstract machines. 
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1.2 Current Architecture Description Languages 

There currently exist a considerable number of languages for 

describing computer architectures at various levels. Most of these 

straddle the Register Transfer and the ISP levels. There seem to be 

almost no generally recognised languages which approach the ISP level 

from the language (or symbolic) direction. 

Subrata Dasgupta [Dasgupta82] surveys a group of languages which he 

calls Computer Design and Description Languages (or CDDLs). The 

survey concentrates on ISPS, S*A and the CONLAN extensible language 

system. 

Two points made by Dasgupta are significant. The first is that at 

the time of writing (1982) CDDLs had not been generally accepted by 

the computer design community. The second point is that the majority 

of CDDLs that have been proposed have fallen into the Register 

Transfer level of description. This is partly true of most of the 

languages described here although they all have applicability at the 

ISP level. Only LISP and VDL have the ability to specify 

architecture at the symbolic level. 
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1. 2.1 ISPS 

ISPS is the single most influential language for specifying 

processor 

registers. 

architecture in terms of the instruction set and 

When Bell and Newell first formulated their layered model of 

abstract machine descriptions they developed a pedagogic language 

with which they illustrated the instruction set processor model. 

The language that they created was called ISP, the same name as the 

level of abstract machine that was being described. ISP was a 

descriptive tool rather than a formal language and thus suffered 

from shortcomings which led to a short period of evolution. The 

resulting language was adopted for use in various applications 

[Barb81] and has come to be known as ISPS. In its most recent form 

it was used by Bell, Newell and Siewiorek in the update of the 

original Bell and Newell text. 

In ISPS an architecture consists of collections of entities and 

carriers the interfaces between which and behaviour of which are 

described. An entity is a unit of hardware. A carrier is a 

storage location (register or memory) used for communicating 

between entities. The interface describes the number and types of 

carriers used to store and transmit information between entities. 
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The behavioural aspects of entities are described by procedures 

which specify the operations carried out by each entity. 

A carrier is described by naming the carrier and specifying its 

word dimension and array dimension. 

Example 1.2 - M\Memory[0:4095]<0:11>. 

specifies a carrier named M with an alias Memory; the alias is 

intended to document the meaning or usage of a carrier's name. The 

square brackets indicate that the carrier is an array of cells 

where the first cell is named O and the last cell is named 4095; 

N.B. the cell indices are names not numbers. The angle brackets 

indicate the structure of the individual words to be 12 bits named 

0,1, ••• ,11. 

Procedures contain data, control operations, and local entities 

which may be of arbitrary complexity. Each procedure has 

associated with it a carrier of the same name as the procedure and 

with a structure specified by the procedure. This is the mechanism 

for explicitly returning information from procedures; when a 

procedure is invoked it performs its operations and the value 

returned from the procedure is accessible from the carrier of the 

same name. 

ISPS is designed to describe more than just the instruction set 

processor view of the architecture, it is able to describe 
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architecture from the logical level up to the ISP level. In this 

respect ISPS has been significantly expanded in its purpose from 

the original language ISP. 

However, the following description of ISPS will deal only with 

those aspects of the language that are used to describe instruction 

set processors. 

An ISPS description is broken into a series of sections of the 

form: 

**section.name** 

<declaration>, 

<declaration>, 

**section.name** 

<declaration>, 

<declaration>, 

This grouping of sections is purely a documentation device and the 

section headings have no semantic content. Section names are 

arbitrary names intended to convey 

declarations immediately following. 

declarations separated by commas. 

information about the 

A section is a list of 
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There are two types of declaration: the carrier declaration and 

the procedure declaration - The carrier declaration has the form of 

the memory declaration given previously with the additional feature 

that a carrier may be associated (as a synonym) with part of 

another carrier: 

Example 1.3 - The PDP-8 extended accumulator is defined thus 

LAC <O:12>, 

L\Link<> 

AC\Accumulator 

:= LAC<O>, 

:= LAC<1:12> 

The expression<> indicates a single, unnamed bit. Notice that 

there are three distinct declarations in the above example and that 

the indentation is purely a typographical tool chosen to convey the 

idea that the second two declarations are associated with the 

first. 

Exaffiple 1.4 - PDP-8 Page zero format: 

P.O\Page.Zero[0:127]<0:11> 

A.I\Auto.Index[0:7]<0:11> 

:= M[0:127]<0:11>, 

:= P.0[8:15]<0:11> 

In this example the first declaration associates a carrier with a 

part of the memory array (see Example 1.2) while the second 

declaration associates another carrier with part of the first 

carrier. This illustrates how carriers may be hierarchically 
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structured. 

Procedures are of the form: 

procedure.name:= 

BEGIN 

<statements> 

END 

Statements may be grouped either sequentially or concurrently. A 

sequential ordering is indicated by the keyword NEXT while 

concurrent clustering is indicated by a semicolon ( ";"). 

A sequential group of statements: 

<statement group 1> NEXT 

<statement group 2> NEXT 

A concurrent group of statements: 

<statement 1> 

<statement 2> 

The statements separated by semicolons may execute concurrently in 

an asynchronous manner but all statements immediately preceding a 
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NEXT must be completed before any statements following may begin 

executing. 

The following example is a complete ISPS function and illustrates 

several aspects of the language. 

Example 1.5 - PDP-8 effective address calculation: 

eadd\effective.address<0:11> := 

begin 

Decode pb => 

begin 

0 := eadd = '00000@ pa, 

:= eadd = last.pc<0:4>@ pa 

end NEXT 

if ib => 

begin 

!page zero 

!current page 

!indirect bit 

if eadd<0:8> eqv #001 !auto index 

=> M[eadd] = M[eadd] + 1 NEXT 

eadd = M[eadd] !indirect addr. 

End 

End, 

ibis the indirection bit; _E£ is the page bit. 

The Decode operation is equivalent to the Pascal CASE statement. 

The=> token serves as a delimiter for both the Decode and the 

conditional constructs; In the former it delimits the carrier 
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being decoded (and is redundant), in the latter it is the 

equivalent of then in Pascal. The:= token delimits constants in 

the Decode construct. The IF test is false if the expression being 

tested resolves to zero. 

operator. 

The operator @ is the concatenation 

Note that eadd has a carrier component as part of its declaration. 

A typical use of the carriers associated with procedures would be: 

Example 1.6 - PDP-8 Increment and Skip if Zero instruction 

BEGIN 

END 

M[eadd] = M[eadd()] + 1 NEXT 

IF M[eadd] eql O =>PC= PC+ 

This instruction increments the addressed memory. 

The effective address is computed once by invoking the function 

eadd() and from then on the value of the effective address is 

available from the carrier eadd. 

In Example 1.5 the memory is accessed in an assignment statement 

where both sides of the assignment refer to the carrier eadd not 

the function eadd. One of the problems with ISPS is this ambiguity 

as to whether the function is being invoked or the associated 

carrier is being referenced. 
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Note that procedures may have parameters, though this is not shown. 

Other components of ISPS are: 

logical operators: and or not xor eqv 

arithmetic operators: + - */mod 

relational operators: eql lss leq neq geq gtr tst 

shift operators: slO sl1 sld slr srO sr1 srd srr 

number bases: ' (binary), # (octal), " (hexadecimal). 

= is the logical assignment operator. Truncation or zero 

extension is performed on the value on the right hand 

side to fit the destination on the left hand side. 

<= is the transfer operator. Truncation or 

extension is performed on the right hand side to fit 

the destination on the left. 

The three ways of exiting a procedure invocation are leave, 

restart, and resume. 

Leave entityname -

terminates the named entity. The only restriction is that 

the statement must occur within 

(activation) of the named entity. 

resume entityname -

the 

returns control to the specified entity. 

restart entityname -

dynamic scope 

terminates and reactivates the named entity (effectively a 
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combined leave and resume). 

The arithmetic operators are modified in their function by re­

presentation modifiers. The following arithmetic representations 

are supported: 

Modifier 

{TC} 

{oc} 

{SM} 

!us} 

The usage is: 

Representation 

Two's complement 

One' complement 

Signed magnitude 

Unsigned magnitude 

M[eadd] = M[eadd()] +{SM) 1 

The modifier affects the arithmetic operator immediately preceding 

it. 

The control clauses are specified by IF, REPEAT and DECODE. 

IF <expression>=> <stmt> 

If the expression does not evaluate to zero then <stmt> is 

invoked. 
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REPEAT <stmt> 

The statement is continously executed. If it is to terminate then 

one of the control transfer statements LEAVE, RESTART, RESUME must 

be present within <stmt>. 

DECODE <carrier>=> <selector block> 

This statement evaluates the contents of <carrier> and executes 

the appropriately labelled branch of the <selector block>. 

ISPS is a flexible language with considerable expressive power 

both for instruction set processor descriptions and for the lower 

levels of the abstract machine hierarchy. 

ISPS has been highly successful and has been applied to: 

The evaluation and certification of instruction set processors. 

VLSI design automation. 

Automatic generation of assemblers. 

Production Quality Compiler Compilers. 

Symbolic execution of ISPS descriptions. 

Functional fault simulation. 

Despite this wide application ISPS is not perfect. Dasgupta lists 

several drawbacks of the language, two of which are relevant to 

this thesis. 
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The first is stylistic. ISPS employs familiar symbols in an 

unfamiliar manner. 

normally used as 

delimit the names 

The examples given are := and J_• The first is 

the assignment operator whereas ISPS uses it to 

of entities or labels. The J_ is almost 

universally used to denote sequential ordering but in ISPS it is 

used for the opposite purpose of specifying concurrent execution. 

The second drawback is a more limiting one - ISPS has few data 

types. Dasgupta identifies the "register" and the "memory" as the 

only data types supported by ISPS. The author feels that a type 

"bit", the one indivisible unit of storage should be included too. 

There is no facility in ISPS for producing composite data 

structures from collections made up of the base types as in Pascal 

and this does tend to limit the ease with which complex register 

structures may be described. 

The main limitation of ISPS, in the context of this thesis, is 

that ISPS has no facilities for integrating the symbolic Assembly 

Language level into the ISPS description. The essence of ISPS is 

to describe the machine code view of the ISP model. The lack of 

Assembly Language constructs means that an Assembly Language 

program is unable to be represented within ISPS without extensions 

to the language. 

Because ISPS represents a machine code description, the extension 

to ISPS would need to be a complete description driven Assembler. 

This is a non-trivial exercise. There are problems of instruction 
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naming, access methods and their assembler formats, as well the 

generality necessary to support 

that indicate it is easier to 

a wide variety of architectures 

build the assembly language 

definition and then derive the ISPS description from it. Attempts 

at standardising even Assembly Language mnemonics have not 

produced entirely satisfactory results [Fischer79,Distler82]; 

standardisation of access methods would be much more difficult. 

1.2.2 The Vienna Definition Language 

The Vienna Definition Language (VDL) was originally designed to 

specify the syntax and the semantics of PL/1. It is a language 

"for defining interpreters rather than compilers" [Wegner72]. 

LISP, and in particular the technique of language definition 

illustrated by the APPLY function, was an important influence in 

determining the approach to language definition of VDL. This :Ls 

noticeable when examining VDL expression trees. 

VDL has subsequently been applied to the specification of other 

languages such as Algol-68 but has not generally been widely 

applied. One author [Spitzen76] derides the VDL description of 

PL/1 as being "lengthy, unintuitive, and itself a program." 
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Another, [Lee73], describes the use of VDL as a tool for 

describing a machine at various levels of abstraction down to the 

register transfer level. The architecture of the example given in 

Lee's paper was too limited to fully evaluate the applicability of 

VDL to describing arbitrary computer systems but there is 

certainly reason to believe that VDL does indeed have the power. 

The stumbling block appears to be the general lack of acceptance 

of VDL and the "unintuitive" structure of the language. This 

structure would probably not be so much of a problem to people who 

have extensive grounding in Language Theory. It is also possible 

that VDL has been ignored not because of inherent limitations of 

the language itself but rather because it is associated with the 

generally unsuccessful languages PL/1 and Algol 68. 

In VDL an architecture is modelled as a finite state machine with 

a set of states containing information on the data being 

manipulated (registers) and the instructions which define the 

transformations to be executed over the data. A function will 

interpret and execute the instructions in the current state of the 

machine. 

Within the definitional machine (the VDL program defining the 

target architecture) there is a component known as the "control 

stack". This stack contains the set of instructions which are 

awaiting execution and which, when executed, model the execution 

of instructions in the target architecture. The "control stack" 
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may be viewed as a tree in which the nodes are definitional 

instructions. 

Only instructions at the leaf nodes may be executed; this means 

that an instruction at a given node in the tree is inhibited from 

execution until all its offspring instructions have been executed 

(and therefore removed). 

Definitional instructions are executed either as macro-expansions 

or as state-modifiers. In a macro-expansion the instruction 

replaces itself in the control stack (tree) by a subtree, thus 

modelling the transition in definitional level or the sequencing 

of operation. State modifiers alter the state of the machine 

(other than the control stack), thus modelling operations upon 

registers. 

A definitional instruction may contain several definitions but 

only one is applicable at any one time. 
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The general form of a definitional instruction is: 

instr(q1, q2, ••• ,qn) = 

p1 -> group1 

pm-> groupm 

.E_1•·•.E_m are predicate expressions that select alternative actions 

(group1 ••. groupm) • .9..1 ••• .9..n are parameters that may occur in ..:e_i or 

groupi and that are replaced by values before the instruction is 

executed. The execution of the instruction causes the current 

state to be transformed by the action groupi corresponding to the 

first true predicate .P_i· 

Where a group is a macro-expansion, the notation shows the set of 

instructions which replace the instruction being executed. The 

form which is used indicates the structural relations between the 

instructions. 

- indentation indicates a lower level in the tree. 

- comma(",") indicates continuation of a level. 

- semi-colon(";") indicates completion of a level except 

where the instruction that the semi-colon follows is the 

last in the macro-expansion in which case it is 

unnecessary. 
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Example 1.7 

inst-1; 

inst-2; 

inst-3; 

inst-4 

INTRODUCTION 25 

The order of execution is from the leaf node (inst-4) to the root 

node (inst-1). 

Example 1.8 

inst-1; 

inst-2, 

inst-3, 

inst-4 

Instructions at the same level are executed asynchronously, so 

inst-2, inst-3, inst-4 will each execute independently but inst-1 

will not be able to execute until all of the other instructions 

have completed. 

Normally, the control tree structure is represented linearly using 

braces to indicate subtrees: 
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Example 1.9 

inst-1; 

inst-2, 

inst-3; 

inst-4, 

inst-5 

is equivalent to: 

linst-1 linst-2 inst-3 {inst-4 inst-5} } } 

26 

State-modifying definition groups specify changes to the state of 

the definitional machine. Each group consists of a set of 

selector: value pairs. Selectors represent states in the machine 

and the values are functions with parameters. 

modifying instruction would be: 

A typical state 

pc_to_mar = 

s-mar : s-pc( E) 

which means "replace the contents of the s-mar component of the 

state Eby the contents of the s-pc component of the state E. 

To overcome problems of timing with the pairs (which are 

asynchronous) the new state is defined to be a copy of the old 

state rather than a modification of it. 
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Example 1.10 - 3-bit rotate 

shift= 

bit-0.s-acc 

bit-1.s-acc 

bit-2.s-acc 

bit-1.s-acc(E) 

bit-2.s-acc(E) 

bit-0.s-acc(E) 

( "" means component of) 
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If the new state were not defined to be a copy of the old state 

then the above instruction group would be meaningless because the 

original value of one of the bit components must be lost, there 

being no guarantee that all operations will (or can) occur at the 

same instant. 

In [Lee73] a simple computer architecture (the "Blue Machine") is 

described which is similar to that of a PDP-8. Its state may be 

defined by the predicates: 
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Example 1.11 

is-E = ( <s-mem is-memory>, 

<s-mbr is-word>, 

<s-acc ( <s-link is-bit>, 

<s-body is-word> ) >, 

<s-mar ( <s-ma is-word-address>, 

<s-pa is-page-address> ) >, 

... ) 

where each of the pairs specifies the name of the branch on which 

the component is located and the structure of the component. The 

above example describes the architecture at the register transfer 

level. 

is-word= ( { <bit(i) is-bit> 0 <= i <= 11 } ) 

defines a structure composed of a set of pairs, the object of each 

of which is a bit and the selector of which is the form bit(i) 

where the value of i is in the range \0,11}. This effectively 

defines a 12-bit word. 

This explanation cannot do justice to the power of VDL and is only 

intended to impart a feeling for the way that VDL may be applied 

to architecture description. 
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1.2.3 LISP 

Lisp has been put forward as a language suitable for specifying 

computer instruction sets [Cragon83]. It is stated that the LISP 

environment has the ability to describe components of the 

architecture, such as registers, operations control, 

symbolically with the benefit of being able 

and 

to edit the 

architecture using the interactive editor available as part of the 

LISP environment. The example architecture given in Cragon's 

paper indicates that this is so, but the architecture being 

modelled is reasonably simple. 

The basis of the argument is that the functionality of the 

instructions may be directly encoded using LISP functions. 

Example 1.12 - for the RISC-1 instruction: ADD RS,S2,RD 

the defined operation is : RD<- RS+ S2 

this may be encoded in LISP as 

(DEFUN ADD (RS S2 DEST) 

(SETQ RD(+ RS S2)) RD<- RS+ S2 

(STORE (REG (EARD DEST)) RD) store RD 

(SETQ PC (ADD1 PC)) advance Program Counter 

) 
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The RISC architecture is described in [Patterson82]. 

The operations specified (such as addition, subtraction and the 

logical operators) are performed using the operators available 

within MACLISP. The implementation restricts the wordlength of 

the architecture being modelled to less than the wordlength 

supported by the LISP environment. 

Memory and array registers are defined by declaring them to be 

LISP arrays. 

Example 1.13 

(ARRAY MEM T (EXPT 2 16)) 

(ARRAY REG T 138) 

The T indicates that each element may contain an arbitrary 

s-expression (list). 

Writes to memory are accomplished by: 

(STORE (MEM EA) X) 

where Xis the data and EA is the effective address. 
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A series of functions specifies the control operations of the 

architecture; The assembly language format (contents of MEM) is: 

(OP sec DEST SOURCE1 IMM SOURCE2) 

OP is the opcode mnemonic; 

sec is the "set condition codes" enable bit; 

DEST is the destination register address; 

SOURCE1 is the first source operand register address; 

IMM indicates whether or not the SOURCE2 field is a register 

address or constant value. 

The functions: 

(DEFUN IFS (PC) ••• ) - loads the instruction register with the 

symbolic instruction located in the memory location 

pointer to by the program counter. 

(DEFUN DECODE (IR) ••• ) - extracts the values from the field 

entries for the instruction. 

(DEFUN DISPATCH() ••• ) - This is a single case statement which 

invokes a different function for each instruction of the 

architecture. 

(DEFUN SET-PSW (RD) ) - A two bit program status word was 

defined in the article with this function being used to 
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set the values. The model of the architecture is 

dependent for its information on the fact that the LISP 

precision is greater than the precision of the destination 

register in the target architecture as the psw is modified 

separately from, and after, each instruction execution. 

This could not apply to a two, or less, operand 

architecture as information would be lost. 

The function RUN emulates the finite state machine which causes 

the initial status of the machine to be set up and the IFS, 

DECODE, DISPATCH loop to be continuously executed until a STOP 

instruction is encountered. 

The result is a specification of the ISP for RISC-1 which is 

directly executable within a LISP environment and so may be 

immediately evaluated and modified in an iterative manner. 

This solution appears to be an ad-hoc one. It has a number of 

limitations, some of which are not mentioned in the paper. The 

limitations are: 

1. The RISC architecture is not typical of computer 

architectures as the register structure, the effective 

address calculations, and the operations performed by 

the instructions are unusually simple; the RISC-1 is 

only slightly more complex than a Motorola 6800 or 

Intel 8085 microprocessor. 
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2. Using the arithmetic precision of MACLISP limits the 

architectures which may be specified. Architectures 

with words longer than 32 bits may not be specified 

using the numeric precision available in MACLISP. 

This eliminates the CDC 6600 and the Burroughs 6000 

family, for example. 

3. The use of LISP arrays for defining register arrays 

would cause problems in specification. This is 

admitted in the paper where a 64 Kword subset of the 

32 bit address space is used because of MACLISP's 

inability to support arrays larger than 64 Kwords. A 

sparse matrix implementation could be one approach to 

solving this problem. 

4. The assembler format is not properly defined. There 

is no mapping from the assembly language format shown 

in the instruction specification table to the 

representation stored in the memory registers. A 

front-end would be required to take assembly language 

statements and extract the operands (from text 

indicating the effective address calculation method) 

that are stored in the memory word. 

5. All instructions fit within a single word; 

increasingly unrepresentative of modern 

this is 

computer 

architectures where the number of operands varies from 
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instruction to instruction. Processors which would be 

unable to be defined because of this limitation 

include most microprocessors and some minicomputers, 

such as the Prime 750. 

6. LISP is not an intuitive language for specifying 

instruction set processors. It is possible to specify 

very similar architectures using completely different 

specification functions. The converse may also be 

true. 

The reasons for this are twofold: first is that LISP 

is not one single language but a group of dialects, 

each with their own peculiarities; specifications 

written in LISP would have no hope of being portable. 

Second is that LISP is a general purpose language with 

functional redundancy built into it; in different 

dialects of LISP there are three forms of choice 

function (COND, IF, CASE), a similar number of loop 

functions, and various methods of extracting items 

from lists and performing assignments. Special 

purpose languages, such as ISPS, have the benefit of 

being targeted at a specific application and being 

able to eliminate the redundancy in LISP. 

If LISP is to be used as a specification language then the 

following aspects of its use should be standardised: 



Chapter 1 INTRODUCTION 35 

1. A non-redundant subset of LISP functions to be used 

when specifying an architecture. 

2. The register specification technique (LISP arrays or 

sparse arrays). 

3. The calculation of effective addresses. 

4. The numeric precision of 

operations. 

arithmetic and logic 

The final points made in [Cragon83] are that the functional 

specification in LISP may be expanded in detail as the model 

descends through the levels of abstract machine description. LISP 

shares this feature in common with VDL and as such has much to 

recommend its use as a specification language. It is also a 

significantly more flexible language for describing architectures 

than the traditional approaches such as ISPS and Pascal. 

Even if the drawbacks of LISP were removed, the author feels that 

LISP is not an attractive description tool because of its visual 

style and textual density; people who are not used to LISP 

notation would find it an impossibly obscure way of specifying an 

architecture. 
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1.2.4 PASCAL 

[Wakerly80] has suggested that the Pascal programming language, 

with some extensions, could be suitable for specifying computer 

instruction sets and points out that, although the extended Pascal 

has no more power or functionality than ISPS, it is a more 

familiar tool and so is more useful in teaching situations. The 

extensions are the following: 

Numbers: unsigned binary, octal and hexadecimal numbers are 

recognised. 

Data types: the data type BIT has been added to the language. 

Arrays: Pascal has been extended to allow for subarrays, defined 

as "an ordered, contiguous subset of the array" to be 

referenced. Subarrays are restricted to one dimensional 

arrays. 

Operators: the concatenation operator "l" has been added, It 

produces a bit array the length of which is the sum of the 

lengths of the arrays that have been concatenated. The 

addition("+") and subtraction ( 11
-

11
) operators have been 

extended to perform two's complement arithmetic on bit 

arrays. 
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Built-in Functions: The following standard functions have been 

added to the language -

Type 

BINT - converts a bit array into an unsigned integer. 

BITS - converts a non-negative integer into a bit array 

of specified length. 

BCOM - complements the elements of a bit array. 

BSHL - performs a left shift on the elements of a bit 

array. 

BSHR - performs a right shift. 

BAND - performs a logical AND on the elements of two bit 

arrays of the same length. 

BOR - performs a logical OR on two bit arrays. 

EXOR - performs the exclusive-OR on the two arrays. 

BADD - converts two bit arrays to unsigned integers and 

performs an unsigned addition upon them. 

conversion: The elements of an expression with a mixture of 

bit arrays, integers and constants are converted to bit 

arrays before being evaluated. For assignment of a bit 

array to an integer, the bit array is converted to an 

integer before being assigned. For assignment of an 

integer to a bit array, the integer is converted to a bit 

array before being assigned. 

Iri many respects Pascal is a good language for specifying ISP's. 

It is a mainstream language well enough known not to cause people 
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too much trouble in comprehending descriptions. It has a rich set 

of data types and structures capable of expressing complex machine 

states. It is capable of structural abstraction with its TYPE 

facility and it is capable of defining functional behaviour of 

arbitrary complexity. 

The language is reasonably compact. A fully functional 

specification of the PDP-8 architecture was 144 lines of Pascal 

code [Wakerly80] versus 175 lines of ISPS code [Siewiorek82] so 

the two are approximately equal in information density, the 

difference being attributable to differing coding styles. 

The limitations of Pascal are mainly those ones designed into it 

by Nicklaus Wirth; its lack of flexibility regarding data type 

coercion, its lack of string handling 

limitations with regard to input and output. 

facilities and its 

A more important flaw with the proposed extensions as they stand 

(for the purposes of this thesis) is that there is no facility for 

tying Assembly Language descriptions into the model of the 

architecture. Pascal is not a good language for performing that 

function largely because of its lack of string manipulation 

capabilities. 

Pascal is intended to describe the ISP level only although, like 

ISPS, it is able to express lower aspects of the architecture. 
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Architectures which may be modelled are limited by the arithmetic 

precision and wordlength of the host architecture, In the paper 

this is defined to be 64 bits or greater and as such would be 

unlikely to limit the range of architectures able to be described 

by the language, 

Like LISP, the extended Pascal computer description may be 

directly executed and evaluated, but unlike LISP it needs to go 

through a translation process first. Also unlike Cragon's LISP 

approach the extended Pascal system works purely at the ISP level 

and so an assembly language program must also go through a process 

of translation to turn it into a bit stream which is then loaded 

into the appropriate registers before execution. 

In the description of the PDP-8 architecture given in [Wakerly80] 

the states of the machine are represented by variables while the 

behavioural aspects are represented by procedures and functions: 
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Example 1.14 - The PDP-8 Effective Address calculation procedure. 

{Calculate Effective Address Register} 

PROCEDURE CalcEAR; 

BEGIN 

IF IR [pb] = 0 

THEN {page o} 

EAR:= 0 [0::4] I IR [pa] 

ELSE {current page} 

EAR:= lastPC [0::4] IR [pa]; 

IF IR [ib] = 1 THEN {indirect address} 

END; 

BEGIN 

IF EAR [0::8] = 1 THEN 

MEM [EAR] := MEM [EAR]+ 1; (auto increment} 

EAR : = MEM [EAR]; 

END; 

A comparison of this example with Example 1.5 shows immediately 

the similarities and differences between extended Pascal and ISPS. 

The major value of extended Pascal is in the wealth of data 

structures available and the resulting structural complexity that 

may be described along with the structural abstraction capability 

available with the TYPE facility. These two facilities are shared 

only with the programming language C. C has the additional 

advantages, though, of having flexible string handling facilities. 
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Pl/1 has more flexible string handling facilities and better I/O 

facilities than Pascal but lacks the data abstraction capability. 

1,3 Summary 

In this chapter I have stated the goal of this thesis and have 

described the way in which some existing languages contribute to 

this goal, Each language has been shown to be deficient in some 

particular way for our purposes: ISPS and Pascal are mechanistic 

languages without the language structures to support symbolic 

specification; VDL, though a powerful symbolic language for 

specifying interpreters, is not widely known and has a structure 

which is widely dissimilar to the mainstream programming languages; 

LISP is less powerful than VDL but has a similar functionality 

although the style is again sufficiently dissimilar to mainstream 

programming languages to be difficult to learn. 

The goal of the thesis has been stated as being an attempt to devise 

a language which allows the symbolic definition of arbitrary ISP 

architectures. None of the languages described present a coherent 

model of symbolic ISPs although VDL comes close by subsuming the ISP 

model into its general model of language interpreters. 
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2 A Conceptual Model of Architecture 

The model as formulated is intended to describe the parts of a computer 

that a running program "sees" at the level of symbolic machine 

instructions (the "assembler" level). There is a one for one 

correspondence between instructions at this level and the instructions 

executed by the physical machine but the detail of how the instructions 

are encoded is avoided and so the model is significantly simpler than 

other descriptive models such as ISPS. This view of architecture is 

oriented toward the software engineer. 

In the conceptual model an architecture consists of four domains: 

the instruction set domain 

the register set domain 

the access method domain 

the data types domain 

A domain is an autonomous component of an architecture; the name is 

drawn from an analogy with a four dimensional matrix where the 

instruction set, register set etc. each make up a single domain. 

The execution of an instruction involves making changes to the register 

domain (also called the state space). Instruction execution starts 

from a known state in the register domain and continues until another 

position is reached which inhibits execution. Each domain is discussed 
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separately below, as is the model of instruction loading and execution. 

2.1 A Model of Instruction Execution 

Fundamental to our model of execution is the concept that an 

"instruction execution cycle" is indivisible. This is actually the 

case in many computers, especially microprocessors, but not in some 

more complex computers, such as those with virtual memory. 

The reason for this is that the model is sequential: the instruction 

cycle consists of loading the next instruction to be executed, 

checking the asynchronous instructions (interrupts etc.) and 

executing any which are valid, then executing the synchronous 

instruction which has been loaded. During execution of the 

instruction, no other instruction may be active. 

There is no facility at all in the model for describing concurrent 

processing. All instructions are processed sequentially in the 

model, and the primitive operations within each instruction are 

executed sequentially. If concurrency does exist in the real 

architecture it may be converted to an equivalent sequential model. 

The architecture starts in some arbitrary but known state in which 

the Instruction Pointer points at the first instruction. The 
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instruction is interpreted and executed and the Instruction Pointer 

is modified to point to the next instruction to be executed. This 

continues until an instruction is executed which inhibits further 

interpretation and execution of instructions. Before the execution 

of each synchronous instruction any pending asynchronous instructions 

are interpreted and executed. 

The above requires there to be a special register designated as the 

Instruction Pointer. There is only one of these at any point in 

time, although any register may act as the Instruction Pointer. 

In an orthogonal model the instruction sequencing must be described 

in terms of access methods and register sets. Instruction sequencing 

is the specification of the method and order of accessing of 

instructions within the register space. 

Instructions may explicitly modify the Instruction Pointer and thus 

cause changes in the normal flow of control, If the change in the 

flow of control is to be temporary (as in the case of a subroutine 

call followed by a return instruction) the current instruction must 

have available the address of the next instruction before the current 

instruction is executed, This is achieved in ISPS by assigning the 

value of the Instruction Pointer (PC) to a register called LAST.PC 

immediately before modifying the instruction pointer; 

instance the true instruction pointer is LAST.PC not PC • 

in this 
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2.2 The Register Set Domain 

The register set domain represents the state space of an 

architecture. All locations explicitly addressable by a program plus 

those registers required to model external events or implicit 

internal events are contained in this domain. 

The Register is the indivisible addressable unit for the 

architecture. A register has a single dimension of word size. 

A Register Array is a contiguous group of registers with a generic 

name. The whole register array may be referred to by name alone 

while individual registers within the array may be referred to by the 

name followed by an expression yielding a positive index into the 

array. Registers are a special case of the register array. 

In the model there is no distinction made between register arrays 

that are contained within the processor and those external to it. 

This adds versatility when considering non-Von Neumann architectures 

without adding undue complexity to the simpler architectures. This 

is because of the increased flexibility in such things as addressing 

and instruction location. 
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Example 2.1 

The Intel 8051 microprocessor has three distinct address 

spaces - the ROM, on-chip RAM, and off-chip RAM. The same 

address may refer to any one of the three address spaces 

depending upon the value of a selection register; a program 

may be located in any or all of these address spaces. It is 

in this sort of architecture that the distinction between 

on-chip register arrays and off-chip register arrays is shown 

to be invalid. 

It is convenient to divide the register domain up into three 

organisational classes: 

The "explicit" register array which is specified in the 

manufacturer's data sheets and is explicitly addressable by 

instructions. This is the programmable state space of the 

architecture. 

The "implicit" register array which is used by 

instructions though not specified in the manufacturer's 

data. Implicit register arrays are used to model state 

changes which are not part of the explicit register set. 

An example of its use is to model external interrupts. 
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- The "referred" register array which provides a mechanism 

for reordering the explicit and implicit register arrays 

into logical groups for addressing purposes. The 

specification of the mapping of referred register arrays 

onto the physical state space should be in terms of access 

method expressions in order to maintain flexibility. 

Referred register arrays complete the modelling of a 

computer's state space. 

No distinction need be made in the model between any of the register 

classes. In the model they co-exist and operate in the same manner; 

their membership of an individual class is transparent to the 

operation of instructions. Data may be moved from any register to 

any other register as long as the 

restrictions are adhered to. 

normal register transfer 

When data is transferred to any register it will also be implicitly 

transferred to all other registers which map onto the target 

register. This is an important point to remember during any 

implementation of the model. 

All register arrays may be described in terms of two dimensions: 

word size this describes the width of individual 

registers in bits. This size may be a bit count or it 

could specify the range of selectable bits within the word 

thus giving an implicit ordering to the bits in the 
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register (indicating whether the most significant bit is 

the right-most or left-most bit). 

- array size - this describes the number of registers in the 

register array. Again, the array size may be a size 

indicator or an address range indicator. 

The word size dimension is distinct from the array size dimension in 

that the ordering of the bits contains an implicit ranking of 

importance with the largest numbered bit being defined as the most 

significant. 

In addition, it is possible for register arrays to overlap. If this 

is the case then the intersection must be specified. 

The model requires that any intersection between two register arrays 

must be complete: one must be a subset of the other. It is partly 

for this reason that referred register arrays are necessary. 

Because there is no restriction on the number of registers which may 

refer to the same physical location, the partial intersection of two 

register arrays may be specified by making them both be semi-disjoint 

subsets of a third (referred) register array. This enables the model 

of register intersection to be implemented without undue complexity. 
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Implicit registers may be treated as real registers; they may often 

reflect a real register in the internal structure of the 

architecture. They are needed because there are state transitions in 

an architecture which are not reflected directly in the explicit 

register domain, but which affect the operation of the architecture 

and so must be modelled. 

The register set domain is probably the least complex domain of the 

symbolic instruction set processor model. 

2.3 The Instruction Set Domain 

An instruction is a specification of the way in which the state space 

is to be modified. This specification is normally in the form of 

assignment operations with either unary or binary operators 

Example 2.2 

assignment R[n] <- R[ n-1 ] 

unary operator R[n] <- NOT R[n] 

binary op. R[n] <- R[n] - 1 

The right hand side of the assignment is an expression which yields a 

value; there is no limit on the complexity of the expression. The 
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left hand side must be a register or the concatenation of several 

registers. If more than one operation is performed by the 

instruction then each operation is expressed individually with the 

separate operations forming a sequential list: 

Example 2.3 - Z8000 LDD instruction 

MEM [ R[n]] <- MEM [ R[m] ]; 

R[n] <- R[n] - 2 

R[m] <- R[m] - 2 

R[o] <- R[o] -

0 <- ( R[o] = 0 ) 

As there is no facility in the model for expressing concurrent 

operations those operations which are concurrent must be converted to 

a sequential model before being expressed. 

Example 2.4 - 8085 exchange instruction: 

xchg HL <-> DE 

To model this sequentially it is necessary to introduce a new 

register: 

TEMP<- HL 

HL <-DE; 

DE<- TEMP 
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There are two classes of instruction; 

synchronous and asynchronous. 

they have 

51 

been named 

A synchronous instruction occupies register space, is located by the 

Instruction Pointer and is interpreted and executed. 

programmable component of an architecture. 

An asynchronous instruction does not occupy register space; 

It is the 

it is 

not dependent on being selected by the Instruction Pointer before 

being executed but is event driven. It is associated with an 

instantiation expression (a boolean expression generally involving a 

value in a control register) and is executed when that expression 

becomes true. It is generally limited to executing before the 

interpretation and execution of a synchronous instruction, although 

in some architectures some asynchronous instructions are able to 

break in on an executing instruction. 

asynchronous instructions. 

Interrupts and traps are 

Before the interpretation of any synchronous instruction all pending 

asynchronous instructions must be executed. An asynchronous 

instruction is pending when its instantiation expression is true. 

Very often registers associated with asynchronous instructions and 

their instantiation expressions are not listed in the manufacturer's 

data; they may be implicit registers needed to satisfy the 

requirements of the model. 
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Asynchronous instructions often cause a temporary transfer of control 

and so they must be able to store the location of the next 

instruction (i.e. the Instruction Pointer) in order to return 

control to the original instruction sequence. This is why they are 

defined to occur before the next synchronous instruction. If this 

condition did not apply then it would be impossible for asynchronous 

instructions (such as an INT instruction) to alter the Instruction 

Pointer in a controlled manner to coordinate program execution. 

In the event of more than one instantiation expression becoming true 

at the same time, the model is indeterminate. For this reason each 

asynchronous instruction must have a priority associated with it. 

The priority ordering may be explicitly encoded in the instantiation 

expression or it may be implicit in the ordering of the asynchronous 

instructions. 

In any implementation of the above model of instructions the 

following components would be essential: 

- a name for the instruction 

- a description of the operations performed 

In addition synchronous instructions require the following: 

- a list of the access method combinations permitted (every 

element in the list would contain an access method name for 

each variable in the instruction) 
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- a list of data type combinations permitted 

- An instruction template which describes how the 

instruction appears within the program text and lists the 

operands associated with it 

Asynchronous operations require: 

- An instantiation expression description 

Depending on the needs of the implementation a way of distinguishing 

between synchronous and asynchronous instructions is necessary; the 

exact mechanism is not pertinent to the discussion of the model but 

rather to the language used to implement the model. 

All operations performed by the instructions are specified by a small 

group of primitive operators from which more complex operations may 

be built. These operations are as follows: 

addition + and AND 

subtraction or OR 

multiplication* not NOT 

division I concatenation I I 
I I 

modulus MOD exponentiation ** 

assignment <- exclusive or XOR 

left shift LSH right shift RSH 

sign extension EXT 
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Note that the problem of differing data types has not been resolved. 

According to the model all data type information is contained within 

the data type domain but common experience with the above operators 

indicates that they are used only with specific data types. 

A distinction needs to be made between operand data types within the 

model and data types associated with the primitive operators. 

The primitive operators interpret a particular value differently 

depending on whether they are logical or arithmetic operators. All 

operators treat operands as vector values (the values are pure binary 

magnitude values with no sign component) except for the subtraction 

operator ( - ) which treats operands as two's complement numbers. 

The only operator which causes the state space to be modified is the 

assignment operator ( <- ). All other operators are functional; 

they return a value which is a function of the operator as applied to 

the operands. 

In concatenation, two or more registers of n bits are logically 

concatenated along the word boundary to produce a single register of 

n times m bits where mis the number of registers being concatenated. 

There is no requirement that any of the registers being concatenated 

be of the same word size but all register arrays must have the same 

array size. Thus two register arrays, one eight bits by four words 

and the other sixteen bits by four words may be successfully 

concatenated to form a single register array of twenty-four bits by 
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four words. 

The left shift operator propagates each bit in a register one 

position to the left. The original value of the left-most bit is 

lost and the value of the right-most bit remains unchanged. 

With right shift each bit is simultaneously copied to the next bit to 

the right. The left-most bit remains unaltered and the original 

value of the right-most bit is lost. 

Both left and right shifts are independent of the most significant 

bit polarity of the register. 

operators. 

Left and right shift are unary 

Assignment is possible between registers of differing sizes. When 

the assignment is necessary between two different length locations 

then the value held in the source register is either truncated or 

extended as may be required to match exactly the size of the target 

register. The truncation or extension is with respect of the most 

significant bit. 

Assignment recognises vector values only, so if the source register 

must be extended it will be zero extended. The EXT operator extends 

the most significant bit of the source register or expression to an 

arbitrarily long wordsize which is then truncated to fit into the 

target register. 
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Example 2.5 

ACCA is an 8 bit register, ACCX is a 16 bit register: 

after ACCA <- &10001011; 

ACCX <- ACCA 

ACCX will contain &0000000010001011 

after ACCA <- &10001011; 

ACCX <- ext ACCA 

ACCX will contain &1111111110001011 

after ACCA <- &00001011; 

ACCX <- ext ACCA 

ACCX will contain &0000000000001011 

56 
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2.4 The Access Method Domain 

When an instruction is interpreted and executed it may have variable 

operands. If so then there must exist an access method for 

specifying how each actual operand value is derived from the variable 

selector. 

Each access method description contains an access method expression 

which indicates the transformations required to obtain the operands. 

The expression tree consists of register specifiers, constants, 

parameter substitutes and basic operators. 

A register specifier locates an individual element of a particular 

register array. 

Because the instruction operands are variables which are assigned 

specific values in a program, actual values must be substituted for 

the formal parameters of each instruction occurring within a program. 

Parameter substitutes are the formal parameters. When a program is 

executed by the architecture the formal parameters of the instruction 

are replaced by the actual parameters of the instruction and an 

operand constant is derived. 

In modern complex instruction set computers, the number of operands 

for each instruction and even the number of components of each 

operand may vary considerably. This is because many modern 
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architectures, especially microprocessor architectures tend to cram 

as much functionality into each instruction as possible. The 

following are examples of modern, complex instructions: 

Example 2.6 

Motorola 68000: LINK and UNLINK instructions 

Intel 8086: REPT MOVS and LOOP instructions 

VAX: CASE SOBGEQ INSQUE REMQUE 

In many computers the state space may be modified as a side effect of 

using a particular access method; thus access methods are able (like 

instructions) to perform operations affecting the state space. At 

this point the difference between instructions and access methods 

becomes somewhat blurred (although the side effects are generally 

less complex than for instructions). 

The primitive operations specified in instructions alter the register 

space in a manner independent of the access methods used whereas the 

side effects of access methods alter the register space in a manner 

independent of the instructions using them. 

It is quite possible that both the access method and the instruction 

will alter the same registers. The alterations cannot be concurrent 

as that would make the system inconsistent, thus we require temporal 



Chapter 2 THE SYMBOLIC MODEL 59 

information incorporated into the access method expression. This 

could be done by splitting the access method expression into three 

related components; the first component would contain operations 

performed before the instruction is executed, the second would 

contain the operand derivation expression, and the third part would 

contain the operations performed subsequent to the execution of the 

instruction. 

Another approach would be to have a special identifier representing 

the derived operand value and to have an arbitrary sequence of 

operations of which one, and only one, must assign a value to the 

derived-operand identifier. 

This model is designed to be equivalent to ISP architecture at the 

symbolic (assembler) level and so each instruction will indicate, for 

each operand, the access method associated with that operand. 

Because there are many assembler languages in the world (more than 

one per machine architecture) it is necessary for the access method 

model to contain a template which enables it to determine the access 

method being used by a particular instruction in a program and to 

extract the actual parameter values from the operand expression. 

It is probably the implementation of the access method descriptions 

which will provide the greatest scope for variation in terms of 

implementation possibilities. 
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2.5 The Data Type Domain 

Of the four addresses described earlier, the first three may take on 

a variety of data types. The data types of source and target and 

even source1 and source2 need not match although it is extremely rare 

for them not to. 

Some common data types are: 

unsigned binary 

two's complement 

one's complement 

binary coded decimal (packed or unpacked) 

ascii (seven/eight bits) 

ebcdic (eight bits) 

floating point (a whole host of these) 

Data types are significant to the architecture because they alter the 

side effects of an instruction (such as the status registers 

affected) and they alter the operations of instructions themselves. 

In the model of the data type domain, there are no assumptions about 

the data type and any side effects caused by the use of a particular 

data type must be explicitly stated. Every value is nominally an 

absolute binary value. Once the instruction has been executed 

normally the data type expression is invoked to coerce the target to 
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have the correct value for the appropriate data type. As the data 

type expression may be required to perform arbitrary manipulations on 

the target it must have the same expressive capacity as the 

instruction specification expression with the same primitive 

operations affecting the register space and possessing full parameter 

substitution capabilities. 

The distinction between an instruction expression and a data type 

expression is marginal and it is quite possible to restrict the model 

to three domains by including both the instruction domain and the 

data type domain together. In fact this is normally done when 

specifying ISP's so that for each separate data type there is a 

separate instruction to perform any given function. This is 

demonstrated in the Motorola 68000 where the MOV instruction (for 

example) is specified separately for 8-bit, 16-bit and 32-bit data 

words. 

In assembly language models of architecture the problem of data types 

as a separate domain is rarely apparent due to the restricted set of 

data types available and the tendency to specify a single permissible 

data type for each instruction. The data type domain has been 

included in this initial exposition of the model for completeness and 

may not be included in implementations of the model. 
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3 SADL - The Symbolic Architecture Description Language 

SADL has been created to implement the model of computer architecture 

proposed in the previous chapter. There are some deviations from the 

model for the purposes of ease of implementation but the bulk of the 

language conforms to the model. 

The full syntax of SADL is given in Appendix but the following 

description utilises extracts from the syntax to illustrate the use of 

the language. 

brackets ( [] 

The syntax uses extended Backus Naur Form where square 

) are used to indicate optional items and braces ( {} ) 

are used to indicate items that may be iterated zero or more times. In 

addition, parentheses are used to override the normal precedence 

associated with BNF. Terminal symbols of the language being defined 

are underlined for clarity. This is to help distinguish terminal 

symbols from non-terminals in the BNF description and is not part of 

SADL. 

The SADL description consists of a processor specification (Pdescr) 

optionally followed by the execution cycle specification (Executor). 

<sadl> ::= <pdescr> [ <executor> ] 

Pdescr provides a symbolic description of the register set, addressing 

modes, and instruction set of the architecture. In situations where 

the instruction execution cycle must also be modelled, a description of 
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the load and execute loop for the architecture may be provided by the 

executor section of SADL. 

3.1 The Basics of the Language 

The following components of SADL are so pervasive that it is 

necessary to explain them before a comprehensive description of the 

language and its relationship to the model of Chapter 2 is possible. 

The alphabet of SADL consists of the ASCII character set from"" to 

11 ~11 (ASCII characters 32 to 126) inclusive. All other characters are 

treated as spaces; SADL is a free format language except that 

end-of-line is a token separator. 

Numbers are unsigned constants using decimal, hexadecimal, or binary 

representation. 

<number> ::= <dee num> <bin num> <hex num> 

<bin num> ::= & ( 0 ) l o 

<dee num> ::= <digit> l <digit> } 

<hex num> ::= # (hdigit> l <hdigit> } 
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<digit> : := 0 2 3 4 5 6 7 8 9 

<hdigit> ::= <digit> A B C D E F 

A prefix of"&" signals a binary number while a prefix of"#" signals 

a hexadecimal number. 

There are two classes of operator: the unary operators and the 

binary operators. 

<unop> ::= + I 
I - not lsh rsh ext sizeof 

+ positivity operator (redundant) 

negation operator (two's complement) 

not logical complement 

lsh logical left shift by one bit 

(right most bit remains unaltered) 

rsh logical right shift by one bit 

ext 

sizeof 

(left most bit remains unaltered) 

sign extension to arbitrary length 

length of operand, either minimum number of bits 

necessary to store the value or the defined bit 

length of a register location 

The unary operators have the highest precedence of the operators. 

All unary operators have the same precedence. 
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<binop> ::= _.:::. l - l _:: l j_ ~ l 

and or 

<boolop> 

I I 
_I_I mod 

<boolop> ::= > < >= 

+ 

* 

I 

and 

or 

I I 
I I 

** 
mod 

unsigned addition 

two's complement subtraction 

unsigned multiplication 

unsigned division 

logical product 

logical sum 

bit string concatenation 

exponentiation 

remainder of division 

<= <> 

<boolop> these operators return one (1) if the relation 

between their operands is true otherwise they 

return zero (0). 

65 
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The order of precedence for the binary operators is: 

** 

*/mod 

+ -

> >= < <= 

<> 

and 

or 

I I 
I I 

highest priority 

lowest priority 
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The parameter substitution symbol serves the role of a placeholder 

indicating that some other text is to be substituted for the 

placeholder during evaluation. It is important to note that the 

substitution is textual and that the text is evaluated only after all 

substitutions have been performed. 

<param substn> ::= _! [ <dee num> ] 

The optional decimal number is necessary where there is more than one 

parameter substitution within a given context. 

Example 3.1 - $1 <- $2 + $3 

The value expression is central to the functional specification of 

architectures. 
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<value exprn> ::= [<unop>] <value group> 

{ <binop> [<unop>] <value group> } 

The value expression describes how a value is obtained from an 

architecture to be used in statements and conditions. It is the SADL 

analogue of an arithmetic expression in a programming language such 

as Pascal or PL/1. The value expression yields a bit string of the 

minimum length necessary to represent the value produced. 

The value group specifies where each value is obtained from: 

<value group> ::= <reg selector> 

<param substn> 

J.. <value exprn> l 
<number> 

The parentheses are for altering the order of evaluation of value 

expressions from that required by the operator precedence rules, The 

<param substn> indicates that a value is to be substituted into that 

position during evaluation; the value must be either a numeric 

constant or a valid name within the specified context. 

The <reg selector> specifies that the value is to be obtained from a 

particular element of a named register array: 

<reg selector> ::= <r name> [ l <value exprn> J] 
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The <value exprn> in brackets returns a numerical index that 

specifies which element of the register array contains the desired 

value. If the register array contains only a single element, then 

the selector expression may be omitted. 

Example 3.2 - some value expressions: 

REG1 

REG1 [ A ] 

REG1 [ $ + 6 ] 

REG1 + REG2 [ $1 + 1 + REG3 

REG1 * ( 4 + REG2 [ $1 ] ) 

$1 + #F 

&0110 

3,2 The Processor Description 

] - $2 - 4 

The processor description associates a name for the architecture with 

three sections which describe respectively the register set, the 

access methods (addressing modes) and the instruction set. Each of 

these is referred to as a domain. 
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<pdescr> ::= architecture <ar name> is 

<rset domain> 

<amset domain> 

<iset domain> 
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Each domain consists of a header followed by one or more domain 

entries. None of the domains may be omitted, nor may any of them be 

null, or the architecture would not be capable of being programmed. 

The first domain describes the register space of the architecture. 

All state variables defined for the architecture are described in 

this domain. 

The second domain describes the access methods available to 

synchronous instructions in the architecture. It is broken up into 

two sections; in the first, the access methods themselves are 

declared while an optional sub-domain allows groups of access methods 

to be collectively referred to using a single name. 

The final domain describes both the asynchronous and the synchronous 

instructions. It is broken up into two sub-domains with the first 

sub-domain, which describes the asynchronous instructions, being 

optional. The second sub-domain, the synchronous instructions, is 

mandatory. 
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3.2.1 The Register Domain 

This section consists of a series of one or more 

declarations of the form: 

<reg defn> ::= <r name> is 

<dim exprn> 

[ <mapping exprn> ] 

end 

<dim exprn> ::= <array spec> <word spec> 

All register names must be unique within the register domain. 

Typical register declarations would look like: 

Example 3.3 

MEM is [ 0 #FFFF] < 7 0 > end 

IO is [ 0 #FF]< 7 0 > end 
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register 

A register array contains n elements where each element has a word 

length of m bits. The square brackets ( [] ) denote the size of the 

array while the angle brackets ( <> ) denote the size of words within 

the array. 
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3.2.1.1 The Array Clause 

The array component of a register is described with: 

<array spec> •• = [ .. 
[ 

] 

l 

<range bounds> 

<cell list> 

<range bounds> ::= <lower bound> <upper bound> 

<cell list> <cell name> .l.. <cell name> 
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There are three legal ways of specifying the size of the array. The 

first one is to explicitly state the index numbers of the first and 

last elements of the array as in: 

Example 3.4 - REG1 is [ 0 7 ]<> end 

This indicates that REG1 is an 8 element array with the first element 

accessed by an index of O and the last element accessed by an index 

of 7; indices outside the range O - 7 are not valid. 
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The other method of defining the array parameters is to label each 

cell of the array explicitly, thus: 

Example 3.5 

REG1 is [ CELL1 , CELL2, CELL3 , CELL4 ]<> end 

REG1 is defined to be a four element array where CELL1 refers to the 

first element of the array and CELL4 refers to the last element of 

the array. 

It was shown in the description of register selectors that it is 

necessary to allow the elements of REG1 to be accessed using a 

numerical index as well as by cell name. For this reason an 

enumerated register array is defined to have an index of O for the 

first element and a final index of n where n+1 is the number of 

elements in the array; so for REG1 the element REG1 [ CELL1 ] is the 

same as REG1 [ 0] and REG1 [ CELL4] is the same as REG1 [ 3 ]. 

It is important to note that the names used to enumerate the elements 

of a register array have a scope restricted to that register. This 

means that the same name may be used for a register name as well as 

being repeatedly used within different register definitions to 

enumerate elements. 
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Example 3.6 - for the following definitions: 

REG1 is [ A, B, C ]<> end 

REG2 

A 

is [ D, E, A]<> end 

is [ F, A]<> end 
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The name A used to enumerate REG1 is distinct from the name A used to 

enumerate REG2 and both are distinct from the register array A and 

its enumerator name A. It is not legal to use the same name twice 

within the enumeration list of a single register array so: 

Example 3.7 - REG1 is [ A, X, B, X, C ]<> end 

is not correct because a reference to REG1 [ X] would not be 

sufficient to locate an individual element. However, as long as the 

X elements are never going to be uniquely accessed this problem would 

never arise. This situation is common among computer architectures 

for special purpose registers such as the Status register in which 

not all elements of the array have meaning. In this context 

non-unique element enumerators could be valid but the author feels 

that the ambiguity created is undesirable in a formal specification 

language. 

When a register array has only one element its index need not be 

supplied and the shorthand form il may be used; thus: 
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Example 3.8 - REG1 is[]<> end 

specifies a register array with a single element (called simply a 

register). This is the third legal way of describing the array 

dimensions of a register. 

3.2.1.2 The Word Clause 

The word clause describes the dimensions of the individual elements 

of a register array: 

<word spec> ::= < [ <msb> <lsb> ] > 

There are two ways of specifying the word size of a register. The 

first method is to explicitly state the number of the most 

significant bit and the number of the least significant bit of a 

register. Thus: 

Example 3.9 - REG1 is []<7 O> end 

specifies a register with an 8 bit wordsize where the most 

significant bit is numbered 7 and the least significant bit is 

numbered 0. 
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Note that the order of significance for the array specification and 

for the word specification are different. For the array 

specification the elements have an increasing significance from left 

to right but the bits specified by the word clause have an increasing 

priority from right to left. The reason for this is that it follows 

the convention of custom; it is almost universally adopted that the 

bits of a word (like the digits of a number) have an increasing 

significance as they progress to the left. For arrays though, the 

elements are conventionally ordered so that the first element is on 

the left and the index number of the elements increases as the array 

is scanned to the right; this is in accordance with the way people 

write and parse text. As the choice of ordering is arbitrary the 

author settled on a form which is consistent with the way people are 

used to treating the respective structures. This is in contrast with 

ISPS in which both the word and the array description are based on 

the left most element/bit being associated with the lowest numerical 

value. 

The second method of specifying the wordsize of a register is to omit 

the explicit delimiters of the word as in: 

Example 3.10 - REG1 is[]<> end 

This indicates a register size of one bit and is directly analagous 

to the shorthand form for the array specification. 
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3.2.1.3 The Mapping Clause 

The mapping clause describes the area of intersection between the 

array being defined and those other registers which occupy the same 

register space in the architecture: 

<mapping exprn> ::= maps 

<r mapdef> 

I I < _1 _1 r mapdef> 

<r mapdef> ::= <r name> [ <m array spec> ] 

<m array spec> ::= l <init addr> <term addr> J 

<init addr> ::= <number> <cell name> 

<term addr> ::= <number> <cell name> 
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The following illustrates the possible use of mapping to define 

register synonyms: 

Example 3. 11 

B is []<7 O> end 

C is []<7 O> end 

D is []<7 O> end 

E is []<7 O> end 

H is []<7 O> end 

L is []<7 O> end 

RP is [ B, D, H ]<15 O> 

maps C I I B I I E I I D I I L I I H end I I I I I I I I I I 

The virtual register array RP is declared as being a three element 

array where each element has a word length of 16 bits and this is 

defined to map onto the concatenation of the 8-bit registers 

B,C,D,E,H,L. 

This method of specifying the intersection between registers differs 

significantly from the model proposed in chapter 2. The mapping 

mechanism is much simpler and allows a straightforward implementation 

with only a small loss in flexibility; the new mechanism is 

effectively a subset of the access method expression mechanism and 

may be expanded in a susbsequent version of SADL. 
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To perform this mapping, the model of a register array in chapter 2 

is expanded so that, in addition to being an array of n elements 

where each element has m bits, we must view the register array as a 

contiguous bit stream from the least significant bit of the first 

element to the most significant bit of the last element of the 

register array. Thus, for RP (above) bit 15 of RP[B] is adjacent to 

and one position less significant than bit O of RP[D]. 

The concatenation of registers C i l ... i l H where C is the least 

significant register and His the most significant register may then 

be mapped to RP by a simple superimposition'of bits: 

H D B 

H I L I D E I B l C 

RP[ B, D, H] maps 

C II B II E II D II L II 
I I I I II I I II H end 

To simplify the implementation there are some restrictions that need 

to be enforced. 

1. All registers named in the mapping expression must have been 

previously defined; this is necesary to allow one pass 

validation of the mapping expression. 

2. One or more target registers or register arrays must map to each 

element of the source register array and must map exactly on word 

boundaries. 
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This means that for each element of the source register there are 

exactly~ target register elements with no bits in either the 

source or the target registers remaining unassigned. 

3. Closure is enforced. All elements of a register array which is 

mapped must be assigned to target registers. 

Registers arrays C, D, E (below) illustrate the possible combinations 

allowed for mapping. Essentially, the rule is that the number of 

contiguous bits represented by the mapping expression (the 

concatenation of registers and part registers) must be equal tom* n 

where mis the number of elements in the source register array and n 

is the length (in bits) of each word in the source register array. 

Example 3.12 

A is []<7 O> end 

B is [o 3]<7 O> end 

C is []<7 O> end 

D is [o 1]<7 O> maps B[ 1 2] end 

E is [o 4]<7 O> maps A I I B end I I 

F is [1 4]<7 O> maps A I I B[O 2] end I I 

G is [o 2]<15 O> maps A I I B I I C end I I I I 

H is [01]<15 O> maps C I I A I I B[ 1 2] end I I I I 

As shown above, a subset of the elements of a register array may be 

involved in the mapping expression; where this is the case the first 
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number or identifier is the first element included in the mapping and 

the second number or identifier is the last element included in the 

mapping. All elements between the first and last indicated elements 

are included in the mapping. 

In addition to all the explicit registers (those directly accessible 

to the assembly language programmer) there may be registers which are 

either implicit (as in the case of the Interrupt Enable register on 

the Intel 8080) or are necessary to define the behaviour of certain 

aspects of the architecture (such as external inputs, interrupt 

lines, reset lines etc.). These implicit registers are included in 

the declared register set of the architecture and use the same syntax 

and semantics as explicit registers. 

3.2.2 The Access Method Domain 

Once all the registers of an architecture have been defined, the access 

methods, which describe the derivation of operands, must be defined. 

The Access Method domain contains a series of one or more access method 

declarations; these declarations define all access methods available 

to the architecture, their functionality, their parameters and how the 

values associated with those parameters may be extracted from the 

operand field of an assembly language program. 
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When all access methods have been declared, an optional subsection of 

the Access Method domain may be declared. This section is called the 

Access Method Class and is an organisational tool to enable a group of 

access methods to be referred to by a single name. This reduces the 

amount of coding required for architectures which 

instruction sets with large numbers of access methods. 

3.2.2.1 The Access Method Description 

have regular 

The Access Method domain consists of one or more access method 

declarations of the form: 

<am descr> ::= <am name> is <am exprn seq> 

from <template> 

[ size <bitsize> ] end 

An access method description associates a name with a sequence of 

access method statements, a template indicating how the values of the 

operands are to be extracted from the operand field, and the 

additional length of the instruction attributable to the selection of 

the particular access method. 

With most microprocessor based architectures the instructions are of 

varying length each dependent upon the choice of access method used 
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for the instruction. The <bitsize> is the number of bits by which 

the instruction length is increased by selection of the specific 

access method. 

The <template> is a pattern matching tool whereby the text of the 

operand is extracted from surrounding constant text, which serves 

merely to indicate which of several potential access methods has been 

selected. 

The Access Method Statement 

The access method statement sequence is a series of assignment 

statements of which one and only one derives the operand for an 

instruction; the others cause side effects to the use of the access 

method. 

The syntax of the access method statement is: 

<am exprn seq> ::= l <am assign stmt> ..!.. 

<am param stmt> 

, <am assign stmt> 

<am param stmt> ··= OPERAND 

<-

<dest selector> 
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<am assign stmt> ::= <reg selector> 

<-

<value exprn> 

<dest selector> ::= <dest exprn> 

l_L <dest exprn> 

<dest exprn> ::= <reg selector> 

<param substn> 
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For statements which describe side effects the destination of the 

assignment must always be a register and the source is always a value 

expression. 

The assignment which derives the operand is recognised by the 

presence of the keyword OPERAND as the destination of the assignment; 

the source is a destination selector which means that OPERAND is 

assigned either a concatenation of register locations where operands 

may be extracted from or placed, or the explicit value of the operand 

parameter as extracted from the template. The latter represents the 

access method known as immediate addressing, where the instruction 

operand is part of the instruction itself. 

The statements are temporally ordered, so that the first statement 

occurs before the second statement which occurs before the third 

statement and so on. Statements defined before the assignment of 
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OPERAND represent side effects preceding the derivation of the access 

method operand and statements following the assignment of the OPERAND 

represent succeeding side effects. 

The Template 

The template is a series of one or more parameter substitutions 

optionally surrounded by arbitrary text: 

<template> ::= <const item> i <param substn> 

{ <const item> i <param substn> 

<const item> ::= <special char> 

<identifier> 

<number> 

Any non-blank text may surround the parameters with the exception of 

the"$" symbol which must be represented by"$$". If there is more 

than one parameter substitution then they must be numbered uniquely. 
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Example 3.13 

Motorola 68000 pre-decrement access method is indicated by: 

-(A$) 

where the$ (or $<number>) indicates the portion of the text 

which.is the actual operand value. 

For an actual operand of the form: 

-(A6) the operand value is 6. 

3.2.2.2 The Access Method Class Section 

The Access Method Class section is intended to be an organisational 

mechanism for referring collectively to a group of access methods. 

It is a shorthand form which associates a name with several access 

methods. 

<am class> ::= access classes . 

<amc descr> 

..?... <amc descr> 
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<amc descr> ::= <amc name> 

is 

<am name> 

<am name> 
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The only restriction necessary is that the AMC is viewed as part of 

the Access Method domain and for this reason the AMC names must be 

distinct from the names of the individual access methods. 

Whenever an access method name occurs in the access method field of 

an instruction it is equivalent to listing the access methods named 

by that access method class within the field; in this sense it can 

be viewed as a macro-definition. 

3.2.3 The Instruction Domain 

The Instruction domain consists of two sections. The first section is 

optional; this is the Asynchronous Instruction Set and describes all 

instructions which conform to the model of asynchronous instructions 

proposed in Chapter 2. 

The second section, which is necessary for the architecture to be 

programmable, describes the explicit, synchronous instruction set of 

the architecture. The instructions described in this section conform 
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to the Chapter 2 model of synchronous instructions. 

Common to both forms of instruction is the instruction statement 

sequence. This is a set of instruction statements which cause changes 

to the register space of the architecture. Because they are common to 

both instruction sets they are described first. 

3.2.3.1 The Instruction Statement 

The instruction statement defines the functionality of the assembly 

language instructions in terms of the operator set of SADL. There 

are four forms of instruction statement: 

<istmt> ::= <assign stmt> 

<cm strnt> l 

<cond strnt> 

<loop strnt> 

Instructions may be temporally ordered as an instruction sequence: 

<istrnt seq> ::= <istmt> { ...!.. <istmt> l 

The assignment statement ( <assign stmt>) effects changes to the 

register space by assigning the result of a value expression to a 
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register or concatenation of registers. 

<assign stmt> ··= <dest selector> <- <value exprn> 

Parameter substitutions may occur on either the right or left hand 

sides of the assignment operator. Parameter substitutions within the 

value expression were described in Section 3.1 • 

The destination selector must be either a register or a concatenation 

of registers. 

<dest selector> ::= <dest exprn> ! ll <dest exprn>} 

<dest exprn> ::= <reg selector> <param substn> 

Any parameter substitution that occurs within a destination selector 

must evaluate to a register selector. It is possible to determine 

the validity of the parameter substitution as all access methods must 

have been defined before the instruction domain is evaluated. 

Note that for asynchronous instructions, parameter substitutions are 

not legal because there are no instruction operands to substitute 

into the value expression or the destination selector. 

The codem statement ( <cm stmt> ) invokes the named code macro: 
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<cm stmt> ::= do <cm name> 

[ i_ <param exprn> 

<param exprn> 

l J 

<param exprn> ::= <number> 

<reg selector> 

<param substn> 
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The code macro declaration is described in Section 3.2.3.3 (below); 

its use is analagous to that of a procedure call in Pascal though its 

operation is not. The parameters are textually substituted into the 

macro for evaluation purposes. 

The conditional statement allows a sequence of instructions to be 

performed dependent upon a condition as expressed by a value 

expression: 

<cond stmt> ::= if <value exprn> 

then <istmt seq> 

[ else <istmt seq> ] endif 

If the value expression produces a non-zero result then the condition 

is deemed to be true, otherwise the condition is deemed to be false. 

Alternatively, the conditional statement may be used to select 

between two separate instruction sequences depending on whether the 

result is true or false. 
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The loop statement causes a sequence of statements to be repeatedly 

executed while the value expression yields a non-zero result. 

<loop stmt> ::= while <value exprn> 

do <istmt seq> done 

The value expression will generally be a register value which must be 

explicitly modified within the loop in order to terminate the 

repetition. The value expression is evaluated before execution of 

the instruction statement sequence parenthesised by the do and done 

keywords so that the minimum number of times the loop is executed may 

be zero. 

3.2.3.2 The Asynchronous Instruction Set 

The Asynchronous Instruction Set consists of a series of asynchronous 

instruction declarations: 

<asynch instr> ::= <i name> is <istmt seq> 

upon <value exprn> 

end 

The instructions model events and are hardwired into the 

architecture. They are described indirectly by the manufacturer 
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under such headings as interrupt handling, reset operations etc. 

The order of definition of the Asynchronous instructions is important 

because the priority of evaluation is based upon the ordering. This 

departs from the model in Chapter 2 because the priority encoding is 

implicit in the order of declaration rather than being an explicit 

part of the instantiation expression. 

The first asynchronous instruction defined has the highest priority 

while the last instruction defined has the lowest priority. No two 

instructions can have the same priority; this is because the 

instructions are executed upon the occurrence of an event (such as 

external interrupts, or overflow from an addition) and if the 

priority of all possible concurrent events was not strictly defined 

then the architecture would exhibit nondeterministic behaviour when 

two or more events occurred simultaneously. 

Though asynchronous instructions do not occupy register space they do 

alter it since the body of the asynchronous instruction is a sequence 

of assignment statements. 

There are no parameters and therefore no access methods associated 

with asynchronous instructions. 
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The Instantiation Expression 

The activation clause of an asynchronous instruction (signified by 

the keyword UPON) defines the condition which signals that the 

instruction may be executed. The instantiation expression is a value 

expression where a non-zero result indicates a current instruction. 

Physical events external to the architecture, such as an interrupt 

line going low, are modelled within the architecture by the presence 

of registers which contain values representing the state of the 

external components. This is consistent with the abstract view of 

the architecture. Thus an interrupt pin on a processor may be 

modelled as a register which is O when the register is not asserted 

and 1 when the interrupt has been asserted. 

Note that there is no implicit resetting of event registers within 

the architecture; either the register is reset externally when the 

event is no longer true (as in the case of signal-level-based 

interrupts) or the register must be explicitly reset by the 

asynchronous instruction handling the event (as is the case with 

signal-transition-based interrupts). The distinction is between the 

use of registers to model states (pin level high, pin level low) and 

discrete events (a transition has occurred signalling an interrupt). 
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3.2.3.3 The Synchronous Instruction Set 

The Synchronous Instruction Set consists of a series of declarations 

of code macros and assembler instruction descriptions. All code 

macros must be declared before the first synchronous instruction 

declaration: 

<synch domain> ::= synchronous 

instructions 

[ <codem list> ] 

<synch instr> 

<synch instr> 

The Code Macro List 

The code macro list consists of a sequence of all code macros defined 

for the architecture: 

<codem list> ::= <code macro> 

<code macro> ::= codem <cm name> 

[ <cm param> ] 

<code macro> 

is <istmt seq> endm 
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<cm param> ::= i <param substn> 

<param substn> .2_ 

A code macro declaration associates a name with a sequence of 

instruction statements. The code macro may have parameters; if so, 

the text of the actual parameters is substituted for the formal 

parameters, which are enclosed in parentheses. The normal rules 

which apply to instruction statements elsewhere in the synchronous 

instruction set also apply here. 

The code macro is a way of reducing the amount of coding necessary to 

describe an architecture by extracting commonly used sequences of 

instructions and referring to them by a single name. Formal 

parameters are included because it was found that sequences of 

instructions tended to recur but utilised different registers. 

Example 3.14 - Motorola 6800 instructions: 

ADDA 

ADDB 

is 

is 

ACCA <- ACCA + $1 

ACCB <- ACCB + $1 

both cause the same sequence of operations to be performed upon the 

status bits of the processor as side effects but the registers in 

question are different in each case. With parameters it is possible 

to avoid the duplication of effort necessary to describe the 

architecture. 
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Example 3.15 - the sign macro for the M6800 would be: 

CODEM sign ($1) IS 

ccr[n] <- ( $1 and #80) = 0 

ENDM 

and its invocation would be: 

DO sign (ACCA) 

DO sign (ACCB) 

The Synchronous Instruction 

Each synchronous instruction associates a unique 
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(within the 

instruction domain) name with a sequence of instruction statements. 

<synch instr> : : = <i name> is 

<istmt seq> 

[ from <template> 

using <amlist> ] 

[ size <bitsize> ] end 

The instruction statement sequence has already been described. 

The optional "from" clause specifies how operands are extracted from 

the operand field of the instruction, using the template mechanism 

described in Section 3.2.2.1, and the combinations of access methods 
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that may legally be used with the instruction. 

The optional "size" clause indicates the length, in bits, of the 

instruction before taking into account the extra length necessitated 

by the use of some of the access methods. 

Parameter Substitution 

When an assembly language instruction has operand variables there 

must be a "from" clause in the instruction declaration to indicate 

how the operand values may be extracted from the operand field text 

and also a "using" clause to indicate what combinations of access 

methods are legal for the instruction. 

The operands are extracted from the operand field using the template 

mechanism as used for access methods. Again, the substitution is a 

textual one; all interpretation of text is performed in the value 

expression and the destination selector expressions. 

The access method list is a series of tuples where the number of 

elements in the tuple equals the number of parameter substitutions in 

the template. Each tuple is a series of access method names or 

access method class names: 
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<amlist> : : = <am tuple> 

<am tuple> ::= <am name> 

<am name> 

<am tuple> 

<amc name> 

<amc name> 

The following 

instructions: 

two examples illustrate the declaration 

Example 3.16 - Motorola 6800 ADDA instruction declaration 

ADDA is 

ACCA <- ACCA + $ 

from$ 

using IMMED8; 

DIR; 

INDEX; 

EXTND 

size 8 end 
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of 

The above instruction declaration states that the instruction named 

ADDA assigns the sum of register ACCA and the operand variable($) to 

the register ACCA. The operand field has no text surrounding the 

operand and there are four access methods which are valid for the 

instruction. The instruction is 8 bits long plus however many bits 

are contributed by the different access methods. 
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Example 3.17 - Intel 8085 MOV instruction 

MOV is 

$1 <- $2 

from $1,$2 

using REGS REGS; 

REGS INDIRECT; 

INDIRECT REGS 

size Send 
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In this instruction there are two operand variables separated by a 

comma in the operand field of the instruction. The value of the 

second operand is assigned to the first operand, which must therefore 

be a destination selector. The size is S bits. 

There are three valid combinations of access method. There is a 

one-to-one correspondence between the parameter substitutions and the 

elements of each tuple. In the above example this means that the 

text before a comma in the operand field of the instruction is passed 

to the access method REGS, or INDIRECT while the text following the 

comma is passed to the access method INDIRECT or REGS. 
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3.3 The Executor Description 

The executor section of SADL is optional and necessary only when the 

load and execute cycle of an architecture is to be modelled; this 

would be the case whenever a simulation of the architecture is to be 

carried out. 

The executor defines an implicit loop which loads the instruction and 

then executes it. 

<executor> ··= executor 

[<istmt seq>] 

load <reg selector> 

[<istmt seq >] 

exec 

[<istmt seq>] 

end 

The load keyword specifies where the next instruction is located while 

the exec keyword causes the instruction to be evaluated. Before and 

after the load and after the exec an arbitrary number of primitive 

instructions may be specified for various housekeeping chores that are 

not part of individual instructions, such 

instruction pointer. 

MASSEY UNIVERSITY 
LIBRARY 

as incrementing the 
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The asynchronous instruction list is scanned as the first action by 

exec. This is in accordance with the model of Chapter 2. 

3.4 Using SADL 

SADL has been used to describe four complete architectures and a fifth 

architecture has been partially explored. The four fully described 

architectures are the Intel 8085 and 8086 microprocessors, the National 

Semiconductor SC/MP, and the Motorola 6800. The 8085 SADL description 

is included as Appendix 2 of this thesis. 

With the exception of the 8086, all the above architectures are first 

generation 8-bit microprocessors. The architecture which was partially 

explored was the Motorola 68000. 

Experience with the 8086 and 68000 architectures has indicated possible 

shortcomings in the language that require further study. 

Access method specification in SADL can quickly become unwieldy because 

of the lack of variable length data structures or data typing. Both 

the 68000 and the 8086 allow structures of differing lengths for each 

of their major access methods and this translates into many more access 

method specifications than are desirable; for both architectures the 

number of access methods could be cut in half if a separate clause 
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indicating the possible lengths of the operand were included in SADL. 

The 8086 also indicates that SADL's simple approach to the calculation 

of instruction length may not always be satisfactory. SADL calculates 

the instruction length as the sum of the length components of the 

instruction and the access methods it uses. The 8086 instruction 

length is calculated on the combination of access methods used. For 

instance, a particular access method on the 8086 contributes Obits to 

the length of instruction when used by itself (in a single operand 

instruction) but contributes 3 bits to the length of instruction when 

used in combination with some, but not all, of the other access 

methods. 

Finally, improvements may be necessary with regard to the parameter 

substitution mechanism if the practice, fostered by Intel, of allowing 

the components of a particular access method to be specified in any 

order, becomes common. This is not a problem of architecture 

specification but of the formats for the assembler. A fully 

generalised facility for accepting arbitrary assembly languages is 

beyond the scope of this thesis; the current approach by SADL is that 

it does not attempt to be able to handle any arbitrary assembler format 

but provides an interface which will allow the most widely used style 

to be recognised. 
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4 Building Programs from SADL 

Build is a program written in Salford LISP version 17 [Salford83], on a 

Prime 750, with the purpose of generating data structures and functions 

for simulating a symbolic architecture specified using SADL. 

Build works by parsing a SADL description using the top down approach 

and builds the data structures and functions as it parses. 

LISP was chosen as the implementation language largely because of its 

ability to generate programs which may be executed within the LISP 

environment. The interactive debugging facilities provided by Salford 

LISP were also a major consideration. 

Build is not a simulator. Rather it constructs the machine dependent 

routines upon which a simulator interface may be provided. This 

splitting of the simulation routines from the simulator interface means 

that the same interface may be used for any architecture. 
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4.1 Data Structures 

LISP has a single data structure, the s-expression. There are two 

substructures of the s-expression: the atom and the list. An atom 

is a name; numbers are pseudo-atoms, as they are treated for the 

most part in the same way as atoms. A name is an arbitrary string of 

characters while a number in Salford LISP is held in Prime double 

precision floating point form. The distinction between names and 

numbers is the source of some problems in LISP as will be shown in 

Section 4.3. 

In SADL each register, access method, and instruction is named. This 

simplifies implementing the data structures in LISP as each domain 

may be a list of names where each name has associated with it several 

properties which are relevant to the domain. 

Example 4.1 

an asynchronous instruction has a name, an instruction 

sequence and an instantiation expression. The last two items 

may be treated as properties of the name by using the LISP 

property list facilities. 

Asynch name - property: instruction sequence 

- property: instantiation expression 
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There are six global variables containing lists of declared names: 

REG_LIST@, 

AM LIST@,AMC_LIST@, 

ASYNC_LIST@, 

CODEM_LIST@, SYNC LIST@. 
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LISP atoms are global except when declared explicitly within a PROG 

or as formal parameters of a LAMBDA or NLAMBDA expression. As SADL 

permits the same name to be used in each of the domains, a mechanism 

must be used to ensure that the properties assigned to each name by 

each domain do not conflict. This is done by using the Property List 

mechanism of LISP and naming the properties such that every property 

over the entire architecture is unique. 

The Property List mechanism in LISP works by creating a list of 

property names and the values associated with that property; the 

first and all other odd-numbered members of the property list are the 

property names while the second and all other even-numbered members 

of the property list are lists of values associated with the 

property. The property list always has an even number of members. 

The following describes the data structures for the individual 

domains. 



Chapter 4 BUILD 105 

4.1.1 The Register Domain 

REG LIST@ - a list of register array names: 

( ••• H L HL BC BC ••• ) 

Each name has a property list with the following properties: 

LSW - index of the beginning array element 

MSW - index of the terminating array element 

LSB - index of the least significant bit 

MSB - index of the most significant bit for the register 

CELLS - an ASSOC list of registers and their values 

MAPLIST - a list of register arrays that the named register array 

maps onto 

MSW, LSW, MSB, LSB each have a hexadecimal number as their value. 

An ASSOCiation list is a list of two-element lists such as 

( ••• (c 1) (b 2) (a 3) ) which may be used by the LISP ASSOC 

function. ASSOC searches the lists trying to, match the first 

member of each sublist with a speci•fied value; the second element 

of the first sublist to successfully match the value is returned; 

this is peculiar to version 17 of Salford LISP. If none of the 

sublists match then NIL is returned. This is a fast and easy 

technique for implementing a sparse array, one solution to the 

problem of implementation restrictions with arrays that was 
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described in Chapter 1 [Cragon83]. 

The contents of the list which represents the value of the CELLS 

property varies with time and the declaration of the register. If 

the register array contains only one element the list will be 

initially empty. If the register array contains more than one 

element then each of the elements will be present with an initial 

value of NIL: 

( (B nil) (C nil) ••• ) • 

As each register becomes initialised by being written to, the 

second value will be replaced by the binary representation of the 

value so that the above will become: 

( ( B &01 00111 0) ( C &000111 01 ) ••• ) • 

For the special situation where a register array contains 

instructions, the registers which hold those instructions have, as 

their value, a link to the instruction being held: 

( (0 ) (1 ) ••• ) 

-~ ~~c instr opr1,opr2) 

The above is for the case where MAPLIST is null (an empty list). 

If MAPLIST is not null then it contains a list of the register 
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names that are mapped. Each member of the MAPLIST may be a name, 

in which case it must already be declared as a register, or it may 

be a three member list in which the first member is the predeclared 

register name while the second and third members are the lower and 

upper array elements for mapping. 

Example 4.2 

A 11 11 - maps 1 1 B 1 1 C end 

A 11 - maps 1 1 B [o 3] li c 

- maps A l l B [x z] l l C 

gives 

gives 

gives 

( A B C ) 

( A (B O 3) C) 

( A (B X Z) C) 

Where a register mapping exists, only the register(s) which are 

mapped onto hold actual values. Those which are mapped from have 

NIL value fields in their CELLS entries and their values are 

obtained by indirect reference to the target registers. 

4.1.2 The Access Method Domain 

This domain is represented by two lists: 

AM LIST@ - a list of access method names: 

( DIRS DIR16 IMMEDS ••. ) 

AMC LIST@ - a list of access method class names 
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Each name in the AM LIST@ has three properties: 

AM MATCH - a template for extracting the operands from the text 

for a specific access method. 

AM SIZE - a hexadecimal value specifying how many extra bits long 

the instruction is because of the access method used. 

AM EXPRN this is a LAMBDA expression which simulates the 

behaviour of the access method. The functional aspects 

are discussed in Section 4.4.5. 

The AM MATCH list consists of a series of parameter identifiers 

separated by lists containing constant items which surround the 

parameters. 

Example 4.3 

- 68000 

- 8080 

- SC/MP 

AMC LIST@ has 

(A$)+ 

$ 

$1 ( $2) 

a single 

property is simply a 

AM MATCH: ( ( II(" A ) $ ( II)" + ) ) 

( $ ) 

property 

list of 

( $1 ( II ( It ) $2 ( 11) If ) 

AM CLASS. The value of the 

the access method names which are 

considered to be part of the access method class. 
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4.1.3 The Instruction Set domain 

This domain has three lists representing subdomains: 

ASYNC LIST@ - a list of asynchronous instruction names; 

CODEM LIST@ - a list of code macro names; 

SYNC LIST@ - a list of synchronous instruction names; 
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The names in ASYNC LIST@ have two properties associated with them: 

ASYNC EXPRN - a PROGN which implements the instruction sequences 

defined for the asynchronous instruction. 

UPON - the value expression which determines whether the 

instruction is able to be invoked or not. 

It is essential that the ASYNC LIST@ contains the instructions in 

the order that they are declared as the simulator should pass down 

the list evaluating the UPON property value until a non-null value 

is returned upon which the ASYNC EXPRN is invoked. If the order of 

the asynchronous instructions is not maintained then the implicit 

priority contained within the declaration order is lost. 

Each name in CODEM LIST@ has a single property associated with it: 

CM EXPRN. The value is an NLAMBDA expression which simulates the 

operation of the code sequences specified in SADL. The NLAMBDA is 

necessary be.cause text is being passed which must be substituted 
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into the code macro when it is executed. 

SYNC LIST@ names have four properties: 

I SIZE - the size in bits of 

Hexadecimal) 

the 

I MATCH a template for recognising 
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instruction (stored in 

the instruction and 

extracting operands. The template has the same format as 

AM MATCH. 

AM LIST - a list containing one or more lists. Each sublist 

contains the names of the access methods for the 

instruction's operands. 

SYNC EXPRN a LAMBDA expression which simulates the operation of 

the instruction. 
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4.2 Constructing Tokens 

The functions GET CHAR and GET TOKEN provide a clean interface 

through which the remainder of the parsing routines may obtain the 

next valid token. After an initial call on GET_TOKEN, the next valid 

token will always be available as well as the next character 

subsequent to that token. 

There are three classes of SADL token: 

Identifiers - all strings starting with a letter 

containing only letters, numbers or 

and 

the 

characters".", "$" and II U Identifier 

tokens include SADL keywords. 

Numbers - any string of characters conforming to the SADL 

syntax for numbers. 

others - any string of characters forming valid SADL tokens 

but are not included in the above two categories. 

The functiou GET_TOKEN skips over leading blanks, and uses the first 

non-blank character encountered to select the appropriate token 

building routine. The function has a single input parameter which 

may be used to restrict the range of tokens that may be recognised. 

If the input parameter is not specified then every token that is 
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successfully constructed will be returned as a valid token. If the 

input parameter is the atom ID then the token that is constructed 

must be a member of the set of valid identifiers. If the input 

parameter is the atom NUMBER then the token must be a member of the 

set of valid numbers. If the input parameter is any other atom then 

the token and the parameter must be the same. 

Example 4.4 

(GET_TOKEN) with <token> returns <token> 

(GET_TOKEN 'ID) with <identifier> returns <identifier> 

(GET_TOKEN 'NUMBER) with <number> returns <number> 

(GET_TOKEN 'end) with "end" returns "end" 

If the token is not valid, either because it is not a valid SADL 

symbol or because it is not of the expected type as indicated by the 

input parameter, then a value of NIL is returned by GET TOKEN 

otherwise the token is returned. In either case the position of the 

input stream is updated. 

The token, regardless of whether or not it is valid within GET_TOKEN, 

is stored in the global variable TOKEN@ for access by the parsing 

routines. If the character stream was not a legal SADL token then 

TOKEN@ will be NIL. 



Chapter 4 

4.3 Handling Symbolic Numbers 

A major problem in 

programming language 

modelling 

is the 

representation in the language. 
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arbitrary architectures with any 

possible inadequacy of number 

In Salford LISP numbers allow exact 

representation of integers up to 2 ** 45. While this precision may 

be adequate for the majority of architectures it is unable to 

represent 

series). 

all architectures (e.g. Burroughs B6700, CDC Cyber 

To overcome this problem all numbers are stored in Build as 

names and are manipulated symbolically. This does have an adverse 

effect on performance and for this reason, Build currently performs 

all arithmetic in decimal. With the ability to compile LISP 

expressions it would be feasible to perform the arithmetic 

symbolically. A bug in the version of LISP used to develop Build 

prevented use of the compilation facility. 

The three classes of number (binary, hexadecimal and decimal) are 

stored the same way that they are represented in SADL: a binary 

number is prefixed by"&" and a hexadecimal number is prefixed by 

"#"; decimal numbers have no prefix. 

The prefixes for binary and hexadecimal numbers cause them to be 

treated as names rather than numbers by LISP so their manipulation is 

straightforward. Decimal numbers are a significant problem because 

of LISP's distinction between names and numbers. The arithmetic 

operators in Salford LISP only work on atoms stored in numeric 
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format; 6 is a number whereas 11 611 is not. If a list of numeric 

digits is imploded into a single atom (1 2 3) -> 123 then the atom is 

treated as a non-numeric atom. On the other hand, if a name 

consisting of digits only is exploded then the digits in the list are 

converted to numeric format even though the original atom was not. 

This inconsistency has led to the inconsistency in the current 

version of BUILD, that hexadecimal and binary numbers are non-numeric 

atoms while decimal numbers are numeric atoms. This decision is 

partly because it was the easiest to implement and partly because it 

results in improved performance. The disadvantage is that while the 

precision of the binary and hexadecimal numbers is unlimited, the 

precision of decimal numbers is limited. 

With the three different types of number, the system needs to be able 

to convert numbers from one format to another. This is performed by 

the function CONVERT. 

CONVERT has two input parameters. The first parameter is the TO TYPE 

argument indicating what type of number is to be returned. Values 

are: BIN to return a binary number; HEX to return a hexadecimal 

number and any other value returns a decimal number. The second 

input parameter is the number to be converted. The number in the 

required format is returned as the value of CONVERT. 
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4.4 Building LISP functions and PROGs 

The construction of LISP functions, PROGs and PROGNs is very 

straightforward since both LISP expressions have very well defined 

and similar constructs. 

For functions it is: 

(LAMBDA <parameter list> <expression list>) 

For PROGs it is: 

(PROG <local variable list> <expression list> ) 

For PROGNs it is: 

(PROGN <expression list> ) 

Before describing the techniques of constructing the above 

expressions it is necessary to show how a LISP expression can be 

generated from SADL instruction statements. 
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4.4.1 Converting Value Expressions to LISP 

The function PREFIX converts infix SADL expressions into a prefix, 

LISP-oriented representation using the shunting yard algorithm. 

Example 4.5 - A+ B * C - D 

becomes (-(+A(* BC)) D) 

The output has the form of a LISP expression. Because each of the 

SADL operators is a function in Build, the above expression may be 

evaluated to return a result. 

The routines which generate the above expressions are the parsing 

routines VALUE EXPRN and VALUE GROUP. VALUE EXPRN parses the 

right-hand side of an assignment statement and calls PREFIX with 

either an operator or the result of invoking VALUE_GROUP. This 

process follows the structure of the syntax definition for SADL. 
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4.4.1.1 The Value Group 

A value expression is a series of value groups separated by 

binary operators with optional unary operators prefixing each 

value group. Each of the identifiers A, B, C, Din Example 4.5 

is a value group. 

A value group is either a register selector, a numeric constant, 

a parameter substitution or a parenthesised value expression. 

Register selectors are the most complex members of the value 

groups. The formats which a register selector may take are: 

<rname> or <rname> l <selector expression> J 

The general form of a register selector 

expression: 

( VALUE OF <rname> <selector> ) 

is the NLAMBDA 

VALUE OF is a function which extracts the value from the named 

register or from the specified element of the register array when 

<selector> is not null. It is also able to accept and return 

numbers; this is necessary when handling parameter 

substitutions. VALUE OF performs the indirection necessary for 

registers which are mapped and always returns the binary 
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representation of the register contents. 

The selector expression may be a numeric constant, a symbolic 

constant when the register array is enumerated, or a value 

expression returning a value within the valid addressing range 

for the register array. 

Parameter substitutions, when occurring as part of a value group, 

may represent either a register selector (as returned by the 

access method) or they may be numbers. 

In either case they are prefixed with the function VALUE OF which 

must be able to interpret the parameter and return the 

appropriate value. This is due to the necessity of being able to 

extract the value from a register selector. 

Example 4.6 - 8080 MOV is $1 <- $2 

generates: (LAMBDA ($1 $2) 

( "<-" ($1) (VALUE OF $2) ) 

Lvalue ) 

group 

Value expressions are straightforward as they 

function expressions through recursive parsing: 

become LISP 
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Example 4.7 - 6800 NEGA is ACCA <- 0 - ACCA 

generates: (LAMBDA() 

("<-" (acca) 

) 

("-" 0 (VALUE OF 

value groups LJ 
Decimal constants may be included directly into 

expression (the 0 in example 4.7 above) but 

hexadecimal numbers must be quoted to force the name 

the value cell of the name to be passed to 

11 9 

acca) ) ) 

the LISP 

binary and 

rather than 

the operator 

functions. Decimal constants may be quoted or unquoted. 

4.4.2 The Destination Selector 

Whereas the right hand side of an assignment statement represents a 

value, the left hand side represents a location, or a series of 

locations, where the value is to be stored. 

In SADL the destination selector is a register or the concatenation 

of several registers. It may also be a parameter substitution 

which equates to a register selector. 
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The function DEST_SELECTOR produces the data structure representing 

the destination of an assignment. DEST SELECTOR processes the 

current token and continues to build a destination list while the 

next token is the concatenation operator. When the token is a 

register the function REG SELECTOR is called. This function 

returns either the register name or (if the register is an array) a 

list where the first member is the register name and the second is 

the selector expression. 

Example 4.8 - register: REG SELECTOR returns: 

HL 

MEM [o] 

MEM [HL] 

REG8 [B] 

hl 

(mem 0) 

(mem (VALUE_OF hl) 

(reg8 b) 

Note that in line four of the above example E. is an enumerated cell 

name, not a register name. 

DEST_SELECTOR produces a list of destinations in the order that 

they are specified: 

Example 4.9 - HL i l MEM [o] l l DE<- ••• 

would return (hl (mem 0) de) 



Chapter 4 BUILD 121 

The NDEFUN "<-" scans the list in reverse order assigning the 

result of the value expression to the target registers. The 

function also handles the indirection due to register mapping so 

that the model remains consistent. 

Where a destination is a parameter substitution it is evaluated in 

order to extract the real target registers. 

4.4.3 SADL statements 

Instruction statements in SADL have one of the following forms. 

<target><- <value expression> 

IF <value> THEN <statement sequence> 

ELSE <statement sequence> ENDIF 

DO <code macro> <parameters> 

WHILE <value> DO <statement sequence> DONE 

The basic SADL statement is the assignment statement. Section 

4.4.2 indicates how a value expression and a destination selector 

may be combined to construct the two sides of the assignment. It 
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is then a matter of enclosing the two expressions within a list 

with the assignment operator. 

The functions I_STMT, for instructions, and AM_STMT, for access 

methods, convert SADL statements into LISP expressions through the 

invocation of DEST SELECTOR and VALUE EXPRN. The local variables 

DEST and VAL hold the destination expression and the value 

expression respectively and the final statement: 

( RETURN ( LIST '"<-" DEST VALUE) ) 

combines them into a single LISP expression. 

I STMT is more complex than AM_STMT as it must provide for the IF, 

DO and WHILE statements as well as the assignment statement. The 

first token of the statement determines which is the appropriate 

function to handle a particular statement. 

described below. 

The functions are 
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4.4.3.1 COND STMT 

This function constructs a conditional expression using Salford 

LISP's IF function. 

COND STMT has three local variables for temporary storage. They 

are IF_PART, THEN PART and ELSE PART. Each variable holds the 

expression for the appropriate clause of the IF statement. 

IF PART holds the value expression. Both the THEN PART and the 

ELSE PART are lists where each member of the list is an 

expression corresponding to a single statement. They are of the 

form: 

( ••• ( statement2 ) ( statement1 ) ) 

The ELSE PART may be null if there is no else clause to the IF 

statement. 

Finally, when the IF statement has been successfully parsed the 

component parts are amalgamated into a single expression. The 

following is executed as the final statement of COND STMT. The 

ELSE section (lines six and seven) is omitted if there is no else 

clause. 
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(RETURN (LIST 'IF 

(LIST 'NEQUAL 

(LIST 'CONVERT '"'DEC" IF_PART) 

0) 

(REVERSE THEN_PART) 

'ELSE 

(REVERSE ELSE_PART) 

) ) 
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Note that the THEN PART and ELSE PART lists are accumulated in 

reverse order and so must be reversed to produce a correct 

ordering. 

The result of the value expression is converted to decimal so as 

to allow the inbuilt function NEQUAL to be used. This improves 

performance but r~stricts the values which may be tested. 

The following example shows how the SADL if-then-else construct 

is converted to LISP: 
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Example 4.10 - 8080 JM $ instruction 

The SADL IF statement 

IF ccr [s] then 

pc<-$ endif 

is expressed in Salford LISP as: 

(IF (NEQUAL (CONVERT 'DEC (VALUE_OF ccr s)) 0) 

("<-" (pc) (VALUE_OF $) ) 

) 

4.4.3.2 CODEM STMT 
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The presence of the keyword "do" causes the function CODEM STMT 

to be called. The next token is the name of the code macro being 

invoked while the presence of parentheses indicates actual 

parameters to the code macro. 
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Example 4.11 

do ACplus ( ACCA) 

translates to: (DO_CM acplus acca) 

DO CM evaluates a parameter list containing the name of the code 

macro followed by the actual parameters to it. DO CM is an 

NLAMBDA and so its arguments are not evaluated before being 

passed. 

If there is more than one parameter to the code macro then all 

parameters must be combined in a list. 

Example 4.12 

do SOME ( ACCX ACCY) (DO_CM some (accx accy)) 

4.4.3.3 WHILE STMT 

This function is the analogue of the COND STMT. It makes use of 

Salford LISP's WHILE expression: 

( WHILE <condition> <statement list>) 
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The function WHILE STMT has two local variables WH PART and 

DO PART. The first takes the list returned by VALUE_EXPRN, which 

is invoked for the conditional expression of the While statement. 

The DO PART is a list whose members each make up a SADL 

statement. 

The expression returned is: 

(WHILE (NEQUAL (CONVERT 'DEC <value exprn>) 0) 

<statement sequence> 

) 

The statement sequence should modify registers in the value 

expression otherwise the loop will execute indefinitely. 

4.4.4 SADL Instructions in LISP 

Now that the method of constructing SADL statements has been 

described it is possible to show an entire instruction. For 

example: 
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Example 4.13 - 8080 instruction 

XCHG is TMP <- HL; 

HL <- DE; 

DE<- TMP 

size 8 end 

This causes the following to be generated: 

(LAMBDA() 

( "<-" (tmp) ( VALUE_OF hl) ) 

( "<-" (hl) ( VALUE OF 

( "<-" (de) ( VALUE OF 

) 

Example 4.14 - 8080 LDA $ 

LDA is A<-$ 

from$ using DIR8 

size 8 end 

generates the following function: 

(LAMBDA($) 

de ) ) 

tmp ) ) 

( "<-" (a) (VALUE_OF $) ) 

) 
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The above is created by the function ADD SYNC which builds 

synchronous instructions. Asynchronous instructions are different 

as they have no parameters and can therefore be PROGNs rather than 

LAMBDAs. 

EXPRN SEQ which holds the sequence of Local variables are: 

statement expressions; PARAM LIST which contains the parameters 

declared in the "from" clause; AM LIST and AM TUPLE which are used 

to construct the access method tuple list. 

When the instruction has been successfully parsed the following 

statement ties the components into a LAMBDA expression which is 

placed on the instruction's property list: 

(APPEND (LIST 'LAMBDA (REVERSE PARAM_LIST)) 

(REVERSE EXPRN_SEQ)) 

Note the use of the REVERSE function again. 

The instantiation expression is a value expression which returns T 

or NIL depending upon its truth. It is extracted from the property 

list, evaluated and, if not null, the PROGN is extracted and 

evaluated. 
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4.4.5 The Access Method Function 

Access methods have the form of LAMBDA expressions but in addition 

they have an internal FROG expression. This is because the SADL 

keyword OPERAND is treated as a local variable which takes on the 

text of the destination selector and is the value returned when the 

access method LAMBDA is called. The format is as follows: 

(LAMBDA <parameter list> 

(FROG (OPERAND) 

<statement list> 

) 

) 

(SETQQ OPERAND <destination selector>) 

<statement list> 

(RETURN OPERAND) 

The SETQQ function quotes both its arguments and so assigns OPERAND 

the text of the destination selector rather than its value. This 

is necessary as the text must be inserted into the instruction 

LAMBDA when the instruction is evaluated. 
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4.4.6 The Code Macro Function 

This is an NLAMBDA function as the parameters, if any, are text 

which should be substituted into the appropriate places in the 

statement list. If there are no parameters, the parameter 

variables referred to in the code macro reference those variables 

within the scope of the calling instruction. This is in accordance 

with the scoping rules of LISP. 

The format of the code macro is identical to the format of the 

SYNC EXPRN (see section 4.1.3) except for the substitution of 

NLAMBDA in place of LAMBDA. 

4.4.7 The Executor Function 

This is a PROG function attached to the global variable EXEC@. The 

expression contains a PROG expression with the local variable 

INSTR. This variable holds the text of the next instruction to be 

executed. 
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(FROG (INSTR) 

) 

<statement sequence> 

(SETQ INSTR (LOAD (REG_SELECTOR))) 

<statement sequence> 

(EXEC INSTR) 

<statement sequence> 
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The EXEC function causes INSTR to be parsed and executed. It also 

causes the asynchronous instruction list to be scanned for valid 

instructions. 

EXEC@ must be called each time an instruction is to be executed. A 

call to EXEC@ is equivalent to starting an instruction cycle in the 

hardware of the architecture. 

4.5 SADL Onerators as Functions 

The binary and unary operators of SADL as well as the assignment 

operator("<-") are all functions in Build. All of the functions are 

LAMBDA expressions except for the assignment operator which is a 

special c·ase. 
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The assignment operator must be an NLAMBDA expression because it must 

not evaluate the destination list. It evaluates the right hand side 

by subjecting the value expression to the EVAL function thus forcing 

an extra level of evaluation. 

Both binary and unary operators accept any number and return a number 

in symbolic binary format. The length of the binary number returned 

depends on the operator. Boolean operators return a binary zero or 

binary one, a single digit. The length operator returns a decimal 

value. The ext operator returns a binary number of "infinite 

length"; this is actually some long implementation dependent length 

like 128 or 256 characters. In Salford LISP the length is in excess 

of 600 characters. 

The remaining operators return a result that is the same length as 

the operand, or the larger of the two operands. If the operands were 

decimal or hexadecimal then the binary format contains as many bits 

as are necessary to represent the number as passed; this means that 

leading zeros in decimal and hexadecimal numbers are significant to 

the representation. 

Note that the unary operators"+" and"-" invoke the same functions 

as the binary operators "+" and " ft The functions check to see 

whether the second parameter is null to decide whether to behave as a 

unary operation or a binary operation. 
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Some operators process the symbolic binary numbers in that form while 

others (the arithmetic operators) first convert the input into 

decimal before applying the inbuilt LISP operators and then convert 

the result back to binary. This is a temporary solution to the 

problem of performance. 

The operators which process symbolic binary first split the numbers 

into lists of digits and then perform list walks in combination with 

list surgery. Nothing more sophisticated than comparison or cutting 

and pasting is involved. 

Example 4-15 - the right shift operator 

(DEFUN rsh (OP) 

(SETQ OP (CDR (EXPLODE (CONVERT 'BIN OP)))) 

(SETQ OP (CDR (REVERSE (CONVERT 'BIN OP)))) 

(SETQ OP (REVERSE OP)) 

(SETQ OP (CONS (CAR OP) OP)) 

(IMPLODE (CONS I & OP)) 

) 
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Example 4.16 - the logical AND operator 

(DEFUN and (OP1 OP2) 

) 

/* ensure the operands are binary 

(SETQ OP1 (CDR (EXPLODE (CONVERT 'BIN OP1)))) 

(SETQ OP2 (CDR (EXPLODE (CONVERT 'BIN OP2)))) 

/* extend the shorter operand to the length of the larger 

(WHILE (LESSP (LENGTH OP1) (LENGTH OP2) ) 

(SETQ OP1 (CONS O OP1)) 

) 

(WHILE (LESSP (LENGTH OP2) (LENGTH OP1) ) 

(SETQ OP2 (CONS O OP2)) 

) 

(SETQ OP1 (REVERSE OP1 )) 

(SETQ OP2 (REVERSE OP2)) 

/* perform the and operation 

(SETQ OP1 (MAPCAR (LAMBDA (X Y) 

) ) 

(COND ((OR (ZEROP X) 

(ZEROP Y) ) 

0) 

(T 1 ) 

) ) 

OP1 OP2 

(IMPLODE (CONS '& (REVERSE OP1))) 
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The assignment operator is by far the most sophisticated operator as 

it must perform several functions. It causes evaluation of its 

second parameter to extract a value which is assigned to the local 

variable RSLT. It then parses the destination list accessing 

locations in which to store the value. Because of the possibility 

that each of the destination registers is mapped, a function GET BASE 

is called. The function accepts a register name or register selector 

expression and returns a name or expression which consists of the 

registers which are mapped to by the input register array. As 

GET BASE is recursive any level of mapping is supported; this is 

consistent with the semantics of SADL. After GET BASE has been 

applied to every member of the destination list a new destination 

list exists with only unmapped registers. 

Scanning the destination list 

substitution parameters which may 

also requires processing any 

be part of the destination list. 

Any member of the destination list which starts with a $ must be 

evaluated to obtain the true destination. 

Example 4-17 

dest: $1 

value of $1: (mem 0) 

true dest: (mem 0) 

Once the new, unmapped destination list has been constructed, the 

value must be placed into the appropriate registers and zero extended 
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where necessary. This is a matter of scanning the destination list 

in reverse order (as left to right is most significant to least 

significant order) assigning the digits from RSLT, least significant 

first. 

Where a register array is named without any selector expression, all 

registers in the array are assigned values. 

As each bit, or multiple of bits, is assigned from the RSLT it is 

dropped from the list. When RSLT is null the remaining registers are 

assigned zeros. 

The complexity of the above description is necessary to support the 

full semantics of the SADL assignment. The most common case is not a 

destination list but rather a single destination register. In this 

case GET BASE is called once with the register selector and the value 

may be assigned directly. 
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4.6 An Example 

To tie this description together an example of how an instruction 

would be processed is given. The example is the INC instruction from 

the Motorola 6800 microprocessor. This instruction causes the memory 

location specified by the single instruction parameter to be 

incremented by one. 

The SADL definitions for the registers used are: 

PC is []<15 0> end /* 16-bit register 

MEM is [O #FFFF]<7 0> end /* 8-bits * 64K words 

The SADL instruction definition for INC is: 

INC is $ <- $ + 1 

from $ /* entire operand field 

using INDEX; /* Index and 

EXTND /* Extended addressing 

size 8 end /* instruction length 
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The SADL description for the access method used is: 

EXTND is 

OPERAND<- MEM [$] 

from$ 

size 16 end 

/* entire operand field 

/* 8+ 16 = 24 bit instr. 

When the SADL description has been processed by BUILD the following 

properties of the various names are defined. The following is the 

output of DUMP, a procedure which prints out the names of the 

properties and their values in a (reasonably) pleasing format: 

pc 

MSB #f LSB #O LSW #O MSW #0 

MAPLIST () 

CELLS () 

For the example at least two of the registers of the register array 

MEM must be occupied. One must contain an instruction while the 

other contains the value that is being incremented. 
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mem 

MSB #7 LSB #0 LSW #O MSW #ffff 

MAPLIST () 

CELLS ( (#fOOO &10001001) 

(#0 (inc #fOOO) ) 

(#1 (inc #fOOO) ) 

(#2 (inc #fOOO) ) ) 

The first member of the CELLS list is the register which is to be 

modified while the second,third and fourth members are the registers 

which hold the instruction. Three registers are required because of 

the access method used by the instruction. 

Only the EXTND access method is shown: 
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extnd 

AM SIZE 16 

AM MATCH($) 

AM EXPRN 

(LAMBDA($) 

(FROG (OPERAND) 

BUILD 

(SETQQ OPERAND (mem $)) 

(RETURN OPERAND) 

) 

) 

And the INC instruction: 

inc 

I SIZE 8 

I MATCH ( $) 

AM LIST (( extnd) ( index)) 

I EXPRN 

(LAMBDA($) 

( <- ($) (+ (VALUE_OF $) 1 )) 

) 
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The loading of instructions into the register space is the 

responsibility of the interface which sits on top of the LISP 

architecture generated by Build. It is assumed that the interface 
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procedure which loads the instructions into the register array also 

converts constants to hexadecimal representation. 

The invocation (EXEC@) causes the instruction to be loaded from the 

register array element specified. The SADL declaration is: 

executor 

load MEM [Pc]; 

PC<- PC+ 1; 

exec 

end 

which is represented in LISP as: 

EXEC@ 

(FROG (INSTR) 

(SETQ INSTR (LOAD (mem (VALUE_OF pc)))) 

(<-PC (+ (VALUE_OF pc) 1 )) 

(EXEC INSTR) 

) 

The EXEC function locates the instruction in the SYNC LIST@ and 

locates the appropriate access method. In this case the access 

method is EXTND. The operands of the instruction are passed to the 

EXTND property function which returns the value of OPERAND. OPERAND 

for this particular instance would be: 
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(mem #fOOO) 

This is then passed into the INC instruction which then evaluates as 

if it were: 

(LAMBDA() 

( <- ( (mem #fOOO) ) (+ (VALUE_OF (mem #fOOO) ) 1)) 

) 

The VALUE OF function parses the register selector, extracts the 

value from the register data structure and returns the value 

&10001001. If mem had mapped to several smaller registers, then the 

values returned from those registers would be concatenated into a 

single number. 

The"+" function is evaluated with the parameters &10001001 and 1. 

It returns the value &10001010. 

The assignment function parses the destination list for the single 

target register expression. The function GET BASE returns the same 

expression (mem #fOOO) indicating no mapping. 

The first member of the expression is extracted and used to locate 

the register data structure in REG LIST@. 

register are then used in the following manner. 

The properties of the 
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A search of the members of the CELLS list is used to attempt to 

locate the correct cell using the value returned by the selector 

expression (in this case #f000). If that fails then the number of 

elements in the list is compared with the number specified using the 

MSW and LSW properties; if they are the same then it is an 

enumerated list and the INDEX function may be used to extract the 

value, otherwise the element has not yet been written to. 

If the element is not yet written to, it is C0NSed to the beginning 

of the list, otherwise direct surgery is performed using RPLACA to 

replace the old version of the cell with the new version of the cell. 

In the example the cell #f000 is located and RPLACA is performed on: 

( (#f000 &10001001) 

(#0 (inc #f000) ) 

(#1 (inc #f000) ) 

(#2 (inc #f000) ) ) 

with (#f000 &10001010) being the substitute list. 
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The final result is that CELLS looks like: 

( (#fOOO &10001010) 

(#0 (inc #fOOO) ) 

(#1 (inc #fOOO) ) 

(#2 (inc #fOOO) ) ) 
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This example has shown a simple instruction which has a value 

expression involving a SADL operator and an assignment. No other 

examples have been given as no new concepts are necessary to build up 

more complex instructions. 
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5 Conclusions 

5.1 Summary 

In the four preceding chapters I have provided a representative 

sample of thinking in instruction set processor description 

languages, have developed my own model of the environment of 

executing instruction sequences and have produced an architecture 

description language and an application using that language. 

Chapter One explored several types of architecture description 

language, and cited examples from each area. The advantages and 

disadvantages of each of the approaches were examined. The most 

influential of the languages examined has been ISPS and this language 

was examined in rather greater detail because of this. 

Chapter Two developed a model of architecture at the level which is 

visible to an executing sequence of instructions. The model was 

influenced by the approaches described in Chapter One but was not 

based specifically on any of them. It was used as the basis for the 

language described in Chapter Three. 
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Chapter Three described the syntax and semantics of SADL, the 

Symbolic Architecture Description Language. The syntax description 

given in the chapter is incomplete but is sufficient to allow the 

semantics of the language to be fully specified. A full syntax using 

extended BNF notation is included as Appendix 1. 

Chapter four described the LISP program Build, an application using 

SADL. The description of Build showed how a SADL description may be 

processed to produce data structures and procedures which may form 

the basis of a simulator, thus allowing architecture-independent 

simulation. 

5.2 The Realization of Design Goals 

This thesis had two design goals. The major goal was to design a new 

language capable of describing instruction set processors in a 

symbolic form. The language should avoid the details of 

implementation, but should be able to express the functionality of 

the architecture fully. SADL accomplishes that goal with some 

success. 

SADL is able to describe a range of architectures without exploring 

the implementation details and has been successfully used to describe 

the Intel 8085 and 8086 microprocessors, as well as the National 
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Semiconductor SC/MP and Motorola 6800 architectures. The language 

does have limitations though, and these have been described in 

Chapter Three. Possible improvements to the language outlined in the 

chapter, included the addition of support for variable length 

operands and a more sophisticated technique for describing the 

operand field of assembly language instructions. 

The secondary goal was to produce a tool which could serve as the 

basis for an architecture independent simulator for use in 

interactive study of architectures from a software • I engineers 

viewpoint. Chapter Four describes Build and provides an example 

showing how an assembly language instruction is converted into data 

structures and LISP functions which may then be evaluated to simulate 

the operation of the instruction. This example indicates the 

feasibility of Build as the basis of a description driven simulator. 

Therefore I feel that Build goes some way to satisfying the secondary 

goal of this thesis. 
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5.3 Future Directions 

The approach to SADL was based very much on the principle that an 

architecture consists of several independent domains. While this 

view has been supported by SADL it has resulted in a large language. 

An interesting possibility is to migrate SADL more towards the 

approach taken in ISPS (while still retaining the symbolic nature of 

SADL). 

ISPS has a different approach from that of SADL. It recognises a 

dichotomy between "carriers" (registers) and procedures. Procedures 

describe all behavioural aspects of the architecture without 

distinction· between access method procedures or instruction 

procedures. This means that the same syntax and semantics are shared 

between instructions and access methods, as well as enabling 

procedures to invoke other procedures (like the SADL code macro 

statements). This makes the language quite compact. 

The disadvantage of this approach is that the distinction between 

access methods and instructions that exists at the symbolic level is 

largely lost. In a pedagogic situation this could be a major 

drawback and it is certainly not the ideal situation for a software 

engineer who is used to thinking of instructions and their access 

methods as independent entities. 
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There are two areas of potential for the development of applications 

using SADL. One is the application started with the development of 

Build, that of a symbolic simulator for software engineers to use. 

This would be a useful tool for two reasons. First, its approach to 

the architecture is at the level that a software engineer has 

experience with and so can relate to without extensive training. 

Second, it is useful as a pedagogic tool for a similar reason. 

The other area in which applications could be developed depends upon 

the fact that the architecture is built up into LISP functions. 

Because of this it is possible for development engineers to edit an 

architecture and then immediately simulate the modified architecture 

to evaluate it. This is essentially the justification that Cragon 

[Cragon83] put forward for the use of LISP as an architecture 

specification language. 

The other application, and the one that sparked the idea for this 

thesis originally, is that of automatic translation of instruction 

sequences from one architecture to functionally equivalent 

instruction sequences on another architecture. This is an 

application which keeps recurring as people need to move software 

from ageing architectures to new systems. 

The important phrase is "functionally equivalent". This means that 

the code sequences may be quite dissimilar so long as their 

operations, and the registers which hold the values, are consistent 

within the SADL specification. 
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During this thesis I have come to realise the size of this task, but 

I believe that SADL is a reasonable contribution to its solution. 



Appendix 1 THE SYNTAX OF SADL 

<sadl> ::= <pdescr> [<executor>] 

<pdescr> ::= architecture <ar name> is <rset domain> 

<amset domain> 

<iset domain> 

<ar name> ::= <identifier> 

<rset domain> ::= registers • <reg defn> { <reg defn> } 

<reg defn> ::= <r name> is <dim exprn> [ <mapping exprn> ] end 

<r name>::= <identifier> 

<dim exprn> ::= <array spec> <word spec> 

<array spec> ::= [ [<range bounds> <cell list>] J 

<range bounds> ::= <lower bound> <upper bound> 

<cell list> ::= <cell name> { .L <cell name> } 

<cell name> ::= <identifier> 

<lower bound> ··= <number> 

<upper bound> ::= <number> 
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<word spec> ::= ~ [<msb> <lsb>] 2_ 

<msb> ::= <number> 

<lsb> ::= <number> 

<mapping exprn> ::= maps <r mapdef> { Jl <r mapdef> } 

<r mapdef> ::= <r name> [ <m array spec> ] 

<m array spec>::= l <init addr> <term addr> J 

<init addr> ::= <number> <cell name> 

<term addr> ::= <number> <cell name> 

<amset domain>::= access methods . <am descr> 

{ <am descr> } 

[ <am class>] 

<am descr> ::= <am name> is <am exprn seq> 

from <template> 

[ size <bitsize> ] end 

<am name> ::= <identifier> 

153 



Appendix 1 THE SYNTAX OF SADL 

<am exprn seq>::= { <am assign stmt> .!.... 

<am param stmt> 

.!.... <am assign stmt> 

<am param stmt> ::=OPERAND<- <dest selector> 

<am assign stmt> ::= <reg selector><- <value exprn> 

<dest selector> ::= <dest exprn> l ll <dest exprn> } 

<dest exprn> ::= <reg selector> <param substn> 

<template>::= <const item> 

<bitsize> ::= <number> 

<param substn> 

l <const item> <param substn> } 

<am class> ::= access classes · <amc descr> l .!.... <amc descr> } 

<amc descr> ::= <amc name> is <am name> l <am name> } 

<amc name>::= <identifier> 

<iset domain> ::= [<asynch domain>] <synch domain> 
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<asynch domain> ::= asynchronous instructions : <asynch instr> 

{ <asynch instr> 

<asynch instr>::= <i name> is <istmt seq> upon <value exprn> end 

<i name>::= <identifier> 

<istmt seq> ::= <istmt> { ..L <istmt> } 

<istmt> ::= <assign stmt> <cm stmt> <cond stmt> <loop stmt> 

<assign stmt> ::= <dest selector><- <value exprn> 

<cm stmt> ::=~<cm name> [ J_ <param exprn> { ..L <param exprn> } l] 

<param exprn> ::= <number> <reg selector> <param substn> 

<cond stmt> ::= if <value exprn> then <istmt seq> 

[ else <istmt seq>] endif 

<loop stmt> ::= while <value exprn> do <istmt seq> done 

<synch domain>::= synchronous instructions . [ <codem list>] 

<synch instr> 

{ <synch instr> 

<codem list> ::= <code macro> { <code macro> } 
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<code macro> ::= codem <cm name> [ <cm param>] is <istmt seq> endm 

<cm name>::= <identifier> 

<cm param> ::= _(_ <param substn> ! <param substn> } l 

<synch instr> ::= <i name> is <istmt seq> 

[ from <template> using <amlist>] 

[ size <bitsize>] end 

<amlist> ::= <am tuple> ! ..!.. <am tuple> } 
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<am tuple>::= <am name> <amc name> ! <am name> <amc name> } 

<executor>::= executor 

[<istmt seq>] 

load <reg selector> 

[<istmt seq>] 

exec 

[<istmt seq>] 

end 

<value exprn> ::= [<unop>] <value group> 

! (binop> [<unop>] <value group> } 
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<value group>::= <reg selector> 

<param substn> 

i <value exprn> l 
<number> 

<reg selector>::= <r name> [ l <value exprn> J] 

<param substn> ::= ! [ <dee num>] 

<number> ::= <dee num> <bin num> <hex num> 

<identifier> ::= <letter> { <letter> <digit> 

<bin num> ::= & ( 0 ) { 0 

<dee num> ::= <digit> l <digit> } 

<hex num> •• = # .. <hdigit> l <hdigit> } 

<boo lop> : : = > < >= 

<unop> : : = + I 
I - not lsh rsh 

<binop> ::=.:_I.::.. I.:_ I/_ ** I I 

and or I I 
_1_1 mod 

<const item> ::= <special char> 

<= <> 

ext sizeof 

<boolop> 

<identifier> 

157 

$ 

<number> 



Appendix 1 THE SYNTAX OF SADL 158 

<special char> ! I " # $$ I % I & I I I i I l I = I ~ I ,. I ::= I I I I I I I I I I - - - - -
.i ' I @ 1 I l I I . I l I l I < I > I I I .L I . I I I I . - - -
? . l. + I - L * I I 

.L . I I J_ -

<digit>::= 0 2 3 4 5 6 7 8 9 

<hdigit> ::= <digit> A B C D E F 
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architecture 18085 is 

/* This description is not authoritative but is 

/* for illustrative purposes only. 

/* It is taken from [Danhof81 ]. 

registers 

CCR is [CY,X1JP,X2,AC,X3,Z,S]<> end 

A is []<7 O> end 

PSW is []<15 O> maps CCR I I A end 

Bis []<7 O> end 

C is []<7 O> end 

BC is []<15 O> maps C l l Bend 

Dis []<7 O> end 

Eis []<7 O> end 

DE is []<15 O> maps E l l D end 

His []<7 O> end 

Lis []<7 O> end 

HL is []<15 O> maps L l I H end 

SP is []<15 O> end 

PC is []<15 O> end 
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/* external registers 

MEM is [o #FFFF]<7 O> end 

IO is [o #FF]<7 O> end 

/* virtual registers 

R is [A,B,C,D,E,H,L]<7 O> maps A 11 B 
I I 

I I C 
I I 

I I D I I E I I H 
I I I I I I 

RP is [B,D,H,SP]<15 O> maps C I I B I I E I I D 11 L 11 H I I 
I I I I I I I I I I 

INX is [B,D]<15 O> maps BC I I DE end I I 

RPP is [B,D,H,SP,PSW]<15 O> maps RP I I PSW end 

IMREG is [M5.5,M6.5,M7.5,MSE,R7.5,X,SOE,SOD]<> end 

/* Asynchronous Instruction Activation registers 

INTR is []<> end 

TRAP is []<> end 

RST7.5 is []<> end 

RST6.5 is []<> end 

RST5.5 is []<> end 
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IEREG is []<> end 

RSTREG is[]<> end 

HALTREG is []<> end 

TRAPREG is []<> end 

RST7REG is []<> end 

RST6REG is []<> end 

RST5REG is []<> end 

/* Temporary storage registers 

TMP6 is []<15 O> end 

TMP8 is []<7 O> end 

BITS is [o 7]<> end 

access methods 

REGS is 

OPERAND <- R [$] 

from$ 

size 0 end 

REG16 is 

OPERAND <-RP[$] 

from $ 

size 0 end 
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REG16P is 

OPERAND<- RPP [$] 

from$ 

size O end 

INDIRECT is 

OPERAND<- MEM [HL] 

from M 

size O end 

INX is 

OPERAND<- MEM [INX [$] ] 

from$ 

size O end 

IMMED3 is 

OPERAND<- $1 and #7 

from$ 

size O end 

IMMED8 is 

OPERAND<-$ and #FF; 

PC<- PC+ 

from$ 

size 8 end 

IMMED16 is 

OPERAND <- $ and #FFFF; 

PC <-PC+ 2 

from $ 

size 16 end 
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DIR8 is 

OPERAND<- MEM [$]; 

PC <-PC+ 2 

from $ 

size 16 end 

DIR16 is 

OPERAND <- MEM [$+1] I I MEM [$]; I I 

PC <-PC+ 2 

from $ 

size 16 end 

access classes 

DIR is DIR16 DIR8 end 

IMMED is IMMED8 IMMED16 end 

INDEX is INX INDIRECT end 

asynchronous instructions 

RESET is 

PC<- O; 

IEREG <- O; 

RSTREG <- 0 

upon RSTREG end 

/* enable interrupts 
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TRAP is 

IEREG <- 1; 

MEM [sP-1] I I MEM [sP-2] <- PC; 

SP<- SP - 2; 

PC<- #24; 

TRAPREG <- 0 

upon TRAPREG end 

RST7.5 is 

IEREG <- 1; 

MEM [sP-1] l l MEM [sP-2] <- PC; 

SP<- SP - 2; 

PC<- #3C; 

RST7REG <- 0 

upon RST7REG and not ( IMREG [M7.5] or IEREG) end 

RST6.5 is 

IEREG <- 1; 

MEM [SP-1] l l MEM [SP-2] <- PC; 

SP<- SP - 2; 

PC<- #34; 

RST6REG <- 0 

upon RST6REG and not ( IMREG [M6.5] or IEREG) end 
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RST5.5 is 

IEREG <- 1 ; 

MEM [SP-1] I I MEM [SP-2] <- PC; 

SP<- SP - 2; 

PC<- #2C; 

RST5REG <- 0 

upon RST5REG and not ( IMREG [M5.5] or IEREG) end 

synchronous instructions 

codem Z ($) is 

CCR [CY]<-$= 0 

end 

codem S ($) is 

CCR [s] <-($and #80) #80 

end 

codem P ($) is 

BITS<- $; 

CCR [P] <- + BITS [o] + BITS [ 1 ] + BITS [2] 

+ BITS [4] + BITS [5] + BITS [6] 

end 

codem ACplus ($1 $2) is 

CCR [AC]<- ($1 and #F) + ($2 and #F) > #F 

end 
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codem ACminus ($1 $2) is 

CCR [AC]<- ($1 and #F) < ($2 and #F) 

end 

codem CY ($1 $2) is 

CCR [CY]<- $1 < $2 

end 

MOV is 

$1 <- $2 

from $1,$2 

using REGS REGS; 

REGS INDIRECT; 

INDIRECT REGS 

size Send 

XCHG is 

TMP6 <- HL; 

HL <- DE; 

DE<- TMP6 

size Send 

MVI is 

$1 <- $2 

from $1,$2 

using REGS IMMED8; 

INDIRECT IMMED8 

size 8 end 
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LXI is 

$1 <- $2 

from $1,$2 

A SADL DESCRIPTION 

using REG16 IMMED16 

size 8 end 

LDA is 

A <- $1 

from $1 

using DIR8 

size 8 end 

LHLD is 

HL <- $1 

from $1 

using DIR16 

size 8 end 

LDAX is 

A <- $1 

from $1 

using INX 

size 8 end 

STA is 

$1 <- A 

from $1 

using DIR8 

size 8 end 
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SHLD is 

$1 <- HL 

from $1 

using DIR16 

size 8 end 

STAX is 

$1 <- A 

from $1 

using INX 

size 8 end 

ADD is 

A SADL DESCRIPTION 

do ACPLUS (A $1); 

CCR [CY] l l 

do p (A); 

do z (A); 

do s (A) 

from $1 

using REGS; 

INDIRECT 

size 8 end 

A <- A + $1; 

168 



Appendix 2 A SADL DESCRIPTION 

ADI is 

do ACPLUS (A $1); 

CCR [CY] l I A<- A+ $1; 

do P (A); 

do Z (A); 

do S (A) 

from $1 

using IMMED8 

size 8 end 

ADC is 

do ACPLUS (A $1); 

CCR [CY] l I A<- A+ $1 + CCR [CY]; 

do P (A); 

do Z (A); 

do S (A) 

from $1 

using REGS; 

INDIRECT 

size 8 end 
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ACI is 

do ACPLUS (A $1); 

CCR [CY] l l A<- A+ $1 + CCR [CY]; 

do P (A); 

do Z (A); 

do S (A) 

from $1 

using IMMED8 

size 8 end 

SUB is 

do ACMINUS (A $1); 

CCR [CY] l l A<- A - $1; 

do P (A); 

do Z (A); 

do S (A) 

from $1 

using REGS; 

INDIRECT 

size 8 end 
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SUI is 

do ACMINUS (A $1); 

CCR [CY] I I 

do p (A); 

do z (A); 

do s (A) 

from $1 

using IMMED8 

size 8 end 

SBB is 

A<- A 

do ACMINUS (A $1); 

- $1 ; 

CCR [CY] l i A<- A - $1 - CCR [CY]; 

do P (A); 

do Z (A); 

do S (A) 

from $1 

using REGS; 

INDIRECT 

size 8 end 
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SBI is 

do ACMINUS (A $1); 

CCR [CY] l l A<- A - $1 - CCR [CY]; 

do P (A); 

do Z (A); 

do S (A) 

from $1 

using IMMED8 

size 8 end 

INR is 

do ACPLUS ($1 

$1 <- $1 + 

do p ( $1 ) ; 

do z ( $1 ) ; 

do s ( $1 ) 

from $1 

using REGS; 

INDIRECT 

size 8 end 

INX is 

1 ; 

$1 <- $1 + 1 

from $1 

using REG16 

size 8 end 

1 ) ; 
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DCR 

DCX 

is 

do ACMINUS 

$1 <- $1 -

do p ( $1 ) ; 

do z ( $1 ) ; 

do s ( $1 ) 

from $1 

using REGS; 

INDIRECT 

size 8 end 

is 

($1 

1 ; 

$1 <- $1 - 1 

from $1 

using REG16 

size 8 end 

1 ) ; 

DAD is 

CCR [CY] l l HL <- HL + $1 

from $1 

using REG16 

size 8 end 
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DAA is 

if (A and #OF) > 9 then 

CCR [CY] I I A<- A+ 6; I I 

CCR [AC] <- endif; 

if (A and #FO) > #90 

then CCR [CY] l I A<- A + #60 endif; I l 

do P (A); 

do Z (A); 

do S (A) 

size 8 end 

ANA is 

A<- A and $1 ; 

do P (A); 

do Z (A); 

do S (A); 

CCR [CY] <- O; 

CCR [AC] <-

from $1 

using REGS; 

INDIRECT 

size 8 end 
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ANI 

XRA 

is 

A<- A and $1 ; 

do P (A); 

do Z (A); 

do S (A); 

CCR [CY] <- O; 

CCR [AC] <- 1 

from $1 

using IMMEDS 

size 8 end 

is 

A<- (A and not $1) or (not A and $1); 

do P (A); 

do Z (A); 

do s (A); 

CCR [CY] <- O; 

CCR [AC] (;.. 0 

from $1 

using REGS; 

INDIRECT 

size 8 end 
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XRI 

ORA 

is 

A<- (A and not 

do p (A); 

do z (A); 

do s (A); 

CCR [CY] <- O; 

CCR [AC] <- 0 

from $1 

using IMMED8 

size 8 end 

is 

A<- A or $1; 

do p (A); 

do z (A); 

do S (A); 

CCR [CY]<- O; 

CCR [AC]<- 0 

from $1 

using REGS; 

INDIRECT 

size 8 end 

$1) or (not A and $1); 
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ORI is 

A<- A or $1; 

do P (A); 

do Z (A); 

do S (A); 

CCR [CY]<- O; 

CCR [AC]<- 0 

from $1 

using IMMEDS 

size 8 end 

CMP is 

A SADL DESCRIPTION 

TMPS < - A - $1 ; 

do CY (A $1); 

do P (TMP8); 

do ACMINUS (A $1); 

do Z (TMPS); 

do S (TMPS) 

from $1 

using REGS; 

INDIRECT 

size 8 end 
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CPI 

RLC 

RRC 

RAL 

is 

TMP8 <- A - $1; 

do CY (A $1); 

do P (TMP8); 

do ACMINUS (A $1); 

do z (TMP8); 

do s (TMP8) 

from $1 

using IMMED8 

size 8 end 

is 

CCR [CY] l I A<- lsh A; 

if CCR [CY] 

then A<- A or 1 endif 

size 8 end 

is 

A 11 
I 1 CCR [CY] <- A; 

if CCR [CY] 

then A <- A or #80 endif 

size 8 end 

is 

CCR [CY] 1 1 A<- A 1 1 CCR [CY] I 1 I I 

size 8 end 

RAR is 

A I l ccR [cY] <- ccR [cY] l l A 

size 8 end 
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CMA is 

A<- not A 

size 8 end 

CMC is 

CCR [CY] <- not CCR [CY] 

size 8 end 

STC is 

CCR [CY] <- 1 

size 8 end 

JMP is 

PC <- $1 

from $1 

using IMMED16 

size 8 end 

JNZ is 

if CCR [z] = 0 

then PC<- $1 endif 

from $1 

using IMMED16 

size 8 end 

JZ is 

if CCR [z] = 1 

then PC<- $1 endif 

from $1 

using IMMED16 

size 8 end 
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JNC is 

if CCR [CY]= 0 

then PC <- $1 endif 

from $1 

using IMMED16 

size 8 end 

JC is 

if CCR [CY]= 

then PC <- $1 endif 

from $1 

using IMMED16 

size 8 end 

JPO is 

if CCR [P] = 0 

then PC<- $1 endif 

from $1 

using IMMED16 

size 8 end 

JPE is 

if CCR [P] = 1 

then PC<- $1 endif 

from $1 

using IMMED16 

size 8 end 
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JP is 

if CCR [s] = 0 

then PC<- $1 endif 

from $1 

using IMMED16 

size 8 end 

JM is 

if CCR [s] 

then PC<- $1 endif 

from $1 

using IMMED16 

size 8 end 

CALL is 

MEM [SP-1] J J MEM [SP-2] <- PC; 

SP<- SP - 2; 

PC<- $1 

from $1 

using IMMED16 

size 8 end 
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CNZ is 

if CCR [z] = 0 then 

from $1 

MEM [SP-1] l l MEM [SP-2] <- PC; 

SP<- SP - 2; 

PC<- $1 endif 

using IMMED16 

size 8 end 

CZ is 

CNC 

if CCR [z] = 1 then 

MEM [SP-1] l i MEM [SP-2] <- PC; 

SP<- SP - 2; 

PC<- $1 endif 

from $1 

using IMMED16 

size 8 end 

is 

if CCR [CY] = 0 then 

MEM [SP-1] I I MEM [SP-2] <- PC; I I 

SP <- SP - 2· 
' 

PC <- $1 endif 

from $1 

using IMMED16 

size 8 end 
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cc is 

if CCR [CY] = 1 then 

MEM [SP-1] I I MEM [SP-2] <- PC; I I 

SP <- SP - 2; 

PC <- $1 endif 

from $1 

using IMMED16 

size 8 end 

CPO is 

if CCR [P] = 0 then 

MEM[ SP-1] I I MEM [SP-2] <- PC; I I 

SP <- SP - 2; 

PC <- $1 endif 

from $1 

using IMMED16 

size 8 end 

CPE is 

if CCR [P] = 1 then 

from $1 

MEM [SP-1] l l MEM [SP-2] <- PC; 

SP<- SP - 2; 

PC<- $1 endif 

using IMMED16 

size 8 end 
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CP is 

if CCR [s] = 0 then 

from $1 

MEM [SP-1] i l MEM [SP-2] <- PC; 

SP<- SP - 2; 

PC<- $1 endif 

using IMMED16 

size 8 end 

CM is 

if CCR [s] = 1 then 

MEM [sP-1] l l MEM [sP-2] <- PC; 

SP<- SP - 2; 

PC<- $1 endif 

from $1 

using IMMED16 

size 8 end 

RET is 

PC <- MEM [SP+1] l l MEM [SP]; 

SP<- SP+ 2 

size 8 end 

RNZ is 

if CCR [z] = 0 then 

PC<- MEM [SP+1] i l MEM [SP]; 

SP<- SP+ 2 endif 

size 8 end 
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RZ is 

if CCR [z] = 1 then 

PC <- MEM [SP+1] I I MEM [SP]; I I 

SP <-SP+ 2 endif 

size 8 end 

RNC is 

if CCR [CY] = 0 then 

PC <- MEM [SP+1] I I MEM [SP]; I I 

SP <-SP+ 2 endif 

size 8 end 

RC is 

if CCR [CY] = 1 then 

PC <- MEM [SP+1] I I MEM [SP]; I I 

SP <-SP+ 2 endif 

size 8 end 

RPO is 

if CCR [P] = 0 then 

PC <- MEM [SP+1] I I MEM [SP]; I I 

SP <-SP+ 2 endif 

size 8 end 

RPE is 

if CCR [P] = 1 then 

PC <- MEM [SP+1] I I MEM [SP]; I I 

SP <-SP+ 2 endif 

size 8 end 
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RP is 

if CCR [s] = 0 then 

PC<- MEM [SP+1] I I MEM [SP]; 

SP<- SP+ 2 endif 

size 8 end 

RM is 

if CCR [s] = 1 then 

PC<- MEM [SP+1] I I MEM [SP]; 

SP<- SP+ 2 endif 

size 8 end 

RST is 

MEM [SP-1] l l MEM [SP-2] <- PC; 

SP<- SP - 2; 

PC<- $1 * 8 

from $1 

using IMMED3 

size 8 end 

PCHL is 

PC<- HL 

size 8 end 

PUSH is 

MEM [sP-1] l l MEM [sP-2] <- $1; 

SP<- SP - 2 

from $1 

using REG16P 

size 8 end 
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POP is 

$1 <- MEM [sP+1] l l MEM [sP]; 

SP<- SP+ 2 

from $1 

using REG16P 

size 8 end 

XTHL is 

TMP6 <- HL; 

HL <- MEM [SP+1] I I MEM [SP]; 

MEM [SP+1] I l MEM [SP] <- TMP6 

size 8 end 

SPHL is 

SP<- HL 

size 8 end 

IN is 

A <- $1 

from $1 

using IO 

size 8 end 

OUT is 

$1 <- A 

from $1 

using IO 

size 8 end 
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EI is 

IEREG <- 0 

size 8 end 

DI is 

IEREG <-

size 8 end 

HLT is 

HALTREG 

size 8 end 

NOP is 

PC <- PC 

size 8 end 

RIM is 

<-

A<- IMREG 

size 8 end 

SIM is 

A SADL DESCRIPTION 

1 

if IMREG[MSE] 

then IMREG <- A 

else IMREG <- (IMREG and #07) or (A and #F8) endif 

size 8 end 

executor 

load MEM [Pc] 

PC <- PC + 1 

exec 

end. 
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