
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the pennission of the Author.

SADL

A SYMBOLIC ARCHITECTURE DESCRIPTION LANGUAGE

A Thesis Presented in Partial Fulfilment

of the requirements for the Degree of

Master of Arts in Computer Science

at Massey University

Thomas William Livingstone

1985

Abstract

This thesis develops a new language capable of specifying computer

architecture at the symbolic, or assembly language level.

The thesis first provides a representative sample of current, or

proposed, computer description languages and discusses four of the

languages and their merits with regard to the symbolic approach. Next,

a model is proposed of computer architecture at the level which is

visible to an executing sequence of instructions. This model is based

on the assembly language level of computer architecture.

Symbolic Architecture Description Language (SADL) is

Finally, Build, a LISP program which takes SADL

Next, the

described.

architecture

descriptions and generates functions and data structures for use in

simulating architectures, is described.

Acknowledgements

I would like to thank the following for their support and assistance

during this thesis:

Nola Simpson, for being my supervisor;

Paul Lyons, for his excellent criticisms of the manuscript;

The staff of the Massey University Computer

cooperation.

Centre for their

Table of Contents

Introduction ••• 1
. .. 5
... 9

1.1
1.2

Multi-level Architectures and Virtual Machines ••••••

1.3

Current Architecture Description Languages ••••
1 • 2. 1
1. 2. 2
1 • 2. 3
1 • 2. 4

ISPS•.........•....
The Vienna Definition Language •••
LISP •••••
PASCAL •••

Summary •••••••
2 A Conceptual Model of Architecture ••••••

2.1 A Model of Instruction Execution ••

3

2.2 The Register Set Domain •••••••
Instruction Set Domain •.• 2.3

2.4
2.5

SADL
3. 1
3.2

The
The Access Method Domain •••.
The Data Type Domain ••••••••

- The Symbolic Architecture Description Language ••
The Basics of the Language ••
The Processor Description •.••
3. 2. 1 The Register Domain ••. ..

3.2.1.1 The Array Clause ••
3. 2. 1. 2 The Word Clause •••
3.2.1.3 The Mapping Clause ••.

3.2.2 The Access Method Domain ••••
3.2.2.1 The Access Method Description ••
3.2.2.2 The Access Method Class Section •••

3.2.3 The Instruction Domain •••••.••.••••••••
3.2.3.1 The Instruction Statement ••••••
3.2.3.2 The Asynchronous Instruction Set .•
3.2.3.3 The Synchronous Instruction Set

3.3 The Executor Description ••.

•• 10
• • 21
• • 29

.36,
• • 41

• • 42
. 43

........... 45
• •• 49
•. 57

. 60

• • 62
.. 63 • •• 68 • •• 70

. • •• 71
••. 74 • 76

• . 80
• • 81
.. 85 • •• 86

...... • • 87
..90

••. 93
••• 99

3.4 Using SADL •• ••••••••••••• • • 100

4 Building Programs from SADL ••••••
4.1 Data Structures ••.••••.••••••

4.2
4,3
4.4

4. 1. 1
4.1.2
4.1.3

The Register Domain •••
The Access Method Domain ••••••.
The Instruction Set domain ••.

Constructing Tokens .••••••••••••.••••••••
Handling Symbolic Numbers ••••••••.
Building LISP functions and PR0Gs ••
4.4.1 Converting Value Expressions to LISP •••

4.4.2
4.4.3

4,4.1.1 The Value Group .•.
The Destination Selector ••
SADL statements ••••.
4.4.3.1 C0ND STMT •••
4.4.3.2 C0DEM STMT •.••

. 102
• • 103

. 105
• • 107
•• 109
• • 111

• 11 3
• • 11 5
•• 11 6
• • 11 7

. 119
••• 1 21

•• 123
• •••. 125

5

4.4.3.3 WHILE STMT ••••••••••
SADL Instructions in LISP •••
The Access Method Function ••
The Code Macro Function •••••

4.4.4
4,4.5
4,4.6
4.4.7 The Executor Function ••
SADL Operators as Functions •••

........................
4.5
4.6 An Example•..•...•.....

Conclusions ••
5.1 Summary ••
5.2 The Realization of Design Goals •••
5.3 Future Directions •••••••••••••••••

.

.
.

••••• 126
• 127

••••• 130
.. 131
..131

• ••••• 1 32
•• 138

. ... • • 146
• • 146
•• 14 7 • • 149

Appendix 1•........•..••........•...•.......••......... 1 52

Appendix 2•...............................• 1 59

Bibliography 189

Chapter 1 INTRODUCTION

1 Introduction

This thesis proposes a language for symbolically specifying the

execution environment of assembly language programs. The assembly

language level of description was chosen as it is the most abstract

level which is still capable of specifying the instruction set

functionality of a computer. Higher level abstractions, such as

compilers and interpreters, no longer allow explicit access to the

physical machine state, while lower level descriptions have little

meaning to the software engineer.

Computer Design, once an area of individual artistic expression, is

becoming the result of systematic cooperation between the members of a

team, often a large team, frequently aided by automated design tools.

Members of the design team must be able to communicate with each other,

and with their design tools, without ambiguity, and to this end a

number of formal languages have been developed for the description of

computer systems.

It has become a truism that a computer system consists of a number of

layers, each describable in terms of a particular model. In this

thesis, we shall find the level described by the ISP (Instruction Set

Processor) model [Bell71] to be the most useful. A computer

architecture defined in terms of this model would comprise:

Chapter 1 INTRODUCTION 2

(i) a set of registers,

(ii) a memory which contains the encoded instructions,

(iii) a set of functions which

(a) produce the effective address for obtaining and

storing the operands and

(b) specify the actions required to implement the

instructions.

(iv) a finite state machine which defines the loading,

interpretation and execution of instructions defined for

the architecture.

There are two approaches to modelling an architecture at the ISP level.

The traditional method (adopted in the specification language ISPS

[Barb81]) is a mechanical view: the architecture is viewed as a

structure consisting of registers and decoding functions which operate

on the machine code of the architecture.

The second approach is a symbolic view: it is derived from the

Assembly Language model of architecture. It ignores the mechanics of

encoding and decoding - the instruction is only ever represented in

symbolic form - and models the decode and execute cycle as a language

interpretation cycle.

Why use the symbolic approach?

1. It is the natural tool for software engineers.

A software engineer who programs an architecture directly (as

Chapter 1 INTRODUCTION 3

opposed to using a high level language) makes use of the symbolic

level and an Assembler. The costs of programming in machine code

versus assembly language and the functional equivalence of the two

means that machine code programming has been superceded by assembly

language programming, except possibly for some extremely

specialised applications.

2. It is a natural pedagogic tool.

Because people are familiar with the symbolic approach to

architecture, it is easier to comprehend architectures when

expressed symbolically. This is important when attempting to learn

new architectures, when comparing two architectures

evaluating an architecture.

3. It allows direct simulation of the symbolic program.

or when

The normal process when simulating the execution of programs on a

particular architecture is to write the programs (normally in

assembly language), translate them into the machine code for the

target architecture and run them on a simulator which emulates the

instruction and register sets of the target machine.

Having the architecture specified symbolically bypasses the

translation phase as the assembly language program may be executed

directly by the simulator. This saves programmer time and

therefore saves money. Balanced against this is the increased cost

in processor time of executing an interpreted program rather than a

compiled program. Also, the symbolic tracing of instruction

Chapter 1 INTRODUCTION 4

execution is simplified and protection mechanisms against faulty

programs are easier to install; for instance it would be

impossible for a running program to try executing data, an

occurrence common in out-of-control machine code programs.

4. It can fully specify the register set of an architecture, and

external lines may also be modelled indirectly as registers. The

symbolic approach allows the register set of an architecture to be

specified to the same detail as the mechanical approach to ISP

specification. Thus there is no expressive capability lost when

using the symbolic approach over the mechanical approach.

5. Fundamental to the symbolic approach is the fact that each machine

instruction has one equivalent symbolic instruction and that the

functionality of both is the same. This is a widely recognised

view of pure assembly language (as opposed to macro-assembly

language).

Section 1.2 of chapter 1 examine8 four languages which are used, or

have been proposed for use in describing the instruction set processor

level. Two of the languages, LISP and VDL, deal with instruction set

processors at the symbolic level while the other two languages, Pascal

and ISPS, deal with the machine code level.

Chapter 2 proposes a model of computer architecture which is centred on

the view of an executing program within a machine. The model is based

upon the stored program concept with a single execution unit and single

Chapter 1 INTRODUCTION 5

instruction and data streams; this excludes architectures based upon

array and vector processing as well as systolic architectures.

Chapter 3 defines both the syntax and semantics of the Symbolic

Architecture Description Language (SADL) and shows the capabilities and

restrictions of the current version of the language.

Chapter 4 describes software which processes a description in SADL and

produces a set of data structures and functions which may be used to

simulate the architecture when provided with an assembly language

program. It is an application intended to test the validity of SADL.

1.1 Multi-level Architectures and Virtual Machines

One of the major concepts that has evolved in computing in the last

fifteen years has been the view of a computer system as a layered

hierarchy of abstract machines. At the top of the hierarchy are user

applications and at the bottom is the physical specification of the

electronic components which combine to form the hardware.

Each level may be viewed (more or less) as a complete architecture

independent of those levels in the hierarchy either above or below

it. This view is invaluable in simplifying the task of designing or

analysing computer systems.

Chapter 1 INTRODUCTION 6

There are differing views as to what constitutes each layer, but

Siewiorek, Bell and Newell [Bell71,Siewiorek82] have proposed a

layering that suits the author's purposes and is quite widely

recognised. I shall refer to this as the Bell model.

In the Bell model there are four main levels which are subdivided

into sublevels. The main levels are: Circuit level, Logic level,

Program level, PMS level.

The only level of relevance to the software engineer is the program

level, because this level is broken down into the ISP (Instruction

Set Processor) sublevel, and the High Level Language sublevel which

is itself broken down into Operating System, Run-time System,

Application Routines and Applications Systems sublevels.

Chapter 1 INTRODUCTION

Example 1.1

I ---,
PMS

I ---,
Program High Level

Language

Applications Systems

I I ,------------------------,
Applications Routines I

I I ,------------------------,
Run-time System

I I ,------------------------,
Operating System

I I I ,-------------------,------------------------,
Instruction

Set Processor

I ---,
Logic

I ---1
Circuit

I ---,

7

The Assembly Language sublevel fits into the hierarchical view just

above the ISP sublevel and below the Operating System sublevel

(although Tanenbaum [Tanenbaum76] views the assembler level as being

above the operating system level).

The reasons for placing Assembly Language at this point in the

hierarchy are these:

Chapter 1 INTRODUCTION 8

(i) In the abstraction process, information is hidden or

lost. Anything that may be specified by an Assembly

Language program may be specified in greater detail at

the ISP sublevel; this indicates that the Assembly

level is an abstraction of the ISP sublevel.

(ii) Similarly, an Operating System is a composition of

concepts expressible in Assembly Language. Its

component subroutines, coroutines, and programs are

built up from assembler-level instructions, either

directly or (as in the case of UNIX and Burroughs' MCP

which are written in high level languages) indirectly.

Where do compilers, which bypass the assembler level and directly

produce code at the ISP level, fit into the model? Their mapping

from a particular level in the hierarchy of abstract machines to

another, lower level may bypass one or more levels. However the

number of levels which a compiler bypasses does not invalidate the

hierarchical structuring of abstract machines.

Chapter 1 INTRODUCTION 9

1.2 Current Architecture Description Languages

There currently exist a considerable number of languages for

describing computer architectures at various levels. Most of these

straddle the Register Transfer and the ISP levels. There seem to be

almost no generally recognised languages which approach the ISP level

from the language (or symbolic) direction.

Subrata Dasgupta [Dasgupta82] surveys a group of languages which he

calls Computer Design and Description Languages (or CDDLs). The

survey concentrates on ISPS, S*A and the CONLAN extensible language

system.

Two points made by Dasgupta are significant. The first is that at

the time of writing (1982) CDDLs had not been generally accepted by

the computer design community. The second point is that the majority

of CDDLs that have been proposed have fallen into the Register

Transfer level of description. This is partly true of most of the

languages described here although they all have applicability at the

ISP level. Only LISP and VDL have the ability to specify

architecture at the symbolic level.

Chapter 1 INTRODUCTION 10

1. 2.1 ISPS

ISPS is the single most influential language for specifying

processor

registers.

architecture in terms of the instruction set and

When Bell and Newell first formulated their layered model of

abstract machine descriptions they developed a pedagogic language

with which they illustrated the instruction set processor model.

The language that they created was called ISP, the same name as the

level of abstract machine that was being described. ISP was a

descriptive tool rather than a formal language and thus suffered

from shortcomings which led to a short period of evolution. The

resulting language was adopted for use in various applications

[Barb81] and has come to be known as ISPS. In its most recent form

it was used by Bell, Newell and Siewiorek in the update of the

original Bell and Newell text.

In ISPS an architecture consists of collections of entities and

carriers the interfaces between which and behaviour of which are

described. An entity is a unit of hardware. A carrier is a

storage location (register or memory) used for communicating

between entities. The interface describes the number and types of

carriers used to store and transmit information between entities.

Chapter 1 INTRODUCTION 11

The behavioural aspects of entities are described by procedures

which specify the operations carried out by each entity.

A carrier is described by naming the carrier and specifying its

word dimension and array dimension.

Example 1.2 - M\Memory[0:4095]<0:11>.

specifies a carrier named M with an alias Memory; the alias is

intended to document the meaning or usage of a carrier's name. The

square brackets indicate that the carrier is an array of cells

where the first cell is named O and the last cell is named 4095;

N.B. the cell indices are names not numbers. The angle brackets

indicate the structure of the individual words to be 12 bits named

0,1, ••• ,11.

Procedures contain data, control operations, and local entities

which may be of arbitrary complexity. Each procedure has

associated with it a carrier of the same name as the procedure and

with a structure specified by the procedure. This is the mechanism

for explicitly returning information from procedures; when a

procedure is invoked it performs its operations and the value

returned from the procedure is accessible from the carrier of the

same name.

ISPS is designed to describe more than just the instruction set

processor view of the architecture, it is able to describe

Chapter 1 INTRODUCTION 12

architecture from the logical level up to the ISP level. In this

respect ISPS has been significantly expanded in its purpose from

the original language ISP.

However, the following description of ISPS will deal only with

those aspects of the language that are used to describe instruction

set processors.

An ISPS description is broken into a series of sections of the

form:

section.name

<declaration>,

<declaration>,

section.name

<declaration>,

<declaration>,

This grouping of sections is purely a documentation device and the

section headings have no semantic content. Section names are

arbitrary names intended to convey

declarations immediately following.

declarations separated by commas.

information about the

A section is a list of

Chapter 1 INTRODUCTION 13

There are two types of declaration: the carrier declaration and

the procedure declaration - The carrier declaration has the form of

the memory declaration given previously with the additional feature

that a carrier may be associated (as a synonym) with part of

another carrier:

Example 1.3 - The PDP-8 extended accumulator is defined thus

LAC <O:12>,

L\Link<>

AC\Accumulator

:= LAC<O>,

:= LAC<1:12>

The expression<> indicates a single, unnamed bit. Notice that

there are three distinct declarations in the above example and that

the indentation is purely a typographical tool chosen to convey the

idea that the second two declarations are associated with the

first.

Exaffiple 1.4 - PDP-8 Page zero format:

P.O\Page.Zero[0:127]<0:11>

A.I\Auto.Index[0:7]<0:11>

:= M[0:127]<0:11>,

:= P.0[8:15]<0:11>

In this example the first declaration associates a carrier with a

part of the memory array (see Example 1.2) while the second

declaration associates another carrier with part of the first

carrier. This illustrates how carriers may be hierarchically

Chapter 1 INTRODUCTION 14

structured.

Procedures are of the form:

procedure.name:=

BEGIN

<statements>

END

Statements may be grouped either sequentially or concurrently. A

sequential ordering is indicated by the keyword NEXT while

concurrent clustering is indicated by a semicolon (";").

A sequential group of statements:

<statement group 1> NEXT

<statement group 2> NEXT

A concurrent group of statements:

<statement 1>

<statement 2>

The statements separated by semicolons may execute concurrently in

an asynchronous manner but all statements immediately preceding a

Chapter 1 INTRODUCTION 1 5

NEXT must be completed before any statements following may begin

executing.

The following example is a complete ISPS function and illustrates

several aspects of the language.

Example 1.5 - PDP-8 effective address calculation:

eadd\effective.address<0:11> :=

begin

Decode pb =>

begin

0 := eadd = '00000@ pa,

:= eadd = last.pc<0:4>@ pa

end NEXT

if ib =>

begin

!page zero

!current page

!indirect bit

if eadd<0:8> eqv #001 !auto index

=> M[eadd] = M[eadd] + 1 NEXT

eadd = M[eadd] !indirect addr.

End

End,

ibis the indirection bit; _E£ is the page bit.

The Decode operation is equivalent to the Pascal CASE statement.

The=> token serves as a delimiter for both the Decode and the

conditional constructs; In the former it delimits the carrier

Chapter 1 INTRODUCTION 16

being decoded (and is redundant), in the latter it is the

equivalent of then in Pascal. The:= token delimits constants in

the Decode construct. The IF test is false if the expression being

tested resolves to zero.

operator.

The operator @ is the concatenation

Note that eadd has a carrier component as part of its declaration.

A typical use of the carriers associated with procedures would be:

Example 1.6 - PDP-8 Increment and Skip if Zero instruction

BEGIN

END

M[eadd] = M[eadd()] + 1 NEXT

IF M[eadd] eql O =>PC= PC+

This instruction increments the addressed memory.

The effective address is computed once by invoking the function

eadd() and from then on the value of the effective address is

available from the carrier eadd.

In Example 1.5 the memory is accessed in an assignment statement

where both sides of the assignment refer to the carrier eadd not

the function eadd. One of the problems with ISPS is this ambiguity

as to whether the function is being invoked or the associated

carrier is being referenced.

Chapter 1 INTRODUCTION 17

Note that procedures may have parameters, though this is not shown.

Other components of ISPS are:

logical operators: and or not xor eqv

arithmetic operators: + - */mod

relational operators: eql lss leq neq geq gtr tst

shift operators: slO sl1 sld slr srO sr1 srd srr

number bases: ' (binary), # (octal), " (hexadecimal).

= is the logical assignment operator. Truncation or zero

extension is performed on the value on the right hand

side to fit the destination on the left hand side.

<= is the transfer operator. Truncation or

extension is performed on the right hand side to fit

the destination on the left.

The three ways of exiting a procedure invocation are leave,

restart, and resume.

Leave entityname -

terminates the named entity. The only restriction is that

the statement must occur within

(activation) of the named entity.

resume entityname -

the

returns control to the specified entity.

restart entityname -

dynamic scope

terminates and reactivates the named entity (effectively a

Chapter 1 INTRODUCTION 18

combined leave and resume).

The arithmetic operators are modified in their function by re­

presentation modifiers. The following arithmetic representations

are supported:

Modifier

{TC}

{oc}

{SM}

!us}

The usage is:

Representation

Two's complement

One' complement

Signed magnitude

Unsigned magnitude

M[eadd] = M[eadd()] +{SM) 1

The modifier affects the arithmetic operator immediately preceding

it.

The control clauses are specified by IF, REPEAT and DECODE.

IF <expression>=> <stmt>

If the expression does not evaluate to zero then <stmt> is

invoked.

Chapter 1 INTRODUCTION 19

REPEAT <stmt>

The statement is continously executed. If it is to terminate then

one of the control transfer statements LEAVE, RESTART, RESUME must

be present within <stmt>.

DECODE <carrier>=> <selector block>

This statement evaluates the contents of <carrier> and executes

the appropriately labelled branch of the <selector block>.

ISPS is a flexible language with considerable expressive power

both for instruction set processor descriptions and for the lower

levels of the abstract machine hierarchy.

ISPS has been highly successful and has been applied to:

The evaluation and certification of instruction set processors.

VLSI design automation.

Automatic generation of assemblers.

Production Quality Compiler Compilers.

Symbolic execution of ISPS descriptions.

Functional fault simulation.

Despite this wide application ISPS is not perfect. Dasgupta lists

several drawbacks of the language, two of which are relevant to

this thesis.

Chapter 1 INTRODUCTION 20

The first is stylistic. ISPS employs familiar symbols in an

unfamiliar manner.

normally used as

delimit the names

The examples given are := and J_• The first is

the assignment operator whereas ISPS uses it to

of entities or labels. The J_ is almost

universally used to denote sequential ordering but in ISPS it is

used for the opposite purpose of specifying concurrent execution.

The second drawback is a more limiting one - ISPS has few data

types. Dasgupta identifies the "register" and the "memory" as the

only data types supported by ISPS. The author feels that a type

"bit", the one indivisible unit of storage should be included too.

There is no facility in ISPS for producing composite data

structures from collections made up of the base types as in Pascal

and this does tend to limit the ease with which complex register

structures may be described.

The main limitation of ISPS, in the context of this thesis, is

that ISPS has no facilities for integrating the symbolic Assembly

Language level into the ISPS description. The essence of ISPS is

to describe the machine code view of the ISP model. The lack of

Assembly Language constructs means that an Assembly Language

program is unable to be represented within ISPS without extensions

to the language.

Because ISPS represents a machine code description, the extension

to ISPS would need to be a complete description driven Assembler.

This is a non-trivial exercise. There are problems of instruction

Chapter 1 INTRODUCTION 21

naming, access methods and their assembler formats, as well the

generality necessary to support

that indicate it is easier to

a wide variety of architectures

build the assembly language

definition and then derive the ISPS description from it. Attempts

at standardising even Assembly Language mnemonics have not

produced entirely satisfactory results [Fischer79,Distler82];

standardisation of access methods would be much more difficult.

1.2.2 The Vienna Definition Language

The Vienna Definition Language (VDL) was originally designed to

specify the syntax and the semantics of PL/1. It is a language

"for defining interpreters rather than compilers" [Wegner72].

LISP, and in particular the technique of language definition

illustrated by the APPLY function, was an important influence in

determining the approach to language definition of VDL. This :Ls

noticeable when examining VDL expression trees.

VDL has subsequently been applied to the specification of other

languages such as Algol-68 but has not generally been widely

applied. One author [Spitzen76] derides the VDL description of

PL/1 as being "lengthy, unintuitive, and itself a program."

Chapter 1 INTRODUCTION 22

Another, [Lee73], describes the use of VDL as a tool for

describing a machine at various levels of abstraction down to the

register transfer level. The architecture of the example given in

Lee's paper was too limited to fully evaluate the applicability of

VDL to describing arbitrary computer systems but there is

certainly reason to believe that VDL does indeed have the power.

The stumbling block appears to be the general lack of acceptance

of VDL and the "unintuitive" structure of the language. This

structure would probably not be so much of a problem to people who

have extensive grounding in Language Theory. It is also possible

that VDL has been ignored not because of inherent limitations of

the language itself but rather because it is associated with the

generally unsuccessful languages PL/1 and Algol 68.

In VDL an architecture is modelled as a finite state machine with

a set of states containing information on the data being

manipulated (registers) and the instructions which define the

transformations to be executed over the data. A function will

interpret and execute the instructions in the current state of the

machine.

Within the definitional machine (the VDL program defining the

target architecture) there is a component known as the "control

stack". This stack contains the set of instructions which are

awaiting execution and which, when executed, model the execution

of instructions in the target architecture. The "control stack"

Chapter 1 INTRODUCTION 23

may be viewed as a tree in which the nodes are definitional

instructions.

Only instructions at the leaf nodes may be executed; this means

that an instruction at a given node in the tree is inhibited from

execution until all its offspring instructions have been executed

(and therefore removed).

Definitional instructions are executed either as macro-expansions

or as state-modifiers. In a macro-expansion the instruction

replaces itself in the control stack (tree) by a subtree, thus

modelling the transition in definitional level or the sequencing

of operation. State modifiers alter the state of the machine

(other than the control stack), thus modelling operations upon

registers.

A definitional instruction may contain several definitions but

only one is applicable at any one time.

Chapter 1 INTRODUCTION 24

The general form of a definitional instruction is:

instr(q1, q2, ••• ,qn) =

p1 -> group1

pm-> groupm

.E_1•·•.E_m are predicate expressions that select alternative actions

(group1 ••. groupm) • .9..1 ••• .9..n are parameters that may occur in ..:e_i or

groupi and that are replaced by values before the instruction is

executed. The execution of the instruction causes the current

state to be transformed by the action groupi corresponding to the

first true predicate .P_i·

Where a group is a macro-expansion, the notation shows the set of

instructions which replace the instruction being executed. The

form which is used indicates the structural relations between the

instructions.

- indentation indicates a lower level in the tree.

- comma(",") indicates continuation of a level.

- semi-colon(";") indicates completion of a level except

where the instruction that the semi-colon follows is the

last in the macro-expansion in which case it is

unnecessary.

Chapter 1

Example 1.7

inst-1;

inst-2;

inst-3;

inst-4

INTRODUCTION 25

The order of execution is from the leaf node (inst-4) to the root

node (inst-1).

Example 1.8

inst-1;

inst-2,

inst-3,

inst-4

Instructions at the same level are executed asynchronously, so

inst-2, inst-3, inst-4 will each execute independently but inst-1

will not be able to execute until all of the other instructions

have completed.

Normally, the control tree structure is represented linearly using

braces to indicate subtrees:

Chapter 1 INTRODUCTION

Example 1.9

inst-1;

inst-2,

inst-3;

inst-4,

inst-5

is equivalent to:

linst-1 linst-2 inst-3 {inst-4 inst-5} } }

26

State-modifying definition groups specify changes to the state of

the definitional machine. Each group consists of a set of

selector: value pairs. Selectors represent states in the machine

and the values are functions with parameters.

modifying instruction would be:

A typical state

pc_to_mar =

s-mar : s-pc(E)

which means "replace the contents of the s-mar component of the

state Eby the contents of the s-pc component of the state E.

To overcome problems of timing with the pairs (which are

asynchronous) the new state is defined to be a copy of the old

state rather than a modification of it.

Chapter 1 INTRODUCTION

Example 1.10 - 3-bit rotate

shift=

bit-0.s-acc

bit-1.s-acc

bit-2.s-acc

bit-1.s-acc(E)

bit-2.s-acc(E)

bit-0.s-acc(E)

("" means component of)

27

If the new state were not defined to be a copy of the old state

then the above instruction group would be meaningless because the

original value of one of the bit components must be lost, there

being no guarantee that all operations will (or can) occur at the

same instant.

In [Lee73] a simple computer architecture (the "Blue Machine") is

described which is similar to that of a PDP-8. Its state may be

defined by the predicates:

Chapter 1 INTRODUCTION 28

Example 1.11

is-E = (<s-mem is-memory>,

<s-mbr is-word>,

<s-acc (<s-link is-bit>,

<s-body is-word>) >,

<s-mar (<s-ma is-word-address>,

<s-pa is-page-address>) >,

...)

where each of the pairs specifies the name of the branch on which

the component is located and the structure of the component. The

above example describes the architecture at the register transfer

level.

is-word= ({ <bit(i) is-bit> 0 <= i <= 11 })

defines a structure composed of a set of pairs, the object of each

of which is a bit and the selector of which is the form bit(i)

where the value of i is in the range \0,11}. This effectively

defines a 12-bit word.

This explanation cannot do justice to the power of VDL and is only

intended to impart a feeling for the way that VDL may be applied

to architecture description.

Chapter 1 INTRODUCTION 29

1.2.3 LISP

Lisp has been put forward as a language suitable for specifying

computer instruction sets [Cragon83]. It is stated that the LISP

environment has the ability to describe components of the

architecture, such as registers, operations control,

symbolically with the benefit of being able

and

to edit the

architecture using the interactive editor available as part of the

LISP environment. The example architecture given in Cragon's

paper indicates that this is so, but the architecture being

modelled is reasonably simple.

The basis of the argument is that the functionality of the

instructions may be directly encoded using LISP functions.

Example 1.12 - for the RISC-1 instruction: ADD RS,S2,RD

the defined operation is : RD<- RS+ S2

this may be encoded in LISP as

(DEFUN ADD (RS S2 DEST)

(SETQ RD(+ RS S2)) RD<- RS+ S2

(STORE (REG (EARD DEST)) RD) store RD

(SETQ PC (ADD1 PC)) advance Program Counter

)

Chapter 1 INTRODUCTION 30

The RISC architecture is described in [Patterson82].

The operations specified (such as addition, subtraction and the

logical operators) are performed using the operators available

within MACLISP. The implementation restricts the wordlength of

the architecture being modelled to less than the wordlength

supported by the LISP environment.

Memory and array registers are defined by declaring them to be

LISP arrays.

Example 1.13

(ARRAY MEM T (EXPT 2 16))

(ARRAY REG T 138)

The T indicates that each element may contain an arbitrary

s-expression (list).

Writes to memory are accomplished by:

(STORE (MEM EA) X)

where Xis the data and EA is the effective address.

Chapter 1 INTRODUCTION 31

A series of functions specifies the control operations of the

architecture; The assembly language format (contents of MEM) is:

(OP sec DEST SOURCE1 IMM SOURCE2)

OP is the opcode mnemonic;

sec is the "set condition codes" enable bit;

DEST is the destination register address;

SOURCE1 is the first source operand register address;

IMM indicates whether or not the SOURCE2 field is a register

address or constant value.

The functions:

(DEFUN IFS (PC) •••) - loads the instruction register with the

symbolic instruction located in the memory location

pointer to by the program counter.

(DEFUN DECODE (IR) •••) - extracts the values from the field

entries for the instruction.

(DEFUN DISPATCH() •••) - This is a single case statement which

invokes a different function for each instruction of the

architecture.

(DEFUN SET-PSW (RD)) - A two bit program status word was

defined in the article with this function being used to

Chapter 1 INTRODUCTION 32

set the values. The model of the architecture is

dependent for its information on the fact that the LISP

precision is greater than the precision of the destination

register in the target architecture as the psw is modified

separately from, and after, each instruction execution.

This could not apply to a two, or less, operand

architecture as information would be lost.

The function RUN emulates the finite state machine which causes

the initial status of the machine to be set up and the IFS,

DECODE, DISPATCH loop to be continuously executed until a STOP

instruction is encountered.

The result is a specification of the ISP for RISC-1 which is

directly executable within a LISP environment and so may be

immediately evaluated and modified in an iterative manner.

This solution appears to be an ad-hoc one. It has a number of

limitations, some of which are not mentioned in the paper. The

limitations are:

1. The RISC architecture is not typical of computer

architectures as the register structure, the effective

address calculations, and the operations performed by

the instructions are unusually simple; the RISC-1 is

only slightly more complex than a Motorola 6800 or

Intel 8085 microprocessor.

Chapter 1 INTRODUCTION 33

2. Using the arithmetic precision of MACLISP limits the

architectures which may be specified. Architectures

with words longer than 32 bits may not be specified

using the numeric precision available in MACLISP.

This eliminates the CDC 6600 and the Burroughs 6000

family, for example.

3. The use of LISP arrays for defining register arrays

would cause problems in specification. This is

admitted in the paper where a 64 Kword subset of the

32 bit address space is used because of MACLISP's

inability to support arrays larger than 64 Kwords. A

sparse matrix implementation could be one approach to

solving this problem.

4. The assembler format is not properly defined. There

is no mapping from the assembly language format shown

in the instruction specification table to the

representation stored in the memory registers. A

front-end would be required to take assembly language

statements and extract the operands (from text

indicating the effective address calculation method)

that are stored in the memory word.

5. All instructions fit within a single word;

increasingly unrepresentative of modern

this is

computer

architectures where the number of operands varies from

Chapter 1 INTRODUCTION 34

instruction to instruction. Processors which would be

unable to be defined because of this limitation

include most microprocessors and some minicomputers,

such as the Prime 750.

6. LISP is not an intuitive language for specifying

instruction set processors. It is possible to specify

very similar architectures using completely different

specification functions. The converse may also be

true.

The reasons for this are twofold: first is that LISP

is not one single language but a group of dialects,

each with their own peculiarities; specifications

written in LISP would have no hope of being portable.

Second is that LISP is a general purpose language with

functional redundancy built into it; in different

dialects of LISP there are three forms of choice

function (COND, IF, CASE), a similar number of loop

functions, and various methods of extracting items

from lists and performing assignments. Special

purpose languages, such as ISPS, have the benefit of

being targeted at a specific application and being

able to eliminate the redundancy in LISP.

If LISP is to be used as a specification language then the

following aspects of its use should be standardised:

Chapter 1 INTRODUCTION 35

1. A non-redundant subset of LISP functions to be used

when specifying an architecture.

2. The register specification technique (LISP arrays or

sparse arrays).

3. The calculation of effective addresses.

4. The numeric precision of

operations.

arithmetic and logic

The final points made in [Cragon83] are that the functional

specification in LISP may be expanded in detail as the model

descends through the levels of abstract machine description. LISP

shares this feature in common with VDL and as such has much to

recommend its use as a specification language. It is also a

significantly more flexible language for describing architectures

than the traditional approaches such as ISPS and Pascal.

Even if the drawbacks of LISP were removed, the author feels that

LISP is not an attractive description tool because of its visual

style and textual density; people who are not used to LISP

notation would find it an impossibly obscure way of specifying an

architecture.

Chapter 1 INTRODUCTION 36

1.2.4 PASCAL

[Wakerly80] has suggested that the Pascal programming language,

with some extensions, could be suitable for specifying computer

instruction sets and points out that, although the extended Pascal

has no more power or functionality than ISPS, it is a more

familiar tool and so is more useful in teaching situations. The

extensions are the following:

Numbers: unsigned binary, octal and hexadecimal numbers are

recognised.

Data types: the data type BIT has been added to the language.

Arrays: Pascal has been extended to allow for subarrays, defined

as "an ordered, contiguous subset of the array" to be

referenced. Subarrays are restricted to one dimensional

arrays.

Operators: the concatenation operator "l" has been added, It

produces a bit array the length of which is the sum of the

lengths of the arrays that have been concatenated. The

addition("+") and subtraction (11
-

11
) operators have been

extended to perform two's complement arithmetic on bit

arrays.

Chapter INTRODUCTION 37

Built-in Functions: The following standard functions have been

added to the language -

Type

BINT - converts a bit array into an unsigned integer.

BITS - converts a non-negative integer into a bit array

of specified length.

BCOM - complements the elements of a bit array.

BSHL - performs a left shift on the elements of a bit

array.

BSHR - performs a right shift.

BAND - performs a logical AND on the elements of two bit

arrays of the same length.

BOR - performs a logical OR on two bit arrays.

EXOR - performs the exclusive-OR on the two arrays.

BADD - converts two bit arrays to unsigned integers and

performs an unsigned addition upon them.

conversion: The elements of an expression with a mixture of

bit arrays, integers and constants are converted to bit

arrays before being evaluated. For assignment of a bit

array to an integer, the bit array is converted to an

integer before being assigned. For assignment of an

integer to a bit array, the integer is converted to a bit

array before being assigned.

Iri many respects Pascal is a good language for specifying ISP's.

It is a mainstream language well enough known not to cause people

Chapter 1 INTRODUCTION 38

too much trouble in comprehending descriptions. It has a rich set

of data types and structures capable of expressing complex machine

states. It is capable of structural abstraction with its TYPE

facility and it is capable of defining functional behaviour of

arbitrary complexity.

The language is reasonably compact. A fully functional

specification of the PDP-8 architecture was 144 lines of Pascal

code [Wakerly80] versus 175 lines of ISPS code [Siewiorek82] so

the two are approximately equal in information density, the

difference being attributable to differing coding styles.

The limitations of Pascal are mainly those ones designed into it

by Nicklaus Wirth; its lack of flexibility regarding data type

coercion, its lack of string handling

limitations with regard to input and output.

facilities and its

A more important flaw with the proposed extensions as they stand

(for the purposes of this thesis) is that there is no facility for

tying Assembly Language descriptions into the model of the

architecture. Pascal is not a good language for performing that

function largely because of its lack of string manipulation

capabilities.

Pascal is intended to describe the ISP level only although, like

ISPS, it is able to express lower aspects of the architecture.

Chapter 1 INTRODUCTION 39

Architectures which may be modelled are limited by the arithmetic

precision and wordlength of the host architecture, In the paper

this is defined to be 64 bits or greater and as such would be

unlikely to limit the range of architectures able to be described

by the language,

Like LISP, the extended Pascal computer description may be

directly executed and evaluated, but unlike LISP it needs to go

through a translation process first. Also unlike Cragon's LISP

approach the extended Pascal system works purely at the ISP level

and so an assembly language program must also go through a process

of translation to turn it into a bit stream which is then loaded

into the appropriate registers before execution.

In the description of the PDP-8 architecture given in [Wakerly80]

the states of the machine are represented by variables while the

behavioural aspects are represented by procedures and functions:

Chapter 1 INTRODUCTION 40

Example 1.14 - The PDP-8 Effective Address calculation procedure.

{Calculate Effective Address Register}

PROCEDURE CalcEAR;

BEGIN

IF IR [pb] = 0

THEN {page o}

EAR:= 0 [0::4] I IR [pa]

ELSE {current page}

EAR:= lastPC [0::4] IR [pa];

IF IR [ib] = 1 THEN {indirect address}

END;

BEGIN

IF EAR [0::8] = 1 THEN

MEM [EAR] := MEM [EAR]+ 1; (auto increment}

EAR : = MEM [EAR];

END;

A comparison of this example with Example 1.5 shows immediately

the similarities and differences between extended Pascal and ISPS.

The major value of extended Pascal is in the wealth of data

structures available and the resulting structural complexity that

may be described along with the structural abstraction capability

available with the TYPE facility. These two facilities are shared

only with the programming language C. C has the additional

advantages, though, of having flexible string handling facilities.

Chapter 1 INTRODUCTION 41

Pl/1 has more flexible string handling facilities and better I/O

facilities than Pascal but lacks the data abstraction capability.

1,3 Summary

In this chapter I have stated the goal of this thesis and have

described the way in which some existing languages contribute to

this goal, Each language has been shown to be deficient in some

particular way for our purposes: ISPS and Pascal are mechanistic

languages without the language structures to support symbolic

specification; VDL, though a powerful symbolic language for

specifying interpreters, is not widely known and has a structure

which is widely dissimilar to the mainstream programming languages;

LISP is less powerful than VDL but has a similar functionality

although the style is again sufficiently dissimilar to mainstream

programming languages to be difficult to learn.

The goal of the thesis has been stated as being an attempt to devise

a language which allows the symbolic definition of arbitrary ISP

architectures. None of the languages described present a coherent

model of symbolic ISPs although VDL comes close by subsuming the ISP

model into its general model of language interpreters.

Chapter 2 THE SYMBOLIC MODEL 42

2 A Conceptual Model of Architecture

The model as formulated is intended to describe the parts of a computer

that a running program "sees" at the level of symbolic machine

instructions (the "assembler" level). There is a one for one

correspondence between instructions at this level and the instructions

executed by the physical machine but the detail of how the instructions

are encoded is avoided and so the model is significantly simpler than

other descriptive models such as ISPS. This view of architecture is

oriented toward the software engineer.

In the conceptual model an architecture consists of four domains:

the instruction set domain

the register set domain

the access method domain

the data types domain

A domain is an autonomous component of an architecture; the name is

drawn from an analogy with a four dimensional matrix where the

instruction set, register set etc. each make up a single domain.

The execution of an instruction involves making changes to the register

domain (also called the state space). Instruction execution starts

from a known state in the register domain and continues until another

position is reached which inhibits execution. Each domain is discussed

Chapter 2 THE SYMBOLIC MODEL 43

separately below, as is the model of instruction loading and execution.

2.1 A Model of Instruction Execution

Fundamental to our model of execution is the concept that an

"instruction execution cycle" is indivisible. This is actually the

case in many computers, especially microprocessors, but not in some

more complex computers, such as those with virtual memory.

The reason for this is that the model is sequential: the instruction

cycle consists of loading the next instruction to be executed,

checking the asynchronous instructions (interrupts etc.) and

executing any which are valid, then executing the synchronous

instruction which has been loaded. During execution of the

instruction, no other instruction may be active.

There is no facility at all in the model for describing concurrent

processing. All instructions are processed sequentially in the

model, and the primitive operations within each instruction are

executed sequentially. If concurrency does exist in the real

architecture it may be converted to an equivalent sequential model.

The architecture starts in some arbitrary but known state in which

the Instruction Pointer points at the first instruction. The

Chapter 2 THE SYMBOLIC MODEL 44

instruction is interpreted and executed and the Instruction Pointer

is modified to point to the next instruction to be executed. This

continues until an instruction is executed which inhibits further

interpretation and execution of instructions. Before the execution

of each synchronous instruction any pending asynchronous instructions

are interpreted and executed.

The above requires there to be a special register designated as the

Instruction Pointer. There is only one of these at any point in

time, although any register may act as the Instruction Pointer.

In an orthogonal model the instruction sequencing must be described

in terms of access methods and register sets. Instruction sequencing

is the specification of the method and order of accessing of

instructions within the register space.

Instructions may explicitly modify the Instruction Pointer and thus

cause changes in the normal flow of control, If the change in the

flow of control is to be temporary (as in the case of a subroutine

call followed by a return instruction) the current instruction must

have available the address of the next instruction before the current

instruction is executed, This is achieved in ISPS by assigning the

value of the Instruction Pointer (PC) to a register called LAST.PC

immediately before modifying the instruction pointer;

instance the true instruction pointer is LAST.PC not PC •

in this

Chapter 2 THE SYMBOLIC MODEL 45

2.2 The Register Set Domain

The register set domain represents the state space of an

architecture. All locations explicitly addressable by a program plus

those registers required to model external events or implicit

internal events are contained in this domain.

The Register is the indivisible addressable unit for the

architecture. A register has a single dimension of word size.

A Register Array is a contiguous group of registers with a generic

name. The whole register array may be referred to by name alone

while individual registers within the array may be referred to by the

name followed by an expression yielding a positive index into the

array. Registers are a special case of the register array.

In the model there is no distinction made between register arrays

that are contained within the processor and those external to it.

This adds versatility when considering non-Von Neumann architectures

without adding undue complexity to the simpler architectures. This

is because of the increased flexibility in such things as addressing

and instruction location.

Chapter 2 THE SYMBOLIC MODEL 46

Example 2.1

The Intel 8051 microprocessor has three distinct address

spaces - the ROM, on-chip RAM, and off-chip RAM. The same

address may refer to any one of the three address spaces

depending upon the value of a selection register; a program

may be located in any or all of these address spaces. It is

in this sort of architecture that the distinction between

on-chip register arrays and off-chip register arrays is shown

to be invalid.

It is convenient to divide the register domain up into three

organisational classes:

The "explicit" register array which is specified in the

manufacturer's data sheets and is explicitly addressable by

instructions. This is the programmable state space of the

architecture.

The "implicit" register array which is used by

instructions though not specified in the manufacturer's

data. Implicit register arrays are used to model state

changes which are not part of the explicit register set.

An example of its use is to model external interrupts.

Chapter 2 THE SYMBOLIC MODEL 47

- The "referred" register array which provides a mechanism

for reordering the explicit and implicit register arrays

into logical groups for addressing purposes. The

specification of the mapping of referred register arrays

onto the physical state space should be in terms of access

method expressions in order to maintain flexibility.

Referred register arrays complete the modelling of a

computer's state space.

No distinction need be made in the model between any of the register

classes. In the model they co-exist and operate in the same manner;

their membership of an individual class is transparent to the

operation of instructions. Data may be moved from any register to

any other register as long as the

restrictions are adhered to.

normal register transfer

When data is transferred to any register it will also be implicitly

transferred to all other registers which map onto the target

register. This is an important point to remember during any

implementation of the model.

All register arrays may be described in terms of two dimensions:

word size this describes the width of individual

registers in bits. This size may be a bit count or it

could specify the range of selectable bits within the word

thus giving an implicit ordering to the bits in the

Chapter 2 THE SYMBOLIC MODEL 48

register (indicating whether the most significant bit is

the right-most or left-most bit).

- array size - this describes the number of registers in the

register array. Again, the array size may be a size

indicator or an address range indicator.

The word size dimension is distinct from the array size dimension in

that the ordering of the bits contains an implicit ranking of

importance with the largest numbered bit being defined as the most

significant.

In addition, it is possible for register arrays to overlap. If this

is the case then the intersection must be specified.

The model requires that any intersection between two register arrays

must be complete: one must be a subset of the other. It is partly

for this reason that referred register arrays are necessary.

Because there is no restriction on the number of registers which may

refer to the same physical location, the partial intersection of two

register arrays may be specified by making them both be semi-disjoint

subsets of a third (referred) register array. This enables the model

of register intersection to be implemented without undue complexity.

Chapter 2 THE SYMBOLIC MODEL 49

Implicit registers may be treated as real registers; they may often

reflect a real register in the internal structure of the

architecture. They are needed because there are state transitions in

an architecture which are not reflected directly in the explicit

register domain, but which affect the operation of the architecture

and so must be modelled.

The register set domain is probably the least complex domain of the

symbolic instruction set processor model.

2.3 The Instruction Set Domain

An instruction is a specification of the way in which the state space

is to be modified. This specification is normally in the form of

assignment operations with either unary or binary operators

Example 2.2

assignment R[n] <- R[n-1]

unary operator R[n] <- NOT R[n]

binary op. R[n] <- R[n] - 1

The right hand side of the assignment is an expression which yields a

value; there is no limit on the complexity of the expression. The

Chapter 2 THE SYMBOLIC MODEL 50

left hand side must be a register or the concatenation of several

registers. If more than one operation is performed by the

instruction then each operation is expressed individually with the

separate operations forming a sequential list:

Example 2.3 - Z8000 LDD instruction

MEM [R[n]] <- MEM [R[m]];

R[n] <- R[n] - 2

R[m] <- R[m] - 2

R[o] <- R[o] -

0 <- (R[o] = 0)

As there is no facility in the model for expressing concurrent

operations those operations which are concurrent must be converted to

a sequential model before being expressed.

Example 2.4 - 8085 exchange instruction:

xchg HL <-> DE

To model this sequentially it is necessary to introduce a new

register:

TEMP<- HL

HL <-DE;

DE<- TEMP

Chapter 2 THE SYMBOLIC MODEL

There are two classes of instruction;

synchronous and asynchronous.

they have

51

been named

A synchronous instruction occupies register space, is located by the

Instruction Pointer and is interpreted and executed.

programmable component of an architecture.

An asynchronous instruction does not occupy register space;

It is the

it is

not dependent on being selected by the Instruction Pointer before

being executed but is event driven. It is associated with an

instantiation expression (a boolean expression generally involving a

value in a control register) and is executed when that expression

becomes true. It is generally limited to executing before the

interpretation and execution of a synchronous instruction, although

in some architectures some asynchronous instructions are able to

break in on an executing instruction.

asynchronous instructions.

Interrupts and traps are

Before the interpretation of any synchronous instruction all pending

asynchronous instructions must be executed. An asynchronous

instruction is pending when its instantiation expression is true.

Very often registers associated with asynchronous instructions and

their instantiation expressions are not listed in the manufacturer's

data; they may be implicit registers needed to satisfy the

requirements of the model.

Chapter 2 THE SYMBOLIC MODEL 52

Asynchronous instructions often cause a temporary transfer of control

and so they must be able to store the location of the next

instruction (i.e. the Instruction Pointer) in order to return

control to the original instruction sequence. This is why they are

defined to occur before the next synchronous instruction. If this

condition did not apply then it would be impossible for asynchronous

instructions (such as an INT instruction) to alter the Instruction

Pointer in a controlled manner to coordinate program execution.

In the event of more than one instantiation expression becoming true

at the same time, the model is indeterminate. For this reason each

asynchronous instruction must have a priority associated with it.

The priority ordering may be explicitly encoded in the instantiation

expression or it may be implicit in the ordering of the asynchronous

instructions.

In any implementation of the above model of instructions the

following components would be essential:

- a name for the instruction

- a description of the operations performed

In addition synchronous instructions require the following:

- a list of the access method combinations permitted (every

element in the list would contain an access method name for

each variable in the instruction)

Chapter 2 THE SYMBOLIC MODEL 53

- a list of data type combinations permitted

- An instruction template which describes how the

instruction appears within the program text and lists the

operands associated with it

Asynchronous operations require:

- An instantiation expression description

Depending on the needs of the implementation a way of distinguishing

between synchronous and asynchronous instructions is necessary; the

exact mechanism is not pertinent to the discussion of the model but

rather to the language used to implement the model.

All operations performed by the instructions are specified by a small

group of primitive operators from which more complex operations may

be built. These operations are as follows:

addition + and AND

subtraction or OR

multiplication* not NOT

division I concatenation I I
I I

modulus MOD exponentiation **

assignment <- exclusive or XOR

left shift LSH right shift RSH

sign extension EXT

Chapter 2 THE SYMBOLIC MODEL 54

Note that the problem of differing data types has not been resolved.

According to the model all data type information is contained within

the data type domain but common experience with the above operators

indicates that they are used only with specific data types.

A distinction needs to be made between operand data types within the

model and data types associated with the primitive operators.

The primitive operators interpret a particular value differently

depending on whether they are logical or arithmetic operators. All

operators treat operands as vector values (the values are pure binary

magnitude values with no sign component) except for the subtraction

operator (-) which treats operands as two's complement numbers.

The only operator which causes the state space to be modified is the

assignment operator (<-). All other operators are functional;

they return a value which is a function of the operator as applied to

the operands.

In concatenation, two or more registers of n bits are logically

concatenated along the word boundary to produce a single register of

n times m bits where mis the number of registers being concatenated.

There is no requirement that any of the registers being concatenated

be of the same word size but all register arrays must have the same

array size. Thus two register arrays, one eight bits by four words

and the other sixteen bits by four words may be successfully

concatenated to form a single register array of twenty-four bits by

Chapter 2 THE SYMBOLIC MODEL 55

four words.

The left shift operator propagates each bit in a register one

position to the left. The original value of the left-most bit is

lost and the value of the right-most bit remains unchanged.

With right shift each bit is simultaneously copied to the next bit to

the right. The left-most bit remains unaltered and the original

value of the right-most bit is lost.

Both left and right shifts are independent of the most significant

bit polarity of the register.

operators.

Left and right shift are unary

Assignment is possible between registers of differing sizes. When

the assignment is necessary between two different length locations

then the value held in the source register is either truncated or

extended as may be required to match exactly the size of the target

register. The truncation or extension is with respect of the most

significant bit.

Assignment recognises vector values only, so if the source register

must be extended it will be zero extended. The EXT operator extends

the most significant bit of the source register or expression to an

arbitrarily long wordsize which is then truncated to fit into the

target register.

Chapter 2 THE SYMBOLIC MODEL

Example 2.5

ACCA is an 8 bit register, ACCX is a 16 bit register:

after ACCA <- &10001011;

ACCX <- ACCA

ACCX will contain &0000000010001011

after ACCA <- &10001011;

ACCX <- ext ACCA

ACCX will contain &1111111110001011

after ACCA <- &00001011;

ACCX <- ext ACCA

ACCX will contain &0000000000001011

56

Chapter 2 THE SYMBOLIC MODEL 57

2.4 The Access Method Domain

When an instruction is interpreted and executed it may have variable

operands. If so then there must exist an access method for

specifying how each actual operand value is derived from the variable

selector.

Each access method description contains an access method expression

which indicates the transformations required to obtain the operands.

The expression tree consists of register specifiers, constants,

parameter substitutes and basic operators.

A register specifier locates an individual element of a particular

register array.

Because the instruction operands are variables which are assigned

specific values in a program, actual values must be substituted for

the formal parameters of each instruction occurring within a program.

Parameter substitutes are the formal parameters. When a program is

executed by the architecture the formal parameters of the instruction

are replaced by the actual parameters of the instruction and an

operand constant is derived.

In modern complex instruction set computers, the number of operands

for each instruction and even the number of components of each

operand may vary considerably. This is because many modern

Chapter 2 THE SYMBOLIC MODEL 58

architectures, especially microprocessor architectures tend to cram

as much functionality into each instruction as possible. The

following are examples of modern, complex instructions:

Example 2.6

Motorola 68000: LINK and UNLINK instructions

Intel 8086: REPT MOVS and LOOP instructions

VAX: CASE SOBGEQ INSQUE REMQUE

In many computers the state space may be modified as a side effect of

using a particular access method; thus access methods are able (like

instructions) to perform operations affecting the state space. At

this point the difference between instructions and access methods

becomes somewhat blurred (although the side effects are generally

less complex than for instructions).

The primitive operations specified in instructions alter the register

space in a manner independent of the access methods used whereas the

side effects of access methods alter the register space in a manner

independent of the instructions using them.

It is quite possible that both the access method and the instruction

will alter the same registers. The alterations cannot be concurrent

as that would make the system inconsistent, thus we require temporal

Chapter 2 THE SYMBOLIC MODEL 59

information incorporated into the access method expression. This

could be done by splitting the access method expression into three

related components; the first component would contain operations

performed before the instruction is executed, the second would

contain the operand derivation expression, and the third part would

contain the operations performed subsequent to the execution of the

instruction.

Another approach would be to have a special identifier representing

the derived operand value and to have an arbitrary sequence of

operations of which one, and only one, must assign a value to the

derived-operand identifier.

This model is designed to be equivalent to ISP architecture at the

symbolic (assembler) level and so each instruction will indicate, for

each operand, the access method associated with that operand.

Because there are many assembler languages in the world (more than

one per machine architecture) it is necessary for the access method

model to contain a template which enables it to determine the access

method being used by a particular instruction in a program and to

extract the actual parameter values from the operand expression.

It is probably the implementation of the access method descriptions

which will provide the greatest scope for variation in terms of

implementation possibilities.

Chapter 2 THE SYMBOLIC MODEL 60

2.5 The Data Type Domain

Of the four addresses described earlier, the first three may take on

a variety of data types. The data types of source and target and

even source1 and source2 need not match although it is extremely rare

for them not to.

Some common data types are:

unsigned binary

two's complement

one's complement

binary coded decimal (packed or unpacked)

ascii (seven/eight bits)

ebcdic (eight bits)

floating point (a whole host of these)

Data types are significant to the architecture because they alter the

side effects of an instruction (such as the status registers

affected) and they alter the operations of instructions themselves.

In the model of the data type domain, there are no assumptions about

the data type and any side effects caused by the use of a particular

data type must be explicitly stated. Every value is nominally an

absolute binary value. Once the instruction has been executed

normally the data type expression is invoked to coerce the target to

Chapter 2 THE SYMBOLIC MODEL 61

have the correct value for the appropriate data type. As the data

type expression may be required to perform arbitrary manipulations on

the target it must have the same expressive capacity as the

instruction specification expression with the same primitive

operations affecting the register space and possessing full parameter

substitution capabilities.

The distinction between an instruction expression and a data type

expression is marginal and it is quite possible to restrict the model

to three domains by including both the instruction domain and the

data type domain together. In fact this is normally done when

specifying ISP's so that for each separate data type there is a

separate instruction to perform any given function. This is

demonstrated in the Motorola 68000 where the MOV instruction (for

example) is specified separately for 8-bit, 16-bit and 32-bit data

words.

In assembly language models of architecture the problem of data types

as a separate domain is rarely apparent due to the restricted set of

data types available and the tendency to specify a single permissible

data type for each instruction. The data type domain has been

included in this initial exposition of the model for completeness and

may not be included in implementations of the model.

Chapter 3 SADL 62

3 SADL - The Symbolic Architecture Description Language

SADL has been created to implement the model of computer architecture

proposed in the previous chapter. There are some deviations from the

model for the purposes of ease of implementation but the bulk of the

language conforms to the model.

The full syntax of SADL is given in Appendix but the following

description utilises extracts from the syntax to illustrate the use of

the language.

brackets ([]

The syntax uses extended Backus Naur Form where square

) are used to indicate optional items and braces ({})

are used to indicate items that may be iterated zero or more times. In

addition, parentheses are used to override the normal precedence

associated with BNF. Terminal symbols of the language being defined

are underlined for clarity. This is to help distinguish terminal

symbols from non-terminals in the BNF description and is not part of

SADL.

The SADL description consists of a processor specification (Pdescr)

optionally followed by the execution cycle specification (Executor).

<sadl> ::= <pdescr> [<executor>]

Pdescr provides a symbolic description of the register set, addressing

modes, and instruction set of the architecture. In situations where

the instruction execution cycle must also be modelled, a description of

Chapter 3 SADL 63

the load and execute loop for the architecture may be provided by the

executor section of SADL.

3.1 The Basics of the Language

The following components of SADL are so pervasive that it is

necessary to explain them before a comprehensive description of the

language and its relationship to the model of Chapter 2 is possible.

The alphabet of SADL consists of the ASCII character set from"" to

11 ~11 (ASCII characters 32 to 126) inclusive. All other characters are

treated as spaces; SADL is a free format language except that

end-of-line is a token separator.

Numbers are unsigned constants using decimal, hexadecimal, or binary

representation.

<number> ::= <dee num> <bin num> <hex num>

<bin num> ::= & (0) l o

<dee num> ::= <digit> l <digit> }

<hex num> ::= # (hdigit> l <hdigit> }

Chapter 3 SADL 64

<digit> : := 0 2 3 4 5 6 7 8 9

<hdigit> ::= <digit> A B C D E F

A prefix of"&" signals a binary number while a prefix of"#" signals

a hexadecimal number.

There are two classes of operator: the unary operators and the

binary operators.

<unop> ::= + I
I - not lsh rsh ext sizeof

+ positivity operator (redundant)

negation operator (two's complement)

not logical complement

lsh logical left shift by one bit

(right most bit remains unaltered)

rsh logical right shift by one bit

ext

sizeof

(left most bit remains unaltered)

sign extension to arbitrary length

length of operand, either minimum number of bits

necessary to store the value or the defined bit

length of a register location

The unary operators have the highest precedence of the operators.

All unary operators have the same precedence.

Chapter 3 SADL

<binop> ::= _.:::. l - l _:: l j_ ~ l

and or

<boolop>

I I
_I_I mod

<boolop> ::= > < >=

+

*

I

and

or

I I
I I

**
mod

unsigned addition

two's complement subtraction

unsigned multiplication

unsigned division

logical product

logical sum

bit string concatenation

exponentiation

remainder of division

<= <>

<boolop> these operators return one (1) if the relation

between their operands is true otherwise they

return zero (0).

65

Chapter 3 SADL

The order of precedence for the binary operators is:

**

*/mod

+ -

> >= < <=

<>

and

or

I I
I I

highest priority

lowest priority

66

The parameter substitution symbol serves the role of a placeholder

indicating that some other text is to be substituted for the

placeholder during evaluation. It is important to note that the

substitution is textual and that the text is evaluated only after all

substitutions have been performed.

<param substn> ::= _! [<dee num>]

The optional decimal number is necessary where there is more than one

parameter substitution within a given context.

Example 3.1 - $1 <- $2 + $3

The value expression is central to the functional specification of

architectures.

Chapter 3 SADL 67

<value exprn> ::= [<unop>] <value group>

{ <binop> [<unop>] <value group> }

The value expression describes how a value is obtained from an

architecture to be used in statements and conditions. It is the SADL

analogue of an arithmetic expression in a programming language such

as Pascal or PL/1. The value expression yields a bit string of the

minimum length necessary to represent the value produced.

The value group specifies where each value is obtained from:

<value group> ::= <reg selector>

<param substn>

J.. <value exprn> l
<number>

The parentheses are for altering the order of evaluation of value

expressions from that required by the operator precedence rules, The

<param substn> indicates that a value is to be substituted into that

position during evaluation; the value must be either a numeric

constant or a valid name within the specified context.

The <reg selector> specifies that the value is to be obtained from a

particular element of a named register array:

<reg selector> ::= <r name> [l <value exprn> J]

Chapter 3 SADL 68

The <value exprn> in brackets returns a numerical index that

specifies which element of the register array contains the desired

value. If the register array contains only a single element, then

the selector expression may be omitted.

Example 3.2 - some value expressions:

REG1

REG1 [A]

REG1 [$ + 6]

REG1 + REG2 [$1 + 1 + REG3

REG1 * (4 + REG2 [$1])

$1 + #F

&0110

3,2 The Processor Description

] - $2 - 4

The processor description associates a name for the architecture with

three sections which describe respectively the register set, the

access methods (addressing modes) and the instruction set. Each of

these is referred to as a domain.

Chapter 3 SADL

<pdescr> ::= architecture <ar name> is

<rset domain>

<amset domain>

<iset domain>

69

Each domain consists of a header followed by one or more domain

entries. None of the domains may be omitted, nor may any of them be

null, or the architecture would not be capable of being programmed.

The first domain describes the register space of the architecture.

All state variables defined for the architecture are described in

this domain.

The second domain describes the access methods available to

synchronous instructions in the architecture. It is broken up into

two sections; in the first, the access methods themselves are

declared while an optional sub-domain allows groups of access methods

to be collectively referred to using a single name.

The final domain describes both the asynchronous and the synchronous

instructions. It is broken up into two sub-domains with the first

sub-domain, which describes the asynchronous instructions, being

optional. The second sub-domain, the synchronous instructions, is

mandatory.

Chapter 3 SADL

3.2.1 The Register Domain

This section consists of a series of one or more

declarations of the form:

<reg defn> ::= <r name> is

<dim exprn>

[<mapping exprn>]

end

<dim exprn> ::= <array spec> <word spec>

All register names must be unique within the register domain.

Typical register declarations would look like:

Example 3.3

MEM is [0 #FFFF] < 7 0 > end

IO is [0 #FF]< 7 0 > end

70

register

A register array contains n elements where each element has a word

length of m bits. The square brackets ([]) denote the size of the

array while the angle brackets (<>) denote the size of words within

the array.

Chapter 3 SADL

3.2.1.1 The Array Clause

The array component of a register is described with:

<array spec> •• = [..
[

]

l

<range bounds>

<cell list>

<range bounds> ::= <lower bound> <upper bound>

<cell list> <cell name> .l.. <cell name>

71

There are three legal ways of specifying the size of the array. The

first one is to explicitly state the index numbers of the first and

last elements of the array as in:

Example 3.4 - REG1 is [0 7]<> end

This indicates that REG1 is an 8 element array with the first element

accessed by an index of O and the last element accessed by an index

of 7; indices outside the range O - 7 are not valid.

Chapter 3 SADL 72

The other method of defining the array parameters is to label each

cell of the array explicitly, thus:

Example 3.5

REG1 is [CELL1 , CELL2, CELL3 , CELL4]<> end

REG1 is defined to be a four element array where CELL1 refers to the

first element of the array and CELL4 refers to the last element of

the array.

It was shown in the description of register selectors that it is

necessary to allow the elements of REG1 to be accessed using a

numerical index as well as by cell name. For this reason an

enumerated register array is defined to have an index of O for the

first element and a final index of n where n+1 is the number of

elements in the array; so for REG1 the element REG1 [CELL1] is the

same as REG1 [0] and REG1 [CELL4] is the same as REG1 [3].

It is important to note that the names used to enumerate the elements

of a register array have a scope restricted to that register. This

means that the same name may be used for a register name as well as

being repeatedly used within different register definitions to

enumerate elements.

Chapter 3 SADL

Example 3.6 - for the following definitions:

REG1 is [A, B, C]<> end

REG2

A

is [D, E, A]<> end

is [F, A]<> end

73

The name A used to enumerate REG1 is distinct from the name A used to

enumerate REG2 and both are distinct from the register array A and

its enumerator name A. It is not legal to use the same name twice

within the enumeration list of a single register array so:

Example 3.7 - REG1 is [A, X, B, X, C]<> end

is not correct because a reference to REG1 [X] would not be

sufficient to locate an individual element. However, as long as the

X elements are never going to be uniquely accessed this problem would

never arise. This situation is common among computer architectures

for special purpose registers such as the Status register in which

not all elements of the array have meaning. In this context

non-unique element enumerators could be valid but the author feels

that the ambiguity created is undesirable in a formal specification

language.

When a register array has only one element its index need not be

supplied and the shorthand form il may be used; thus:

Chapter 3 SADL 74

Example 3.8 - REG1 is[]<> end

specifies a register array with a single element (called simply a

register). This is the third legal way of describing the array

dimensions of a register.

3.2.1.2 The Word Clause

The word clause describes the dimensions of the individual elements

of a register array:

<word spec> ::= < [<msb> <lsb>] >

There are two ways of specifying the word size of a register. The

first method is to explicitly state the number of the most

significant bit and the number of the least significant bit of a

register. Thus:

Example 3.9 - REG1 is []<7 O> end

specifies a register with an 8 bit wordsize where the most

significant bit is numbered 7 and the least significant bit is

numbered 0.

Chapter 3 SADL 75

Note that the order of significance for the array specification and

for the word specification are different. For the array

specification the elements have an increasing significance from left

to right but the bits specified by the word clause have an increasing

priority from right to left. The reason for this is that it follows

the convention of custom; it is almost universally adopted that the

bits of a word (like the digits of a number) have an increasing

significance as they progress to the left. For arrays though, the

elements are conventionally ordered so that the first element is on

the left and the index number of the elements increases as the array

is scanned to the right; this is in accordance with the way people

write and parse text. As the choice of ordering is arbitrary the

author settled on a form which is consistent with the way people are

used to treating the respective structures. This is in contrast with

ISPS in which both the word and the array description are based on

the left most element/bit being associated with the lowest numerical

value.

The second method of specifying the wordsize of a register is to omit

the explicit delimiters of the word as in:

Example 3.10 - REG1 is[]<> end

This indicates a register size of one bit and is directly analagous

to the shorthand form for the array specification.

Chapter 3 SADL 76

3.2.1.3 The Mapping Clause

The mapping clause describes the area of intersection between the

array being defined and those other registers which occupy the same

register space in the architecture:

<mapping exprn> ::= maps

<r mapdef>

I I < _1 _1 r mapdef>

<r mapdef> ::= <r name> [<m array spec>]

<m array spec> ::= l <init addr> <term addr> J

<init addr> ::= <number> <cell name>

<term addr> ::= <number> <cell name>

Chapter 3 SADL 77

The following illustrates the possible use of mapping to define

register synonyms:

Example 3. 11

B is []<7 O> end

C is []<7 O> end

D is []<7 O> end

E is []<7 O> end

H is []<7 O> end

L is []<7 O> end

RP is [B, D, H]<15 O>

maps C I I B I I E I I D I I L I I H end I I I I I I I I I I

The virtual register array RP is declared as being a three element

array where each element has a word length of 16 bits and this is

defined to map onto the concatenation of the 8-bit registers

B,C,D,E,H,L.

This method of specifying the intersection between registers differs

significantly from the model proposed in chapter 2. The mapping

mechanism is much simpler and allows a straightforward implementation

with only a small loss in flexibility; the new mechanism is

effectively a subset of the access method expression mechanism and

may be expanded in a susbsequent version of SADL.

Chapter 3 SADL 78

To perform this mapping, the model of a register array in chapter 2

is expanded so that, in addition to being an array of n elements

where each element has m bits, we must view the register array as a

contiguous bit stream from the least significant bit of the first

element to the most significant bit of the last element of the

register array. Thus, for RP (above) bit 15 of RP[B] is adjacent to

and one position less significant than bit O of RP[D].

The concatenation of registers C i l ... i l H where C is the least

significant register and His the most significant register may then

be mapped to RP by a simple superimposition'of bits:

H D B

H I L I D E I B l C

RP[B, D, H] maps

C II B II E II D II L II
I I I I II I I II H end

To simplify the implementation there are some restrictions that need

to be enforced.

1. All registers named in the mapping expression must have been

previously defined; this is necesary to allow one pass

validation of the mapping expression.

2. One or more target registers or register arrays must map to each

element of the source register array and must map exactly on word

boundaries.

Chapter 3 SADL 79

This means that for each element of the source register there are

exactly~ target register elements with no bits in either the

source or the target registers remaining unassigned.

3. Closure is enforced. All elements of a register array which is

mapped must be assigned to target registers.

Registers arrays C, D, E (below) illustrate the possible combinations

allowed for mapping. Essentially, the rule is that the number of

contiguous bits represented by the mapping expression (the

concatenation of registers and part registers) must be equal tom* n

where mis the number of elements in the source register array and n

is the length (in bits) of each word in the source register array.

Example 3.12

A is []<7 O> end

B is [o 3]<7 O> end

C is []<7 O> end

D is [o 1]<7 O> maps B[1 2] end

E is [o 4]<7 O> maps A I I B end I I

F is [1 4]<7 O> maps A I I B[O 2] end I I

G is [o 2]<15 O> maps A I I B I I C end I I I I

H is [01]<15 O> maps C I I A I I B[1 2] end I I I I

As shown above, a subset of the elements of a register array may be

involved in the mapping expression; where this is the case the first

Chapter 3 SADL 80

number or identifier is the first element included in the mapping and

the second number or identifier is the last element included in the

mapping. All elements between the first and last indicated elements

are included in the mapping.

In addition to all the explicit registers (those directly accessible

to the assembly language programmer) there may be registers which are

either implicit (as in the case of the Interrupt Enable register on

the Intel 8080) or are necessary to define the behaviour of certain

aspects of the architecture (such as external inputs, interrupt

lines, reset lines etc.). These implicit registers are included in

the declared register set of the architecture and use the same syntax

and semantics as explicit registers.

3.2.2 The Access Method Domain

Once all the registers of an architecture have been defined, the access

methods, which describe the derivation of operands, must be defined.

The Access Method domain contains a series of one or more access method

declarations; these declarations define all access methods available

to the architecture, their functionality, their parameters and how the

values associated with those parameters may be extracted from the

operand field of an assembly language program.

Chapter 3 SADL 81

When all access methods have been declared, an optional subsection of

the Access Method domain may be declared. This section is called the

Access Method Class and is an organisational tool to enable a group of

access methods to be referred to by a single name. This reduces the

amount of coding required for architectures which

instruction sets with large numbers of access methods.

3.2.2.1 The Access Method Description

have regular

The Access Method domain consists of one or more access method

declarations of the form:

<am descr> ::= <am name> is <am exprn seq>

from <template>

[size <bitsize>] end

An access method description associates a name with a sequence of

access method statements, a template indicating how the values of the

operands are to be extracted from the operand field, and the

additional length of the instruction attributable to the selection of

the particular access method.

With most microprocessor based architectures the instructions are of

varying length each dependent upon the choice of access method used

Chapter 3 SADL 82

for the instruction. The <bitsize> is the number of bits by which

the instruction length is increased by selection of the specific

access method.

The <template> is a pattern matching tool whereby the text of the

operand is extracted from surrounding constant text, which serves

merely to indicate which of several potential access methods has been

selected.

The Access Method Statement

The access method statement sequence is a series of assignment

statements of which one and only one derives the operand for an

instruction; the others cause side effects to the use of the access

method.

The syntax of the access method statement is:

<am exprn seq> ::= l <am assign stmt> ..!..

<am param stmt>

, <am assign stmt>

<am param stmt> ··= OPERAND

<-

<dest selector>

Chapter 3 SADL

<am assign stmt> ::= <reg selector>

<-

<value exprn>

<dest selector> ::= <dest exprn>

l_L <dest exprn>

<dest exprn> ::= <reg selector>

<param substn>

83

For statements which describe side effects the destination of the

assignment must always be a register and the source is always a value

expression.

The assignment which derives the operand is recognised by the

presence of the keyword OPERAND as the destination of the assignment;

the source is a destination selector which means that OPERAND is

assigned either a concatenation of register locations where operands

may be extracted from or placed, or the explicit value of the operand

parameter as extracted from the template. The latter represents the

access method known as immediate addressing, where the instruction

operand is part of the instruction itself.

The statements are temporally ordered, so that the first statement

occurs before the second statement which occurs before the third

statement and so on. Statements defined before the assignment of

Chapter 3 SADL 84

OPERAND represent side effects preceding the derivation of the access

method operand and statements following the assignment of the OPERAND

represent succeeding side effects.

The Template

The template is a series of one or more parameter substitutions

optionally surrounded by arbitrary text:

<template> ::= <const item> i <param substn>

{ <const item> i <param substn>

<const item> ::= <special char>

<identifier>

<number>

Any non-blank text may surround the parameters with the exception of

the"$" symbol which must be represented by"$$". If there is more

than one parameter substitution then they must be numbered uniquely.

Chapter 3 SADL 85

Example 3.13

Motorola 68000 pre-decrement access method is indicated by:

-(A$)

where the$ (or $<number>) indicates the portion of the text

which.is the actual operand value.

For an actual operand of the form:

-(A6) the operand value is 6.

3.2.2.2 The Access Method Class Section

The Access Method Class section is intended to be an organisational

mechanism for referring collectively to a group of access methods.

It is a shorthand form which associates a name with several access

methods.

<am class> ::= access classes .

<amc descr>

..?... <amc descr>

Chapter 3 SADL

<amc descr> ::= <amc name>

is

<am name>

<am name>

86

The only restriction necessary is that the AMC is viewed as part of

the Access Method domain and for this reason the AMC names must be

distinct from the names of the individual access methods.

Whenever an access method name occurs in the access method field of

an instruction it is equivalent to listing the access methods named

by that access method class within the field; in this sense it can

be viewed as a macro-definition.

3.2.3 The Instruction Domain

The Instruction domain consists of two sections. The first section is

optional; this is the Asynchronous Instruction Set and describes all

instructions which conform to the model of asynchronous instructions

proposed in Chapter 2.

The second section, which is necessary for the architecture to be

programmable, describes the explicit, synchronous instruction set of

the architecture. The instructions described in this section conform

Chapter 3 SADL 87

to the Chapter 2 model of synchronous instructions.

Common to both forms of instruction is the instruction statement

sequence. This is a set of instruction statements which cause changes

to the register space of the architecture. Because they are common to

both instruction sets they are described first.

3.2.3.1 The Instruction Statement

The instruction statement defines the functionality of the assembly

language instructions in terms of the operator set of SADL. There

are four forms of instruction statement:

<istmt> ::= <assign stmt>

<cm strnt> l

<cond strnt>

<loop strnt>

Instructions may be temporally ordered as an instruction sequence:

<istrnt seq> ::= <istmt> { ...!.. <istmt> l

The assignment statement (<assign stmt>) effects changes to the

register space by assigning the result of a value expression to a

Chapter 3 SADL 88

register or concatenation of registers.

<assign stmt> ··= <dest selector> <- <value exprn>

Parameter substitutions may occur on either the right or left hand

sides of the assignment operator. Parameter substitutions within the

value expression were described in Section 3.1 •

The destination selector must be either a register or a concatenation

of registers.

<dest selector> ::= <dest exprn> ! ll <dest exprn>}

<dest exprn> ::= <reg selector> <param substn>

Any parameter substitution that occurs within a destination selector

must evaluate to a register selector. It is possible to determine

the validity of the parameter substitution as all access methods must

have been defined before the instruction domain is evaluated.

Note that for asynchronous instructions, parameter substitutions are

not legal because there are no instruction operands to substitute

into the value expression or the destination selector.

The codem statement (<cm stmt>) invokes the named code macro:

Chapter 3 SADL

<cm stmt> ::= do <cm name>

[i_ <param exprn>

<param exprn>

l J

<param exprn> ::= <number>

<reg selector>

<param substn>

89

The code macro declaration is described in Section 3.2.3.3 (below);

its use is analagous to that of a procedure call in Pascal though its

operation is not. The parameters are textually substituted into the

macro for evaluation purposes.

The conditional statement allows a sequence of instructions to be

performed dependent upon a condition as expressed by a value

expression:

<cond stmt> ::= if <value exprn>

then <istmt seq>

[else <istmt seq>] endif

If the value expression produces a non-zero result then the condition

is deemed to be true, otherwise the condition is deemed to be false.

Alternatively, the conditional statement may be used to select

between two separate instruction sequences depending on whether the

result is true or false.

Chapter 3 SADL 90

The loop statement causes a sequence of statements to be repeatedly

executed while the value expression yields a non-zero result.

<loop stmt> ::= while <value exprn>

do <istmt seq> done

The value expression will generally be a register value which must be

explicitly modified within the loop in order to terminate the

repetition. The value expression is evaluated before execution of

the instruction statement sequence parenthesised by the do and done

keywords so that the minimum number of times the loop is executed may

be zero.

3.2.3.2 The Asynchronous Instruction Set

The Asynchronous Instruction Set consists of a series of asynchronous

instruction declarations:

<asynch instr> ::= <i name> is <istmt seq>

upon <value exprn>

end

The instructions model events and are hardwired into the

architecture. They are described indirectly by the manufacturer

Chapter 3 SADL 91

under such headings as interrupt handling, reset operations etc.

The order of definition of the Asynchronous instructions is important

because the priority of evaluation is based upon the ordering. This

departs from the model in Chapter 2 because the priority encoding is

implicit in the order of declaration rather than being an explicit

part of the instantiation expression.

The first asynchronous instruction defined has the highest priority

while the last instruction defined has the lowest priority. No two

instructions can have the same priority; this is because the

instructions are executed upon the occurrence of an event (such as

external interrupts, or overflow from an addition) and if the

priority of all possible concurrent events was not strictly defined

then the architecture would exhibit nondeterministic behaviour when

two or more events occurred simultaneously.

Though asynchronous instructions do not occupy register space they do

alter it since the body of the asynchronous instruction is a sequence

of assignment statements.

There are no parameters and therefore no access methods associated

with asynchronous instructions.

Chapter 3 SADL 92

The Instantiation Expression

The activation clause of an asynchronous instruction (signified by

the keyword UPON) defines the condition which signals that the

instruction may be executed. The instantiation expression is a value

expression where a non-zero result indicates a current instruction.

Physical events external to the architecture, such as an interrupt

line going low, are modelled within the architecture by the presence

of registers which contain values representing the state of the

external components. This is consistent with the abstract view of

the architecture. Thus an interrupt pin on a processor may be

modelled as a register which is O when the register is not asserted

and 1 when the interrupt has been asserted.

Note that there is no implicit resetting of event registers within

the architecture; either the register is reset externally when the

event is no longer true (as in the case of signal-level-based

interrupts) or the register must be explicitly reset by the

asynchronous instruction handling the event (as is the case with

signal-transition-based interrupts). The distinction is between the

use of registers to model states (pin level high, pin level low) and

discrete events (a transition has occurred signalling an interrupt).

Chapter 3 SADL 93

3.2.3.3 The Synchronous Instruction Set

The Synchronous Instruction Set consists of a series of declarations

of code macros and assembler instruction descriptions. All code

macros must be declared before the first synchronous instruction

declaration:

<synch domain> ::= synchronous

instructions

[<codem list>]

<synch instr>

<synch instr>

The Code Macro List

The code macro list consists of a sequence of all code macros defined

for the architecture:

<codem list> ::= <code macro>

<code macro> ::= codem <cm name>

[<cm param>]

<code macro>

is <istmt seq> endm

Chapter 3 SADL 94

<cm param> ::= i <param substn>

<param substn> .2_

A code macro declaration associates a name with a sequence of

instruction statements. The code macro may have parameters; if so,

the text of the actual parameters is substituted for the formal

parameters, which are enclosed in parentheses. The normal rules

which apply to instruction statements elsewhere in the synchronous

instruction set also apply here.

The code macro is a way of reducing the amount of coding necessary to

describe an architecture by extracting commonly used sequences of

instructions and referring to them by a single name. Formal

parameters are included because it was found that sequences of

instructions tended to recur but utilised different registers.

Example 3.14 - Motorola 6800 instructions:

ADDA

ADDB

is

is

ACCA <- ACCA + $1

ACCB <- ACCB + $1

both cause the same sequence of operations to be performed upon the

status bits of the processor as side effects but the registers in

question are different in each case. With parameters it is possible

to avoid the duplication of effort necessary to describe the

architecture.

Chapter 3 SADL

Example 3.15 - the sign macro for the M6800 would be:

CODEM sign ($1) IS

ccr[n] <- ($1 and #80) = 0

ENDM

and its invocation would be:

DO sign (ACCA)

DO sign (ACCB)

The Synchronous Instruction

Each synchronous instruction associates a unique

95

(within the

instruction domain) name with a sequence of instruction statements.

<synch instr> : : = <i name> is

<istmt seq>

[from <template>

using <amlist>]

[size <bitsize>] end

The instruction statement sequence has already been described.

The optional "from" clause specifies how operands are extracted from

the operand field of the instruction, using the template mechanism

described in Section 3.2.2.1, and the combinations of access methods

Chapter 3 SADL

that may legally be used with the instruction.

The optional "size" clause indicates the length, in bits, of the

instruction before taking into account the extra length necessitated

by the use of some of the access methods.

Parameter Substitution

When an assembly language instruction has operand variables there

must be a "from" clause in the instruction declaration to indicate

how the operand values may be extracted from the operand field text

and also a "using" clause to indicate what combinations of access

methods are legal for the instruction.

The operands are extracted from the operand field using the template

mechanism as used for access methods. Again, the substitution is a

textual one; all interpretation of text is performed in the value

expression and the destination selector expressions.

The access method list is a series of tuples where the number of

elements in the tuple equals the number of parameter substitutions in

the template. Each tuple is a series of access method names or

access method class names:

Chapter 3 SADL

<amlist> : : = <am tuple>

<am tuple> ::= <am name>

<am name>

<am tuple>

<amc name>

<amc name>

The following

instructions:

two examples illustrate the declaration

Example 3.16 - Motorola 6800 ADDA instruction declaration

ADDA is

ACCA <- ACCA + $

from$

using IMMED8;

DIR;

INDEX;

EXTND

size 8 end

97

of

The above instruction declaration states that the instruction named

ADDA assigns the sum of register ACCA and the operand variable($) to

the register ACCA. The operand field has no text surrounding the

operand and there are four access methods which are valid for the

instruction. The instruction is 8 bits long plus however many bits

are contributed by the different access methods.

Chapter 3 SADL

Example 3.17 - Intel 8085 MOV instruction

MOV is

$1 <- $2

from $1,$2

using REGS REGS;

REGS INDIRECT;

INDIRECT REGS

size Send

98

In this instruction there are two operand variables separated by a

comma in the operand field of the instruction. The value of the

second operand is assigned to the first operand, which must therefore

be a destination selector. The size is S bits.

There are three valid combinations of access method. There is a

one-to-one correspondence between the parameter substitutions and the

elements of each tuple. In the above example this means that the

text before a comma in the operand field of the instruction is passed

to the access method REGS, or INDIRECT while the text following the

comma is passed to the access method INDIRECT or REGS.

Chapter 3 SADL 99

3.3 The Executor Description

The executor section of SADL is optional and necessary only when the

load and execute cycle of an architecture is to be modelled; this

would be the case whenever a simulation of the architecture is to be

carried out.

The executor defines an implicit loop which loads the instruction and

then executes it.

<executor> ··= executor

[<istmt seq>]

load <reg selector>

[<istmt seq >]

exec

[<istmt seq>]

end

The load keyword specifies where the next instruction is located while

the exec keyword causes the instruction to be evaluated. Before and

after the load and after the exec an arbitrary number of primitive

instructions may be specified for various housekeeping chores that are

not part of individual instructions, such

instruction pointer.

MASSEY UNIVERSITY
LIBRARY

as incrementing the

Chapter 3 SADL 100

The asynchronous instruction list is scanned as the first action by

exec. This is in accordance with the model of Chapter 2.

3.4 Using SADL

SADL has been used to describe four complete architectures and a fifth

architecture has been partially explored. The four fully described

architectures are the Intel 8085 and 8086 microprocessors, the National

Semiconductor SC/MP, and the Motorola 6800. The 8085 SADL description

is included as Appendix 2 of this thesis.

With the exception of the 8086, all the above architectures are first

generation 8-bit microprocessors. The architecture which was partially

explored was the Motorola 68000.

Experience with the 8086 and 68000 architectures has indicated possible

shortcomings in the language that require further study.

Access method specification in SADL can quickly become unwieldy because

of the lack of variable length data structures or data typing. Both

the 68000 and the 8086 allow structures of differing lengths for each

of their major access methods and this translates into many more access

method specifications than are desirable; for both architectures the

number of access methods could be cut in half if a separate clause

Chapter 3 SADL 101

indicating the possible lengths of the operand were included in SADL.

The 8086 also indicates that SADL's simple approach to the calculation

of instruction length may not always be satisfactory. SADL calculates

the instruction length as the sum of the length components of the

instruction and the access methods it uses. The 8086 instruction

length is calculated on the combination of access methods used. For

instance, a particular access method on the 8086 contributes Obits to

the length of instruction when used by itself (in a single operand

instruction) but contributes 3 bits to the length of instruction when

used in combination with some, but not all, of the other access

methods.

Finally, improvements may be necessary with regard to the parameter

substitution mechanism if the practice, fostered by Intel, of allowing

the components of a particular access method to be specified in any

order, becomes common. This is not a problem of architecture

specification but of the formats for the assembler. A fully

generalised facility for accepting arbitrary assembly languages is

beyond the scope of this thesis; the current approach by SADL is that

it does not attempt to be able to handle any arbitrary assembler format

but provides an interface which will allow the most widely used style

to be recognised.

Chapter 4 BUILD 102

4 Building Programs from SADL

Build is a program written in Salford LISP version 17 [Salford83], on a

Prime 750, with the purpose of generating data structures and functions

for simulating a symbolic architecture specified using SADL.

Build works by parsing a SADL description using the top down approach

and builds the data structures and functions as it parses.

LISP was chosen as the implementation language largely because of its

ability to generate programs which may be executed within the LISP

environment. The interactive debugging facilities provided by Salford

LISP were also a major consideration.

Build is not a simulator. Rather it constructs the machine dependent

routines upon which a simulator interface may be provided. This

splitting of the simulation routines from the simulator interface means

that the same interface may be used for any architecture.

Chapter 4 BUILD 103

4.1 Data Structures

LISP has a single data structure, the s-expression. There are two

substructures of the s-expression: the atom and the list. An atom

is a name; numbers are pseudo-atoms, as they are treated for the

most part in the same way as atoms. A name is an arbitrary string of

characters while a number in Salford LISP is held in Prime double

precision floating point form. The distinction between names and

numbers is the source of some problems in LISP as will be shown in

Section 4.3.

In SADL each register, access method, and instruction is named. This

simplifies implementing the data structures in LISP as each domain

may be a list of names where each name has associated with it several

properties which are relevant to the domain.

Example 4.1

an asynchronous instruction has a name, an instruction

sequence and an instantiation expression. The last two items

may be treated as properties of the name by using the LISP

property list facilities.

Asynch name - property: instruction sequence

- property: instantiation expression

Chapter 4 BUILD

There are six global variables containing lists of declared names:

REG_LIST@,

AM LIST@,AMC_LIST@,

ASYNC_LIST@,

CODEM_LIST@, SYNC LIST@.

104

LISP atoms are global except when declared explicitly within a PROG

or as formal parameters of a LAMBDA or NLAMBDA expression. As SADL

permits the same name to be used in each of the domains, a mechanism

must be used to ensure that the properties assigned to each name by

each domain do not conflict. This is done by using the Property List

mechanism of LISP and naming the properties such that every property

over the entire architecture is unique.

The Property List mechanism in LISP works by creating a list of

property names and the values associated with that property; the

first and all other odd-numbered members of the property list are the

property names while the second and all other even-numbered members

of the property list are lists of values associated with the

property. The property list always has an even number of members.

The following describes the data structures for the individual

domains.

Chapter 4 BUILD 105

4.1.1 The Register Domain

REG LIST@ - a list of register array names:

(••• H L HL BC BC •••)

Each name has a property list with the following properties:

LSW - index of the beginning array element

MSW - index of the terminating array element

LSB - index of the least significant bit

MSB - index of the most significant bit for the register

CELLS - an ASSOC list of registers and their values

MAPLIST - a list of register arrays that the named register array

maps onto

MSW, LSW, MSB, LSB each have a hexadecimal number as their value.

An ASSOCiation list is a list of two-element lists such as

(••• (c 1) (b 2) (a 3)) which may be used by the LISP ASSOC

function. ASSOC searches the lists trying to, match the first

member of each sublist with a speci•fied value; the second element

of the first sublist to successfully match the value is returned;

this is peculiar to version 17 of Salford LISP. If none of the

sublists match then NIL is returned. This is a fast and easy

technique for implementing a sparse array, one solution to the

problem of implementation restrictions with arrays that was

Chapter 4 BUILD 106

described in Chapter 1 [Cragon83].

The contents of the list which represents the value of the CELLS

property varies with time and the declaration of the register. If

the register array contains only one element the list will be

initially empty. If the register array contains more than one

element then each of the elements will be present with an initial

value of NIL:

((B nil) (C nil) •••) •

As each register becomes initialised by being written to, the

second value will be replaced by the binary representation of the

value so that the above will become:

((B &01 00111 0) (C &000111 01) •••) •

For the special situation where a register array contains

instructions, the registers which hold those instructions have, as

their value, a link to the instruction being held:

((0) (1) •••)

-~ ~~c instr opr1,opr2)

The above is for the case where MAPLIST is null (an empty list).

If MAPLIST is not null then it contains a list of the register

Chapter 4 BUILD 107

names that are mapped. Each member of the MAPLIST may be a name,

in which case it must already be declared as a register, or it may

be a three member list in which the first member is the predeclared

register name while the second and third members are the lower and

upper array elements for mapping.

Example 4.2

A 11 11 - maps 1 1 B 1 1 C end

A 11 - maps 1 1 B [o 3] li c

- maps A l l B [x z] l l C

gives

gives

gives

(A B C)

(A (B O 3) C)

(A (B X Z) C)

Where a register mapping exists, only the register(s) which are

mapped onto hold actual values. Those which are mapped from have

NIL value fields in their CELLS entries and their values are

obtained by indirect reference to the target registers.

4.1.2 The Access Method Domain

This domain is represented by two lists:

AM LIST@ - a list of access method names:

(DIRS DIR16 IMMEDS ••.)

AMC LIST@ - a list of access method class names

Chapter 4 BUILD 108

Each name in the AM LIST@ has three properties:

AM MATCH - a template for extracting the operands from the text

for a specific access method.

AM SIZE - a hexadecimal value specifying how many extra bits long

the instruction is because of the access method used.

AM EXPRN this is a LAMBDA expression which simulates the

behaviour of the access method. The functional aspects

are discussed in Section 4.4.5.

The AM MATCH list consists of a series of parameter identifiers

separated by lists containing constant items which surround the

parameters.

Example 4.3

- 68000

- 8080

- SC/MP

AMC LIST@ has

(A$)+

$

$1 ($2)

a single

property is simply a

AM MATCH: ((II(" A) $ (II)" +))

($)

property

list of

($1 (II (It) $2 (11) If)

AM CLASS. The value of the

the access method names which are

considered to be part of the access method class.

Chapter 4 BUILD

4.1.3 The Instruction Set domain

This domain has three lists representing subdomains:

ASYNC LIST@ - a list of asynchronous instruction names;

CODEM LIST@ - a list of code macro names;

SYNC LIST@ - a list of synchronous instruction names;

109

The names in ASYNC LIST@ have two properties associated with them:

ASYNC EXPRN - a PROGN which implements the instruction sequences

defined for the asynchronous instruction.

UPON - the value expression which determines whether the

instruction is able to be invoked or not.

It is essential that the ASYNC LIST@ contains the instructions in

the order that they are declared as the simulator should pass down

the list evaluating the UPON property value until a non-null value

is returned upon which the ASYNC EXPRN is invoked. If the order of

the asynchronous instructions is not maintained then the implicit

priority contained within the declaration order is lost.

Each name in CODEM LIST@ has a single property associated with it:

CM EXPRN. The value is an NLAMBDA expression which simulates the

operation of the code sequences specified in SADL. The NLAMBDA is

necessary be.cause text is being passed which must be substituted

Chapter 4 BUILD

into the code macro when it is executed.

SYNC LIST@ names have four properties:

I SIZE - the size in bits of

Hexadecimal)

the

I MATCH a template for recognising

110

instruction (stored in

the instruction and

extracting operands. The template has the same format as

AM MATCH.

AM LIST - a list containing one or more lists. Each sublist

contains the names of the access methods for the

instruction's operands.

SYNC EXPRN a LAMBDA expression which simulates the operation of

the instruction.

Chapter 4 BUILD 111

4.2 Constructing Tokens

The functions GET CHAR and GET TOKEN provide a clean interface

through which the remainder of the parsing routines may obtain the

next valid token. After an initial call on GET_TOKEN, the next valid

token will always be available as well as the next character

subsequent to that token.

There are three classes of SADL token:

Identifiers - all strings starting with a letter

containing only letters, numbers or

and

the

characters".", "$" and II U Identifier

tokens include SADL keywords.

Numbers - any string of characters conforming to the SADL

syntax for numbers.

others - any string of characters forming valid SADL tokens

but are not included in the above two categories.

The functiou GET_TOKEN skips over leading blanks, and uses the first

non-blank character encountered to select the appropriate token

building routine. The function has a single input parameter which

may be used to restrict the range of tokens that may be recognised.

If the input parameter is not specified then every token that is

Chapter 4 BUILD 112

successfully constructed will be returned as a valid token. If the

input parameter is the atom ID then the token that is constructed

must be a member of the set of valid identifiers. If the input

parameter is the atom NUMBER then the token must be a member of the

set of valid numbers. If the input parameter is any other atom then

the token and the parameter must be the same.

Example 4.4

(GET_TOKEN) with <token> returns <token>

(GET_TOKEN 'ID) with <identifier> returns <identifier>

(GET_TOKEN 'NUMBER) with <number> returns <number>

(GET_TOKEN 'end) with "end" returns "end"

If the token is not valid, either because it is not a valid SADL

symbol or because it is not of the expected type as indicated by the

input parameter, then a value of NIL is returned by GET TOKEN

otherwise the token is returned. In either case the position of the

input stream is updated.

The token, regardless of whether or not it is valid within GET_TOKEN,

is stored in the global variable TOKEN@ for access by the parsing

routines. If the character stream was not a legal SADL token then

TOKEN@ will be NIL.

Chapter 4

4.3 Handling Symbolic Numbers

A major problem in

programming language

modelling

is the

representation in the language.

BUILD 113

arbitrary architectures with any

possible inadequacy of number

In Salford LISP numbers allow exact

representation of integers up to 2 ** 45. While this precision may

be adequate for the majority of architectures it is unable to

represent

series).

all architectures (e.g. Burroughs B6700, CDC Cyber

To overcome this problem all numbers are stored in Build as

names and are manipulated symbolically. This does have an adverse

effect on performance and for this reason, Build currently performs

all arithmetic in decimal. With the ability to compile LISP

expressions it would be feasible to perform the arithmetic

symbolically. A bug in the version of LISP used to develop Build

prevented use of the compilation facility.

The three classes of number (binary, hexadecimal and decimal) are

stored the same way that they are represented in SADL: a binary

number is prefixed by"&" and a hexadecimal number is prefixed by

"#"; decimal numbers have no prefix.

The prefixes for binary and hexadecimal numbers cause them to be

treated as names rather than numbers by LISP so their manipulation is

straightforward. Decimal numbers are a significant problem because

of LISP's distinction between names and numbers. The arithmetic

operators in Salford LISP only work on atoms stored in numeric

Chapter 4 BUILD 114

format; 6 is a number whereas 11 611 is not. If a list of numeric

digits is imploded into a single atom (1 2 3) -> 123 then the atom is

treated as a non-numeric atom. On the other hand, if a name

consisting of digits only is exploded then the digits in the list are

converted to numeric format even though the original atom was not.

This inconsistency has led to the inconsistency in the current

version of BUILD, that hexadecimal and binary numbers are non-numeric

atoms while decimal numbers are numeric atoms. This decision is

partly because it was the easiest to implement and partly because it

results in improved performance. The disadvantage is that while the

precision of the binary and hexadecimal numbers is unlimited, the

precision of decimal numbers is limited.

With the three different types of number, the system needs to be able

to convert numbers from one format to another. This is performed by

the function CONVERT.

CONVERT has two input parameters. The first parameter is the TO TYPE

argument indicating what type of number is to be returned. Values

are: BIN to return a binary number; HEX to return a hexadecimal

number and any other value returns a decimal number. The second

input parameter is the number to be converted. The number in the

required format is returned as the value of CONVERT.

Chapter 4 BUILD 11 5

4.4 Building LISP functions and PROGs

The construction of LISP functions, PROGs and PROGNs is very

straightforward since both LISP expressions have very well defined

and similar constructs.

For functions it is:

(LAMBDA <parameter list> <expression list>)

For PROGs it is:

(PROG <local variable list> <expression list>)

For PROGNs it is:

(PROGN <expression list>)

Before describing the techniques of constructing the above

expressions it is necessary to show how a LISP expression can be

generated from SADL instruction statements.

Chapter 4 BUILD 116

4.4.1 Converting Value Expressions to LISP

The function PREFIX converts infix SADL expressions into a prefix,

LISP-oriented representation using the shunting yard algorithm.

Example 4.5 - A+ B * C - D

becomes (-(+A(* BC)) D)

The output has the form of a LISP expression. Because each of the

SADL operators is a function in Build, the above expression may be

evaluated to return a result.

The routines which generate the above expressions are the parsing

routines VALUE EXPRN and VALUE GROUP. VALUE EXPRN parses the

right-hand side of an assignment statement and calls PREFIX with

either an operator or the result of invoking VALUE_GROUP. This

process follows the structure of the syntax definition for SADL.

Chapter 4 BUILD 117

4.4.1.1 The Value Group

A value expression is a series of value groups separated by

binary operators with optional unary operators prefixing each

value group. Each of the identifiers A, B, C, Din Example 4.5

is a value group.

A value group is either a register selector, a numeric constant,

a parameter substitution or a parenthesised value expression.

Register selectors are the most complex members of the value

groups. The formats which a register selector may take are:

<rname> or <rname> l <selector expression> J

The general form of a register selector

expression:

(VALUE OF <rname> <selector>)

is the NLAMBDA

VALUE OF is a function which extracts the value from the named

register or from the specified element of the register array when

<selector> is not null. It is also able to accept and return

numbers; this is necessary when handling parameter

substitutions. VALUE OF performs the indirection necessary for

registers which are mapped and always returns the binary

Chapter 4 BUILD 118

representation of the register contents.

The selector expression may be a numeric constant, a symbolic

constant when the register array is enumerated, or a value

expression returning a value within the valid addressing range

for the register array.

Parameter substitutions, when occurring as part of a value group,

may represent either a register selector (as returned by the

access method) or they may be numbers.

In either case they are prefixed with the function VALUE OF which

must be able to interpret the parameter and return the

appropriate value. This is due to the necessity of being able to

extract the value from a register selector.

Example 4.6 - 8080 MOV is $1 <- $2

generates: (LAMBDA ($1 $2)

("<-" ($1) (VALUE OF $2))

Lvalue)

group

Value expressions are straightforward as they

function expressions through recursive parsing:

become LISP

Chapter 4 BUILD

Example 4.7 - 6800 NEGA is ACCA <- 0 - ACCA

generates: (LAMBDA()

("<-" (acca)

)

("-" 0 (VALUE OF

value groups LJ
Decimal constants may be included directly into

expression (the 0 in example 4.7 above) but

hexadecimal numbers must be quoted to force the name

the value cell of the name to be passed to

11 9

acca)))

the LISP

binary and

rather than

the operator

functions. Decimal constants may be quoted or unquoted.

4.4.2 The Destination Selector

Whereas the right hand side of an assignment statement represents a

value, the left hand side represents a location, or a series of

locations, where the value is to be stored.

In SADL the destination selector is a register or the concatenation

of several registers. It may also be a parameter substitution

which equates to a register selector.

Chapter 4 BUILD 120

The function DEST_SELECTOR produces the data structure representing

the destination of an assignment. DEST SELECTOR processes the

current token and continues to build a destination list while the

next token is the concatenation operator. When the token is a

register the function REG SELECTOR is called. This function

returns either the register name or (if the register is an array) a

list where the first member is the register name and the second is

the selector expression.

Example 4.8 - register: REG SELECTOR returns:

HL

MEM [o]

MEM [HL]

REG8 [B]

hl

(mem 0)

(mem (VALUE_OF hl)

(reg8 b)

Note that in line four of the above example E. is an enumerated cell

name, not a register name.

DEST_SELECTOR produces a list of destinations in the order that

they are specified:

Example 4.9 - HL i l MEM [o] l l DE<- •••

would return (hl (mem 0) de)

Chapter 4 BUILD 121

The NDEFUN "<-" scans the list in reverse order assigning the

result of the value expression to the target registers. The

function also handles the indirection due to register mapping so

that the model remains consistent.

Where a destination is a parameter substitution it is evaluated in

order to extract the real target registers.

4.4.3 SADL statements

Instruction statements in SADL have one of the following forms.

<target><- <value expression>

IF <value> THEN <statement sequence>

ELSE <statement sequence> ENDIF

DO <code macro> <parameters>

WHILE <value> DO <statement sequence> DONE

The basic SADL statement is the assignment statement. Section

4.4.2 indicates how a value expression and a destination selector

may be combined to construct the two sides of the assignment. It

Chapter 4 BUILD 122

is then a matter of enclosing the two expressions within a list

with the assignment operator.

The functions I_STMT, for instructions, and AM_STMT, for access

methods, convert SADL statements into LISP expressions through the

invocation of DEST SELECTOR and VALUE EXPRN. The local variables

DEST and VAL hold the destination expression and the value

expression respectively and the final statement:

(RETURN (LIST '"<-" DEST VALUE))

combines them into a single LISP expression.

I STMT is more complex than AM_STMT as it must provide for the IF,

DO and WHILE statements as well as the assignment statement. The

first token of the statement determines which is the appropriate

function to handle a particular statement.

described below.

The functions are

Chapter 4 BUILD 123

4.4.3.1 COND STMT

This function constructs a conditional expression using Salford

LISP's IF function.

COND STMT has three local variables for temporary storage. They

are IF_PART, THEN PART and ELSE PART. Each variable holds the

expression for the appropriate clause of the IF statement.

IF PART holds the value expression. Both the THEN PART and the

ELSE PART are lists where each member of the list is an

expression corresponding to a single statement. They are of the

form:

(••• (statement2) (statement1))

The ELSE PART may be null if there is no else clause to the IF

statement.

Finally, when the IF statement has been successfully parsed the

component parts are amalgamated into a single expression. The

following is executed as the final statement of COND STMT. The

ELSE section (lines six and seven) is omitted if there is no else

clause.

Chapter 4 BUILD

(RETURN (LIST 'IF

(LIST 'NEQUAL

(LIST 'CONVERT '"'DEC" IF_PART)

0)

(REVERSE THEN_PART)

'ELSE

(REVERSE ELSE_PART)

))

124

Note that the THEN PART and ELSE PART lists are accumulated in

reverse order and so must be reversed to produce a correct

ordering.

The result of the value expression is converted to decimal so as

to allow the inbuilt function NEQUAL to be used. This improves

performance but r~stricts the values which may be tested.

The following example shows how the SADL if-then-else construct

is converted to LISP:

Chapter 4 BUILD

Example 4.10 - 8080 JM $ instruction

The SADL IF statement

IF ccr [s] then

pc<-$ endif

is expressed in Salford LISP as:

(IF (NEQUAL (CONVERT 'DEC (VALUE_OF ccr s)) 0)

("<-" (pc) (VALUE_OF $))

)

4.4.3.2 CODEM STMT

125

The presence of the keyword "do" causes the function CODEM STMT

to be called. The next token is the name of the code macro being

invoked while the presence of parentheses indicates actual

parameters to the code macro.

Chapter 4 BUILD 126

Example 4.11

do ACplus (ACCA)

translates to: (DO_CM acplus acca)

DO CM evaluates a parameter list containing the name of the code

macro followed by the actual parameters to it. DO CM is an

NLAMBDA and so its arguments are not evaluated before being

passed.

If there is more than one parameter to the code macro then all

parameters must be combined in a list.

Example 4.12

do SOME (ACCX ACCY) (DO_CM some (accx accy))

4.4.3.3 WHILE STMT

This function is the analogue of the COND STMT. It makes use of

Salford LISP's WHILE expression:

(WHILE <condition> <statement list>)

Chapter 4 BUILD 127

The function WHILE STMT has two local variables WH PART and

DO PART. The first takes the list returned by VALUE_EXPRN, which

is invoked for the conditional expression of the While statement.

The DO PART is a list whose members each make up a SADL

statement.

The expression returned is:

(WHILE (NEQUAL (CONVERT 'DEC <value exprn>) 0)

<statement sequence>

)

The statement sequence should modify registers in the value

expression otherwise the loop will execute indefinitely.

4.4.4 SADL Instructions in LISP

Now that the method of constructing SADL statements has been

described it is possible to show an entire instruction. For

example:

Chapter 4 BUILD

Example 4.13 - 8080 instruction

XCHG is TMP <- HL;

HL <- DE;

DE<- TMP

size 8 end

This causes the following to be generated:

(LAMBDA()

("<-" (tmp) (VALUE_OF hl))

("<-" (hl) (VALUE OF

("<-" (de) (VALUE OF

)

Example 4.14 - 8080 LDA $

LDA is A<-$

from$ using DIR8

size 8 end

generates the following function:

(LAMBDA($)

de))

tmp))

("<-" (a) (VALUE_OF $))

)

128

Chapter 4 BUILD 129

The above is created by the function ADD SYNC which builds

synchronous instructions. Asynchronous instructions are different

as they have no parameters and can therefore be PROGNs rather than

LAMBDAs.

EXPRN SEQ which holds the sequence of Local variables are:

statement expressions; PARAM LIST which contains the parameters

declared in the "from" clause; AM LIST and AM TUPLE which are used

to construct the access method tuple list.

When the instruction has been successfully parsed the following

statement ties the components into a LAMBDA expression which is

placed on the instruction's property list:

(APPEND (LIST 'LAMBDA (REVERSE PARAM_LIST))

(REVERSE EXPRN_SEQ))

Note the use of the REVERSE function again.

The instantiation expression is a value expression which returns T

or NIL depending upon its truth. It is extracted from the property

list, evaluated and, if not null, the PROGN is extracted and

evaluated.

Chapter 4 BUILD 130

4.4.5 The Access Method Function

Access methods have the form of LAMBDA expressions but in addition

they have an internal FROG expression. This is because the SADL

keyword OPERAND is treated as a local variable which takes on the

text of the destination selector and is the value returned when the

access method LAMBDA is called. The format is as follows:

(LAMBDA <parameter list>

(FROG (OPERAND)

<statement list>

)

)

(SETQQ OPERAND <destination selector>)

<statement list>

(RETURN OPERAND)

The SETQQ function quotes both its arguments and so assigns OPERAND

the text of the destination selector rather than its value. This

is necessary as the text must be inserted into the instruction

LAMBDA when the instruction is evaluated.

Chapter 4 BUILD 131

4.4.6 The Code Macro Function

This is an NLAMBDA function as the parameters, if any, are text

which should be substituted into the appropriate places in the

statement list. If there are no parameters, the parameter

variables referred to in the code macro reference those variables

within the scope of the calling instruction. This is in accordance

with the scoping rules of LISP.

The format of the code macro is identical to the format of the

SYNC EXPRN (see section 4.1.3) except for the substitution of

NLAMBDA in place of LAMBDA.

4.4.7 The Executor Function

This is a PROG function attached to the global variable EXEC@. The

expression contains a PROG expression with the local variable

INSTR. This variable holds the text of the next instruction to be

executed.

Chapter 4 BUILD

(FROG (INSTR)

)

<statement sequence>

(SETQ INSTR (LOAD (REG_SELECTOR)))

<statement sequence>

(EXEC INSTR)

<statement sequence>

132

The EXEC function causes INSTR to be parsed and executed. It also

causes the asynchronous instruction list to be scanned for valid

instructions.

EXEC@ must be called each time an instruction is to be executed. A

call to EXEC@ is equivalent to starting an instruction cycle in the

hardware of the architecture.

4.5 SADL Onerators as Functions

The binary and unary operators of SADL as well as the assignment

operator("<-") are all functions in Build. All of the functions are

LAMBDA expressions except for the assignment operator which is a

special c·ase.

Chapter 4 BUILD 133

The assignment operator must be an NLAMBDA expression because it must

not evaluate the destination list. It evaluates the right hand side

by subjecting the value expression to the EVAL function thus forcing

an extra level of evaluation.

Both binary and unary operators accept any number and return a number

in symbolic binary format. The length of the binary number returned

depends on the operator. Boolean operators return a binary zero or

binary one, a single digit. The length operator returns a decimal

value. The ext operator returns a binary number of "infinite

length"; this is actually some long implementation dependent length

like 128 or 256 characters. In Salford LISP the length is in excess

of 600 characters.

The remaining operators return a result that is the same length as

the operand, or the larger of the two operands. If the operands were

decimal or hexadecimal then the binary format contains as many bits

as are necessary to represent the number as passed; this means that

leading zeros in decimal and hexadecimal numbers are significant to

the representation.

Note that the unary operators"+" and"-" invoke the same functions

as the binary operators "+" and " ft The functions check to see

whether the second parameter is null to decide whether to behave as a

unary operation or a binary operation.

Chapter 4 BUILD 134

Some operators process the symbolic binary numbers in that form while

others (the arithmetic operators) first convert the input into

decimal before applying the inbuilt LISP operators and then convert

the result back to binary. This is a temporary solution to the

problem of performance.

The operators which process symbolic binary first split the numbers

into lists of digits and then perform list walks in combination with

list surgery. Nothing more sophisticated than comparison or cutting

and pasting is involved.

Example 4-15 - the right shift operator

(DEFUN rsh (OP)

(SETQ OP (CDR (EXPLODE (CONVERT 'BIN OP))))

(SETQ OP (CDR (REVERSE (CONVERT 'BIN OP))))

(SETQ OP (REVERSE OP))

(SETQ OP (CONS (CAR OP) OP))

(IMPLODE (CONS I & OP))

)

Chapter 4 BUILD 135

Example 4.16 - the logical AND operator

(DEFUN and (OP1 OP2)

)

/* ensure the operands are binary

(SETQ OP1 (CDR (EXPLODE (CONVERT 'BIN OP1))))

(SETQ OP2 (CDR (EXPLODE (CONVERT 'BIN OP2))))

/* extend the shorter operand to the length of the larger

(WHILE (LESSP (LENGTH OP1) (LENGTH OP2))

(SETQ OP1 (CONS O OP1))

)

(WHILE (LESSP (LENGTH OP2) (LENGTH OP1))

(SETQ OP2 (CONS O OP2))

)

(SETQ OP1 (REVERSE OP1))

(SETQ OP2 (REVERSE OP2))

/* perform the and operation

(SETQ OP1 (MAPCAR (LAMBDA (X Y)

))

(COND ((OR (ZEROP X)

(ZEROP Y))

0)

(T 1)

))

OP1 OP2

(IMPLODE (CONS '& (REVERSE OP1)))

Chapter 4 BUILD 136

The assignment operator is by far the most sophisticated operator as

it must perform several functions. It causes evaluation of its

second parameter to extract a value which is assigned to the local

variable RSLT. It then parses the destination list accessing

locations in which to store the value. Because of the possibility

that each of the destination registers is mapped, a function GET BASE

is called. The function accepts a register name or register selector

expression and returns a name or expression which consists of the

registers which are mapped to by the input register array. As

GET BASE is recursive any level of mapping is supported; this is

consistent with the semantics of SADL. After GET BASE has been

applied to every member of the destination list a new destination

list exists with only unmapped registers.

Scanning the destination list

substitution parameters which may

also requires processing any

be part of the destination list.

Any member of the destination list which starts with a $ must be

evaluated to obtain the true destination.

Example 4-17

dest: $1

value of $1: (mem 0)

true dest: (mem 0)

Once the new, unmapped destination list has been constructed, the

value must be placed into the appropriate registers and zero extended

Chapter 4 BUILD 137

where necessary. This is a matter of scanning the destination list

in reverse order (as left to right is most significant to least

significant order) assigning the digits from RSLT, least significant

first.

Where a register array is named without any selector expression, all

registers in the array are assigned values.

As each bit, or multiple of bits, is assigned from the RSLT it is

dropped from the list. When RSLT is null the remaining registers are

assigned zeros.

The complexity of the above description is necessary to support the

full semantics of the SADL assignment. The most common case is not a

destination list but rather a single destination register. In this

case GET BASE is called once with the register selector and the value

may be assigned directly.

Chapter 4 BUILD 138

4.6 An Example

To tie this description together an example of how an instruction

would be processed is given. The example is the INC instruction from

the Motorola 6800 microprocessor. This instruction causes the memory

location specified by the single instruction parameter to be

incremented by one.

The SADL definitions for the registers used are:

PC is []<15 0> end /* 16-bit register

MEM is [O #FFFF]<7 0> end /* 8-bits * 64K words

The SADL instruction definition for INC is:

INC is $ <- $ + 1

from $ /* entire operand field

using INDEX; /* Index and

EXTND /* Extended addressing

size 8 end /* instruction length

Chapter 4 BUILD 139

The SADL description for the access method used is:

EXTND is

OPERAND<- MEM [$]

from$

size 16 end

/* entire operand field

/* 8+ 16 = 24 bit instr.

When the SADL description has been processed by BUILD the following

properties of the various names are defined. The following is the

output of DUMP, a procedure which prints out the names of the

properties and their values in a (reasonably) pleasing format:

pc

MSB #f LSB #O LSW #O MSW #0

MAPLIST ()

CELLS ()

For the example at least two of the registers of the register array

MEM must be occupied. One must contain an instruction while the

other contains the value that is being incremented.

Chapter 4 BUILD 140

mem

MSB #7 LSB #0 LSW #O MSW #ffff

MAPLIST ()

CELLS ((#fOOO &10001001)

(#0 (inc #fOOO))

(#1 (inc #fOOO))

(#2 (inc #fOOO)))

The first member of the CELLS list is the register which is to be

modified while the second,third and fourth members are the registers

which hold the instruction. Three registers are required because of

the access method used by the instruction.

Only the EXTND access method is shown:

Chapter 4

extnd

AM SIZE 16

AM MATCH($)

AM EXPRN

(LAMBDA($)

(FROG (OPERAND)

BUILD

(SETQQ OPERAND (mem $))

(RETURN OPERAND)

)

)

And the INC instruction:

inc

I SIZE 8

I MATCH ($)

AM LIST ((extnd) (index))

I EXPRN

(LAMBDA($)

(<- ($) (+ (VALUE_OF $) 1))

)

141

The loading of instructions into the register space is the

responsibility of the interface which sits on top of the LISP

architecture generated by Build. It is assumed that the interface

Chapter 4 BUILD 142

procedure which loads the instructions into the register array also

converts constants to hexadecimal representation.

The invocation (EXEC@) causes the instruction to be loaded from the

register array element specified. The SADL declaration is:

executor

load MEM [Pc];

PC<- PC+ 1;

exec

end

which is represented in LISP as:

EXEC@

(FROG (INSTR)

(SETQ INSTR (LOAD (mem (VALUE_OF pc))))

(<-PC (+ (VALUE_OF pc) 1))

(EXEC INSTR)

)

The EXEC function locates the instruction in the SYNC LIST@ and

locates the appropriate access method. In this case the access

method is EXTND. The operands of the instruction are passed to the

EXTND property function which returns the value of OPERAND. OPERAND

for this particular instance would be:

Chapter 4 BUILD 143

(mem #fOOO)

This is then passed into the INC instruction which then evaluates as

if it were:

(LAMBDA()

(<- ((mem #fOOO)) (+ (VALUE_OF (mem #fOOO)) 1))

)

The VALUE OF function parses the register selector, extracts the

value from the register data structure and returns the value

&10001001. If mem had mapped to several smaller registers, then the

values returned from those registers would be concatenated into a

single number.

The"+" function is evaluated with the parameters &10001001 and 1.

It returns the value &10001010.

The assignment function parses the destination list for the single

target register expression. The function GET BASE returns the same

expression (mem #fOOO) indicating no mapping.

The first member of the expression is extracted and used to locate

the register data structure in REG LIST@.

register are then used in the following manner.

The properties of the

Chapter 4 BUILD 144

A search of the members of the CELLS list is used to attempt to

locate the correct cell using the value returned by the selector

expression (in this case #f000). If that fails then the number of

elements in the list is compared with the number specified using the

MSW and LSW properties; if they are the same then it is an

enumerated list and the INDEX function may be used to extract the

value, otherwise the element has not yet been written to.

If the element is not yet written to, it is C0NSed to the beginning

of the list, otherwise direct surgery is performed using RPLACA to

replace the old version of the cell with the new version of the cell.

In the example the cell #f000 is located and RPLACA is performed on:

((#f000 &10001001)

(#0 (inc #f000))

(#1 (inc #f000))

(#2 (inc #f000)))

with (#f000 &10001010) being the substitute list.

Chapter 4 BUILD

The final result is that CELLS looks like:

((#fOOO &10001010)

(#0 (inc #fOOO))

(#1 (inc #fOOO))

(#2 (inc #fOOO)))

145

This example has shown a simple instruction which has a value

expression involving a SADL operator and an assignment. No other

examples have been given as no new concepts are necessary to build up

more complex instructions.

Chapter 5 CONCLUSIONS 146

5 Conclusions

5.1 Summary

In the four preceding chapters I have provided a representative

sample of thinking in instruction set processor description

languages, have developed my own model of the environment of

executing instruction sequences and have produced an architecture

description language and an application using that language.

Chapter One explored several types of architecture description

language, and cited examples from each area. The advantages and

disadvantages of each of the approaches were examined. The most

influential of the languages examined has been ISPS and this language

was examined in rather greater detail because of this.

Chapter Two developed a model of architecture at the level which is

visible to an executing sequence of instructions. The model was

influenced by the approaches described in Chapter One but was not

based specifically on any of them. It was used as the basis for the

language described in Chapter Three.

Chapter 5 CONCLUSIONS 147

Chapter Three described the syntax and semantics of SADL, the

Symbolic Architecture Description Language. The syntax description

given in the chapter is incomplete but is sufficient to allow the

semantics of the language to be fully specified. A full syntax using

extended BNF notation is included as Appendix 1.

Chapter four described the LISP program Build, an application using

SADL. The description of Build showed how a SADL description may be

processed to produce data structures and procedures which may form

the basis of a simulator, thus allowing architecture-independent

simulation.

5.2 The Realization of Design Goals

This thesis had two design goals. The major goal was to design a new

language capable of describing instruction set processors in a

symbolic form. The language should avoid the details of

implementation, but should be able to express the functionality of

the architecture fully. SADL accomplishes that goal with some

success.

SADL is able to describe a range of architectures without exploring

the implementation details and has been successfully used to describe

the Intel 8085 and 8086 microprocessors, as well as the National

Chapter 5 CONCLUSIONS 148

Semiconductor SC/MP and Motorola 6800 architectures. The language

does have limitations though, and these have been described in

Chapter Three. Possible improvements to the language outlined in the

chapter, included the addition of support for variable length

operands and a more sophisticated technique for describing the

operand field of assembly language instructions.

The secondary goal was to produce a tool which could serve as the

basis for an architecture independent simulator for use in

interactive study of architectures from a software • I engineers

viewpoint. Chapter Four describes Build and provides an example

showing how an assembly language instruction is converted into data

structures and LISP functions which may then be evaluated to simulate

the operation of the instruction. This example indicates the

feasibility of Build as the basis of a description driven simulator.

Therefore I feel that Build goes some way to satisfying the secondary

goal of this thesis.

Chapter 5 CONCLUSIONS 149

5.3 Future Directions

The approach to SADL was based very much on the principle that an

architecture consists of several independent domains. While this

view has been supported by SADL it has resulted in a large language.

An interesting possibility is to migrate SADL more towards the

approach taken in ISPS (while still retaining the symbolic nature of

SADL).

ISPS has a different approach from that of SADL. It recognises a

dichotomy between "carriers" (registers) and procedures. Procedures

describe all behavioural aspects of the architecture without

distinction· between access method procedures or instruction

procedures. This means that the same syntax and semantics are shared

between instructions and access methods, as well as enabling

procedures to invoke other procedures (like the SADL code macro

statements). This makes the language quite compact.

The disadvantage of this approach is that the distinction between

access methods and instructions that exists at the symbolic level is

largely lost. In a pedagogic situation this could be a major

drawback and it is certainly not the ideal situation for a software

engineer who is used to thinking of instructions and their access

methods as independent entities.

Chapter 5 CONCLUSIONS 150

There are two areas of potential for the development of applications

using SADL. One is the application started with the development of

Build, that of a symbolic simulator for software engineers to use.

This would be a useful tool for two reasons. First, its approach to

the architecture is at the level that a software engineer has

experience with and so can relate to without extensive training.

Second, it is useful as a pedagogic tool for a similar reason.

The other area in which applications could be developed depends upon

the fact that the architecture is built up into LISP functions.

Because of this it is possible for development engineers to edit an

architecture and then immediately simulate the modified architecture

to evaluate it. This is essentially the justification that Cragon

[Cragon83] put forward for the use of LISP as an architecture

specification language.

The other application, and the one that sparked the idea for this

thesis originally, is that of automatic translation of instruction

sequences from one architecture to functionally equivalent

instruction sequences on another architecture. This is an

application which keeps recurring as people need to move software

from ageing architectures to new systems.

The important phrase is "functionally equivalent". This means that

the code sequences may be quite dissimilar so long as their

operations, and the registers which hold the values, are consistent

within the SADL specification.

Chapter 5 CONCLUSIONS 151

During this thesis I have come to realise the size of this task, but

I believe that SADL is a reasonable contribution to its solution.

Appendix 1 THE SYNTAX OF SADL

<sadl> ::= <pdescr> [<executor>]

<pdescr> ::= architecture <ar name> is <rset domain>

<amset domain>

<iset domain>

<ar name> ::= <identifier>

<rset domain> ::= registers • <reg defn> { <reg defn> }

<reg defn> ::= <r name> is <dim exprn> [<mapping exprn>] end

<r name>::= <identifier>

<dim exprn> ::= <array spec> <word spec>

<array spec> ::= [[<range bounds> <cell list>] J

<range bounds> ::= <lower bound> <upper bound>

<cell list> ::= <cell name> { .L <cell name> }

<cell name> ::= <identifier>

<lower bound> ··= <number>

<upper bound> ::= <number>

152

Appendix 1 THE SYNTAX OF SADL

<word spec> ::= ~ [<msb> <lsb>] 2_

<msb> ::= <number>

<lsb> ::= <number>

<mapping exprn> ::= maps <r mapdef> { Jl <r mapdef> }

<r mapdef> ::= <r name> [<m array spec>]

<m array spec>::= l <init addr> <term addr> J

<init addr> ::= <number> <cell name>

<term addr> ::= <number> <cell name>

<amset domain>::= access methods . <am descr>

{ <am descr> }

[<am class>]

<am descr> ::= <am name> is <am exprn seq>

from <template>

[size <bitsize>] end

<am name> ::= <identifier>

153

Appendix 1 THE SYNTAX OF SADL

<am exprn seq>::= { <am assign stmt> .!....

<am param stmt>

.!.... <am assign stmt>

<am param stmt> ::=OPERAND<- <dest selector>

<am assign stmt> ::= <reg selector><- <value exprn>

<dest selector> ::= <dest exprn> l ll <dest exprn> }

<dest exprn> ::= <reg selector> <param substn>

<template>::= <const item>

<bitsize> ::= <number>

<param substn>

l <const item> <param substn> }

<am class> ::= access classes · <amc descr> l .!.... <amc descr> }

<amc descr> ::= <amc name> is <am name> l <am name> }

<amc name>::= <identifier>

<iset domain> ::= [<asynch domain>] <synch domain>

154

Appendix 1 THE SYNTAX OF SADL

<asynch domain> ::= asynchronous instructions : <asynch instr>

{ <asynch instr>

<asynch instr>::= <i name> is <istmt seq> upon <value exprn> end

<i name>::= <identifier>

<istmt seq> ::= <istmt> { ..L <istmt> }

<istmt> ::= <assign stmt> <cm stmt> <cond stmt> <loop stmt>

<assign stmt> ::= <dest selector><- <value exprn>

<cm stmt> ::=~<cm name> [J_ <param exprn> { ..L <param exprn> } l]

<param exprn> ::= <number> <reg selector> <param substn>

<cond stmt> ::= if <value exprn> then <istmt seq>

[else <istmt seq>] endif

<loop stmt> ::= while <value exprn> do <istmt seq> done

<synch domain>::= synchronous instructions . [<codem list>]

<synch instr>

{ <synch instr>

<codem list> ::= <code macro> { <code macro> }

155

Appendix 1 THE SYNTAX OF SADL

<code macro> ::= codem <cm name> [<cm param>] is <istmt seq> endm

<cm name>::= <identifier>

<cm param> ::= _(_ <param substn> ! <param substn> } l

<synch instr> ::= <i name> is <istmt seq>

[from <template> using <amlist>]

[size <bitsize>] end

<amlist> ::= <am tuple> ! ..!.. <am tuple> }

156

<am tuple>::= <am name> <amc name> ! <am name> <amc name> }

<executor>::= executor

[<istmt seq>]

load <reg selector>

[<istmt seq>]

exec

[<istmt seq>]

end

<value exprn> ::= [<unop>] <value group>

! (binop> [<unop>] <value group> }

Appendix 1 THE SYNTAX OF SADL

<value group>::= <reg selector>

<param substn>

i <value exprn> l
<number>

<reg selector>::= <r name> [l <value exprn> J]

<param substn> ::= ! [<dee num>]

<number> ::= <dee num> <bin num> <hex num>

<identifier> ::= <letter> { <letter> <digit>

<bin num> ::= & (0) { 0

<dee num> ::= <digit> l <digit> }

<hex num> •• = # .. <hdigit> l <hdigit> }

<boo lop> : : = > < >=

<unop> : : = + I
I - not lsh rsh

<binop> ::=.:_I.::.. I.:_ I/_ ** I I

and or I I
_1_1 mod

<const item> ::= <special char>

<= <>

ext sizeof

<boolop>

<identifier>

157

$

<number>

Appendix 1 THE SYNTAX OF SADL 158

<special char> ! I " # $$ I % I & I I I i I l I = I ~ I ,. I ::= I I I I I I I I I I - - - - -
.i ' I @ 1 I l I I . I l I l I < I > I I I .L I . I I I I . - - -
? . l. + I - L * I I

.L . I I J_ -

<digit>::= 0 2 3 4 5 6 7 8 9

<hdigit> ::= <digit> A B C D E F

Appendix 2 A SADL DESCRIPTION

architecture 18085 is

/* This description is not authoritative but is

/* for illustrative purposes only.

/* It is taken from [Danhof81].

registers

CCR is [CY,X1JP,X2,AC,X3,Z,S]<> end

A is []<7 O> end

PSW is []<15 O> maps CCR I I A end

Bis []<7 O> end

C is []<7 O> end

BC is []<15 O> maps C l l Bend

Dis []<7 O> end

Eis []<7 O> end

DE is []<15 O> maps E l l D end

His []<7 O> end

Lis []<7 O> end

HL is []<15 O> maps L l I H end

SP is []<15 O> end

PC is []<15 O> end

159

Appendix 2 A SADL DESCRIPTION

/* external registers

MEM is [o #FFFF]<7 O> end

IO is [o #FF]<7 O> end

/* virtual registers

R is [A,B,C,D,E,H,L]<7 O> maps A 11 B
I I

I I C
I I

I I D I I E I I H
I I I I I I

RP is [B,D,H,SP]<15 O> maps C I I B I I E I I D 11 L 11 H I I
I I I I I I I I I I

INX is [B,D]<15 O> maps BC I I DE end I I

RPP is [B,D,H,SP,PSW]<15 O> maps RP I I PSW end

IMREG is [M5.5,M6.5,M7.5,MSE,R7.5,X,SOE,SOD]<> end

/* Asynchronous Instruction Activation registers

INTR is []<> end

TRAP is []<> end

RST7.5 is []<> end

RST6.5 is []<> end

RST5.5 is []<> end

160

11 Lend I I

SP end

Appendix 2 A SADL DESCRIPTION

IEREG is []<> end

RSTREG is[]<> end

HALTREG is []<> end

TRAPREG is []<> end

RST7REG is []<> end

RST6REG is []<> end

RST5REG is []<> end

/* Temporary storage registers

TMP6 is []<15 O> end

TMP8 is []<7 O> end

BITS is [o 7]<> end

access methods

REGS is

OPERAND <- R [$]

from$

size 0 end

REG16 is

OPERAND <-RP[$]

from $

size 0 end

1 61

Appendix 2 A SADL DESCRIPTION

REG16P is

OPERAND<- RPP [$]

from$

size O end

INDIRECT is

OPERAND<- MEM [HL]

from M

size O end

INX is

OPERAND<- MEM [INX [$]]

from$

size O end

IMMED3 is

OPERAND<- $1 and #7

from$

size O end

IMMED8 is

OPERAND<-$ and #FF;

PC<- PC+

from$

size 8 end

IMMED16 is

OPERAND <- $ and #FFFF;

PC <-PC+ 2

from $

size 16 end

162

Appendix 2 A SADL DESCRIPTION

DIR8 is

OPERAND<- MEM [$];

PC <-PC+ 2

from $

size 16 end

DIR16 is

OPERAND <- MEM [$+1] I I MEM [$]; I I

PC <-PC+ 2

from $

size 16 end

access classes

DIR is DIR16 DIR8 end

IMMED is IMMED8 IMMED16 end

INDEX is INX INDIRECT end

asynchronous instructions

RESET is

PC<- O;

IEREG <- O;

RSTREG <- 0

upon RSTREG end

/* enable interrupts

163

Appendix 2 A SADL DESCRIPTION

TRAP is

IEREG <- 1;

MEM [sP-1] I I MEM [sP-2] <- PC;

SP<- SP - 2;

PC<- #24;

TRAPREG <- 0

upon TRAPREG end

RST7.5 is

IEREG <- 1;

MEM [sP-1] l l MEM [sP-2] <- PC;

SP<- SP - 2;

PC<- #3C;

RST7REG <- 0

upon RST7REG and not (IMREG [M7.5] or IEREG) end

RST6.5 is

IEREG <- 1;

MEM [SP-1] l l MEM [SP-2] <- PC;

SP<- SP - 2;

PC<- #34;

RST6REG <- 0

upon RST6REG and not (IMREG [M6.5] or IEREG) end

164

Appendix 2 A SADL DESCRIPTION

RST5.5 is

IEREG <- 1 ;

MEM [SP-1] I I MEM [SP-2] <- PC;

SP<- SP - 2;

PC<- #2C;

RST5REG <- 0

upon RST5REG and not (IMREG [M5.5] or IEREG) end

synchronous instructions

codem Z ($) is

CCR [CY]<-$= 0

end

codem S ($) is

CCR [s] <-($and #80) #80

end

codem P ($) is

BITS<- $;

CCR [P] <- + BITS [o] + BITS [1] + BITS [2]

+ BITS [4] + BITS [5] + BITS [6]

end

codem ACplus ($1 $2) is

CCR [AC]<- ($1 and #F) + ($2 and #F) > #F

end

165

+ BITS [3]

+ BITS [7]

Appendix 2 A SADL DESCRIPTION

codem ACminus ($1 $2) is

CCR [AC]<- ($1 and #F) < ($2 and #F)

end

codem CY ($1 $2) is

CCR [CY]<- $1 < $2

end

MOV is

$1 <- $2

from $1,$2

using REGS REGS;

REGS INDIRECT;

INDIRECT REGS

size Send

XCHG is

TMP6 <- HL;

HL <- DE;

DE<- TMP6

size Send

MVI is

$1 <- $2

from $1,$2

using REGS IMMED8;

INDIRECT IMMED8

size 8 end

166

Appendix 2

LXI is

$1 <- $2

from $1,$2

A SADL DESCRIPTION

using REG16 IMMED16

size 8 end

LDA is

A <- $1

from $1

using DIR8

size 8 end

LHLD is

HL <- $1

from $1

using DIR16

size 8 end

LDAX is

A <- $1

from $1

using INX

size 8 end

STA is

$1 <- A

from $1

using DIR8

size 8 end

167

Appendix 2

SHLD is

$1 <- HL

from $1

using DIR16

size 8 end

STAX is

$1 <- A

from $1

using INX

size 8 end

ADD is

A SADL DESCRIPTION

do ACPLUS (A $1);

CCR [CY] l l

do p (A);

do z (A);

do s (A)

from $1

using REGS;

INDIRECT

size 8 end

A <- A + $1;

168

Appendix 2 A SADL DESCRIPTION

ADI is

do ACPLUS (A $1);

CCR [CY] l I A<- A+ $1;

do P (A);

do Z (A);

do S (A)

from $1

using IMMED8

size 8 end

ADC is

do ACPLUS (A $1);

CCR [CY] l I A<- A+ $1 + CCR [CY];

do P (A);

do Z (A);

do S (A)

from $1

using REGS;

INDIRECT

size 8 end

169

Appendix 2 A SADL DESCRIPTION

ACI is

do ACPLUS (A $1);

CCR [CY] l l A<- A+ $1 + CCR [CY];

do P (A);

do Z (A);

do S (A)

from $1

using IMMED8

size 8 end

SUB is

do ACMINUS (A $1);

CCR [CY] l l A<- A - $1;

do P (A);

do Z (A);

do S (A)

from $1

using REGS;

INDIRECT

size 8 end

170

Appendix 2 A SADL DESCRIPTION

SUI is

do ACMINUS (A $1);

CCR [CY] I I

do p (A);

do z (A);

do s (A)

from $1

using IMMED8

size 8 end

SBB is

A<- A

do ACMINUS (A $1);

- $1 ;

CCR [CY] l i A<- A - $1 - CCR [CY];

do P (A);

do Z (A);

do S (A)

from $1

using REGS;

INDIRECT

size 8 end

171

Appendix 2 A SADL DESCRIPTION

SBI is

do ACMINUS (A $1);

CCR [CY] l l A<- A - $1 - CCR [CY];

do P (A);

do Z (A);

do S (A)

from $1

using IMMED8

size 8 end

INR is

do ACPLUS ($1

$1 <- $1 +

do p ($1) ;

do z ($1) ;

do s ($1)

from $1

using REGS;

INDIRECT

size 8 end

INX is

1 ;

$1 <- $1 + 1

from $1

using REG16

size 8 end

1) ;

172

Appendix 2 A SADL DESCRIPTION

DCR

DCX

is

do ACMINUS

$1 <- $1 -

do p ($1) ;

do z ($1) ;

do s ($1)

from $1

using REGS;

INDIRECT

size 8 end

is

($1

1 ;

$1 <- $1 - 1

from $1

using REG16

size 8 end

1) ;

DAD is

CCR [CY] l l HL <- HL + $1

from $1

using REG16

size 8 end

173

Appendix 2 A SADL DESCRIPTION 174

DAA is

if (A and #OF) > 9 then

CCR [CY] I I A<- A+ 6; I I

CCR [AC] <- endif;

if (A and #FO) > #90

then CCR [CY] l I A<- A + #60 endif; I l

do P (A);

do Z (A);

do S (A)

size 8 end

ANA is

A<- A and $1 ;

do P (A);

do Z (A);

do S (A);

CCR [CY] <- O;

CCR [AC] <-

from $1

using REGS;

INDIRECT

size 8 end

Appendix 2 A SADL DESCRIPTION

ANI

XRA

is

A<- A and $1 ;

do P (A);

do Z (A);

do S (A);

CCR [CY] <- O;

CCR [AC] <- 1

from $1

using IMMEDS

size 8 end

is

A<- (A and not $1) or (not A and $1);

do P (A);

do Z (A);

do s (A);

CCR [CY] <- O;

CCR [AC] (;.. 0

from $1

using REGS;

INDIRECT

size 8 end

175

Appendix 2 A SADL DESCRIPTION

XRI

ORA

is

A<- (A and not

do p (A);

do z (A);

do s (A);

CCR [CY] <- O;

CCR [AC] <- 0

from $1

using IMMED8

size 8 end

is

A<- A or $1;

do p (A);

do z (A);

do S (A);

CCR [CY]<- O;

CCR [AC]<- 0

from $1

using REGS;

INDIRECT

size 8 end

$1) or (not A and $1);

176

Appendix 2

ORI is

A<- A or $1;

do P (A);

do Z (A);

do S (A);

CCR [CY]<- O;

CCR [AC]<- 0

from $1

using IMMEDS

size 8 end

CMP is

A SADL DESCRIPTION

TMPS < - A - $1 ;

do CY (A $1);

do P (TMP8);

do ACMINUS (A $1);

do Z (TMPS);

do S (TMPS)

from $1

using REGS;

INDIRECT

size 8 end

177

Appendix 2 A SADL DESCRIPTION

CPI

RLC

RRC

RAL

is

TMP8 <- A - $1;

do CY (A $1);

do P (TMP8);

do ACMINUS (A $1);

do z (TMP8);

do s (TMP8)

from $1

using IMMED8

size 8 end

is

CCR [CY] l I A<- lsh A;

if CCR [CY]

then A<- A or 1 endif

size 8 end

is

A 11
I 1 CCR [CY] <- A;

if CCR [CY]

then A <- A or #80 endif

size 8 end

is

CCR [CY] 1 1 A<- A 1 1 CCR [CY] I 1 I I

size 8 end

RAR is

A I l ccR [cY] <- ccR [cY] l l A

size 8 end

178

Appendix 2 A SADL DESCRIPTION

CMA is

A<- not A

size 8 end

CMC is

CCR [CY] <- not CCR [CY]

size 8 end

STC is

CCR [CY] <- 1

size 8 end

JMP is

PC <- $1

from $1

using IMMED16

size 8 end

JNZ is

if CCR [z] = 0

then PC<- $1 endif

from $1

using IMMED16

size 8 end

JZ is

if CCR [z] = 1

then PC<- $1 endif

from $1

using IMMED16

size 8 end

179

Appendix 2 A SADL DESCRIPTION 180

JNC is

if CCR [CY]= 0

then PC <- $1 endif

from $1

using IMMED16

size 8 end

JC is

if CCR [CY]=

then PC <- $1 endif

from $1

using IMMED16

size 8 end

JPO is

if CCR [P] = 0

then PC<- $1 endif

from $1

using IMMED16

size 8 end

JPE is

if CCR [P] = 1

then PC<- $1 endif

from $1

using IMMED16

size 8 end

Appendix 2 A SADL DESCRIPTION

JP is

if CCR [s] = 0

then PC<- $1 endif

from $1

using IMMED16

size 8 end

JM is

if CCR [s]

then PC<- $1 endif

from $1

using IMMED16

size 8 end

CALL is

MEM [SP-1] J J MEM [SP-2] <- PC;

SP<- SP - 2;

PC<- $1

from $1

using IMMED16

size 8 end

181

Appendix 2 A SADL DESCRIPTION

CNZ is

if CCR [z] = 0 then

from $1

MEM [SP-1] l l MEM [SP-2] <- PC;

SP<- SP - 2;

PC<- $1 endif

using IMMED16

size 8 end

CZ is

CNC

if CCR [z] = 1 then

MEM [SP-1] l i MEM [SP-2] <- PC;

SP<- SP - 2;

PC<- $1 endif

from $1

using IMMED16

size 8 end

is

if CCR [CY] = 0 then

MEM [SP-1] I I MEM [SP-2] <- PC; I I

SP <- SP - 2·
'

PC <- $1 endif

from $1

using IMMED16

size 8 end

182

Appendix 2 A SADL DESCRIPTION

cc is

if CCR [CY] = 1 then

MEM [SP-1] I I MEM [SP-2] <- PC; I I

SP <- SP - 2;

PC <- $1 endif

from $1

using IMMED16

size 8 end

CPO is

if CCR [P] = 0 then

MEM[SP-1] I I MEM [SP-2] <- PC; I I

SP <- SP - 2;

PC <- $1 endif

from $1

using IMMED16

size 8 end

CPE is

if CCR [P] = 1 then

from $1

MEM [SP-1] l l MEM [SP-2] <- PC;

SP<- SP - 2;

PC<- $1 endif

using IMMED16

size 8 end

183

Appendix 2 A SADL DESCRIPTION

CP is

if CCR [s] = 0 then

from $1

MEM [SP-1] i l MEM [SP-2] <- PC;

SP<- SP - 2;

PC<- $1 endif

using IMMED16

size 8 end

CM is

if CCR [s] = 1 then

MEM [sP-1] l l MEM [sP-2] <- PC;

SP<- SP - 2;

PC<- $1 endif

from $1

using IMMED16

size 8 end

RET is

PC <- MEM [SP+1] l l MEM [SP];

SP<- SP+ 2

size 8 end

RNZ is

if CCR [z] = 0 then

PC<- MEM [SP+1] i l MEM [SP];

SP<- SP+ 2 endif

size 8 end

184

Appendix 2 A SADL DESCRIPTION 185

RZ is

if CCR [z] = 1 then

PC <- MEM [SP+1] I I MEM [SP]; I I

SP <-SP+ 2 endif

size 8 end

RNC is

if CCR [CY] = 0 then

PC <- MEM [SP+1] I I MEM [SP]; I I

SP <-SP+ 2 endif

size 8 end

RC is

if CCR [CY] = 1 then

PC <- MEM [SP+1] I I MEM [SP]; I I

SP <-SP+ 2 endif

size 8 end

RPO is

if CCR [P] = 0 then

PC <- MEM [SP+1] I I MEM [SP]; I I

SP <-SP+ 2 endif

size 8 end

RPE is

if CCR [P] = 1 then

PC <- MEM [SP+1] I I MEM [SP]; I I

SP <-SP+ 2 endif

size 8 end

Appendix 2 A SADL DESCRIPTION

RP is

if CCR [s] = 0 then

PC<- MEM [SP+1] I I MEM [SP];

SP<- SP+ 2 endif

size 8 end

RM is

if CCR [s] = 1 then

PC<- MEM [SP+1] I I MEM [SP];

SP<- SP+ 2 endif

size 8 end

RST is

MEM [SP-1] l l MEM [SP-2] <- PC;

SP<- SP - 2;

PC<- $1 * 8

from $1

using IMMED3

size 8 end

PCHL is

PC<- HL

size 8 end

PUSH is

MEM [sP-1] l l MEM [sP-2] <- $1;

SP<- SP - 2

from $1

using REG16P

size 8 end

186

Appendix 2 A SADL DESCRIPTION

POP is

$1 <- MEM [sP+1] l l MEM [sP];

SP<- SP+ 2

from $1

using REG16P

size 8 end

XTHL is

TMP6 <- HL;

HL <- MEM [SP+1] I I MEM [SP];

MEM [SP+1] I l MEM [SP] <- TMP6

size 8 end

SPHL is

SP<- HL

size 8 end

IN is

A <- $1

from $1

using IO

size 8 end

OUT is

$1 <- A

from $1

using IO

size 8 end

187

Appendix 2

EI is

IEREG <- 0

size 8 end

DI is

IEREG <-

size 8 end

HLT is

HALTREG

size 8 end

NOP is

PC <- PC

size 8 end

RIM is

<-

A<- IMREG

size 8 end

SIM is

A SADL DESCRIPTION

1

if IMREG[MSE]

then IMREG <- A

else IMREG <- (IMREG and #07) or (A and #F8) endif

size 8 end

executor

load MEM [Pc]

PC <- PC + 1

exec

end.

188

[Barb81]

[Bell 71]

[cattell78]

[cattell80]

[cragon83]

BIBLIOGRAPHY 189

Instruction Set Processor Specifications (ISPS):

The Notation and Its Applications

- Mario R. Barbacci

IEEE Trans. Comp., Vol. C-30, No. 1, Jan 1981

Computer Structures: Readings and Examples

- C. G. Bell

- A. Newell

McGraw-Hill Publ. 1971

Formalization and Automatic Derivation of Code Generators

- R. G. G. Cattell·

Carnegie-Mellon University (April 1978) CMU-CS-78-115

(Ph.D thesis)

Automatic Derivation of Code Generators

from Machine Descriptions

- R. G. G. Cattell

ACM Trans. Frog. Lang. Syst. Vol. 2, No. 2, April 1980

Executable Instruction Set Specification

- Harvey Cragon

Computer Architecture News, Vol. 11, No. 1, March 1983

BIBLIOGRAPHY

[Danhof81] Computer System Fundamentals

- Kenneth J. Danhof

- Carol L. Smith

Addison-Wesley Publ. 1981

[Dasgupta82] Computer Design and Description Languages

[Distler82]

[Fischer79]

[Intel81]

[Intel84]

- Subrata Dasgupta

Advances in Computers, Vol. 21, 1982

Trial implementation reveals errors in IEEE standard

- R. J. Distler

- M.A. Shaver

Computer, July 1982, pp 76-77

Microprocessor Assembly Language Draft Standard

(IEEE Task P694/D11)

- Wayne P. Fischer

Computer, Dec. 1979, pp 96-109

iAPX 88 Book

Intel Corp. 1981

Microsystem Components Handbook, Vol. 1

Intel Corp. 1984

190

[Lee73]

BIBLIOGRAPHY

VDL - A definition System For All Levels

- John A. N. Lee

Proc First Ann. Symp. on Comp. Arch.

Univ. Florida, Gainsville 1973

[Motorola81] Motorola Microprocessors Data Manual

Motorola Inc. 1981

[Mueller76]

[Osborne81]

A Generator for Micronrocessor Assemblers

and Simulators

- Robert A. Mueller

- Gearold R. Johnson

Proc. IEEE, Vol. 64, No. 6, June 1976

Osborne 16-bit Microprocessor Handbook

- Adam Osborne

- Gerry Kane

Osborne/McGraw Hill Publ. 1981

[Patterson82] A VLSI RISC

- David A. Patterson

- Carlo H. Sequin

Computer, September 1982, pp 8-21

1 91

[Purdum83]

[Salford83]

[SC/MP76]

BIBLIOGRAPHY

C Programming Guide

- Jack Purdum

Que Publ. 1983

The University of Salford Lisp/Prolog Reference Manual

- David Baily

Univ. Salford 1983

SC/MP Technical Description

National Semiconductor Corp. 1976

[Siewiorek82] Computer Structures: Principles and Examples

- Daniel P. Siewiorek

- C. Gordon Bell

- Allen Newell

McGraw-Hill Publ. 1982

[Spitzen76] The Specification of Assemblers

- Jay M Spitzen

IEEE Trans. Soft. Eng. Vol. SE-2, No. 1, March 1976

[Tanenbaum76] Structured Computer Organisation

- Andrew S. Tanenbaum

Prentice Hall Publ. 1976

192

[Wakerly80]

[Wegner72]

BIBLIOGRAPHY

Pascal Extensions For Describing

Computer Instruction Sets

- John F. Wakerly

Computer Architecture News, Vol. 8, No. 7, Dec 1980

The Vienna Definition Language

- Peter Wegner

Computing Surveys, Vol. 4, No. 1, March 1972

[Winston81] LISP

- Patrick Henry Winston

- Berthold Klaus Paul Horn

Addison-Wesley Publ. 1981

193

