Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Cloning and characterisation of the cDNA and gene for sheep liver arginase

A thesis presented in partial fulfilment of the requirements

for the degree of Master of Science

in Biochemistry

at

Massey University Palmerston North

Richelle Kaye Marshall

1997

ABSTRACT

Arginase (arginine amidinohydrolase, EC 3.5.3.1) is a ubiquitous enzyme, notably found in the liver of ureotelic animals. It plays a critical role in the hepatic metabolism of most higher organisms as a cardinal component of the urea cycle (Jenkinson *et al.*, 1996). Arginase has also been identified in numerous organisms and tissues where there is no functioning urea cycle. In animals, many extrahepatic tissues have been shown to contain a second form of arginase, closely related to the hepatic enzyme but encoded by a distinct gene or genes and involved in a host of physiological roles. Recent interest in arginase has been stimulated by it's demonstrated involvement with the metabolism of nitric oxide. Subcloning the sheep hepatic cDNA sequence would allow a ruminant arginase to be compared with other known arginases. Probing a sheep genomic library for the arginase gene could ultimately lead to the characterisation of regulatory elements of the gene.

Partial purification of sheep liver arginase was carried out to develop a DNA probe to screen a sheep liver cDNA library for the cDNA sequence but the protein was N-terminally blocked. An attempt was made to electroelute arginase from an SDS-PAGE gel with a view to cleaving the purified protein and sequencing some of the resulting peptides. But arginase could not be purified sufficiently for successful electoelution.

Total RNA was isolated from both sheep and rat liver. A product of the expected size was produced by RT-PCR on the rat RNA template, but could not be subcloned into a vector. PCR performed on a sheep cDNA library generated a PCR product which was subcloned and sequenced. The sequence had no similarity with known arginase sequences, and showed that the reverse primer sequence was present at both ends of the PCR product.

A region of the human arginase cDNA sequence was PCR amplified from the expression plasmid pTAA12. The PCR product was radiolabelled, and used as a probe to screen a sheep liver cDNA library. No positive clones were identified. Northern blot analysis of RNA isolated from sheep liver was carried out. The blot was probed with a fragment of the human arginase cDNA sequence. Nonspecific binding was observed.

ii

ACKNOWLEDGMENTS

I would first of all like to thank my supervisors Mark Patchett and Kathryn Stowell. Thankyou for your assistance and advice throughout the practical work and writing of this thesis.

I would like to acknowledge Jo Mudford for carrying out the protein sequencing; Trenna Bythe for carrying out the isoelectric focussing step; Shaun Lott and Rachel Page for their technical assistance in the lab.

Thankyou to the past and present members of the Twilight zone, and other members of the Biochemistry department for their friendship and support throughout my masters.

I would finally like to thank my family for all their support and encouragement.

TABLE OF CONTENTS

	PAGE
ABSTRACT	ii
ACKNOWLEDGMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	xi
CHAPTER ONE: INTRODUCTION	1
1.1 Diversity of arginases	1
1.1.1 Agrobacterium tumerfaciens	2
1.1.2 Saccharomyces cerevisiae	3
1.1.3 Plants	4
1.1.4 Xenopus laevis	4
1.1.5 Humans	5
1.2 Liver-type arginase deficiency	6
1.3 Nonhepatic arginase	8
1.4 Structure and function of arginase	8
1.5 Transcriptional regulation of arginase	11
1.5.1 Arginase response in humans to glucocorticoid hormones	11
1.5.2 Promoter analysis	12
1.5.3 Regulation of pig arginase in response to hormones	13
1.6 Arginase activity in ruminants	14
1.7 Experimental aims of thesis	15
CHAPTER TWO: MATERIALS AND METHODS	16
2.1 Partial purification of sheep liver arginase	18
2.1.1 Step 1 Extraction	18
2.1.2 Step 2 Acetone	18
2.1.3 Step 3 Dialysis	19
2.1.4 Step 4 Heat treatment	19
2.1.5 CM-Sepharose CL-6B column	19

2.1.6 CM-Sepharose batch step	20
2.1.7 Gel filtration	20
2.1.8 Red agarose column	20
2.2 Arginase activity assay	21
2.3 Protein determination	22
2.4 Constituting, running and processing the modified	
Laemmli discontinuous SDS polyacrylamide gels	22
2.5 Electroblotting	24
2.6 DNA manipulation	25
2.6.1 Restriction endonuclease digests	26
2.6.2 Gel electrophoresis	26
2.6.3 Purification of fragments from agarose	26
2.6.4 Plasmid preparation	26
2.6.5 Large scale maxipreps	27
2.6.6 PCR	27
2.6.7 cDNA synthesis	27
2.6.8 T4 DNA polymerase	27
2.6.9 Dephosphorylation of vector	28
2.6.10 Kinasing DNA	28
2.6.11 Ligations	28
2.6.12 Transformation into competent cells	28
2.6.13 T-vector preparation	29
2.6.14 Siliconising Eppendorf tubes	29
2.7 DNA sequencing	29
2.8 Library screening	30
2.9 Northern blot	30
2.9.1 RNA extraction	30
2.9.2 1% agarose-MOPS-formaldehyde gel	31
2.9.3 Preparation, running and probing	31

CHAPTER THREE: PARTIAL PURIFICATION AND	
CHARACTERISATION OF SHEEP HEPATIC ARGINASE	33
3.1 Sheep hepatic arginase partial purification procedure	33
3.1.1 Results and discussion	33

3.2	The first column chromatography step in the purification	39
	3.2.1 Results and discussion	39
3.3	Reactive Red 120 column	43
	3.3.1 Results and discussion	43
3.4	Electroelution	50
	3.4.1 Results and discussion	50
3.5	Isoelectric focussing	52
	3.5.1 Results and discussion	52

CHAPTER FOUR: PCR-BASED APPROACH TO GAIN A cDNA FRAGMENT SUITABLE FOR PROBING A SHEEP LIVER

cDNA LIBRARY	53
4.1 Primer design	53
4.2 mRNA isolation	55
4.2.1 Results and discussion	55
4.3 PCR amplification	56
4.3.1 RT-PCR on sheep liver RNA	56
4.3.1.1 Results and discussion	56
4.3.2 RT-PCR using rat liver RNA as the template	57
4.3.2.1 Results and discussion	57
4.3.3 PCR on a sheep cDNA library	59
4.3.3.1 Results and discussion	60
4.4 Subcloning of PCR products	62
4.4.1 Results and discussion	62
4.5 Analysis of subcloning	67
4.5.1 Subcloning the rat PCR product	67
4.5.2 Subcloning the sheep PCR product	69
4.6 DNA sequencing	71
4.6.1 Results and discussion	71

CH	IAPTER FIVE: SCREENING A λ -ZAP cDNA LIBRARY FOR	
SH	IEEP HEPATIC ARGINASE SEQUENCES	75
5.1	Northern blot analysis using the non-radioactive DIG system	75
	5.1.1 Results and discussion	76

5.2 Library screening	78
5.2.1 Results and discussion	78
CHAPTER SIX: DISCUSSION AND CONCLUSIONS	81
6.1 Partial purification procedure	81
6.1.1 Urea activity assay	82
6.2 PCR-approach	82
6.2.1 Primer design	82
6.2.2 Subcloning of the PCR products	84
6.3 Screening a sheep cDNA library	
REFERENCES	85
APPENDIX 1	92
APPENDIX 2	93

LIST OF TABLES

TABLE		PAGE
Table 1.	1 Mean (\pm SD) specific activity of arginase in the crude extracts	
	from different tissues of sheep and cattle	14
Table 3.	1 Specific activity of fractions collected from the initial stages of the	
	sheep and rat arginase partial purification procedures	34
Table 3.	2 Arginase activity of fractions collected from the CM-Sepharose	
	chromotography column	35
Table 3.	Arginase activity analysis of supernatants collected from the PEG	
	step	39
Table 3.	4 Arginase activity analysis of supernatants following incubation of	
	arginase with the chromatography matrices hydroxyapatite, Reactive	
	Red 120 and Q-Sepharose	40
Table 3.	5 Arginase activity analysis following elution following elution from	
	the hydroxyapatite and Reactive Red 120 chromatography matrices	42
Table 3.	6 Arginase activity analysis of fractions collected from the Reactive	
	Red 120 chromatography column	44
Table 3.	7 Arginase activity analysis of Reactive Red 120 column fractions	
	41-45 which contained the highest levels of activity	45
Table 3.	3 Specific activity comparison between the sheep and rat arginase	
	purification schemes	45

LIST OF FIGURES

FIGURE	P	AGE
Figure 1.1	The enzyme reactions catalysed by arginase and agmatinase	2
Figure 1.2	The proposed pathway for catabolism of octopine	3
Figure 1.3	Regulation of ornithine carbomyltransferase by arginase when the	
	the arginine catabolic pathway is active	4
Figure 1.4	Urea cycle	6
Figure 1.5	Glutamine synthesis pathway	7
Figure 1.6	The structure of rat hepatic arginase	10
Figure 1.7	Proposed model for the delayed secondary response to glucocorticoid	11
Figure 1.8	Schematic representation of the rat liver-type arginase promoter	13
Figure 3.1	SDS-PAGE of the concentrated sample that was electroblotted	
	following the CM-Sepharose step	36
Figure 3.2	Elution profile of arginase from the Reactive Red 120 fractions	46
Figure 3.3	SDS-PAGE analysis of fractions 39-47 eluted from the Reactive	
	Red 120 chromatography column	47
Figure 3.4	SDS-PAGE analysis of the pooled fractions 43 and 44 eluted from	
	the Reactive Red 120 chromatography column	48
Figure 3.5	Determination of the molecular weight of sheep liver arginase by	
	SDS-PAGE	49
Figure 3.6	SDS-PAGE analysis of the pooled concentrated active fractions	
	eluted from the Reactive Red 120 chromatography column	51
Figure 4.1	Sequence alignment of known arginases	54
Figure 4.2	Agarose gel electrophoresis analysis of RNA isolated from sheep	
	liver	55
Figure 4.3	Agarose gel electrophoresis analysis of the rat PCR product	58
Figure 4.4	Restriction enzyme digest of the rat PCR product	59
Figure 4.5	Agarose gel electrophoresis analysis of the PCR product generated	
	from a sheep cDNA library	61
Figure 4.6	Pvu II digest of mini-prep isolated plasmid DNA	62
Figure 4.7	Line diagram representation of subcloning scheme 1	63
Figure 4.8	Line diagram representation of subcloning scheme 2	64
Figure 4.9	Line diagram representation of subcloning scheme 3	65

Figure 4.10	0 Line diagram representation of subcloning scheme 4	
Figure 4.11	11 Agarose gel electrophoresis analysis of pKS vector digested with th	
	restriction enzyme EcoR V	67
Figure 4.12	Nhe I and Pvu II digest of the sheep PCR product	70
Figure 4.13	13 Agarose gel electrophoresis analysis of isolated miniprep plasmid	
	DNA	71
Figure 4.14	Agarose gel electrophoresis analysis of PCR products generated	
	from the sheep liver λ -ZAP cDNA library using different	
	primer combinations	74
Figure 5.1	Agarose gel electrophoresis analysis of the pTAA12 human liver	
	arginase expression plasmid following digestion with Sty I	76
Figure 5.2	Agarose gel electrophoresis of the PCR product generated from the	
	pTAA12 expression plasmid	80

LIST OF ABBREVIATIONS

A ₂₆₀	Absorbance at 260 nm
A ₂₈₀	Absorbance at 280 nm
AMP	Ampicillin
APS	Ammonium persulphate
AR	Analtical reagent
ATP	Adenosine triphosphate
	Base pair(s)
bp BRL	Base pan(s) Bethesda research laboratories
BSA	Bovine serum albumin
CAPS	
C/EBP	3-(Cyclohexylamino)-1-propanesulfonic acid
cAMP	CCAAT/enhancer binding protein
cDNA	Cyclic adenosine monophosphate
CIP	Complementary DNA
CM	Calf intestinal phosphatase
CSPD [®]	Carboxymethyl Diso diam 2 (4 methomatics (1 2 diameters 2 2) (5)
CSPD*	Disodium 3-(4-methoxyspiro{1,2-dioxetane-3,2'-(-5'-
	chloro) tricyclo [3.3.1.1 ^{3,7}] decan}-4-yl) phenyl phosphate
dATP	Deoxyadenosine triphosphate
dCTP	Deoxypyrocytidine triphosphate
dNTP	Deoxynucleotide triphosphate
DEPC	Diethylpyrocarbonate
Dept	Department
DIG	Digoxigenin
DNA	Deoxyribonucleic acid
DNase	Deoxyribonuclease
DTT	Dithiothreitol
EDTA	Ethylene diamine tetra-acetate
EEO	Electroendosmosis
h	Hours(s)
HIS	Histidine
HNF-4	Hepatocyte nuclear factor-4
IEF	Isoelectric focussing
IPTG	Isopropyl β-D-thiogalactopyranoside
kb	Kilobase
kDa	Kilodalton
LB	Luria-bertani
min	Minutes(s)
Mn	Manganese
MOPS	3-(N-Morpholino) propanesulfonic acid
mRNA	Messenger RNA
M _r	Relative molecular weight
NA	Not applicable
NADH	Nicotinamide adenine dinucleotide
PCR	Polymerase chain reaction

PEG	Polyethylene glycol
Pfu	Plaque forming units
pKS	pBluescript® KS II
PMSF	Phenylmethylsulfonyl fluoride
PNK	Phosphonucleotide kinase
Q	Ubiquinone
RNA	Ribonucleic acid
RNase	Ribonuclease
rpm	Revs per minute
rRNA	Ribosomal RNA
RT	Reverse transcriptase
RT-PCR	Reverse transcriptase-polymerase chain reaction
S	Second(s)
S	Subunit
SD	Standard deviation
SDS	Sodium dodecyl suphate
SDS-PAGE	Sodium dodecyl suphate-polyacrylamide gel electrophoresis
Taq	Thermus aquaticus
TAE	Tris acetate EDTA
TEMED	N,N,N',N'-tetramethylethylenediamine
Tris	Tris-(hydroxymethyl) aminomethane
TsAP	Temperature sensitive alkaline phosphotase
T4 PNK	T4 phosphonucleotide kinase
U	Unit
UV	Ultraviolet
(v/v)	Volume: volume ratio
(w/v)	Weight: volume ratio
X-gal	5-bromo-4-chlor-3-indoyl β -D-galactopyranoside