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Virtually any inferential statistical analysis relies on distributional assumptions of some 
kind. The violation of distributional assumptions can result in consequences ranging from 
small changes to error rates through to substantially biased estimates and parameters 
fundamentally losing their intended interpretations. Conventionally, researchers have 
conducted assumption checks after collecting data, and then changed the primary 
analysis technique if violations of distributional assumptions are observed. An approach 
to dealing with distributional assumptions that requires decisions to be made contingent 
on observed data is problematic, however, in preregistered research, where researchers 
attempt to specify all important analysis decisions prior to collecting data. Limited 
methodological advice is currently available regarding how to deal with the prospect of 
distributional assumption violations in preregistered research. In this article, we examine 
several strategies that researchers could use in preregistrations to reduce the potential 
impact of distributional assumption violations. We suggest that pre-emptively selecting 
analysis methods that are as robust as possible to assumption violations, performing 
planned robustness analyses, and/or supplementing preregistered confirmatory 
analyses with exploratory checks of distributional assumptions may all be useful 
strategies. On the other hand, we suggest that prespecifying “decision trees” for selecting 
data analysis methods based on the distributional characteristics of the data may not be 
practical in most situations. 
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Virtually any inferential statistical method relies 
on some set of distributional assumptions1 in order 
to produce valid inferences. For example, a 
regression model estimated via ordinary least 
squares relies on the assumptions the predictors are 
measured without error, that any measurement 
error in the response variable is uncorrelated with 
the predictors, and that the error terms are 
independent, identically and normally distributed 
with a mean of zero for all values of the predictors2 
(Williams, Grajales, & Kurkiewicz, 2013). Even non-
parametric methods have assumptions, albeit not 
with respect to the specific probability distribution 
of particular variables. For example, if a Mann-
Whitney test is used to test the equality of the 
medians of two populations on some variable, one 
must assume that the distribution of the variable has 
the same shape and spread within each of the 
populations (Fagerland & Sandvik, 2009). 
Distributional assumptions are a common source of 
misconceptions (Ernst & Albers, 2017), but even 
when assumptions are correctly identified and 
investigated, several issues can arise. One of these 
will be discussed in this paper. 

Breaches of distributional assumptions can cause 
problems for inference, including biased estimates, 
artificially narrow (or broad) confidence intervals, 
and increases in Type I and/or Type II error rates 
(Ernst & Albers, 2017; Williams et al., 2013). The 
severity of these problems varies depending on the 
analysis method, the sample size, the nature of the 
assumption breach, and on whether one or more 
assumptions are violated simultaneously. The 
consequences of an assumption breach can vary 
from a minor change in Type I error rates and 
confidence interval coverage, through to biased 
parameter estimates, right through to parameter 
estimates fundamentally losing their intended 

                                                   
1 By “distributional assumption” we mean an assumption with respect to the univariate, bivariate, or multivariate 

distribution of variables and/or error terms—e.g., that the relationship between two variables is linear, or that the variances of 
a set of error terms is identical, or that the distribution of a response variable is negative binomial conditional on a set of 
predictor values. Such assumptions are also sometimes referred to as “statistical assumptions” or just “assumptions”. We use 
the modifier “distributional” simply to differentiate such assumptions from purely non-statistical assumptions (e.g., 
assumptions about ontology or epistemology). 

2 The assumption that the error terms all have mean zero for any combination of values of the predictor variables 
implies that the independent effects of the predictor variables included in the model on the response variable are additive and 
linear. Indeed, some presentations of the assumptions of multiple regression (e.g., Gelman & Hill, 2007) replace a description 
of this assumption with a description of the assumption of “additivity and linearity”. Note that the predictor variables 
included in a regression model may include transformations of the original variables (e.g., polynomial terms), which provides 
some capacity to specify nonlinear effects between the original variables in a dataset and the response variable. 

interpretation. For example, in a simple linear 
regression model estimated using ordinary least 
squares, a breach of the assumption that the error 
terms are normally distributed will not cause biased 
or inconsistent estimates or harm the 
interpretability of the parameters, but only affect 
confidence interval coverage and Type I error rates, 
and even these effects can be mild (see Gelman & 
Hill, 2007; Lumley, Diehr, Emerson, & Chen, 2002; 
Meuleman, Loosveldt, & Emonds, 2015; Williams et 
al., 2013). On the other hand, if the assumption of a 
linear relationship between the predictor variable 
and the response variable is breached, the slope 
loses its interpretability as a measure of the 
dependency between the predictor and response 
variables (see Meuleman et al., 2015): A measure of 
linear relationship is of little value if the true 
relationship is not linear. 

Many methodological textbooks and other 
resources offer researchers advice on how to detect 
and respond to distributional assumption violations. 
There are many methods for detecting 
distributional assumption problems, including both 
graphical approaches and inferential tests. For 
example, a researcher interested in whether the 
error terms in her regression model are normally 
distributed could evaluate this assumption using 
visual methods, such as a q-q plot, a formal 
statistical test such as the Shapiro-Wilk or 
Kolmogorov-Smirnov test, or by evaluating 
skewness and kurtosis statistics. Likewise, the 
potential responses available for dealing with a 
distributional problem are legion, including 
transformations, deletion of outliers, trimming of 
samples, alternative estimation algorithms, 
randomisation-based tests, rank-based non-
parametric statistics, and many others.  
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Nevertheless, an important meta-strategy 
underlies the advice about dealing with 
distributional assumptions found in many 
methodological resources (see the discussion in 
Wells & Hintze, 2007): First, one should check for 
distributional problems, and then, if problems are 
detected, select a strategy to deal with the 
problems. We term this the “test then respond” 
meta-strategy for dealing with distributional 
assumption violations. 

The potential risks of the “test then respond” 
meta-strategy will be apparent to readers aware of 
the problems of the “garden of forking paths” 
(Gelman & Loken, 2014, p. 460) and “researcher 
degrees of freedom” (Simmons, Nelson, & 
Simonsohn, 2011, p. 1359). By applying different 
analysis strategies contingent on the characteristics 
of the observed data, a researcher may end up 
happening upon a statistically significant result in 
favour of a particular hypothesis that is itself 
contingent on an analysis decision made after 
observing the data. This will be especially 
problematic if the researcher is motivated to search 
for and selectively report statistically significant 
results (“p-hacking”). p-hacking can result in 
inflated Type I error rates and seriously biased 
estimates, and is thought to be one of the major 
causes of the current “replication crisis” in 
psychology and other sciences.  

Although p-hacking has especially negative 
effects, the making of analysis decisions contingent 
on observed data can still be problematic even if the 
researcher’s intentions are entirely scrupulous. 
Specifically, the nominal error rates of analysis 
strategies are invariably derived based on repeated 
sampling with a fixed analysis method, and will not 
necessarily apply where the analysis method 
depends on the data. For example, the common 
strategy for comparing two means of using a 
Student’s t test if a preliminary Levene’s test fails to 
reject the null hypothesis of equal variances across 
the two groups, but using a Welch’s t test if the 
Levene’s test is significant, can result in Type I error 
rates that differ markedly from the nominal alpha 
level (Albers, Boon, & Kallenberg, 2000; Bancroft, 
1964; Zimmerman, 2004). 

 
 

Preregistration 

One important strategy gaining popularity as a 
partial solution to problems with replicability and p-
hacking is preregistration. In a landmark paper, 
Wagenmakers, Wetzels, Borsboom, van der Maas 
and Kievit (2012) argued that when research is 
intended to be confirmatory—i.e., to test 
hypotheses—a data collection and analysis plan 
should be preregistered in advance. Doing so 
reduces the capacity of researchers to exploit 
flexibility in their data collection and analysis 
procedures to produce positive (or statistically 
significant) findings. Preregistration is a crucial 
control strategy in an environment where 
researchers are incentivised to produce statistically 
significant and novel findings in order to achieve 
publications in high-impact journals. Online 
platforms for uploading and permanently time-
stamping preregistrations have since been 
developed (osf.io, aspredicted.org), and 
preregistered research studies have been 
increasingly frequent in the pages of psychology 
journals, especially within experimental social 
psychology; see for example the 67(1) special issue of 
the Journal of Experimental Social Psychology, which 
was entirely dedicated to preregistered research. 

Preregistration is useful for increasing the 
credibility of individual studies, but it can also help 
address the broader problem of publication bias—a 
problem wherein statistically significant findings are 
more likely to be published than non-significant 
ones (see Ferguson & Heene, 2012). Publication bias 
can distort the mean effect sizes estimated in meta-
analyses both because studies that produce non-
significant findings are less likely to end up in the 
published literature, and because authors may 
respond to the existence of this bias by exploiting 
flexibility in data collection and analysis procedures 
to produce statistically significant findings. 
Preregistration can help to address publication bias 
both in the sense that the individual preregistered 
studies included in a meta-analysis may be less likely 
to have used methods that produce biased effect 
sizes (e.g., p-hacking), but also in the sense that 
researchers conducting meta-analyses can search 
for preregistrations that have not resulted in 
published outputs, and thus obtain some 
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information about the size of the unpublished “file 
drawer”. 

Preregistration is clearly valuable, but it is 
currently unclear how researchers should deal with 
distributional assumptions when performing 
preregistered research. The conventional “test then 
respond” approach to dealing with distributional 
assumptions—where the researcher selects a 
primary analysis strategy, performs exploratory 
assumption checks using a range of statistical and 
graphical measures, and then uses their judgment to 
determine whether a change in analysis strategy is 
needed—is clearly anathema to a preregistered 
approach to research. So how should researchers 
writing preregistrations deal with distributional 
assumptions? In this article we aim to provide 
concrete and practical advice to help researchers 
pre-emptively respond to the spectre of breaches of 
distributional assumptions when performing 
preregistered research. 

Strategies for Dealing with Distributional 
Assumptions in Preregistrations 

One strategy for dealing with distributional 
assumptions in preregistered research is to simply 
ignore the issue and preregister a primary analysis 
strategy without any conscious attention to 
distributional assumptions whatsoever. This 
strategy does at least avoid the possibility of biased 
estimates caused by the researcher exploiting 
analytic flexibility to produce statistically significant 
findings. In this sense it may arguably be superior to 
a strategy of using exploratory strategies to 
diagnose distributional problems, running multiple 
analyses, and potentially allowing decisions about 
which analyses to report to be affected by whether 
or not they produce significant results.  

This said, selective reporting or p-hacking is 
obviously not the only cause of biased estimates or 
untrustworthy findings. Some distributional 
assumption violations can cause very serious 
inferential problems (consider, for example, the bias 
in estimates that can result when predictors in 
regression models are measured with error; Westfall 
& Yarkoni, 2016). As such, simply ignoring 
distributional assumptions in preregistered 
research is obviously not a complete solution. 
Alternatively, there are a variety of more 

sophisticated approaches that a researcher could 
make use of for dealing with distributional 
assumptions in the context of preregistered 
research. In the current section, we consider and 
discuss four potential strategies in turn. In 
discussing each strategy we will focus on how these 
strategies can be conducted and their consequences 
for the resulting analyses of empirical data, but we 
will also briefly touch on the implications of these 
strategies for analyses conducting before data 
collection—i.e., statistical power and sample size 
determination.  

Strategy 1: Decision Tree 
The first strategy is to outline a decision tree 

specifying what methods will be used to identify 
distributional assumption breaches, and which 
alternative methods will be applied if breaches are 
identified. For example, a researcher might specify 
that linear regression using ordinary least squares 
will be applied in order to test their hypothesis, and 
a Shapiro-Wilk test applied to the residuals. If the 
Shapiro-Wilk test statistic is not significant, 
confidence intervals will be calculated based via the 
usual Wald method; if it is significant (indicating 
non-normality), they will be calculated using a 
percentile bootstrap. Such a decision tree is 
effectively just a preregistered form of the test then 
respond meta-strategy, albeit with a commitment to 
pre-specified criteria for making decisions. The 
decision tree method is currently implicitly 
endorsed in the widely used template for 
preregistrations in social psychology (van ’t Veer & 
Giner-Sorolla, 2016), which asks researchers to 
specify “Assumptions of analyses, and plans for 
alternative/corrected analyses if each assumption 
is violated.” However, we suggest that this strategy 
does have several problems. 

Problem 1: Uncertainty involved in diagnosing 
distributional problems. The first problem is that 
determining whether a particular distributional 
assumption violation is present—and of a magnitude 
likely to harm inferences—can be difficult, and the 
conclusion of such an investigation may come with 
great uncertainty attached. Consider, for example, a 
researcher conducting a simple experiment with a 
continuous response variable and two conditions 
(treatment and control). Here, the primary research 
question might be simple: Is the mean of the 
response variable higher for treated participants 
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than control participants? The most obvious 
analysis strategy would also be simple: An 
independent-samples Student’s t test. Yet the 
questions to be investigated in an examination of the 
distributional assumptions pertaining to this test 
would be much more complex.  

For example, investigating the assumption of 
independent error terms means answering this 
question: Over repeated sampling, would each of the 
N error distributions in this design be statistically 
independent of one another, and, if not, is the form 
and magnitude of this non-independence sufficient 
to cause substantive changes to the error rates of 
the t test in the main analysis? It should be obvious 
that this distributional question is more complex 
than the primary research question regarding the 
differences between two means. It is complex both 
because it refers to the relationships between a 
large matrix of error terms (rather than just two 
means), about which we must make inferences 
based on a single sample of residuals, and also 
because it is double-barrelled—the question is not 
just whether the error terms are statistically 
dependent, but whether this dependence in turn is 
likely to harmfully affect the resulting inferences in 
the main analysis. The net result would be that any 
investigation of the validity of this assumption is 
likely to come with substantial uncertainty attached, 
and as such relying on such an investigation to 
determine the final choice of primary analysis may 
be problematic. 

Problem 2: Difficulty of formulating hard-and-
fast rules. Relatedly, it is often difficult to formulate 
hard-and-fast rules for diagnosing particular 
distributional assumption breaches. Many 
conventional distributional assumption diagnostics 
require the researcher to subjectively interpret a 
plot (e.g., a q-q plot for diagnosing non-normality, 
an autocorrelation function plot for diagnosing 
correlated error terms, a scatterplot of predicted 
values vs. residuals for diagnosing 
heteroscedasticity or non-linearity, etc.). Using 
such graphical methods to detect assumption 

                                                   
3 This admittedly depends on the nature of the assumption violation. For example, a linear regression model esti-
mated using ordinary least squares will be more and more robust to a violation of the assumption of normally dis-
tributed error terms as the sample size increases, due to the central limit theorem (provided that the other assump-
tions of the model hold). On the other hand, if measurement error is present in the predictor variables, increasing 
the sample size would not necessarily reduce the biasing effect of this measurement error on the estimates of the 
regression parameters. 

violations is explicitly recommended by the APA’s 
statistical task force (Wilkinson & Task Force on 
Statistical Inference, 1999). In the context of 
preregistration, however, which is largely intended 
to remove flexibility in how data analysis is 
conducted, relying on the researcher to subjectively 
interpret a plot and then make a decision is 
problematic.  

Firmer statistical rules for diagnosing particular 
problems exist, of course. For example, one can 
statistically test a null hypothesis that a particular 
distributional assumption is valid. A Shapiro-Wilk 
test, for instance, can be used to test a null 
hypothesis that the error terms for a particular 
model are normally distributed. There is a paradox 
here, though, in the sense that statistical tests will 
generally have low power to detect distributional 
problems when the sample size is small, even though 
this is precisely the scenario in which distributional 
assumptions matter most. On the other hand, if the 
sample size is large, statistical tests of assumptions 
may be powerful, even though the large sample size 
means that the primary analysis may be robust to 
the detected assumption violation3. Of course, this 
is a general problem with statistical tests of 
assumptions, rather than one that solely applies in 
the context of preregistration or the decision tree 
strategy. 

Problem 3: Complexity of decision trees 
required. The third problem is the fact that, even if 
it were possible to accurately and objectively 
diagnose distributional problems, there is a large 
number of distributional problems that may arise for 
any given analysis, and thus an exploding quantity of 
potential remedies. For example, a simple linear 
regression model can be afflicted by a wide variety 
of distributional problems, including measurement 
error of any sort in the predictor variable, 
measurement error in the response variable that is 
correlated with the predictor, non-linearity of the 
relationship between the predictor and the 
response variable, dependent error terms, 
heteroscedasticity of errors, or non-normality of 
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errors. Often these problems occur in combination 
with one another. Each problem has an array of 
potential remedies: For example, heteroscedasticity 
might be dealt with by using Huber-White 
“sandwich” errors, by variance-stabilising 
transformations, or by bootstrapping (see Liu, 1988). 
Further checks may be necessary to check whether 
particular remedies “worked”, those checks 
potentially implying the need for yet more decisions 
(did the variance stabilising transformation produce 
homoscedasticity? If not, what potential remedy 
should be tried next?) Furthermore, the order in 
which the assumptions are checked—although 
arbitrary—can have an effect on the final model that 
is applied to the data. Setting out a decision tree that 
will select an appropriate analysis strategy for each 
of the various combinations of problems that may 
occur for a given analysis would thus be an 
extremely difficult task, and the prospect of doing so 
might discourage researchers considering using 
preregistration. 

Problem 4: Effects on nominal error rates. A 
final problem with the “decision tree” approach to 
diagnosing and responding to distributional 
assumption problems in preregistrations is the fact 
that, whatever the primary analysis technique ends 
up being, its nominal Type I and Type II error rates 
(e.g., the pre-set alpha and 1-power) will typically be 
based on an assumption that the analysis technique 
was fixed in advance. Unless they perform 
simulation studies, researchers will not typically 
know what the applicable error rates are in the 
scenario of analysis decisions being made 
contingent on particular features of the data. As 
noted previously, these error rates may vary 
considerably from the nominal error rates of the 
individual techniques considered in isolation (e.g., 
Zimmerman, 2004). 

Specifying simulations to estimate error rates 
and power for the decision tree approach could 
often present significant challenges. Such an 
analysis would require a simulation in which 
multiple samples are simulated from a population in 
which there is a particular hypothesised effect size, 
the analysis method for each sample is decided 
according to the preregistered decision rule, and 
the data analysis then conducted. This alone may be 
challenging for many researchers to program, but an 
even more difficult challenge would be deciding 
what distributional characteristics or 

misspecifications to incorporate in the simulated 
data. The researcher is thus faced with the prospect 
of trying to predict the types of distributional 
problems that are likely to occur and to then 
simulate data that embodies these problems, which 
will inevitably require some complex (and relatively 
arbitrary) decision-making.  

Strategy 1: Conclusion. In summary, while the 
decision tree approach to dealing with distributional 
assumption breaches in preregistrations may be 
appropriate when wielded by expert researchers in 
some circumstances, we suggest that it has several 
important problems that mean that it is not suitable 
as a default strategy in preregistrations. 

Strategy 2: Selecting a Robust Primary Analysis 
Strategy 

Given the need to make analysis decisions prior 
to any opportunity to check for distributional 
assumption problems, it may be useful to select 
primary analysis strategies that are as conservative 
as possible with respect to those assumptions. As 
stated earlier, virtually any inferential analysis will 
require distributional assumptions of some sort, but 
some analyses require stronger assumptions than 
others. Some examples of analysis choices that may 
reduce the reliance on at least some distributional 
assumptions in commonly used statistical analyses 
include: 

● Using bootstrapping or permutation tests rather 
than normal theory to calculate confidence 
intervals and p values (thus obviating the need 
for normally distributed errors in linear models) 

● Using Huber-White “sandwich” standard errors 
rather than assuming homoscedasticity in 
regression-like models (White, 1980) 

● Using so-called robust methods that are 
designed to rely less on distributional 
assumptions (Wilcox, 2012). 

Beyond these familiar examples, the possibility of 
using Bayesian models estimated using Markov 
Chain Monte Carlo (MCMC) means that researchers 
can quite readily estimate models where specific 
assumptions are loosened in specific ways. For 
example, a Bayesian regression model can be 
estimated in which the distribution of the error 
terms is modelled not with a normal distribution, 
but rather, for example, a skew-normal distribution 
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in which a skewness parameter is freely estimated 
(and in which a the normal distribution is a special 
case; see Azzalini, 1985). Similarly, one can specify a 
Bayesian regression model in which the variance of 
the errors is not necessarily constant across all the 
values of the predictor variables, but instead some 
function of the values of the predictor variables 
(with constant variance again being a special case). 
Bayesian models are by no means assumption-free, 
but do give the researcher the capacity to 
thoughtfully loosen specific distributional 
assumptions, and thus may be an attractive option 
in the context of preregistered research. Excellent 
introductions to Bayesian data analysis can be found 
in Kruschke and Liddell (2018) and Etz and 
Vandekerckhove (2018). The programming language 
Stan (Carpenter et al., 2017) provides a framework 
for implementing Bayesian analyses that apply 
flexible sets of assumptions. 

In attempting to select a robust primary analysis 
method, researchers should carefully consider what 
distributional issues or problems are most likely to 
arise in the context of their specific study. A 
researcher conducting a study will often have some 
familiarity with the measurement instruments being 
used (whether these are survey scales, 
electromyography devices, counts of particular 
incidents, or reaction times), and the typical 
characteristics of the data produced by these 
instruments. Researchers may thus be able to draw 
on their own contextual knowledge to anticipate the 
distributional issues that might arise, and pick a 
statistical analysis method that is robust to the most 
plausible problems. 

The approach of selecting a primary analysis 
method that makes distributional assumptions that 
are as weak as possible can definitely be useful in 
preregistrations. Doing so avoids the need to make 
analytic decisions contingent on data. In 
comparison to the other strategies discussed in this 
section, this strategy also minimises the need for 
conducting multiple data analyses, thus 
streamlining the analysis process and resulting in a 
more concise write-up. This said, this strategy can 
also be applied in combination with the two 
strategies we will consider below. 

However, this strategy is not without its 
problems either. If all the assumptions of the linear 
model are met, then the standard parametric 
methods are uniformly most powerful. The benefit 

of not having distorted Type I error rates if the 
assumptions are violated comes at the cost of 
structurally lower power, thus a higher Type II error 
rate, if the assumptions actually hold true. 
Admittedly, the extent of this problem differs 
depending on the planned test. For instance, the 
Welch t test, for unequal variances, barely has lower 
power than the standard Student t test (Delacre, 
Lakens, & Leys, 2017). 

Power analysis may again be challenging when 
applying the robust primary analysis strategy, 
mainly in that there may be ambiguity in terms of 
the distributional characteristics that should be 
assumed when simulating data for the purposes of 
power analysis. For example, if a Welch’s t test is 
planned, should we nevertheless simulate data from 
two populations with equal variances? If not, how 
different should the variances be? This said, the 
complication of programming a simulation in which 
the analysis method applied to each sample differs 
depending on its characteristics (as for Strategy 1) is 
avoided, making power analysis slightly easier for 
Strategy 2 (robust primary analysis strategy) than is 
the case for Strategy 1 (decision tree). 

Strategy 3: Robustness Analysis 

The third strategy we consider here is that of 
deliberately preregistering multiple analyses that 
answer the same research questions (while making 
different distributional assumptions). We will term 
this strategy that of performing robustness analyses. 
Two related terms are sensitivity analysis (which 
investigates how uncertainty pertaining to the 
inputs into scientific models relate to uncertainty in 
the outputs; see Saltelli, Tarantola, Campolongo, & 
Ratto, 2004), and multiverse analysis (which focuses 
on how different decisions made during data 
processing can lead to different datasets and 
different conclusions; see Steegen, Tuerlinckx, 
Gelman, & Vanpaemel, 2016). We prefer the term of 
robustness analysis over robustness checks because 
we see the purpose of this strategy as to investigate 
how the results vary across numerous plausible 
choices of analysis, rather than just to check that 
some favoured conclusions holds up under an 
alternative specification. 

As an example of the robustness analysis 
approach, imagine a researcher seeking to test the 
hypothesis that one continuous variable has a 
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positive relationship with another continuous 
variable (with both variables comprising series of 
observations gathered over time). Here the 
researcher might preregister a simple ordinary least 
squares regression as a primary analysis, with a 
model that also includes an autoregressive 
correlated error structure as a robustness analysis. 
This robustness analysis would help to deal with the 
potential problem of a breach of the assumption of 
independent error terms, which is a problem that 
often arises when analysing time series data. 
Robustness analyses are useful especially when 
there is genuine ambiguity over which analysis 
technique is the most appropriate choice to address 
a given research question. 

When employing this strategy, one might 
designate one particular analysis as the primary 
analysis, and a set of other analyses as the 
robustness analyses. One could also regard all the 
planned analyses as having equal priority (and all 
being “robustness analyses”). Regardless, the key to 
an effective preregistered robustness analysis is 
identifying different analysis methods that test the 
same (preregistered) hypotheses, but while making 
different (but plausible) distributional assumptions. 
As some examples: 

• If planning a correlational analysis, one could 
specify both an analysis that assumes that the 
variables have a linear relationship (Pearson’s 
correlation) as well as an analysis that assumes 
only a monotonic relationship (Spearman’s rho). 

• If planning a linear regression, one could specify 
an analysis that assumes homoscedasticity (OLS 
estimation), as well as an analysis that produces 
consistent estimates even in the presence of 
heteroscedasticity (Huber-White sandwich 
standard errors). 

• If planning a linear regression, one could specify 
both an analysis using standard OLS estimation 
as well as a model including an autoregressive 
AR(1) term, to allow for possible serial 
dependence in the data. 

Synthesising the results from robustness 
analyses. It is possible to preregister a specific 
decision rule for interpreting the results of multiple 
analyses (e.g., “If the relationship is positive and 
statistically significant in both the Pearson’s 
correlation analysis and the Spearman’s rho analysis, 

we will conclude that the data supports the 
hypothesis”). However, such decision rules are 
necessarily arbitrary, and designing a sensible 
interpretation structure may be more difficult for a 
larger number of analyses (e.g., what if the 
coefficient is statistically significant in six out of 
seven planned robustness analyses?) There is also 
no strong reason to assume that a combined 
hypothesis test based on multiple statistical 
methods would have more desirable long-run 
properties than any one of the single analyses that 
are included within the combined test. As such, it 
may be more appropriate to preregister multiple 
robustness analyses, preregister criteria for the 
interpretation of each, and to subsequently attempt 
to sensibly integrate the findings produced across 
these analyses—but not to specify an overarching 
decision rule based on the combined results of 
multiple analyses. This means that the synthesis of 
findings (e.g., in a discussion section) may be more 
complex when applying robustness analyses than 
when using any of the other strategies, with more 
ambiguity about whether a particular set of findings 
supports or does not support a particular 
hypothesis. It may nevertheless allow the researcher 
to clearly communicate the degree to which a 
particular finding “holds up” across multiple 
reasonable analysis options. 

Power in robustness analyses. Conducting a 
power analysis when planning to apply Strategy 3 
could be either straightforward or very complex. If a 
relatively simple analysis method with strong 
assumptions is selected as the primary analysis 
strategy (in conjunction with some additional 
robustness analyses with different assumptions), it 
could be justifiable to perform the power analysis 
solely for the primary analysis strategy. This means 
that it could be possible to perform the power 
analysis using point-and-click software such as 
G*Power (Faul, Erdfelder, Buchner, & Lang, 2009). 
Such an analysis would nevertheless need to come 
with an acknowledgement that the power of the 
additional analyses is almost inevitably likely to be 
lesser (depending in part on the actual degree to 
which any assumptions are breached), and that the 
reported power analysis should be interpreted as 
representing a best-case scenario. When taking this 
approach, it would probably be helpful to increase 
the planned sample size somewhat beyond what the 
power analysis suggests is required.  
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On the other hand, a more comprehensive power 
analysis would check power for all of the planned 
robustness analyses, and do so based on data that is 
simulated so as to display plausible assumption 
violations. Such a power analysis could be 
challenging to conduct. 

Robustness analysis and meta-analyses. A 
problem with the robustness analysis approach is 
the ambiguity in terms of how the findings of a study 
that conducted a robustness analysis should be 
coded if included a later meta-analysis, given that 
each statistical method included in the robustness 
analysis may have produced a different estimated 
effect size. A researcher conducting a meta-analysis 
and aiming to code the effect sizes reported in an 
individual study conducted using robustness check 
may thus face uncertainty about whether to include 
just one effect size estimate (and if so, which one), 
or whether to aggregate the findings of the various 
analyses in some way. While this may be an 
ambiguity that can satisfactorily be resolved within 
the preregistration for a given meta-analysis (see 
Quintana, 2015), the use of a robustness analysis 
within an individual study probably presents greater 
complications for meta-analysis than do the other 
strategies discussed in this article. 

Strategy 4: Exploratory Assumption Checks 

The final strategy we consider here is 
preregistering a primary (confirmatory) analysis 
method that will be followed regardless of the 
characteristics of the data, without necessarily 
making this primary analysis method a robust one, 
but including in the ensuing data analyses some 
exploratory investigations of distributional 
assumptions (or “assumption checks”). A plan for 
these investigations could be specified to at least 
some degree in the preregistration (perhaps making 
them more confirmatory in nature), but this is not 
absolutely necessary—provided that the analyses 
are explicitly tagged as exploratory in the final 
report.  

This strategy has the advantage of allowing for 
the communication of information about 
distributional assumptions without increasing the 
complexity of the preregistration too greatly. It also 
makes power analysis straightforward, since there 
would be just one primary analysis method to plan 
(for each research question), and the analysis 
method might well be a commonly-used one for 

which power analysis is available in easy-to-use 
software such as G*Power. Furthermore, the fact 
that the distributional assumption checks would not 
need to be used to make binary decisions (unlike the 
case in strategy 1) means that graphical methods 
could be used to convey information about the 
magnitude of any assumption breaches. 

The primary downside of this strategy would be 
the resulting ambiguity with respect to how the 
findings of the assumption checks should impact the 
interpretation of the results of the primary analysis. 
We would essentially suggest that the preregistered 
primary analysis should be conducted, reported and 
interpreted as planned in the preregistration 
effectively regardless of the outcomes of the 
distributional assumption checks, but that the 
researcher should identify any apparent 
distributional problems as a reason to interpret the 
results with some extra caution. There is a risk here, 
however, that a researcher might describe and 
emphasise evidence for a particular distributional 
problem differently depending on whether the 
results of the primary analysis are “positive” or not 
(e.g., ignoring a distributional problem if the main 
findings are positive, vs. emphasising the 
distributional problem as a possible explanation of 
the results if the data would otherwise appear to 
falsify a favoured theory). As such, this strategy has 
its dangers, but may be useful in some contexts—
particularly student research, where preregistering 
a relatively simple analysis plan and using a relatively 
simple power analysis, while allowing some capacity 
for distributional assumption checks, may be 
desirable. 

Example 

In this section, we will give a practical example of 
the four strategies suggested in this paper. In a 
paper published in Psychological Science, 
Schroeder and Epley (2015) reported multiple 
related organizational psychological studies. These 
studies investigated the effect of voice on 
(hypothetical) job applications. In this paper, we look 
only at their Experiment 4, and use the description 
of this experiment by McIntyre (2016). 

In this experiment, 39 professional recruiters 
were assigned to one of two conditions. The 
recruiters either listened to a spoken job application 
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or read a written transcript of the application. The 
recruiters rated the participants on intelligence, 
competence, and thoughtfulness, resulting in an 
average rating denoted as intellect. Some covariates 
were measured as well, but we will ignore these for 
the sake of simplicity. The main research question 
was whether ratings differed between spoken and 
written job pitches. Even for such a seemingly 
simple design, there are many researcher degrees of 
freedom. For instance, the choice to define 
“intellect” as the arithmetic mean of competence, 
thoughtfulness and intelligence implies that these 
three variables are equally important ingredients of 
intellect.  

 
. 

Table 1. Data for Experiment 4 of Schroeder & Epley 
(2015) 

Written 
job pitch 

1.67 2.00 2.67 2.67 

3.00 3.33 4.33 4.33 

4.67 4.67 4.67 4.67 

5.67 5.67 6.67 7.33 

7.67 8.00   

Spoken 
job pitch 

3.33 4.33 4.67 5.67 

5.67 6.00 6.00 6.00 

6.33 6.67 6.67 6.67 

7.00 7.00 7.00 7.00 

7.00 7.67 8.67 10.00 

10.00    
  

As these issues are besides the focus of our 
paper, we will not discuss them further, and instead 
take the 39 intellect ratings as given and work from 
there. The scores are given in Table 1, and are also 
available (along with analysis code) in the OSF 
project for this paper https://osf.io/h2xry/ . 
Below, we indicate how the test for comparing both 
experimental groups could be preregistered, 
according to the four strategies. The beginning of 
the preregistration, describing the data collection 
itself, will be the same for each of the strategies: 

 
 

“We will recruit 39 professional recruiters. Each 
recruiter is assigned at random to the “written” or 
“spoken” condition. [+some detailed description of the 
materials.] After reading/hearing the job pitch, the 
recruiter scores the candidate on three categories. 
The average score will be designated the intellect 
rating.” 

 
We should note in passing that the sample size in 

this example is quite small, meaning that this study 
only has adequate power to detect fairly large 
effects. For example, if the primary analysis was to 
be an independent-samples Student’s t test (with a 
2-sided test), and if the assumptions of the Student’s 
t test were satisfied, then this study would have just 
33% power to detect a “medium” effect size of d = 
0.5. The power to detect an effect of this magnitude 
would be lower again for the other analysis methods 
specified below, even if the t test assumptions were 
met, and potentially even lower again in the 
presence of violations of the assumptions of these 
methods (depending on the nature of those 
assumption violations). In short, the data are useful 
for the purposes of illustration, but the sample size 
is not one that we would typically recommend. 
Please note that this is no criticism towards 
Schroeder and Epley (2015), as they base their 
conclusions on four separate experiments, three of 
which have a sample size much larger than 39. 

For the sake of brevity, we have not included 
individual power analyses for each of the four 
separate strategies we illustrate. 

Strategy 1, the Decision Tree 

To compare the intellect ratings of both groups, 
we could apply a Student’s t test. However, this test 
assumes (i) normality of the dependent variable 
within each of the two populations, (ii) equal 
variances between populations. We will therefore 
apply the following decision tree: 

 
1. First, we apply the Shapiro Wilk for normality 

test on the deviations from the group average 
and denote the resulting p-value by pSW.  

a. If pSW < 0.05 we deem the normality 
assumption breached and we will apply 
the non-parametric Mann-
Whitney/Wilcoxon test. 
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b. If pSW > 0.05, there is no evidence to reject 
the assumption of normality and we 
proceed with: 

2. Second, we apply the F test for equality of 
variances and denote the resulting p-value by pF.  

a. If pF < 0.05 we deem this assumption 
violated and we will apply the Welch t test. 

b. If pF > 0.05, we will apply Student’s t test. 
 

For the chosen test, we will report the p value of 
the two-sided comparison.  

Note that this decision tree is just one way to 
check the assumptions. We chose the Shapiro-Wilks 
procedure after the recommendation by Razali and 
Wah (2011), but could have employed other 
normality tests instead. A similar argument holds for 
the F test for equality of variances. Furthermore, the 
order of testing both assumptions matters, but is 
arbitrary. 

Strategy 2, Robust Primary Analysis Strategy 

To compare the intellect ratings of both groups, 
we will use a bootstrapped version of Yuen’s (1974) 
two-sample trimmed t test. This test is an 
alternative to the independent samples Student’s t 
test designed for situations where there are both 
unequal variances across groups and non-normality 
within groups. The test is particularly useful with 
very long-tailed error distributions. To apply this 
test, we use the function yuenbt from the WRS2 
package (Mair & Wilcox, 2018) in the statistical 
software R (R Core Team, 2018). We trim 20% of the 
data, thus removing the 10% smallest and 10% 
largest observations. This way, the influential effect 
of outliers is diminished. We employ 1,000 bootstrap 
samples, which is sufficient for accurate results 
(Mair & Wilcox, 2018). Before bootstrapping we set 
the random number generator to seed 1. We will 
report the p value of this test as well as the 95% 
confidence interval for the trimmed mean. 

Strategy 3, Robustness Analysis 

To compare the intellect rating of both groups, 
we will perform the following tests, each based on a 
different set of assumptions: (i) Student’s t test, (ii) 
Welch t test, (iii) the Mann-Whitney/Wilcoxon test, 
(iv) Yuen’s test for the 20% trimmed means, (v) the 
bootstrap version of test (iv) with 1,000 bootstrap 

samples and a seed set to 1. This last test mimics that 
used in Strategy 2 above. 

Strategy 4, Exploratory Assumption Checks 

To compare the intellect rating of both groups, 
we perform Student’s t test. We also provide 
exploratory checks of the validity of the 
distributional assumptions underlying this test. 

Example: Results for Each Strategy 

In this case we obviously already have the data, 
so we can see how the four preregistrations work 
out: 

Strategy 1, decision tree. The Shapiro-Wilk test 
was non-significant (p = .124), and so was the two-
sided F test for equality of variances (p = .458). We 
therefore conducted Student’s t test, and this test 
found a significant difference between both groups, 
t(37) = -3.525, p = .001. 

Strategy 2, robust primary analysis strategy. 
The bootstrap version of the Yuen test provided a p 
value of .002 and a 95% confidence interval for the 
trimmed mean difference [-3.323, -0.698]. 

Strategy 3, robustness analysis. All five tests 
yielded a significant difference (at α = 0.05) in favour 
of the audio group, with the following test results. 
Student’s t: t(37) = -3.525, p = .001; Welch’s t: t(33.441) 
= -3.478, p = .001; Wilcoxon test: W = 84.5, p = .003; 
Yuen’s test: trimmed mean difference -2.010, p = 
.004, bootstrapped Yuen’s test: trimmed mean 
difference -2.010, p = .002. Thus, we conclude that 
applicants with a spoken job pitch receive higher 
ratings than those with a written job pitch. 

Strategy 4, exploratory assumption checks. 
Student’s t test indicated that the audio-group 
performed significantly better than the written-
group, t(37) = -3.525, p = .001. The Shapiro-Wilk test 
for normality provided no significant evidence for 
non-normality (W = 0.966, p = .124) and the F test for 
equality of variances did not provide significant 
evidence for violation of this assumption, F(17, 20) = 
1.411, p = .458. 

Example: Summary 
It will be clear that all four strategies have their 

own benefits and drawbacks. A clear benefit of 
Strategy 2, for instance, is that the results can be 
reported in a very condensed form. A drawback, 
however, is that fewer people are familiar with the 



WILLIAMS & ALBERS 

 

12 

Yuen test compared to more conventional tests. In 
this example, we deliberately kept the methodology 
as simple as possible with a single test for a two-
group comparison. The complexity of some 
strategies will grow beyond feasible limits when the 
research questions are more complex.  

Summary: Strategies for Distributional 
Assumption Checks 

In the subsections above, we have outlined four 
strategies for dealing with distributional 
assumptions in preregistered research. Obviously, 
however, we have not considered all possible 
approaches that researchers could take to dealing 
with distributional issues in a preregistration. Of the 
four strategies we have discussed, strategy 1 (a 
decision tree) seems the least desirable on several 
counts, although it may be useful in some research 
contexts—particularly when applied by researchers 
with particularly strong statistical expertise. 
Strategy 3 (preregistering robustness analyses) is 
probably the most comprehensive and sophisticated 
way of dealing with the uncertainty arising from 
distributional assumptions. It is nevertheless a 
relatively challenging strategy to adequately specify 
in a preregistration (and to perform a power analysis 
for), and the strategy that would result in the most 
verbose write-up of the results. On the other hand, 
strategy 4 would be the easiest to specify in a 
preregistration, and may be useful for student 
research, or for researchers new to preregistration. 
Finally, Strategy 2 represents something of a 
compromise between difficulty level and level of 
sophistication, would produce a very concise write-
up of results, and could also be applied in 
conjunction with any of the three other strategies. 

Additional Tactics for Dealing with Distributional 
Assumptions 

The four strategies listed above are, to at least 
some degree, competing strategies. On the other 
hand, there are two additional tactics that may be 
useful in virtually any preregistered research 
project, and that can be employed in conjunction 
with whichever of the four strategies above is 
selected. 

Tactic 1: Clearly and Accurately Describe 
Distributional Assumptions 

The first of these tactics is to transparently and 
accurately describe the distributional assumptions 
of the statistical analyses employed, and then 
acknowledge in the limitations section of the 
discussion that any uncertainty with respect to the 
validity of these assumptions adds to the 
uncertainty surrounding the substantive 
conclusions. A description of the assumptions of 
various statistical analyses is beyond the scope of 
this article, but some useful sources include Gelman 
and Hill (2007), Williams et al. (2013), and Casella and 
Berger (2002). We note in passing that is not 
uncommon for distributional assumptions to be 
described incorrectly in resources aimed at 
psychologists; it can often be useful to look to more 
rigorous sources written for statisticians. 

Tactic 2: Open Data 

The second tactic which we suggest applying in 
virtually any study—subject to any restrictions 
necessary to safeguard the privacy of the 
participants, or necessary for legal reasons—is to 
make a de-identified copy of the raw data openly 
accessible for readers and reviewers (see Houtkoop 
et al., 2018; Munafò et al., 2017; Nosek et al., 2015). 
Although the authors of any given piece of research 
will always have the primary responsibility for 
conducting and reporting data analyses that address 
uncertainty arising due to distributional 
assumptions, sharing open data nevertheless helps 
to ensure that others who might wish to apply a 
different approach to checking distributional 
assumptions—or a different approach to the primary 
analyses—are able to check the robustness of the 
findings to such alternative approaches. Along with 
the raw data it is useful to post the programming 
code or syntax necessary to process the data and 
apply the analyses reported in a given article. The 
Open Science Framework (https://osf.io) is a 
particularly useful venue for posting data and 
analysis syntax, but other options are available—
including posting supplementary materials along 
with the article on a journal’s website.  

When preregistering a study that will use an open 
data policy, it is important to consider how this will 
be signalled to participants and in any institutional 
review board/ethics committee application (see 
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Meyer, 2018). In some parts of the world, 
institutional review boards may expect that data will 
be kept entirely confidential to the research team, 
and boilerplate information sheet and consent 
materials may encode this expectation. It is thus 
crucial to plan an open data policy from the 
beginning of a project, rather than leaving any 
decisions about data sharing to after data has been 
collected (at which point the researchers may find 
themselves inadvertently locked in to a restrictive 
data sharing policy). 

Templates for Preregistrations 

In order to assist researchers prepare 
preregistrations that pre-emptively deal with the 
prospect of distributional assumption violations, we 
suggest that preregistration templates include 
prompts leading researchers to consider employ 
some of the strategies described above. The specific 
prompts we would suggest would be: 

 
What are the distributional assumptions of the 
statistical analyses you will be applying? 
  
How have you accounted for the possibility of 
violations of these distributional assumptions? 
(Some options include selecting analysis 
methods that make assumptions that are as 
conservative as possible; preregistering 
robustness analyses which test the robustness of 
your findings to analysis strategies that make 
different assumptions; and/or pre-specifying a 
single primary analysis strategy, but noting that 
you will also report an exploratory investigation 
of the validity of distributional assumptions). 

Conclusion 

Preregistration is a valuable strategy in 
confirmatory research projects, but it does come 
with challenges. One of those challenges is the need 
to make decisions about how distributional 
assumption violations will be dealt with before 
examining the data itself. In this article, we have 
examined several strategies that researchers could 
adopt for addressing distributional assumptions in 
preregistered research. While preregistering 
“decision trees” for changing the primary analysis 

depending on the presence of particular assumption 
breaches has several problems, preregistering 
analyses that make weaker distributional 
assumptions, or preregistering robustness analyses, 
may be more useful approaches. Alternatively, 
students and other researchers new to 
preregistration may find it useful to preregister a 
simple primary analysis strategy—and stick with 
that regardless of the characteristics of the data—
but also conduct and report an exploratory post hoc 
analysis of the validity of the distributional 
assumptions made. We recommend that 
researchers use the guidance above to select the 
strategy—or combination of strategies—that is most 
appropriate for their given context. Finally, we 
suggest that transparently and accurately 
communicating the assumptions of the analyses 
employed, and making raw data openly available, 
can be useful tactics for ensuring that readers and 
reviewers have sufficient information available to 
reach an informed judgment about the impact of any 
distributional problems on the validity of a study’s 
conclusions. 
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