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Abstract

The problem of seli-heating in spherical and spherically annular
domains is addressed in this thesis. In paricular, the Frank-Kamenetskii
mode! is used 1o investigate the multiplicity of steady siate solutions in these
geometries. The differential equations describing this model depend crucially
on a parameier, the "Frank-Kamenetski' parameter; for spherical geometries
it is known that: (a) a unique solution exists for sufficiently small
parameter values, (b} there is a value of the parameter such that an
infinite  number of solutions exist. A convergent infinite series solution is
developed for the problem in a spherical domain. The multiplicity of
solutions when the problem is posed in spherically annular domains is then
exploered. It is shown, in contrast to (b}, that multiple solutions exist for
arbitrarily small parameter values and that no value of the parameter

produces infinite  multiplicity.
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Chapter 1

Introduction
1.1 The theory of thermal ignition

The theory of thermal ignition addresses the question of what happens to
a combusiible substance when it is placed in a vessel, the walis of which
are maintained at a prescrived temperature Tgo {usually constant). Under
certain conditions, one observes a rapid rise in the temperature of the
substance to a high value near the theoretical maximum temperaiure of
explosion. Under other conditions, in contrast, only a small rise to a
stationary level is observed. This small temperature rise remains constant
until a large portion of the material has reacted. The conditions under which
the transition occurs from one range to the other, for a small change in the

external parameters, are termed the critical conditions of ignition.

When investigating the problem of thermal ignition, we consider the

equation of heat conduction with continuously distributed sources of heat,
ot
cp—=V.(AVT)+q, (1.1)
p8t 9

where T is the temperature, ¢ the heat capacily, p the density of the
substance, X the thermal conductivity, and q the density of the sources of
heat, that is, the gquaniity of heat evolved as a resull of chemical reactions

in a unit volume per unit time.

Solving this equation under the boundary conditions inveolving a given

temperature To at the surface of the wall gives the temperature distribution



in the vessel as a function of time. The nature of this dependence changes
sharply at the critical condiions, where there is an abrupt iransition from
a small constant temperature rise to a large and rapid rise. Owing to the
formidable mathematical difficulties involved in integrating the partial
differentiai equation (1.1} one normaliy resorts to  one of two
approximations which are welli known in the nonstatiocnary and stationary

theories of thermal explosion.

In the stationary theory, the spatial temperature is not taken inlo
consideration; instead, a mean temperature is introduced and assumed o be
equai at all points of the reaction vessel. This assumpiion is admittedly not
valid in the conduction range where the temperaiure is by no means localised
at the wall. This approach, however, does allow the temperature dependence
on time to be examined; consequently, cne can also deiermine the induction
period, that s, the time within which an explosion occurs. Although the
nonstationary theory is an integral part of the theory of thermal ignition,
we will not deal with it any further. Instead, we will examine the stationary

theory of thermal ignition in symmetrical regions.

In the stationary theory, only the temperaiure distribution over the
vessel is considered and its change in fime is not taken info account. The
conditions under which  the stalionary temperature distribution becomes
highly sensitive or even discontinuous dus to changes in the external

parametlers are fermed the critical conditions of ignition.
The stationary form of the heat conduction equalion (1.1} is

V. AVTHY+9=0. (1.2)

In most cases, however, the temperature dependence of the heat conductivity

is neglecied and the above equation reduces to



AVET+a=0. (1.3)

If the rate of reaction depends on the temperature in accordance with

Arrhenius’ Law then it can be represented by

~E/RT

L=ze {1.4)

where 7 is the rate of reaction, T the absolute temperature, R the gas
constant, and E and z are parameters characteristic of the given chemical
reaction. The quantity E is termed the activation energy and represents the
amount of energy required for a mole of the substance to react. The factor z
depends on the pressure and composition of the substance, but not on the
lemperature in a first approximation. In this approximation one also assumes
that the rate of reaction s independent of the loss of reaciant. The density

of the sources of heat can thus be expressed as
-E/RT

ad=gze ,

where Q is the thermal effect of the reaction per unit volume. Equations

(1.3) can now be written in the form

2o+ 2, BRT 2. (1.5)

We can rewrite this equation in terms of a dimensionless temperature and

spatial coordinate by taking

u=R1/E (1.6)

as the dimensionless temperature and



as the dimensionless spatial coordinates, where, x are the dimensional spatial

coordinates and £ is a typical length such as the radius or half-width of the

vessel such that, on the surface ||yll=1, the boundary condition is

u=u0=RTo/E.

In this way we have only the one dimsensioniess parameter

Y=QzR{%/AE
in the differential equation and a second dimensionless parameter

ug=RTy/E

in the boundary condition. The equation now has the form

Viutye =0, (1.7)

ff u is a solution io this equation and salisfies the boundary condition, then

giving the temperature u as a function of ¢ with the two parameters 7

and ug. This represents the most general solution of the problem of thermal
ignition in a purely conductive heat exchange. The condition under which a
staticnary temperature distribution is parametrically sensitive, that is, when
'

a rapid rise in temperature occurs for a small change in the parameter ¥

should be of the form

Y=9g{ug), (1.9)



as neither the equation nor the boundary condition contain any parameters

other than us and Y. However, an empirical fact of great importance is that

e IS small, ie.

Up=RTy /B <<,

and so il is reasonable to look for the limiting form of {1.9) corresponding
to uo— 0. Moreover, if we consider ug<<1, we not only obtain more
tractable results, but alsc specific fealures proper to combustion stand out
more distinctly [13]. In examining this limiting case, we must keep in mind
that we are considering a stationary temperature distribution below the

explosion limit where the temperature rises are small

Let v=T-To where it is assumed that v<<Tp: this is equivalent to

us«<<1, a fact that will be established later. Now

“E/RT _ —B/R (UiT,) .. —5/R7, 0/ 0F—1)
~e =e

v ’
1w

and since v << Tgq, the quantiy

1
U 1
14—

Ts

can be estimated using a binomial series expansion and neglecting all terms

2
of order X . thus,
To

v z
-E/RT -E/R i-— -E/RT. EU/RT,
& /! =a / T, ¢ _:“}‘___e / o / _[" (110)

Using the above approximation, equation {1.5) can be writlen



2 Q _E/RT, Eu/RT,
Viuvt—e /RTo JO/RTo = (1.11)

subject to the boundary condition v=0 at the wall of the vessel

Let 8=Ev/RT.. (1.12)

Transforming {1.11) into the dimensionless variables 8 and y we now have

QE 2 _E/RT, ©
V26+ szl e E/RY e =0.

Y ART,

and the boundary condition at the surface ly|l=1 is 8= 0. The

differential

equation and boundary cendition now contain only the one dimensionless

parameter

E "
§=_9& 2% TR, (1.14)
RlTo

which, In this approximation, characterises the properties of the substance

and the vessel shape. The problem of thermal igniticn can therefore be

represented by the non-linear differential equation

Vig+se' =0 (1.15)

and the boundary condition at the surface of the vessel =0, ||y|| = 1. This

approach was first developed by Frank-Kamenetskii [13] and the parameter

§ is called the Frank-Kamenetskii parameter.

If 6 is a solution to (1.15) representing a stationary distribution then



8 - f(y)ﬁ). {(1.18)

The critical condition of ignition depends solely on & as neither the
differential eguation nor the boundary condition contain any parameters other

than O. Thus, there exists a
d=constant=§¢, (1.17)

such that a stationary temperature distribution becomes impossible. If the

conditions of any experimenis give a value of & less than the critical value
Ser a stationary temperature distribution should establish itseif, if not, an

explosion or thermal runaway will occur (see figure 1.1}

The value of der depends crucially on the shape of the vessel, and the

values are well known for simple geometric shapes. For a spherical vessel,

dor=3.3219; for an infinitely long cylindrical vessel, 8.,=2.00; and for a

vesse! with two infinitely long parallel planar surfaces ({the infinite slab ),

Sor=0.878. These values calculated from the theory of thermal igniton are
in close agregement with the experimentai values cobtained from subsiances

whose kinetics are known [8].

From the solution (1.18}, we can see that the maximum temperature

rise below the explosion limit is given by

RT,
Vnax™ (T=T0), = ——£(0 Bor), (1.18)

where we have assumed that the vessel is symmetric, and consequently the

2
RT,
hottest point is at y=q. Since “ch--E-—, below the explosion limit Rrgp<<E

and therefore v<<Tg. Thus the assumplion V<< Ty made in the derivation
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Figure 1.1

The critical value of the parameter 3.



of (1.10) is equivalent 10 wug<<i. If, however, RTo is not small compared
to E then we do not get the characteristic picture of the combustion
phenomena; instead, we are dealing with the theory of the nonisothermal
course of a chemical reaction, a limiting form of which is considered in the

theory of combustion and thermal ignition.

1.2 Formulating The Problem And Boundary

Conditions.

Thus far we have considered only vessels whose walls were held at a
fixed temperature equal to that of the surrounding medium. We now consider
the case when heat released in the reaction warms the vessel walls and the
surrounding medium, whose temperature typically changes if the heat
exchange between the two mediums is not too rapid. Any steady-state theory
of thermal explosion that includes this effect must begin with the complicated
manner in which heat is exchanged between the reactive medium and the
vessel walls. This problem is not addressed here but has been discussed by
Borzykin and Marzhanov [9] and by Thomas [10]. The temperature
distribution inside such a wall rapidly becomes quasistationary and the
temperature on the inner surface of the wall is given by the Newtonian heat

exchange equation [7],

29T = o (T-To), (1.19)
on

where the heat flux on the left is calculated for the reacting substance next

to the vessel surface (p is a unit outward normal to the wall) and the heat

flux on the right is calculated from the conditions of heat exchange between

the wall and the surroundings. Here To is the temperature of the

MASSEY UNIVERSITY
LIZRARY
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surroundings far from the vessel surface, A the heat conductivity, ¢ the heat

transfer coefficient depending on the nature of the heat transfer between the
vessel and the surroundings and £ a measure of length. Equation (1.12) can

be rearranged as

2
T

(T-Ty )= —296.
B

Differentiating the above equation vyields

ar_17RT,20
9n £ E on’

and substituting this inic (1.18} gives

1 ARTS 96 RT,

- —=—Q 8,

£ E ¢n E
which in turn vyields

98 of

—+-—9=0

dn A

The Biot number is defined as

B i= -,

giving the so called arbitrary Biot number condition on the boundary

29+Biﬁzo. {(1.20)

on
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When Bi—see equalion (1.20} becomes the Frank-Kamenetskii boundary

condition 8=0. When Bi— (¢ there is no heat exchange and an adiabatic

thermal explosion occurs. Our problem can thus be stated

Vie+5eezo in  region,

(1.21)
@+Biﬁzo on boundary.
Jn

The sphere.

fn the next chapter we consider a sphere of reactive material with
radius R. Neglecting reactant consumpticn and using the Frank-Kamenetskii
truncation along with the dimensionless variables O and r, the dimensionless

form of the radius, the governing sysiem of eguations is (1.21) where

is the Frank-Kameneiskii parameter. The symmetry of the reactive medium
implies that thereis nco heat flux at the centre of the sphere therefore we

have the condition

vi
dr

Q.

=g

It is known [2], that the non-linear heat conduction equation in a
spherical region with socurces depending on the temperature, admits only

spherically symmetric solutions (provided the boundary conditions are alsc
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spherically symmeiric). Thus for spherical geometries, system (1.21) is
equivalent to

a6 248

—

LS S
ar? rdr

5629:0, Darst,

ag

—(1)+RiB1)=0, (1.22)
dr

99—(0):0,

dr

This is the Frank-Kameneiskii model for steady state thermal regimes in a
spherical region, and it is known [1], to have a gross multiplicity of steady
state solutions for an arbitrary Biot number. The analytic condition for
infinite  multiplicity s 5m=2e-1_zr. In chapter two we find an infinite series
solution to the system (1.22). We then generalise some resulis found in [1]
to spheres in n dimensions. Finally, we apply the infinite series sclution to

n-dimensional spheres.

The spherical annulus.

In chapter 3 we consider spherically annular geometries. The problem
consists of a sphere of inert material completely enclosed by a spherical
annulus of reactive material. We define this problem by considering the
inert core to have radius «' and the outer radius of the reactive sphere 110
be R. Neglecting reactant consumption, using the Frank-Kamenetskii
truncation, and by choosing the dimensionless variables 6 and r, the
govemning sysiem of equations is

a9 +3§E—}+6e9:{}, o<r<t,

dr® rdr




ao

ar

(L)+BiB(1)=0,

where <= 0YR and

E —F
§—_2F 2 "B/RT

A
-2
Rkio

is the Frank-Kamenetskii parameter.

In spherically annular geomstries, heat ftransfer occurs at the inner

surface. Dust explosions with laser oplics give the linear boundary condition

d—e{a}=£ﬂ_ <Q,
dr

where A is the heat flux at the inner surface of the reactive medium. Using
phase plane analysis we invesiigate the mulliplicity of steady siate solutions.

in spherical gecmetries it is known that:

{1} for & small encugh there is only one steady siate solution;

(2) when é‘,:ésmzze%l there is an infinite multiplicity of sieady state

sclutions.

We show in chapters three and four the above results are not valid for
spherically annular geometries . Specifically, we find, that for small values
of & there are two sleady state solutions, and, although arbitrarily large
mulliplicity is obiainable given suitable values for o and A, we do not get

infinite  multiplicity.
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Chapter 2

An Infinite Series Solution

2.1 A Solution to the Frank-KamenetsKkii

Equations with Infinite Biot Number.

In chapter one we formulated the problem in which a spherical object
of reactive material undergoces an exothermic chemical reaction with the
resultant heat production causing the iemperature of the object 1o rise. The

governing system of differential equations is

2
8,200

- +8e%=0, o0<re<i
dr? rdr

—?E(l)mi.e(l):o, (2.0)
ar
Eg(O):o.

o
1

Following Wake ef al [i1] we infroduce ihe foliowing transformations
similar to those employed by Chandrasekhar in the study of stellar siructure

[5]:

r=e" % 0<ret. (2.1)
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Using these transformations, system (2.0) reduces to ihe auionomous first

order eqguations

99 g2, (2.2)
ds

dp

.~ PY

The phase plane corresponding to these was examined in [1]. We use a
similar analysis to examine muliiplicity of sieady states in n-dimensional

spheres.

The boundary conditions in (2.0} iransform under (2.1) to

q©)1-2+Bim2 g (2.3)

8

and q—>2 as s-roo, (2.4)

In terms of the new variables p and q, the Frank-Kamenetskii model is
(2.2} together with the boundary conditions (2.3} and (2.4} We consider a

solution for p and g of the form

=Y ae 2%, (2.5)

n=1

", -2
q:é + ane ns‘
n=]
This, it is noted, is equivalent to a power series in r. We proceed under
the assumptions ihat the above Dirichlel series can be differentiated term by

term and can be muliiplied together to give a convergent series. As is shown

later these are valid assumptions. Substituting (2.5) into (2.2} yields



an="ba (L+21) n2t, (2.6)
1 nil

= n22, 2.7

an 2 (I)—"]_) k21an—kb}c £ ( )

and using {2.6). (2.7) can be wrillen as a recursive relation for an, viz.

1 nd_
dn-kd8k > D, (2.8)

A0 o (n-1)0 1+2k

Letting a1 be our undetermined constant, we find

P= 3% onaye (2.9)
n=1
q=2+ 3 Bale " (2.10)
n=l
where
0a=-f,0+2n)  n2i, (2.11)

- 1 o O
Z2{n-1)rq 1+2k

CUn

Appendix A contains values for ¢, and Bn calculated using egquations
21ty and ({2.12}.

When considering the convergence of the series scolutions for p and g it

is obvious that, if 2o, converges then the series (2.5) converge for

n=1

sufficiently small values of a.



Theorem 2.0

The series
Oy
n=1
where Gy =1,
1 3 —O il
O - . )

T 20,0 1+2k

is absolutely convergent.
Proof

Let Pn be the following proposition:

1
2m-‘.

[
1A
=
[FAS
3

P, :‘Otml <

Clearly Py is true. Suppose P, is true. Now

o 1 & l_an—k%—l‘ |Or'}:‘
1 — - - L]
ot 2nk=l 1+ 2k

and since P, is frue,

1
n / n-1 3 n
2 < i 5 1

2Ny 1+ 2k 20 =11+ 2k

17
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Therefore by the principle of mathematical induction P, is true for all

. . o 1 )
ne Z+A The geometric  serigs L—'— converges; thus (the comparison  test
n=12n

implies) Z|anl converges and the theorem follows. U
n=1

Thus justifying the assumplions made earlier.

Consider the case when the Biot number is infinite, i.e. the reactive

medium s a perlect conductor. Here we have the Frank-Kamenetskii

boundary conditions with 6=0 at r=1 (s=0). From (2.1) and 6=0 when

s=0 we get

which, using egquation (2.9), gives

5= T pa™ (2.13)

n=1

Equations {2.1}) and (2.9} imply that

=)
_ n —2ns -2s B
P= 2 Ong e =8e “Ta .
n=1

-2s
Dividing by e and evaluating the limit as s— oo yields

aJ_:ﬁee“: (2.14)

where 8, denotes Lim 8). Substituling (2.14) into (2.13), dividing

S—yen

by §% gives
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3 ner (Be¥) =e % -1 (=1 (2.15)
n=1
Before we can proceed any further with (2.15) we must address

reversion of a power series. Given a convergent power series

o

n

y=2 Cn¥
n=1

where ¢ #0 there exist coefficients ¢ such that, for y sufficiently smail,

the power series

converges. The ¢, are functions of ¢ <, ,..c, and the new series is calied
the “reverted" series. The series is unique and it represents the inverse of
the function defined by the original power series. The ;n can be calculated
by substiuting the original series into the reverled series and comparing
coefficients. While it is theoretically possible to obtain any number of these
reverted coefficients, it is numerically difficult to do so in our case because
the coefficients of the original series become small quickly. Given the finite
precision of the computer and subsequent introduced rounding errors our
calculated reveried coefficients started to "blow up" after a small number of

coefficients {around 50} were calculated.

Now a2="}é # 0. and. assuming series (2.15) is convergent, it can

be reverted, i.e.

S5t = g (1) (2.16)

n=1
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2.2 A solution to the Frank-Kamenetskii

equations with arbitrary Biof number.

In the previous section we considered the special case when the Biot
number was infinite we now turn our attention o the more general problem
where Bi can be any posilive number. We no jonger have the Frank-
Kamenetskii boundary conditions and so are reliant on the general boundary
condition {2.3). The derivation of (2.14), it is noted is independent of ihe
Biot number and therefore it is valid for any Bi as is (2.9} and (2.10).

Eguations {2.9) and (2.10} give

n=l

n=1

and using (2.14) this yields

g n
P01= 2 o, 8% :

n=1

n
)

q{0)=2+ 2B (5’
n=1
Substituting the above expression equation info (2.8) gives

Z Bn 6886)H+Bi.11'1 z anén_lene" = O s

n=1 n=1

which is equivaient to

. ., B o .
5 06" e = VB0
n=1
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The above expression implies

- n ~1/BiY by
&% (1+ T goey ( 820y I me EEPL ST ) (og =1y,

n=1

and

'{‘ AR ’ - n -
el/BJ::Bn(BLe“ } (1+ Z Olpat (See(} ) I=e 8“- (2 i 7)

n=1

The exponential factor in the left hand side of (2.17) is an infinite series

in Se®, and the left-hand side of (2.17) can be expanded as a power

series,
1+ Elj‘n (B1) (5™ )“;
thus,
Elfn (B5) (B =e™ -1, (2.18)

which, upon inverting gives a “formal" solution to (1.22) with arbitrary

Biot number,

e ® YT, (e %) =0, (2.19)

n=1

Solving

dd

dgo §=5_



yields

_ > = n-1
acr = —p 25 2 nlna ¢ 9_85—1 } -
n=1

23

Depending on the value of Bi, between forty and sixty of the I'n were

calculaied before numerical rounding errors crept in and the l'a started to

“‘blow up”. Appendix A contains values for ['n. By using the available I'n the

following values of the critical parameter were calculated

table 1.

Table 1

Oy Bi B

0.0011 |.001 1.00
0.011 .01 1.00
0.108 N 1,03
0.9010 |1 1.25
2.73%0 l10 1.59
3.2564 100 1.61
3.3153 [1000 1.61

see

Critical values of the parameter & for various Biot numbers, calculated using

the infinite series solution.
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23 A Look at Exothermic Chemical Reactions

in  n-Spherical Domains.

Certain results obtained by Wake ef al in their study of excthermic
chemical reactions in spherical geomelries are easily adapted to spherical
geometries of n dimensicns, We found in chapier one the governing system of

differentiai equations is

V29 +8e%=0 in region,
¥

é)g +Bif=0 on boundary.

an

In n-spherical domains our system becomes

2
g8, (n-13db so ¢ (2.20)

ar? r dr

a8 .
——(1)+Bif(1)=0,
dr

Following a line of argument similar to that of Wake ef al. we show that the
system (2.20) has a gross muliiplicity for 2«<n<10 and arbitrary Biol

number with the analytic condition for infinite multiplicity given as

50.0:2 {n_z )e—‘;’:/‘d_i‘

We glso show for n=10

-2

6cr =2 (n—2)e31',
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where Ocr is the critical value of the parameter: a value of the parameter

lower than Ocr implies the existence of steady states; whereas,

higher than Ocr implies no such steady states exist and thermal

OCCurs.

Using transformations (2.1}, system (2.20} beccmes a

autonomous first order equations, viz.

dg

=n-2)g-2})+p,
ds 49 ¥

The boundary conditions are

gq{0)—2+Biln

p(0)
:O,
3]

g—2 as S —3 oo,

Sysiem (2.21) can be examined in the p-g phase plane. There

singular points: S1= (p=2(n-2), q=0) which has eigenvalues

n-24f (n=2) @-10)
7Li: '

2

and S2=(p=0,g=2) which has eigenvalues

h_—=2, he=n—2.

It is evident that S$S1 has complex eigenvalues for 2<«n<iQ;

corresponds to a spiral focus (see Figure (2.1).

a value

ignition

pair of

(2.21)

(2.22)

(2.23)

are {wo

thus, S1



1.

*\\ i

V)

The transformations made (equalions 2.1} Iindicate that we need

Figure {2.1)
Phase plane for 2«<n<i0.

consider only that part of the phase plane in which pz0. There are iwo
separatrices in the phase plane: the ordinate axis p=0, and a spiral that
winds anti-clockwise out of the focus up to the saddle point. The other
trajectories also wind anti-clockwise out of the focus. it is not hard to show
that the only curve salisfying the boundary conditions is the spiral
separatrix. As demonstrated in [1} the number of sieady state solutions
corresponds to the number of times the inilial condition locus {equation
2.22) imnersects the spiral separatrix. The outer boundary condition (2.22},
indicates that ii is possible for this initial condition tocus to intersect the
spiral separatrix any number of times. Because of the focal nature of the
singularity S1 there is an infinite number of inlersections when the initial

condition locus passes through this point. The value of & for which the
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initial condition locus intersects this point is O.. B1). Substituting q{0)=0,

p(0)= 2(n-2) Iintc {2.22) vyields the following relation:

.72 (n—2)e 2%

Criticality can be seen as a fangency condition in the phase plane.
Specifically, the critical values of the parameter & are those for which the

initial condition locus is tangent to the separatrix.

Figure 2.2

The initial condition locus when: 1, §=38,,, 2, §=35,,.

If n=10 the eigenvalues associated with S1 are positive real numbers
and the singularity S1 is a nodal point (cf. Figure 2.3). As before, the
number ot steady states corresponds to the number of times the initial
condition locus crosses the separatrix, it is clear that it can intersect the

separatrix at most onge. I follows that the value of § which causes the

initial condition locus to pass through the focus is d..; therefore,
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-2
Ger=2 (n—2 Yeun: n=10.

SARARE AT

Figure (2.3
Phase plane for nzi0 .

2.4 An Infinite Series Solution to the
Frank-Kamenetskii Equations with  Arbitrary

Biet Number in n Dimensions.

Following the procedure used for n=3, series solutions for p and g

can be readily derived, viz.

_ - K -2ks
k=1 '

r

e kK -2ks
q= 2 I3ka1e .
k=1
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where

Ox= =B, (n—2+2k), k21

1 ks_\“l _(x«](lk—j
20:-1) s n—2+29)

k=
and n is the dimension. Adapting the methods in section (2.1} the solution

e % gfi( e % 1) =35
=1

can be derived for the n-dimensional case.
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Chapter 3

The Spherical Annulus

in chapter one we formulaied the problem in which a spherical annulus
of reaclive malerial undergoes an eéxothermic c¢hemical reaction with the
resultant heat production causing the tfemperature of the reactive medium to
rise. After choosing the standard dimensionless form for the parameiers,
ignoring reactant consumption and applying the Frank-Kamenetskii truncation

the governing syslem of equations is

2
d—84r39E+§.e9, o<r<t,
dar? rdr

d—8{1)+Bi.8(1)=o, (3.1}
dr

Ei—e(OLJ-——A<0,
dr

where & is the Frank-Kamenetskii parameter, A represents the heat flux at

the inner surface and o the dimensionless form of the inner radius.

Using the same transformations as in the spherical case, ie.

p=38r?e’,

equations 3.1 reduce to the autonomous system
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——P"'CE[“Z ’

ds

dp

— = "P4g,

ds O<s<-In{a),

along with the boundary conditions

gi{s=-In(c))=0A+2,

q(O)—2+BiJn(p—(60-)—):0.

We examine this system in the p-g phase plane, noting from the
transformation that we need only consider p=0. The phase plane is the same
as that given in chapter two ({(cf. figure 2.1) except the boundary condition
is below the singularity (0,2). The guestion that now arises is, given an
initial condition locus, which curves in the phase plane satisfy the boundary
condition? We first lock at this problem for the case A=0. To investigate
this problem we introduce a new fungtion. For a given initial condition locus
(this effectively means knowing values for the parameters § and Bi) we
define a new function T(S,Bj,qo):Ta'Bi(%) as follows: given (Pg9) on
the initial condition locus, the function Tggn;(95) is the change in the
independent variable s along the trajectory that passes through the point
(Po9o) in the direction of increasing s, from the point (PoSg) to the
boundary condition ¢g=2. We note that the variable s can take any positive
value and in this sense acts in a "time-like" manner. It is helpful to think
of s as "time", and in this thesis we exploit this and refer to such concepls
as the time taken io travel from point B to point C (where C and B are on
the same trajectory). We think of Tj;g;(4;) as representing the “time”
taken 1to traverse the trajectory from (Ppds) to the boundary condition

g=2, and examine some properties of it. (see figures in appendix C).
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Property 1

We note first that any trajectory emanating from the initial condition locus

crosses the boundary condition only once; thus, Tssi{9y) is single-valued.

Property 2

This is a somewhat obvious result, the initial point is on the boundary

condition

Properiy 3.

It go <2 then T5p;{ge)>0.

Given we traverse the trajeciories only in the direction of increasing s the

above property follows easily .

A not so intuitive result is

Properiy 4,

Although we had no luck in providing a proof of this result, it is reinforced

by numerical evidence see iable 3.1

Property 5.

If the point  (pygo)# (2,0} is on the spiral separatrix then

T&Bi(qo } oo,



If A=0

which contains the solution curves also contains the singularity

the whole of the

separatrix is  the

the boundary condilion is

solution

q_}z as s-—ee, and it IS evident

to reach the boundary condition from any starting peoint on the separatrix.

q=2l

curve

that

and

satisfying

the

the separatrix

boundary

fakes

(0,2},

infinite
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that part of the phase plane
and
spiral separatrix. As was seen in chapter two the spiral

condition

time

Table 3.1

Bizco A=0
8/, 2 0 -2 -80 -1000 -100000 1e8
i 0 2.05 1.37 1.4e-19 1.9e-2 2.1e-3 2.7e-4
P 0 oo 1.12 1.1e-1 1.3¢-2 1.9e-3 2.3g-4
0 i.01 8.7e-1 fe-1 1.3e-2 1.8e-3 2.3¢-4

Values for T5p;65).

Property five has an important implication on the structure of the

graph for the function Tsgr;(9,) as it indicates the possible presence of

vertical asymptotes. In particular, the graph of Ts5,3i(9,) has a vertical

asymplote whenever the inilial condition locus iniersects the separatrix. As
seen in chapter two the initial condition locus can intersect the separatrix
any number of times, in particular when §=2e7 there Is an infinite
number of intersections, which in turn indicates an infinite pumber of

Figure C3 shows a

asymptotes in the graph of the function Ts,8il9,) -

typical such graph. The nature of the spiral separatrix indicates that # a

large number of asymptcies are present in the graph of Tapild, ) ihey

cluster around the Tjpg;(q,) axis. Specifically, if there is an infinite

number of vertical asymptotes present in the Tjg,;(d,) graph then between

any asymptote and the origin there are an infinite number of vertical
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asympiotes. The boundary conditions indicate that a trajectory which takes a
time of -In(e) to travel from the initial condition locus 1o the line g=2 is
a solution curve. Therefoere the sclution curves are those parts of the
trajectories, which emanate from (Sez%,qg) and end at (p (—In{a)),Z}

where 9 is a solution of Tg5y;{g,)=—ln{a} .
The number of sieady state soluiions is then given by

The number N, it is noted depends only the inner radius . this is because

we are coensidering the special case of no heat ilux at the inner surface
(A=0}). To determine muitiplicity of sieady siate solutions a careful

examination of the function Tjpilg,) is required. The first thing to note is

that the value of the Biot number does not affect the qualitative structure of

the Tj5pifq,) graph. Given & sufficiently close to 2ew (the value for §

which causes the initial condition locus to pass through the focus), the graph
of Tspilg,) contains a number of vertical asymploies. Between consecutive
pairs of these asympliotes is either a curve of type 1, type 2, or type 3
(see figure 3.1}). The only place that curves of type 2 or type 3 occur is
between the pair of asymptotes that straddle the Tgsg;lg,) axis. Before the
first asymptote there is a curve of iype 4 or type 5 (see figure 3.1).
Beyond the last asymptote there is a curve of type 5 (see figure 3.1 }.
Actual graphs of the function Tgg;{q,) are contained in appendix C. If § is
sufficiently large the initial condition locus cannot intersect the separatrix;
the corresponding Tgspilg,} graph thus does not have asymptoles. In this

. . 1 . ,
situation the Tgpilg,) graph has a maximum at 9. The function is

strictly increasing for qqq%) and strictly decreasing q10<q~<2‘ See figure C7.

The following theorems give some insight into the bshaviour of the function

TS,Bi{qo )
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Type 1. Type 2.

Type 3.

Type 4. Type 5.

Figure 3.1.

A type 1 curve has, 1 minimum, no maximum and no inflection poinis; a
type 2 curve has, 1 minimum, nc maximum and 2 inflection point; a type 3
curve has, 2 minimum peints, 1 maximum point and 2 points of inflection;
a type 4 curve has, 1 minimum, 1 maximum and 2 inflection points; a type

5 cuwive has, no minimum, no maximum and no inflection poinis.
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Theorem 3.1,

If T5gilgy) has exaclly one local minimum between conseculive pairs of

asymplotes, and has minima at q10 and qg and O<qt)<q§ then

2 1
Tsp:ild) < Tsmilge)

Proof.

The result is easily seen by examining the phase plane. Since éo anag qf)

are the g coordinates of distinct minima the coresponding parts of the

Tsmilgy) graph are between a different set of asymptotes (with perhaps one

comimon asympiote}. In terms of the phase plane this means that the g
values corresponding to the minima occur between different crossings of the

initial condition locus with the separatrix. As O<qlo<q§, the value qt

occurs on the initial condition locus after the locus has crossed the

2 .
o- The peint on the

separatrix at least once more after the occurrence of <
C e . . . 1 . . . " "
initial condition locus with ¢ coordinate ¢, is inside at least another "loop

of the spiral separatrix compared to the point with g coordinaie qﬁ. Given

that to travel from this inner "loop" {o the boundary condition we musl
cross the initial condition locus {at a point (p,q)), Iinside the "loop”

corresponding to  the minimum at qg, We conclude from this that
ql 2 : 2 1
Tspildy) > Tspila}2T5p;{d,), and it follows that Tspildg < Tspilgy)- A

P . 2 2 -
similar argument shows thai if G_.10<q0<0 then T&Bi(qlc,)<‘1’5r8i(qo). ]

The only time that more than one minimum occurs between consecutive pairs

of asympiotes is when that par straddles the T3,,{3,) axis. In this case
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theorem 3.1 is easily adapied by choosing the smallest minimum between the

asymptotes.

So we now have that the Tspilgy) @graph (given a value of & which

causes the initial condition locus to intersect the separatrix) comtains a
number of vertical asymptotes. Contained between these asymptoies are
curves of fype 1 {or under some conditions curves of type 2 or type 3).
Given a value of & that causes the inftial condition locus 1o intersect the
separatrix a sufficient number of times we have shown in theorem 3.1 that
the curves between the asympictes, have local minima whose valugs are
increasing as the g coordinate tends tc 0. Therefore when we have an infinite
number of vertical asymptoles, we have an infinite number of minima which
are clustered around the g=0 axis and have values thal are increasing as
they approach the g=0 axis. A point to note here is that it takes the
separatrix an infinite time to spiral out of the focal point, this coupled with

the continuity of integral curves in the phase plane gives the following

result: if o= Ze% and a rminimum oceurs at q, then
Tspild) 2 e as gq—0 . We are now in a posilion to consider the
multiplicity of the sieady siate solutions. Recall that the number of steady

state solutions is
NU_=H% |—ln(0c)=T5,Bi(q0 )H

It follows from this that the number of sieady states is limited only by
the number of vertical asymptotes in the graph of Tg5gpi{q,) . On the other
hand we see that for & sufficiently large, the initial condition locus does noi
intersect the separatrix, and, as will be discussed later, there exists a
critical value of & beyond which the system has no steady states. Given a
value of & sufficiently large so that the initial condition locus dces nol

intersect the separalrix we see given appropriate values of o (the inner
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radius) it is possible 1o have 0,1 or 2 steady state solutions (see figure

C7).

For a given & and Bi, the corresponding Ts5:la,) graph has k

asymptotes, and if 1<k we see thai, for appropriale values of o it is
possible for Ny 1o be any integer value between, 2 and 2k if no curve of
type 3 or occurs or 2 and 2k+2 if a curve of type 3 or occurs. We can
have the initial condition tocus iniersecting the separatrix an arbitrarily
large number of times (and even an infinite number of times) so we
investigate the possibility of infinite muliplicity. In  spherical domains we
know infinite multiplicity exists: we will show that it does not exist for

spherically annular domains.

We know that the number of steady states depends on the number of

vertical asympiotes in the TB,Ei(qo) graph and the presence of a type 3

curve. Let the initial condition locus cross the separatrix k21 times (k

finite). We define & as that value of o which ';1 ag N, = Ny and examine
Do ’

the behaviour of O as k—ee. As ke the Ty,i(q,) graph has an

infinite number of type 1 curves clusiered around the =0 axis. As seen
earlier the minimum peints of these type 1 curves tend to infinity as g
approaches 0; therefore, G —0 as k—eo. This reverts the problem to
the spherical case. Although it is possible to have arbitrarily large
mulliplicity, infinite multiplicity is not possible in the case of a spherical
annulus. Based on numerical evidence, we conjecture that for a given Bi and

-2

inner radius o, mg-x N, occurs when d=2e3: Tables B1-B6 in appendix

B show values for Ng .
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A  Look At Criticality.

In the spherical case, criticality is eguivalent 1o the initial condition

locus being tangent to the spiral separalrix. The analogous condition for the

spherical annulus is that the line Ty p;=—In{d) is tangent to the

Ts_pildo) graph (see figure 3.2 )

Tses (9o )

[SN]

9o

Figure 3.2
The line Ty gy=—In{(c) (1) tangent to the Ts 5i(qy) graph (2).

The following two thecrems can be esiablished for the case where there is no

heat flux at the inner surface:

Theorem 3.2,

For A=0 and a given Biot number. § .. (0) >3, (8} for all O<a<l.

Proof.

Suppose J. ()< (B} The initial condition locus
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o . p{0)
g(B)-Z2+Biln{———)=0,
6cr(0)

is by the definition of §..(0) iangent to the separatrix [1], and this

implies that the T .,3:(dp) graph has at least one vertical asymptote. As
seen earlier, this means that Ny =2 and this coniradicts the assumption that

Ser (1)< 8., (0) consequently
SCI(O‘{‘)ESCI{O )

Equality is easily seen not to hold, as criticality in the spherical case was
when the initial condition locus was tangent to the separatrix. The result

thus follows 1

Thecrem 3.3

Let A=0 and Bi be a given Biot number. If 0<og<o,<l then

acr(al}<6cr0‘2 }.
Proof.

Assume Ber 00 )> 8, (0y), then —In(o, )<-In(¢y ), and it follows from

theorem 3.2 that the graph of Ts ya: () has no asymptotes and

cr{U,]
therefore is continuous. Now §_ (04} is the critical value of the parameter

for Oy so that by definition, Ny, = 1. The continuity of Ts5.. (o) and the

above inequality, however, imply Na?:z‘ This contradicts our assumption

and hence

6c::|: |(&’l) 26{:: (0‘1)’
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As —In(o, )<—In{oy ) sequality can be seen not to hold and hence the

result follows 3

Numerical evidence given in chapter four suggests the above theorem

holds for any value of A. We conjecture that &_ (A ,0) is monotonic

increasing in ¢ for any A<O.

We considered the case when there is no heat flux at the inner
surface; we now turn our atteniion to the case when heat is flowing from
the reactive medium into the inert core. The boundary condition for this

case is

which ftransforms to

g=Z+0uhk <2Z.

Although the Tsxs (%) function was wuseful for exploring multiplicity for
the special case when A=0, we no longer take the approach of infroducing a
new function. Since the boundary condition locus is below the singularity H
is possible for the frajectories emanating from the initial condition locus 1o
cross the boundary condition more than once (see figure 3.3). These multiple
crossings cause any function analogous to Tafizg_{qﬂ) to be mulivaived. We
not only have the problem of multiple crossings of the boundary condition,
but we also have to contend with the fact that there exisis solution curves

which emanate from points on the initlal condition locus above the boundary
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A Look At Criticality.

An increase in the heat flow from the reactive medium to the inert

coré causes an increase in temperature at the centre. Therefore we expect an

physicai grounds that as (A<0) decreases, O..(A,0) decreases. We

conjecture that 8. (& ,0) is monotonic decreasing in A. In chapter four,

numerical evidence supports this conjecture.

Figure 3.4.
Initial condition locus {7}, the spiral separatrix (2). the boundary condition

{3}, (4} the starting point of the solution curve (5).
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Chapter 4

Bifurcation Diagrams

The aim of this chapier is twofold: firstly to derive the bifurcation
diagram for the spherical annulus and secondly to investigate how changes in
the parameters affect the qualitative structure. The bifurcation diagram is a

plot of the parameier § versus ”8” where we have

"8(1:} ":m ax‘ B(r}‘ = max 8.
osr<l usr<l

The following theorem shows that the maximum value of 0 occurs at r =

Theorem 4.0

Consider a spherical annulus  of reactive material enclosing a sphere of ineri

material with relative radius o, then
YV o<k<l, 0k)<0(),
where 6 is the dimensionless form of the temperature.

Proof

We have from the boundary condition that

— (o )=A<0.
r
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Assume @ has a local minimum at r = £ where a<f<1. Evaluating the original

differential eguation (from system 1.22) at r=¢,

2
d-9 («‘3)+%d8

dr dr

(f)+8e8(€):o,

and since a minimum occurs at r=£,

D =0
dr

thus

Z
d—8(€)=*5@8 (é’)_

dr2

The right hand side of (4.1) is always negative so that

2
i—9—(4?}~<0.

dr
This contradicts the assumption that a minimum occurs at r = £; therefore,
no such minimum can exist. Given that © is decreasing at the boundary r=u
and there are no local minima for o<r<i it follows there are no local
maxima for g<rei. Hence, the hottest temperaiure occurs at the inner

boundary r=¢ 4

From the transformation equations,

p=8re?,
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which, at r=¢, implies

po)=5x’e? @
and thus
6, =1n( 2Ly
Sou?

Before calcuiaiing values of 6, we musi first determine p at r=o. This Is
accomplished using the phase plane. Given A=0 and values for 8, Bi and «
we must find points (PeA3) on the initial condition locus such that
Tu:(9c)=—In{a) (if any exist}). Remember this means that it takes
-In{e) time for the trajectory passing through the point (PcXde) 0
travel from the peint (PoAc) to the point (P,,2) on the boundary
condition. This quantity determines the value of Py as the value of the p
coordinate at the end of a solution curve in the phase plane. The above
definition for Pg is valid for A=0. Numerically, an efficient approach fo
take when calculating peints on the bifurcation diagram is to choose a point

(P,,2+0oh ) that salisfies the boundary condition and integrate aiong the

trajectory  backwards -in(o} in time fo find the siarting point (Pn Ao ).

24,

Once this is determined, & can be calculate, ie. 0=Pce *!' apd thus 6,

pi{d}

So”

diagram. By varying 0< P, <eo the bifurcation diagram can be obiained.

ie. 6, =In( ); this determines the point (3,8,) on the bifurcation

Once the bifurcalion diagram is obtained the qualitative structure can be
invesiigated when A=0. As seen earlier, the value of the Biot number does
not affect the qualitative structure of the Ts. . (9c) graph. Typically values
for the Biot number are large and we consider only the case where the Biot

number is infinite. Earlier we saw that for any positive value of the
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parameter & less than the critical value Ny=2: therefore the bifurcation

diagram has at least two branches. We conjectured in chapter three that for
e

a given o, m ax N, occurs when §=2eBl The number of relative maxima

in the bifurcation diagram is

max Ng
)
2 1
-2
and, when 8=2eB1i
max N
98 Nu
—_—— = —2 (4.2)
2 2

Table {4.1) shows some values of the number of maxima present caiculated

in this manner.

Table 4.1.
o / Bi 1e-1 1 10 42 1e? 1ed 1e4 infinity
1e-1 2 1 1 1 1 1 1 1
1e-2 2 2 2 2 2 2 2 2
1e-3 3 3 3 3 3 3 3 3
le-4 4 4 4 4 4 4 4 4
1e-5 5 5 5 5 5 5 5 5
1e-6 6 6 3] 6 3 3 6 6

The number of relative maxima present in the bifurcation diagram for

various ¢« and Bi cafculated using equation 4.2.

Table 4.1 suggests the following two conjectures; (a) if Bi=1 the number of

relative maxima in the bifurcation diagram depends only on o. (bjr, Is

proportional to  —1n(c). Diagrams DB.1.0, D.2.0 and D.3.0 support these

conjectures (appendix D}
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Having investigated the bifurcation diagrams for A=0, we now explore

how the parameter A influences this structure. Consider the system

When § =0,

—{1)+Bif1)=0.

This system is easily solved analytically giving

and it foliows that

As Bi - eo,

2
E-E+£d—e:0, (4.2)
dar? rdr
0 =, (4.3)
dr
oo )
—{1)+RiBA)=0. (4.4)
dr
8(ry=a’a (Bl“_lmiy, (4.5)

Bi r

Bi-1 1

H(a)=6, =0’ (

Br @

6{0)=90,> oA (x-1),



49

and this implies that the bifurcation diagram no longer passes through the

origin but passes through the point (0,8,) with 9, >0.

As we let BRi— e the terminal point on the bifurcation diagram is
given by {0, 0A (-1}, where oA {x—1)>0 for A<0. In terms of the
phase plane, this analytic solution of our system when & =0 represents a

solution curve cn the g axis (which as noted earlier, is a separafrix). This

solution curve is the line segment joining (0,2 +0°A) w ith (0,2 +0a).

Numerical calculations produced the bifurcation diagrams contained in
appendix D. These diagrams suggest that for any value of o, the bifurcation
diagrams with A sufficiently close to 0, are gualitatively the same as those
with A=0 i.e. &A,o) is a continuous function of A. It can be seen that as
A<0 decreases the number of relative maxima in the bifurcation diagram
decreases and the qualitative structure resembles that of a bifurcation
diagram for g larger value of . This indicates that the number of relative
maxima in the bifurcation diagram for A<Q is dependent on both A and «.

The diagrams provide numerical evidence o support our conjecture that

8., A ,0) is monotonic increasing in both A and o.
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Conciusions.

The problem of self-heating in spherical domains has been studied
extensively in the past and values for 8., (B1i) are well documented. It was
shown in chapter iwo that an infinite  series  solution 1o the
Frank-Kamenetskil equations for exothermic chemical reactions in spherical
domains with arbitrary Biot number exists. This solution was shown to
converge for 8, small enough. An explicit relation for 8., in terms of 8,
was obiained by differentiating the serfes term by term. This relation holds
if 8y is small enough at criticality. It is well known that an infinite
muitiplicity of steady state solutions exists for exothermic chemical reactions
in spherical domains. Wake et al showed that the analytic condition needed

for this to occur is &=98.=2e". This result was generalised for

n-dimensional spheres (2<n<10) in chapter two with the analytic condition
being 0=90,. =2 (n—2)ev . This poses the interesting question {not addressed
in this thesis}: what makes the tenth dimension so special? For p2i0 we

showed d..=2 {n—Z)eTE. This result is direcily related to the previous

result and both relations are obtained via simple phase plane analysis.

The major portion of this thesis deall with the problem in spherically
annular domains. In chapters 3 and 4, it was shown that infinite
multiplicity of steady state solutions is not possible. This was first obtained
for the case A=0 and then generalised for A<Q using a simple continuity
argumenti. In spherical domains, there exisis a unique steady state solution.

We showed In chapter 3 that in spherically annular domains there exist ai

least two steady state solutions for any value of 0<d<d.,.. In chapter 4,



51

we saw that 6CI(A,OL) is monotonically increasing in both A, the heat

flux, and ¢, the inner radius.

in this thesis, ssveral conjectures were made motivated by numerical
evidence, e.g. Nye<—1In{x). Analysis may be conclusive 1o resolving these
questions and ultimately 1o extending the analylical theory underlying

self-heating in spherical and spherically annular geometries.

Attention was restricted to the self-heating problem in spherical and
spherically annular geomeiries. There are, however, other simple geometries
of interest which remain fo be explored analytically, e.g. an infinitely long
cylindrical annulus and the infinite slab. Another area for future work would

be 1o investigale the problem in these and other geometries.
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Appendix A.

Coefficients of

the Series Solutions.
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Coetficients

1.0000000Q000000E+0000
-1.66666666666667E-0001
2.22222222222222E-0002
-2.68959435626102E-0003
3.08152067411327E-0004
-3.40738365429723E-0005
3.67482372195488E-0006
-3.89083335972654E-0007
4.06102244741984E-0008
-4.19076321480907E-0009
4.28478315845212E-0010
-4.34733214859744E-0011
4.38223507895534E-0012
-4.39293548631422E-0013
4.38253296955721E-0014
-4.35381600589748E-0015
4,30929113823458E-0016
-4.25120916824707E-0017
4.18158880382698E-0018
-4.10223808739188E-0019
4.01477386442072E-0020
-3.82063950031317E-0021
3.82112102059436E-0022
-3.71736182456826E-0023
3.61037610356052E-0024
-3.50106107981094E-0025
3.35020816980588E-0026
-3.27851316541133E-0027
3.16658551733576E-0028
-3.05495679767312E-0028
2.94408841144016E-0030
-2.83437862081934E-0031
2.72616894113741E-0032
-2.61974985985981E-0033
2.51536663099018E-0034
-2.41322308617843E-0035
2.31348700571221E-0036
-2.21629358635993E-0037
2.12174914071370E-0038
-2.02893435972325E-0039
1.94090726748987E-0040
-1.85470588498483E-0041
1.77135069714729E-0042
-1.68084673578805E-0043
1.61318564886964E-0044
-1.53834742459318E-0045
1.46630200040541E-0046
-1.39701069432329E-0047
1.33042749710129E-0048
-1.26650022451770E-0049
1.205617155034272E-0050
-1.14637992831960E-0051
1.09006041374364E-0052
-1.03614539395440E-0053
9.84565236258252E-0055
-9.35248861065282E-0056
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o, and [3,.

-3.33333333333333E-0001
3.33333333333333E-0002
-3.17460317460317E-0003
2.98843817362338E-0004
-2.80138243101206E-0005
2.62106434945941E-0006
-2.44994814786992E-0007
2.28872550572148E-0008
-2.13738023548412E-0009
1.99560153086146E-0010
-1.86294819932701E-0011
1.738232859438498E-0012
-1.62305002924272E-0013
1.51480534010835E-0014
-1.41372031276039E-0015
1.31833818363560E-0016
-1.23122603949560E-0017
1.14897545087759E-0018
-1.07220225739154E-0019
1.00054587487363E-0020
-9.33668340562957E-0022
8.71253222291817E-0023
-8.13004472466885E-0024
7.58645270320258E-0025
-7.07916883051082E-0026
6.60577562228480E-0027
-6.16401485419251E-0028
5.75177748317777E-0029
-5.36709409717925E-0030
5.00812588782478E-0031
-4.67315620863518E-0032
4.36058249372206E-0033
-4.06890886736927E-0034
3.79673907226059E-0035
-3.54276990280308E-0036
3.30578504955949E-0037
-3.08464934004862E-0038
2.87830335830899E-0039
-2.68575840586671E-0040
2.50609180212746E-0041
-2.33844248095165E-0042
2.18200683527627E-0043
-2.03603528407734E-0044
1.89982779302141E-0045
-1.77273148227433E-0046
1.65413701612170E-0047
-1.54347578890043E-0048
1.44021721064257E-0048
-1.34386615868817E-0050
1.25396061833435E-0051
-1,17006946635216E-0052
1.09178040792343E-0053
-1.01874805022770E-0054
9.50592104545318E-0056
-8.86995708340768E-0057
8.27653859349807E-0058



A3

Reverted Coefficients for Bi = 1e-2 calculated using methods
discussed in__chapfer two.

gl -2.98507462686567E-0002 gz = 1.50142581811371E-0002
g3 -1.003941068562267E-0002 g4 =  7.54458069713687E-0003
g5 -6.04470640330430E-0003 g6 = 5.04329740530821E-0003
g7 -4.32715023573548E-0003 g8 =  3.789504486355507E-0003
g9 -3.37097804130388E-0003 qi0 = 3.03580632594863E-0003
gi1 = -2.76157428840117E-0003 giz = 2.53282727489792E-0003
gi3 = -2.33816663986616E-0003 gld = 2.17308886964258E-0003
gis = -2.02908839799547E-0003 gie = 1.90303399289094E-0003
gi7 = -1.79176502355472E-0003 glg = 1.69282217121708E-0003
gie = -1.60426309393779E-0003 g20 = 1.562453333683338E-0003
g21 =  -1.45237408894281E-0003 g22 = 1.38675507089286F-0003
g23 = -1.32682491442814E-0003 g24 = 1.271873983344832E-0003
ges = -1.22130582157261E-0003 g26 = 1.17461587444851E-0003
g27 = -1.13137404672316E-0003 g28 = 1.09121163604359E-0003
g29 = -1.05381071934419E-0003 g30 = 1.01889568876944E-0003
g31 = -0.86226488044268E-0004 g32 = 9.55592961062080E-0004
g33 = -9.26810426988683E-0004 g34 = 8.99715889888197E-0004
g35 = -8.74164953840290E-0004 g36 = 8.50029243236020E-0004
g37 = -8.27194238421545E-0004 g38 = 8.05557460387133E-0004
g3% =  -7.85026918719255E-0004 g40 = 7.65519810884594E-0004
g4l = -7.46861397599546E-0004 g4z = 7.259284043281719E-0004
g43 = -7.12426388382204E-0004 gdd = 6.96332633229139E-0004
g45 =  -6.80951916352832E-0004 g4 = 6.66237775050677E-0004
g47 = -6.52147682921570E-0004 g48 = 6.38642671480286E-0004
g48 = -6.2568708649033%E-0004 go0 = 6.13248413849199E-0004
g51 = -6.01297749007256&-0004 g52 = 5.89810485887406E-0004
gh3 = -5.78768479187348E-0004 god = 5.68163778341887E-0004

Where 9a=1, in formula 2.18.



Ad

Reverted Coefficients for Bi = 1e-1 calculated using methods
discussed _in_ chapter two.

o = -2.85714285714286E-0001 ge = 1.50826044703596E-0001
g3 = -1.03436442928321E-0001 g4 = 7.80843287470071E-0002
g5 = -6.41988675651577E-0002 g6 =  5.41341532698961E-0002
g7 = -4.68628874201897E-0002 g8 = 4.13566858255592E-0002
g9 = -3.70387864034960E-0002 gl = 3.35593315912880E-0002
gii = -3.06940190568024E-0002 gig = 2.82922548942502E-0002
g13 = -2.62491233844067E-0002 gi4 = 2.44892565857101E-0002
gi5 = -2.28570973981269E-0002 gi6 = 2.16107786008851E-0002
gl17 = -2.04181423831337E-0002 gi8 = 1.93540739702673E-0002
gig = -1.83986685838869E-0002 g20 = 1.75635%485121113E-0002
g21 = -1.67529297734748E-0002 g22 = 1.603895828283851E-0002
g23 = -1.53852050147236E-0002 g24 = 1.47842909787821E-0002
ges = -1.42300005708230E-0002 g26 = 1.37170604387500E-0002
g27 = -1.32409670178651E-0002 g28 = 1.27978506674911E-0002
g29 = -1.23843676465866E-0002 930 = 1.19976134859247E-0002
g31 = -1.16350529650816E-0002 g32 = 1.12944630918480E-0002
933 = -1.09738863487439E-0002 g34 = 1.06715921103348E-0002
g35 = -1.03860448108371E-0002 g36 = 1.01158761981375E-0002
q37 = -5.859864883861226E-0003 g38 = 9.61691542456744E-0003
g39 =  -9.38604322388004E-0003 gd0 = $.16636072087385E-0003
gd41 = -8.895706567946868E-0003 g42 = 8.75743115624253E-0003
g43 =  -8.56679682480624E-0003 g44 = 8.38456139208889E-0003
g45 =  -8.210175814B0748E-0003 g46 = 8.04313690627011E-0003
gd7 = -7.88298064314162E-0003 gs0 = 7.43954374976561E-0003
g51 =  -7.30263227406864E-0003 g52 = 7.17025857448661E-0003
g53 = -7.04148611837828E-0003 g54 = 6.91485859646943E-0003
gob = -6.78658818642612&-0003

Where 9, =1

n in formula 2.18.



A5

Reveried Coefficients for Bi = 1 calculated using methods discussed

in__chapter two.

g1 = -2.00000000000000E+0000 g2 = 1.33333333333333E-0000
g3 = -1.05185185185185E+0000 g4 = 8.91005281005291E-0001
g5 = -7.84953164805017E-0001 g6 = 7.08873215753878E-0001
g7 = -6.51160856155520E-0001 g8 = 6.05607417906403E-0001
g9 = -5.68566298104328E-0001 gl0 = 5.37743423134466E-0001
g1 = -5.11617373999053E-0001 giz = 4.89135991318664E-0001
gl3 = -4.695464162138089E-0001 gl4 = 4.52254458783298E-0001
gls = -4.36962504182641E-0001 gis = 4.23228042360168E-0001
gl7 = -4.10842446011966E-0001 gig = 3.99602583536789E-0001
Q19 =  -3.89348129047204E-0001 g20 = 3.79947459778371E-0001
g21 = -3.71292022946211E-0001 g22 = 3.63291419790631E-0001
g23 =  -3.55869706574749E-0001 g24 = 3.48862572885833E-0001
gz25 = -3.42515162230378E-0001 g26 = 3.36480368522024E-0001
g27 =  -3.30817497227153E-0001 g28 = 3.25491184438200E-0001
g29 = -3.20470545895038E-0001 g30 = 3.156728474123612E-0001
g31 = -3.11241069471414E-0001 g3z = 3.06987171263511E-0001
g33 =  -3.02947969512956E-0007 g34 = 2.99106681259042E-0001
g35 =  -2.95448279212480E-0001 g36 = 2.91959263532757E-0001
g37 = -2.88627471114857E-0001 g38 = 2.85441922321105E-0001
g38 = -2.82382715798572E-0001 g4l = 2.79471004038416E-0001
g41 = -2.76669127806542E-0007 g42 = 2.73981081302460E-0001
g43 =  -2.71403676209592E-0001 g44 = 2.68939199961719E-0001
gdb =  -2.66601337322424E-0001 g46 = 2.64428418690486E-0001
g47 = -2.62573496283609E-0001 g48 = 2.61073367934797E-0001
g49 = -2.60606765386745E-0001 gs0 = 2.62251138015474E-0001
gs1 =  -2.68564320886832E-0001 gse = 2.85170640867523E-0001
g53 =  -3.24062867822842E-0001 g4 = 4.08847911653151E-0001
gbs = -5.80715561688978E-0001

Where 9a=1, in formula 2.19.



Reverted Coefficients

AB

using methods discussed

g13
gl15
ql17
Q1%
g2
g23
ges
gav
g29
g31
g33
g35
Q37
g38
041
g43
g45
g47
g49
g51
g53
g55

for Bi = 10 calculated
in _chapter two.
-5.00000000000000E+0000 g2
-3.44659391534382E+0000 g4
-2.80520631251296E+0000 g6
-2.80676922837554E+0000 g8
-2.41107613468118E+0000 gl0 =
-2.27015284318319E+0000 giz =
-2.16250313702737E+0000 gld4 =
-2.07685813420260E+0000 gl =
-2.00666204354367E+0000 gig8 =
-1.847805684224534E4+0000 g20 =
-1.89756429771845E+0000 gee =
-1.85405023912543E+0000 ged =
-1.81580844109077E+0000 026 =
-1.78213758149060E+0000 g28 =
-1.75197947690554E+0000 g30 =
-1.72484802080226E+0000 g32 =
-1.700281738786783E+0000 g34 =
-1.87791049083114E+0000 g3t =
-1.65742443669573E+0000 g38 =
-1.63852305393125E+0000 g40 =
-1.620806835724576E+0000 g4z =
-1.60398091019402E+0000 g4d =
-1.58450531497301E+0Q000 g46 =
-1.68309798554633E+0000 g48 =
-2.80148348017254E+0000 g50 =
-1.32957351246095E+0001 ghe =
-8.89447711671987E+0001 g4 =

-7.42248735876477E+0002

3.95833333333333E+0000
3.12801408179012E+0000
2.73809974129621E+0000
2.50003580907758E+0000
2.33545618736804E+0000
2.213023%08939039E+0000
2.11741512602269E+0000
2.04012718432259E+0000
1.87601108178606E+0000
1.92174131745465E+0000
1.87506100307936E+0000
1.83437713989688E+0000
1.78852875133247E+0000
1.76664695618616E+0000
1.73806673819015E+0000
1.71226919773190E+0000
1.68884214840954E£+0000
1.66744986780375E+0000
1.64772668628992E+0000
1.62954855358995E+0000
1.61224746702680E+0000
1.58689414831766E+0000
1.60840312127353E+0000
1.946760811380827E+C000
5.43842013107610E+0000
3.60215684183874E+0001
2.74896776173989E+0002

Where 9a=1, in formula 2.19.



A7

Reverted Coefficients for Bi = 180 calculaied using methods
discussed in  chapter two.

gl = -5.88235294117647E+0000 g2 4.70520388086030E+0000
g3 = -4.111317596613829E+0000 g4 3.73784871301747E+0000
gd = -3.47525480873438E+0000 g6 3.27765825047220E+0000
g7 = -3.12201487452431E+0000 g8 2.99531420334547E+0000
gs = -2.88957849899587E+0000 gio 2.79961087463255E4-0000
gll = -2.72185376070772E+0000 gl2 2.65378443214823E+0000
gi3 = -2.58355468503643E+0000 gld 2.53877564703236E+0000
gis = -2.49138058905909E+0000 g16 2.44753473158548E+0000
gi7 = -2.40757412752146E+0000 gisg 2.37096315213701E+0000
gi9 = -2.33726425322409E+0000 g20 2.30611598880645E+0000
g21 = -2.277216795718383E+0000 gze 2.25031279917743E+0000
023 = -2.22518852798778E+0006C g24 2.20165974798734E+0000
g 25 = -2.17956786644232E+0000 g26 2.15877551534124E+0000
g27 = -2.13916303068470E+0000 g28 2.12062562026703E+0000
geg = -2.10307106576825E+0000 g30 2.08641784298525E+0000
g3l = -2.07059357087652E+0000 g32 2.06553371874376E+0000
g33 = -2.04118050533037E+00080 g34 2.02748191529424E40000
g35 = -2.01438067705807E+0000 g36 2.00188278715023E+0000
g37 = -1.98985431406915E+0000 g38 1.97831286154879E+0000
g3% = -1.96715124716632E+0000 g40 1.95617730378756E+0000
g4l = -1.94489408585138E+0000 g42 1.93128347033780E+0000
g43 = -1.81401482887556E+0000 g44 1.88237037048341E+0000
g4b = -1.81625793652136E+0000 g46 1.66757748466387E+0000
g47 = -1.32977858552376E+0000 g48 5.77283656712317E-0001
g49 = 1.04521753878383E+0000 g50 -4.41269620235019E+0000
g51 = 1.11342958894200E+0001 g52 2.41186333415351E+0001
gh3 = 4.89428302364219E+0001 g54 9.84665096439660E+0001
ght = 2.10347043102764E+0002

Where 9n=T, in formula 2.19.



A8

Reverted Coefficients for Bi = 1000 calculated using methods
discussed in chapter two.

gl -5.98802395208581E+0000 g2 = 4.79041200470442E+0000
g3 -4,18580630970364E+0000 g4 =  3.80571446844773E+0000
g5 -3.53838344576266E+0000 g6 =  3.33721541841173E+0000
g7 -3.17875577315844E+0000 g8 = 3.04976085017862E+0000
g9 -2.94217048814731E+0000 gio = 2.85051115264476E+0000
git = -2.77134418069222E+0000 giz = 2.702040298886873E+0000
g13 = -2.64071792203779E+0000 gid = 2.58596307765684E+0000
gls = -2.53668974862604E+0000 gis = 2.49204805494240E+0000
gl7 = -2.45136203486541E+0000 gi8 = 2.41408636802797E+0000
gig = -2.37977557963881E+0000 g20 = 2.34806168172513E+0000
g2i = -2.31863764797718E+0000 g22 = 2.29124500404693E+0000
g23 = -2.26566437388872E+0000 g24 = 2.24170818412655E+0000
925 = -2.21921496717052E+0000 Q26 = 2.19804486469885E+0000
g27 = -2,178076804347422E+0000 ge8 = 2.1582018123263%E+0000
geg = -2.14132828352555E+0000 g30 = 2.12437246061082E+0000
g31 = -2.10826066328914E+0000 g3z = 2.09292722215584E40000
g33 = -2.07831339802437E+0000 g34 = 2.06436650835938E+0000
g35 = -2.05103929186030E+0000 g36 = 2.03828960836123E+0000
g37 = -2.02608059755322E+0000 g38 = 2.01438110081985E+0000
g3% = -2.00316443746140E+0000 g40 = 1.99239744461148E+0000C
g41 = -1.98199284845072E+0000 g4z = 1.97164793635874E4+0000
g43 = -1.96036238345656E+0000 gd4d = 1.94513600658498E+0000
g45h = -1.81768375796877E+0000 gd46 = 1.85663671408631E+0000
g47 = -1.70995013710460E+0000 g48 = 1.35698573820418E+0000
g42 = -5.3008735%068133E-0001 go0 = -1.34127774682865E+0000
gh1 = 5.42630845029775E+0000 gh2 = -1.40137195168585E+0001
gh3 = 3.12752767568014E+0001 g54 = -6.37051233420559E+0001
ghst = 1.16782352280492E+0002

Where 9n=T, in formula 2.19.



A9

Reverted Coefficients for Bi = 10000 calculatied using methods
discussed in chapier two.

gl -5.98880023995201E+0000 g2 = 4.73804012000479E+0000
g3 = -4.19344894880114E+0000 g4 = 3.81257074468559E+0000
g5 = -3.54475838502425E+0000 as = 3.34322809388786E+0000
g7 -3.18448306596720E+0000 98 = 3.05525580944013E+0000
09 -2.94741154753355E+0000 gio = 2.85564721653638E+0000
gll = -2.77633763849574E£+0000 giz = 2.706908381380950E+0000
gi3 = -2.64547606953221E+0000 gld = 2.59062258658067E+0000
g15 = -2.54126049219333E+0000 gl = 2.49653837579256E+0000
gt7 = -2.4557750b823533E+0000 gl8 = 2.41843623700650E+0000
g19 = -2.38406363497231E+0000 g20 = 2.35229260136145E+0000
g21 = -2.32281555685684E+0000 g2z = 2.29537356154280E+0000
g28 = ~2.26974684422000E+0000 ge4 = 2.24574749361992E+0000
g25 = -2.22321375121758E+0000 g26 = 2.20200550649892E+0000
g27 = -2.18200070604015E+0000 g28 = 2.16309246471803E+0000
ge2g = -2.145186721867625E+0000 g30 = 2.128200322333878E+0000
g31 = -2.11205943538887E+0000 g32 = 2.09669823348475E+0000
g33 = -2.08205778230184E+0000 934 = 2.06808510156776E+0000
g35 =  -2.05473240389399E+0000 g36 = 2.04195663202385E+0000
g37 = -2.02871970364593E+0000 g38 = 2.01733053021145E+0000
g3% = -2.00675106980089E+0000 gdld = 1.99601015367763E+0000
g4t = -1.98582810099869E+0000 g42 = 1.97634213517061E+0000
g43 = -1.96772468041027E£+0000 g44 = 1.95980821378841E+0000
g4s = -1.85050843850498E+0000 g46 = 1.93047075350502E+0000
gd7 = -1.86672565681713E+0000 g48 = 1.65592150286197E+0000
g49 =  -9.96528325001958E-0001 gb0 = -9.47066269783015E-0001
ght = £.39326596987562E+0000 gb2 = -2.09902315045323E+0001
953 = 5.84626886545748E40001 g54d = -1.50281910498445E+0002
g55 = 3.63064157953565E+0002

Where Fn=1, in formula 2.19.



Reveried

coefficients for Bi = oo,

calculated

using

A10

methods discussed

gl

g3

gs

a7

g9

gli
gl3
gi5
g17
gi9
g21
g23
ges
g2?
g29
g3t
g33
g35
g37
Q39
g4
g43
g4s
a47
g49
g51
g53
gsh

1]

]

11

Il

If

il

1l

in__chapter

two.

-6.00000000000000E+0000
-4.19428571428571E+0000
-3.54546740878169E+0000
-3.18512003013162E+0000
-2.94800109377431E+0000
-2.7768%296708058E+0000
-2.64600522347334E+0000
-2.54176880108852E+0000
-2.45627026921343E+0000
-2.38454050146712E+0000
-2.32328017251645E+0000
-2.27020084506476&+0000
-2.22365844469115E+0000
-2,18243715885085E+0000
-2.14561583473969E+0000
-2.11248207606044E+0000
-2.08247521913246E+0000
-2.05514748362876E+0000
-2.03013458355339E+0000
-2.00709802985882E+0000
-1.98530629384253E+0000
-1.96050486911356E+0000
-1.90831943431656E+0000
-1.74711715837690E+0000
-1.704138001246%9E+0000
-8.13756519500374E+0000
-8.35863647600009E+0001
-6.76095282054375E+0002

g2

g4

g6

g8

gi0
giz
gid
gi6
gi18
g20
g22
g24
026
g28
g30
g32
g34
g36
038
g40
g42
g44
g46
48
a50
gh2
954

4.80000000000000E +0000
3.81333333333333E+0000
3.34389680922252E+0000
3.05586692623569E+0000
2.85621840839456E+0000
2.70745035552677E +0000
2.59114076881710E+0000
2.49703773941667E+0000
2.41891997869533E+0000
2.35276311301966E4+0000
2.09583268824899E+0000
2.24619669413671E+0000
2.20244595853662E +0000
2.16352514185693E+0000
2.12862608259204E+0000
2.09711805262372E+0000
2.06850084844576E+0000
2.04237208377709E +0000
2.01839416352757E+0000
1.99614795708253E+0000
1.97395188422468E+0000
1.94123835962808E+0000
1.84821452099100E+0000
1.62864190724752E+0000
2.86605334037847E+0000
2.66167789622140E+0001
2.45179360545769E +0002

Where gnzl:n in formula 2.19.



Appendix B.

Calculated Values For Ng.

Bi



B2

Table _B1.
o|d 1e-120 4§ 1e-100 1e-80 1e-20 1e-14 e-7
1e-1 2 4 4 2 2 ¢
1g-2 2 4 ? 2 2 3]
1e-3 2 5 ? 2 2 a
1e-4 2 6 ? 2 2 0
ieg-5 2 & ? 2 2 0
1e-6 2 6 ? 2 2 0
Values for Ng when Bi=01 A=0.
Table B2
a|§|te-11jte-10} 1e-9 ) 1e-8 3 1e-7 | Te-4 | 1e-3 | ie- e-1 1
1e-1 4 * 4 4 2(3) 2 2 2 2 2 0
1e-2 2 6 4 4 4 4 4 4 2 0
ie-3 2 6 6 3 4 4 4 4 2 0
1e-4 2 3 8 8 4 4 4 4 4 8]
1e-5 2 8 8 6 4 4 4 4 4 ]
1e-6 2 6 8 6 4 4 4 4 4 g
Values for Ng when Bi=.1 A=0
Table B3
oS A 2 27 .3 .4 5 7 .8 .9 1
1e-1 2 2 2 2 2 2 2 2 2 0
1e-2 2 4 4 4 4 4 2 2 2 0
1e-3 2 6 B 6 4 4 4 4 4 0
1e-4 2 6 3 8 4 4 4 4 4 a
ie-5 2 6 10 8 4 4 4 4 4 0
1e-6 2 8 >10 8 4 4 4 4 4 0

Values for Ng when Bi=1 A=0.

7. Number of solutions undetermined.

MYt
=10

oo "

At least 10 solutions.

“Type 3 curve present




B3

Table B4
ald 1 1.5 1. o 1.7 1.8 2 2.7 2.8 3
Te-1 2 2 2 2 2 2 2 2 2 0
1e-2 2 4 4 4 4 4 3(4) 2 0 0
1e-3 2 5 6 6 6 4 4 4 0 0
1e-4 2 6 6 8 B 4 4 4 0 0
1e-5 2 6 6 10 8 4 4 4 0 0
1e-6 2 6 S >10 8 4 4 4 0 ]

Values for Ng when Bi=10 A=0.

Table Bs
a8 A .5 1. 1.8 1.9 i 2.2 2.5 3.2 3.5
Te-1 2 2 2 2 2 2 2 2 2 0
1e-2 2 2 4 4 4 4 4 2 2 0
1¢-3 2 2 4 4{5} 6 8 4 4 2 ]
fe-4 2 2 6 8 6 8 4 4 4 0
1e-5 2 2 3 8 6 10 4 4 4 0
ie-6 2 2 6 6 6 >10 4 4 4 0

Values for Ng when Bi=100 A=0.

Table B6
alsd i 1.8 1. 1.8 1.9 - 2.1 2.8 3.2 3.4
Teg-1 2 2 2 2 2 2 2 2 2 0
1e-2 2 2 4 4 4 4 4 2 2 0
1e-3 2 2 4 4 3] & 6 4 4 0
ie-4 2 2 3 8 6 8 6 4 4 0
1e-5 2 2 6 6 6 10 8 4 4 0
1e-6 2 2 8 6 8 >10 8 4 4 0

Values for Ne when Bi=10000 A=0.

?: Number of solutions undetermined.

**,6
L0 P

>10: At least 10 solutions.

“Type 3 curve present.




Appendix C.

Graphs of the Function T;gi(qo)-

Ct
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Graph of the Function Tsg;.
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Graph of the Function Tgg;.
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Appendix D.

Bifurcation Diagrams.

(R
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Bifurcation Diagram.
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Bifurcation Diagram.
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Bifurcation Diagram.
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Bifurcation Diagram.

16.0

12.0

10.0

0.000 0.010 0.020 0.030 0.040

Figure D.1.4

QR @
THL
= g

[H




D7

Bifurcaticn Diagram.
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Bifurcation Diagram.
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Bifurcation Diagaram.
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Bifurcation Diagram.
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Bifurcation Diagram.
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Bifurcation Diagram.
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Bifurcation Diagram.
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Bifurcation Diagram.
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Bifurcation Diagram.
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Bifurcation Diaagram.
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Bifurcation Diagram.
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Bifurcation Diagram.
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