
Copyright is owned by the Author of the thesis. Permission is given for 
a copy to be downloaded by an individual for the purpose of research and 
private study only. The thesis may not be reproduced elsewhere without 
the pennission of the Author. 



MULTIPLICITY OF SOLUTIONS OF A NONLINEAR BOUNDARY VALUE PROBLEM 
ARISING IN COMBUSTION THEORY. 

by 

Patrick Joseph Kelly 

A thesis 
presented to Massey University of Palmerston North 

in fulfilment of the 
thesis requirement for the degree of 

Master of Science 
in 

Mathematics. 

Palmerston North, New Zealand, 1991 
Patrick Joseph Kelly. 



ii 

Abstract 

The problem of self-heating in spherical and spherically annular 

domains is addressed in this thesis. In particular, the Frank-Kamenetskii 

model is used to investigate the multiplicity of steady state solutions in these 

geometries. The differential equations describing this model depend crucially 

on a parameter, the "Frank-Kamenetskii" parameter; for spherical geometries 

it is known that: (a) a unique solution exists for sufficiently small 

parameter values, (b) there is a value of the parameter such that an 

infinite number of solutions exist. A convergent infinite series solution is 

developed for the problem in a spherical domain. The multiplicity of 

solutions when the problem is posed in spherically annular domains is then 

explored. It is shown, in contrast to (b), that multiple solutions exist for 

arbitrarily small parameter values and that no value of the parameter 

produces infinite multiplicity. 



iii 

ACKNOWLEDGEMENTS. 

To my supervisor Professor G.C. Wake .... 

Thanks Graeme for a wonderful year. Your guidance and patience were invaluable. 

To Doctor Bruce van Brunt... 

Thanks for your help in proof reading this thesis and for the discussions on series 

convergence. 

To our computer consultant Richard Rayner, who was always available with cheerful 

efficient advice on matters computing. I have finished now so your weekends are 

your own and the equipment will work properly. 

To my roomates, Daniel and Kim, who were always there with cheerful thoughts and 

helpful advice. Thanks for putting up with me. A special thanks to Daniel for putting 

up with my lousy chess playing, those stress relieving games were a godsend. 

To Margaret and Graeme Murdoch with whom i boarded for four years while 

completing my studies. Thanks for everything. 



iv 

DEDICATION. 

I dedicate this thesis to those love 

My parents, Roxy and Brian, 

My brothers and sisters, 

Chris and Annette, 

Jason, 

Deborah, 

Richard, 

Rebecca. 

My nephews 

Daniel, 

David. 

Thanks for all the love and support you have given me over the years. 

Yes have finally finished and here it is ... 



CQ\JTENTS 

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i i 

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i i i 

DEDICATION iv 

Chapter 

1 . INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

2. 

The Theory of Thermal Ignition . . . . . . . . . . . . . . . . . . 1 
Formulating the Problem and Boundary Conditions . . . . 9 

AN INFINITE SERIES SOLUTION ............ . 
A Solution to the Frank-Kamenetskii Equations 
with Infinite Biot number . . . . . . . . . . . . . . . . 
A Solution to the Frank-Kamenetskii Equations 
with Arbitrary Biot Number . . . . . . . . . . . . . 
A Look at n-Spherical Domains . . . . . . . . . . . 
An Infinite Series Solution in n-Spherical Domains 

1 4 

1 4 

. . . . . 2 1 
24 
28 

3. THE SPHERICAL ANNULUS . . . . . . . . . . . . . . . . . . . . . . . . 3 O 

4. BIFURCATION DIAGRAMS . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 

CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 0 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 

APPENDIX A 

Coefficients of the Series Solutions . . . . . . . . . . . . . . . . A 1 

APPENDIX B 

Calculated Values For No: . . . . . . . . . . . . . . . . . . . . . B 1 

APPENDIX C 

Graphs of the Function To,Bi 8 0 ) . . . . . . . . . . . . . . . . . C1 

APPENDIX D 

Bifurcation Diagrams . . . . . . . . . . . . . . . . . . . . . . . . D 1 



Chapter 1 
Introduction 

1.1 The theory of thermal ignition 

The theory of thermal ignition addresses the question of what happens to 

a combustible substance when it is placed in a vessel, the walls of which 

are maintained at a prescribed temperature T O (usually constant). Under 

certain conditions, one observes a rapid rise in the temperature of the 

substance to a high value near the theoretical maximum temperature of 

explosion. Under other conditions, in contrast, only a small rise to a 

stationary level is observed. This small temperature rise remains constant 

until a large portion of the material has reacted. The conditions under which 

the transition occurs from one range to the other, for a small change in the 

external parameters, are termed the critical conditions of ignition. 

When investigating the problem of thermal ignition, we consider the 

equation of heat conduction with continuously distributed sources of heat, 

dT 
cp-='v .(A'vT)+q, at ( 1 . 1 ) 

where T is the temperature, c the heat capacity, p the density of the 

substance, A the thermal conductivity, and q the density of the sources of 

heat, that is, the quantity of heat evolved as a result of chemical reactions 

in a unit volume per unit time. 

Solving this equation under the boundary conditions involving a given 

temperature To at the surface of the wall gives the temperature distribution 
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in the vessel as a function of time. The nature of this dependence changes 

sharply at the critical conditions, where there is an abrupt transition from 

a small constant temperature rise to a large and rapid rise. Owing to the 

formidable mathematical difficulties involved in integrating the partial 

differential equation (1.1) one normally resorts to one of two 

approximations which are well known in the nonstationary and stationary 

theories of thermal explosion. 

In the stationary theory, the spatial temperature is not taken into 

consideration; instead, a mean temperature is introduced and assumed to be 

equal at all points of the reaction vessel. This assumption is admittedly not 

valid in the conduction range where the temperature is by no means localised 

at the wall. This approach, however, does allow the temperature dependence 

on time to be examined; consequently, one can also determine the induction 

period, that is, the time within which an explosion occurs. Although the 

nonstationary theory is an integral part of the theory of thermal ignition, 

we will not deal with it any further. Instead, we will examine the stationary 

theory of thermal ignition in symmetrical regions. 

In the stationary theory, only the temperature distribution over the 

vessel is considered and its change in time is not taken into account. The 

conditions under which the stationary temperature distribution becomes 

highly sensitive or even discontinuous due to changes in the external 

parameters are termed the critical conditions of ignition. 

The stationary form of the heat conduction equation (1.1) is 

( i . 2) 

In most cases, however, the temperature dependence of the heat conductivity 

is neglected and the above equation reduces to 
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2 
"AV T+q=O. ( 1 . 3) 

If the rate of reaction depends on the temperature in accordance with 

Arrhenius' Law then it can be represented by 

Z 
_ -E/RT 

,-Ze ( 1 . 4) 

where Z is the rate of reaction, T the absolute temperature, R the gas 

constant, and E and z are parameters characteristic of the given chemical 

reaction. The quantity E is termed the activation energy and represents the 

amount of energy required for a mole of the substance to react. The factor z 

depends on the pressure and composition of the substance, but not on the 

temperature in a first approximation. In this approximation one also assumes 

that the rate of reaction is independent of the loss of reactant. The density 

of the sources of heat can thus be expressed as 

-E/RT 
q=Qze , 

where Q is the thermal effect of the reaction per unit volume. Equations 

(1.3) can now be written in the form 

n2 + Q -E/R T _ Q 
v T -ze - · 

A 
( 1 . 5) 

We can rewrite this equation in terms of a dimensionless temperature and 

spatial coordinate by taking 

U=RT/E ( 1 . 6) 

as the dimensionless temperature and 
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as the dimensionless spatial coordinates, where, x are the dimensional spatial 

coordinates and ,e is a typical length such as the radius or half-width of the 

vessel such that, on the surface llyll=1, the boundary condition is 

u=uo =RT 0 /E. 

In this way we have only the one dimensionless parameter 

'Y=QzRf2 /AE 

in the differential equation and a second dimensionless parameter 

uo =RTo /E 

in the boundary condition. The equation now has the form 

n2 -1/u O 
y u+re = . 

y 
( 1 . 7) 

If u is a solution to this equation and satisfies the boundary condition, then 

u = f (y ,'Y ,uo ) , ( 1 . 8) 

giving the temperature u as a function of y with the two parameters Y 

and uo. This represents the most general solution of the problem of thermal 

ignition in a purely conductive heat exchange. The condition under which a 

stationary temperature distribution is parametrically sensitive, that is, when 

a rapid rise in temperature occurs for a small change in the parameter Y , 

should be of the form 

"f = g (Uo}' ( 1 . 9) 
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as neither the equation nor the boundary condition contain any parameters 

other than uo and y. However, an empirical fact of great importance is that 

uo is small, i.e. 

uo =RTo /E<<l, 

and so it is reasonable to look for the limiting form of (1.9) corresponding 

to uo ~ O. Moreover, if we consider u 0 < < 1 , we not only obtain more 

tractable results, but also specific features proper to combustion stand out 

more distinctly [13]. In examining this limiting case, we must keep in mind 

that we are considering a stationary temperature distribution below the 

explosion limit where the temperature rises are small. 

Let U=T-To where it is assumed that u<<To: this is equivalent to 

uo << 1, a fact that will be established later. Now 

1) 
-E/RT_ -E/R(D+T 0 )_ -E/R'f,(1/(1+-)) 

e -e -e 

and since u <<To, the quantity 

1 

u 
1+-

To 

can be estimated using a binomial series expansion and neglecting all terms 

of order ( Tuo r thus, 

U 2 

-E/RT _ -E/RT0 (1--) _ -E/RTc EU/RTo 
e -e To -e e ( 1 . 1 0) 

Using the above approximation, equation (1.5) can be written 
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n2 +_g_ -E/RTo ED/RT~-Q 
v u 1cz e e - , (1.11) 

subject to the boundary condition U=O at the wall of the vessel. 

Let ( 1 . 1 2) 

Transforming (1 .11) into the dimensionless variables 0 and y we now have 

n20+~ n2 -E/RTo 0=0 
v 2 z.{. e e , 

y ART 
0 

( 1 . 1 3) 

and the boundary condition at the surface Jlyll=1 is 0= 0. The differential 

equation and boundary condition now contain only the one dimensionless 

parameter 

s: _ QE 2 -E/RTo 
u---zf e , 

RAT 2 
0 

(1.14) 

which, in this approximation, characterises the properties of the substance 

and the vessel shape. The problem of thermal ignition can therefore be 

represented by the non-linear differential equation 

(1.15} 

and the boundary condition at the surface of the vessel 0=0, Jlyll 1. This 

approach was first developed by Frank-Kamenetskii [13] and the parameter 

o is called the Frank-Kamenetskii parameter. 

If 0 is a solution to (1 .15) representing a stationary distribution then 
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e f(y,8). ( 1 . 1 6) 

The critical condition of ignition depends solely on 8 as neither the 

differential equation nor the boundary condition contain any parameters other 

than 8. Thus, there exists a 

8 = constant= Ber ( 1 . 1 7) 

such that a stationary temperature distribution becomes impossible. If the 

conditions of any experiments give a value of 8 less than the critical value 

Ber a stationary temperature distribution should establish itself; if not, an 

explosion or thermal runaway will occur (see figure 1 .1). 

The value of Ber depends crucially on the shape of the vessel, and the 

values are well known for simple geometric shapes. For a spherical vessel, 

8er=3.3219; for an infinitely long cylindrical vessel, 8cr=2.00; and for a 

vessel with two infinitely long parallel planar surfaces (the infinite slab ), 

bcr=0.878. These values calculated from the theory of thermal ignition are 

in close agreement with the experimental values obtained from substances 

whose kinetics are known [8]. 

From the solution (1 .16), we can see that the maximum temperature 

rise below the explosion limit is given by 

2 
RT 0 

Um.ax= (T-To) =--f(Q.Ocr), 
- max E 

( 1 . 1 8) 

where we have assumed that the vessel is symmetric, and consequently the 

2 
RT 0 

hottest point is at y= o. Since u = -- below the explosion limit R To<< E 
E ' 

and therefore u <<To. Thus the assumption u << TO made in the derivation 
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Bifurcation Diagram. 
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Figure 1.1 

The critical value of the parameter 8. 
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of (1.10) is equivalent to u 0 <<l · If, however, R T o is not small compared 

to E then we do not get the characteristic picture of the combustion 

phenomena; instead , we are dealing with the theory of the nonisothermal 

course of a chemical reaction, a limiting form of which is considered in the 

theory of combustion and thermal ignition. 

1.2 Formulating The Problem And Boundary 

Conditions. 

Thus far we have considered only vessels whose walls were held at a 

fixed temperature equal to that of the surrounding medium. We now consider 

the case when heat released in the reaction warms the vessel walls and the 

surrounding medium , whose temperature typically changes if the heat 

exchange between the two mediums is not too rapid . Any steady-state theory 

of thermal explosion that includes this effect must begin with the complicated 

manner in which heat is exchanged between the reactive medium and the 

vessel walls. This problem is not addressed here but has been discussed by 

Borzykin and Marzhanov [9] and by Thomas [1 OJ . The temperature 

distribution inside such a wall rapidly becomes quasistationary and the 

temperature on the inner surface of the wall is given by the Newtonian heat 

exchange equation [7], 

dT 
A an = - a ( T - To ), ( 1 . 1 9) 

where the heat flux on the left is calculated for the reacting substance next 

to the vessel surface (n is a unit outward normal to the wall) and the heat 

flux on the right is calculated from the conditions of heat exchange between 

the wall and the surroundings . Here T o is the temperature of the 
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surroundings far from the vessel surface, 'A the heat conductivity, a the heat 

transfer coefficient depending on the nature of the heat transfer between the 

vessel and the surroundings and £ a measure of length. Equation (1.12) can 

be rearranged as 

RT 2 

(T-T0 )= --0 0. 
E 

Differentiating the above equation yields 

2 
aT 1 ARTo ae 

A-=---an f E an' 

and substituting this into (1.19) gives 

which in turn yields 

2 2 
1 ART 0 ae RT 0 ----=-a--8 
f E an E ' 

ae + a£8=0. 
an A 

The Biot number is defined as 

. af 
Bi=-

"A' 

giving the so called arbitrary Biot number condition on the boundary 

ae +Bi.B=o. 
an ( 1 . 2 0) 
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When Bi-'> oo equation (1.20) becomes the Frank-Kamenetskii boundary 

condition 8=0. When Bi-'> o there is no heat exchange and an adiabatic 

thermal explosion occurs. Our problem can thus be stated 

The sphere. 

ae +B iB = o 
an 

in region, 

( 1 . 2 1 ) 

on boundary. 

In the next chapter we consider a sphere of reactive material with 

radius R. Neglecting reactant consumption and using the Frank-Kamenetskii 

truncation along with the dimensionless variables 0 and r, the dimensionless 

form of the radius, the governing system of equations is (1 .21) where 

s: _ QE 2 -E/RTo 
u---zl!. e 

RAT 2 

0 

is the Frank-Kamenetskii parameter. The symmetry of the reactive medium 

implies that there is no heat flux at the centre of the sphere therefore we 

have the condition 

d0 
dr 

=o 

=O 

It is known [2], that the non-linear heat conduction equation in a 

spherical region with sources depending on the temperature, admits only 

spherically symmetric solutions (provided the boundary conditions are also 
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spherically symmetric). Thus for spherical geometries, system (i .2i) is 

equivalent to 

ct2 0 2 d0 e -+--+8e =O 
dr2 rdr ' 

cte (1 ) + B if) U ) = 0 , 
dr 

d0 (0 ) = 0' 
dr 

( i . 2 2) 

This is the Frank-Kamenetskii model for steady state thermal regimes in a 

spherical region, and it is known [i], to have a gross multiplicity of steady 

state solutions for an arbitrary Biot number. The analytic condition for 
-2 

infinite multiplicity is 8
00 

= 2 elli. In chapter two we find an infinite series 

solution to the system (i .22). We then generalise some results found in [i] 

to spheres in n dimensions. Finally, we apply the infinite series solution to 

n-dimensional spheres. 

The spherical annulus. 

In chapter 3 we consider spherically annular geometries. The problem 

consists of a sphere of inert material completely enclosed by a spherical 

annulus of reactive material. We define this problem by considering the 

inert core to have radius a' and the outer radius of the reactive sphere to 

be R. Neglecting reactant consumption, using the Frank-Kamenetskii 

truncation, and by choosing the dimensionless variables 0 and r, the 

governing system of equations is 

ct
2 0 2 d0 e --+--+8e = 0 a<r:::::i, 

ctr2 rdr ' 



where CT= a,'/R and 

dS ( 1 ) + B iB (1 ) = 0 , 
ctr 

s: _ QE 2 -E/RTo 
u---zf e 

RAT 2 
0 

is the Frank-Kamenetskii parameter. 

i 3 

In spherically annular geometries, heat transfer occurs at the inner 

surface. Dust explosions with laser optics give the linear boundary condition 

d8 
-(CT)=A<O, 
ctr 

where A is the heat flux at the inner surface of the reactive medium. Using 

phase plane analysis we investigate the multiplicity of steady state solutions. 

In spherical geometries it is known that: 

(i) for o small enough there is only one steady state solution; 

-2 

(2) when 8=8= = 2elli there is an infinite multiplicity of steady state 

solutions. 

We show in chapters three and four the above results are not valid for 

spherically annular geometries . Specifically, we find, that for small values 

of o there are two steady state solutions, and, although arbitrarily large 

multiplicity is obtainable given suitable values for c-1. and A, we do not get 

infinite multiplicity. 
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Chapter 2 
An Infinite Series Solution 

2.1 A Solution to the Frank-Kamenetskii 

Equations with Infinite Biot Number. 

In chapter one we formulated the problem in which a spherical object 

of reactive material undergoes an exothermic chemical reaction with the 

resultant heat production causing the temperature of the object to rise. The 

governing system of differential equations is 

ct2 0 2 d0 e --+--+oe = 0 O<r::::;1 
dr2 rdr ' 

dS · 0 0 ( 2 0) - (1 ) + B i. (1 ) = , . 
dr 

d0 ( 0) = 0. 
dr 

Following Wake et al. [1] we introduce the following transformations 

similar to those employed by Chandrasekhar in the study of stellar structure 

[5]: 

d0 
q=r-+2, 

dr 

( 2. 1 ) 
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Using these transformations, system (2.0) reduces to the autonomous first 

order equations 

dq 
-=p+q-2, 
ds 

dp 
-=-pa ds ,.. 

( 2. 2) 

The phase plane corresponding to these was examined in [1]. We use a 

similar analysis to examine multiplicity of steady states in n-dimensional 

spheres. 

The boundary conditions in (2.0) transform under (2.1) to 

q(O )-2+Bi.lnp~O) =O, (2.3) 

and (2.4) 

In terms of the new variables p and q, the Frank-Kamenetskii model is 

(2.2) together with the boundary conditions (2.3) and (2.4). We consider a 

solution for p and q of the form 

~ -2ns 
p= L.., ane , (2.5) 

n=l 

cc 

2 '\' -2ns 
q= + L.., bne · 

n=l 

This, it is noted, is equivalent to a power series in r. We proceed under 

the assumptions that the above Dirichlet series can be differentiated term by 

term and can be multiplied together to give a convergent series. As is shown 

later these are valid assumptions. Substituting (2.5) into (2.2) yields 
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n 2::1, ( 2. 6) 

n2::2, ( 2. 7) 

and using (2.6), (2.7) can be written as a recursive relation for an, viz. 

1 n-1 ____ '\' -an-kak 
a - L, 

n 2 ( n -1 h=l 1 + 2 k 

Letting a1 be our undetermined constant, we find 

where 

~ n -2ns 
P = .L., CXna1 e , 

n=l 

q=2+ I r:l ane-2ns 
f-ln l 

n=l 

n 2::1, 

1 n-1 ____ '\' -CXn-kCXk 
CXn - L, r 

2 (n-1 h=l 1+2k 

n2::2. ( 2. 8) 

(2.9) 

( 2. 1 0) 

(2. 11) 

(2.12) 

Appendix A contains values for an and ~n calculated using equations 

(2.11) and (2.12). 

When considering the convergence of the series solutions for p and q it 

is obvious that, if Icxn converges then the series (2.5) converge for 
n=l 

sufficiently small values of a1 . 



Theorem 2.0 

The series 

where 

is absolutely convergent. 

Proof 

Let Pn be the following proposition: 

< _l_ 
- 2m-l 

Clearly P1 is true. Suppose Pn is true. Now 

and since P n is true, 

I I 1 n Xn-1 
<Xn+l::; 2niE11+2k 

1 n 1 
<-- -<-. 

2nn 3 2n 

1 7 
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Therefore by the principle of mathematical induction P n is true for all 

n E z+. The geometric series 
co 1 
I- converges; thus (the comparison test 
n=12n 

implies) I JanJ converges and the theorem follows. O 
n=l 

Thus justifying the assumptions made earlier. 

Consider the case when the Biot number is infinite, i.e. the reactive 

medium is a perfect conductor. Here we have the Frank-Kamenetskii 

boundary conditions with 0=0 at r=1 (s=0). From (2.1) and 0=0 when 

S=0 we get 

p(O) = 8, 

which, using equation (2.9), gives 

( 2. 1 3) 

Equations (2.1) and (2.9) imply that 

~ n -2ns s:: -2 s 8 
p= L.., CXna

1 
e = ue e . 

n=l 

-2 s 

Dividing by e and evaluating the limit as s ~ 00 yields 

( 2. 1 4) 

where 00 denotes lim 0 (s}. Substituting (2.14) into (2.13), dividing 
s---, co 

by oe80 gives 
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= n 
I C:Xn+1(0e0o) =e-00 -l (CX1=l). ( 2. 1 5) 

n=l 

Before we can proceed any further with (2.15) we must address 

reversion of a power series. Given a convergent power series 

= 
y= Lcnxn, 

n=l 

where c1 :;t:. O there exist coefficients Cn such that, for y sufficiently small, 

the power series 

= - n 
x= > ,--. u ,,;,,...; --n1 

n=l 

converges. The Si are functions of c1 ,c.2 , •.• en and the new series is called 

the "reverted" series. The series is unique and it represents the inverse of 

the function defined by the original power series. The en can be calculated 

by substituting the original series into the reverted series and comparing 

coefficients. While it is theoretically possible to obtain any number of these 

reverted coefficients, it is numerically difficult to do so in our case because 

the coefficients of the original series become small quickly. Given the finite 

precision of the computer and subsequent introduced rounding errors our 

calculated reverted coefficients started to "blow up" after a small number of 

coefficients (around 50) were calculated. 

Now cx2 = -x :;t:. 0, and, assuming series (2.15) is convergent, it can 

be reverted, i.e. 

e = - n 
Oe 

O 
= I C:Xn+1 (e80 -1) • ( 2. 1 6) 

n=l 
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2.2 A solution to the Frank-Kamenetskii 

equations with arbitrary Biot number. 

In the previous section we considered the special case when the Biot 

number was infinite we now turn our attention to the more general problem 

where Bi can be any positive number. We no longer have the Frank

Kamenetskii boundary conditions and so are reliant on the general boundary 

condition (2.3). The derivation of (2.14), it is noted is independent of the 

Biot number and therefore it is valid for any Bi as is (2.9) and (2.1 0). 

Equations (2.9) and (2.10) give 

= 
P (0 ) = I <Xna~, 

n=l 

= 
q(0)=2+ Ir-l an, 

fJn J 
n=l 

and using (2.14) this yields 

= n 
P (0) = I <Xn (Oe80 ) 

n=l 

= n 
q (0) = 2 + I ~n (Oe8c) 

n=l 

Substituting the above expression equation into (2.3) gives 

I, ~n f}eeo( +Bi.In I, <Xn◊n-len8o = 0' 
n=l n=l 

which is equivalent to 

~ "n-1 Il90 _ -1/B.iif3 (8e0o t 
L, <XnO e - e nal Il • 

n=l 
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The above expression implies 

e 80 (1+ Ian+1(0e8ot )=e-l/B41~n(◊e0•) (CX1=l), 
n=l 

and 

- n 00 n 
el/B~~~n(oe0o) (1+ LCXn+1(0e0o) )=e-0o_ (2.17) 

n=l 

The exponential factor in the left hand side of (2.17) is an infinite series 

in oe 80 , and the left-hand side of (2.17) can be expanded as a power 

series, 

oo n 
l+ I 1n(Bi) (oe8c) 

n=l 

thus, 

= n 
I ln (Bi) (oe80 ) =e-

00 ( 2. 1 8) 
n=l 

which, upon inverting gives a "formal" solution to (1.22) with arbitrary 

Biot number, 

Solving 

oo - n 
e - 00 I r n < e - 00 - 1) = o. 

do 
d8o 

n=l 

= 0' 

(2.19) 
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yields 

00 
- n-1 

s: - -200 " r < -e 1 ) Ucr- -e L,Il n+l e 0 - • 

n=l 

Depending on the value of Bi, between forty and sixty of the r n were 

calculated before numerical rounding errors crept in and the r n started to 

"blow up". Appendix A contains values for r n. By using the available r n the 

following values of the critical parameter were calculated using (2.19), see 

table 1. 

Table 1 

bcr Bi 80 

0.0011 .001 1. 00 

0.011 . 01 1.00 

0 .1 08 . 1 1 .03 

0.9010 1 1 .25 

2.7390 1 0 1 .59 

3.2564 100 1 . 61 

3.3153 1000 1. 61 

Critical values of the parameter 8 for various Biot numbers, calculated using 

the infinite series solution. 



24 

2.3 A Look at Exothermic Chemical Reactions 

in n-Spherical Domains. 

Certain results obtained by Wake et al. in their study of exothermic 

chemical reactions in spherical geometries are easily adapted to spherical 

geometries of n dimensions. We found in chapter one the governing system of 

differential equations is 

ae + Bi8=o 
an 

in region, 

on boundary. 

In n-spherical domains our system becomes 

ct
2

0 + (n-1) d0 +Dee= 0 , 
dr2 r dr 

d0 
- (1 ) + B i .0 (1 ) = 0 , 
dr 

d0 ( 0 ) = 0. 
dr 

( 2. 20) 

Following a line of argument similar to that of Wake et al. we show that the 

system (2.20) has a gross multiplicity for 2<n<1 O and arbitrary Biot 

number with the analytic condition for infinite multiplicity given as 

We also show for n~1 O 

-2 

Der =2 (n-2)eBi, 
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where ◊er is the critical value of the parameter: a value of the parameter 

lower than ◊er implies the existence of steady states; whereas, a value 

higher than ◊er implies no such steady states exist and thermal ignition 

occurs. 

Using transformations (2.1 ), system (2.20) becomes a pair of 

autonomous first order equations, viz. 

dq - = (n - 2 ) ( q- 2 ) + p, 
ds 

The boundary conditions are 

dp 
-=-pq, 
ds 

q (0 )-2 +Bi lnp ~O) = O, 

q~2 as s~oo. 

( 2. 21 ) 

( 2. 2 2) 

(2. 23) 

System (2.21) can be examined in the p-q phase plane. There are two 

singular points: S1 = (p=2(n-2), q=O) which has eigenvalues 

n-2±✓ (n-2) (n-10) 
A+=--~-------- 2 ' 

and S2=(p=0,q=2) which has eigenvalues 

A- =-2, /\.+ =n-2. 

It is evident that S1 has complex eigenvalues for 2<n<1 O; thus, S1 

corresponds to a spiral focus (see Figure (2.1). 



Figure (2.1) 
Phase plane for 2<n<10. 
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The transformations made (equations 2.1) indicate that we need 

consider only that part of the phase plane in which p2".0. There are two 

separatrices in the phase plane: the ordinate axis p=O, and a spiral that 

winds anti-clockwise out of the focus up to the saddle point. The other 

trajectories also wind anti-clockwise out of the focus. It is not hard to show 

that the only curve satisfying the boundary conditions is the spiral 

separatrix. As demonstrated in [1] the number of steady state solutions 

corresponds to the number of times the initial condition locus (equation 

2.22) intersects the spiral separatrix. The outer boundary condition (2.22), 

indicates that it is possible for this initial condition locus to intersect the 

spiral separatrix any number of times. Because of the focal nature of the 

singularity S1 there is an infinite number of intersections when the initial 

condition locus passes through this point. The value of 8 for which the 
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initial condition locus intersects this point is Ooo 03 _j). Substituting q(O)=O, 

p(O)= 2(n-2) into (2.22) yields the following relation: 

o==2 (n-2 )e-2/Bi_ 

Criticality can be seen as a tangency condition in the phase plane. 

Specifically, the critical values of the parameter o are those for which the 

initial condition locus is tangent to the separatrix. 

2 

q 

p 

Figure 2.2 

The initial condition locus when: 1, O=O=, 2, O=Ocr· 

If n2'.1 O the eigenvalues associated with S1 are positive real numbers 

and the singularity S1 is a nodal point (cf. Figure 2.3). As before, the 

number of steady states corresponds to the number of times the initial 

condition locus crosses the separatrix, it is clear that it can intersect the 

separatrix at most once. It follows that the value of o which causes the 

initial condition locus to pass through the focus is 8,:r; therefore, 



-2 

8cr= 2 (n-2 )eBi n210. 

Figure (2.3) 
Phase plane for n~1 O . 

2.4 An Infinite Series Solution to the 

Frank-Kamenetskii Equations with Arbitrary 

Biot Number in n Dimensions. 

28 

Following the procedure used for n=3, series solutions for p and q 

can be readily derived, viz. 

~ k -2ks 
p= LJ aka1 e , 

k=l 



where 

l k-l -CXj(Xk-j 
ak=--- I-----, k:2:2 

2 (k-1) j=l (n-2 +2j) 
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and n is the dimension. Adapting the methods in section (2.1) the solution 

can be derived for the n-dimensional case. 
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Chapter 3 
The Spherical Annulus 

In chapter one we formulated the problem in which a spherical annulus 

of reactive material undergoes an exothermic chemical reaction with the 

resultant heat production causing the temperature of the reactive medium to 

rise. After choosing the standard dimensionless form for the parameters, 

ignoring reactant consumption and applying the Frank-Kamenetskii truncation 

the governing system of equations is 

d28 +~ d0 + ~ee o , CX<r:s;1, 
ctr2 rdr 

d0 . e -(l)+Bi. (1)=0, 
dr 

d0 
- (CX )=A<O, 
dr 

( 3. 1 ) 

where o is the Frank-Kamenetskii parameter, A represents the heat flux at 

the inner surface and ex the dimensionless form of the inner radius. 

Using the same transformations as in the spherical case, i.e. 

d0 
q=r-+2, 

dr 

equations 3.1 reduce to the autonomous system 



dq 
-=p+q-2, 
ds 

dp 
-=-pq, 
ds O ~ s ~ - I n (a) , 

along with the boundary conditions 

q(s=-ln (CX )) =O'.A +2, 

q(Q )-2+Bi.ln(p(OO) )=0. 

3 1 

We examine this system in the p-q phase plane, noting from the 

transformation that we need only consider p2:0. The phase plane is the same 

as that given in chapter two (cf. figure 2.1) except the boundary condition 

is below the singularity (0,2). The question that now arises is, given an 

initial condition locus, which curves in the phase plane satisfy the boundary 

condition? We first look at this problem for the case A=O. To investigate 

this problem we introduce a new function. For a given initial condition locus 

(this effectively means knowing values for the parameters o and Bi) we 

define a new function T (8,Bi,q0 ) = To,Bi(q0 ) as follows: given on 

the initial condition locus, the function To,Bi (q0 ) is the change in the 

independent variable s along the trajectory that passes through the point 

<Po,qo) in the direction of increasing s, from the point (Po,qo) to the 

boundary condition q=2. We note that the variable s can take any positive 

value and in this sense acts in a "time-like" manner. It is helpful to think 

of s as "time", and in this thesis we exploit this and refer to such concepts 

as the time taken to travel from point B to point C (where C and B are on 

the same trajectory). We think of To,BiNo) as representing the "time" 

taken to traverse the trajectory from to the boundary condition 

q=2, and examine some properties of it. (see figures in appendix C). 
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Property 1 

We note first that any trajectory emanating from the initial condition locus 

crosses the boundary condition only once; thus, To,Bi (q0 ) is single-valued. 

Property 2 

This is a somewhat obvious result, the initial point is on the boundary 

condition 

Property 3. 

Given we traverse the trajectories only in the direction of increasing s the 

above property follows easily . 

A not so intuitive result is 

Property 4. 

Although we had no luck in providing a proof of this result, it is reinforced 

by numerical evidence see table 3.1 . 

Property 5. 

If the point <Po qo) -:f:: ( 2 ,0) , is on the spiral separatrix then 
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If A=O the boundary condition is q=2, and that part of the phase plane 

which contains the solution curves also contains the singularity (0,2), and 

the whole of the spiral separatrix. As was seen in chapter two the spiral 

separatrix is the solution curve satisfying the boundary condition 

q~ 2 as s ~ oo, and it is evident that the separatrix takes infinite time 

to reach the boundary condition from any starting point on the separatrix. 

Table 3.1 

Bi=oo A= 0 

8 /qo 2 0 - 2 - 8 0 - 1 0 0 0 -100000 - 1 e 8 

. 1 
2 
4 

0 2.05 1 .37 1.4e-1 1. 9e-2 2.1e-3 2.?e-4 
0 00 1 . 1 2 1.1e-1 1 .3e-2 1 .9e-3 2.3e-4 
0 1 . 01 8.?e-1 1 e - 1 1 .3e-2 1 .8e-3 2.38-4 

Property five has an important implication on the structure of the 

graph for the function T 8,Bi (q0 ) as it indicates the possible presence of 

vertical asymptotes. In particular, the graph of T8,Bi(q
0

) has a vertical 

asymptote whenever the initial condition locus intersects the separatrix. As 

seen in chapter two the initial condition locus can intersect the separatrix 

any number of times, in particular when o = 2 e f,- there is an infinite 

number of intersections, which in turn indicates an infinite number of 

asymptotes in the graph of the function T8,Bi(q
0

) . Figure C3 shows a 

typical such graph. The nature of the spiral separatrix indicates that if a 

large number of asymptotes are present in the graph of T8,Bi(q
0

), they 

cluster around the T8,Bi(q
0

) axis. Specifically, if there is an infinite 

number of vertical asymptotes present in the T 8,Bi (q0 ) graph then between 

any asymptote and the origin there are an infinite number of vertical 
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asymptotes. The boundary conditions indicate that a trajectory which takes a 

time of -ln(o:) to travel from the initial condition locus to the line q=2 is 

a solution curve. Therefore the solution curves are those parts of the 
2 -qo 

trajectories, which emanate from ( 8e--;;-;:- ,q 0 ) and end at (p (- Jn ( ex )) ,2 ) 

where q 0 is a solution of T o,Bi (q0 ) = -Jn ( ex ) . 

The number of steady state solutions is then given by 

The number Nu.• it is noted depends only the inner radius o:; this is because 

we are considering the special case of no heat flux at the inner surface 

(A=O). To determine multiplicity of steady state solutions a careful 

examination of the function To,Bi(q
0

) is required. The first thing to note is 

that the value of the Biot number does not affect the qualitative structure of 
-2 

the To,Bi(q0 ) graph. Given o sufficiently close to 2eDi (the value for o 

which causes the initial condition locus to pass through the focus), the graph 

of To,Bi(q0 ) contains a number of vertical asymptotes. Between consecutive 

pairs of these asymptotes is either a curve of type 1 , type 2, or type 3 

(see figure 3.1). The only place that curves of type 2 or type 3 occur is 

between the pair of asymptotes that straddle the T o,Bi (q0 ) axis. Before the 

first asymptote there is a curve of type 4 or type 5 (see figure 3.1 ). 

Beyond the last asymptote there is a curve of type 5 (see figure 3.1 ). 

Actual graphs of the function To,Bi (q
0

) are contained in appendix C. If o is 

sufficiently large the initial condition locus cannot intersect the separatrix; 

the corresponding T o,Bi (q
0

) graph thus does not have asymptotes. In this 

situation the To,Bi(q
0

) graph has a maximum at % . The function is 

strictly increasing for q<cfo and strictly decreasing <fa <q<2. See figure C7. 

The following theorems give some insight into the behaviour of the function 

T 15,Bi(qo): 
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Type 1. Type 2. 

Type 3. 

Type 4. Type 5. 

Figure 3.1. 

A type 1 curve has, 1 minimum, no maximum and no inflection points; a 

type 2 curve has, 1 minimum, no maximum and 2 inflection point; a type 3 

curve has, 2 minimum points, maximum point and 2 points of inflection; 

a type 4 curve has, 1 minimum, 1 maximum and 2 inflection points; a type 

5 curve has, no minimum, no maximum and no inflection points. 
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Theorem 3.1. 

If T o,Bi (q0 ) has exactly one local minimum between consecutive pairs of 

asymptotes, and has minima at cla and q~ then 

Proof. 

The result is easily seen by examining the phase plane. Since ~ and q~ 

are the q coordinates of distinct minima the corresponding parts of the 

To,Bi(q
0

) graph are between a different set of asymptotes (with perhaps one 

common asymptote). In terms of the phase plane this means that the q 

values corresponding to the minima occur between different crossings of the 

initial condition locus with the separatrix. As O < ~ < q~, the value q~ 

occurs on the initial condition locus after the locus has crossed the 

2 
separatrix at least once more after the occurrence of q

0
. The point on the 

initial condition locus with q coordinate q~ is inside at least another "loop" 

of the spiral separatrix compared to the point with q coordinate q~. Given 

that to travel from this inner "loop" to the boundary condition we must 

cross the initial condition locus (at a point (p,q)), inside the "loop" 

corresponding to the minimum at We conclude from this that 

To,Bi(~)>To,Bi(q)~To,Bi(q~), and it follows that To,Bi(q~)<To,Bi(q~). A 

similar argument shows that if <fo<q~<O then To,Bi(%)<T0,Bi(q~). CJ 

The only time that more than one minimum occurs between consecutive pairs 

of asymptotes is when that pair straddles the T0 ,Bi (q
0 

) axis. In this case 
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theorem 3.1 is easily adapted by choosing the smallest minimum between the 

asymptotes. 

So we now have that the T ◊,Bi (q
0

) graph (given a value of o which 

causes the initial condition locus to intersect the separatrix) contains a 

number of vertical asymptotes. Contained between these asymptotes are 

curves of type 1 (or under some conditions curves of type 2 or type 3). 

Given a value of o that causes the initial condition locus to intersect the 

separatrix a sufficient number of times we have shown in theorem 3.1 that 

the curves between the asymptotes, have local minima whose values are 

increasing as the q coordinate tends to 0. Therefore when we have an infinite 

number of vertical asymptotes, we have an infinite number of minima which 

are clustered around the q==O axis and have values that are increasing as 

they approach the q==O axis. A point to note here is that it takes the 

separatrix an infinite time to spiral out of the focal point, this coupled with 

the continuity of integral curves in the phase plane gives the following 
-2 

result: if o = 2e5i and a minimum occurs at q, then 

To,Bi(q) ➔ 00 as q➔ O We are now in a position to consider the 

multiplicity of the steady state solutions. Recall that the number of steady 

state solutions is 

It follows from this that the number of steady states is limited only by 

the number of vertical asymptotes in the graph of To,Bi(q0 ) . On the other 

hand we see that for o sufficiently large, the initial condition locus does not 

intersect the separatrix, and, as will be discussed later, there exists a 

critical value of o beyond which the system has no steady states. Given a 

value of 0 sufficiently large so that the initial condition locus does not 

intersect the separatrix we see given appropriate values of (J. (the inner 
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radius) it is possible to have 0, 1 or 2 steady state solutions (see figure 

C7). 

For a given o and Bi, the corresponding To,Bi(q0 ) graph has k 

asymptotes, and if 1 s;k we see that, for appropriate values of a it is 

possible for Na. to be any integer value between, 2 and 2k if no curve of 

type 3 or occurs or 2 and 2k+2 if a curve of type 3 or occurs. We can 

have the initial condition locus intersecting the separatrix an arbitrarily 

large number of times (and even an infinite number of times) so we 

investigate the possibility of infinite multiplicity. In spherical domains we 

know infinite multiplicity exists: we will show that it does not exist for 

spherically annular domains. 

We know that the number of steady states depends on the number of 

vertical asymptotes in the T 0,8 Jq
0

) graph and the presence of a type 3 

curve. Let the initial condition locus cross the separatrix k::::1 times (k 

finite). We define a as that value of a which m ax Na = Na. and examine 
O<a<l . · 

the behaviour of a as k--t 00 • As k--' 00 the Ts: (q ) graph has an -, o,B i O 

infinite number of type 1 curves clustered around the q=O axis. As seen 

earlier the minimum points of these type curves tend to infinity as q 

approaches O; therefore, a --t O as k--t oo. This reverts the problem to 

the spherical case. Although it is possible to have arbitrarily large 

multiplicity, infinite multiplicity is not possible in the case of a spherical 

annulus. Based on numerical evidence, we conjecture that for a given Bi and 
-2 

inner radius a, m g-x Na occurs when 8=2es::. Tables 81-86 in appendix 

B show values for Na . 
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A Look At Criticality. 

In the spherical case, criticality is equivalent to the initial condition 

locus being tangent to the spiral separatrix. The analogous condition for the 

spherical annulus is that the line 

Ts Bi (q0 ) graph (see figure 3.2 ) 
er' 

1 

T~ B.=-ln(CX) 
Ucr I J_ 

2 

Figure 3.2 

is tangent to 

The line Ts B - ln (ex) (1) tangent to the Ts Bi (q0 ) graph (2). =· =· 

the 

The following two theorems can be established tor the case where there is no 

heat flux at the inner surface: 

Theorem 3.2. 

For A=O and a given Biot number. Ocr (ex)> Ocr (0) for all O<o.<1. 

Proof. 

Suppose Ocr (CX) < Ocr (0 ) The initial condition locus 



q(O )-2+BiJn( p(O) )=0, 
Der (0 ) 
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is by the definition of Der (0 ) tangent to the separatrix [1], and this 

implies that the T0cr (a},Bi(q0 ) graph has at least one vertical asymptote. As 

seen earlier, this means that Na~ 2 and this contradicts the assumption that 

Der (a)< Der (0 ) consequently 

Der (CX) ~ Der (0 ). 

Equality is easily seen not to hold, as criticality in the spherical case was 

when the initial condition locus was tangent to the separatrix. The result 

thus follows 0 

Theorem 3.3 

Let A=0 and Bi be a given Biot number. If 0 < a1 < a 2 <l then 

Der (CXi) < Der P-2 ) · 

Proof. 

Assume Der (CXi) > Der ( a 2 ) , then - Jn ( cx 2 ) < - Jn ( CY1. ) , and it follows from 

theorem 3.2 that the graph of T ocr <a, },Bi (q0 ) has no asymptotes and 

therefore is continuous. Now Der (CXi) is the critical value of the parameter 

for CY".!. so that by definition, Na, = 1. The continuity of Tc>cr (a,},Bi and the 

above inequality, however, imply N 0 = 2. This contradicts our assumption 
·2 

and hence 
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As - ln ( a 2 ) < - ln ( (Xi_ ) equality can be seen not to hold and hence the 

result follows :J 

Numerical evidence given in chapter four suggests the above theorem 

holds for any value of A. We conjecture that 8cr (A ,a) is monotonic 

increasing in a for any A<O. 

We considered the case when there is no heat flux at the inner 

surface; we now turn our attention to the case when heat is flowing from 

the reactive medium into the inert core. The boundary condition for this 

case is 

which transforms to 

d0 
-(a)=A<O, 
dr 

q=2+aA <2-

Although the To,B :i, <9o ) function was useful for exploring multiplicity for 

the special case when A=O, we no longer take the approach of introducing a 

new function. Since the boundary condition locus is below the singularity it 

is possible for the trajectories emanating from the initial condition locus to 

cross the boundary condition more than once (see figure 3.3). These multiple 

crossings cause any function analogous to T0,5 i (q0 ) to be multivalued. We 

not only have the problem of multiple crossings of the boundary condition, 

but we also have to contend with the fact that there exists solution curves 

which emanate from points on the initial condition locus above the boundary 
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A Look At Criticality. 

An increase in the heat flow from the reactive medium to the inert 

core causes an increase in temperature at the centre. Therefore we expect on 

physical grounds that as (A<O) decreases, ocr (A ,a) decreases. We 

conjecture that ocr (A ,a) is monotonic decreasing in A. In chapter four, 

numerical evidence supports this conjecture. 

3 

q 
2 

p 

1 

Figure 3.4. 

Initial condition locus (1 ), the spiral separatrix (2), the boundary condition 

(3), (4) the starting point of the solution curve (5). 



44 

Chapter 4 

Bifurcation Diagrams 

The aim of this chapter is twofold: firstly to derive the bifurcation 

diagram for the spherical annulus and secondly to investigate how changes in 

the parameters affect the qualitative structure. The bifurcation diagram is a 

plot of the parameter 8 versus II 0 II where we have 

ll0(r)ll=m<axl0(r)I = max 0(r). 
CL r.Sl Cl.:,; r.Sl 

The following theorem shows that the maximum value of e occurs at r = ,1.: 

Theorem 4.0 

Consider a spherical annulus of reactive material enclosing a sphere of inert 

material with relative radius a, then 

'v"k CX<k<l, 0(k)<0(CX), 

where e is the dimensionless form of the temperature. 

Proof 

We have from the boundary condition that 

d0 
-(CX)=A<O. 
dr 
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Assume e has a local minimum at r = f where cx<-€<1. Evaluating the original 

differential equation (from system 1.22) at r=f, 

ct2 0 2 d0 0 {€) 
-- (f)+-- {f)+◊e = O, 
dr2 f dr 

and since a minimum occurs at r=f, 

d0 
- {f)=O; 
dr 

thus 

ct2 0 0 ,o 
- (f)=-◊e \{,) 

ctr2 

The right hand side of (4.1) is always negative so that 

ct2 0 
-(f)<O. 
ctr2 

( 4. 1) 

This contradicts the assumption that a minimum occurs at r = f; therefore, 

no such minimum can exist. Given that e is decreasing at the boundary r=c:1. 

and there are no local minima for cx<r<1 it follows there are no local 

maxima for o:<r<1. Hence, the hottest temperature occurs at the inner 

boundary r=cx U 

From the transformation equations, 
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which, at r=o:, implies 

and thus 

Before calculating values of 80: we must first determine p at r=o:. This is 

accomplished using the phase plane. Given A=0 and values for 8, Bi and c1. 

we must find points (Po ,qo ) on the initial condition locus such that 

T8,B i ( qo ) = - ln (ex) (if any exist). Remember this means that it takes 

-ln(o:) time for the trajectory passing through the point (Po ,qo ) to 

travel from the point (Po ,qo) to the point (Pa.,2) on the boundary 

condition. This quantity determines the value of Po: as the value of the p 

coordinate at the end of a solution curve in the phase plane. The above 

definition for Pa is valid for A:t0. Numerically, an efficient approach to 

take when calculating points on the bifurcation diagram is to choose a point 

(Pa ,2 + CY.A ) that satisfies the boundary condition and integrate along the 

trajectory backwards -ln(a) in time to find the starting point (Po ,qo ) . 

2-qo 

Once this is determined, 8 can be calculate, i.e. o=Poe Bi and thus 8,1., 

i.e. Ba = 1n (P (ex) ) ; this determines the point ( o ,8~. ) on the bifurcation . ocx2 v. 

diagram. By varying 0 < Pa< 00 the bifurcation diagram can be obtained. 

Once the bifurcation diagram is obtained the qualitative structure can be 

investigated when A=0. As seen earlier, the value of the Biot number does 

not affect the qualitative structure of the T8,2 (qo) graph. Typically values 

for the Biot number are large and we consider only the case where the Biot 

number is infinite. Earlier we saw that for any positive value of the 



a I Bi 

1 e - 1 
1 e - 2 
1 e -3 
i e -4 
1 e -5 
1 e -6 
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parameter 8 less than the critical value Na.2':2; therefore the bifurcation 

diagram has at least two branches. We conjectured in chapter three that for 
-2 

a given a., m ax Na. occurs when 8 = 2eBi The number of relative maxima 
8 

in the bifurcation diagram is 

-2 

and, when 8= 2eBi, 

max Na. 
8 

2 

max 
8 

2 
,. (4.2) 

Table (4.1) shows some values of the number of maxima present calculated 

in this manner. 

Table 4.1. 

1 e - 1 1 1 0 42 1 e2 1e3 1e4 infinity 

2 1 1 1 1 1 1 1 
2 2 2 2 2 2 2 2 
3 3 3 3 3 3 3 3 
4 4 4 4 4 4 4 4 
5 5 5 5 5 5 5 5 
6 6 6 6 6 6 6 6 

The number of relative maxima present in the bifurcation diagram for 

various c1. and Bi calculated using equation 4.2. 

Table 4.1 suggests the following two conjectures; (a) if Bi> 1 the number of 

relative maxima in the bifurcation diagram depends only on o.. (b)Nu. is 

proportional to - ln (a). Diagrams D.1 .0, D.2.0 and D.3.0 support these 

conjectures (appendix D). 
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Having investigated the bifurcation diagrams for A=O, we now explore 

how the parameter A influences this structure. Consider the system 

When 8 =0, 

d 2 0 2 d0 e --+--+oe =O 
ctr2 r dr 

d0 
-(ex)=A, 
dr 

d0 
- (1 ) + B i.0 (1 ) = 0 . 
dr 

d 2 0 2 d0 
--+--=0 
ctr2 r dr 

d0 
-(ex)=A, 
dr 

d0 
- (1 ) + B i.0 (1 ) = 0 . 
dr 

This system is easily solved analytically giving 

2 Bi-1 1 
0 (r) = ex A (-- - - ) , 

Bi r 

and it follows that 

2 Bi-1 1 
0 (ex)= 0a. = ex A (-- - - ) . 

. Bi ex 

As Bi~ oo, 

0(ex)=0a.~ exA (ex-1), 

(4.2) 

(4.3) 

(4.4) 

(4.5) 
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and this implies that the bifurcation diagram no longer passes through the 

origin but passes through the point (0 ,8a.> with 8a > 0. 

As we let Bi~ oo the terminal point on the bifurcation diagram is 

given by (0 ,cxA (a-1)), where aA (a-1) > 0 for A<0. In terms of the 

phase plane, this analytic solution of our system when o =0 represents a 

solution curve on the q axis (which as noted earlier, is a separatrix). This 

solution curve is the line segment joining (0 ,2 + a 2A) w ith (0 ,2 + aA). 

Numerical calculations produced the bifurcation diagrams contained in 

appendix D. These diagrams suggest that for any value of a, the bifurcation 

diagrams with A sufficiently close to 0, are qualitatively the same as those 

with A=0 i.e. o(A,a) is a continuous function of A. It can be seen that as 

A<0 decreases the number of relative maxima in the bifurcation diagram 

decreases and the qualitative structure resembles that of a bifurcation 

diagram for a larger value of a. This indicates that the number of relative 

maxima in the bifurcation diagram for A<0 is dependent on both A and a. 

The diagrams provide numerical evidence to support our conjecture that 

ocr ff,.. ,a) is monotonic increasing in both A and a. 
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Conclusions. 

The problem of self-heating in spherical domains has been studied 

extensively in the past and values for 8cr (Bi) are well documented. It was 

shown in chapter two that an infinite series solution to the 

Frank-Kamenetskii equations for exothermic chemical reactions in spherical 

domains with arbitrary Biot number exists. This solution was shown to 

converge for 80 small enough. An explicit relation for 8cr in terms of 80 

was obtained by differentiating the series term by term. This relation holds 

if 80 is small enough at criticality. It is well known that an infinite 

multiplicity of steady state solutions exists for exothermic chemical reactions 

in spherical domains. Wake et al. showed that the analytic condition needed 
-2 

for this to occur is 8 = 800 = 2e,;-;:_ This result was generalised for 

n-dimensional spheres (2<n<10) in chapter two with the analytic condition 
-2 

being 8 = 800 = 2 (n -2 ) elli. This poses the interesting question (not addressed 

in this thesis): what makes the tenth dimension so special? For n~1 0 we 

showed 8cr = 2 (n-2 ) e 81
• This result is directly related to the previous 

result and both relations are obtained via simple phase plane analysis. 

The major portion of this thesis dealt with the problem in spl1erically 

annular domains. In chapters 3 and 4, it was shown that infinite 

multiplicity of steady state solutions is not possible. This was first obtained 

for the case A=0 and then generalised for A<0 using a simple continuity 

argument. In spherical domains, there exists a unique steady state solution. 

We showed in chapter 3 that in spherically annular domains there exist at 

least two steady state solutions for any value of 0 < 8 <8cr. In chapter 4, 



5 1 

we saw that 8cr (A ,(J.,) is monotonically increasing in both A, the heat 

flux, and a., the inner radius. 

In this thesis, several conjectures were made motivated by numerical 

evidence, e.g. No:= -Jn (a). Analysis may be conclusive to resolving these 

questions and ultimately to extending the analytical theory underlying 

self-heating in spherical and spherically annular geometries. 

Attention was restricted to the self-heating problem in spherical and 

spherically annular geometries. There are, however, other simple geometries 

of interest which remain to be explored analytically, e.g. an infinitely long 

cylindrical annulus and the infinite slab. Another area for future work would 

be to investigate the problem in these and other geometries. 
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A1 

Appendix A. 

Coefficients of the Series Solutions. 



A2 

Coefficients O'.n and ~n, 

a 1 1.00000000000000E+0000 b 1 -3.33333333333333E-0001 
a 2 -1 .66666666666667E-0001 b 2 3.33333333333333E-0002 
a 3 = 2.22222222222222E-0002 b 3 -3.17460317460317E-0003 
a 4 -2.68959435626102E-0003 b4 2.98843817362336E-0004 
a 5 3.08152067 411327E-0004 b 5 -2.80138243101206E-0005 
a 6 -3.40738365429723E-0005 b 6 = 2.62106434945941 E-0006 
a 7 3.67492372195488E-0006 b 7 -2.44994914796992E-0007 
a 8 = -3.89083335972654E-0007 b 8 2.28872550572149E-0008 
a 9 = 4.06102244 741984E-0008 b 9 -2.13738023548412E-0009 
a 10 = -4.19076321480907E-0009 b 10 1.99560153086146E-001 0 
a 11 4.28478315845212E-0010 b 11 -1.86294919932701 E-0011 
a 12 -4.34 7332148597 44E-0011 b 12 1.73893285943898E-0012 
a 13 4.38223507895534E-0012 b 13 -1.62305002924272E-0013 
a 14 = -4.39293548631422E-0013 b 14 1.51480534010835E-0014 
a 15 4.38253296955721 E-0014 b 15 -1.41372031276039E-0015 
a 16 -4.353816005997 48E-0015 b 16 1.31933818363560E-0016 
a 17 = 4.30929113823459E-0016 b 17 -1.23122603949560E-0017 
a 18 -4.25120916824707E-0017 b 18 = 1.14897545087759E-0018 
a 19 4.18158880382699E-0018 b 19 -1.07220225739154E-0019 
a 20 -4.10223808739188E-0019 b 20 = 1.00054587497363E-0020 
a 21 4.01477386442072E-0020 b 21 -9 .3366834056295 7 E-0022 
a 22 -3.92063950031317E-0021 b 22 8.71253222291817E-0023 
a 23 = 3.82112102059436E-0022 b 23 = -8.13004472466885E-0024 
a 24 -3.71736182456926E-0023 b 24 7.58645270320258E-0025 
a 25 3.61037610356052E-0024 b 25 -7.07916883051082E-0026 
a 26 = -3.50106107981094E-0025 b 26 = 6.60577562228480E-0027 
a 27 3.39020816980588E-0026 b 27 -6.16401485419251 E-0028 
a 28 -3.27851316541133E-0027 b 28 5.75177748317777E-0029 
a 29 3.16658551733576E-0028 b 29 = -5.36709409717925E-0030 
a 30 = -3.05495679767312E-0029 b 30 5.00812589782478E-0031 
a 31 2.94408841144016E-0030 b 31 -4.67315620863518E-0032 
a 32 = -2.83437862091934E-0031 b 32 = 4.36058249372206E-0033 
a 33 2.72616894113741 E-0032 b 33 -4 .06890886 736 927 E-0034 
a 34 -2.61974995985981 E-0033 b 34 3. 79673907226059E-0035 
a 35 2.51536663099019E-0034 b 35 -3 .54276990280308 E-0 036 
a 36 -2.41322308617843E-0035 b 36 3.30578504955949E-0037 
a 37 2.31348700571221 E-0036 b 37 -3. 08464934094962 E-0038 
a 38 -2.21629358635993E-0037 b 38 2.87830335890899E-0039 
a 39 = 2.1217 4914071370E-0038 b 39 -2.68575840596671 E-0040 
a 40 = -2.02993435972325E-0039 b 40 2.50609180212746E-0041 
a 41 1.94090726748987E-0040 b 41 = -2.33844249095165E-0042 
a 42 -1.85470589498483E-0041 b 42 2.18200693527627E-0043 
a 43 1.77135069714729E-0042 b 43 = -2 .03603528407734 E-0044 
a 44 -1.69084673578905E-0043 b 44 1.89982779302141 E-0045 
a 45 1.61318564886964E-0044 b 45 -1. 77273148227 433 E-0046 
a 46 -1.53834742499318E-0045 b 46 = 1.65413701612170E-004 7 
a 47 1 .46630200040541 E-0046 b 47 -1.54347578990043 E-0048 
a 48 -1.39701069432329E-0047 b 48 1.44021721064257E-0049 
a 49 = 1.33042749710129E-0048 b 49 -1.34386615868817E-0050 
a 50 -1 .26650022451770 E-0049 b 50 1.25396061833435E-0051 
a 51 1 .20517155034272E-0050 b 51 -1 .17006946635216E-0052 
a 52 = -1.14637992831960E-0051 b 52 = 1.09179040792343E-0053 
a 53 1.09006041374364E-0052 b 53 -1.01874805022770E-0054 
a 54 -1 .03614539395440E-0053 b 54 9.50592104545318E-0056 
a 55 9.84565236258252E-0055 b 55 = -8 .86995708340768 E-0057 
a 56 -9.35248861065282E-0056 b 56 8.27653859349807E-0058 



A3 

Reverted Coefficients for Bi = 1 e-2 calculated using methods 

discussed in chapter two. 

g1 

g3 

g5 

g7 

g9 

g11 

g13 

g15 

g17 

g19 

g21 

g23 

g25 = 

g27 = 

g29 

g31 

g33 = 
g35 

g37 

g39 = 

g41 

g43 = 

g45 

g47 

g49 

g51 

g53 

= -2.98507462686567E-0002 

-1 .003941 06562267E-0002 

-6 .044 70640330430E-0003 

-4.32715023573548E-0003 

= -3.37097804130389E-0003 

-2.76157428840117E-0003 

-2.33916663986616E-0003 

-2 .0290883979954 7E-0003 

-1.79176502355472E-0003 

-1 .60426309393779E-0003 

-1.45237408894281 E-0003 

-1 .32682491442814E-0003 

-1.22130582157261 E-0003 

-1 .13137404672316E-0003 

-1.05381071934419E-0003 

-9 .86226488044269E-0004 

-9.26810426996683E-0004 

-8. 7 4164953940290E-0004 

-8.27194239421545E-0004 

-7.85026918719255E-0004 

-7.46961397599546E-0004 

-7.12426388382204E-0004 

-6.80951916352832E-0004 

-6.5214 7682921570E-0004 

-6 .25687066490339 E-0004 

-6.01297749007256E-0004 

-5. 787684 79187348E-0004 

g2 = 1.50142581811371 E-0002 

g4 = 7.54458069713687E-0003 

g6 

g8 

g10 = 
g12 

g14 

g16 = 
g18 

g20 = 

g22 

g24 

g26 

g28 

g30 

g32 

g34 

g36 

g38 

g40 

g42 

g44 = 

g46 

g48 

g50 

g52 

g54 

5.04329740530821 E-0003 

3. 78950446355507E-0003 

3.03590632594863E-0003 

2.53282727 499792E-0003 

2.17308886964259E-0003 

1.90303399289094E-0003 

1.69282217121706E-0003 

1.52453333693338E-0003 

1 .38675507089286E-0003 

1 .27187393344832E-0003 

1.17461587444851 E-0003 

1.09121163604359E-0003 

1.01889569976944E-0003 

9.55592961062080E-0004 

8.99715889888197E-0004 

8.50029243236020E-0004 

8.05557 460387133E-0004 

7.65519810884594E-0004 

7.29284043281719E-0004 

6.96332633229139E-0004 

6.66237775050677E-0004 

6.38642671480286E-0004 

6.13248413849199E-0004 

5.89810495887406E-0004 

5.68163778341987E-0004 

Where gn=I'0 in formula 2.19. 



A4 

Reverted Coefficients for Bi = 1 e-1 calculated using methods 

discussed in chapter two. 

g1 

g3 

g5 

g7 

g9 

g 11 

g13 

g15 = 

g17 

g19 

g21 

g23 

g25 = 
g27 

g29 

g31 

g33 

g35 

g37 

g39 

g41 

g43 = 

g45 

g47 

g51 

g53 

g55 

= -2.85714285714286E-0001 

= -1.03436442928321 E-0001 

-6.41988675651577E-0002 

= -4.68626874201897E-0002 

= -3. 70387864034960E-0002 

-3.06940190568024E-0002 

-2.62491233844067E-0002 

-2.29570973961269E-0002 

-2.04181423631337E-0002 

-1 .83986695938869 E-0002 

-1.675292977347 48E-0002 

-1.53852050147236E-0002 

-1 .42300005708230E-0002 

-1.32409670178651 E-0002 

-1 .23843676465866E-0002 

-1 .16350529650816E-0002 

-1.09738863487439E-0002 

-1.03860446108371 E-0002 

-9.85986488961226E-0003 

-9 .38604322388004 E-0003 

-8. 95706567946868 E-0003 

-8 .566 796 82480 624 E-0003 

-8.21017581460748E-0003 

-7.88298064314162E-0003 

-7.30263227406864E-0003 

-7 .04148611837828 E-0003 

-6. 78658819942612E-0003 

g2 = 1 .50826044 703596E-0001 

g4 = 7.90843297470071 E-0002 

g6 5.41341532698961 E-0002 

gS = 4.13566858255592E-0002 

g10 = 
g12 

g14 

g16 = 
g18 

g20 

g22 = 
g24 

g26 

g28 = 

g30 

g32 

g34 

g36 

g38 

g40 

g42 

g44 = 

g46 

g50 = 
g52 

g54 

3.35593315912890E-0002 

2.82922549942502E-0002 

2.44892565857101 E-0002 

2.16107786008851 E-0002 

1.93540739702673E-0002 

1.75359485121113E-0002 

1.60389582828951 E-0002 

1.47842909787821 E-0002 

1.37170604387500E-0002 

1.27978506674911 E-0002 

1.19976134859247E-0002 

1 .12944630918480E-0002 

1.06715921103348E-0002 

1.01158761991375E-0002 

9.61691542456744E-0003 

9.16636072097385E-0003 

8.75743115624253E-0003 

8.38456139208889E-0003 

8.04313690627011 E-0003 

7.43954374976561 E-0003 

7.17025857448661 E-0003 

6.91465859646943E-0003 

Where gn = fn in formula 2.19. 



AS 

Reverted Coefficients for Bi - 1 calculated using methods discussed 

in chapter two. 

gi 

g3 

g5 

g7 

g9 

g11 

g13 

g15 

g17 

g19 

g21 

g23 

g25 

g27 

g29 

g31 

g33 = 
g35 

g37 = 

g39 

g41 

g43 = 

g45 

g47 = 

g49 

g51 

g53 = 

-2.00000000000000E+0000 

-1 .051 851851851 85E+0O00 

-7.84953164805017E-0001 

-6.51160856155520E-0001 

-5.68566298104328E-0001 

-5.11617373999053E-0001 

-4.69546416219099E-0001 

-4 .36962504182641 E-0001 

-4.10842446011966E-0001 

-3.8934812904 7204E-0001 

-3.71292022946211 E-0001 

-3 .5586970657 4 7 49E-0001 

-3.42515162230378E-0001 

-3.30817497227153E-0001 

-3 .204 70545895038E-0001 

-3 .11 241069471414E-0001 

-3.02947969512956E-0001 

-2.95448279212480E-0001 

-2.88627471114857E-0001 

-2.82392715798572E-0001 

-2.76669127806542E-0001 

-2. 71403676209592E-0001 

-2.66601337322424E-0001 

-2.62513496283609E-0001 

-2 .606067653867 45E-0001 

-2 .68564320886832E-0001 

-3 .24062867822842E-0001 

g55 -5.90715561688978E-0001 

g2 

g4 

g6 

g8 

g10 = 
g12 

g14 

g16 

g18 

g20 

g22 

g24 

g26 

g28 = 
g30 

g32 

g34 

g36 = 

g38 

g40 = 

g42 = 

g44 

g46 = 

g48 = 

g50 

g52 

g54 

1 .33333333333333E-0000 

8.91005291005291 E-0001 

7.08873219753878E-0001 

6.05607417906409E-0001 

5 .3 77 43423134466E-0001 

4.89135991318664E-0001 

4.52294498783298E-0001 

4.23229042360168E-0001 

3.99602583536799 E-0001 

3. 7994 7459778371 E-0001 

3.63291419790631 E-0001 

3.48962572885833E-000 1 

3.36480369522024E-0001 

3.25491184438200E-0001 

3.15728474123612E-0001 

3.06987171263511 E-0001 

2. 99106681259042E-0001 

2.91959263532757E-0001 

2.854419223211 0SE-0001 

2. 794 71004038416E-0001 

2.73981081302460E-0001 

2.68939199961719E-0001 

2.64428418690486E-0001 

2.61073367934797E-0001 

2.622511380154 74E-0001 

2.85170640967523E-0001 

4.09847911653151 E-0001 

Where gn = fn in formula 2.19. 



A6 

Reverted Coefficients for Bi = 10 calculated using methods discussed 

in chapter two. 

g1 

g3 

g5 

g7 

g9 

g 11 

g13 = 
g15 

g17 

g19 

g21 

g23 

g25 

g27 

g29 

g31 

g33 

g35 

g37 

g39 

g41 

g43 = 

g45 

g47 

g49 

g51 

g53 

= -5.00000000000000E+OOOO 

-3.44659391534392E+OOOO 

-2.90520631251296E+OOOO 

-2.60676922837554E+OOOO 

-2.41107613468118E+OOOO 

-2.27015284318319E+OOOO 

-2.16250313702737E+OOOO 

-2.07685813420260E+OOOO 

-2.00666204354367E+OOOO 

-1.94780564224534E+OOOO 

-1.89756429771845E+OOOO 

-1 .85405023912543 E+OOOO 

-1.81590844109077E+OOOO 

-1.78213758149060E+OOOO 

-1. 7519794 7690554 E+OOOO 

-1.72484802060226E+OOOO 

-1.70028179786783E+OOOO 

-1.67791049083114E+OOOO 

-1.65742443669573E+OOOO 

-1 .63852305393125 E+OOOO 

-1.62080635724576E+OOOO 

-1.60399091019402E+OOOO 

-1.59450531497301 E+OOOO 

-1.68309798554633E+OOOO 

-2.80149349017254E+OOOO 

-1.32957351246095E+0001 

-9.99447711671997E+0001 

g2 3.95833333333333E+OOOO 

g4 = 3.12801408179012E+OOOO 

g6 

g8 

g10 

g12 

g14 

g16 

g18 

g20 = 
g22 

g24 

g26 

g28 

g30 

g32 

g34 

g36 

g38 

g40 

g42 

g44 

g46 

g48 

g50 

g52 

g54 

2.73809974129621E+OOOO 

2.50003590907758E+OOOO 

2.33545618736804E+OOOO 

2.21302390899039E+OOOO 

2.11741512602269E+OOOO 

2.04012718432259E+OOOO 

1.97601109178606E+OOOO 

1.92174131745465E+OOOO 

1.87506100307936E+OOOO 

1.83437713989698E+OOOO 

1.79852875133247E+OOOO 

1.76664695618616E+OOOO 

1.73806673819015E+OOOO 

1.71226919773190E+OOOO 

1.68884214840954E+OOOO 

1.66744986780375E+OOOO 

1.64779668628992E+OOOO 

1.62954855959995E+OOOO 

1.61224746702680E+OOOO 

1.59689414831766E+OOOO 

1.60940312127353E+OOOO 

1.94676081190827E+OOOO 

5.4384201310761 OE+OOOO 

3.60215684183974E+0001 

2.74996776173989E+0002 

g55 = -7.422487358764 77E+0002 

Where gn = fn in formula 2.19. 



A7 

Reverted Coefficients for Bi = 100 calculated using methods 

discussed in chapter two. 

g1 

g3 

g5 

g7 

-5.88235294117647E+0000 

= -4.11131759661929E+0000 

-3.4 7525460873438E+0000 

= -3.12201487452431E+0000 

g9 -2.88957949899587E+0000 

g11 -2.72185376070772E+0000 

g 13 -2.59355468503643E+0000 

g 15 -2 .49138058905909E+0000 

g17 -2.40757412752146E+0000 

g 19 -2.33726425322409E+0000 

g21 -2.27721679571893E+0000 

g23 -2.22518852798778E+0000 

g 25 = -2.17956786644232E+0000 

g27 -2.139163030684 70E+0000 

g29 -2.10307106576825E+0000 

g31 -2.07059357097652E+0000 

g33 -2.04118050533037E+OOOO 

g35 -2.01439067705807E+OOOO 

g37 -1.98985431406915E+0000 

g39 -1.96715124716632E+0000 

g41 -1.94489408585198E+0000 

g43 -1.91401482887556E+0000 

g45 -1 .81625793652136E+0000 

g47 -1.32977858552376E+0000 

g49 1 .04521753978389E+0000 

g51 1.11342958894200E+0001 

g53 4.89428302364219E+0001 

g55 = 2.10347043102764E+0002 

g2 = 4.70520388086030E+00O0 

g4 = 3.73784671301747E+00O0 

g6 3.27765825047220E+0000 

g8 = 2.99531420334547E+0000 

g10 

g12 

g14 

g16 = 
g18 

g20 

g22 = 
g24 

g26 

g28 

g30 

g32 

g34 

g36 

g38 

g40 

g42 

g44 

g46 

g48 

gS0 

g52 

g54 

2.79961087463255E+00O0 

2.65378443214823E+0000 

2.53977564 703236E+00O0 

2.44 7534 73158548E+0000 

2.37096315213701 E+00O0 

2.30611598890645E+0000 

2.25031279917743E+0000 

2.20165974 798734E+0000 

2.15877551534124E+000O 

2.12062562026703E+0000 

2.08641784298525E+0000 

2.05553371874376E+0000 

2.02748191529424E+OOOO 

2.00186278715023E+00O0 

1.97831266154679E+0000 

1.95617730378756E+00O0 

1.93198347033760E+0000 

1.88237037048341E+00O0 

1.66757748466387E+0000 

5.77283656712317E-0001 

-4.41269620235019E+0000 

2.41186333415351E+0001 

9 .84665096439660 E+000 1 

Where gn = rn in formula 2.19. 



A8 

Reverted Coefficients for Bi = 1000 calculated using methods 

discussed in chapter two. 

g1 

g3 

g5 

g7 

g9 

g11 

g13 

g15 = 
g17 

g19 

g21 

g23 

g25 

g27 

g29 = 
g31 

g33 = 

g35 

g37 

g39 

g41 

g43 

g45 

g47 

g49 

g51 

g53 

-5.98802395209581 E+0000 

= -4.18590630970364E+0000 

= -3.53838344576266E+0000 

-3.17875577315844E+0000 

= -2.94211048814731E+0000 

-2.77134418069222E+0000 

-2.64071792203779E+0000 

-2.5366897 4862604E+0000 

-2.45136203486541 E+0000 

-2.37977557963981 E+0000 

-2.31863764797718E+0000 

-2.26566437388872E+0000 

-2.21921496717052E+0000 

-2.17807604347422E+0000 

-2.14132828352555E+0000 

-2.1 0826066326914E+0000 

-2.07831339802437E+0000 

-2.05103929186030E+OOOO 

-2.02608059755322E+0000 

-2.00316443746140E+0000 

-1.98199294845072E+0000 

-1.96036238345656E+0000 

-1 .91768375796877E+0000 

-1. 70995013710460E+OOOO 

-5.30087359068193E-0001 

5 .42630845029 775 E+0000 

3.12752767568014E+0001 

g55 1.16782352280492E+0002 

g2 

g4 

4.79041200470442E+0000 

3.80571446844773E+00OO 

g6 = 3.33721541841173E+0000 

g8 3.04976085017862E+0000 

g10 = 

g12 = 

g14 = 
g16 

g18 

g20 

g22 

g24 

g26 

g28 

g30 

g32 

g34 

g36 

g38 

g40 

g42 

g44 

g46 

g48 

g50 

g52 

g54 

2.85051115264476E+0000 

2.70204029886873E+000O 

2.58596307765684E+0000 

2.49204805494240E+000O 

2.41408636802797E+0000 

2.34806168172513E+0000 

2.29124500404693E+0000 

2.24170818412655E+0000 

2.19804486469985E+0000 

2.15920181232639E+0000 

2.12437246061082E+0000 

2.09292722215584E+0000 

2.06436650835938E+000O 

2.03828960836123E+0000 

2.01438110081985E+OOOO 

1.99239744461149E+0000 

1.97164793635874E+0000 

1.94513600658498E+0000 

1.85663671406631E+0000 

1.35698573820419E+0000 

-1 .34127774682865E+0000 

-1.40137195168585E+0001 

-6.37051233420559E+0001 

Where gn = fn in formula 2.19. 



A9 

Reverted Coefficients for Bi = 10000 calculated using methods 

discussed in chapter two. 

g1 -5.99880023995201 E+0000 g2 4.79904012000479E+0O00 

g3 = -4.19344694880114E+0000 g4 = 3.81257074468559E+0O0O 

g5 = -3.544 75838502425 E+0000 g6 3.34322809389786E+0O00 

g7 -3.18448306596720E+0000 g8 3.05525580944013E+0000 

g9 -2.94741154753355E+0000 g10 = 2.85564721653638E+0O0O 

g 11 = -2. 77633 76384957 4E+0000 g12 2.70690891390950E+0O00 

g13 -2.6454 7606953221 E+0000 g14 2.59062258658067E+0O00 

g15 -2.54126049219333E+0000 g16 = 2.49653837579256E+0000 

g17 -2 .45577905823533 E+0000 g18 = 2.41843623700650E+0000 

g19 = -2.38406363497291 E+0000 g20 2.35229260136145E+0000 

g21 -2.32281555685684E+0000 g22 = 2.29537356154280E+0000 

g23 -2.26974684422000E+0000 g24 2.24574749361992E+0O00 

g25 -2.22321375121758E+0000 g26 2.20200550649892E+0000 

g27 -2.18200070604015E+0000 g28 = 2.163092464 71803E+0000 

g29 -2.14518672167625E+0000 g30 2.12820032233978E+0000 

g31 = -2.11205943538887E+0000 g32 2.096698233484 75E+0000 

g33 = -2.08205778230184E+0000 g34 = 2.06808510156776E+OOOO 

g35 -2.054 73240399399 E+0000 g36 2.04195663202365E+00O0 

g37 -2.02971970364593E+0000 g38 2.01799053021145E+OOOO 

g39 -2.00675106960089E+0000 g40 1.99601015367763E+0000 

g41 -1.98582810099869E+OOOO g42 1.97634213517061E+0000 

g43 -1.96772468041027E+OOOO g44 = 1.95980821378841E+0000 

g45 -1 .95050843850498E+0000 g46 1.9304 7075350502E+0000 

g47 -1 .86672565681713E+0000 g48 1.65592150296197E+0000 

g49 -9.96528325001958E-0001 g50 -9.4 7066269789015E-0001 

g51 6.39326596987562E+0000 g52 -2.09902315045323E+0001 

g53 5.846268865457 48 E+0001 g54 -1.50281910498445E+0002 

g55 3.63064157953565E+0002 

Where gn = fn in formula 2.19. 



A10 

Reverted coefficients for Bi - 001 calculated using methods discussed 

in chapter two. 

g1 = -6.00000000000000E+OOOO g2 = 4.80000000000000E+OOOO 

g3 -4.19428571428571 E+OOOO g4 = 3.81333333333333E+OOOO 

g5 = -3.54546740878169E+OOOO g6 3.34389680922252E+OOOO 

g7 -3.18512003013162E+OOOO g8 = 3.05586692623569E+OOOO 

g9 -2.94800109377431 E+OOOO g10 = 2.85621840839456E+OOOO 

g11 -2.77689296708058E+OOOO g12 = 2.70745035552677E+OOOO 

g13 = -2 .6460052234 7334E+OOOO g14 2.5911407688171 OE+OOOO 

g15 -2.54176880108852E+OOOO g16 = 2.49703773941667E+OOOO 

g17 = -2.45627026921343E+OOOO g18 = 2.41891997869533E+OOOO 

g19 -2.38454050146712E+OOOO g20 2.35276311301966E+OOOO 

g21 -2.32328017251645E+OOOO g22 2.29583268824899E+OOOO 

g23 -2.270200845064 76 E+OOOO g24 2.24619669413671E+OOOO 

g25 = -2.22365844469115E+OOOO g26 2.20244595853662E+OOOO 

g27 = -2.18243715885085E+OOOO g28 2.16352514185693E+OOOO 

g29 -2.14561583473969E+OOOO g30 2.12862608259204E+OOOO 

g31 -2.11248207606044E+OOOO g32 2.09711805262372E+OOOO 

g33 = -2.0824 7521913246E+OOOO g34 2.06850084844576E+OOOO 

g35 -2.05514748362876E+OOOO g36 = 2.04237208377709E+OOOO 

g37 -2.03013458355339E+OOOO g38 2.01839416352757E+OOOO 

g39 -2 .00709802965982 E+OOOO g40 1.99614795708253E+OOOO 

g41 -1 .98530629384253 E+OOOO g42 1.97395188422468E+OOOO 

g43 -1 .96050486911356E+OOOO g44 1.94123835962808E+OOOO 

g45 -1 . 90831943431 656 E+OOOO g46 1.84821452099100E+OOOO 

g47 -1.74711715937690E+OOOO g48 1.62864190724752E+OOOO 

g49 -1.70413900124699E+OOOO g50 2.8660533403784 7E+OOOO 

g51 -8.13756519500374E+OOOO g52 2.66167789622140E+0001 

g53 -8 .3586364 7600009 E+0001 g54 2.45179360545769E+0002 

g55 -6. 76095282054375 E+0002 

Where gn = rn in formula 2.19. 
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Appendix B. 

Calculated Values For N0 . 



Table 81. 

ajo 1e-120 1e-100 1 e-8 o 1 e-2 O 

1 e - 1 2 4 4 2 
1 e- 2 2 4 ? 2 
1 e-3 2 6 ? 2 
1 e-4 2 6 ? 2 
1 e-5 2 6 ? 2 
1 e-6 2 6 ? 2 

Values for No: when Bi=.01 A=O. 

Table 82 

ajo 1 e -1 1 1 e-1 O 1 e - 9 1 e-8 1 e- 7 1 e- 4 1 e - 3 

1 e - 1 4 * 4 4 2 ( 3) 2 2 2 
1 e- 2 2 6 4 4 4 4 4 
1 e - 3 2 6 6 6 4 4 4 
1 e- 4 2 6 8 6 4 4 4 
1 e-5 2 6 8 6 4 4 4 
1 e - 6 2 6 8 6 4 4 4 

Values for No: when Bi=.1 A=O 

Table 83 

alo . 1 .2 .27 ** .3 .4 .5 .7 

1 e - 1 2 2 2 2 2 2 2 
1 e- 2 2 4 4 4 4 4 2 
1 e-3 2 6 6 6 4 4 4 
1 e-4 2 6 8 8 4 4 4 
1 e - 5 2 6 1 0 8 4 4 4 
1 e-6 2 6 >10 8 4 4 4 

Values for No: when Bi=1 A=O. 

?: Number of solutions undetermined. 

* * :800. 

>10: At least 10 solutions. 

*:Type 3 curve present. 

B2 

1 e-1 4 1 e- 7 

2 0 
2 0 
2 0 
2 0 
2 0 
2 0 

1 e- 2 1 e - 1 1 

2 2 0 
4 2 0 
4 2 0 
4 4 0 
4 4 0 
4 4 0 

.8 .9 1 

2 2 0 
2 2 0 
4 4 0 
4 4 0 
4 4 0 
4 4 0 



Table B4 

alo 1 1 .5 1 . 6 * * 1. 7 1 .8 2 

1 e - 1 2 2 2 2 2 2 2 
1 e- 2 2 4 4 4 4 4 3 ( 4) 
1 e-3 2 5 6 6 6 4 4 
1 e-4 2 6 6 8 6 4 4 
1 e-5 2 6 6 1 0 8 4 4 
1 e-6 2 6 6 >10 8 4 4 

Values for No: when Bi=10 A=O. 

Table B5 

a I o . 1 .5 1. 7 1 .8 1. 9 * * 2.2 

1 e - 1 2 2 2 2 2 2 2 
1 e- 2 2 2 4 4 4 4 4 
1 e-3 2 2 4 4 ( 5) 6 6 4 
1 e- 4 2 2 6 6 6 8 4 
1 e- 5 2 2 6 6 6 1 0 4 
1 e-6 2 2 6 6 6 >10 4 

Values for No: when Bi=100 A=O. 

Table B6 

alo . 1 1.6 1. 7 1 .8 1. 9 * * 2 .1 

1 e -1 2 2 2 2 2 2 2 
1 e- 2 2 2 4 4 4 4 4 
1 e - 3 2 2 4 4 6 6 6 
1 e-4 2 2 6 6 6 8 6 
1 e-5 2 2 6 6 6 1 0 8 
1 e-6 2 2 6 6 6 >10 8 

Values for No: when Bi=10000 A=O. 

?: Number of solutions undetermined. 

* * :Oco. 

> 10: At least 10 solutions. 

*:Type 3 curve present. 

83 

2.7 2.8 3 

2 2 0 
2 0 0 
4 0 0 
4 0 0 
4 0 0 
4 0 0 

2.5 3.2 3.5 

2 2 0 
2 2 0 
4 2 0 
4 4 0 
4 4 0 
4 4 0 

2.8 3.2 3 .4 

2 2 0 
2 2 0 
4 4 0 
4 4 0 
4 4 0 
4 4 0 
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Appendix C. 

Graphs of the Function T8 si(qo)-, 
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Graph of the Function TB,Bi• 

15.0 

10.0 

5.0 

\ 
0.0 ~--~--~---~--~--~---~--~--~ 

-2.0 -1.0 0.0 1.0 2.0 

Figure C1. 

[[] 0 
5 



10.0 

5.0 

0.0 
-2.0 

Bi== 
A= 0 
8 = 1.66 

Graph of the Function To.Bi• 

-1.0 0.0 

Figure C2 

C3 

1.0 2.0 



20.0 

15.0 

10.0 

5.0 

0.0 
-2.0 

Graph of the Function To,Bi• 

-1.0 0.0 

Figure C3. 

C4 

1.0 2.0 



20.0 

15.0 

10.0 

5.0 

0.0 
-2.0 

Bi= oo 

A = 0 
o = 1.96 

cs 

Graph of the Function To,Bi• 

-1.0 0.0 1.0 2.0 

Figure C4. 
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Graph of the Function T8,Bi' 

20.0 

10.0 

0.0 '-----'----------'-------'-----'----------'-------'-----'---=~--' 

-2.0 

Bi= oo 

A = 0 
S = 2 

1.0 0.0 1.0 2.0 

Figure C5. 
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Appendix D. 

Bifurcation Diagrams. 
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a = .1 

0 

D2 

Bifurcation Diagram. 

Figure D.1.0 
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Bifurcation Diagram. 
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Bifurcation Diagram. 
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Bifurcation Diagram. 
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Bifurcation Diagram. 
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Bifurcation Diagram. 
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Bifurcation Diagram. 
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Bifurcation Diagram. 
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Bifurcation Diagram. 
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Bifurcation Diagram. 
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Bifurcation Diagram. 

6.o L===========:::c======-___L.__ __ _.___ _ _J 
0.0 

A = -600 
Bi = oo 

a = .01 

1.0 2.0 3.0 

Figure D.2.5 



D13 

Bifurcation Diagram. 
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Bifurcation Diagram. 
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Bifurcation Diagram. 
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Bifurcation Diagram. 
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Bifurcation Diagram. 
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Bifurcation Diagram. 
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Bifurcation Diagram. 
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