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Abstract

Gaussian graphical models are a useful tool for eliciting information about relation-

ships in data with a multivariate normal distribution. In the first part of this thesis

we demonstrate that partial correlation graphs facilitate different and better insight

into high-dimensional data than sample correlations. This raises the question of

which method one should use to model and estimate the parameters. In the second,

and major part, we take a more theoretical focus examining the costs and benefits of

two popular approaches to model selection and parameter estimation (penalized like-

lihood and decomposable Bayesian) when the true graph is non-decomposable.

We first consider the effect a restriction to decomposable models has on the esti-

mation of both the inverse covariance matrix and the covariance matrix. Using the

variance as a measure of variability we compare non-decomposable and decompos-

able models. Here we find that, if the true model is non-decomposable, the variance

of estimates is demonstrably larger when a decomposable model is used. Although

the cost in terms of accuracy is fairly small when estimating the inverse covariance

matrix, this is not the case when estimation of the covariance matrix is the goal. In

this case using a decomposable model caused up to 200-fold increases in the variance

of estimates.

Finally we compare the latest decomposable Bayesian method (the feature-inclusion

stochastic search) with penalized likelihood methods (graphical lasso and adaptive

graphical lasso) on measures of model selection and prediction performance. Here

we find that graphical lasso is clearly outclassed on all measures by both adaptive

graphical lasso and feature-inclusion stochastic search. The sample size and the

ultimate goal of the estimation will determine whether adaptive graphical lasso or

feature-inclusion stochastic search is better.
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Chapter 1

Introduction

Graphical models are a useful tool for providing understanding of joint distributions.

A graph in this context is a set of vertices and a set of edges which join some of the

vertices. In a graphical model the vertices represent random variables. We confine

our interest to undirected graphs where the absence of an edge implies conditional

independence and thus the edges represent the conditional independence structure.

The focus of this research is Gaussian graphical models (GGMs). Here we assume

the data is drawn from a multivariate normal distribution. In the Gaussian setting,

edges between vertices are equivalent to non-zero elements in the inverse covariance

matrix (Dempster, 1972). Thus partial correlations have the same zero pattern as

the inverse covariance matrix.

1.1 Research objectives

The research objectives for this thesis fall into two parts. The first part consists of

an initial motivational application. In the second, and major part, we take a more

theoretical focus examining the costs and benefits of two popular approaches to

model selection and parameter estimation (penalized likelihood and decomposable

Bayesian).

The main objective of the first part (Chapter 3) was to demonstrate that par-

1



2 CHAPTER 1. INTRODUCTION

tial correlation graphs facilitated different and better insight into high-

dimensional data than sample correlations. While the impetus for this was

primarily motivational, it also gave a chance to begin comparing the performance

of different approaches to parameter estimation.

In the second part (Chapters 4 and 5) we focused on situations where the true

graph is non-decomposable. Here our first objective was to understand what

effect a restriction to decomposable models has on the estimation of both

the inverse covariance matrix and the covariance matrix. We consider the

variability of estimates, as measured by the variance, comparing non-decomposable

and decomposable models.

Finally we compare the latest decomposable Bayesian and penalized like-

lihood methods on measures of model selection and prediction perfor-

mance.

1.2 Gaussian graphical models

We illustrate the relationship between the inverse covariance matrix and the graph-

ical model with an low-dimensional example from Chapter 4 based on the Fisher’s

Iris virginica dataset. It consists of measurements of the sepal length, sepal width,

petal width and petal length of 50 Iris virginica flowers. Figure 1.1 shows the graph-

ical model and associated inverse covariance matrix (Ω) for this data set. In this

simple example we can clearly see that the zero elements in the Ω matrix corre-

spond with the absence of edges in the graph. The graph shows that the direct

relationships are between elements pertaining to the same part of the flower (sepal

or petal) and between those pertaining to the same measurement (length or width).

The properties of graphical models are explained more fully in Chapter 2.

There are two main attractions to using graphical models with high dimensional data

(Lauritzen, 1996). Firstly graphical models are inherently modular in nature, thus

in high-dimensions it is possible to work with simpler elements. Secondly graphi-

cal models provide natural data structures for digital computation which makes it
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Figure 1.1: Example of a graphical model: Fisher’s Iris virginica dataset.

feasible to work with high-dimensional data. With lower dimensions, or very small

subsets of high-dimensional data, we could also add that they give a simple visual

representation of the independence structure.

Sparse graphs have a relatively small number of edges which, particularly in a high-

dimensional setting, increases interpretability. They are commonly used in, for ex-

ample, genomics and proteomics where they give some idea of cell pathways (Hastie

et al., 2009). This provides our entry point to consideration of GGMs. We begin

with an application which motivates the use of GGMs: their use in representing

gene association structures.

1.3 Overview

In Chapter 2 we give an overview of model selection and parameter estimation

in the GGM framework, detailing the algorithms for the two penalized likelihood

approaches used, namely graphical lasso and adaptive graphical lasso. We then

highlight relevant graph theory, including more formally defining a Gaussian graph-

ical model and defining a decomposable graph. Chapter 2 concludes with a section

detailing feature-inclusion stochastic search, the decomposable Bayesian approach

used in Chapter 5 and the formula used for obtaining predictions in the same chap-

ter.

Chapters 3, 4 and 5 form the main body of work in this thesis. They are written as
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three separate papers and, as such, each may be read independently of the others.

Each chapter includes a brief review of the graph theory, model selection and/or

parameter estimation methods pertinent to that chapter.

Chapter 3 details our motivational example: shortest path analysis using partial

correlations for classifying gene functions from gene expression data. Graphical

lasso is used to fit the GGMs and obtain partial correlations. We propose using the

estimated partial correlations from these models to attach lengths to the edges of

the GGM, where the length of an edge is inversely related to the partial correlation

between the gene pair. The shortest paths between pairs of genes are found. Inter-

mediate genes on the path are classified as having the same biological function as

the terminal genes, if both the terminal genes have the same function. We validate

the method using genes of known function from the Rosetta Compendium of yeast

(Saccharomyces cerevisiae) gene expression profiles. We also compare our results

with those obtained using a graph constructed using correlations. Using a partial

correlation graph we are able to classify approximately twice as many genes to the

same level of accuracy as when using a correlation graph. More importantly when

both methods are tuned to classify a similar number of genes, the partial correlation

approach can increase the accuracy of the classifications.

We move from motivating the use of sparse GGMs to consideration of computation-

ally tractable methods for fitting them. Penalized likelihood approaches such as the

graphical lasso (Friedman et al., 2008b) used in Chapter 3 do not put any restriction

on the configuration of edges in the graph. However, they are frequently criticized

for including many small elements in the inverse covariance matrix. Bayesian ap-

proaches on the other hand generally yield a sparser model, but the computation

time is longer and they often place restrictions on the models. In Chapter 3 we used

graphical lasso to estimate the covariance matrix. As a comparison similar results

were obtained using high-dimensional Bayesian covariance selection, which restricts

model choice to those which can be represented as a directed acyclic graph.

Models that can be represented as a decomposable (triangulated) graph are more

computationally tractable. In fact, in the high-dimensional Bayesian setting, it is
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common to restrict model selection procedures to decomposable models (defined in

Section 2.2). This restriction is made for computational convenience and research

into the implications of this restriction is lacking. In Chapter 4 we focus on the

cost, in terms of variability in parameter estimation, of using decomposable GGMs

for computational convenience by examining the effect of adding extra edges to

triangulate a non-decomposable graph.

We consider estimation of both the covariance matrix and the inverse covariance

matrix, where the true model forms a cycle, but estimation is performed supposing

that the pattern of zeros is a decomposable graphical model. We use a decom-

posable model where those elements not restricted to zero are a superset of those

not restricted to zero in the true matrix. The variance of the maximum likelihood

estimator based on the decomposable model is demonstrably larger than for the

true non-decomposable model, and which decomposable model is selected affects

the variance of particular elements of the matrix. When estimating the inverse co-

variance matrix the cost in terms of accuracy for using the decomposable model is

fairly small, even when the difference in sparsity is large and the sample size is fairly

small (for example the true model is a cycle of size 50, and the sample size is 51).

However, when estimating the covariance matrix, the estimators for most elements

had a dramatic increase in variance (200-fold in some cases) when a decomposable

model was substituted. These increases become more pronounced as the difference

in sparsity between models increases.

Chapter 5 completes our consideration of the costs and benefits of decomposable

Bayesian and penalized likelihood approaches by comparing model selection and ac-

curacy in prediction under both approaches when the true model is non-decomposable.

Penalized likelihood approaches perform model selection in the context of parameter

estimation. Bayesian approaches separate model selection from parameter estima-

tion but frequently restrict consideration to decomposable models. When consider-

ing the variability of estimates, in Chapter 4 we assumed that the model selected

was a superset of the true model. Here we begin by quantifying the scenarios under

which this actually occurs when a decomposable Bayesian approach is used for model

selection. We use the feature-inclusion stochastic search (Scott and Carvalho, 2008),
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a Bayesian method, which Scott and Carvalho (2008) showed to have superior per-

formance to both other Bayesian methods and early penalized regression methods.

We find that for large samples, as expected, feature-inclusion stochastic search con-

verges to supersets of the true model. For smaller sample sizes, and when there are

elements with small partial correlations, at least one true edge is often missing from

the graphs with the highest posterior probability. We then compare feature-inclusion

stochastic search to two more recent penalized likelihood approaches, graphical lasso

(Friedman et al., 2008b) (also used in Chapter 3) and adaptive graphical lasso (Fan

et al., 2009). We make comparisons both in terms of model selection and prediction.

Here we find that the graphical lasso is clearly outclassed by both feature-inclusion

stochastic search and adaptive graphical lasso. The differences between feature-

inclusion stochastic search and adaptive graphical lasso are not so clear cut.

We conclude in Chapter 6 by summarizing our findings, highlighting the original

contribution this work makes to the knowledge of Gaussian graphical models. In

our discussion here we draw together both parts by considering the implications of

the properties observed in Chapters 4 and 5 in practical application such as the gene

associations of Chapter 3. Included in this are suggestions for further research.

1.4 Publications

A version of Chapter 3: Shortest path analysis using partial correlations has been

published in Bioinformatics as Shortest path analysis using partial correlations for

classifying gene functions from gene expression data (Fitch and Jones, 2009). A

version of Chapter 4: The cost of using a decomposable model is has been accepted

for publication in The Journal of Computational Statistics and Data Analysis as

The cost of using decomposable Gaussian graphical models for computational con-

venience (Fitch and Jones, 2012). We expect a further publication from the content

of Chapter 5.



Chapter 2

Background

In this chapter we give material on key aspects of this thesis. In Section 2.1 we give

an overview of model selection in the Gaussian graphical model (GGM) framework

before focusing on penalized likelihood approaches to estimating the inverse covari-

ance matrix. In Section 2.2 we give an overview of graph theory with an emphasis on

decomposable graphs and the connections between graphical models and the inverse

covariance matrix in the Gaussian setting (that is GGMs). We conclude this chapter

by giving details of the the Bayesian model selection method used in Chapter 5 and

by explaining how we go on to use our estimates to make predictions.

2.1 Gaussian graphical models: model selection

and parameter estimation

2.1.1 Overview

Dempster (1972), in his seminal paper Covariance Selection, introduced the concept

of setting elements of the inverse covariance matrix to zero in order to reduce the

number of parameters. He proposed using forward, or backward, selection and a

likelihood ratio test to determine which elements should be set to zero. Since that

time a large body of work has evolved, and various methods have been proposed

7
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for model selection and parameter estimation. Traditional methods require the

sample size (n) to be greater than the number of parameters (p). We focus here on

methods that have been specifically developed for use with high-dimensional data,

particularly where n < p.

One group of methods, scalable to high dimensional data, is based on the relationship

between regression coefficients and elements of the inverse covariance matrix (Ω). If

V is the set of all variables then:

βij|V\{j} =
−ωij

ωii

(2.1)

where βij|V\{j} is the partial regression coefficient (Lauritzen, 1996). These methods

all depend upon obtaining a (sparse) regression model for each variable in terms

of the others. Key in this area, in terms of penalized likelihood approaches, is the

work of Meinhausen and Bühlmann (2006) who use the lasso (Tibshirani, 1996) to

obtain regression equations. Two different methods of obtaining the zero elements

of Ω̂ are proposed. Either ω̂ij is deemed to be zero if one or both of βij|V\{j} = 0 and

βji|V\{j} = 0 (an OR graph) or, alternatively, only if both of them are zero (an AND

graph). They show that asymptotically the two models are the same. Equation (2.1)

can be used to calculate estimated partial correlation coefficients from the partial

regression coefficients giving:

r̃ij =
−ω̂ij√
ω̂iiω̂jj

Other regression based methods use adaptions of the lasso such as the weighted

lasso (Shimamura et al., 2007), or other functions, for example a penalized loss

function (Peng et al., 2009) to determine the zero elements of Ω. High-dimensional

Bayesian covariance selection (Dobra et al., 2004) is a Bayesian regression-based

method. Unlike most Bayesian methods, high-dimensional Bayesian covariance se-

lection does not restrict model selection to decomposable models. However this

means that computation time is much greater than for other methods (see Chapter

3.4). Furthermore because model selection is done via an acyclic directed graph,

this does result in some implied restrictions on the model space (albeit less than a

restriction to decomposable models).
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Another body of work focuses directly on the inverse covariance matrix. Schäfer

and Strimmer (2005) apply a shrinkage algorithm to the correlation matrix, and use

a false discovery rate estimate to determine when to set an element of the inverse

covariance matrix to 0. A variety of different penalized likelihood methods have been

proposed. In Section 2.1.2 we detail the graphical lasso (Friedman et al., 2008b) and

the adaptive graphical lasso (Fan et al., 2009). These along with other adaptions

such as the Smoothly Clipped Absolute Deviation (Fan et al., 2009) apply an L1

penalty directly to the inverse covariance matrix. Others such as the fused lasso

(Tibshirani et al., 2005), the group lasso (Yuan and Lin, 2006) and the elastic net

(Zou and Hastie, 2005) use a combination of L1 and L2 penalties. Many of these

algorithms have been developed to suit data with particular structures.

A final group of Bayesian methods separate model selection from parameter estima-

tion. Jones et al. (2005) used a Metropolis-based algorithm and Hans et al. (2007)

used the parallel Shotgun Stochastic Search. We use the serial procedure feature-

inclusion stochastic search (Scott and Carvalho, 2008) (see Section 2.3).

2.1.2 Penalized likelihood methods: graphical lasso and adap-

tive graphical lasso

We use two penalized likelihood methods to estimate Ω in this thesis. These are the

graphical lasso (in Chapters 3 and 5) and the adaptive graphical lasso (in Chapter

5).

The graphical lasso (Friedman et al., 2008b) applies an L1 penalty directly to the

inverse covariance matrix. Thus the objective function is

log detΩ− tr(ΩS)− λ

p∑
i=1

p∑
j=1

|ωij| (2.2)

where Ω is a p-dimensional positive definite matrix, S is the p-dimensional sample

covariance matrix and λ > 0 is the penalty.

The graphical lasso algorithm (Friedman et al., 2008b), which estimates Σ rather

than Ω in the first instance, works as follows:
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1. Start with D = S + λI.

2. At each iteration, for j=1,2, . . . ,p:

• permute the rows and columns of D and S so that the target column (j)

is the last.

• partition D and S as:

D =

⎛⎝D11 d12

dT12 d22

⎞⎠ S =

⎛⎝S11 s12

sT12 s22

⎞⎠ (2.3)

• Solve the lasso problem

minβ

{
1

2
‖D

1
2
11β − b‖2 + λ‖β‖1

}
(2.4)

where b = D
− 1

2
11 s12.

• use the (p − 1)-dimensional solution vector β̂ to update D using d12 =

D
1
2
11β̂.

3. Continue until convergence.

The lasso problem (equation (2.4)) is solved using coordinate descent (Friedman

et al., 2007; Banjeree et al., 2008). At each step the update has the form

β̂ ←
St

(
uj −

∑
k �=j Vkjβ̂k, λ

)
Vjj

(2.5)

where V = D11, u = s12 and St is the soft threshold operator:

St(x, t) =

⎧⎪⎨⎪⎩
sign(x)(|x| − t) if (|x| − t) ≥ 0

0 if (|x| − t) < 0

(2.6)

Σ̂ is estimated as D at convergence, with Ω̂ = D−1 being calculated at convergence

using the p stored β̂, and the expressions

ω̂22 = 1/(d22 − dT12β̂) (2.7)

ω̂12 = −β̂ω̂22 (2.8)
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Convergence is defined as occurring when the average absolute change in D is less

than t times the average of the absolute value of the off-diagonal elements of the

empirical covariance matrix S. t is a fixed threshold, set by default at 0.0001 in the

R-package glasso (Friedman et al., 2008a) which we use.

We note here that if the lasso problem (equation (2.4)) is solved using S11 rather

than D11, then the graphical lasso algorithm yields a solution to the Meinhausen

and Bühlmann (2006) (OR-graph) approach. Thus their approach can be regarded

as an approximation to graphical lasso.

If we set the penalty term λ to 0, then one iteration of the algorithm calculates the

maximum likelihood estimate of Ω (= S−1). If the graph structure is known, then

the zero elements can be specified. In this case we replace D11 and β̂ with D∗
11 and

β̂∗ when solving the lasso problem at step 2. D∗
11 is obtained from D11 by removing

elements constrained to be zero. β̂ is then obtained by padding the solution β̂∗ with

zeros in the appropriate positions. We use these two properties, and the R-package

glasso, to obtain maximum likelihood estimates of graphs with a known structure

in Chapter 4.

The algorithm can also be used with differing penalties for each element of the

inverse covariance matrix by simply replacing λ in equation (2.5) with λjk. This

fact enables us to also use the R-package glasso in our implementation of adaptive

graphical lasso.

One criticism of the graphical lasso method that when a higher penalty is used to

increase sparsity this results in all non-zero elements also shrinking further towards

zero. Adaptive graphical lasso uses a weighted penalty in an attempt to overcome

this bias. We follow the work of Fan et al. (2009) and define the weights to be

ζi,j = 1/|ω̃i,j|γ

where Ω̃ = (ω̃i,j)1≤i,j≤p is any consistent estimate of Ω and γ > 0. Thus for adaptive

graphical lasso the objective function becomes

log detΩ− tr(ΩS)− λ

p∑
i=1

p∑
j=1

ζi,j|ωij| (2.9)
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The advantage of using this weighted penalty is that at each iteration the weighting

is applied in a manner which ensures that less shrinkage is applied to elements with

current large magnitude estimates, thus reducing bias.

2.2 Graph theory

A graph G consists of a set of vertices V and a set of edges E⊆(V×V). Our interest is

in undirected graphs where ei,j ∈ E⇔ ej,i ∈ E, ∀i, j ∈ V. In what follows we use the

term graph to mean an undirected graph. Further we only consider graphs where the

vertices represent continuous variables. Thus edges in our graphs are represented

by lines and following the convention of Lauritzen (1996) vertices in our graphs are

represented by circles. We stated in the introduction that an undirected graphical

model may be used to represent the conditional independence structure whereby the

absence of an edge implies that the two variables are conditionally independent. We

now formally state this relationship as:

If G=(V,E) is an undirected conditional independence graph with V={1,2,. . . ,p},
then (i, j) /∈ E⇔ Xi ⊥⊥ Xj|XV\{i,j}, ∀i �= j, i, j ∈ V.

A complete graph contains all possible edges. A triangulated (or chordal) graph

(is an undirected graph that) contains no chordless cycles of four or more vertices,

where a chord is an edge that joins two non-consecutive vertices.

GA=(A,EA) is a subgraph of G if A ⊆ V and EA=E ∩(A×A). A clique is a complete

subgraph that is maximal with respect to the subset operator (⊆).

2.2.1 Decomposability and decomposable graphs

The terms decomposable graph and triangulated graph are equivalent for undirected

graphs(Lauritzen, 1996). Suppose A, B and C are disjoint subsets of V, each con-

sisting of at least one vertex, and A ∪ B ∪ C = V. C separates A from B if all

paths from A to B must go through C. If the subgraph GC is complete then A,

B, C is a decomposition of G into two components, A ∪ C and B ∪ C (see Figure
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Figure 2.1: Graphs of five variables illustrating the idea of decomposition and de-

composable versus non-decomposable.

2.1). A prime component is a subgraph that cannot be further decomposed. If we

choose C so that it is the smallest complete subgraph that separates A and B then

we can recursively decompose a graph into its prime components. Thus a complete

prime component is a clique and a decomposable graph can be recursively decom-

posed into cliques (only). In Figure 2.1 graphs (a) and (b) are decomposable as

all the subgraphs are complete. Figure 2.1 graph (c) is the 5-cycle, which has only

one component and is non-decomposable. Many of the non-decomposable graphs

we consider are cycles. Although we can find a decomposition for Figure 2.1 graph

(d), as shown, the graph is non-decomposable because one of the components (the

lower one) is neither complete nor able to be further decomposed.
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Restricting consideration to decomposable graphs has advantages both in terms

of tractability and computing time. Using these advantages usually requires not

only identifying the cliques and separators, but obtaining a perfect ordering of

them. If we have cliques (Ci) and separators (Si) then in a perfect ordering

(C1, S2, C2, S3, C3, ..., Sk, Ck) the separator Si is the intersection of Ci with (the

union of) all lower numbered cliques (see for example Jones et al. (2005)). There

are many efficient algorithms for producing a perfect ordering, including those which

order incomplete prime components as well as cliques (Dobra and Fienberg, 2000).

It is necessary to order the vertices to obtain the ordering of the components; this is

done via a perfect elimination ordering. We present here the maximum cardinality

search algorithm of Berry et al. (2004). A maximal cardinality search algorithm is

used to generate a perfect elimination ordering. If G is not decomposable then the

maximum cardinality search adds edges so that a triangulated graph and its perfect

elimination ordering are obtained. We note that it is possible to obtain more than

one perfect elimination ordering for an undirected graph.

Algorithm MCS-M (Berry et al., 2004) to obtain a perfect elimination ordering of

the graph G=(V,E).

• Begin with all p vertices unnumbered and assigned a zero weight.

• Choose any vertex v ∈ V and number it p.

1. Find all unnumbered vertices u ∈ V, where either uv ∈ E or there

is a path from v to u and all the other vertices on the path have a

weight less than the weight of u. Call this set of vertices U.

2. Increase by 1 the weight of all vertices in U.

3. For all the vertices u ∈ U if uv /∈ E then triangulate by adding the

edge uv.

• Select the (an) unnumbered vertex with the highest weight, number it

p− 1, and repeat the numbered steps 1-3.

• Continue in the same manner decreasing the vertex number by 1 each

time until all vertices have been numbered.
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Once the vertices are numbered according to a perfect elimination ordering, then a

perfect ordering of cliques proceeds as follows:

• Assign all vertices a weight of zero initially.

• Choose the highest numbered vertex (p) as v:

1. Let X be the set of all vertices x ∈ V where vx ∈ E and x has a lower

numbering than v.

2. If X is empty because it is not connected to any other vertices, then v

forms its own clique.

3. If X is empty because it is only connected to higher numbered vertices,

then all cliques have been found.

4. Otherwise let u be the highest numbered vertex in X and assign it a new

weight equal to the maximum of its current weight and the number of

other vertices in X.

5. If the weight of v is less than the number of vertices in X then clique 1 is

v ∪X.

• Repeat steps 1 to 5 for vertices p− 1 to 1, increasing the clique number by 1

at step 5 each time a clique is added.

A perfect elimination ordering of the vertices and the corresponding perfect ordering

of cliques enables the formation of a junction tree. The mathematical properties of

a junction tree are set out in Lauritzen (1996, Chapter 2). It is sufficient here

to say that a junction tree is an undirected tree, with vertices corresponding to

cliques and edges to the existence of a separator between the cliques. The feature-

inclusion stochastic search algorithm (see Section 2.3) uses the junction tree to

improve efficiency. We also use a perfect elimination ordering of decomposable

graphs in the identification of cliques and separators when estimating parameters

using Bayesian model selection.
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2.2.2 Gaussian graphical models

We restrict our interest to data drawn from a multivariate normal distribution with

covariance matrix Σ. Without loss of generality, we assume all variables have been

centred and thus have a mean of 0. If we scale the inverse covariance matrix so

that the diagonals are all 1, then the off diagonal elements are the negative partial

correlations. Thus the the pattern of zeros in the inverse covariance matrix (Ω=Σ−1)

represents the conditional independencies in the distribution and can also be seen

in the absence of edges in the graph.

If Xp ∼ MVN(0,Ω−1), then G=(V,E) is a Gaussian graphical model means that

ei,j /∈ E ⇔ ωi,j = 0, ∀i �= j and i,j ≤ p.

In the Gaussian setting decomposability means that the density can be written as

a function of the densities of the prime components and separators. Thus

f(x) =

∏k
j=1 f(xPj

)∏k
j=2 f(xSj

)
(2.10)

where P1, . . . , Pk is the sequence of k prime components and S2, . . . , Sk the corre-

sponding sequence of k − 1 separators.

If Sj = Pi ∩ Pj for some i < j means that the elements of ΣSj
are common in ΣPi

and ΣPj
, and that (Σ|b,D,G) ∼ HIWG(b,D), then the density of Σ can be written

in a similar manner (Scott and Carvalho, 2008; Jones et al., 2005) as:

p(Σ|b,D,G) =

∏
P∈P p(ΣP |b,DP )∏
S∈S p(ΣS|b,DS)

(2.11)

In this case each prime component P has an inverse Wishart distribution, ΣP ∼
IW (b,DP ), with density,

p(ΣP |b,DP ) ∝ |ΣP |(−b/2+|P |)exp{−1

2
tr(Σ−1

P DP )}. (2.12)

This density only has closed form for decomposable graphs (that is for cliques not

incomplete prime components). If our prior is Σ ∼ HIWG(b,D), then the conjugate

posterior is (Σ|X) ∼ HIWG(b + n,D + XTX) where XTX is the sum of squares

matrix for the data matrix X.
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We make particular use of this fact in Chapter 5, when calculating the marginal like-

lihood of a graph using the fractional Bayes approach of Carvalho and Scott (2009).

Fractional Bayes as introduced by O’Hagen (1995) is regarded as a useful model se-

lection technique when prior information is weak. The basic idea of fractional Bayes

is to train a non-informative prior for each model using a small fractional power (b)

of the likelihood function. This is done simultaneously for all models, converting

all the non-informative priors into proper priors for selecting the model using the

remainder of the likelihood. O’Hagen (1995) show that if b → 0 as n → ∞ then

fractional Bayes is a consistent procedure.

In the GGM context the conventional choice of prior is Σ ∼ HIWG(δ, τI).

In the fractional Bayes approach the hyper-inverse Wishart g-prior, (Σ|G) ∼
HIWG(gn, gX

TX), is used, where g is the fractional power (b). The g-prior is

preferred because it gives a “sharper characterization of the model uncertainty”

(Scott and Carvalho, 2008, page 794). In contrast the conventional prior induces a

set of ridge-regression priors on each univariate conditional regression which leads

to an artificial flattening of the modes in model space (Scott and Carvalho, 2008;

Zellner and Siow, 1980).

When using the hyper-inverse Wishart g-prior the data is taken to be (1− g)XTX

and represent (1− g)n observations resulting in the marginal likelihood:

p(X|G) = (2π)−np/2h(G, gn, gXTX)

h(G, n,XTX)
(2.13)

where we set g as 1/n and the function h is the normalizing constant of a hyper-

inverse Wishart distribution. If P represents the set of all prime components and S
the set of all separators in G then

h(G, b,D) =

∏
P∈P

∣∣1
2
DP

∣∣ (b+|P |−1)
2 Γ|P |

(
(b+|P |−1)

2

)−1

∏
S∈S

∣∣1
2
DS

∣∣ (b+|S|−1)
2 Γ|S|

(
(b+|S|−1)

2

)−1 (2.14)

and Γp(x) = πp(p−1)/4
∏p

j=1 Γ(x+(1−j)/2) is the multivariate gamma function.

Setting g = 1/n ensures that a minimum training sample of effective size 1 is used.

The modified likelihood equation prevents prevents ‘double use’ of the data, with

the implicit sample size being n− 1.
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In the maximum likelihood framework, when the graph structure (and hence position

of zero elements) is known, direct (analytic) estimates of the inverse covariance

matrix are only possible if the graphical model is decomposable and the sample

size (n) is greater than the number of nodes in the largest clique (Whittaker, 2008;

Wermuth, 1980; Lauritzen, 1996). In this case the estimate can be calculated using

equation (2.15) where (K)0 is the extension of matrix K with zeros, C is the set of

all cliques and S the set of all separators.

Ω̂ =
∑
C∈C

(Σ̂−1
C )0 −

∑
S∈S

(Σ̂−1
S )0 (2.15)

While equation (2.15) also holds in the situation where not all prime components

are cliques, numerical solutions are required for finding Σ̂−1
P , when P is a prime

component that is not a clique.

2.2.3 Acyclic directed graphs

In practical applications one is often interested in identifying causal relationships.

In theory, causal relationships could be depicted using an acyclic directed graph

(ADG), with the directed edges corresponding to causality. Although on their own

Gaussian graphical models do not suggest causal relationships, in many cases it is

possible to order the vertices and assign direction to edges. Such representations

are not unique and are only possible if the graph is decomposable. ADGs can be

grouped together into equivalence classes corresponding to the same inverse covari-

ance structure. If the structure of the ADG corresponds to a decomposable structure

then the corresponding undirected graph will have the same decomposable structure.

If the structure of an ADG corresponds to a non-decomposable structure then the

’moralizing’ algorithm used to convert ADGs to undirected graphs adds ‘moralized’

edges to the graph. The elements in the inverse covariance matrix corresponding to

these ‘moralized’ edges are non-zero but not free to vary.

A non-decomposable undirected graph does not correspond directly with any ADG.

Cox and Wermuth (2000), however, consider the case of the chordless four-cycle,
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the simplest non-decomposable graph. They show that a chordless four-cycle may

represent the situation where there are two unobserved variables. In this case there

is a related ADG which assumes the existence of two latent variables and contains

two additional vertices representing them.

The class of ADGs thus while containing more graphs than the class of decompos-

able graphs still represents a subset of all possible graphs. Furthermore, even in

the situation where the data clearly implies a direction to the edge, care must be

taken in assigning causality. As with any situation with observational data prior

knowledge and scientific information should be used to confirm what the observed

data indicates. These many instances when there is not a direct a correspondence

between causality, ADGs and the inverse covariance matrix suggest that even when

our ultimate goal is to understand a biological system it is worthwhile looking at

unrestricted graphical models.

2.3 Decomposable Bayesian model selection us-

ing feature-inclusion stochastic search

In Chapter 5 we use the feature-inclusion stochastic search (FINCS) algorithm for

Bayesian model selection (Scott and Carvalho, 2008). FINCS restricts the search

to the space of decomposable graphs for computational convenience. FINCS, unlike

many Bayesian algorithms, is not a sampling algorithm. The FINCS algorithm is a

search algorithm which looks for posterior modes and retains a set of ‘top models’.

It is a serial procedure that combines three types of moves through the space of all

possible (decomposable) graphs. As each new model is found the model score (log

of the non-normalized posterior probability) is calculated using:

model score = log P (X|Gk) + log mc(Gk) (2.16)

where P (X|Gk)is calculated using equation (2.13) and mc(Gk), the multiplicity cor-

rection prior over the graphs, using equation (2.18) As with all Bayesian algorithms

normalizing of model scores to obtain the posterior probabilities can only occur



20 CHAPTER 2. BACKGROUND

once the search (sampling) is complete. Exact normalization is only possible when

all models have been visited. In this situation because only top models are retained

normalization can only be done relative to the retained models.

Most moves are local moves which exploit the computational advantages of adding or

deleting only one edge at a time. The decision to add or delete is randomly chosen.

If addition is selected, then the edge to add is selected in proportion to its relative

inclusion probability (equation (2.17)) and correspondingly if deletion, then the edge

to delete is selected in proportion to the inverse of its relative inclusion probability.

In both cases edges are also chosen so that decomposability is maintained. This is

done by considering the effect of the added (or deleted) edge on the cliques that the

two endpoint vertices belong to. Adding an edge either adds a totally new clique (and

separator), results in two (or more) cliques amalgamating to one larger or, if allowed

to occur, would create a non-decomposable component. Correspondingly deleting an

edge either totally removes a clique (and separator), splits a clique into two or more

smaller cliques or, if allowed to occur, would turn a clique into a non-decomposable

component. The adding and subtracting are both done via the junction tree as only

cliques directly connected to cliques containing the affected vertices may change.

Computations are thus simplified by using the junction tree, which is updated after

every local move. Updates to the model scores, therefore, only involve additions and

subtractions relative to the changes in cliques and separators.

Global moves are used to move to another part of the graph space in order to

avoid missing regions that are not easily found in stepwise moves. A global move

is achieved by generating a randomized median triangulation pair. A randomized

median triangulation pair is found by starting with an empty graph and adding

edges in proportion to their current relative inclusion probability. The graph so

formed (GN) is usually not decomposable so a minimal decomposable supergraph

(G+) and a maximal decomposable subgraph (G−) are found. Model scores are then

calculated for both G+ and G− and the one with the highest model score chosen as

the new current graph.

Finally resampling moves revisit graphs in proportion to their model score and
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thereby ensure that the global moves do not irretrievably direct the search away

from ‘good’ graphs. Previously visited models are stored in a binary search tree

indexed by a normalized model score. A beta distribution is used to represent

the empirical distribution of these scores on the interval (0,1]. The parameters of

the beta distribution are updated every time a substantial pocket of probability is

found in the model space. The implementation of FINCS then uses an approximate

resampling, by drawing a score from this beta distribution and resampling the model

with the score closest to the one selected. This allows substantial gains in efficiency

(see Scott and Carvalho (2008, Section 3.3)).

For each edge ei,j the inclusion probability at step t is estimated by the relative

inclusion probability

q̂ij(t) =

∑k=t
k=1 1(i,j)∈Gk

P (X|Gk)π(Gk))∑k=t
k=1 P (X|Gk)π(Gk))

(2.17)

P (X|Gk) is calculated using equation (2.13) and π(Gk) is the prior probability of the

graph. As the relative inclusion probabilities are only based on the graphs visited

they do not converge to the true inclusion probabilities except in the trivial sense

of all models eventually being enumerated.

Scott and Carvalho (2008) use a multiplicity-correction prior over graphs which is

motivated by the standard binomial prior, where edge inclusions have a binomial dis-

tribution with success probability r. The multiplicity correction places a conjugate

beta prior on r, with the default uniform prior (a beta distribution with parameters

a = b = 1) giving a marginal prior inclusion of 0.5 for all edges. This then means

that

π(Gk) ∝ mc(Gk) = (κ)!(m− κ)!

(m+ 1)(m!)
(2.18)

where Gk has κ edges out of m = p(p− 1)/2 possible edges.

The FINCS algorithm thus generates a set of ‘top’ graphs and their model scores.

The more usual Bayesian approach is a Markov chain Monte Carlo (MCMC) sam-

pling algorithm where posterior probabilities can be estimated using a graph’s fre-

quency in the sample of graphs produced. However, for problems with even a mod-

erate number of variables and a restriction to decomposable models, the sampling
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space is so large that a graph’s frequency in the sample does not reflect its posterior

probability (Jones et al., 2005). In search algorithms such as FINCS, which only

retain a set of top graphs, the exponentiated model scores can only be normalized

with respect to the retained graphs. Only at very small dimensions is there any

sense that the retained graphs represent most of the posterior probability and only

in these situations can the normalized scores be thought of as real posterior prob-

abilities. Nevertheless, the relative size of the model scores is true. We, therefore,

refer to normalized exponentiated model scores as relative posterior probabilities.

Model averaging using the relative posterior probabilities as weights can be useful

to reflect some degree of the model uncertainty if the retained models are truly dif-

ferent models. We will see this is less effective when the retained models are very

similar.

For any graph we use its adjacency matrix to identify cliques and separators. Pa-

rameter estimation is then done by finding the posterior mean for each clique (Ω̄C)

and separator (Ω̄S) and combining them using equation (2.15) where for any clique

C (or similarly separator S): Ω̄C = 1
n+pC−1

(ssdC)
−1, with ssd the sample sums of

squares matrix and pC the number of vertices in C.

2.4 Predictions

Using Gaussian data also enables simple predictions to be made. We first estimate

Σ̂ as Ω̂−1 where Ω̂ has been estimated from a data set with observation for all

variables. We then partition the prediction data set into two groups X1 and X2

where X1 = x1 are assumed known. In Chapter 5 we compute the conditional

expectation of X2 based on the ‘observed’ values (X1 = x1). This is done using the

standard relationship:

(μ2|X1 = x1) = μ2 + Σ21Σ
−1
11 (x1 − μ1)

where because our data is centred μ1 = μ2 = 0.



Chapter 3

Shortest path analysis using

partial correlations

A version of this material appeared in 2009 as Shortest path analysis using partial

correlations for classifying gene functions from gene expression data by A. Marie

Fitch and Beatrix Jones in Bioinformatics 25(1), pages 42-47.

3.1 Introduction

Gaussian graphical models (GGMs) and related methods are a popular tool for

representing gene association structures in microarray experiments (Matusno et al.,

2006; Toh and Horimoto, 2002; Aburatani et al., 2003; Wille et al., 2004; de la Fuente

et al., 2004; Dobra et al., 2004; Schäfer and Strimmer, 2005; Shimamura et al.,

2007; Banjeree et al., 2008). In a GGM edges correspond to non-zero elements in

the inverse covariance matrix (Dempster, 1972). The absence of an edge represents

conditional independence between two genes. Biological validation of the use of

GGMs with gene expression data has tended to be done on a small scale. Banjeree

et al. (2008) focus on 2 sub-graphs, Shimamura et al. (2007) and Wille et al. (2004)

use data sets with small numbers of genes and others such as Toh and Horimoto

(2002) and Aburatani et al. (2003) validate the use of a network of clusters rather

than individual genes.

23
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We introduce a method for classifying gene functions using GGMs. The results of

this procedure on expression data from genes with known function validate the use

of GGMs with gene expression data on a large scale basis. The procedure would

provide a method of ‘mining’ the graph for functional information when used with

data where the the function of some (but not all) genes are unknown.

Our method is motivated by the shortest path analysis of Zhou et al. (2002). In their

approach, a graph is created where edges occur between genes (nodes) with high

expression correlations. The length of an edge is inversely related to the correlation

between the gene pair. The shortest paths between pairs of genes are found. In

the context of this study the existence of transitive genes implies that the shortest

path between two genes will include at least one other gene. For example, the

shortest path from gene 5 to gene 9 may be gene 5, gene 13, gene 192, gene 245,

gene 9. In this example gene 5 and gene 9 are the terminal genes and gene 13, gene

192 and gene 245 are the transitive genes. If the shortest path between two genes

includes at least one transitive gene, then it is postulated that the transitive genes

on the path will be involved in the same biological process as the terminal genes.

Gene function is described using categories from the Gene Ontology database (see

section 3.2.1).

We propose using a GGM rather than a correlation based graph, with the edge

lengths inversely related to the partial correlations derived from the inferred inverse

covariance matrix. Because a GGM reflects the conditional independence structure,

it is a more natural way in which to capture the situation when the relationship

between genes is mediated by another gene. In the multivariate normal distribution

setting, the partial correlations enable us to fully quantify the relationship of two

variables given all the other variables. When dealing with gene expression data

we typically have the situation where the number of variables (p) is much greater

than the sample size (n) which can create problems in obtaining a consistent esti-

mator of the inverse covariance matrix. Many researchers work with subgroups, or

smaller networks (Matusno et al., 2006; Toh and Horimoto, 2002; Aburatani et al.,

2003), or propose methods using the more easily calculated first (or second) order

partial correlations to visualise conditional independencies rather than the inverse
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covariance matrix (Wille et al., 2004; de la Fuente et al., 2004). We have identified

several different methods for obtaining an estimator of the inverse covariance ma-

trix. Dobra et al. (2004), Meinhausen and Bühlmann (2006), and Shimamura et al.

(2007) use regression based methods to estimate the partial regression coefficients

and thence inverse covariance matrix, Schäfer and Strimmer (2005) use shrinkage

of the covariance matrix, and Friedman et al. (2008b) apply an L1 penalty to the

inverse covariance matrix. We use this final method, graphical lasso, to obtain the

partial correlations.

We find that using the partial correlation graph rather than the correlation graph

enables more transitive genes to be identified. In addition, when the correlation

and partial correlation graphs are tuned to attempt a similar number of gene clas-

sifications, the classifications derived from the partial correlation graph are more

accurate for some cellular compartments.

The rest of this chapter is organised as follows. In Section 3.2 we detail the dataset

used and overview the use of shortest path analysis, using graphical lasso to derive

partial correlations and then using these derived partial correlations to obtain short-

est paths between gene pairs. In Section 3.3 we present results using the derived

partial correlations and compare them to those using correlations. Finally in Section

3.4 we discuss the advantages of using partial correlations.

3.2 Data and methods

3.2.1 Data

In this section we use the yeast (Saccharomyces cerevisiae) gene expression profiles

from the Rosetta Compendium (Hughes et al., 2000). The Rosetta Compendium

data gives results (log10 (ratios)) from 300 deletion and drug treatment experiments.

The dataset that we use is restricted to those genes with known functions and, with

minor exceptions detailed below, is the same dataset as used by Zhou et al. (2002)

to validate their work.
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The functional categories for each gene from the Gene Ontology (GO) database are

used (http://www.yeastgenome.org). We used the 2002 version to enable straight-

forward comparisons with the work of Zhou et al. (2002). Although the database

includes three ontologies based on molecular function, biological process, and cellular

component, only the biological processes ontology is used. The ontology is organised

so that parent-child relationships between the descriptive terms are defined. This

enables the ontology to be represented as a tree with annotations becoming more

detailed as one moves down the tree. Furthermore a gene may have more than one

annotation within the ontology.

In order to facilitate comparisons with the results of Zhou et al. (2002) we organised

our datasets using similar criteria. We excluded any genes with no GO annotations,

those with the GO annotation ‘biological process unknown’ and those for which

there were less than 100 experimental results. We increased the minimum number

of experimental results required, from the 80 used by Zhou, to 100 as we found that

at least 100 experimental results were required for graphical lasso regression, imple-

mented using the R-package glasso (R Development Core Team, 2009; Friedman

et al., 2008a), to work. Three datasets were created - one for each of the major cel-

lular compartments (mitochondria, cytoplasm and nucleus). The cytoplasm dataset

was identical to that used by Zhou. However our nucleus data set contained two

fewer genes due to the requirement for more experiments and our mitochondria

dataset was slightly smaller (261 genes compared to 266). The datasets for each of

the three cellular compartments are worked with separately. Informative annota-

tions are found by identifying GO nodes that satisfy the properties that (i) the node

contains more than γ = 30 genes and (ii) each of the node’s children contains fewer

than γ genes.

3.2.2 Shortest path analysis

For each pair of genes Zhou et al. (2002) use the minimum of the absolute value

of the leave-one-out Pearson’s correlation coefficients, as a robust measure of their

correlation. A separate graph is formed for each of the three datasets. Zhou et al.



3.2. DATA AND METHODS 27

define three tuning parameters. The first of these is a threshold for including edges

in the graph: an edge is included when the absolute value of their correlation (|ρ|)
is greater than 0.6. The ‘length’ of that edge is set to be (1-|ρ|)6. The second

tuning parameter, the exponent in this expression, is used to enhance the differences

between low and high correlations, thus creating shortest paths that are likely to

cover more transitive genes. The shortest path between pairs of vertices is calculated

using Dijkstra’s algorithm (Dijkstra, 1959). A final tuning parameter discards paths

with length above some threshold: to be used for classification a path needed to

have an overall length less than 0.008. We apply Zhou’s method to the datasets

described in section 3.2.1 and vary the restriction on the overall length from 0.001

to no restriction at all for comparison purposes. Consequently, our results show

minor variations to those published in Zhou et al. (2002)

The shortest path is found between each gene pair with at least one common in-

formative annotation. The common informative annotation is ‘attached’ to this

shortest path when the path includes more than the two terminal genes (i.e. the

path contains transitive genes). The path is recorded separately with each different

annotation when the two terminal genes share more than one identical informative

annotation. We call each recorded instance a categorised path. The number of

transitive gene categorisations is determined by counting all transitive genes from

all categorised paths.

Transitive genes are classified as having the same biological function as the terminal

genes. To assess the validity of the shortest path method all transitive gene categori-

sations are then checked to see if they match exactly to the informative annotation

of the terminal genes (a level 0 match) or if they share the same direct parent on-

tology node with the terminal genes (a level 1 match). We adopt the convention

used by Zhou et al. (2002) whereby all level 0 matches are also included as level 1

matches.



28 CHAPTER 3. SHORTEST PATHS WITH PARTIAL CORRELATIONS

3.2.3 Graphical lasso

We use estimated partial correlations, rather than correlations to create our graph.

Partial correlations are a more natural way of capturing the situation where the rela-

tionship between two genes is mediated by another gene. We obtain a sparse inverse

covariance matrix using graphical lasso as proposed by Friedman et al. (2008b). The

lasso (“least absolute shrinkage and selection operator”) method was first proposed

by Tibshirani (1996) in the context of regression and uses an L1 penalization. An

attractive attribute of L1 penalization is that it shrinks some elements of the in-

verse covariance to exactly zero, which corresponds to an absence of an edge in our

graph.

Friedman et al. (2008b) follow Banjeree et al. (2008) and apply the L1 penalty

directly to the inverse covariance matrix. We denote the penalty parameter as λ.

If Ω = Σ−1 denotes the inverse covariance and S denotes the empirical covariance

matrix, then the inverse covariance is estimated by maximising

log det Ω− trace(S Ω)− λ‖Ω‖1 (3.1)

over positive semi-definite matrices Ω.

Friedman et al. (2008b) recommend using a ‘likelihood approach’ 10-fold cross val-

idation for estimation of the penalty parameter λ. Using the R-package glasso,

we apply the graphical lasso to nine-tenths of the data for different values of λ,

then evaluate the penalized log-likelihood using equation 3.1 over the validation set.

For each value of λ the 10 values obtained in this way are averaged. The value

of λ which maximizes the average validation penalized log-likelihood is selected as

the penalty parameter. These optimal values of λ (cytoplasmic 0.08, mitochondrial

0.085 and nuclear 0.13) are used in graphical lasso to obtain an estimate of the

partial correlations as described in the next section.
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3.2.4 Using partial correlations in shortest path analy-

sis

Like Zhou et al. (2002), we use a leave-one-out approach in order to obtain a

model which is robust to outliers. Once the optimal penalty parameters have been

determined as described above, the inverse covariance matrices for each cellular

compartment are estimated by repeatedly applying glasso to the data leaving out one

experiment at a time, using the same penalty parameter each time. The minimum

leave-out-one partial covariances are found by finding the element-wise minimum of

the absolute values of the leave out one inverse covariance matrices. Let ω̃ij be the

elements of the minimum absolute value matrix, but with their signs restored. A

graphical model is then obtained with edges where every ω̃ij is non-zero, and edge

lengths set as 1-|r̃ij|; where the robust partial correlation r̃ij is computed as:

r̃ij =
−ω̃ij√
ω̃iiω̃jj

.

As for the correlation graphs, the shortest path between pairs of genes in this graph-

ical model is calculated using Dijkstra’s algorithm. Following Zhou et al. (2002),

we tune our classifier by using only paths below some maximum overall length for

classification. The number of categorised paths, transitive gene categorisations,

Level 0 and Level 1 matches are calculated as described in Section 3.2.2. We repeat

these calculations for a variety of upper bounds on the path length. This was done

separately for each cellular compartment.

3.3 Results

The number of categorised paths obtained varied considerably between cellular com-

partments. With no restriction on the total path length, mitochondria had 6 058

categorised paths, cytoplasm 31 712 and nuclear 27 805. The number of categorised

paths was calculated for path length upper bounds between 1.7 and 2.1. Figure 3.1

displays these as a fraction of the number of categorised paths obtained with no

upper bound. For all three cellular compartments the number of categorised paths
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Figure 3.1: For each cellular compartment the number of categorised paths that

are less than upper bounds between 1.7 and 2.1 is expressed as a proportion of the

number of categorised paths obtained with no upper bound.

begins to rise steeply around an upper bound of 1.8 and flattens after 2. An upper

bound of 2 includes all paths containing two edges. A similar pattern of steepening

and flattening can be observed around higher integer values as all paths with a given

number of edges are included.

The number of transitive gene categorisations identified is directly related to the

number of categorised paths. If we remove the upper bound on the path length,

then the maximum number of transitive gene categorisations identified was 6 to

100 times greater using partial correlations. In Figure 3.2 we show the percentage

of matches (level 0 and level 1 matches as defined in Section 3.2.2) obtained as a

function of the number of transitive gene categorisations identified using correlations

and partial correlations. The number of categorisations was varied by changing the

upper bound on path length, independently for each method. The percentage of

matches decreases as the number of transitive gene categorisations increases. When

the two methods are compared for a similar number of transitive gene categorisations

(i.e. a vertical slice of a panel in Figure 3.2)we observed that over most of the range
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Figure 3.2: Percentage of transitive genes with annotations matching the annota-

tions of the terminal genes on the same path. ◦ = level 0 matches (partial correla-

tions), �= level 1 matches (partial correlations),+ = level 0 matches (correlations)

× = level 1 matches (correlations)

using partial correlations gave a similar (mitochondria) or higher (cytoplasm and

nucleus) percentage of matches compared with using correlations.

If no upper bound is used for the correlation graph, and an upper bound of 1.85

used for the partial correlation graph, then the two approaches produce a similar

percentage of matches (correct or near correct categorisations), but the partial cor-

relation approach identifies categories for approximately twice as many genes. (This

is a comparison between the last point in each of the traces shown in each panel

of figure 3.2.) Thus using partial correlations enables the possibility of identifying

more transitive genes than using correlations. More importantly, using partial cor-

relations can increase the percentage of matches when the same number of transitive

genes are identified.

The graphs obtained using partial correlations behaved quite differently to those

obtained using correlations. To illustrate and explore this we consider the cy-

toplasm genes RPS29B, RPL37B,RPS27A,RPS21A,RPL37A,RPS29A and RPL29.

Zhou et al. (2002) identify the shortest path RPL37A-RPL37B-RPS29B-RPS29A-

RPL29-RPS21A as an example where their method works well because it contains

genes that are not tightly coregulated and yet all are involved in the GO process
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protein synthesis. We consider only categorised path graphs, that is graphs where

only edges that are part of a categorised path (see Section 3.2.2), and thus impact on

the categorisations made, are included. For the correlation categorised path graph

we use the same upper bound on shortest path length (0.008) as Zhou et al. (2002).

With this cut off 64.4% of transitive genes are correctly categorised (Level 0 match)

and a further 20.1% are almost correctly categorised (Level 1 match). For the par-

tial correlation categorised path graph we use an upper bound on the shortest path

length of 1.85, which gives similar percentages of correct categorisations; 70.0%

of transitive genes are correctly categorised and a further 10.9% almost correctly

categorised.

The nodes for the example genes are shown in the subgraphs in Figure 3.3 (A) and

(B). Edges between genes on the graph are displayed, while the presence (but not

exact number) of edges connecting to other genes is indicated. Colour is used to

distinguish distinct categorised paths between the example genes. Both categorised

paths in the partial correlation subgraph contain two edges, while two of the three

in the correlation subgraph contain five edges. In the full correlation categorised

path graph gene RPS27A is not transitive on any path and thus is not categorised.

Gene RPL29 is the only gene from the subgraph that is transitive in more than two

distinct categorised paths in the full correlation categorised path graph.

The subgraphs suggest that the partial correlation categorised path graph may be

less sparse than the correlation categorised path graph. Consideration of the full cat-

egorised path graphs showed that the correlation categorised path graph contained

302 edges while the partial correlation categorised path graph contained 1211. Con-

sideration of categorised path graphs with the same upper bounds on maximum path

length for the other two cellular compartments revealed that the mitochondrial par-

tial correlation categorised path graph also contained four times as many edges as the

correlation categorised path graph, while the nuclear partial correlation categorised

path graph contained five times as many edges as the corresponding correlation cat-

egorised path graph. For the cytoplasmic and mitochondrial compartments both

correlation and partial correlation categorised path graphs included approximately

25% of the edges in the graph used for shortest path calculations. The nuclear graphs
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Figure 3.3: Subgraphs of cytoplasm categorised path graphs. Shortest paths between

genes in the subgraph are indicated by coloured lines. Dashed lines = an edge that

is part of a shortest path with other genes. Thick dashed lines leaving the graph

represent more than 1 edge. © = genes which are transitive in at least one path and

correctly categorised in all or almost all instances. � = genes which are transitive

and incorrectly categorised ♦ = genes which are not transitive in any path
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behaved quite differently with 32% of edges included in the correlation categorised

path graph and only 6% in the partial correlation categorised path graph.

The only change when a gene is deleted in a graph where an edge represents a

correlation between two genes is the deletion of edges connected to that gene; the

weights of other edges are unchanged. The same cannot be said for a graph where

edges represent partial correlations. The weights of edges will change and poten-

tially change the structure as well. We consider the effect of deleting a gene on

the categorised path graphs by deleting gene RPS29B and constructing new cate-

gorised path graphs using both correlations and partial correlations. In both cases

we use the same upper bounds on the path length(1.85 and 0.008) as in the previ-

ous example and show subgraphs of the same genes (Figure 3.3 (C) and (D)). The

partial correlation categorised path graph now has 1 203 edges and the correlation

categorised path graph 301. In the correlation categorised path graph RPS29B was

only connected to genes shown on the subgraph and all changes when RPS29B is

deleted are visible in the ensuing subgraph (Figure 3.3 (D)). The edges that included

this gene are now missing from the categorised paths, meaning the paths include

fewer edges and RPS29A is now not transitive on any path and thus unable to be

categorised. One extra edge is included in the graph on a new categorised path

from RPL37B to RPS27A. The situation with the partial correlation categorised

path graph is more complex. RPS29B was connected to 11 genes in the original

categorised path graph. In addition to the edges involving RPS29B the new cate-

gorised path graph has another 5 edges deleted and 8 new edges added. Most of

these changes involve at least one gene that was previously connected to the deleted

gene. Only one of these changes, an edge between RPS29A and RPS27A, is visible

in the subgraph (Figure 3.3(C)). In the sub-graph all genes that were previously

correctly categorised are still correctly categorised, and even in the full graph there

are only three genes that are no longer transitive on any path. (One of these had

been correctly categorised, one almost correctly and one incorrectly.)
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3.4 Discussion

Both shortest path methods considered use tuning parameters. For the correlation

graphs, the first tuning parameter is the minimum correlation at which an edge is

placed in the graph. Our estimation procedure for the partial correlations naturally

includes model selection (setting some partial covariances to zero, and eliminating

the corresponding edges from the graph) governed by the penalty parameter λ. Zhou

et al. (2002) used a powering factor on the edge lengths to increase the number of

transitive genes. Using partial correlations, more transitive genes were identified

without the need for a similar tuning parameter. Both methods use an upper bound

on the length of paths used to make categorisations.

Zhou et al. (2002) give little guidance on their choice of tuning parameters. In con-

trast, the tuning parameter (λ) for graphical lasso can be successfully chosen using

10-fold cross validation. Choice of the upper bound on path length is more delicate:

as the bound increases, the number of transitive gene categorisations identified in-

creases but the percentage of matches decreases. The optimal trade off between

accuracy and number genes classified will depend on the application. However, for

all three examples considered, the number of categorised paths (and thus transitive

gene categorisations) identified rose sharply as the upper bound on path length was

increased from 1.8 to 2, and using a upper bound just below 2 produced both a

large number of categorisations and a reasonable degree of accuracy. Regardless

of the stringency chosen, the partial correlation approach had similar accuracy, or

better accuracy, than the correlation approach when the two methods were tuned

to predict categories for the same number of genes.

The correlation graph is more sparse than our partial correlation graph when the

graphs are tuned to categorise a similar number of genes. This sparsity carries over

into the categorised path graphs. The path weights in the correlation graph are

scaled so that shortest paths include a maximum number of transitive genes. No

such tuning is used in the partial correlation graph. All paths in a partial correlation

categorised path include only 1 transitive gene when the upper bound on shortest

path length is less than 2. Most paths are longer and include at least two transitive
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genes in the correlation categorised path graphs. The combined result of these

differences is that in the partial correlation categorised path graphs most genes are

transitive on many 3 gene (2 edge) paths, whereas in the correlation categorised path

graphs most genes are transitive on 1 or 2 longer paths (and their sub-paths).

The categorised path graph is key to the categorisations made. It is only when the

structure of the categorised path graph changes that categorisations alter. When a

node is removed, the changes in both the correlation and partial correlation cate-

gorised path graphs are greater than just the deletion of edges incident at the node

removed. Although these changes involve both the inclusion and deletion of edges

in both cases the observed changes were relatively minor and local.

The partial correlations of cytoplasmic genes were also estimated using covariance

shrinkage (Schäfer and Strimmer, 2005) and High-dimensional Bayesian Covariance

Selection (HdBCS) (Dobra and West, 2004) for comparative purposes. We ob-

tained fewer non-zero partial correlations using covariance shrinkage and thence

fewer transitive genes than using graphical lasso. The percentage of gene categori-

sation matches was also lower for this approach. We obtained similar results using

HdBCS to those using graphical lasso. However HdBCS is very computationally

intensive. Obtaining partial correlations for the 398 cytoplasmic genes using Hd-

BCS took a week using a 20 node parallel computer. By comparison using R with

glasso obtaining the leave-one-out partial correlations for the same dataset took 150

minutes on a desktop computer.

GGMs assume that the data has a multivariate normal distribution. The datasets

we use, as is typical for gene expression data, violate this assumption. Most genes

in each dataset have long tailed noise. We have partially dealt with this by robusti-

fying the data using leave-one-out partial correlations. Meinhausen and Bühlmann

(2006) found, in simulations with long-tailed noise added, that the properties of

their approximated lasso graph estimator did not appear to be critically affected by

deviations from the multivariate normal assumption. We would expect the graphical

lasso to exhibit similar properties.

A weakness of lasso methods is that a high number of extra weak edges tend to be
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included (Schäfer and Strimmer, 2005). In fact, when the number of variables is

thought of as growing with the sample size, realistic conditions can be found where

the lasso is not consistent for edge selection (Meinhausen and Yu, 2006). We do

not regard this as a serious problem here. Using shortest paths means that pairs of

genes with a relatively low estimated partial correlation (corresponding to high edge

length) are unlikely to lie on shortest paths. Furthermore, the threshold on shortest

path lengths effectively rules out all pairs of genes with a very low estimated partial

correlation. On the other hand in the situation where the partial correlation between

genes is truly very small it is likely that graphical lasso, as with other estimation

methods, may fail to distinguish the small partial correlation from zero. Robins

et al. (2003) highlight the difficulty of obtaining uniformly consistent estimators for

weak edges in the context of causal inference. Our results in Chapter 4 suggest that

the presence of small partial correlations can increase the variability of estimates for

other elements as well. We leave investigation of the impact of this phenomena on

shortest path algorithms to future research.

The high percentages of correctly classified genes validate the notion that GGMs

capture information relevant to the biological structure. The method presented

also offers excellent prospects for predicting the functional category for genes with

unknown function from a set of expression data where a mixture of well understood

and unstudied genes are present.
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Chapter 4

The cost of using decomposable

Gaussian Graphical Models for

computational convenience

A version of this material will appear in The Journal of Computational Statis-

tics and Data Analysis as The cost of using decomposable Gaussian graphi-

cal models for computational convenience by A. Marie Fitch and Beatrix Jones.

http://dx.doi.org/10.1016/j.csda.2012.01.020

4.1 Introduction

Estimation of a sparse inverse covariance matrix is a useful analysis in the multivari-

ate setting, both as a means of obtaining a regularized estimate of the covariance

matrix (Σ), and also for the insights to be gained into the patterns of conditional in-

dependence. When the data is Gaussian this conditional independence structure can

be represented by a Gaussian graphical model. The absence of an edge in a Gaus-

sian graphical model corresponds to a zero element in the inverse covariance matrix

(Ω) and thus represents conditional independence between two variables (Dempster,

1972). The sparse structure of the inverse covariance is typically obtained via a

39



40 CHAPTER 4. THE COST OF USING A DECOMPOSABLE MODEL

model selection procedure. Our focus in this chapter is on estimation of the Ω and

Σ parameters after model selection has been performed, and assuming that model

selection has been successful in the sense that all elements that are non-zero in the

true model are also non-zero in the selected model. The increased computational

burden of working with non-decomposable models leads us to restrict ourselves to

decomposable models, as outlined briefly below.

A decomposable graph (defined in Section 4.2.1) has properties which make the es-

timation of the parameters of Ω simpler. The maximum likelihood estimator only

exists in closed form when the graph is decomposable (Wermuth, 1980; Lauritzen,

1996, Sec 5.3); it must be computed iteratively for non-decomposable graphs (Lau-

ritzen, 1996; Dahl et al., 2008). The maximum likelihood estimate is unique and

can be calculated from the maximum likelihood estimates for individual prime com-

ponents and separators when the number of variables (p) is greater than than the

sample size (n), if all prime components have pi < n, where pi is the number of

variables in component i. A penalized likelihood approach such as the graphical

lasso described in Friedman et al. (2008b), can be undertaken in other cases. Tri-

angulating a graph (making a graph decomposable by adding edges to the graph,

or equivalently removing the restriction that certain elements of Ω must be zero)

typically reduces the number of vertices in each prime component. This means that

triangulation not only enables the existence of the maximum likelihood estimator

in closed form, but also frequently clears the way for the application of ‘simple’

maximum likelihood.

While treatment of non-decomposable graphs in the likelihood framework is less

straightforward than for decomposable graphs, the computational burden is not

prohibitive. However, in the Bayesian setting, the marginal likelihood of a particular

graph structure has closed form only for decomposable graphs. The additional

computational burden of a high dimensional search in the space of non-decomposable

graphs is sufficiently large that estimation has often been restricted to decomposable

models (see for example Dawid and Lauritzen (1993); Giudici and Green (1999);

Rajaratnam et al. (2008); Scott and Carvalho (2008)). When this restriction to

decomposable models has not been made consideration has usually been restricted to
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either very low dimensional cases (Roverato, 2002; Dellaportas et al., 2003), or higher

dimensional cases where the sample size was much larger (Wong et al., 2003).

This chapter considers the cost, in terms of accuracy of the inferred Ω and Σ param-

eters, of fitting a decomposable model to data when the true underlying graph is

non-decomposable. The decomposable model we fit is a ‘true’ decomposable model

in that the edges are a superset of the non-decomposable edges. For some edges

we have removed the restriction that the corresponding parameter must equal zero.

For these edges, however it is still possible, and indeed almost certain, that for suf-

ficiently large samples the estimates for the associated parameters will converge to

zero. Our interest is in what type of differences may be observed at smaller sample

sizes, particularly in the situation where the n ≈ p = p1 (i.e the true model has a

single component). High dimensional models, where n << p, typically consist of

many such components.

In Section 4.2 we give background material on graphical models and maximum

likelihood estimation. We use the variance of maximum likelihood estimates and

the inverse curvature of the log likelihood surface as measures of the quality of

estimation. We expect that, because of the central role of the likelihood in Bayesian

inference, the pattern of variation would be similar for maximum a posteriori Bayes’

estimates.

We begin with consideration of the simplest non-decomposable graph, a 4 variable

cycle. Both theory and simulations show that the variances using the decomposable

model are greater than those for the true non-decomposable model. Both the ac-

tual difference and the percent difference in variance are influenced by underlying

parameter values. We then consider two cases where n = p + 1 (p = 20 and 50)

and the true model is a cycle. We only use the results of computational experi-

ments for these larger cycles. We also consider, in both of these cases, whether the

nature of the decomposable model has any effect on the quality of the estimation.

Here the situation is more complex with the pattern of differences depending on the

particular decomposable model used. We complete this section by comparing each

estimate to twice its standard deviation as a simple post-processing assessment of
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the model. Here we see that when the decomposable model is used there are strong

pointers to the edges added to make the model decomposable being superfluous.

It is a concern that we find that there are also occasions (particularly with small

sample sizes) where a true edge also looks superfluous only in the decomposable

model.

In section 4.5.3 we consider estimation of the covariance matrix. Although some

elements showed negligible, if any, difference between models, for most elements

the variance increased dramatically (more than 200 fold in some cases) when a

decomposable model was used. We conclude, in Section 4.6, by considering two case

studies (Fisher’s Iris data and a 12 node data set) before summarizing our findings

in Section 4.7.

4.2 Background

4.2.1 General properties of graphs

Let G = (V,E) represent a graph, where V is the set of vertices representing

continuous variables and E the set of edges. We are restricting our interest to

undirected graphs where all edges are undirected, thus (u, v) ∈ E always implies

(v, u) ∈ E.

All vertices are joined in a complete graph, thus a complete undirected graph con-

tains all possible edges. In any incomplete graph G = (V,E), given three disjoint

subsets (A,B,C) of G such that A ∪ B ∪ C = G, C is a separator of A and B if

C is complete and for every α ∈ A and β ∈ B, all paths from α to β intersect C.

A∪C is a prime component if the separator C is chosen so that it does not contain a

subgraph that separates A and B, and if also A∪C cannot be further decomposed.

We can find the prime components (Pi) of G by iterative decomposition (Dobra and

Fienberg, 2000). Thus prime components are a collection of subgraphs which cannot

be be further decomposed. The prime components of a decomposable graph are all

complete.
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4.2.2 Parameter and variance estimation

A Gaussian graphical model is one where the variables have a multivariate normal

distribution, with covariance matrix Σ. Without loss of generality in what follows

we assume the data to be centred (that is all p variables have mean 0). The maxi-

mum likelihood estimator of the inverse covariance matrix Ω = Σ−1 is obtained by

maximizing the log likelihood equation.

L(Ω) = log detΩ− tr(ΩS) (4.1)

where Ω is a positive definite matrix and S is the sample covariance matrix.

The likelihood equations are then obtained from the matrix of partial deriva-

tives

∂L(Ω)

∂Ω
= 2(Ω−1 − S)− (Ω−1 − S) ◦ I (4.2)

We use the R-package glasso (with rho = 0, and zero elements specified)(R Devel-

opment Core Team, 2009; Friedman et al., 2008a) to obtain the maximum likelihood

estimates.

If Ω̂ is the maximum likelihood estimate of Ω, then we define the three estimators

of Cov(Ω̂) as follows:

• The expected Fisher information (EFI) covariance of Ω̂ is the inverse of the

expected Fisher information.

EFI Cov(Ω̂) =

(
E

[
−∂2L(Ω)

∂Ω2

])−1

This quantity depends on knowledge of (or algebraically representing) the true

Ω matrix.

• The observed Fisher information (OFI) covariance of Ω̂ is the inverse of the

observed Fisher information.

OFI Cov(Ω̂) =

(
−
[
∂2L(Ω)

∂Ω2

]
Ω=Ω̂(x)

)−1
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• The empirical covariance (empirical Cov(Ω̂)), only available in a simulated

setting, is found by computing Ω̂ for a large number of different samples sim-

ulated with true inverse covariance Ω, and calculating the sample covariance

matrix for this sample of estimates.

If L(Ω) is defined as in equation (4.1) then

∂2L(Ω)

∂Ω2
= −1

2
Q′[Ω−1 ⊗ Ω−1]Q (4.3)

where Q is a matrix with entries {0 ,1} satisfying vec(Ω) = Q(ω) and ω is the vector

of elements ωij of Ω such that i ≥ j and ωij �= 0 (Drton and Eichler, 2006)

The empirical estimate of the variance, based upon a large number of repeated sam-

ples, should give a good idea of the sampling distribution of Ω̂ regardless of the

sample size (n) used for each individual estimate; the OFI and EFI estimates of

the variance are expected to be similar when the n contributing to each individual

estimate is large. Efron and Hinkley (1978) give a frequentist justification for pre-

ferring the inverse of the observed information over the inverse of the expected total

information for one-parameter estimation problems. We use the EFI variance and

the OFI variance in different ways. The EFI variance allows us to observe the effect

of changes in the true Ω without introducing variability from simulation. OFI is the

most readily available variance estimate when analyzing data, where the true Ω is

unknown, so we examine its performance especially when n is not large.

4.3 Theory for the four variable case

The simplest non-decomposable graph is a 4-cycle shown in Figure 4.1(a). Suppose

we have four variables X1, X2, X3, X4 with inverse covariance matrix Ωnd given by

equation (4.4). If, for the purposes of estimation, we remove the restriction that

ω2,4 = 0, then we will have the decomposable graph shown in Figure 4.1 (b) with the

related inverse covariance matrix elements to be estimated symbolically represented

by Ωd. We use t to denote element ω2,4, the element associated with the additional
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Figure 4.1: A 4 variable non-decomposable graph(a) and a 4 variable decomposable

graph (b).

edge. Thus:

Ωnd =

⎛⎜⎜⎜⎜⎜⎜⎝
a m 0 s

m b q 0

0 q c r

s 0 r d

⎞⎟⎟⎟⎟⎟⎟⎠ Ωd =

⎛⎜⎜⎜⎜⎜⎜⎝
a m 0 s

m b q t

0 q c r

s t r d

⎞⎟⎟⎟⎟⎟⎟⎠ (4.4)

Using equation (4.3), with assistance from the symbolic algebra functions of MAT-

LAB(The MathWorks), we now compute the difference between the EFI variance

of the the non-zero off diagonal elements common to both matrices. (In computing

this difference, we do not use the fact that the true value of t is zero.) Formulae are

given for a sample of size n.

EFI Var(m in Ωd)− EFI Var(m in Ωnd) =
a(q2s− bcs+mqr)2

cδ
(4.5)

EFI Var(s in Ωd)− EFI Var(s in Ωnd) =
a(r2m− cdm+ qrs)2

cδ
(4.6)

EFI Var(q in Ωd)− EFI Var(q in Ωnd) =
c(m2r − abr +mqs)2

aδ
(4.7)

EFI Var(r in Ωd)− EFI Var(r in Ωnd) =
c(s2q − adq +mrs)2

aδ
(4.8)

where δ = n(abcd− 2mqrs−m2r2 − q2s2)
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Ω is an inverse covariance matrix, therefore we know by definition that it is positive

definite and that a and c are positive. This property ensures that the expected

Fisher information calculated using equation (4.3) will be positive definite. Since

the determinant of a positive definite matrix is positive, the determinants of both

Ωnd and the expected Fisher information of Ωnd are positive.

δ = det(expected Fisher information of Ωnd)× 16(det(Ωnd))
5 (4.9)

Since the right hand side of equation (4.9) must be positive, δ is positive. Thus

equations (4.5) to (4.8) are positive and the variance of each term in the decompos-

able model is larger than that for the non-decomposable model of the same sample

size. We also note that, because the variance of each of these elements in Ωd is

independent of t, each of the difference terms is independent of t, and so remains

positive no matter what value t takes. It is thus the fact that we are estimating a

value for t that induces the added variance not the actual value of t. Unsurprisingly,

having to estimate additional parameters increases the variance of the estimates.

The only difference in the calculation of the OFI rather than EFI variance is that

the maximum likelihood estimate of Ω is used rather than the true Ω matrix.

4.4 Simulation study methods

4.4.1 The four variable case

Data were simulated in order to compare the OFI, EFI, and empirical variances.

Data were simulated from three inverse covariance matrices (Ω) with different char-

acteristics (see Table 4.1). These matrices were:

1. A matrix with all partial correlations the same (Ωsame);

2. A matrix with large average absolute partial correlations (Ωbig);

3. A matrix with small average absolute partial correlations (Ωsmall).
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We ensured that valid (positive definite) Ω matrices were obtained by using the

algorithm of Atay-Kayis and Massam (2005) to generate Ωbig and Ωsmall.

Ωsame Ωbig Ωsmall⎛⎜⎜⎜⎜⎜⎜⎝
20 −9 0 −9
−9 20 −9 0

0 −9 20 −9
−9 0 −9 20

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
67 −18 0 −70
−18 19 28 0

0 28 74 −64
−70 0 −64 150

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
88 −20 0 17

−20 111 −2 0

0 −2 59 6

17 0 6 213

⎞⎟⎟⎟⎟⎟⎟⎠
Table 4.1: Ω matrices used for simulating data.

For each of the Ω, data were simulated from a MVN(0,Ω−1) distribution using the

Cholesky decomposition of Ω−1and the R function rnorm. Samples of sizes n = 10,

100 and 1000 were created. The simulation process is as follows:

1. Simulate sample of size n

2. Find the maximum likelihood estimator (MLE) for Ω and thence Σ = Ω−1

using the R-package glasso with a penalty zero and the model restricted to

the structure of Ωnd.

3. Find the MLE for Ω and thence Σ = Ω−1 using the R-package glasso with a

penalty zero and the model restricted to the structure of Ωd.

4. Calculate the OFI covariance matrix for both sets of parameter estimates

5. Repeat steps 1 to 4, 1000 times

6. Calculate the variance of the 1000 estimates (the empirical variance) for each

non-zero off-diagonal parameter of each Ω and for all elements of each Σ.

The EFI variances were also calculated for each Ω matrix.
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4.4.2 20 and 50 variable cases

We considered the effect of changing the triangulation of the graph that was used to

make a decomposable model, as well as considering what (if any) effect the nature

of the underlying Ω matrix has for the p = 20 and p = 50 variable cases. Hereafter

we define ‘extra edges’ to be the edges corresponding to elements which have the

restriction of the parameter being zero removed, in order to make a decomposable

model. Two decomposable model types were considered. The first has all extra

edges radiating out from the same vertex (hereafter referred to as model type A),

the second was set up to minimize the maximum number of extra edges radiating

out from any one vertex (hereafter referred to as model type B). We illustrate these

model types for a simpler case (p = 6) in Figure 4.2. The edges from the non-

decomposable model are labeled in an anti-clockwise direction beginning from the

edge corresponding to ω1,2.

Type A

● ●

●

●●

●

3

1

2

4

5

6

Type B

● ●

●

●●

●

3

1

2

4

5

6

Figure 4.2: Two different decomposable models when p = 6.

The same process as for the four variable case was used to obtain three Ω matrices

for a 20-cycle and for a 50-cycle. (Tables A.6 and A.7 list the non-zero elements of

Ωsame, Ωbig and Ωsmall for the 20-cycle and 50-cycle.) In each case samples of size

n = p+1 were created using the steps outlined in Section 4.4.1 with Ωd replaced by

matrices corresponding to each of model type A and model type B.
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Table 4.2: n = 1000 empirical variances for cycle and percentage increase to decom-

posable.

Ωsame Ωbig Ωsmall

variance %increase variance %increase variance %increase

ω̂1,2 0.387 11.3% 0.489 77.3% 10.39 2.3%

ω̂2,3 0.372 8.4% 1.031 78.0% 6.034 4.2%

ω̂3,4 0.363 8.5% 5.635 73.1% 12.70 1.0%

ω̂1,4 0.360 11.9% 7.141 57.3% 19.38 0.4%

4.5 Simulation study results

4.5.1 Estimating Ω - the four variable case

Figure 4.3 illustrates how variability in the three measures of variance depends

upon the sample size. Variance measures for the parameter ω1,2 from Ωsame are

shown; a similar pattern was observed for other parameters and Ω matrices (see

Figures A.1, A.2 and A.3). When fitting the non-decomposable model, the EFI

variance, mean OFI variance and empirical variance of the parameter estimates

were all very similar for a sample size of 1000. The empirical variance for the

decomposable model is larger than that for the non-decomposable model for sample

sizes of 10, 100 and 1000, as is the EFI variance. Table 4.2 shows that, when

the decomposable model was used, both the variances and the percentage increase

in variance varied depending on Ω. In general the estimates for a matrix with

smaller partial correlations have bigger variances, but the percentage increase in the

variances when a non-decomposable model is fitted is small. The converse is true

when the partial correlations are larger.

We also looked for patterns in the variance controlling for the size of the param-

eters by considering the relative standard deviation (RSD), as defined in equation

(4.10).

RSD =

√
V ar(ω̂i,j)

|ωi,j| (4.10)
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Figure 4.3: OFI variances for ω̂1,2 in Ωsame with sample sizes 10, 100 and 1000.

(Note the radically different scales)

— represents the line y = x;

- - - represents the line y = x+(difference in EFI variances calculated using equation(4.5))

× represents the expected variances;

+ represents the empirical variances.

where V ar(ω̂i,j) is the empirical variance of ω̂i,j. Here, as summarized in Table

4.3, we see that if we scale the variance relative to the parameter being estimated,

then the pattern is similar with larger RSDs occurring for Ωsmall. However, the

biggest increase when the decomposable model was used occurs with Ωbig. Further

investigation (see Table A.1 ) suggests that these differences are only relative to

the value of the partial correlations in the matrix as a whole and this pattern of

elements corresponding to larger partial correlations having big increases in variance

is not relative to the size of individual elements within a given matrix. We also

observed that if the partial correlations become very small the RSDs are very large.

In this case, as seen in Table A.1, the difference in RSD between models can also

become large. We note here that while the larger the RSD the more likely it is than

an estimate may have the opposite sign to the true value, the increases observed

here are generally not large enough to dramatically change the probability of this

occurring.

The EFI variance increasingly underestimated the empirical variance as the sample

size decreased, so that when the sample size reached 10, the empirical variance was of
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the order of four times larger than the EFI variance for the non-decomposable model,

and of the order of seven times larger than the EFI variance for the decomposable

model. (See Tables A.2, A.3 and A.4.) We see this behaviour also in Figure 4.3 (and

in Figures A.1, A.2 and A.3) with the empirical variances marker sitting above the

line representing the difference in the EFI variances.

Figure 4.3 also illustrates the variability in the OFI variance of ω1,2. The variability

increases with decreasing sample size as expected. Although mean OFI variance

for the decomposable model is always larger than mean OFI variance for the non-

decomposable model, as Figure 4.3 shows, for some of the small samples the reverse

was true. (These are points below the y = x line.) This variation at small sample

sizes was observed to some degree for all estimates. As the sample size increases the

OFI variances converge towards the empirical variances. A comparison of the graphs

suggests that, at each sample size, the decomposable model shows more variability

than the non-decomposable model as predicted. The difference in range varies from

being almost negligible (as in Figure 4.3) to around 60% more (for example see ω1,4 in

Figure A.2) for the large samples. The range of OFI variances for the decomposable

model can be up to twice the range of OFI variances for the non-decomposable

model (see Figures A.1, A.2 and A.3) for a sample of size 10. This suggests that,

if we fit a decomposable model when the sample size is small, then, not only is the

variance of each estimate greater but the (OFI) variance estimator itself is more

variable.

Table 4.3: n = 1000 Relative Standard Deviations for non-decomposable model and

increase for decomposable model.

Ωsame Ωbig Ωsmall

RSD cycle increase RSD cycle increase RSD cycle increase

ω1,2 0.069 0.004 0.039 0.013 0.159 0.002

ω2,3 0.068 0.003 0.036 0.012 1.222 0.006

ω3,4 0.067 0.003 0.037 0.012 0.593 0.001

ω1,4 0.067 0.004 0.038 0.010 0.254 0.006
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Although our focus here is on parameter estimation after model selection we also

briefly consider whether the observed changes in variance have any effect on our

decision about which elements of Ω are non-zero. We use a simple decision rule

that declares an element to be non-zero if the absolute value of the estimate is

greater than twice its estimated standard error (=
√
OFI variance). True non-zero

elements of Ωsame and Ωbig were always declared non-zero for samples of size 100

and 1000. The true values were sometimes so small that estimates would not be

declared non-zero (see, for example, Table A.5) for Ωsmall . There was variation in

which true non-zero edges were declared non-zero depending on whether the true

non-decomposable model or the decomposable model was used (see Table 4.4) for

small samples, and to some extent all samples using Ωsmall. We have already noted

that the OFI variances are highly variable and so were not surprised to find that even

when the true model is used an estimate for a true non-zero may not be declared

non-zero. This is particularly so for small sample sizes (see Table 4.4). Furthermore

there is always some variation between simulation runs so we focus our attention

here on the cases where the difference between models is greater than 5%. When

n=10 and the decomposable model is used, for Ωbig there is an increase of at least

18 in the percentage of times a true edge would be declared zero (see Table 4.4).

This suggests that the increased variance already noted may affect decisions about

the inclusion of edges if a decomposable model is used. The estimate of the true

zero element (ω̂2,4) would be declared non-zero less than 5% of the time in each

case.

4.5.2 Estimating Ω - 20 and 50 variable cases

We were reliant on calculating EFI variances for specific Ω matrices as the number of

variables is too large to deal with algebraically at this level. However, by comparing

the EFI variances for Ω matrices that differed only at elements corresponding to ‘ex-

tra’ edges, we determined that these elements appear explicitly in the EFI variances

for some Ω elements corresponding to true edges; this differs from the situation with

p = 4. Only the EFI variances of elements corresponding to edges adjacent to the
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Table 4.4: Percentage of times an element is declared zero (|estimate| < 2× standard

error) for 1000 simulations (n = 10).

Ωsame Ωbig Ωsmall

cycle decomp cycle decomp cycle decomp

ω̂1,2 90.4 93.1 15.1 61.4 99.1 98.9

ω̂1,4 88.7 90.5 1.4 25.9 99.1 99.1

ω̂2,3 88.3 90.4 0.7 30.8 99.9 99.7

ω̂2,4 97.8 99.3 98.3

ω̂3,4 90.6 91.6 5.5 23.9 99.2 99.1

vertex with all extra edges radiating from it (that is ω1,p and ω(p−1),p) were affected

for type A models. The EFI variances of all elements corresponding to edges were

affected for type B models.

Of more interest is the observation that even when all true partial correlations are the

same the EFI variances for the various Ω elements differ. As Figure 4.4 illustrates,

the greatest percentage increase in size occurs for elements corresponding to edges

which in the decomposable model are part of a triangle which contains only one

added edge for both types of decomposable models. This increase declines the

further the corresponding edge is from any such triangle. Figure 4.4 also shows that

this pattern is visible in the empirical variances. Similar results were obtained for

all three underlying Ω matrices. (Full results for p=20 and p=50 can be found in

Figures A.4 and A.5.)
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Figure 4.4: Percentage change in expected (EFI) and empirical variances when a

decomposable model is fitted.

Shown here for p = 20, when underlying Ω matrix (Ωsame) has all partial correlations

equal. Edges are labeled in an anticlockwise direction beginning with the edge

corresponding to ω1,2.
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Figure 4.4 (and Figure A.4 ) show that for the 20 variable cases the percentage

increase in the EFI variance when the decomposable model was fitted varied from

almost zero to a maximum of 28% for Ωsame, 150% for Ωbig, and 34% for Ωsmall. Thus

for many parameters there is a negligible change in the EFI variance of the estimates

if a decomposable model is fitted. However where an increase in EFI variance is

observed it has the potential to be substantial. These patterns are mirrored in the

empirical variances as seen in Figure 4.4 (and in Figures A.4 and A.5 ).

We again look for patterns in the variance controlling for the size of the parameters

by considering the RSDs (see equation (4.10)). Inspection of the RSDs revealed

that, even when the (true) non-decomposable model was fitted, there could be a

large variation in the RSDs. For example, for Ωsmall and n = 21 the RSDs for

the non-decomposable model varied from 0.63 to 17.2. In general, the larger the

RSD in the non-decomposable model, the larger the RSD for the same edge when a

decomposable model was fitted. However this could be accentuated or ameliorated

depending upon the relationship of the edge to the extra edges, in line with the

pattern observed above (see Figures A.4 and A.5 ).

The EFI variance continues to underestimate the empirical variance, although not

as severely. When p = 50 (n = 51) this difference is 10%–30% for the true (non-

decomposable) model and 15%–35% when a decomposable model (of either type) is

fitted. Thus, although the percentage increase in many EFI variances between the

true and decomposable model were almost zero, the percentage increase in empirical

variances remained at least 4%, even for the p = 50 (n = 51). (see Figure A.5 ) The

OFI variances remain highly variable, but this variability appears to decrease as n

increases (even if it is accompanied by increasing p).(See Figures A.6 and A.7)

Again we briefly consider whether the observed increases in variation would bring

the model selected into question. As in the four variable case the elements corre-

sponding to added edges were almost always declared different to zero less than 5%

of the time (see Figures A.9 and A.11). The percentage of elements corresponding

to true edges that would be declared non-zero appears to be heavily influenced by

both the sample size and the size of the true partial correlations. As for the four
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-variable case when the partial correlations are small (Ωsmall) most, if not all, true

non-zero elements would be declared zero no matter which model is fitted and there

is little difference between models in the percentage declared zero (see Figures A.8

and A.10). When the partial correlations are larger (Ωsame and Ωbig) there are ocas-

sions when the percentage of times a true non-zero element would be declared zero

increases markedly when a decomposable model is used. These peaks correspond

with the elements found to have a large percentage increase in variance. This occurs

less often when n = 51 than when n = 21 (see Figures A.8 and A.10).

4.5.3 Estimating the covariance matrix (Σ)

In the four variable case consideration of empirical variances of the covariance matrix

(Σ) revealed that for elements where the corresponding element in the true Ω matrix

is zero there is always an observable difference in the variance. The variance of

estimates for σ2,4 from Ωsmall showed extreme variation, with the variance when

a decomposable model was used being up to 15 times larger than when a non-

decomposable model was used. The differences in variance were tiny for elements of

Σ corresponding to non-zero elements in Ω. The differences only began to be seen at

4 significant figures even for n = 10. (The results are available as Table A.8.)

An increasingly extreme situation was observed for the 20 and 50 variable cases.

Empirical variances for estimates of elements in the covariance matrix corresponding

to an edge in the true graph showed very little (if any) difference between those

obtained using the (true) non-decomposable model and those using a decomposable

model. The variances were larger when the decomposable model was fitted for all

other elements. As Figure 4.5(a) illustrates for Ωsame, this difference is most marked

for those elements in Σ̂ where the corresponding element in Ω had the restriction

to zero removed in the decomposable model. For instance, for Ωsame (which had

the smallest average percentage increase in variance) the variance was around 200

times larger for the element σ p
2
,p when a type A decomposable model was used with

p = 20, n = 21. The increase was even bigger for Ωsame when p = 50 and n = 51.

The situation is more complex, as Figure 4.5(b) and (c) show, when the elements
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of Ω vary. As with the four variable case, for both p = 20 and p = 50, the largest

overall percentage increase in variance was noted for the estimate of a σ element

from Ωsmall. (Results when a type B decomposable model is fitted and for p = 50,

n = 51 are displayed in Figures A.12, A.13 and A.14.)
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Figure 4.5: Empirical variances for elements of Σ when a decomposable model (Type

A) vs when the true (non-decomposable) model is fitted.

Shown here for p=20, when underlying Ω matrix has (a) all partial correlations

equal, (b) large partial correlations and (c) small partial correlations. Note that log

scales are used for (b) and (c).

� = elements of Σ corresponding to non-zero elements in Ω

+ = elements of Σ corresponding to elements only non-zero in the decomposable

estimate of Ω
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4.6 Case studies: Fisher’s iris data and 12 node

data

4.6.1 Fisher’s iris data

We now consider Fisher’s Iris virginica dataset. It consists of n = 50 measurements

of the the sepal length, sepal width, petal width and petal length of 50 flowers.

Previous analyses by Roverato (2002) and Atay-Kayis and Massam (2005) suggest

that a non-decomposable 4-cycle is the most probable model for the data. We esti-

mate parameters using the non-decomposable model and two different decomposable

models: first, with the restriction that ω1,3 = 0 removed; second, with the restriction

that ω2,4 = 0 removed. Estimates for both Ω and Σ were obtained. We expected

OFI variances for estimates of the parameters of Ω obtained using the decomposable

models to be larger than those obtained when the non-decomposable model was used

and σ̂1,3 and σ̂2,4 to be the only elements in the inferred Σ matrices to vary between

the three models.

Estimates for most of the edges in the decomposable graphs were larger than the

estimates using the non-decomposable model, as shown in Table 4.5. The estimates

for ω1,2 and ω3,4 showed the greatest percentage change when the decomposable

models were used both in terms of the actual estimates and the OFI variance of the

estimates. Most of the OFI variances were larger when the decomposable model

was used (see Table 4.6). However in only one case (ω̂1,2 in the include ω2,4 model)

was this increase sufficient to cause a change in the decision to declare an element

non-zero. Element ω2,3 in the model with the restriction that ω2,4 = 0 removed

was an exception in that both the estimate and the OFI variance decreased. Given

the results in Section 4.5.1 we believe that this is due to the variability of the OFI

variances, rather than a reason to prefer the decomposable model estimate of ω̂2,3.

As expected the only elements of Σ to show any variation between models, at 4dp

accuracy, were σ1,3 and σ2,4. In both cases this was most marked when the edge was

estimated as non-zero in Ω.
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Table 4.5: Estimated Ω and Σ matrices for Iris virginica dataset.

Ω̂ Σ̂

cycle

⎛⎜⎜⎜⎜⎜⎜⎝
10.27 −2.47 0 −9.63
−2.47 15.45 −7.88 0

0 −7.88 18.97 −1.14
−9.63 0 −1.14 13.06

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
0.4043 0.0938 0.0572 0.3033

0.0938 0.1040 0.0476 0.0733

0.0572 0.0476 0.0754 0.0488

0.3033 0.0733 0.0488 0.3046

⎞⎟⎟⎟⎟⎟⎟⎠

include ω1,3

⎛⎜⎜⎜⎜⎜⎜⎝
10.22 −2.66 1.32 −9.71
−2.66 15.78 −8.24 0

1.32 −8.24 19.09 −2.30
−9.71 0 −2.30 13.33

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
0.4043 0.0938 0.0491 0.3033

0.0938 0.1040 0.0476 0.0766

0.0491 0.0476 0.0754 0.0488

0.3033 0.0766 0.0488 0.3046

⎞⎟⎟⎟⎟⎟⎟⎠

include ω2,4

⎛⎜⎜⎜⎜⎜⎜⎝
10.37 −2.70 0 −9.69
−2.70 15.43 −7.88 0.33

0 −7.88 19.01 −1.20
−9.63 0.33 −1.20 13.05

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
0.4043 0.0938 0.0580 0.3033

0.0938 0.1040 0.0476 0.0714

0.0580 0.0476 0.0754 0.0488

0.3033 0.0714 0.0488 0.3046

⎞⎟⎟⎟⎟⎟⎟⎠

Table 4.6: Estimates and standard error (
√
OFI variance) for Iris virginica dataset.

cycle include ω̂1,3 include ω̂2,4

estimate std error estimate std error estimate std error

ω̂1,2 -2.47 1.018 -2.66 1.063 -2.70 1.633

ω̂2,3 -7.88 2.623 -8.24 2.694 -7.88 2.616

ω̂3,4 -1.14 1.206 -2.30 2.012 -1.20 1.243

ω̂1,4 -9.63 2.106 -9.72 2.120 -9.69 2.138

ω̂1,3 1.32 1.797

ω̂2,4 0.33 1.840
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4.6.2 12 node case
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Figure 4.6: The 12 variable models.

We also consider a larger sample (n = 250) of data simulated for the 12 node case

illustrated in Figure 4.6, with all diagonal elements of Ω being 20 and all non-zero

off-diagonal elements being -8. We fitted both the true underlying non-decomposable

graph and the top three graphs found using the feature inclusion stochastic search

(Scott and Carvalho, 2008) which restricts its search to decomposable graphs. We

note here that the third graph, model decomp C, is not a minimal superset. That

is we can triangulate the graph by adding fewer edges than this triangulation re-

quires.

We focus our interest on the estimates for ω1,2, ω10,11 and ω1,8. These elements

correspond to the edges labeled a, b and c respectively in Figure 4.6. We expected

to see higher OFI variances when the decomposable models were fitted. In particular

we expected that the increase in the OFI variance for ω̂1,2 would be smaller for a

decomposable model where a is part of a triangle with two extra edges (models

decomp B and decomp C). Edge b is always part of a triangle with two extra edges

so we expected the OFI variances for ω̂10,11 to all be very similar, with some minor

differences caused by the different configurations. Edge c is part of two triangles, (a
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Table 4.7: Estimates and standard error (
√
OFI variance) for ω̂1,2, ω̂10,11 and ω̂1,8.

ω̂1,2 ω̂10,11 ω̂1,8

estimate std error estimate std error estimate std error

true -9.736 1.213 -7.012 1.003 -7.176 0.954

decomp A -10.327 1.359 -6.912 1.047 -7.730 1.110

decomp B -9.787 1.214 -6.912 1.047 -7.235 0.956

decomp C -9.787 1.214 -6.912 1.047 -8.632 1.180

one extra edge triangle and a two extra edge triangle) in model decomp C. We were

interested to observe the effect of this on the OFI variance for ω̂1,8.

Results for the three elements of focus are given in Table 4.7. (Results for all

elements are given in Table A.4.) As expected when edge a was part of a triangle

with two extra edges (model decomp A) the OFI variance for ω̂1,2 was greater. Both

the estimated value of ω̂1,2 and its variance were close to the values obtained using

the true non-decomposable model when it was part of a triangle with one extra edge.

We expected the OFI variances for ω̂10,11 to be similar in all decomposable models,

in fact the estimates and OFI variances were the same (to 4 and 6dp respectively)

in every case. Here it appeared that although there was some minor variation in the

configuration of nearby triangles there was almost no effect on both the estimates

and their OFI variances. Unsurprisingly ω̂1,8 showed the most variation in both

estimates and OFI variances. When edge c was part of a two extra edge triangle

(model decomp B) the increase in OFI variance (compared to the true decomposable

model) was minimal. The OFI variance was greatest when edge c was part of two

triangles, suggesting that here the increases were compounded. However even for

this case the sample was large enough to ensure that the variance was still small

compared to the estimate itself.

In the simulation studies we found that the variance of estimates for elements of Σ

corresponding to non-zero edges in Ω showed almost no variation between models,

we therefore expected that estimates for these elements would be similar across all
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four models, which was the case. Estimates for all other elements showed some

variation between models; some estimates were up to 50% bigger or smaller when a

decomposable model was used. In this more complex graph there was no discernible

pattern to the placement of these elements (see Figure A.15).

4.7 Discussion

We have examined three ways of estimating the variance of the inverse covariance

elements. The EFI and empirical variances provide ways of examining how changes

in a known Ω affect the difficulty of estimation. The empirical variance is a gold

standard, but requires a separate simulation for each different Ω. For small sam-

ples, as we would expect, the EFI variance underestimates the empirical variance.

However, it preserves the pattern of variance changes between models, and for small

models yields analytical formulae for the difference in variance between two models.

In a data analysis context, the OFI variance is the most readily available variance

estimate. It is highly variable both in absolute terms and in its mean difference to

the empirical variance when the sample size is small. We also considered calculating

a bootstrap variance, this was found to mostly overestimate the empirical variance

by up to 20% even when n = 1000.

The different variance estimates all point to the fact that estimates of Ω obtained by

fitting a decomposable model always have larger variance than those fitted using the

(true) non-decomposable model. This is not surprising, given that for each decom-

posable model we are using the same amount of data to estimate more parameters.

However, the differences in the variance of the Ω elements are typically small, and

the absolute (though not percentage) difference between the model types decreases

with increasing sample size. In this regard the size of the sample appears to be

more important than the size relative to the number of variables. The structure of

the decomposable model chosen has an effect on the inference quality for particular

elements: if a particular element of Ω is of interest, we should avoid placing the

corresponding edge in a triangle which in the decomposable model contains only
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one extra edge.

Our focus in this chapter has been on parameter estimation, that is we assume

model selection has already occurred. We do, however, note here that a comparison

of estimates for elements of Ω with their standard error (=
√
OFI variance) does

give some pointers to which elements may in fact have a true value of zero. Corre-

spondingly in all but the very small sample sizes, the increased OFI variances for

true non-zero elements suggests only increased variability in the estimates, rather

than the possibility of a completely different parameter value.

Estimation of Σ is more problematic in that the penalty for fitting a decomposable

model when the true model is non-decomposable has the potential to be substantial.

The only estimates for elements of Σ which can be relied upon are those which

correspond to non-zero edges in the true Ω. Further in our simulation studies, for

other elements, we noted that the empirical variances for the estimates derived from

the decomposable models could be many times greater than the actual parameter

values. The detrimental effect in our experiments of additional edges associated

with small but non-zero estimates in the inverse covariance matrix suggests that

procedures that estimate many zero parameters as small but non-zero (e.g. the

graphical lasso Friedman et al. (2008b)), should be scrutinized carefully when the

goal is estimation of the covariance matrix.

We note again that all decomposable models we used were ‘true’ models where the

edges were a superset of the edges in the non-decomposable model. Output from a

model selection procedure may not have the superset property. For example Rover-

ato (2002) and Atay-Kayis and Massam (2005) show the decomposable model with

highesta posteriori probability for the Iris data set is a chain of the 4 variables, i.e.

a subset of the best non-decomposable model. The role of model averaging may also

avert the consequences of restricting to decomposable models: Scott and Carvalho

(2008) report good estimates of Σ from such a procedure. We leave the behavior of

model selection and model averaging procedures restricted to decomposable models

for a future investigation.
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Chapter 5

The performance of covariance

selection methods that consider

decomposable models only

5.1 Introduction

Gaussian graphical models (Dempster, 1972; Lauritzen, 1996; Whittaker, 2008) are

a powerful tool for both exploring the partial independence structure of data and

for regularization of the covariance matrix. The p-node graph for p-dimensional

data will have edges corresponding to non-zero off-diagonal elements in the inverse

covariance matrix Ω. The inverse covariance matrix thus yields the partial inde-

pendence structure of the data. In high dimensional problems, especially when the

sample size (n) is similar to, or less than, the number of variables (p), regular-

ization of the covariance matrix leads to improved estimation. This regularization

can be achieved via covariance selection to achieve a sparse inverse covariance ma-

trix. In both the above situations we require models that distinguish relevant edges

from irrelevant ones. This introduces computational challenges, particularly in high-

dimensions.

In this chapter we compare two commonly used approaches to estimating the in-

65
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verse covariance matrix, Bayesian model selection and graphical lasso. Bayesian

models usually restrict consideration to decomposable models for computational

convenience (Scott and Carvalho, 2008; Armstrong et al., 2009; Jones et al., 2005).

Few authors who have studied Bayesian methods without the restricting the class of

models (Dellaportas et al., 2003; Wong et al., 2003; Moghaddam et al., 2009), and

only one (Moghaddam et al., 2009) presents a method that appears to be scalable

to high dimensions. Here we use feature-inclusion stochastic search (FINCS) (Scott

and Carvalho, 2008), a decomposable restricted method, demonstrably better than

other comparable Bayesian methods (Scott and Carvalho, 2008). Graphical lasso

approaches (Friedman et al., 2008b; Fan et al., 2009; Ambroise et al., 2009), on

the other hand, do not make any restrictions on the structure of the graph but the

resulting graphs are usually not as sparse as graphs estimated using Bayesian meth-

ods. The motivation for this chapter arises from consideration of the implications of

restricting model selection to decomposable models in cases where the true model

is non-decomposable.

We begin by examining the behaviour of FINCS under model misspecification, that

is, when the true model is non-decomposable. Here we consider the expected asymp-

totic behaviour. We then simulate data from a very sparse non-decomposable in-

verse covariance matrix and use FINCS to fit a model. When the sample size is

large (> 12p), the non-zero elements of the top models, as expected, include all the

non-zero elements from the true model and the (minimum) extra non-zero elements

needed to make a decomposable model. On the other hand when the sample size is

smaller, the non-zero elements in the top models frequently miss some of the true

non-zero elements. Furthermore we also found that the magnitude of all true par-

tial correlations needed to be greater than 0.2 for the top models to find all true

non-zero elements. FINCS (and indeed graphical lasso) rarely distinguish between

a true zero and a very small partial correlation.

In their paper Scott and Carvalho (2008) compare the performance of FINCS mod-

els in prediction to those obtained using lasso regression of each variable on the

remaining variables, as in Meinhausen and Bühlmann (2006), to obtain a sparse

graph. We were also interested in ascertaining whether Bayesian methods still out
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perform lasso methods when more recent adaptions and methods of selecting the

penalty parameter are used, namely graphical lasso (Friedman et al., 2008b) and

adaptive graphical lasso (Fan et al., 2009). In our comparisons graphical lasso was

always the least sparse and adaptive graphical lasso, while increasing in sparsity,

was only sparser than the FINCS top model for a few cases at very low dimensions

(p = 4). We also compare parameter estimation by using the Kullback-Leibler di-

vergence as a measure of the nearness of the estimates to the true parameters. Here

the results were less clear cut with the graphical lasso methods (especially adap-

tive graphical lasso) often being ‘closer’ to the true model (smaller Kullback-Leibler

divergence) than the FINCS based estimate.

Finally we consider predictive performance. Here we found that, in terms of predic-

tive ability, while graphical lasso was clearly the worst performer, at low dimensions

there is no clear winner between the FINCS top graph and adaptive graphical lasso.

However, as the dimension increased FINCS began to outperform adaptive graphical

lasso. Model averaging is often promoted as useful tool for improving the predictive

ability of Bayesian models. However here the gains in predictive accuracy by using

model averaging were so slight that the extra computational time involved makes it

not worthwhile.

The rest of this chapter is organized as follows. In Section 2 we review the general

properties of graphs used in this chapter and detail the algorithms used for the two

approaches to model selection. Section 3 details data used, how each method was

implemented and how comparisons were quantified. Results are presented in Section

4 and we conclude in Section 5 with a summary of our findings and suggestions for

future work.
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5.2 Background

5.2.1 General properties of graphs

Without loss of generality we assume that our Gaussian data is centred with mean

zero and p-dimensional covariance matrix Σ. Using Gaussian graphical models

(GGMs) focuses attention on the inverse covariance matrix Ω = Σ−1. If G=(V,E)

is a graph with edges E and (p) vertices V, then G is a Gaussian graphical model if

ei,j ∈ E ⇔ ωi,j �= 0, ∀i �= j, i, j ∈ V. If all ωij are non-zero, then the graph has all

possible edges and is said to be complete. The symmetry of Ω ensures that this is

an undirected graph, that is ei,j ∈ E ⇔ ej,i ∈ E. A sample of n elements from our

MVN(0,Σ) distribution will have a sample covariance matrix S. In general the graph

for S−1 will be complete even if the graph for Ω is not. Furthermore if p > n we

cannot invert S. Dempster (1972) first identified the issue of deciding which elements

of Ω̂ should be zero as the covariance selection problem.

If A, B and C are disjoint subsets of V and A ∪ B ∪ C = V then C separates A

and B if all paths from A to B must pass through C. If furthermore C is complete

then (A, B, C) is a decomposition of G. If we iteratively decompose the graph

until no further decompositions can be found, then the subgraphs so found are

the set of prime components (Jones et al., 2005). If the prime components are

all complete they are called cliques and the graph is a (fully) decomposable graph

(Lauritzen, 1996). We emphasize here that the existence of a decomposition does

not imply that a graph is decomposable. If any of the prime components found by

iterative decomposition are not complete and cannot be further decomposed then

that component is non-decomposable and therefore so is the whole graph.

In this thesis we define a superset graph to be one which includes all the true edges

plus at least one other edge which is not part of the true edge set. A minimal

superset graph of a non-decomposable graph includes only the minimal number of

extra edges needed to achieve a triangulation. In a similar vein we define a subset

graph to be one which includes no extra edges, and also fails to include at least one

of the true edges.
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In the GGM setting decomposability means that the density function can be written

as a product of the marginal densities of the cliques and reciprocal of the marginal

densities of the separators (Lauritzen, 1996). This allows the marginal likelihoods

to be calculated analytically. We use the fractional-Bayes approach of Carvalho and

Scott (2009) which specifies the hyper-inverse Wishart scale parameter of the prior

in terms of the sums of squares matrix (see Section 2.2.2). Thus if XTX is the sum

of squares matrix for the data matrix X then

p(X|G) = (2π)−np/2h(G, gn, gXTX)

h(G, n,XTX
(5.1)

where we set g as 1/n (see Section 2.2.2). If P represents the set of all prime

components and S the set of all separators in G then the normalizing constant h is

calculated as:

h(G, b,D) =

∏
P∈P

∣∣1
2
DP

∣∣ (b+|P |−1)
2 Γ|P |

(
(b+|P |−1)

2

)−1

∏
S∈S

∣∣1
2
DS

∣∣ (b+|S|−1)
2 Γ|S|

(
(b+|S|−1)

2

)−1 (5.2)

and

Γp(x) = πp(p−1)/4

p∏
j=1

Γ(x+ (1− j)/2)

is the multivariate gamma function.

5.2.2 Feature-inclusion stochastic search

Feature-inclusion stochastic search (FINCS)(Scott and Carvalho, 2008) has been

proposed as a method superior to both other Bayesian methods and lasso based

methods for model selection. FINCS is a serial procedure that combines three types

of moves through the space of all possible graphs. Most moves are local moves which

exploit the computational advantages of adding or deleting only one edge at a time.

The decision to add or delete is made randomly with the actual edges to add (or

delete) being chosen in proportion to the relative inclusion probabilities (see equation

(5.4)), and to maintain decomposability. As each new model is found the model score

(log of the non-normalized posterior probability) is calculated using:

model score = log P (X|Gk) + log mc(Gk) (5.3)
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where P (X|Gk)is calculated using equation (5.1) and mc(Gk), the multiplicity cor-

rection prior over the graphs, using equation (5.5).

Global moves are used to move to another part of the graph space by generating

a randomized median triangulation pair, in order to avoid missing regions that are

not easily found in stepwise moves. This is done by starting with an empty graph

and adding edges in proportion to their current estimated inclusion probability (see

equation (5.4)). The graph so formed (GN) is usually not decomposable so a minimal

decomposable supergraph (G+) and a maximal decomposable subgraph (G−) are

found. Model scores are then calculated for both G+ and G− and the one with the

highest model score chosen.

Finally resampling moves revisit graphs in proportion to their model score and

thereby ensure that the global moves do not irretrievably direct the search away

from ‘good’ graphs. A blend of 80-90% local moves and 10-15% resampling moves

with the balance being global moves is recommend by Scott and Carvalho (2008).

We implement FINCS with a global move every 20 iterations and a resampling move

every 10 iterations.

For each edge ei,j the inclusion probability at step t is estimated by the relative

inclusion probability:

q̂ij(t) =

∑k=t
k=1 1(i,j)∈Gk

P (X|Gk)mc(Gk))∑k=t
k=1 P (X|Gk)mc(Gk))

(5.4)

P (X|Gk) is calculated using equation (5.1) and

mc(Gk!) = κ(m− κ)!

(m+ 1)(m!)
(5.5)

where Gk has κ edges out of the m = p(p − 1)/2 total possible edges. This is the

multiplicity correction prior over the graphs (Scott and Carvalho, 2008) which places

a conjugate beta prior on the success probability r of the standard binomial prior.

(See Section 2.3 for more details) As the relative inclusion probabilities are only

based on the graphs visited they do not converge to the true inclusion probabilities

except in the trivial sense of all models eventually being enumerated. They do

however give useful pointers as to the importance of an edge. We use the C++

implementation of FINCS described in Scott and Carvalho (2008).
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In a similar manner, the exponentiated scores for the final list of retained models

can be normalized to compute ‘relative posterior probabilities’. These are true

probabilities only relative the restricted list of models retained, but again are useful

indicators of importance within this set.

We found that stable results were obtained with as few as 100 iterations for the

p = 4 cases, where there are only 61 possible decomposable graphs. We define

stable results here to mean that the model score of the top graph did not change and

correspondingly there was little or no change in the relative inclusion probabilities

when the number of iterations was increased to 3 million. In all other cases we

ran FINCS for 3 million iterations and found there was little or no change in the

relative inclusion probabilities when the number of iterations was increased to 5

million.

5.2.3 Kullback-Leibler divergence

White (1982) showed that, in the event of model misspecification, the maximum

likelihood estimator should converge to the model that minimizes the Kullback-

Liebler divergence (Kullback and Leibler, 1951). The Kullback-Leibler divergence

between two density functions f and g is E[log f(X)/g(X)] where the expectation

is with respect to f . If f and g are both multivariate normal with the same mean

then Whittaker (2008, p168) gives a formula for calculating the divergence between

their variances. We set f as the true model and g the estimate so that the Kullback-

Leibler divergence (KL) is calculated as

KL =
1

2
tr(ΣΩ̂− Ik)− 1

2
log det(ΣΩ̂) (5.6)

where Ik is the k by k identity matrix, Σ = Ω−1 is the true covariance matrix and

Ω̂ is the estimated Ω matrix .

The posterior mode will (asymptotically) behave in a similar manner to the likeli-

hood, because of the central role of the likelihood in all Bayesian approaches (Berger

and Wolpert, 1984). Restricting model selection to decomposable models when the
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true model is non-decomposable is a special type of misspecification, in that we can

get arbitrarily close to our true model by selecting a decomposable model with close-

to-zero estimates for many elements. Since there are, in fact, many such models we

would expect that, with a large amount of data, any well mixing posterior search or

sampler will visit several modes that are supersets of the true model. Shalizi (2009,

page 11) show that even when the model is misspecified the posterior concentrates

on the divergence minimising part of the search space. Where the likelihood and the

prior have the same support, the likelihood will always dominate the prior asymptot-

ically, thus we expect that these models will have essentially equal Kullback-Leibler

divergence. If there is a penalty on the inclusion of edges in these models,then they

will be minimal decomposable supersets of the true model edges. Furthermore since

all the supersets contain the true model edges, and there are many possible combina-

tions from which edges to add to create a decomposable graph, the relative inclusion

probability should be a good indicator of the edges in the true model.

Model averaging is often promoted as useful tool for improving the predictive ability

of Bayesian models. When the true model is sparse there are many supersets, even

with p moderate. Thus if we restrict consideration to (say) the top 500 models, then

most will be supersets. The estimated partial correlations for edges other than true

edges will be close to zero, meaning that all these supersets represent essentially

the same model. We therefore expected to see minimal benefit to model averaging,

which was the case.

5.2.4 Graphical lasso and adaptive graphical lasso

In their paper Scott and Carvalho (2008) compare the performance of FINCS based

models in prediction to those obtained using lasso regression of each variable on

the remaining variables to obtain a sparse graph in the manner of Meinhausen and

Bühlmann (2006). The more recent graphical lasso (Friedman et al., 2008b) applies

an L1 penalty directly to the inverse covariance matrix with superior performance.
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Thus the objective function is

log detΩ− tr(ΩS)− λ

p∑
i=1

p∑
j=1

|ωij| (5.7)

where Ω is a positive definite matrix, S is the sample covariance matrix and λ > 0

is the penalty.

As with other lasso-based methods selecting the penalty is an important first step.

Friedman et al. (2008b) recommend using cross-validation. We use the R-package

glasso, (R Development Core Team, 2009; Friedman et al., 2008a), with the penalty

selected by 5-fold cross validation and the sample covariance estimated with an n

divisor to obtain our graphical lasso estimate. In this section we use 5-fold rather

than 10-fold cross validation due to the smaller size of many of our samples. The

graphical lasso algorithm as implemented in glasso yields an estimated inverse

covariance matrix that is not perfectly symmetric (at 3-4 significant figures). We

used an inverse covariance matrix made exactly symmetric by using the average of

the i, jth and j, ith elements.

Fan et al. (2009) apply an adaptive lasso penalty and a Smoothly Clipped Abso-

lute Deviation (SCAD) penalty to graphical lasso as a method of solving the issue

of all estimates being biased towards zero and also of obtaining a sparser graph.

Here we focus on the adaptive graphical lasso as it gave better estimates in initial

experiments. The adaptive graphical lasso is implemented using a penalty matrix

(ζ) rather than the scalar penalty term of graphical lasso. The elements of ζ are

ζi,j = 1/|ω̃i,j|γ, where Ω̃ = (ω̃i,j)1≤i,j≤p is any consistent estimate of Ω and γ > 0

Thus for adaptive graphical lasso the objective function becomes

log detΩ− tr(ΩS)− λ

p∑
i=1

p∑
j=1

ζi,j|ωij| (5.8)

We implemented adaptive graphical lasso using the symmetric graphical lasso esti-

mated inverse covariance matrix as Ω̃, γ = 0.5 and selecting the penalty by 5-fold

cross-validation. We again used the R-package glasso, making the estimate exactly

symmetric in the same manner as for the graphical lasso estimate.
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Figure 5.1: The 12 variable model.

5.3 Data and methods

5.3.1 Data

We simulate large (n = 1000) datasets in order to explore how FINCS treats data

where the true underlying model is non-decomposable . We use two different model

structures for Ω to simulate our data, a cycle (with 4, 6, or 20 nodes) and the

12-node structure (see Figure 5.1) used in examples in Jones et al. (2005) and in

Chapter 4. In each case all diagonals of Ω are 20 with non-zero off-diagonals for

the cycles being -9, and in the 12-node case -8, making all partial correlations 0.45

(or 0.4 for the 12-node case). Henceforth we refer to these matrices as Ωsame (or

the 12-node Ωsame). This was done in order to focus attention on the ability (or

otherwise) of FINCS to point to the true edges without the distraction of small

partial correlations. For each Ω data was simulated from a MVN(0,Ω−1) distribution

using the Cholesky decomposition of Ω−1and the R function rnorm. Smaller datasets

(n = 50) were also generated to observe the behaviour when n is small. We also

generated datasets of other varying sizes to try and gauge at what point ‘large’ n

behaviour begins. In order to explore the ability of each method to distinguish true
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small partial correlations from true zero partial correlations we also simulated data

using Ω matrices with the same structures and smaller off diagonals giving partial

correlations between 0.05 and 0.4. We also used Ω matrices with varying sized partial

correlations: Ωbig, and Ωsmall for the 4 and 20 node cycles as in Chapter 4 (Tables

4.1 and A.6); and for the 12-node case a matrix (Ωtwelve) with partial correlations

ranging from approximately 0.01 to 0.7 which is given in Table B.1.

We used three Ω matrices for simulating data to compare model selection and predic-

tion by FINCS and the two graphical lasso-based methods. These were the 4-node

and 20-node Ωsame matrices and the Ωtwelve (with varying partial correlations). Each

matrix was used to simulate five different datasets of size n = 50 and five of size

n = 1000. For prediction purposes a prediction dataset (of size n = 50) was also

simulated in the same manner from each of the three Ω.

We also explored the behaviour of each method with real data with a 59-node

mutual-funds dataset (Scott and Carvalho, 2008). We split the 86-month sample

into a 60 month training set (the first 60 months) and a 26 month prediction set (the

remaining 26 months) which enabled us to compare predictions using FINCS derived

estimates of the covariance matrix with predictions using lasso derived estimates of

the covariance matrix.

5.3.2 Model selection

To assess how FINCS treats non-decomposable graphs we consider the graphs with

the highest model score comparing them to the true model to ascertain whether or

not they are a superset graph. We use the Kullback-Liebler divergence (see Section

5.2.3) as a measure of distance from the the true model to assess whether FINCS

behaves as expected. In each case Ω̂ = Ω is the posterior mean for that graph (see

Section 2.2.2 ).

We also consider the ability of relative inclusion probabilities to point towards the

true (non-decomposable) graph by identifying the graph obtained by specifying as

edges, those with an relative inclusion probability of at least 0.8. In this case Ω
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is estimated as the maximum likelihood estimate (MLE), calculated using the R

package glasso (with shrinkage penalty rho = 0, and zero elements specified as

those associated with edges with an relative inclusion probability less than 0.8).

FINCS models (the posterior mean of the top graph and the inclusion probabilities

graph MLE) are compared to the graphical lasso and adaptive graphical lasso models

using the Kullback-Leibler divergence as above.

We quantify the accuracy of edge selection using precision and recall. For each

model

precision = TE

TE+FE
and recall = TE

TE+F0

where TE is the number of true edges found, FE is the number of edges found that

are not true edges and F0 is the number of true edges that were not found. Thus

precision is the proportion of edges in the model that are true edges and recall is the

proportion of true edges found by the current model. A superset graph as defined

in Section 5.2.1 is thus a model with a recall of one and precision of less than one.

A subset graph has a precision of one and a recall of less than one.

As a worst case scenario, we also calculate the Kullback-Leibler divergence for the

unregularized maximum likelihood estimate (that is the inverse of the sample covari-

ance matrix). We replicate all analyses for each of the 10 simulated datasets (five

with n = 50 and five with n = 1000) and for each of the three different Ω.

5.3.3 Prediction

We compute the posterior mean (Ω) for each of the top 500 models found using

FINCS, and then set Σ̂ = Ω
−1

for prediction purposes. A model averaged prediction

was then obtained by calculating a weighted mean of predictions using each of the top

500 models (where the weight is the normalized model score). We also calculate Σ̂

(= Ω̂−1) from the symmetric estimates of Ω obtained from graphical lasso, adaptive

graphical lasso and the MLE of the FINCS inclusion probability graph (as in Section

5.3.2). Comparisons are made between these four predictions and that made using

the inverse of the posterior mean (Ω
−1
) of the top FINCS graph.
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We initially use the mutual-funds data to assess the performance of each method in

predicting unknown values. We in turn compute, for each month in the prediction

dataset, the conditional expectation of each return based on the ‘observed’ values of

the remaining 58 returns and calculate the squared error. The five methods detailed

above are compared using the total sum of the squared errors. We use the same

process to obtain the total sum of squared errors for the simulated datasets. As a

worst case scenario we also compute the total sum of squared errors using the sample

covariance matrix (the maximum likelihood estimate) as Σ̂. Again we replicate the

analyses for all the simulated datasets.

5.4 Results

5.4.1 Feature-inclusion stochastic search (FINCS) treat-

ment of non-decomposable graphs

The graphs with the highest model score were all supersets of the true graph for

large (n = 1000) samples simulated from distributions where all true non-zero partial

correlations are 0.45. There are only three such supersets when p = 4. We observed

that, when n=1000, these three superset graphs had both a larger log-posterior and a

smaller Kullback-Leibler divergence than all the other graphs (see Figure 5.2(a)). In

almost all cases, when n was smaller, we found that the Kullback-Leibler divergence

was smaller for superset graphs. This occurred even though a superset may not

have the largest log-posterior. Figure 5.2(b) illustrates this for the 50 graphs with

the highest model score as found by FINCS for a sample of 50 simulated from the

6-node Ωsame as specified in Section 5.3.1. Here we observe that, even though the top

graph is not a superset, there is only one non-superset graph with a Kullback-Leibler

divergence as small as those for the superset graphs.

Varying the sample size (only) we found that the graphs with the highest model

scores were always superset graphs when n >> 12p. It should be noted here that,

apart from the p = 4 case, not all superset graphs are visited and as n decreases and
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Figure 5.2: Model score vs Kullback-Leibler divergence for:

(a)the top 10 graphs found by FINCS for a 4 variable cycle (n=1000) and

(b)the top 50 graphs found by FINCS for a 6 variable cycle (n = 50).

+ = superset graphs; ◦ = non-superset graphs

gets close to 12p not all superset graphs will have model scores larger than other

graphs, as observed in Figure 5.2 (b).

We now turn to the effect of the size of the partial correlations. We kept n large

(1000) and decreased the value of off diagonal elements of Ωsame and thus the partial

correlations (ρ̃ij). We observed here that there appears to be a threshold (|ρ̃ij| > 0.1

when p = 4 and |ρ̃ij| > 0.3 when p = 20) above which the top graphs are all super-

sets. The top graph was a subset of the the true graph when all the non-zero |ρ̃ij|
were below 0.1. Subsequent graphs both missed true edges and included incorrect

ones (see Figures B.1 and B.2). We also note that the subset graphs tended to have

a smaller Kullback-Leibler divergence than graphs which also included incorrect

edges.

We also considered the situation where data was simulated from a distribution where

the value of the true partial correlations varied. The top graph was a superset only

for Ωbig, p = 4 which had all |ρ̃ij| > 0.5 (see Appendix Figure B.3) . In other cases

edges corresponding to small (|ρ̃ij| < 0.1) were almost always omitted. In these
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situations the subset graphs did not necessarily have the smallest Kullback-Leibler

divergence. (Detailed results are presented in Figure B.4 and Tables B.2, B.3, B.4,

B.5 and B.6.)

As the relative inclusion probabilities point to the importance of edges we also

considered whether the relative inclusion probabilities gave any pointers as to the

true non-decomposable nature of the graph. With n = 1000, p very small (4 or

6) and all partial correlations 0.45 (Ωsame), the relative inclusion probabilities for

the true edges (only) were all 1.000 (see Table B.7). When n = 1000, for the 12-

node Ωsame and the 20-node Ωsame, not only did the true edges have an relative

inclusion probability of 1 (to 3dp) but so too did at least one other edge. ( Table

B.8 shows this.) The relative inclusion probabilities for all true edges were more

than 0.8 under the same condition that led to the top graphs being supersets. In

most cases (as we see in Table B.9) there was also at least one other edge that

had an relative inclusion probability in the same range, thus making it not clear

exactly which were the true edges. There is however a definite indication that the

true model is non-decomposable and is sparser than any of the top graphs. The

high relative inclusion probabilities often miss a true edge and may include other

edges for smaller sample sizes, where the top graphs may not be supersets (see Table

B.10). Edges associated with |ρ̃ij| < 0.1 in the true partial correlation matrix have

low (< 0.5) relative inclusion probabilities (see Table B.11).

5.4.2 Model selection comparison of FINCS with graphical

lasso methods.

Figures 5.3 gives the results for the two sets of five datasets simulated from the

4-node Ωsame. All methods always find all the true edges when n is large for this

four variable cycle (recall=1 in Figure 5.3 for n = 1000). There were two instances

where the inclusion probabilities missed one true edge when n = 50 (see Figure 5.3).

Adaptive graphical lasso and the inclusion probabilities were the only methods which

ever correctly identified the model. However, the model selected varied from sample

to sample, even when n was large. With so few variables the addition or deletion of
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Figure 5.3: Model comparison measures for 5 samples of n = 50 and 5 of n = 1000

from a p = 4 cycle

one edge or minor changes to the parameter estimates can have observable effects

on the Kullback-Leibler divergence. This point is best illustrated by an extreme

case where the model selected by adaptive lasso was correct but the divergence was

greater than the divergence of the (unregularised) maximum likelihood estimator!

All methods displayed considerable variation, with the (obvious) exception of the

maximum likelihood estimate. Each method had the smallest divergence for at least

one of the five n = 50 samples. When n = 1000 the Kullback-Leibler divergence was

quite similar across all model selection methods. Nevertheless, the combination of

shrunk estimates and the ability to select the correct model means that the graphical

lasso methods tended to have a slightly smaller Kullback-Leibler divergence.
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Figure 5.4: Model comparison measures for 5 samples of n = 50 and 5 samples of

n = 1000 from a p = 20 cycle.

Figure 5.4 shows that for the 20 variable cycle by all measures the estimates based

on FINCS graphs tend to outperform the two graphical lasso graphs. MLE results

are not shown as the number of edges and Kullback-Leibler divergence were so much

greater their inclusion would have distorted the scale of the figures. The MLE results

are given in Table B.12. The FINCS top graph is sparser than both the graphical

lasso-based graphs, and the inclusion probabilities point to an even sparser superset

graph for the large (n = 1000) samples. Here the advantages of sparsity are also

apparent in parameter estimation with both the sparser FINCS based estimates

always having a smaller Kullback-Leibler divergence. The only possible issue with

FINCS is that for small samples (seen for n = 50) the recall is less than 1 meaning

that the top graphs are not superset graphs (see Figure 5.4). This in turn means that
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Figure 5.5: Model comparison measures for simulated data, where the true model

includes some very small partial correlations (p = 12; n = 50 and n1000).

the increased sparsity of the inclusion probabilities graph yields worse rather than

better estimates. Despite this in all bar one case the Kullback-Leibler divergence

for the estimates based on the FINCS top graph were the smallest.

We saw in Section 5.4.1 that, when true partial correlations are small, FINCS may

fail to find those edges. We now consider the models selected when the true model

includes some small partial correlations. In this situation Figure 5.5 reveals that all

methods miss some of the edges (recall < 1). While the two graphical lasso methods

do identify more of the true edges (higher recall) they also include incorrect edges

(low precision). The sparser FINCS graphs only ever included one incorrect edge and

this only occurred once (for the top graph when n = 50). While adaptive graphical

lasso and FINCS (using the top graph) clearly perform better than graphical lasso

(and to some extent using FINCS inclusion probabilities) the choice between these

two is not clear. FINCS top graph gains in sparsity and precision but the adaptive
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graphical lasso often has a smaller Kullback-Leibler divergence and has greater recall.

It may depend upon the situation which is the preferred option.

5.4.3 Comparison of predictions using FINCS and graphical

lasso derived graphs

Mutual-funds data

200 250 300 350

0.29

0.30

0.31

edges

S
S

E

●

Figure 5.6: Mutual-funds data: Number of edges in graph and total sum of squared

errors.

+ = graphical lasso; × = adaptive graphical lasso;

◦= top FINCS graph; �= FINCS model averaged predictions; � = inclusion prob-

ability FINCS graph

The three FINCS based methods selected similar edges resulting in a similar sum

of squared errors (see Figure 5.6). The most interesting aspect of this is that, as

expected, model averaging appears to make only a very small improvement to the

overall accuracy of predictions. As seen already in Section 4.2 the FINCS derived
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graphs are much sparser than the graphical lasso graph. Both graphical lasso and

adaptive graphical lasso have sum of square errors 2-3% greater than the FINCS

based models. The adaptive graphical lasso while similar in sparsity to the FINCS

models has a sum of squared errors closer to the graphical lasso. We initially sus-

pected that was due to shrinkage in the elements of Ω̂. While this may be a partial

explanantion a comparison of the actual edges found by the two methods reveals

that although the number of edges is similar, the actual edges found vary consider-

ably, with only 30% of the edges found being common to both models. Again as a

worst case scenario we also computed the maximum likelihood estimate. This is a

complete graph of 1711 edges and gave a total sum of squared errors of 5.6.

Simulated data

We also considered the ability of the various models from Section 5.4.2 to predict

data in a prediction set of n = 50 simulated in the same manner as the origi-

nal datasets. Here, as Figure 5.7 shows, the situations is not so clear. In most

cases graphical lasso was the worst performer, apart from using the (unregularised)

Maximum Likelihood Estimator (see Table B.13 for MLE sum of squared errors).

However which of the other methods performed best varied between samples for all

four scenarios.

We then simulated a data set of size n = 51 from a p = 50 cycle in order to

assess the performance of each method in a situation with dimensions closer to the

mutual funds data. We observed that for each of these five simulated datasets the

top FINCS graph had the lowest sum of squared error. Although there was some

overlap between methods in the range of the sum of squared errors, the ‘extra edges’

in both graphical lasso methods appear to be having a more detrimental effect here.

However, the superiority of FINCS is less impressive than for the mutual-funds

data.

We have no way of knowing the true model for the mutual-funds data, but it is feasi-

ble that there are groups of closely related funds. This suggests that the true model

may be decomposable or at least have a decomposition where many of the prime
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components are cliques. This could lead to the dramatically superior performance

of FINCS with the mutual-funds data.
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Figure 5.7: Total sum of squared errors and number of edges for 5 simulated samples

of each n and p as specified.

+ = graphical lasso; × = adaptive graphical lasso;

◦= top FINCS graph; �= FINCS model averaged predictions; � = inclusion prob-

ability FINCS graph
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ples: n = 51 and p = 50.

+ = graphical lasso; × = adaptive graphical lasso;

◦= top FINCS graph; �= FINCS model averaged predictions; � = inclusion prob-

ability FINCS graph
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5.5 Discussion

FINCS behaved as expected for large samples (n > 12p). Minimal superset graphs

had a smaller Kullback-Leibler divergence than others and as n increased they also

had higher posterior probabilitiy. The caveat on this is that FINCS (as with both

graphical lasso methods) often failed to pick up edges corresponding to elements

with a small (< 0.1) true partial correlation. Further simulation studies are needed

to ascertain whether these thresholds are unchanged with a non-decomposable graph

built from many components like the ones studied here.

A consideration of the the edges in the top 500 graphs reveals that the edges in the

different models are combinations of only a subset of all possible edges. This suggests

that for large samples the top graphs are circulating around the decomposable su-

persets of the true non-decomposable model. Thus top FINCS graphs all essentially

represent the same model and hence model averaging does not improve predictions.

At very small dimensions we were able to observe that the Kullback -Leibler diver-

gence is very similar for all superset graphs (only). Requiring retained graphs to

exceed a minimum Kullback-Leibler divergence from already-retained graphs, as well

as having a high model score, could ensure that truly different models (graphs) are

available for model averaging purposes. We leave exploration and implementation

of these ideas to future work.

Graphical lasso, while an improvement on early lasso regression-based models, per-

formed the worst of the methods we considered, both in terms of precision of edge se-

lection and prediction. Adaptive graphical lasso which allows for a different penalty

on each edge shows substantial improvement in terms of sparsity, reduced parameter

divergence and prediction accuracy.

FINCS gave good results even though we were working with datasets where the true

model is non-decomposable , which were often better than the adaptive graphical

lasso model. This is despite the inability of FINCS to choose the correct model.

Using the top graph under FINCS gave results on a par with model averaging.

While the relative inclusion probabilities may point to a non-decomposable model,
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for large samples there was not much to be gained in using the maximum likelihood

estimator of the graph based on relative inclusion probabilities > 0.8 and for smaller

samples the estimate was often worse.

Some studies suggest that graphical lasso methods can be improved by using meth-

ods other than cross validation to select the penalty. Information criteria (AIC,

BIC) are used by Ambroise et al. (2009) to choose the penalty parameter in graphi-

cal lasso and Gao et al. (2009) to choose the penalty parameter in adaptive graphical

lasso. In each case the penalty chosen yields a sparser graph than the cross valida-

tion penalty. However as Liu et al. (2010) point out, AIC and BIC tend to perform

poorly when the dimension (p) is large relative to the sample size (n). To over

come this Liu et al. (2010) introduce a stability approach (StARS) to choosing the

penalty parameter which they claim outperforms cross validation, AIC and BIC,

but only for high-dimensional problems. We wanted to use a method for selecting

the penalty parameter which could be used for all variations in n and p, hence we

used cross-validation.

FINCS gave good results even though we were working with datasets where the

true model is non-decomposable. These results were often better than the adaptive

graphical lasso model. This is despite the inability of FINCS to choose the correct

model. Notably, although FINCS often included ‘extra’ edges to make the model

decomposable, in moderate to high dimensions it had better precision than the

adaptive graphical lasso.



Chapter 6

Concluding discussion

In this concluding chapter we summarize our findings, further highlighting the con-

tributions made by this thesis. As with any research, questions arise naturally from

our conclusions and so we also make suggestions for further research.

Our focus has been on computationally tractable methods for fitting Gaussian mod-

els. We have considered two penalized likelihood approaches, the graphical lasso and

the adaptive graphical lasso, and also a decomposable Bayesian approach feature-

inclusion stochastic search. An attraction of using penalized likelihood approaches

is that they are faster than Bayesian methods, even when the Bayesian search is

restricted to decomposable models for computational convenience. Bayesian models

on the other hand are sparser and separate model selection from parameter estima-

tion. While the overriding theme to emerge on the relative costs and benefits of

the two approaches is that which is ‘best’ depends on the application, we offer some

guidelines and quantify the costs and benefits of each approach.

6.1 Estimating the inverse covariance matrix

In in many situations, as in Chapter 3, our aim in estimating the inverse covariance

matrix is to gain insights from the conditional independence pattern and so we focus

the first part of our discussion on model selection and estimation of the inverse

89
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covariance matrix (Ω).

Using partial correlations gave demonstrably better results both in terms of the

number of genes able to be classified and the accuracy of classification. In terms of

using different methods to obtain the estimated partial correlations we found that

the results using graphical lasso were on a par with high-dimensional Bayesian co-

variance selection, an approach which places a less stringent restriction on possible

models than FINCS. Given that very small estimated partial correlations will nat-

urally be excluded by being on a long path we would expect that both adaptive

graphical lasso and FINCS would give similar results. Although the restriction to

decomposable models does lead to significant savings in computational time, FINCS

is still more computationally expensive than adaptive graphical lasso even allowing

for cross validation.

In Chapter 5 we saw that, when using FINCS, the sample size needed to be at

least 12p before a superset is the top model. Thus our work in Chapter 4 suggests

that, in the cases where the FINCS restriction to decomposable models results in a

superset model being used for parameter estimation, the practical effect of increased

variability in the estimates will be small. In this situation, the sparser FINCS derived

models perform better simply because they are sparser and therefore closer to the

true model. Not answered here, however, is whether the 12p ‘superset threshold’ is

actually 12p or whether when the true model has more than one prime component it

may actually be smaller. It is possible that this ‘superset threshold’ is only related

to the relative size of the number of variables in the largest non-decomposable prime

component and the sample. We leave verification of that to future research.

The situation is not so clear cut when the sample size is smaller. In Chapter 4 we

saw that there is always increased variability if a superset model is used and that,

with small samples, this variability can be substantial. However in Chapter 5 we

found that only the penalized likelihood methods select a superset model when the

sample size is small. Furthermore the approach which yielded the model with the

smallest Kullback-Leibler divergence varied between samples. Thus the decision as

to which method to use will vary according to context. If missing true edges is of
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higher concern then adaptive graphical lasso is more likely to include all the true

edges plus a minimum of extras. If reducing the number of incorrect edges is more

important then the top FINCS graph has fewer incorrect edges while missing the

least true ones.

Finally in this section we comment on small partial correlations. In Chapter 5 we

saw that edges corresponding to small partial correlations are often missed by all

methods, no matter what the sample size. If they are picked up, particularly if the

true partial correlations all tend to be small, then our work in Chapter 4 suggests

that, the presence of incorrect edges in the model is unlikely to have much affect on

the variability of the estimates.

6.2 Regularizing the estimate of the covariance

matrix

In other situations we have an interest in obtaining a ‘good’ estimate of the inverse

covariance matrix is so that we can obtain a regularized estimate of the covariance

matrix. We saw in Chapter 4 that the presence of incorrect edges in the inverse

covariance matrix graph can markedly increase the variance of some elements of the

covariance matrix. The greater the difference in sparsity between the true model and

the estimate of the inverse covariance matrix, the greater this increase in the variance

of some elements of the covariance matrix. In Chapter 5 we used a regularized

estimate of Σ for prediction purposes. We were therefore not surprised to see that

graphical lasso, which always included the highest number of incorrect edges, gave

the least accurate predictions.

As observed in Chapter 5 the difference between adaptive graphical lasso and esti-

mation derived from the FINCS top graph is not so clear cut. The best estimates

will be obtained by using the sparser FINCS top graph in large sample situations

when all approaches point to a superset model. We found that when a smaller sam-

ple meant that only the adaptive graphical lasso models were a superset, and also

when the presence of small partial correlation in Ω meant that both methods missed
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identifying these elements as non-zero, the errors were quite similar. The approach

which gave the smallest errors varied between samples. The increased variability

in estimates of elements of Σ corresponding to extra edges does not appear to be

reflected in increased variability in the total sum of squared errors. Whether this

would show up with more replications, or whether missed edges are also affecting

the variability, is something we leave to future research.

Finally we note again here that the adaptive graphical lasso and top FINCS graphs

for the mutual-funds dataset (see Section 5.4.3) were very different although con-

taining the same number of edges. Furthermore in this more complex situation

FINCS clearly outperformed adaptive graphical lasso.

6.3 Concluding remarks

Gaussian graphical models are a useful tool for eliciting and understanding relation-

ships in high-dimensional data. In Chapter 3 we saw that using partial correlations

enables both more, and more accurate, classifications of genes than using a cor-

relation graph. The question then is, what method should one use to select the

model and estimate the parameters. We have considered the latest methods for two

common approaches: penalized likelihood and decomposable Bayesian. If time is

of the essence, then penalized likelihood approaches are faster. In all cases adap-

tive graphical lasso gave superior results to graphical lasso. While the decision to

restrict to decomposable models is made purely for computational convenience our

research suggests that in most high-dimensional settings the results will be compara-

ble with or even better than those obtained using adaptive graphical lasso. This may

not be the case at low-dimensions, particularly with small samples as is discussed

above.

As with all research in the process of answering our initial questions more have

arisen. Model averaging gives superior results in most Bayesian situations. This

was not the case here. As noted earlier we suggest including consideration of the

Kullback -Leibler divergence in the search algorithm as one way to ensure the top
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graphs actually represent different models. More investigation could also be done

to confirm that our results do hold at even higher-dimensions and for more complex

graphs with many components.
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Appendix A

Supplementary Tables and Figures

for Chapter 4

A.1 Tables and Figures for the four variable

case

Matrices with small partial correlations were obtained in the following manner:

• smallΩsame was obtained by dividing all off diagonals elements of Ωsame by

100;

• smallΩbig was obtained by dividing all off diagonals elements of Ωbig by 10;

• smallΩsmall was obtained by dividing all off diagonals elements of Ωsmall by

1000.

95
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Table A.1: n = 1000 Relative Standard Deviations for non-decomposable model and

increase for decomposable model.

smallΩsame smallΩbig smallΩsmall

RSD cycle increase RSD cycle increase RSD cycle increase

ω1,2 7.008 0.001 0.624 0.006 155.80 0.033

ω2,3 6.822 0.001 0.410 0.008 1241.92 0.024

ω3,4 7.100 0.002 0.523 0.131 596.98 0.049

ω1,4 7.127 0.001 0.459 0.041 258.27 0.067

Table A.2: Four variable empirical and EFI variances for elements of Ω̂same for cycle

and decomposable, when n=10.

cycle decomposable

EFI variance Empirical variance EFI variance Empirical variance

ω̂1,2 36.57 178.96 40 329.81

ω̂2,3 36.57 291.92 40 495.78

ω̂3,4 36.57 272.89 40 446.35

ω̂1,4 36.57 168.57 40 320.03

Table A.3: Four variable empirical and EFI variances for elements of Ω̂big for cycle

and decomposable, when n=10.

cycle decomposable

EFI variance Empirical variance EFI variance Empirical variance

ω̂1,2 50.12 221.23 88.72 632.27

ω̂2,3 107.66 635.85 183.21 1965.61

ω̂3,4 564.12 2681.58 978.41 11173.80

ω̂1,4 699.18 3344.64 1124.15 7681.47
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Table A.4: Four variable empirical and EFI variances for elements of Ω̂small for cycle

and decomposable, when n=10.

cycle decomposable

EFI variance Empirical variance EFI variance Empirical variance

ω̂1,2 1001.22 4664.80 1016.20 7930.63

ω̂2,3 626.80 3305.47 628.48 5416.36

ω̂3,4 1240.26 5267.63 1240.92 9185.29

ω̂1,4 1821.72 7789.67 1897.93 14514.84

Table A.5: Percentage of times an element is declared zero (|estimate| < 2× standard

error) for 1000 simulations (Ωsmall).

n=10 n=100 n=1000

cycle decomp cycle decomp cycle decomp

ω̂1,2 99.1 98.9 49.7 50.1 0 0

ω̂1,4 99.1 99.1 95.7 95.5 89.6 89.7

ω̂2,3 99.9 99.7 94.9 94.9 60.4 60.9

ω̂2,4 98.3 95.4 94.4

ω̂3,4 99.2 99.1 76.8 77.3 2.6 2.9
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Figure A.1: OFI variances for Ω̂same with sample sizes 10, 100 and 1000. (Note the

radically different scales.)

— represents the line y = x;

- - - represents the line y = x+difference in EFI variances calculated using equa-

tion(5)

× represents the expected variances;

+ represents the empirical variances.
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Figure A.2: OFI variances for Ω̂big with sample sizes 10, 100 and 1000. (Note the

radically different scales.)

— represents the line y = x;

- - - represents the line y = x+difference in EFI variances calculated using equa-

tion(5)

× represents the expected variances;

+ represents the empirical variances.
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Figure A.3: OFI variances for Ω̂small with sample sizes 10, 100 and 1000. (Note the

radically different scales)

— represents the line y = x;

- - - represents the line y = x+difference in EFI variances calculated using equa-

tion(5)

× represents the expected variances;

+ represents the empirical variances.
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Table A.6: Non-zero elements of Ω matrices for p=20.

Ωsame Ωbig Ωsmall

i ωi,i ωi,(i+1) ωi,i ωi,(i+1) ωi,i ωi,(i+1)

1 20 -9 36 15 52 -20

2 20 -9 15 -7 52 -12

3 20 -9 50 -25 40 -10

4 20 -9 79 -23 69 2

5 20 -9 55 -65 55 -14

6 20 -9 209 -46 110 -34

7 20 -9 127 -132 153 13

8 20 -9 230 -7 36 -15

9 20 -9 90 -91 160 41

10 20 -9 169 -41 54 -19

11 20 -9 101 -63 29 -9

12 20 -9 84 -4 149 60

13 20 -9 49 -15 134 -44

14 20 -9 65 -22 132 15

15 20 -9 46 -10 61 -2

16 20 -9 69 -35 132 33

17 20 -9 38 -37 105 -1

18 20 -9 121 -4 39 -3

19 20 -9 14 -8 51 -3

20 20 -9* 125 -46* 168 27*

* is element ω20,1
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Table A.7: Non-zero elements of Ω matrices for p=50.

Ωsame Ωbig Ωsmall

i ωi,i ωi,(i+1) ωi,i ωi,(i+1) ωi,i ωi,(i+1)

1 20 -9 80 -103 22 -9

2 20 -9 206 -13 93 -5

3 20 -9 64 -19 82 -11

4 20 -9 30 -17 62 -1

5 20 -9 65 -88 113 -4

6 20 -9 197 -69 118 18

7 20 -9 119 -9 101 47

8 20 -9 42 15 113 -57

9 20 -9 28 -15 73 24

10 20 -9 29 -10 65 13

11 20 -9 8 -11 131 -20

12 20 -9 127 -76 98 -5

13 20 -9 138 -24 47 -27

14 20 -9 202 -200 53 -23

15 20 -9 240 -25 121 40

16 20 -9 40 15 63 8

17 20 -9 20 -5 132 5

18 20 -9 22 -12 138 -19

19 20 -9 44 -27 84 47

20 20 -9 63 -38 98 -13

21 20 -9 140 -119 11 3

22 20 -9 224 -56 89 5

23 20 -9 137 -105 28 -16

24 20 -9 123 -9 128 -41

25 20 -9 89 -30 86 -7

26 20 -9 117 -86 19 -13

27 20 -9 113 -77 164 22

Continued on next page
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Ωsame Ωbig Ωsmall

i ωi,i ωi,(i+1) ωi,i ωi,(i+1) ωi,i ωi,(i+1)

28 20 -9 200 28 132 -58

29 20 -9 52 -24 88 30

30 20 -9 18 -11 68 -20

31 20 -9 45 13 85 10

32 20 -9 68 -37 151 7

33 20 -9 96 26 77 10

34 20 -9 60 -67 123 -24

35 20 -9 174 -68 134 18

36 20 -9 126 -19 35 -36

37 20 -9 160 -144 79 25

38 20 -9 223 -131 84 -19

39 20 -9 229 -42 70 41

40 20 -9 124 -33 91 -5

41 20 -9 31 -4 79 -34

42 20 -9 72 -29 313 -66

43 20 -9 144 -115 261 10

44 20 -9 115 -10 24 -3

45 20 -9 26 -5 86 33

46 20 -9 33 10 95 -69

47 20 -9 36 -7 381 -8

48 20 -9 30 12 25 -5

49 20 -9 27 -18 82 -46

50 20 -9* 47 -20* 207 -1*

* is element ω50,1
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Figure A.4: Percentage change in expected (EFI) and empirical variances when a

decomposable model is fitted and relative standard deviation (RSD) when fitting

true (cycle) and decomposable models.

Shown here for p=20, n=21 three different Ω matrices, and two decomposable mod-

els. Edges are labeled in an anticlockwise direction beginning with the edge corre-

sponding to ω1,2.
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Shown here for p=50, n=51 three different Ω matrices, and two decomposable mod-

els. Edges are labeled in an anticlockwise direction beginning with the edge corre-

sponding to ω1,2.
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ning with the edge corresponding to ω1,2.
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Figure A.11: Percentage of elements corresponding to ‘extra edges’ which are de-

clared non-zero. Shown for two different decomposable models, for p=50, n=51.
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A.3 Tables and Figures for estimations of Σ

Table A.8: Four variable empirical variances for elements of Σ̂ for cycle and per-

centage increase to decomposable, when n=10.

Ωsame Ωbig Ωsmall

variance %increase variance %increase variance %increase

σ̂1,1 0.005236 <1% 0.000921 <1% 0.0000310 <1%

σ̂1,2 0.004146 <1% 0.003202 <1% 0.0000127 <1%

σ̂1,3 0.003697 <1% 0.001628 <1% 0.0000048 18.75%

σ̂1,4 0.004150 <1% 0.000773 <1% 0.0000059 <1%

σ̂2,2 0.005422 <1% 0.045355 <1% 0.0000200 <1%

σ̂2,3 0.004191 <1% 0.017674 <1% 0.0000188 <1%

σ̂2,4 0.003636 6.57% 0.004875 1.17% 0.0000012 300%

σ̂3,3 0.005619 <1% 0.008990 <1% 0.0000753 <1%

σ̂3,4 0.004453 <1% 0.002844 <1% 0.0000085 <1%

σ̂4,4 0.005407 <1 % 0.001195 <1% 0.0000048 <1%

Note: that the parameter values are themselves small hence the small variances.
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Figure A.12: Empirical variances for elements of Σ when a decomposable model

(type B) vs when the true (non-decomposable) model is fitted.

Shown here for p=20 and n=21, when underlying Ω matrix has (a) all partial corre-

lations equal, (b) large partial correlations and (c) small partial correlations. Note

that log scales are used for (b) and (c).

�=elements of Σ corresponding to non-zero elements in Ω

+ = elements of Σ corresponding to elements only non-zero in the decomposable

estimate of Ω
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Figure A.13: Empirical variances for elements of Σ when a decomposable model

(type A) vs when the true (non-decomposable) model is fitted.

Shown here for p=50 and n=51, when underlying Ω matrix has (a) all partial corre-

lations equal, (b) large partial correlations and (c) small partial correlations. Note

that log scales are used for (b) and (c).

�=elements of Σ corresponding to non-zero elements in Ω

+ = elements of Σ corresponding to elements only non-zero in the decomposable

estimate of Ω
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Figure A.14: Empirical variances for elements of Σ when a decomposable model

(type B) vs when the true (non-decomposable) model is fitted.

Shown here for p=50 and n=51, when underlying Ω matrix has (a) all partial corre-

lations equal, (b) large partial correlations and (c) small partial correlations. Note

that log scales are used for (b) and (c).

�=elements of Σ corresponding to non-zero elements in Ω

+ = elements of Σ corresponding to elements only non-zero in the decomposable

estimate of Ω
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A.4 Tables and Figures for 12 node example

Table A.9: Estimates and OFI standard deviations for elements of Ω̂ for cycle and

three decomposable models , when p=12 and n=250.

cycle(sd) decomp A(sd) decomp B(sd) decomC(sd)

ω̂1;1 20.42(1.7149) 21.11(1.8883) 20.58(1.7284) 20.97(1.7532)

ω̂1;2 -9.74(1.2125) -10.33(1.3594) -9.79(1.2144) -9.79(1.2144)

ω̂1;3 0 0 -0.65(1.0007) -0.63(1.0135)

ω̂1;5 0 0 0 -0.46(0.7277)

ω̂1;8 -7.18(0.9538) -7.73(1.1102) -7.23(0.9558) -8.63(1.1796)

ω̂1;9 0 0 0 2.41(1.0827)

ω̂2;2 19.91(1.6967) 20.18(1.7135) 20.07(1.7091) 20.07(1.7091)

ω̂2;3 -6.89(1.0284) -7.87(1.1630) -7.87(1.1630) -7.87(1.1630)

ω̂2;4 0 ,1.81(0.9656) 2.16(1.0799) 2.16(1.0799)

ω̂2;8 0 0.79(0.8954) 0 0

ω̂3;3 18.55(1.6047) 19.54(1.7478) 19.54(1.7478) 19.54(1.7478)

ω̂3;4 -7.13(1.0715) -8.16(1.2146) -8.16(1.2146) -8.16(1.2146)

ω̂4;4 20.99(1.7953) 21.37(1.8204) 21.38(1.8209) 21.28(1.8163)

ω̂4;5 -7.35(0.9466) -7.41(0.9480) -7.41(0.9480) -7.40(0.9483)

ω̂4;8 0 -0.70(0.7970) -0.44(0.8745) 0)

ω̂5;5 16.79(1.2995) 16.99(1.3096) 16.99(1.3096) 17.06(1.3122)

ω̂5;6 -7.26(0.9053) -7.31(0.9700) -7.31(0.9700) -7.31(0.9700)

ω̂5;7 0, -0.87(0.8739) -0.87(0.8739) -0.87(0.8739)

ω̂5;8 0 1.71(0.6993) 1.71(0.6993) 1.62(0.7828)

ω̂5;9 0 0 0 0.59(0.7937)

ω̂5;10 0 -0.56(0.7022) -0.56(0.7022) -0.85(0.7715)

ω̂5;11 0 -0.57(0.8576) -0.57(0.8576) -0.57(0.8576)

ω̂5;12 -7.22(0.8989) -6.86(0.9943) -6.86(0.9943) -6.86(0.9943)

Continued on next page
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cycle(sd) decomp A(sd) decomp B(sd) decomC(sd)

ω̂6;6 17.82(1.5093) 17.89(1.6001) 17.89(1.6001) 17.89(1.6001)

ω̂6;7 -6.73(0.9594) -6.81(1.0973) -6.81(1.0973) -6.81(1.0973)

ω̂7;7 19.21(1.6343) 20.07(1.7261) 20.07(1.7261) 20.07(1.7261)

ω̂7;8 -7.84(1.0176) -8.50(1.0748) -8.50(1.0748) -8.50(1.0748)

ω̂8;8 20.53(1.6055) 20.86(1.6217) 20.79(1.6191) 22.11(1.8075)

ω̂8;9 -9.31(1.1496) -9.99(1.2793) -9.99(1.2793) -10.81(1.3508)

ω̂8;10 0 1.01(0.9138) 1.01(0.9138) 0)

ω̂9;9 22.72(1.9179) 23.72(2.1213) 23.72(2.1213) 23.26(1.9558)

ω̂9;10 -8.12(1.1291) -9.03(1.3396) -9.03(1.3396) -8.47(1.1576)

ω̂10;10 19.15(1.6405) 19.43(1.6606) 19.43(1.6606) 19.58(1.6847)

ω̂10;11 -7.01(1.0032) -6.91(1.0465) -6.91(1.0465) -6.91(1.0465)

ω̂11;11 19.12(1.6172) 19.09(1.6454) 19.09(1.6454) 19.09(1.6454)

ω̂11;12 -9.49(1.1568) -9.06(1.2621) -9.06(1.2621) -9.06(1.2621)

ω̂12;12 20.37(1.6878) 19.84(1.7744) 19.84(1.7744) 19.84(1.7744)
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Figure A.15: Elements of Σ when a decomposable model vs when the true (non-

decomposable) model is fitted.

Shown here for decomposable models (a) A, (b) B and (c) C.

�=elements of Σ corresponding to non-zero elements in Ω

+ = elements of Σ corresponding to elements only non-zero in the decomposable

estimate of Ω
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Appendix B

Supplementary Tables and Figures

for Chapter 5

B.1 Ω matrices

Table B.1: Ωtwelve

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

63.7 1.1 0 0 0 0 0 7.6 0 0 0 0

1.1 247.8 150.9 0 0 0 0 0 0 0 0 0

0 150.9 188.3 23.2 0 0 0 0 0 0 0 0

0 0 23.2 85.2 −9.0 0 0 0 0 0 0 0

0 0 0 −9.0 197.2 −99.9 0 0 0 0 0 −43.4
0 0 0 0 −99.9 119.8 −37.4 0 0 0 0 0

0 0 0 0 0 −37.4 137.1 41.0 0 0 0 0

7.6 0 0 0 0 0 41.0 144.1 42.8 0 0 0

0 0 0 0 0 0 0 42.8 188.0 −89.9 0 70

0 0 0 0 0 0 0 0 −89.9 240.5 −9.3 0

0 0 0 0 0 0 0 0 0 −9.3 234.4 −54.6
0 0 0 0 −43.4 0 0 0 0 0 −54.6 59.89

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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B.2 Graphs and Tables for Section 5.4.1
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Figure B.1: Top 10 graphs found by FINCS for p=4, samples of n=1000 for different

|ρ̃ij|.
+ = superset graphs; × = subset graphs; ◦=subset plus incorrect edges;

� = empty graph

note there are only 3 possible superset graphs
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Figure B.2: Top 50 graphs found by FINCS for p=20, samples of n=1000 for different

|ρ̃ij|.
+ = superset graphs; × = subset graphs; ◦=subset plus incorrect edges;

� = empty graph
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Figure B.3: Top 10 graphs found by FINCS for p=4, samples of n=1000 for Ωsmall

and Ωbig.

+ = superset graphs; × = subset graphs; ◦=subset plus incorrect edges;

� = empty graph

note there are only 3 possible superset graphs
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Table B.2: True edges missing in top 10 graphs found by FINCS for Ωsmall when

p=4.

(x indicates the edge is missing in the graph.)

graph rank

edge true ρ̃ 1 2 3 4 5 6 7 8 9 10

1,2 -0.20

2,3 -0.02 x x x x x x x x x

3,4 0.05 x x x x x x x

4,1 0.12 x x x x

Table B.3: True edges missing in top 10 graphs found by FINCS for Ωbig when p=4.

(x indicates the edge is missing in the graph.)

graph rank

edge true ρ̃ 1 2 3 4 5 6 7 8 9 10

1,2 -0.50 x x x x

2,3 0.75

3,4 -0.61 x x

4,1 -0.70 x
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Figure B.4: Top 50 graphs found by FINCS for samples of n=1000 for for Ωsmall

and Ωbig (both p=20) and for Ωtwelve (p=12).

+ = superset graphs; × = subset graphs; ◦=subset plus incorrect edges;

� = empty graph
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Table B.4: True edges missing in top 10 graphs found by FINCS for Ωsmall when

p=20.

(x indicates the edge is missing in the graph.)

graph rank

edge true ρ̃ 1 2 3 4 5 6 7 8 9 10

1,2 -0.38

2,3 -0.26

3,4 -0.19

4,5 0.03 x x x x x x x x x x

5,6 -0.18

6,7 -0.26

7,8 0.18 x x

8,9 -0.20

9,10 0.44

10,11 -0.48

11,12 -0.14

12,13 0.42

13,14 -0.33

14,15 0.17 x x

15,16 -0.02 x x x x x x x x x x

16,17 0.28

17,18 -0.02 x x x x x x x x x x

18,19 -0.07 x x x x x x x

19,20 -0.03 x x x x x x x x x x

20,1 0.29



124APPENDIX B. SUPPLEMENTARY TABLES AND FIGURES FOR CHAPTER 5

Table B.5: True edges missing in top 10 graphs found by FINCS for Ωbig when p=20.

(x indicates the edge is missing in the graph.)

graph rank

edge true ρ̃ 1 2 3 4 5 6 7 8 9 10

1,2 0.65

2,3 -0.26

3,4 -0.40

4,5 -0.35

5,6 -0.61

6,7 -0.28

7,8 -0.77

8,9 -0.05 x x x

9,10 -0.74

10,11 -0.31

11,12 -0.68

12,13 -0.06 x x x x x x x x x x

13,14 -0.27

14,15 -0.4

15,16 -0.18

16,17 -0.68

17,18 -0.55

18,19 -0.10

19,20 -0.19

20,1 -0.69
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Table B.6: True edges missing in top 10 graphs found by FINCS for Ωtwelve.

(x indicates the edge is missing in the graph.)

graph rank

edge true ρ̃ 1 2 3 4 5 6 7 8 9 10

1,2 0.01 x x x x x x x x x

1,8 0.08 x x x x x x x x x

2,3 0.70

3,4 0.18

4,5 -0.07 x x

5,6 -0.65

5,12 -0.40

6,7 -0.29

7,8 0.29

8,9 0.26

9,10 -0.42

10,11 -0.04 x x x x x x x x x x

11,12 -0.46
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B.3 Relative inclusion probabilities

Table B.7: Relative inclusion probability matrices for n=1000 and ρ̃ij=-0.45.

⎛⎜⎜⎜⎜⎜⎜⎝
∗ 1.000 0.351 1.000

∗ ∗ 1.000 0.724

∗ ∗ ∗ 1.000

∗ ∗ ∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ 1.000 0.188 0.320 0.513 1.000

∗ ∗ 1.000 0.602 0.446 0.369

∗ ∗ ∗ 1.000 0.251 0.122

∗ ∗ ∗ ∗ 1.000 0.284

∗ ∗ ∗ ∗ ∗ 1.000

∗ ∗ ∗ ∗ ∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Note: Relative inclusion probabilities associated with true edges are in red.
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Table B.8: Relative inclusion probability matrix for 12 node case when n=1000 and

ρ̃ij=-0.4 and for 20-node cycle when n=1000 and ρ̃ij=-0.45.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ 1 0.6 0.46 0.4 0.0 0.0 1 0.0 0 0.0 0.0

∗ ∗ 1 0.2 0.1 0 0 0.2 0 0 0 0

∗ ∗ ∗ 1 0.3 0.0 0.0 0.3 0.0 0 0 0

∗ ∗ ∗ ∗ 1 0.0 0.0 0.5 0.0 0.0 0.0 0.0

∗ ∗ ∗ ∗ ∗ 1 0.5 1 0.4 0.3 0.5 1

∗ ∗ ∗ ∗ ∗ ∗ 1 0.6 0.0 0.0 0.0 0.0

∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.0 0.0 0.0 0.0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.3 0.3 0.3

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.4 0.3

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.3

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ 1 0.6 0.0 0.5 0 0 0 0.0 0 0.3 1.0 0.2 0.0 0.0 0 0 0 0.4 1

∗ ∗ 1 0 0.2 0 0 0 0 0 0.0 0.2 0 0 0 0 0 0 0 0

∗ ∗ ∗ 1 1 0 0 0 0 0 0.1 0.5 0 0 0 0 0 0 0 0.0

∗ ∗ ∗ ∗ 1 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ 1 0.5 0.0 0.4 0.0 1.0 0.6 0.0 0 0 0 0 0 0.0 0.0

∗ ∗ ∗ ∗ ∗ ∗ 1 0.0 0.3 0.0 0.3 0.0 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.9 0.1 0.4 0.00 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.0 0.0 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.9 0.0 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.0 0.0 0.0 0 0 0 0.0 0.0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.2 0.0 0 0 0 0.6 0.5

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.0 0 0 0 0.7 0.3

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.0 0 0.0 1.0 0.1

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.3 0.4 1.0 0.0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.5 0.5 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.3 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Note:

• Relative inclusion probabilities associated with true edges are in red;

• Relative inclusion probabilities that are 1.000 and are associated with other edges are in cyan;

• Relative inclusion probabilities shown as 1 are 1.000, those shown as 0 are 0.000.
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Table B.9: Relative inclusion probability matrices when n=1000 and top graphs are

supersets.

ρ̃ij big ρ̃ij =-0.15⎛⎜⎜⎜⎜⎜⎜⎝
∗ 1.000 0.823 1.000

∗ ∗ 0.987 0.361

∗ ∗ ∗ 0.999

∗ ∗ ∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
∗ 1.000 0.346 1.000

∗ ∗ 1.000 0.694

∗ ∗ ∗ 1.000

∗ ∗ ∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎠

ρ̃ij =-0.3
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ 1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.3 1

∗ ∗ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.8 0.6

∗ ∗ ∗ 1 0.9 0.0 0.0 0.0 0.1 0 0 0 0 0 0.0 0.8 0.8 1.0 0.9 0.2

∗ ∗ ∗ ∗ 1 0 0.0 0.0 0.0 0 0 0 0 0 0.0 0.1 0.0 0 0 0

∗ ∗ ∗ ∗ ∗ 1 0.6 0.3 0.3 0 0 0 0.0 0 0.1 0.9 0.2 0.0 0 0

∗ ∗ ∗ ∗ ∗ ∗ 1 0.2 0.1 0 0 0 0 0 0.0 0.2 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.4 0 0.0 0 0.0 0 0.3 0.5 0.0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0 0 0 0.0 0 0.2 0.3 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.8 0.3 1.0 0.0 0.9 0.6 0.0 0.0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.0 0.1 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.7 0 0.0 0.0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0 0.0 0.0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 1.0 0.1 0.0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.0 0.0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.1 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Note:

• Relative inclusion probabilities associated with true edges are in red;

• Relative inclusion probabilities that are > 0.8 and are associated with other edges are in cyan;

• Relative inclusion probabilities shown as 1 are 1.000, those shown as 0 are 0.000.
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Table B.10: Relative inclusion probability matrices when n=50.

ρ̃ij =-0.45 ρ̃ij =-0.4

⎛
⎜⎜⎜⎜⎜⎝

∗ 1.000 0.890 0.768

∗ ∗ 0.902 0.597

∗ ∗ ∗ 0.993

∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ 1.0 0.1 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0

∗ ∗ 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

∗ ∗ ∗ 1.0 0.1 0.0 0.0 0.0 0.0 0.0 0 0.0

∗ ∗ ∗ ∗ 1 0.1 0.0 0.0 0.0 0.0 0.0 0.0

∗ ∗ ∗ ∗ ∗ 1.0 0.0 0.0 0.0 0.1 0.0 0.8

∗ ∗ ∗ ∗ ∗ ∗ 1.0 0.1 0.0 0.0 0.0 0.1

∗ ∗ ∗ ∗ ∗ ∗ ∗ 1.0 0.0 0.0 0.0 0.0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.8 0.1 0.0 0.3

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.5 0.0 0.0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1.0 0.1

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.4

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ρ̃ij =-0.45
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0 0.0 0 0 0.0 0.0 1

∗ ∗ 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0.0 0.0 0.0 0.0

∗ ∗ ∗ 0.8 0.3 0.0 0.0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

∗ ∗ ∗ ∗ 1.0 0.0 0.0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

∗ ∗ ∗ ∗ ∗ 0.9 0.2 0.0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

∗ ∗ ∗ ∗ ∗ ∗ 0.9 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1.0 0.0 0 0.0 0 0 0.0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1.0 0.0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1.0 0.0 0.0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.7 0.3 0.0 0.0 0.0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.0 0 0.0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.0 0.0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.9

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Note:

• Relative inclusion probabilities associated with true edges are in red;

• Relative inclusion probabilities that are > 0.8 and are associated with other edges are in cyan;

• Relative inclusion probabilities shown as 1 are 1.000, those shown as 0 are 0.000.
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Table B.11: Relative inclusion probability matrices when n=1000 and partial cor-

relations are small.

⎛
⎜⎜⎜⎜⎜⎝

∗ 1.000 0.016 0.856

∗ ∗ 0.013 0.012

∗ ∗ ∗ 0.036

∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0

∗ ∗ 1 0.0 0.0 0.0 0 0 0.0 0 0.0 0.0

∗ ∗ ∗ 1 0.0 0.0 0.0 0 0 0.0 0 0.0

∗ ∗ ∗ ∗ 0.9 0.0 0.0 0 0.0 0.0 0 0.0

∗ ∗ ∗ ∗ ∗ 1 0.1 0.0 0 0 0.0 1

∗ ∗ ∗ ∗ ∗ ∗ 1 0.0 0 0 0.0 0.1

∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.0 0 0 0.0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ 1 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1

∗ ∗ 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

∗ ∗ ∗ 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0

∗ ∗ ∗ ∗ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

∗ ∗ ∗ ∗ ∗ 1 0.0 0.0 0.0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

∗ ∗ ∗ ∗ ∗ ∗ 1 0.3 0.0 0 0 0.0 0 0 0.0 0.0 0.0 0.0 0.0 0.0

∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.8 0.0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.0 0 0 0 0 0.0 0.0 0.0 0.0 0.0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.0 0 0 0 0.0 0.0 0.0 0.0 0.0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.0 0.0 0.0 0.0 0.0 0.0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.8 0.0 0.0 0.0 0.0 0.0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.0 0.0 0.0 0.0 0.0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0.0 0.0 0.0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.0 0.0 0.0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.1 0.0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Note:

• Relative inclusion probabilities associated with true edges are in red;

• Relative inclusion probabilities that > 0.8 and are associated with other edges are in cyan;

• Relative inclusion probabilities shown as 1 are 1.000, those shown as 0 are 0.000.
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B.4 Maximum likelihood estimate (MLE) re-

sults

Table B.12: Model comparison measures for MLE results.

p n K-L divergence for simulated sample

1 2 3 4 5

20 50 6.4636 5.5157 4.5946 4.9008 5.5059

20 1000 0.1148 0.1114 0.1076 0.1010 0.1268

12 50 1.7893 0.8728 0.8285 1.5253 1.3253

12 1000 0.0563 0.0389 0.0364 0.0369 0.0308

When p=20 there were 190 edges giving a precision of 0.1053 and recall of 1.

When p=12 there were 66 edges giving a precision of 0.1970 and recall of 1.

Table B.13: Sum of squared errors using the MLE.

p n SSE for simulated sample

1 2 3 4 5

20 50 97.48 106.70 76.70 119.62 83.89

20 1000 54.41 54.47 53.78 54.67 55.82

12 50 5.837 5.352 5.234 6.159 5.772

12 1000 4.655 4.756 4.750 4.675 4.762
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Appendix C

DRC forms

The signed statements of contribution to a doctoral thesis containing publications

are attached immediately following this page. Although bound into the thesis they

constitute additional pages and are thus not numbered.
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