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Abstract 

 

i 

ABSTRACT 

Active packaging systems can offer significant advantages in preventing quality loss in 

horticultural products through control of microbial and/or physiological activity. By 

delivering and sustaining volatile active agents at effective levels in a package atmosphere, 

significant shelf life extension can thus be achieved. Design of these systems is 

complicated by the number of possible package, product, active agent and carrier 

combinations that can be employed and the significant interactions that may occur between 

these components. Mathematical modelling can be used to simplify system design and 

reduce the number of experimental trials required to achieve optimal active packaging 

systems. In this study a generalised modelling methodology was developed and validated 

to facilitate the design of active controlled volatile release packaging systems for 

horticultural products.  

 

The modelling methodology was developed using an example system which comprised 

tomatoes packed under a modified atmosphere (MA; 5 % (v/v) CO2 and 10 % (v/v) O2) in 

a LDPE bag with a polymer film sealed sachet containing silica gel pre-saturated with the 

antifungal agent hexanal. Experimental trials showed that for this system a target sustained 

hexanal concentration of 40-70 ppm was required. This was shown to be (i) the minimum 

inhibitory concentration (MIC) for controlling Botrytis cinerea growing on tomatoes stored 

at 20°C and ~99%RH, (ii) to have only a relatively minor influence on the postharvest 

quality of tomatoes under these active MA conditions, and (iii) to promote only a small 

apparent uptake of hexanal from the atmosphere by the tomatoes. 

 

The effective hexanal permeabilities of Tyvek, LDPE and OPP sachet films were 

characterised using the isostatic method and shown to exhibit a dependence on both 

temperature (10 and 20°C) and concentration (over a range of 0.01-0.22 mol⋅m-3). Average 

permeabilities decreased in the order of Tyvek > LDPE > OPP, respectively, at all 

temperatures at comparable hexanal partial pressures.  

 

Hexanal sorption isotherms for silica gel at both 10 and 20ºC were determined using the 

gravimetric method and were reasonably well described by the Langmuir equation. The 

equilibrium amount adsorbed was significantly reduced at the higher temperature but the 
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pre-adsorption of water vapour on hexanal uptake on silica gel showed no uniform trend on 

the sorption characteristics suggesting that multicomponent sorption is complex.  

 

A generalised modelling methodology was developed through conceptualising key mass 

transfer processes involved in these active MA packaging systems. Quantitative methods 

for deciding the relative importance of each process were established together with 

guidelines for when simplifying assumptions could be made. This information was 

formalised into a decision tree to allow appropriate assumptions to be made in model 

formulation without unacceptable loss of model accuracy. Methods to develop generalised 

equations from these assumptions to describe changes in the sachet, package headspace 

and outer bag film with respect to an active agent and MA gases were then identified. 

 

The mathematical modelling methodology was applied to the example hexanal release 

active MAP tomato packaging system. For these systems there was a high initial peak in 

package headspace concentration during the first 24 h which declined to a quasi steady-

state concentration over a period of days. The quasi steady-state headspace concentrations 

were generally in the MIC range and were well predicted by the model. Interactions 

between water vapour and silica gel may have been responsible for the relatively higher 

hexanal concentration at the onset of release from the Tyvek sachet (a highly porous 

material). However the influence of water vapour (>95% RH in the MA bag containing 

tomatoes) during the quasi steady-state period appeared to be insignificant for all sachet 

films.  

 

The model was successfully applied to a range of packaging configurations and storage 

temperatures. A lack of fit was evident between model predictions and experimental trials 

during the initial (unsteady-state) stages of the release pattern for both headspace vapour 

concentrations and adsorbed mass on the silica gel. These differences were attributed to (i) 

model input uncertainties, chiefly with regard to the estimated coefficients of both the 

Langmuir isotherm equation and film permeability, and (ii) overestimated effective 

permeability values predicted by extrapolation of the concentration dependence of film 

permeability beyond the conditions for which the permeability was measured. These 

results suggest improved models for the effective permeabilities of the films, quantified 

under a range of vapour concentrations and concentration gradients, are required for better 

describing fluxes across the sachet film.  



Abstract 

 

iii 

 

Despite these limitations, the model did describe the general release pattern. The model 

was then used to pose a range of ‘what-if’ scenarios investigating the release patterns 

predicted for different active packaging designs. This analysis gave useful insights into 

how sorption isotherm shape and package/sachet design parameters can be manipulated to 

achieve different volatile release platforms. 

 

The work clearly demonstrated the importance of accurate data for permeability of volatile 

compounds through polymer films and for sorption of the active agent on the carrier phase. 

More work on characterising these systems is recommended to further improve model-

based design methods for active MAP systems. 

 

Overall the generalised methodology developed can be confidently adopted for 

constructing a mathematical model that provides sufficient accuracy and simplicity to be 

implemented for designing active packaging systems for horticultural and food products. 
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(mol·g-1) 

Hxl
max,sC  = Maximum amount of hexanal adsorbed on the carrier estimated by the 

Langmuir sorption isotherm (mol·g-1) 

Hxl
envC  = Hexanal concentration in the bulk environment surrounding the outer bag 

(mol⋅m-3) 

Hxl
1,g

C , 

Hxl
1J,g

C +  

= Equilibrium hexanal vapour concentration in the packaging film, at the 

discrete nodes 1j =  and 1Jj += , respectively (mol⋅m-3) 

Hxl
j,gC  = Equilibrium hexanal vapour concentration in the packaging film at 

discrete node J:2j =  (mol⋅m-3) 

Hxl
i,bed,sC  = Initial hexanal adsorbed amount of the carrier bed (mol⋅g-1) 

iC  = Concentration of VOC i (mol·m-3) 

Hxl
scflC  = Hexanal concentration in sachet film (mol·m-3) 

Hxl

scflx,g
C  = Hexanal concentration in gas phase which is in equilibrium with the sachet 

film material at a position x ( scflx ) (mol·m-3) 

i
pkhsC  = Concentration of active agent i in package headspace (mol·m-3) 

i
scflC  = Concentration of active agent i in sachet film (mol·m-3) 

i
bed,gC  = Equilibrium concentration of active agent i above the carrier bed  

(mol·m-3) 

i
bed,sC  = Equilibrium adsorbed amount of active agent i on the carrier bed  

(mol·g-1) 

i
ini,bed,sC  = Initial value of equilibrium adsorbed amount of active agent i on the 

carrier bed (mol·g-1) 

i
ini,pkhsC  = Initial value of concentration of active agent i in package headspace 

(mol·m-3) 

i
pkflC  = Concentration of active agent i in packaging film (mol·m-3) 

i
0,pkflC  = Concentration of active agent i in packaging film at 0x pkfl =   
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i

pkflL,pkfl
C  = Concentration of active agent i in packaging film at pkflpkfl Lx =   

i
envC  = Concentration of active agent i in surrounding environment (mol·m-3) 

MCP
satC  = 1-MCP saturated vapour concentration (mol·m-3) 

MCP
scflC  = 1-MCP concentration in sachet film (mol·m-3) 

MCP
pkflC  = 1-MCP concentration in packaging film (mol·m-3) 

MCP
envC  = 1-MCP concentration in environment (mol·m-3) 

Hxl

0,scfl
C  = Hexanal concentration in sachet film at position 0x scfl =  (mol·m-3) 

Hxl
satC  = Saturated hexanal vapour concentration (mol·m-3) (i.e. 0.46 mol·m-3, at 

20ºC) 

Hxl
ini,pkfl,gC  = Initial equilibrium concentration of hexanal vapour in packaging film 

(mol·m-3) 

Hxl
avg,pkfl,gC  = Mean equilibrium concentration of hexanal vapour in film (mol·m

-3) 

D  = Mass diffusivity (m2·s-1) 

Hxl
scflD  = Hexanal mass diffusivity in the sachet film (m2·s-1) 

d  = Integration constant (mol⋅m-1⋅s-1) 

i
filmD
 

= Diffusivity of diffusant i in film (m2·s-1) 

i
scflD  = Mass diffusivity of active agent i in sachet film (m2·s-1) 

i
pkflD  = Mass diffusivity of active agent i in packaging film (m2·s-1) 

2SO

fr
D

 
= Effective mass diffusivity of SO2 dissolved in fruit (m

2·s-1) 

MCP
scflD  = Mass diffusivity of 1-MCP in sachet film (m2·s-1) 

MCP
pkflD  = Mass diffusivity of 1-MCP in packaging film (m2·s-1) 

Ea  = Energy of activation (J⋅mol-1) 

0F  = Fourier number (dimensionless) 

o
G∆  = Free energy (J⋅mol-1) 

sH∆  = Heat of solution for the permeant gas (J·mol-1) 

o
H∆  = Apparent enthalpy change (J⋅mol-1) 

filmJ
 

= Steady-state flux across film (mol·s-1· m-2) 

i
filmJ
 

= Steady-state diffusion flux of diffusant i in film (mol·m-2·s-1) 
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scflJ  = Steady-state flux at sachet boundary (mol·s-1·m-2) 

i
LinK  = Linear isotherm constant or partition coefficient of adsorbate i (m3·g-1) 

i
FrdK  = Freundlich constant (mol Frdn1 − ⋅m Frdn3 ·g-1) 

airpaperK  = Partition coefficient (m3·g-1) 

Hxl
reac,tomk  = Coefficient of reaction rate of hexanal and tomatoes (µmol·s-1·kg-1· 

( m3·mol-1) reacn ) 

k  = Surface mass transfer coefficient (m·s-1) 

i
bedK  = Coefficient of the linear desorption isotherm of active agent i for the 

carrier (adsorbent) bed (m3⋅g-1)  

MCP
bedK  = Coefficient of linear sorption isotherm of 1-MCP for silica gel as 

reported by Lee (2003) (m3⋅g-1) 

2O

fr
k  = Fruit skin permeance to gas O2 (m·s

-1) 

i
reac,frk  = Rate coefficient for the reaction of the active agent i and fruit  

(mol·s-1·kg-1 (m3·mol-1) reacn )  

2mOk  = Michaelis-Menten constant for O2 consumption (kPa) 

Hxl
LinK  = Coefficient of the hexanal linear isotherm equation (g·g-1) 

i
GCK  = Detector response or slope (mol·area-1) of standard curve of VOC i as 

shown in Figure C-1 

Hxl
1,Lgmflk  = Coefficient of Langmuir relationship between hexanal vapour and 

LDPE film sorption (m3·mol-1) 

Hxl
2,Lgmflk  = Coefficient of Langmuir relationship between hexanal vapour and 

LDPE film sorption (dimensionless) 

scflk  = Constant in simplified ODE (s-1) 

filmL
 

= Film thickness (m) 

scflL  = Sachet film material thickness (m) 

pkflL  = Packaging film material thickness (m) 

L  = Characteristic dimension of bag (m) 

li  = Log integral function 

tomM  = Mass of tomatoes (kg) 

bedM  = Mass of the carrier bed (free of the mass of active agent i) (g) 

m  = Term in series solution (given as 5 terms) 
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i
filmN  = Steady-state rate of transfer of gas i across the film (mol⋅s-1) 

Frdn  = Exponential factor ( 1n0 Frd << ) in Freundlich equation (dimensionless) 

reacn  = Order of reaction rate (dimensionless) 

2O

fr
N  = Steady-state rate of transfer of gas O2 across fruit skin (mol·s

-1) 

2O

pkhsn  = Number of oxygen moles in package headspace (mol) 

2CO

pkhs
n  = Number of carbon dioxide moles in package headspace (mol) 

i
filmp∆  = Partial pressure differential of gas i at both sides of film surfaces (Pa) 

i
filmP  = Permeability to permeant i of the film (mol⋅m⋅s-1⋅m-2⋅Pa-1) 

i
0,filmP  = Fitted pre-exponential factor for permeability to permeant i of the film 

(mol·m·m-2·s-1·Pa-1) 

Hxl
film

P  = Effective film permeability to hexanal (mol·m·m-2·s-1·Pa-1) 

Hxl
0,film

P  = Fitted pre-exponential factor for effective permeability to hexanal of the 

film (pmol·m·m-2·s-1·Pa-1) 

Hxl
0,TyvekP , 

Hxl
0,LDPEP , 

Hxl
0,OPPP  

= Fitted pre-exponential factor for effective permeability to hexanal of 

Tyvek, LDPE and OPP films, respectively (pmol·m·m-2·s-1·Pa-1) 

Hxl
0,scfl

P  = Pre-exponential factor of effective permeability to hexanal vapour of sachet 

film material (mol·m·m-2·s-1·Pa-1) 

Hxl
0,pkflP  = Fitted pre-exponential factor for effective permeability to hexanal vapour of 

packaging film material (mol·m·m-2·s-1·Pa-1) 

2O

pkfl
P  = Film permeability to O2 (mol·m·m

-2·s-1·Pa-1) 

2CO

pkfl
P  = Film permeability to CO2 (mol·m·m

-2·s-1·Pa-1) 

2O

pkhsp  = O2 partial pressure in the package headspace (kPa) 

2O

envp  = O2 partial pressure in the bulk environment (kPa) 

2CO
envp  = CO2 partial pressure in the bulk environment (kPa) 

2CO

pkhsp  = CO2 partial pressure in the package headspace (kPa) 

i
scflP  = Permeability to active agent i of sachet film material  

(mol·m·m-2·s-1·Pa-1) 
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i
pkflP  = Permeability to active agent i of packaging film material (mol·m·m-2· 

s-1·Pa-1) 

MCP
scflP  = Sachet film permeability to 1-MCP vapour (mol·m·m-2·s-1·Pa-1) 

MCP
pkflP  = Packaging film permeability to 1-MCP vapour (mol·m·m-2·s-1·Pa-1) 

Hxl
pkflP  = Permeability to hexanal vapour of the packaging film (m2·s-1) 

outletQ  = Outgoing flowrate (m3·s-1) 

out
conc,l

Q  = Outlet gas flowrate from the low hexanal concentration side of the film 

(m3·s-1) 

R  = Gas constant (8.314 J⋅mol-1⋅ K-1) 

Hxl
tomr  = Apparent rates of uptakes of hexanal vapour by tomatoes (mol·s-1·kg-1) 

scflr  = Rate of changes of active agent concentration in the sachet film 

(dimensionless) 

bedr  = Rate of changes of active agent concentration in carrier bed 

(dimensionless) 

pkhsr  = Rate of changes of active agent concentration in package headspace 

(dimensionless) 

pkflr  = Rate of changes of active agent concentration in the packaging film 

(dimensionless) 

2SO

fr
r  = Reaction rate of SO2 and corn (mol·m

-3·s-1) which Haros et al. (2005) 

assumed to follow first order kinetics 

frR  = Radius of fruit (assumed to be spherical) (m) 

i
frr  = Reaction rate of between active agent i and fruit (mol·s-1·kg-1) 

i
pkhsr  = Rate of accumulation of active agent i in package headspace (mol·s-1) 

Hxl
scfl
r  = Rate of hexanal permeation through the sachet film material  

(mol·s-1) 

Hxl
pkflr  = Rate of hexanal permeation through the packaging film material  

(mol·s-1) 

2Or  = Rate of O2 consumption by respiration (mol·s
-1·kg-1) 

max

O2
r  = Maximum O2 consumption rate (mol·kg

-1·s-1) 

2COr  = Rate of respiratory CO2 production (mol·s
-1·kg-1) 

pkflR  = Half thickness of film (m) 
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i
filmS
 

= Solubility coefficient of gas i into film (mol⋅m-3⋅Pa-1) 

i
0,film

S  = Fitted pre-exponential factor for solubility to permeant i of the film 

(mol·m-3·Pa-1)   

o
S∆  = Entropy (J⋅mol-1⋅K-1) 

i
scflS  = Sachet film solubility to active agent i (mol·m-3·Pa-1) 

MCP
scflS  = Sachet film solubility to1-MCP as reported by Lee (2003)  

(mol·m-3·Pa-1) 

i
pkflS  = Packaging film solubility to active agent i (mol⋅m-3⋅Pa-1) 

Hxl
scflS  = Sachet film solubility to hexanal (mol·m-3·Pa-1) 

MCP
scflS  = Sachet film solubility to 1-MCP (mol·m-3·Pa-1) 

MCP

pkfl
S  = Packaging film solubility to 1-MCP (mol·m-3·Pa-1) 

Hxl
pkflS  = Packaging film solubility to hexanal vapour (mol·m-3·Pa-1) 

filmT
 

= Measured film temperatures (K) 

C10
T

o , 

C20
T

o
 

= Temperature (K) for 10 and 20ºC, respectively 

pkgT  = Temperature of package (K) 

t  = Time (s) 

pkgV  = Volume of package (m3) 

injVol  = Injected volume of sample (m3) 

filmx  = Position in film (m) 

frx  = Position in fruit (m) 

pkflx  = Position in packaging film material (m) 

scflx  = Position in sachet film (m) 

avgY  = Fraction unaccomplished change of concentration (dimensionless)  

Hxl

Lgmfl
Z  = Fitted coefficient of Langmuir relationship for hexanal vapour sorption 

on LDPE film (mol·s-1·m-2) 
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