Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Copyright[©] owned by the author of this thesis. Permission is given for a copy to be downloaded by an individual for the purposes of research and private study only. The thesis may not be reproduced elsewhere without the permission of the author.

Design and Development of a web Roll-to-Roll testing system with lateral dynamics control of Displacement guide.

Ву

Sung-Yu Tsai

A thesis in partial fulfilment of the requirement for the degree of

Masters of Engineering

In

Mechatronics

Massey University

Palmerston North

New Zealand

2012

Abstract

Roll-to-Roll (R2R) systems have been widely used in the traditional paper printing and packaging industry. In addition, Roll-to-Roll systems are also considered as a cost effective mass production solution for printed electronics, such as RFID and Solar cells in the recent years [1]. In a Roll-to-Roll system, web material often experiences lateral motion during the transportation to processes [1]. This project presents the lateral dynamics control system integration using centered pivoted displacement guide for Roll-to-Roll application. An initial literature review of the project is carried out with supporting theory and web handling mechanism. The complete system design consists of four units, namely unwinder unit, load cell unit, guide unit and rewinder unit. In this project, two microcontrollers are proposed to control the four units with additional instrumentation and signal conditioning between sensors/actuators, and the controller. The Guide system dynamics are simulated using first order single degree-of-freedom oscillator model controlled with classical PID servo designs. Finally, the complete system is tested with different disturbances input to the system. The system lateral response is compared with and without the guide system. Results are shown to have reduced the lateral motion when media transport speeds are at 20m/min, 40m/min and 60m/min.

i

Acknowledgements

I would like to express my deepest appreciation to the following people and department for their support during the course of this research:

Firstly, I would like to thank Prof. Jen-Yuan (James) Chang for his full support and guidance throughout this research. It has been a wonderful experience being a member of Mechatronics and Vibrations Research Laboratory.

I would like to thank Prof. Subhas Mukhopadhyay for his support during this research, and made a visit to Taiwan.

I would like to acknowledge Prof Don Cleland for allowing me to do my research with Prof. Chang at National Tsing Hua University in Taiwan.

I thank all my colleagues from Mechatronics and Vibrations Research Laboratory for productive discussions and assistance during this research.

Finally, I would like to thank the Power Mechanical Department from National Tsing Hua University for having me during my entire research period.

Table of Contents

Abstract			i
Acknowl	edgement	ts	ii
List of Fig	gures		vii
List of Ta	bles		xi
Chapter	1. Intr	roduction	1
1.1.	Roll-to	o-Roll Processing technology	1
1.2.	Flexib	le electronics and Printing technology	3
	1.2.1.	Flexible electronics	3
	1.2.2.	Electronics printing technology	5
1.3.	Latera	al motion problem	7
1.4.	Objec	tives	8
Chapter	2. Lite	erature review	9
2.1.	Basic	Web Handling Principles	9
	2.1.1.	Rollers	9
	2.1.2.	Unwind and Rewind	10
	2.1.3.	Web guides	11
	2.1.4.	Web Tension	14
	2.1.5.	Traction	20
2.2.	Web L	Lateral motion control	24
	2.2.1.	Shelton's first order dynamics model	24
	2.2.2.	DC Motor Model	26
Chapter	3. Syst	tem design and Development	28
3.1.	Desigr	n Methodology	29
3.2.	Web C	Coil Specifications	30

	3.3.	Roll-to	p-Roll System	31
		3.3.1.	Unwinder unit	31
		3.3.2.	Load cell unit	33
		3.3.3.	Guide unit	36
		3.3.4.	Rewinder unit	41
		3.3.5.	Aluminum structure	44
		3.3.6.	Control box design	45
	3.4.	Manu	facturing	46
	3.5.	Syster	n Integration	46
	3.6.	Comp	lete system images	48
Cha	pter	4. Sen	sors and actuators instrumentation	52
	4.1.	Instru	mentation	52
	4.2.	Linear	ization	53
	4.3.	Measu	urement and setup	54
		4.3.1.	Load cell	54
		4.3.2.	Edge sensor	56
		4.3.3.	Hysteresis Brake	59
	4.4.	Experi	mental Results	60
		4.4.1.	Load Cell	60
		4.4.2.	Edge sensor	61
		4.4.3.	Brake	63
		4.4.4.	Torque Motor with controller	64
		4.4.5.	Servo Motor driver with controller	66
Cha	pter	5. Gui	de system simulation	67
	5.1.	Syster	n Model	68
	5.2.	DC mo	otor modeling	71

5.3.	Design of Guide system77		
5.4.	Controller modeling		
5.5.	Simulation Results		
5.6.	Result	t and Implementation85	
	5.6.1.	Speed with 20m/min86	
	5.6.2.	Speed with 40m/min87	
	5.6.3.	Speed with 60m/min89	
	5.6.4.	Overall result91	
Chapter (5. Ove	erall conclusion93	
6.1.	Syster	m design and development93	
6.2.	Senso	ors/actuators Instrumentation94	
6.3.	Guide	system95	
6.4.	Future	e work95	
Referenc	es		
Appendio	ces		
1.1.	: Mec	hanical design101	
	Unwinde	er Unit101	
	Load cel	l Unit103	
	Guide U	nit104	
	Rewinde	er Unit105	
1.2.	: Com	ponents Data sheet106	
	Unwinde	er unit:106	
	Load cel	l Unit:	
Guio	de Unit		
	Rewinde	er Unit:113	
2.1	Electr	onics component114	

	Arduino Uno Microcontroller1	L14
	Arduino Mega 2560 Microcontroller1	L15
	Signal conditioning circuit and acuator1 Schematics1	L16
	Signal conditioning circuit and acuator1 PCB1	L17
	Signal conditioning circuit and acuator2 Schematics1	L18
	Signal conditioning circuit and acuator2 PCB1	L19
2.2	Simulink1	L20
	Block Diagram1	L20

List of Figures

FIGURE 1-1: ROLL-TO-ROLL PROCESSING ON NEWSPAPER INDUSTRY [2]	2
FIGURE 1-2: ROLL-TO-ROLL MANUFACTURING PROCESS FLOW [5]	2
FIGURE 1-3: ROLL-TO-ROLL PRINTED ELECTRONICS SCHEMATICS [6]	3
FIGURE 1-4: FLEXIBLE DISPLAY [9]	4
FIGURE 1-5: ROLL-TO-ROLL PRINTED TFT [10]	5
FIGURE 1-6: ROLL-TO-ROLL PRINTED SOLAR CELL [11]	5
FIGURE 1-7: PRINTING TECHNOLOGY BLOCK DIAGRAM	6
FIGURE 1-8: PRINCIPLE OF GRAVURE PRINTING [12]	7
FIGURE 1-9: WEB PERPENDICULAR TO AXIS VS. LATERAL MOTION [13]	8
FIGURE 2-1: CENTERWIND WITH UNWIND AND REWIND [15]	11
FIGURE 2-2: SURFACE WIND (LEFT) AND TURRET WIND (RIGHT) [15]	11
FIGURE 2-3: LATERAL GUIDES BLOCK DIAGRAM	12
FIGURE 2-4: STEERING GUIDE [13]	14
FIGURE 2-5: DISPLACEMENT GUIDE [13]	14
FIGURE 2-6: STRESS/STRAIN REFERENCE CURVE [17]	15
FIGURE 2-7: DANCER TENSION CONTROL SCHEMATICS [15]	16
FIGURE 2-8: LOAD CELL TENSION CONTROL SCHEMATICS [15]	17
FIGURE 2-9: ACCUMULATOR SCHEMATIC [15]	17
FIGURE 2-10: SURFACE AND ROTATIONAL VELOCITY [19]	20
FIGURE 2-11: TORQUE, TENSION AND RADIUS DIAGRAM [20]	20
FIGURE 2-12: AMONTONS' FRICTION LAW FOR A FLEXIBLE BELT. [21]	23
FIGURE 2-13: THE CAPSTAN EQUATION FOR WEB FRICTION [21]	23
FIGURE 2-14: SHELTON'S FIRST ORDER MODEL ON PERPENDICULAR ENTRY RULE [13]	25
FIGURE 2-15: STEERING ACTION OF IDEALIZED WEB	25

FIGURE 2-16: CLOSED LOOP DC SERVO MOTOR BLOCK DIAGRAM	26
FIGURE 3-1: OVERALL SYSTEM DESIGN	28
FIGURE 3-2: WEB COIL IN THIS PROJECT.	30
FIGURE 3-3: EXPLODED VIEW OF UNWINDER UNIT WITH LIST OF PARTS	32
FIGURE 3-4: HYSTERESIS CLUTCH AND BRAKE [28]	33
FIGURE 3-5: EXPLODED VIEW OF LOAD CELL UNIT WITH LIST OF PARTS	34
FIGURE 3-6: LOW CAPACITY SINGLE-POINT ALUMINUM LOAD CELLS [29]	34
FIGURE 3-7: CALCULATION FOR DETERMINING RESULTING NET FORCE [30]	36
FIGURE 3-8: EXPLODED VIEW OF GUIDE UNIT WITH LIST OF PARTS	37
FIGURE 3-9: DC MOTOR & DC GEAR MOTOR [31]	38
FIGURE 3-10: MAXWAY DC MOTOR DRIVER [31]	38
FIGURE 3-11: ROTARY ENCODER IMAGE [32]	39
FIGURE 3-12: x4 DECODING TIMING DIAGRAM [33]	40
FIGURE 3-13: EDGE SENSOR [34]	40
FIGURE 3-14: ARDUINO 2560 MICROCONTROLLER [35]	41
FIGURE 3-15: EXPLODED VIEW OF REWINDER UNIT WITH LIST OF PARTS	42
FIGURE 3-16: ARDUINO UNO MICROCONTROLLER [36]	42
FIGURE 3-17: ORIENTAL TM TORQUE MOTOR [37]	43
FIGURE 3-18: TORQUE VS. SPEED CHARACTERISTIC CURVE [37]	43
FIGURE 3-19: LINE-SPEED ENCODER [38]	44
FIGURE 3-20: ALUMINUM FRAMING STRUCTURE LAYOUT	44
FIGURE 3-21: CONTROL BOX BLOCK DIAGRAM	45
FIGURE 3-22: COMPLETE SYSTEM BLOCK DIAGRAM	48
FIGURE 3-23: COMPLETE SYSTEM SIDE VIEW	49
FIGURE 3-24: System view from angle 1	49
FIGURE 3-25: GUIDE SYSTEM VIEW FROM ANGLE	50

FIGURE 3-26: SYSTEM VIEW FROM ANGLE 2	50
FIGURE 3-27: ELECTRONICS CONTROL BOX	51
FIGURE 4-1: EXPERIMENTAL SETUP FOR LOAD CELL	55
FIGURE 4-2: SCHEMATICS OF LOAD CELL CIRCUIT [29, 43]	56
FIGURE 4-3: SIGNAL CONDITIONING CIRCUIT FOR LOAD CELL	56
FIGURE 4-4: EXPERIMENTAL SETUP FOR EDGE SENSOR	58
FIGURE 4-5: SIGNAL CONDITIONING CIRCUIT FOR EDGE SENSOR	58
FIGURE 4-6: BRAKE ACTUATING CIRCUIT	59
FIGURE 4-7: LOAD CELL SENSOR OUTPUT	60
FIGURE 4-8: LOAD CELL SENSOR OUTPUT AFTER SIGNAL CONDITIONING	61
FIGURE 4-9: EDGE SENSOR OUTPUT WITH AND WITHOUT SIGNAL CONDITIONING	62
FIGURE 4-10: EDGE SENSOR LINEARIZATION FOR DISPLACEMENT FROM -6MM TO -2MM	63
FIGURE 4-11: EDGE SENSOR LINEARIZATION FOR DISPLACEMENT FROM 2MM TO 6MM	63
FIGURE 4-12: BRAKE CHARACTERISTIC CURVE WITH STRAIGHT LINE FITTED	64
FIGURE 4-13: SINK LOGIC TORQUE MOTOR CONTROLLER/DRIVER INPUT SIGNAL CONNECTION [45].	65
FIGURE 4-14: ADDITIONAL SWITCHING CIRCUIT FOR CONTROL OPERATION	66
FIGURE 4-15: SWITCHING SCHEMATICS	67
FIGURE 5-1: BLOCK DIAGRAM OF CONVENTIONAL DISPLACEMENT GUIDE	68
FIGURE 5-2: SCHEMATIC FOR DERIVATION OF RESPONSE AT FIXED ROLLER.	69
FIGURE 5-3: SCHEMATIC FOR DERIVATION OF RESPONSE AT DISPLACEMENT GUIDE	70
FIGURE 5-4: A DC MOTOR EQUIVALENT CIRCUIT [26]	73
FIGURE 5-5: DC MOTOR BLOCK DIAGRAM [26]	73
FIGURE 5-6: ELECTRICAL RISE TIME WITH CURRENT TO VOLTAGE CONVERTER	74
FIGURE 5-7: MOTOR START FROM STATIONARY SHOWING MECHANICAL RISE TIME	75
FIGURE 5-8: MOTOR STOP FROM FULL SPEED	76
FIGURE 5-9: DISPLACEMENT GUIDE DESIGN	78

FIGURE 5-10: SIMULATED WEB MODEL78
FIGURE 5-11: DYNAMICS BLOCK DIAGRAM OF GUIDING SYSTEM
FIGURE 5-12: PID CONTROLLER DIAGRAM [46]80
FIGURE 5-13: SIMULINK BLOCK DIAGRAM
FIGURE 5-14: PID TUNING WITH ZIEGLER AND NICHOLS METHOD WHEN THE SYSTEM START TO
OSCILLATE
FIGURE 5-15: ROOT LOCUS OF THE SYSTEM82
FIGURE 5-16: ROOT LOCUS SHOWING ALL THE POLES ARE ON THE NEGATIVE SIDE OF THE REAL AXIS82
FIGURE 5-17: SIMULATED OUTPUT WITH 20M/MIN84
FIGURE 5-18: SIMULATED OUTPUT WITH 40M/MIN84
FIGURE 5-19: SIMULATED OUTPUT WITH 60M/MIN85
FIGURE 5-20: SENSOR READING WITH WEB AT 20M/MIN WITHOUT GUIDE SYSTEM
FIGURE 5-21: SENSOR READING AT 20M/MIN SHOWING DISTURBANCE INPUT AT THE START
FIGURE 5-22: SENSOR READING AT 20M/MIN SHOWING TWO DISTURBANCES
FIGURE 5-23: SENSOR READING WITH WEB AT 40M/MIN WITHOUT GUIDE SYSTEM
FIGURE 5-24: SENSOR READING AT 40M/MIN SHOWING DISTURBANCE INPUT AT THE START
FIGURE 5-25: SENSOR READING AT 40M/MIN SHOWING DISTURBANCE INPUT AT THE START
FIGURE 5-26: SENSOR READING WITH WEB AT 60M/MIN WITHOUT GUIDE SYSTEM
FIGURE 5-27: SENSOR READING AT 60M/MIN SHOWING DISTURBANCE INPUT AT THE START90
FIGURE 5-28: SENSOR READING AT 60M/MIN SHOWING DISTURBANCE INPUT AT THE START

List of Tables

TABLE 2-1: BASIC TENSION CONTROL TABLE (MODIFIED FROM [14])	.18
TABLE 3-1: WEB MATERIAL SPECIFICATION	.31
TABLE 4-1: COMPARISON OF VOLTAGE RANGES	.58
TABLE 4-2: SERVO MOTOR OPERATION TABLE	.67
TABLE 5-1: DC MOTOR PARAMETER TABLE	.77
TABLE 5-2: SIMULATION PARAMETER	.78
TABLE 5-3: ZIEGLER AND NICHOL PID TUNING TABLE	.81
TABLE 5-4: ROOT MEAN SQUARED DEVIATION (RMSD) OF THE RESULT.	.92