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Abstract

Our research focuses on three sub-tasks of entity analysis: fine-grained entity typing (FGET),

entity linking and entity coreference resolution. We aim at improving FGET and entity linking

by exploiting the document-level type constraints and improving entity linking and coreference

resolution by embedding fine-grained entity type information.

To extract more efficient feature representations and offset label noises in the datasets for

FGET, we propose three transfer learning schemes: (i) transferring sub-word embeddings to

generate more efficient out-of-vocabulary (OOV) embeddings for mentions; (ii) using a pre-

trained language model to generate more efficient context features; (iii) using a pre-trained

topic model to transfer the topic-type relatedness through topic anchors and select confusing

fine-grained types at inference time. The pre-trained topic model can offset the label noises

without retreating to coarse-grained types.

To reduce the distinctiveness of existing entity embeddings and facilitate the learning of con-

textual commonality for entity linking, we propose a simple yet effective method, FGS2EE,

to inject fine-grained semantic information into entity embeddings. FGS2EE first uses the

embeddings of semantic type words to generate semantic entity embeddings, and then com-

bines them with existing entity embeddings through linear aggregation. Based on our entity

embeddings, we have achieved new state-of-the-art performance on two of the five out-domain

test sets for entity linking.

Further, we propose a method, DOC-AET, to exploit DOCument-level coherence of named

entity mentions and anonymous entity type (AET) words/mentions. We learn embeddings of

AET words from the AET words’ inter-paragraph co-occurrence matrix. Then, we build AET

entity embeddings and document AET context embeddings using the AET word embeddings.

The AET coherence are computed using the AET entity embeddings and document context

embeddings. By incorporating such coherence scores, DOC-AET has achieved new state-of-

the-art results on three of the five out-domain test sets for entity linking.

We also propose LASE (Less Anisotropic Span Embeddings) schemes for coreference resolution.

We investigate the effectiveness of these schemes with extensive experiments. Our ablation

studies also provide valuable insights about the contextualized representations.

In summary, this thesis proposes four deep learning approaches for entity analysis. Extensive

experiments show that we have achieved state-of-the-art performance on the three sub-tasks

of entity analysis.
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Chapter 1

Introduction

This chapter provides an overview of this thesis. We introduce the background of entity

analysis in Section 1.1. We explain our motivation in Section 1.2, where the issues with

the existing entity analysis approaches are analyzed. We present our research questions

and hypotheses in Section 1.3, where the basic ideas for this thesis are proposed and ex-

plained. Thesis contributions are summarized in Section 1.4. The outline of this thesis is

listed in Section 1.5.

1.1 Introduction to Entity Analysis

Identifying and understanding entity mentions are important for natural language understand-

ing. Entity analysis is to detect and extract entity mentions and related information. However,

entity analysis is challenging because of the ambiguity and coreference. The ambiguity exists

in the complex relationship between the concrete entities and their natural language mentions.

The same surface form of mention may refer to different entities, and the same entity may

appears as different mentions. Moreover, a large proportion of information about entity is

given by coreference (alias, nicknames, pronouns). Thus, it is reasonable to divide the entity

analysis into smaller sub-tasks, with each sub-task tackling one aspect of entity analysis.

Several sub-tasks of entity analysis [3], [10] have been developed to characterize different

aspects of entities and entity mentions. These sub-tasks are listed as follows.

Entity Mention Detection(EMD) [14],[19] is to identify all the mentions of entities, includ-

ing proper names, noun phrases (nominals) and pronouns (pronominals) that refer to entities.

1
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Appearing before Congress, Mr Mueller said he had not
exonerated the president of obstruction of justice.

Figure 1.1: Entity mentions in a sentence are coloured. Different background colors denote
different kinds of mentions. Mentions in red are nominal, green are proper names, blue are

pronominal.

For example, EMD will detect the colored parts in Figure 1.1. Entity mention detection is the

first step for other entity analysis tasks.

Named Entity Recognition (NER) [2] is to detect mentions of entities with proper names

(i.e., named entities) and classify them into coarse-grained classes (typically 4 classes: Person,

Location, Organization and Miscellaneous [20]). For example. NER will only identify the ’Mr

Mueller’ as Person in Figure 1.1.

Relationship Extraction [9] is to extract relational facts between entities from text, e.g.,

learning that a person is the head of a particular organization, or that an organization is

located in a particular region.

Person

political figure businessartist

Location Organization Other

authoractor 

Root

Donald Trump has decided not to visit Australia and the
APEC summit in November, choosing instead to visit France
to commemorate the centenary of the WWI armistice.

Type Ontology

Person/political figure Donald Trump
type label entity mention

Figure 1.2: An example of context-dependent FGET. The left part is portion of a type
taxonomy tree, the right part is a sentence with one mention being labelled with fine-grained

type.

Fine-grained Entity Typing (FGET) [15] is to classify entity (mentions) into more fine-

grained semantic types, e.g., Person is classified into more fine-grained types: artist, polit-

ical figure, etc. In Figure 1.2, the types are organized into a type taxonomy using a tree

structure to represent the hyponymy and hypernymy relationship between types, and the

mention Donald Trump is typed as /Person/political figure1 according to the context. The

fine-grained semantic information of entity mentions has been proven to be valuable for many

entity analysis sub-tasks, such as entity linking [12], relation extraction [22], entity search [8]

and coreference resolution [16].

1In this thesis, we use capitalized italic prints to denote level 1 type labels (e.g. /Person), non-capitalized
italic prints to denote level 2 and 3 types (e.g. /Person/artist). The symbol ”/” is used to represent the
hierarchical relationship.
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Entity Linking (EL) [18] or Named Entity Disambiguation (NED) is to link a named

entity mention to the specific entity in a knowledge base it refer to in the context. For example,

in Figure 1.3, the mention ’Mr Mueller’ link to the special counsel for the U.S. Department of

Justice and former FBI director according to the context.

Appearing before Congress, Mr Mueller said he had not
exonerated the president of obstruction of justice.

Robert	Swan	Mueller	III William	Richard	Mueller

Greg	Mueller

Figure 1.3: An example of entity linking.

Entity Coreference Resolution (ECR or CR) [21] is the task of deducing which entity

mentions in neighbouring context refer to the same real world entity, and those coreferent

mentions (names, noun phrase and pronoun) will be clustered. For example, in Figure 1.4,

the mentions are clustered into two clusters, with each cluster being a collection of mentions

that refer to the same entity.

US President Donald Trump's claim that he was "totally exonerated" by special

counsel Robert Mueller was rejected by Mr Mueller in a hearing on Wednesday.

US President
Donald Trump

he

special counsel
Robert Mueller

Mr Mueller

cluster 1 cluster 2

Figure 1.4: An example of entity coreference resolution.

These sub-tasks of entity analysis is highly interdependent, and some joint models for two or

three of these sub-tasks have been proposed. For example, the joint model for NER and entity

linking [11], the joint model for NER and relation extraction [7].

1.2 Motivation

Because the sub-tasks of entity analysis are highly interdependent. Joint models for entity

analysis have been proposed to tackle two or more sub-tasks jointly to capture more informa-

tion for making globally optimized decisions [11], [5], [3], [17]. These joint models are mainly
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Figure 4: Factors that tie predictions between variables
across tasks. Joint NER and entity linking factors (Sec-
tion 3.2.1) tie semantic information from Wikipedia ar-
ticles to semantic type predictions. Joint coreference
and NER factors (Section 3.2.2) couple type decisions
between mentions, encouraging consistent type assign-
ments within an entity. Joint coreference and entity link-
ing factors (Section 3.2.3) encourage relatedness between
articles linked from coreferent mentions.

nary factors connecting qi and ei then decide which
title a given query should yield. These include:
the rank of the article title among all possible ti-
tles returned by that query (sorted by relative fre-
quency count), whether the title is a close string
match of the query, and whether the title matches
the query up to a parenthetical (e.g. Paul Allen and
Paul Allen (editor)).

We could also at this point add factors between
pairs of variables (ei, ej) to capture coherence be-
tween choices of linked entities. Integration with the
rest of the model, learning, and inference would re-
main unchanged. However, while such features have
been employed in past entity linking systems (Rati-
nov et al., 2011; Hoffart et al., 2011), Ratinov et
al. found them to be of limited utility, so we omit
them from the present work.

3.2 Cross-task Interaction Factors
We now add factors that tie the predictions of multi-
ple output variables in a feature-based way. Figure 4
shows the general structure of these factors. Each

couples variables from one pair of tasks.

3.2.1 Entity Linking and NER
We want to exploit the semantic information in

Wikipedia for better semantic typing of mentions.
We also want to use semantic types to disambiguate
tricky Wikipedia links. We use three sources of
semantics from Wikipedia (Kazama and Torisawa,
2007; Nothman et al., 2013):

• Categories (e.g. American financiers);
used by Ponzetto and Strube (2006; Kazama
and Torisawa (2007; Ratinov and Roth (2012)

• Infobox type (e.g. Person, Company)

• Copula in the first sentence (is a British
politician); used for coreference previously in
Haghighi and Klein (2009)

We fire features that conjoin the information from
the selected Wikipedia article with the selected NER
type. Because these types of information from
Wikipedia are of a moderate granularity, we should
be able to learn a mapping between them and NER
types and exploit Wikipedia as a soft gazetteer.

3.2.2 Coreference and NER
Coreference can improve NER by ensuring con-

sistent semantic type predictions across coreferent
mentions; likewise, NER can help coreference by
encouraging the system to link up mentions of the
same type. The factors we implement for these pur-
poses closely resemble the factors employed for la-
tent semantic clusters in Durrett et al. (2013). That
structure is as follows:

logFi−j(ai, ti, tj) =

{
0 if ai 6= j

f(i, j, ti, tj) otherwise

That is, the features between the type variables for
mentions i and j does not come into play unless i
and j are coreferent. Note that there are quadrati-
cally many such factors in the graph (before prun-
ing; see Section 5), one for each ordered pair of
mentions (j, i) with j < i. When scoring a partic-
ular configuration of variables, only a small subset
of the factors is active, but during inference when
we marginalize over all settings of variables, each of
the factors comes into play for some configuration.

481

Figure 1.5: Factor graph used as a joint model for NER, coreference resolution and entity
linking [3].

based on factor graph model [3], [17], and their experimental results show that joint models

improve performance on all the subtasks incorporated.

Pantel et al. [13] proposed a graph based generative model to jointly model user intent and

query entity types. The model is trained by maximizing the probability of observing a large

collection of real-world queries and their clicked hosts. This method can only type the entities

that appear in their web queries. Singh et al. [17] use factor graph model to represent the

dependencies between entity typing, relation extraction and coreference resolution. Instead of

training all the factors jointly, they use piece-wise training approach to estimate the parameters

of the model. Parameters for each factor are learned independently by maximizing the piece-

wise likelihood.

Durrett and Klein [3] tackle coreference resolution, entity typing and entity linking simulta-

neously using a conditional random fields (CRF) model. Unary factors define the features for

solving each subtask independently. The binary and ternary factors define the features that

capture the interactions or constraints between subtasks. The model is trained by maximizing

the joint probability of three labels for all mentions in the corpus. However, for both learning

and decoding, exact inference would be intractable because of the loops in the factor graph.

Although belief propagation can perform efficient inference, it would still be computationally

exorbitant due to the ternary factor. Thus they use a pre-trained coarse model to prune 90%

of the possible coreference arcs. However, such a joint model require training corpus that have

labels of all three subtasks, which is not readily available.

Although the previous factor graph model based joint models are able to capture the interac-

tions between subtasks, they have the following issues:
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• Cannot exploit document-level type correlatedness. Document-level type correlatedness

refers to the coherence constraints of entity types in a document, e.g., footballer is

more coherent with football team than with defence contractor. The collective model for

FGET [15] takes into account correlations between entity mentions in a document, but

only considers the heuristic coreference relations between entity mentions of a document.

The document-level coherence constraints have been used in entity linking [4], but only

the named entities are considered.

• Inefficient feature representations. The joint models rely on hand-crafted features. Such

hand-crafted features are usually represented as one-hot high-dimensional vectors. Hence

the models suffer from feature sparsity and the so-called ’curse of dimensionality’.

• Lack of jointly annotated corpora. The training of joint models need a corpus that has

labels of three sub-tasks. However, such corpus is expensive to annotate. Currently

only the ACE 2005 corpus2 is available. With limited jointly annotated corpora, the

performance of joint models is difficult to be further improved.

As we can see, joint models usually simultaneously tackle three sub-tasks: fine-grained entity

linking, entity linking and coreference resolution. Recently, deep learning models for each of the

three sub-tasks have achieved significant improvements by using learned feature embeddings.

However, they are all independent models because of the lack of jointly annotated corpora,

and the fine-grained type information of entities is not used for entity linking and coreference

resolution.

We aim at improving FGET and entity linking by exploiting the document-level type con-

straints and improving entity linking and coreference resolution by embedding fine-grained

entity type information. We present our research objectives and hypotheses in next section.

1.3 Research Objectives and Hypotheses

In this thesis, we will apply deep learning and transfer learning to three sub-tasks of entity

analysis: fine-grained entity typing, entity linking and entity resolution. Our research objec-

tives and hypotheses are listed as follows:

2https://catalog.ldc.upenn.edu/LDC2006T06

https://catalog.ldc.upenn.edu/LDC2006T06
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• Transfer learning for fine-grained entity typing. There are two main issues with

existing FGET approaches. Firstly, the training corpora for FGET are normally la-

belled automatically, which inevitably induce noises. Existing approaches either directly

tweak noisy labels in corpora by heuristics, or algorithmically retreat to parental types,

both leading to coarse-grained type labels instead of fine-grained ones. Secondly, exist

approaches usually use recurrent neural networks (RNN) to generate feature representa-

tions of mention phrases and their contexts, which, however, perform relatively poor on

long contexts and out-of-vocabulary (OOV) words.

We hypothesize that there is a correlation between fine-grained types and hid-

den topics. For example, noun auto maker/car maker is fine-grained types, and is

related to car industry topic. We learn this correlation using unlabelled documents. We

explore transfer learning based approaches to extract more efficient feature representa-

tions and offset label noises. Especially, we use a pre-trained topic model to transfer the

topic-type relatedness through topic anchors and select confusing fine-grained types at

inference time. The pre-trained topic model can offset the label noises without retreating

to coarse-grained types.

• Entity linking with typed entity embeddings. Neural entity linking models embed

words and entities into a common dimensional space, and use entity embeddings as

input to the local and global ranking score functions. If entity embeddings are too

similar, it would be difficult for linking models to disambiguate similar entities. If entity

embeddings are too distinctive, linking models cannot learn the contextual commonalities

of similar entities. We argue that the current entity embeddings [4] learnt from Wikipedia

articles encoded too many details of entities, thus are too distinctive for linking models

to learn contextual commonality.

We hypothesize that fine-grained semantic types of entities can let the link-

ing models learn contextual commonality about semantic relatedness. For

example, rugby related documents would have entities of rugby player and rugby team.

If a linking model learns the contextual commonality of rugby related entities, it can

correctly select entities of similar types using the similar contextual information. We

explore methods of incorporating fine-grained type information into entity embeddings.

Such methods include using embeddings of nouns of fine-grained semantic type, e.g.

’president’, ’car maker’ ’actor’.
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• Improving entity linking through anonymous entity mentions. The existing

entity linking methods of using global information exploit the information of candidate

entities of named entity mentions (e.g., “Nardelli” and “Home Depot Inc”). However,

such named entity mentions appear less frequently than anonymous entity mentions (e.g.,

the company). Thus, such methods can only use limited global information, but the more

frequently occurring anonymous entity mentions are ignored. The anonymous entity

mentions always appear as fine-grained entity type words (e.g., the company, Canadian

singer, service provider, news agency etc.). These words are parts of anonymous entity

mentions, and we call such words Anonymous Entity Type (AET) words.

We hypothesize that there exists the document-level entity type correlation. For

example, company and chief executive are highly related with each other in documents.

Anonymous entity mentions usually appear as AET words, we can extract AET words

in a document as anonymous entity mentions to infer the types of the named entity

mentions. Thus, when ranking the candidate entities of “Nardelli”, the entity “Robert

Nardelli” with type chief executive is more coherent with the document that has many

anonymous company mentions.

• End-to-end entity coreference resolution based on fine-grained semantic types.

The end-to-end coreference resolution models tackle mention detection and coreference

resolution simultaneously. They consider all spans as mention candidates. The core of

end-to-end neural coreference resolution models is the learning of span embeddings. The

state-of-the-art coreference resolution models use the output layer of a contextualization

model to build span embeddings, and employ the document-level semantics to refine

span embeddings as higher-order coreference resolution. However, the contextualized

and higher-order refined span embeddings tend to be highly anisotropic (anisotropic em-

beddings are not directionally uniform, thus are more similar), and make it difficult to

distinguish between related but distinct entities (e.g., pilots and flight attendants).

We hypothesize that less anisotropic span embeddings can improve the perfor-

mance of end-to-end coreference resolution models. This hypothesis is based

on the finding that less anisotropic static word embeddings gain large improvements on

downstream NLP tasks. We explore methods of injecting fine-grained type information

into span embeddings to make them more distinctive. We also investigate LASE (Less

Anisotropic Span Embeddings) schemes to generate less anisotropic span embeddings.
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1.4 Contributions

Throughout this thesis, we will focus on the following three sub-tasks of entity analysis: fine-

grained entity typing (Chapter 2), entity linking (Chapter 3 and 4) and entity coreference

resolution (Chapter 5). The contributions in each of the aforementioned chapters are summa-

rized as follow:

1. Transfer learning for fine-grained entity typing.

– We propose a novel transfer learning architecture that combines a non-recurrent

neural language model and a topic model.

– We show that topic model is capable of transferring the learned associations between

semantic types and hidden topics.

– We use sub-word patterns to generate the vectors of out-of-vocabulary (OOV) words

that are constituents of entity mentions, and we use a pre-trained language model

to encode context features.

2. Improving entity linking through typed entity embeddings.

– We create a dictionary of fine-grained semantic type words.

– We propose a method to inject fine-grained type information into entity embeddings.

– We show that the typed (semantic reinforced) entity embeddings can let the linking

models learn contextual commonality of similar entities.

3. Improving entity linking through anonymous entity type (AET) words/mentions.

– We propose a novel method for extracting AET words’ inter-paragraph co-occurrence

and learning AET word embeddings where such embeddings can capture the relat-

edness of AET words from document-level context.

– We incorporate a new coherence score based on AET entity embeddings and doc-

ument’s AET context embeddings.

– We verify the effectiveness of the incorporated coherence score on standard bench-

mark datasets and achieve significant improvement over the baselines.

4. Exploiting less anisotropic span embeddings for coreference resolution.

– We propose and investigate four LASE schemes to generate less anisotropic span

embeddings for coreference resolution.
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– Our extensive experiments show that: (i) When our Internal and LowerDep

schemes are applied to ELECTRA [1] and SpanBERT [6], their performances are

improved by +1.9 F1 and +0.5 F1 on the OntoNotes benchmark, respectively; (ii)

The span embeddings from longer-context-encoded contextualized representations

of ELECTRA and SpanBERT are more effective than higher-order span embed-

dings; (iii) The 12th layer embeddings of BERT-base are no better than the 11th

layer embeddings for coreference resolution; (iv) The degree of anisotropy can be

used as guidance for hyperparameter settings.

1.5 Thesis Outline

In Chapter 2, we present our research on transfer learning for FGET. We investigate three

transfer learning schemes to extract more efficient feature representations and offset label

noises.

In Chapter 3, we present our method of injecting fine-grained semantic type information into

entity embeddings. We show that the semantic reinforced entity embeddings can let the linking

models learn contextual commonality of similar entities.

In Chapter 4, we propose a method DOC-AET, to improve entity linking by exploiting the

DOCument-level coherence of named entity mentions and anonymous entity type (AET) word-

s/mentions.

In Chapter 5, we first analyze the sources of anisotropic span embeddings. We then propose

LASE (Less Anisotropic Span Embeddings) schemes and investigate their effectiveness for

improving coreference resolution.

Chapter 6 contains our conclusion where we summarize our findings and discuss the future

directions.

Note that references related to each chapter are listed at the end of each chapter.

References

[1] Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. ELECTRA:

Pre-training text encoders as discriminators rather than generators. In Proceedings of the



Introduction 10

8th International Conference on Learning Representations (ICLR), 2020. URL https:

//openreview.net/pdf?id=r1xMH1BtvB.

[2] David Nadeau and Satoshi Sekine. A survey of named entity recognition and classification.

Lingvisticae Investigationes, 30(1):3–26, 2007.

[3] Greg Durrett and Dan Klein. A joint model for entity analysis: Coreference, typing, and

linking. Transactions of the association for computational linguistics, 2:477–490, 2014.

[4] Octavian-Eugen Ganea and Thomas Hofmann. Deep joint entity disambiguation with

local neural attention. In Proceedings of the 2017 Conference on Empirical Methods in

Natural Language Processing, pages 2619–2629, Copenhagen, Denmark, September 2017.

Association for Computational Linguistics. doi: 10.18653/v1/D17-1277. URL https:

//www.aclweb.org/anthology/D17-1277.

[5] Gang Luo, Xiaojiang Huang, Chin-Yew Lin, and Zaiqing Nie. Joint named entity recog-

nition and disambiguation. In Proceedings ofthe 2015 Conference on Empirical Methods

in Natural Language Processing, pages 879–888, 2015.

[6] Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, and Omer

Levy. Spanbert: Improving pre-training by representing and predicting spans. Transac-

tions of the Association for Computational Linguistics, 8:64–77, 2020.

[7] Qi Li and Heng Ji. Incremental joint extraction of entity mentions and relations. In

Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 402–412, Baltimore, Maryland, June 2014. Association

for Computational Linguistics. doi: 10.3115/v1/P14-1038. URL https://www.aclweb.

org/anthology/P14-1038.

[8] Denghao Ma, Yueguo Chen, Kevin Chen-Chuan Chang, Xiaoyong Du, Chuanfei Xu, and

Yi Chang. Leveraging fine-grained wikipedia categories for entity search. In Proceedings

of the 2018 World Wide Web Conference, pages 1623–1632, 2018.

[9] Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. Distant supervision for relation

extraction without labeled data. In Proceedings of the Joint Conference of the 47th Annual

Meeting of the ACL and the 4th International Joint Conference on Natural Language

Processing of the AFNLP, pages 1003–1011, 2009.

[10] David Nadeau. Semi-supervised named entity recognition: learning to recognize 100 entity

types with little supervision. PhD thesis, University of Ottawa, 2007.

[11] Dat Ba Nguyen, Martin Theobald, and Gerhard Weikum. J-NERD: joint named entity

recognition and disambiguation with rich linguistic features. volume 4, pages 215–229.

MIT Press, 2016.

https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://www.aclweb.org/anthology/D17-1277
https://www.aclweb.org/anthology/D17-1277
https://www.aclweb.org/anthology/P14-1038
https://www.aclweb.org/anthology/P14-1038


Introduction 11

[12] Nitish Gupta, Sameer Singh, and Dan Roth. Entity linking via joint encoding of types,

descriptions, and context. In Proceedings of the Conference on Empirical Methods in

Natural Language Processing, pages 2671–2680, 2017-09-07.

[13] Patrick Pantel, Thomas Lin, and Michael Gamon. Mining entity types from query logs

via user intent modeling. In Proceedings of the 50th Annual Meeting of the Association

for Computational Linguistics: Long Papers-Volume 1, pages 563–571. Association for

Computational Linguistics, 2012.

[14] Radu Florian, Hongyan Jing, Nanda Kambhatla, and Imed Zitouni. Factorizing complex

models: a case study in mention detection. In Proceedings of the 21st International

Conference on Computational Linguistics and the 44th annual meeting of the Association

for Computational Linguistics, 2006-07-17.

[15] Altaf Rahman and Vincent Ng. Inducing fine-grained semantic classes via hierarchical

and collective classification. In Proceedings of the 23rd International Conference on Com-

putational Linguistics (Coling 2010), pages 931–939, Beijing, China, August 2010. Coling

2010 Organizing Committee. URL https://www.aclweb.org/anthology/C10-1105.

[16] Marta Recasens, Marie-Catherine de Marneffe, and Christopher Potts. The life and death

of discourse entities: Identifying singleton mentions. In Proceedings of the 2013 Confer-

ence of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, pages 627–633, Atlanta, Georgia, June 2013. Association

for Computational Linguistics. URL https://www.aclweb.org/anthology/N13-1071.

[17] Sameer Singh, Sebastian Riedel, Brian Martin, Jiaping Zheng, and Andrew McCallum.

Joint inference of entities, relations, and coreference. In Proceedings of the 2013 Workshop

on Automated Knowledge Base Construction, 2013.

[18] Wei Shen, Jianyong Wang, and Jiawei Han. Entity linking with a knowledge base: Issues,

techniques, and solutions. IEEE Transactions on Knowledge and Data Engineering, 27

(2):443–460, 2014.

[19] Thien Huu Nguyen, Avirup Sil, Georgiana Dinu, and Radu Florian. Toward mention

detection robustness with recurrent neural networks. In Proceedings of IJCAI Workshop

on Deep Learning for Artificial Intelligence, 2016.

[20] Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the CoNLL-2003 shared

task: Language-independent named entity recognition. In Proceedings of the Seventh

Conference on Natural Language Learning at HLT-NAACL 2003, pages 142–147, 2003.

URL https://www.aclweb.org/anthology/W03-0419.

[21] Vincent Ng. Machine learning for enity coreference resolution: A retrospective look at two

https://www.aclweb.org/anthology/C10-1105
https://www.aclweb.org/anthology/N13-1071
https://www.aclweb.org/anthology/W03-0419


Introduction 12

decades of research. In Proceedings of the 31st AAAI conference on Artificial Intelligence,

pages 4877–4884, 2017.

[22] Yadollah Yaghoobzadeh, Heike Adel, and Hinrich Schütze. Noise mitigation for neural

entity typing and relation extraction. In Proceedings of the 15th Conference of the Euro-

pean Chapter of the Association for Computational Linguistics: Volume 1, Long Papers,

pages 1183–1194, Valencia, Spain, April 2017. Association for Computational Linguistics.

URL https://www.aclweb.org/anthology/E17-1111.

https://www.aclweb.org/anthology/E17-1111


Chapter 2

Transfer Learning for Fine-grained

Entity Typing

Fine-Grained Entity Typing (FGET) is to classify the mentions of entities into hier-

archical fine-grained semantic types. There are two main issues with existing FGET

approaches. Firstly, the process of training corpora for FGET is normally to label the

data automatically, which inevitably induces noises. Existing approaches either directly

tweak noisy labels in corpora by heuristics, or algorithmically retreat to parental types,

both leading to coarse-grained type labels instead of fine-grained ones. Secondly, exist

approaches usually use recurrent neural networks (RNN) to generate feature representa-

tions of mention phrases and their contexts, which, however, perform relatively poor on

long contexts and out-of-vocabulary (OOV) words. In this chapter, we propose a transfer

learning based approach to extract more efficient feature representations and offset label

noises. More precisely, we adopt three transfer learning schemes: (i) transferring sub-

word embeddings to generate more efficient OOV embeddings; (ii) using a pre-trained

language model to generate more efficient context features; (iii) using a pre-trained topic

model to transfer the topic-type relatedness through topic anchors and select confusing

fine-grained types at inference time. The pre-trained topic model can offset the label noises

without retreating to coarse-grained types. The experimental results demonstrate the ef-

fectiveness of our transfer learning approach for FGET.

13
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2.1 Introduction

Identifying and classifying the mentions of entities in text are important for Natural Language

Understanding (NLU). The traditional coarse-grained Named Entity Recognition (NER) de-

tects the boundaries of entity mentions and classifies them into four coarse-grained types, i.e.

Person, Location, Organization and Miscellaneous. However, in order to enhance the per-

formance, most Natural Language Processing (NLP) tasks need more fine-grained semantic

information about those entity mentions, such as /Person/artist/actor 1. For example, the

task of entity linking is to disambiguate entity mentions and link the mentions to a specific

entity in a knowledge base, e.g., link a name to a particular person. Most knowledge bases

have fine-grained semantic tags (i.e. actor, author) for the majority of the entities they stored.

If a similar fine-grained semantic type is gained from the context around the entity mentions,

entity linking will drastically reduce the number of candidate entities by selecting only the

entities that have the same fine-grained semantic type. The fine-grained semantic information

of entity mentions has been proven to be valuable for many NLP tasks, such as entity linking

[36], relation extraction [58], entity search [30] and coreference resolution [44].

Different fine-grained type taxonomies have been proposed for different scenarios. The number

of types varies from less than one hundred to over one thousand. The most widely used type

taxonomies are FIGER [56] and GFT [12], which have 112 and 88 types respectively. The

typing model that classifies entity mentions into the type labels on the type taxonomies is

generally formulated as a hierarchical classifier based on machine learning methods.

Normally, the training data for FGET are automatically labelled with entity linking tools, such

as Dbpedia Spotlight [32]. The semantic tags in the knowledge base are then mapped to the

type taxonomy. This inevitably induces label noises in the training data. There are mainly

two approaches to address this issue. One approach is to use heuristics to preprocess the

training data. Such heuristics usually remove less frequent types in a document or more fine-

grained types. As a result, the preprocessing makes the training corpus skewed toward coarse-

grained type labels [12]. The other approach is to conservatively discourage the typing model

from predicting more fine-grained types [37]. The typing model usually makes predictions

on the features extracted from the context and the words that consist the entity mention.

The features used by traditional machine learning algorithms are binary feature functions

1In this thesis, we use capitalized italic prints to denote level 1 type labels (e.g. /Person), non-capitalized
italic prints to denote level 2 and 3 types (e.g. /Person/artist). The symbol ”/” is used to represent the
hierarchical relationship.
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[42], [34], while the features used by deep learning methods are embedded dense dimensional

vectors generated by recurrent neural networks [49], [37], such as Long Short-Term Memory

(LSTM) [22]. The former suffers from feature sparsity, while the latter suffers from insufficient

feature representations. These features are extracted from the local context of a small window,

while the document-level features are seldom used.

To address those aforementioned issues in FGET, we propose a novel transfer learning based

approach, the main contribution of which can be summarized as follows:

• We introduce a novel transfer learning architecture that combines a non-recurrent neural

language model and a topic model. Our transfer learning architecture is different from

the recent transfer learning methods being used in NLP tasks that mainly focus on

language models [26], [60], [23], [40], [38]. The intuition behind is that the language

model is able to capture the local context, while the topic model is able to find the

distributions of words and semantic classes across documents and latent topics.

• We show that the topic model is capable of transferring the learned associations between

semantic types and hidden topics. The document level topic label has been used as a

feature for FGET [12], [61], [31] or used to reduce label noises [12]. But their topics are

obtained through a supervised text classification model. However, in the new approach,

we use the learned topic model to guide the inference of a typing model instead. Such

mechanism can reduce the confusion caused by label noises without retreating to coarse-

grained types.

• We use transfer learning to generate the embedding vectors of out-of-vocabulary (OOV)

words that are constituents of entity mentions. Previous work on FGET learned the

embedding vectors of OOVs during the training of the FGET classifier. This leads to

insufficient training, and the sub-word level information of OOVs are ignored. We use

the sub-word level patterns to estimate the embeddings of OOVs based on embeddings

of character n-grams.

• We use a pre-trained language model to encode context features. Most of the previous

work used LSTM trained on FGET data set with label noises. This makes the LSTM

network incompetent at encoding effective context features. The deep neural language

model pre-trained on clean corpus can generate more efficient feature representations.
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The rest of this chapter is organized as follows. We review related works in Section 2.2. In

Section 2.3, we give definitions about the mention-level FGET. In Section 2.4, we explain the

topic-type relatedness hypothesis, which is the basis of using a topic model as transfer learning

scheme for FGET. In Section 2.5, we present the new approach in detail. In Section 2.6, we

report and analyze our experimental results on the datasets that are commonly used for FGET

evaluation. We finally conclude our work in Section 2.7.

2.2 Related Work

Our research primarily relates to three domains: the fine-grained entity typing, transfer learn-

ing and the vector representation of words. In this section, we review related literature on

these three domains.

2.2.1 Fine-Grained Entity Typing

There are two categories of FGET: The mention-level FGET [12] and the entity-level FGET

[57]. The former is to determine the semantic type of an entity mention in a particular context,

while the latter is to find all the possible semantic types of an entity. For example, Donald

J. Trump can be a /Person/political figure or /Person/business in different contexts, thus

the set of entity-level types of Donald J. Trump includes the aforementioned two types. Our

research falls under the mention-level FGET.

FGET is typically a multi-class multi-label classification problem. It is also a hierarchical

classification problem because of the hierarchical relations among the type labels. According to

the categorization of hierarchical classifiers by [9], there are mainly four categories of classifiers

used in FGET:

• Flat: Using a single multi-class classifier for all types. Such classifiers mainly include:

decision tree [33], linear classifier [56], [35], [61], [62], [2], and softmax classifier [12], [28],

[20]

• Local: Using a binary classifier for each type, enforcing label consistency at inference

time. Such classifiers include: SVM [34], maximum entropy classifier or logistic regression

classifier [16], [12], [31].
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• Local per Parent Node: Using multi-class classifier for all children of a parent type

node. The RNN encoder-decoder based typing model of [48] falls into this category.

• Global: Using a single multi-class classifier trained with loss function that considers

label similarity and hierarchical relationships. The typing models of [37], [39] fall into

this category.

The feature representations have significant influence on the performance of classifiers. The

features used by traditional machine learning methods [56], [12] are hand-crafted binary fea-

ture functions. To combat the feature sparsity, some methods [61], [62] embed these binary

features into low-dimensional vectors. The neural network models for FGET usually employ

different neural networks (with different parameters) to embed the mention features and con-

text features. Most of the methods [37], [49], [2] use LSTM to encode the mentions and

contexts.

2.2.2 Transfer Learning in NLP

There are two categories of transfer learning in NLP tasks: resource-based and model-based

transfer learning [59], [5]. Resource-based transfer learning resorts to additional annotated

resources (e.g. cross-lingual dictionaries) as weak supervision. Model-based transfer learning

exploits the relatedness and similarity between the source task and target task. Domain

adaptation [13] and multi-task learning [11] are the popular model-based transfer learning

paradigms. Our work on transfer learning for FGET mainly focuses on transfer through a

pre-trained language model and a topic model.

2.2.2.1 Transfer Learning Through Pre-trained Language Models

Very recently, the state-of-the-art results of a lot of NLP tasks have been achieved through

transfer learning from neural language models. The neural network models for target tasks are

partially pre-trained on a language model objective before fine-tuning on the supervised data

set. Such contextualized representations from pre-trained language model include: ELMo[38],

GPT [40], BERT [23], XLNet [60], and the very recently released SpanBERT [26] and ELEC-

TRA [10] . The model architectures of GPT, BERT,XLNet, SpanBERT and ELECTRA are

based on Transfomers [53], which has been used ubiquitously in recent research. Transformer
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is a neural network architecture that is based solely on attention mechanisms and dispensed

with recurrence and convolutions.

2.2.2.2 Transfer Learning Through Topic Models

Topic model has been used to Multi-label dataless text classification [63]. Wiedemann et al.

[54] used the tweets annotated with topic clusters of LDA (Latent Dirichlet Allocation) [6] as an

additional training dataset to improve the performance of offensive language detection. Deng

et al. [14] used a topic model to capture the sentiment polarity of word in different topics and

construct a domain-specific sentiment lexicon, which was used to improve the performance of

sentiment classification. Baheti et al. [4] introduced semantic and topic similarity constraints

in the decoding objective to generate more content rich responses for a dialogue system. The

topic similarity between source and response is based on the topic distribution of the sources

and responses. Jin et al. [25] proposed a model named LSTM-Topic matrix factorization that

combines LSTM and a topic model for review understanding.

2.2.3 Vector Representation of Words

Word vectors have been successfully used in neural network models for NLP tasks. The

prediction-based word vectors, such as Word2Vec [51], [52], are learned through training a

language model to predict context words. The count-based word vectors, such as GloVe [24],

are learned based on the word co-occurrence matrix. These two embedding paradigms cannot

generate the vectors of OOVs, the words that do not appear in the training corpus. The

fastText [7] method introduced the sub-word information to the Skip-Gram model of the

Word2Vec [52], thus is capable of generating word vectors for OOVs. Sub-word representations

are essentially useful for modeling rare words and OOVs. The subword-augmented embeddings

significantly improved performance on text understanding tasks [65].

2.3 Mention-level FGET Task Definition

Our work focuses on mention-level FGET with transfer learning. In this section, we present

how we formulate the mention-level FGET by giving several definitions.

Entity Mention: Entity mention is a continuous span of tokens in the text which refers to

a real world entity. Entity mention can be a named entity mention, a nominal mention or
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pronoun reference. For example, the Jaguar in the following sentence: The engine plant may

encompass plans for a joint components venture with Jaguar.

Type Taxonomy: To naturally represent the hierarchical structure of the semantic types,

type taxonomy or type ontology is defined as a tree or a directed acyclic graph (DAG) O =

(T,R), where T is the set of semantic types andR is the edge set. R = {(ti, tj) | ti, tj ∈ T, i 6= j}

is also called the relation set, in which (ti, tj) means that tj is a finer-grained sub-type of ti.

Mention-level FGET: Mention-level FGET can be defined as f : M × C 7→ T (where C

is the set of corresponding context of each mention in M), which is to find a semantic type

with appropriate degree of granularity for an entity mention that appears in a specific context.

The appropriate degree of granularity means that the semantic types should be inferred from

the context, and should not be too specific or too general. Mention-level FGET is also called

context-dependent FGET.

We formulate the typing model for FGET as a local binary classifier on each type of the tax-

onomy. The typing model makes predictions based on the feature representations of mention

phrase and context. For each mention m, we denote the embedded mention feature as vm, and

the context feature as vc. The probability of entity mention m being type ti can be computed

by:

P (ti|m, c) = σ(fi(vm ⊕ vc) + b) (2.1)

where σ is the sigmoid function, b is bias.

Previous methods for embedding the vm and vc are based on LSTM, which is unable to capture

effective context in long sentences. We use model-based transfer learning to get more efficient

feature representation of vm and vc. We will describe this in more details in Section 2.5.

Label Noises: The automatically generated training examples have two kinds of label noises:

the out-of-context noise and the overly-specific noise [37]. To explain this, consider the mention

Hugh Laurie in the following two sentences: (i) Hugh Laurie and his wife Jo Green were on the

verge of divorce. (ii) Hugh Laurie wins the Best Supporting Actor in a miniseries. Hugh Laurie

has multiple labels (e.g. actor, director, musician, comedian, and author) in a knowledge base,

and all these labels will be assigned to both mentions in both sentences. In sentence (i), the

type label should be Person, while all other types are overly-specific label noises. In sentence
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(ii), the type label should be Person/artist/actor, while all the other types are out-of-context

label noises.

To tackle the label noises, previous research either directly tweaks the noisy labels using

heuristics, such as [12], [17], [1], or enhances the typing model with the ability of tackling

label noises, such as [45], [46], [2], [37], [29]. The former approach makes the training corpus

skewed toward coarse-grained labels, while the latter approach encourages the typing model to

predict relevant parent-types. Thus both approaches tend to retreat to coarse-grained types.

We train our typing classifier on intact noisy corpus. Then we select multiple labels based on

the probability and filter out those irrelevant labels using topic-type relatedness. We provide

the details of topic-type relatedness in Section 2.4.

2.4 Topic-Type Relatedness Hypothesis

The training data sets for FGET are peppered with quite a few label noises. Thus the trained

typing model is still confused on many predictions, no matter how effective the features learned

through transferred model are. To alleviate the confusion caused by the label noises, we pro-

pose to post-process the outputs of the typing model by exploiting the topic-type relatedness

at inference time. In this subsection, we introduce our hypothesis about topic-type relatedness.

2.4.1 Topic-Type Relatedness

Unlike the text classification, which is a supervised NLP task of classifying text documents

into relatively small number (less than 15) of topics (relatively coarse-grained topics, such as

politics, sports, business etc.), topic model [6] is an unsupervised generative model that treats

each document as a random mixture of latent topics, where a topic is defined as a multinomial

distribution over words in vocabulary. The number of topic is set as a hyperparameter. A

large number of topics can enable the topic model to capture more fine-grained topics. The

unsupervision character of the topic model means it can be trained on a relatively large and

clean corpus.

Our hypothesis is that there are connections or dependencies between latent topics and se-

mantic types. Semantic types of entities are usually directly provided with an appositional

structure. Sometimes only abstract semantic type is mentioned without the concrete entity.
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Although sometimes the appositional semantic types are absent, we can still capture the re-

latedness between the semantic types and latent topics through the appositions 2.

Our hypothesis is based on the hypotheses of the LDA (Latent Dirichlet Allocation) topic

model [6] and the class-based n-gram model [8]. The LDA hypothesizes that documents

are represented as random mixtures over latent topics, where each topic is characterized by

a distribution over words. The class-based n-gram model assume that the word class of

prediction words is conditioned on the word classes of n − 1 histories, i.e., the probability

of a string of words, wk1 , is computed by Pr(wk|wk−1
1 ) = Pr(wk|ck)Pr(ck|ck−1

1 ), where ci is

the word class of word wi. Thus, the generative process for each document can be assumed as

follows:

1. Choose the number of words N ∼ Poisson(ξ).

2. Choose a topic distribution θ ∼ Dir(α).

3. For each of the N words wn:

(i) Choose a topic zn ∼ Multinomial(θ).

(ii) Choose a semantic class sn from p(sn|zn, β).

(iii) Choose a word (or concrete entity mention) from semantic class sn.

For example, in a sentence of car industry topic, when automaker type is chosen, the word

could be chose from {car maker, automaker, Jaguar, Toyota, ...}. We define the topic-type

relatedness as follows.

Topic-Type Relatedness: Topic-type relatedness is the statistical dependence/association

between a latent topic and the semantic types of entity mentions appear in the documents of

that topic.

For example, a car maker entity is more likely to appear in a sentence that is about car

industry topic; a law firm is more likely to be associated with a legal -related topic. Inserting

entities of other semantic types may causes incoherent with context or drastic change of the

topic distribution.

To illustrate the topic-type relatedness more concretely, consider the following three sentences

retrieved from the OntoNotes [43] corpus:

2Two noun phrases are placed next to each other to identify the same entity in a different way, e.g., Hugh
Laurie, an award winning actor.
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/Organization/company

engine plant
car

legal

litigation

client

retail
store

annual sale

retailer

law firmcar maker

Figure 2.1: Topic-Type relatedness and topic anchor. The colored parallelogram denote
different topics. The words on the curves are three topic anchors that connect the entity type
and topics. /Organization/company is a type path on the type taxonomy. The colored squares

are topic distributions, each square denotes one topic.

A: But the court jester appears to be Japan’s smallest car maker, Daihatsu Motor Co.

B: Alternatively, a separate engine plant may be built as part of GM’s planned tie-up with

the British luxury car maker, the sources said.

C: The engine plant may encompass plans for a joint components venture with Jaguar.

Sentence A directly provided the semantic class of entity mention Daihatsu Motor Co. using an

appositional structure. Sentence B anonymously mentioned an entity whose semantic class is

car maker. Sentence C mentioned an entity named Jaguar without semantic class information.

These three sentences have similar topic — car industry. We can apprehend the connection

between the car industry topic and the semantic type car maker using the first two sentences,

then we can predict the entity mention Jaguar in Sentence C to be car maker based on such

analogy.

2.4.2 Topic Anchor

However, we cannot associate the topics directly with the semantic types on the type taxonomy.

Because the types on the taxonomy, e.g. /Organization/company, usually do not appear as

apposition with the entity mentions. Instead, more fine-grained types (e.g. car maker) are

used as apposition. Thus, we use topic anchors to associate the types and topics.
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Topic Anchor: A semantically more fine-grained hyponym of a particular type that appears

frequently in corpus and associates the hypernym type on the taxonomy and a topic.

In Figure 2.1, three topic anchors that associate the type /Organization/company with three

corresponding topics are labelled on the curves. The words in the three coloured parallelograms

are the keywords of corresponding topics.

The reason for combining a pre-trained language model and a topic model to transfer learning

is that we believe a topic model can capture the relatedness between semantic classes and topics

through some key words (i.e. engine plant), while the pre-trained language model can encode

the context. We use the topic similarity between two topic distributions to rank the candidate

topic anchors. One topic distribution is estimated solely on contextual words without topic

anchor. The other topic distribution is estimated on the combination of contextual words and

topic anchors. We will describe in more details in Section 2.5.

2.5 Approach

In this section, we introduce a new transfer learning based approach for FGET. We first present

the framework of our typing model for FGET, and then we give details about the following

three transfer learning schemes: (i) Using sub-word embeddings to to generate the embeddings

of out-of-vocabulary (OOV) words in entity mentions; (ii) Using a pre-trained language model

to encode context features; (iii) Using a pre-trained topic model to guide the inference of the

typing classifier.

2.5.1 Typing Model

The architecture of our transfer learning based FGET typing model is shown in Fig. 2.2. Ac-

cording to the previous research [56], [34], [12], [49], the performance of local binary classifiers

on FGET is more promising than the other classifiers introduced in Section 2.2.1, thus we

use the local binary classifier. A local binary classifier makes predictions based on the feature

representations of mention phrases and context words. The feature representations will be

generated through model-based transfer learning as described in Section 2.5.2.

We implement our local binary classifiers using multi-layer perceptron (MLP) with one hidden

layer. All the local binary classifiers share the parameters between the input layer and hidden
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Figure 2.2: Architecture of our FGET typing model based on transfer learning. The red
rounded rectangle denotes the three transfer learning schemes. The dashed arrows denote the

pre-training for transfer learning.

layer. The parameters between the hidden layer and the output layer are parameters for the

local binary classifiers. We also apply dropout training [21], [50] to our typing model. The

training for such local classifiers needs to select negative and positive examples for each local

classifier. For type label A, we simply treat all the other examples that do not have label A as

negative examples. We use the sigmoid cross entropy with logits3 [18], [27] as the loss function

for training. We use t̂ to denote the vector of probabilities of mention m in context c being

each type t, t denote the one-hot vector of true labels. t̂ is computed using Equation (2.2).

We use Equation (2.3) to compute the loss function.

t̂ = σ(((vm ⊕ vc)Wh + bh)Wo + bo) (2.2)

Lscewl = −t log t̂− (1− t) log (1− t̂) (2.3)

where Wh and Wo are the parameters of hidden layer and output layer, respectively; bh and

bo are the bias for hidden layer and output layer, respectively; Lscewl denotes the sigmoid

cross entropy w ith logits loss function.

At inference time, we run the local classifiers simultaneously and independently select those

type labels whose estimated probability is above a threshold. To improve the recall of types,

we use a relatively small threshold. We then employ the following inference strategy to assign

type labels:

3https://www.tensorflow.org/api docs/python/tf/nn/sigmoid cross entropy with logits
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(i) If there are neither level 2 nor level 3 fine-grained types, then select the level 1 coarse-

grained type with highest probability.

(ii) If there are only one level 2 type, then select the types on the label path.

(iii) If there are multiple level 2 types, then use pre-trained topic model to filter out irrelevant

types. The algorithm is described in more details in Section 2.5.3.

2.5.2 Transfer Learning for Feature Representations

In this subsection, we propose two transfer learning schemes for encoding mention features

and context features, respectively.

2.5.2.1 Transfer Learning for Mention Embedding

The character-level patterns of words in mention phrases may provide strong typing infor-

mation. For example, the word with ”-shire” suffix, such as Berkshire, almost certainly is a

Location. There are many OOVs in the entity mentions in training and testing corpus. The

previous methods usually apply learning on-site to such OOVs. To generate more precise

vector representations of these OOVs, we use transfer learning to generate OOV word vectors

based on the sub-word information. Specifically, we use the fastText [7] word embeddings to

produce embeddings of OOVs. For example, we let the OOV Berkshire has a similar vector

to Hampshire, whose word vector are trained on large corpus.

To capture the internal structure of an entity mention that has more than one word, we use

single-directional LSTM to encode such information. We combine the averaging encoder and

LSTM encoder to generate the mention embedding. Given mention m with |m| words, the

last output h|m| of LSTM encoder act as the LSTM representation of m, i.e. vlm = h|m|. The

averaging embedding is computed as follow.

vam =
1

|m|

|m|∑
i=1

vi (2.4)

where vi is the vector of ith word of mention m obtained through fastText. The embedded

representation vm of mention m is the concatenation of LSTM embedding vlm and averaging

embedding vam.
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vm = vlm ⊕ vam (2.5)

2.5.2.2 Transfer Learning for Context Embedding

Context representation captures the information about the context surrounding the mention

phrase. We use a pre-trained language model to generate the embedded context representa-

tion. Specifically, we use the SpanBERT (Span Bidirectional Encoder Representations from

Transformers) model [26], [23], which was trained on huge corpus through the so-called MLM

(Masked Language Modeling) and SBO (Span Boundary Objective) objective (i.e. predict-

ing the randomly masked span based on the left and right contexts). Unlike the left-to-right

language model pre-training, the span prediction based on bidirectional context representa-

tions allows for pre-training of a deep bidirectional Transformer [53] to better represent and

predict spans of text. Before transferring the SpanBERT model, we also fine-tune it on the

CoNLL 2003 NER dataset [47] whose named entities have been annotated with coarse-grained

types, i.e. Person, Location, Organization and Miscellaneous. For each sentence, the Span-

BERT adds a special token ([CLS]) at the head and tokenize the sentence with WordPiece [55]

vocabulary.

The SpanBERT model is based on a bi-directional full attention mechanism, thus the encoding

of each token captures contextual information through attentions. We use the top layer hidden

states of mention words to generate contextual embedding. Suppose the original mention

phrase with |m| words align with l tokens in the tokenized sentence, and the top layer hidden

representation of each token is Ti. Then the contextual feature representation is computed as

follow:

vc =
1

l

l∑
i=1

Ti (2.6)

2.5.3 Transfer Learning Through Topic Model

In this subsection, we give details about using a pre-trained topic model at inference time to

select types. We use the HMM-LDA model to capture the topic-type relatedness, and use

the similarity of topic distributions to measure the coherence between a type and context.

For example, suppose the typing classifier outputs two type labels for mention Jaguar: Or-

ganization/company and Organization/education; carmaker and university are topic anchors

of type label Organization/company and Organization/education respectively; if carmaker is
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more coherent with the context than university (i.e., the topic distribution of carmaker is

more similar with the topic distribution of context words), then the entity mention should be

typed as Organization/company.

2.5.3.1 HMM-LDA Model

Griffiths et al. [19] proposed the HMM-LDA model to distinguish between function and content

words. The HMM-LDA is a composite model, in which the syntactic component is an HMM

and the semantic component is a topic model. Each component divides words into finer groups

according to a different criterion: the function words are divided into syntactic classes, and

the content words are divided into semantic topics. The HMM determines when to generate a

semantic word from a LDA topic model and when to generate a function word from syntactic

classes. The LDA chooses which content word to emit.

The HMM-LDA model is defined in terms of three sets of variables: a sequence of words

w = {w1, ..., wn}, with each wi being one of W words, a sequence of topic assignments

z = {z1, ..., zn}, with each zi being one of T topics, and a sequence of syntactic classes

c = {c1, ..., cn}, with each ci being one of C classes. One class, ci = 1, is assigned to content

words that are drawn from topics. The zth topic is associated with a distribution over words

φ(z) , each syntactic class c 6= 1 is associated with a distribution over words φ(c) , each docu-

ment d has a distribution over topics θ(d) , and transitions between classes ci−1 and ci follow

a distribution π(si−1). A document is generated via the following procedure:

1. Sample θ(d) from a Dirichlet(α) prior

2. For each word wi in document d

(i) Draw zi from θ(d)

(ii) Draw ci from π(ci−1)

(iii) If ci = 1, then draw wi from φ(zi), else draw wi from φ(ci)

2.5.3.2 Capturing Topic-Type Relatedness with HMM-LDA

To reduce the noise of non-semantic words, we employ the HMM-LDA [19] model to capture

the topic-type relatedness.
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The HMM-LDA model can approximately implement the generative process of our hypothesis

in Section 2.4.1. The reasons can be explained as follows:

• Our hypothesis only aims at capturing the topic of semantic words. In the mean time,

the HMM component can separate the function words from semantic (content) words.

• Our hypothesis only aims at capturing the topic-type relatedness, where the types are

fine-grained semantic words, e.g., carmaker, university, etc. When we treat each of such

semantic words as a semantic class of a topic (i.e., each semantic class has one word), the

LDA component can learn the association between topics and semantic words (classes).

Markov Chain Monte Carlo inference is applied to estimate our model parameters on a corpus.

We apply collapsed Gibbs sampling to draw iteratively a topic assignment and class assignment

for each word. Each sample is used to estimate the model parameters after a burn-in of 2,000

iterations.

2.5.3.3 Topic Distribution Estimation

We use the similarity of topic distributions to measure the degree of semantic coherence of

entity types with context. Given the HMM-LDA model’s parameters, a simple but efficient

method of estimating topic distributions is averaging topic distributions over all words in

context. But, to ameliorate the non-semantic noises, we employ the probability of the word

being emitted by the LDA topic model (a special syntactic class c = 1) P (c = 1|w) as a weight

to compute the topic distribution. If a word is topic anchor, then we fix the weight to be 1.

The topic distribution is computed as follows:

P (T |C) =
1

Z

∑
w∈C

P (T |w)fw (2.7)

fw =


1, if w ∈ A

P (c = 1|w), otherwise

(2.8)

where Z =
∑

w∈C fw is a constant for normalization.
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2.5.3.4 Type Selection

For level 2 or 3 type t (e.g. Organization/company), we use At to denote the collection of its

topic anchors. For each topic anchor a ∈ At, we estimate the topic distribution based on the

semantic words of context C plus the topic anchor. We then compare this topic distribution

with the topic distribution estimated without the topic anchor. The similarity can be viewed

as a coherent score for an entity of type a appearing in the context. The coherent score St for

type t is computed as follows:

St = argmaxa∈At∆(P (T |C), P (T |(C + a))) (2.9)

where P (T |X) is the topic distribution of a bag of words X; T is a random variable defined

over hidden topics; ∆ is a similarity function between the two probability distributions. To

simplify the computation, we use the vector dot product of the two topic distributions as

the similarity function. The type that has the highest coherent score is selected as the final

prediction.

2.6 Experiments

In this section, we introduce the datasets, preprocessing, baselines, experimental settings, and

present performance and error analysis on the results.

2.6.1 Datasets

To conveniently make a fair comparison between our transfer learning based FGET and the

previous methods, we evaluate the proposed FGET method on the following two standard

FGET corpora 4:

FIGER(GOLD) [56] is the first released FGET corpus, which contains Wikipedia articles

annotated with FIGER type taxonomy that has 113 types. The training set was automatically

annotated by linking entity mentions via anchor links and mapping Freebase types to FIGER

types. The test data consists of manually annotated news reports.

4Some other datasets are not publicly available.
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FIGER(GOLD) OntoNotes (GFT)

# types 113 89
Taxonomy depth 2 3
# raw training mentions 2000895 251039
# raw testing mentions 563 8963

Table 2.1: Statistics of FGET corpus

OntoNotes [12] dataset consists of sentences from Wall Street Journal (WSJ). The original

OntoNotes 5.0 [43] was annotated with their own type taxonomy that has 19 types. Daniel

Gillick et al. [12] re-annotated OntoNotes partially (only the named entity mentions in WSJ)

with the GFT taxonomy (89 types) automatically using DBpedia Spotlight. The manually

annotated test set was also shared. To compare the performance of our method with previous

work, we use the GFT OntoNotes annotation.

We use the TREC-4 dataset to train the HMM-LDA topic model. We only use the Financial

Times newswire documents since the government reports in the TREC-4 are different from

the newswire documents in terms of style.

2.6.2 Preprocessing

We extract all the constituents of the mention phrases in both corpora, and then set the word

vectors of OOVs with transfer learning based on sub-word information. To let the SpanBERT

model encode the context efficiently, we adjust the context and position of mention phrases.

We slide the context window, so that each mention phrase will be located in approximately the

centre of a context without segmenting a sentence or clause. The maximum context sequence

length after tokenization was set to 128. Parts of some long contexts before some punctuation

marks (comma, semicolon or period that appear before the mention phrases) were dropped.

The statistics of the corpora after preprocessing are shown in Table 2.1.

The reasons for choosing 128 tokens as maximum context are as follows:

• We use the datasets 5 shared by Shimaoka et al. [49], where most of the contexts are no

longer than 128 tokens.

• Pre-trained Transformer [53] based language models usually tokenize sentences into word

pieces [55], and the length of context is a hyperparameter selected from 128, 256, 384 or

512 according to limitations of GPUs.

5https://github.com/shimaokasonse/NFGEC

https://github.com/shimaokasonse/NFGEC
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Type Labels Example of Topic Anchors # of Topic Anchors

Person/artist actor, comedian, singer 74
Person/business billionaire, businessman, entrepreneur 32
Person/political activist, diplomat, senator 36
Person/athlete athlete, boxer, cyclist 71
Organization/company automaker, manufacturer, retailer 67
Organization/government bureau, department, whitehouse 35

Table 2.2: Statistics of Topic Anchors

• Considering that RNN performs poor on translation of sentences longer than 60 words

[3], sentences of 128 word pieces are long contexts.

For the topic anchors, we first extract seed topic anchors from the Wikipedia dump using the

infobox and the ”is-a” pattern in the first sentence of each article. Then regular expressions

are used to search such seed topic anchors in the TREC-4 corpus, and those anchors that do

not appear in the corpus are scrapped. Some other topic anchors are obtained through the

patterns of [41]. These topic anchors are manually aligned with the types on FIGER and GFT

taxonomies. Most of the extracted topic anchors belong to the Person, Organization type,

while some types do not have such topic anchors. The statistics of topic anchors are listed in

Table 2.2.

2.6.3 Baselines

To test the effectiveness of our transfer learning schemes, we compare our model with several

state-of-the-art FGET models. Our baselines include: (i) NFETC model [37], an LSTM

based model that counteract label noises by retreating to parental coarse-grained types; (ii)

Attentive model [49], an LSTM based model with attention mechanism; (iii) AllC model

[2], an LSTM based model using a variant of hinge loss function; (iv) AFET model [45], a

model that embed handcrafted features into dimensional space; (v) ERNIE [64], using ERNIE

contextualized representations to generate context features.

We name the variants of our proposed model as follows: (i) TLFR: the base model that

only use the Transfer Learning based Feature Representation of mentions and contexts; (ii)

TLFR-TA: add the Topic Anchor based inference module to the base model.
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Parameter description FIGER(GOLD) OntoNotes (GFT)

MLP classifier hidden size 400 400
MLP classifier dropout rate 0.8 0.9
Inference threshold 0.215 0.225
Mention LSTM hidden size 300 300
SpanBERT L-12 H-768 A-12 L-12 H-768 A-12
# Topics 200 200
# Syntactic 10 10

Table 2.3: Hyperparameter settings

2.6.4 Experimental Setup

We implement our model using the TensorFlow Estimator6 framework. Each training example

was transformed into three vectors: a fixed-length word-id vectors with padding for mention

phrase, a 768-d vector for contextual representation by SpanBERT, a fixed-length one-hot

label vector. Such transformations of training and test set are saved as tf record format.

We extract the fastText [7] embeddings of words that appear in mention phrases, and then

combine it with the transferred word vectors of OOVs. The combined embedding file is used

in the joint training of mention feature learning and classification model. We do not update

such word embeddings during training.

For the topic model (HMM-LDA), we use the code 7 shared by Baheti et al. [4] to train the

topic model on the TREC-4 corpus. The number of topics is set to 200, and the number of

syntactic class is set to 10.

2.6.4.1 Hyperparameter Settings

The hyperparameters for our experiments are listed in Table 2.3. We use the fastText crawl-

300d-subword embedding. The hidden size of the LSTM for mention is set to 300. We use

the Adagrad optimizer [15] with learning rate 5e-4 as our optimization method. The training

iterates 4 epochs.

The threshold for the MLP local binary classifiers is set tentatively. The hidden size of local

classifiers is set to 400. Based on the preliminary results, different dropout rates are applied

on the both corpora.

6https://www.tensorflow.org/guide/estimators
7https://github.com/abaheti95/HMM-LDA

https://www.tensorflow.org/guide/estimators
https://github.com/abaheti95/HMM-LDA
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2.6.4.2 Evaluation Metrics

We adopt the 3 metrics proposed by Xiao Ling and Daniel S Weld [56], which have been used

widely in FGET research. FGET is essentially a multi-class multi-label classification problem,

thus the three F1 metrics are based on the precision / recall scores that are computed in

three different ways. The Strict Accuracy is computed considering the predicted labels of each

mention are exactly the same as the true labels. The Loose Macro is based on the average

precision/recall scores computed for each mention. The Loose Micro treat the predicted labels

and true labels of all mentions as a whole. We implement the computation of such metrics

based on the TensorFlow framework, since there is no readily available TensorFlow code for

such metrics.

Let tm denote the golden true type set for mention m, t̂mdenote the type set predicted by

FGET system, P denote the mentions detected, G denote the mentions of golden truth. The

metrics with different granularity are defined as follows [56]:

• Strict : The predicted type is considered correct only if the type set is exactly the same

as the golden truth.

precision =

∣∣{mentions whose t̂m = tm
}∣∣

|{mentions detected}|
(2.10)

recall =

∣∣{mentions whose t̂m = tm
}∣∣

|{mentions golden truth}|
(2.11)

• Loose Macro: The precision and recall scores are computed independently for each men-

tion, and then denote the average over all mentions as overall metrics.

precision =
1

|P |
∑
m∈P

∣∣t̂m ∩ tm∣∣
t̂m

(2.12)

recall =
1

|G|
∑
m∈G

∣∣t̂m ∩ tm∣∣
tm

(2.13)

• Loose Micro: The precision and recall scores are measured globally across all mentions.

precision =

∑
m∈P

∣∣t̂m ∩ tm∣∣∑
m∈P

∣∣t̂m∣∣ (2.14)

recall =

∑
m∈G

∣∣t̂m ∩ tm∣∣∑
m∈G |tm|

(2.15)
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FGET Model
FIGER(GOLD) OntoNotes (GFT)

Strict Acc. Macro F1 Micro F1 Strict Acc. Macro F1 Micro F1

AFET[45] 53.3 69.3 66.4 55.1 71.1 64.7
AllC[2] 65.8 81.2 77.4 52.2 68.5 63.3
Attentive[49] 59.68 78.97 75.36 51.74 70.98 64.91
NFETC[37] 68.9 81.9 79.0 60.2 76.4 70.2
ERNIE[64] 57.19 76.51 73.39 - - -

TLFR 67.32 77.44 74.72 60.35 72.34 67.51
TLFR-TA 69.45 82.27 79.67 61.89 76.48 70.72

Table 2.4: Performance on the FIGER(GOLD) and OntoNotes corpora

2.6.5 Results Comparison and Analysis

The performance of our models and the baselines on the two standard FGET corpora is listed

in Table 2.4. The proposed TLFR model retrieves several labels for many mentions, thus

the macro precision and micro precision suffered from such naive threshold. But the strict

accuracy of the TLFR model is quite competitive, and the strict accuracy on OntoNotes even

better than the previous state-of-the-art models.

2.6.5.1 Performance Analysis

The competitive strict accuracy of TLFR on the corpora indicates that the proposed transfer

learning schemes for feature learning can provide the simple binary classifier with more efficient

feature representations. Such feature representations enable the model to shield noises on

about 60% of the testing examples. However, because of the confusing label noises, the model

retrieved some negative labels for other testing examples and thus downgraded the Macro F1

and Micro F1.

Our TLFR-TA model achieved the state-of-the-art results on the corpora. Although our topic

anchors are primarily of Person and Organization types, the topic anchor based inference

module boosted the performance because most of the testing examples are also of such two

types (as listed in Table 2.5). More importantly, our TLFR-TA model is able to retrieve

fine-grained level 2 and 3 types (e.g. /Organization/company, /Person/artist/author). The

pre-trained topic model and topic anchors can rescue the model from confusing label noises in

the training set without retreating to coarse-grained types.

The numbers of type labels in the testing sets are listed in Table 2.5. Our topic anchors

mainly belong to the listed four level 2 types and /Person/business (but there is paucity of
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FIGER(GOLD) OntoNotes (GFT)

# testing examples 563 8963
# label /Organization/∼ 90 1386
# label /Organization/company 28 1108
# label /Person/∼ 28 472
# label /Person/politician 5 189
# label /Person/artist 4 134
# label /Person/athlete 17 1

Table 2.5: Statistics of testing examples in FGET corpora

testing examples for this type). Because of the magnitude difference of the number of testing

examples in the two corpora, the topic model retrieved far more level 2 labels on OntoNotes,

although it achieved a larger margin of improvement on FIGER.

2.6.5.2 Error Analysis

Error Analysis for TLFR The following deficiency of our TLFR model possibly contribute

to the errors. (i) Averaging embeddings of character-level n-grams also incorporate some

noises, and the more informative suffix patterns are diluted. (ii) The setting of negative

training examples for the local binary classifiers also has great influence on the performance.

Daniel Gillick et al. [12] experimented with 3 settings of negative examples, and the setting

same as ours achieved the poorest performance. The speculation is that such flooded negative

examples may amplify the label noises. Thus using more sophisticated strategy for negative

examples is a possible way of improving performance.

Error Analysis for the Topic Model One source of errors is that the candidate types

returned by typing model do not include the true type. The other one is that some topic

anchors are ambiguous. For example, ”investor, contractor” are the topic anchors of both

/Organization/company and /Person/business, ”director” is the topic anchor of both /Per-

son/artist/director and /Person/business. Moreover, the topic anchors of different types may

appear in the same context. For example, there is ”he may be a fine lawyer, he is a bad

politician” in the training corpus for our topic model, while ”lawyer” is a topic anchor for

/Person/legal, and ”politician” is a topic anchor for Person/political figure. Our algorithm

that selects the most coherent topic anchors can somewhat offset such ambiguity and confus-

ing context, but estimating the topic distributions based solely on a bag of contextual words

is sometimes inaccurate.
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2.7 Conclusion and Future Work

In this chapter, we proposed a new transfer learning based approach for fine-grained en-

tity typing that contains three transfer learning schemes. Firstly, to avoid on-site learning

word vectors of OOVs in mention phrases, we proposed to generate more precise word em-

beddings for OOvs through transfer learning using sub-word information. Secondly, instead

of learning contextual features using LSTM, we proposed to generate contextual representa-

tions through transfer learning using a pre-trained bi-directional non-recurrent neural language

model. Thirdly, to reduce the influence of label noises without twisting the original labels, we

proposed to refine the predicted labels at inference time using a pre-trained topic model. The

topic model associates types with topics through the so-called topic-anchors. The experimen-

tal results on two standard FGET corpora validated the effectiveness of our transfer learning

approach. Compared with previous methods, our method can predict more fine-grained labels

and achieve the state-of-the-art performance.

For future work, we intend to further improve and extend our work as follows. The embed-

dings of OOVs are currently computed by averaging the ebmeddings of their character-grams.

We conjecture that more precise embeddings can be obtained by giving prefix and suffix more

weights. The settings for negative examples can be further explored. The algorithm for esti-

mating the topic distribution is relatively too simple to get accurate topic distribution. More

work can be done to explore alternative ways of getting more accurate topic distribution. Our

work can also be extended by incorporating fine-grained semantic type information in other

downstream NLP tasks, such as entity linking and coreference resolution. An unsupervised

pre-trained topic model can be used to directly provide semantic type information in a man-

ner similar to our method. In addition to the topic model, another possible way of capturing

the topic-type relatedness is using the topic-anchors as distant supervision to compute the

coherent scores between topic anchors and context.
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Chapter 3

Improving Entity Linking through

Semantic Reinforced Entity

Embeddings

Entity embeddings, which represent different aspects of each entity with a single vector

like word embeddings, are a key component of neural entity linking models. Existing

entity embeddings are learned from canonical Wikipedia articles and local contexts sur-

rounding target entities. Such entity embeddings are effective, but too distinctive for link-

ing models to learn contextual commonality. We propose a simple yet effective method,

FGS2EE, to inject fine-grained semantic information into entity embeddings to reduce

the distinctiveness and facilitate the learning of contextual commonality. FGS2EE first

uses the embeddings of semantic type words to generate semantic embeddings, and then

combines them with existing entity embeddings through linear aggregation. Extensive

experiments show the effectiveness of such embeddings. Based on our entity embeddings,

we achieved new state-of-the-art performance on entity linking.

3.1 Introduction

Entity Linking (EL) or Named Entity Disambiguation (NED) is to automatically resolve the

ambiguity of entity mentions in natural language by linking them to concrete entities in a

45
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Knowledge Base (KB). For example, in Figure 3.1, mentions “Congress” and “Mr. Mueller”

are linked to the corresponding Wikipedia entries, respectively.

extracting	fine-grained	semantic	types

exonerated the president of obstruction of justice.

[legislature,	government,	u.s.] [american,	lawyer,	government,	official]

[european,	assembly] [german, canadian, poker, player]
Congress	of	the	Council	of	Europe

United	States	Congress Robert	Mueller

Greg Mueller

wikipedia	articles

Appearing before Congress, Mr Mueller said he had not

Figure 3.1: Entity linking with embedded fine-grained semantic types.

Neural entity linking models use local and global scores to rank and select a set of entities

for mentions in a document. Entity embeddings are critical for the local and global score

functions. But the current entity embeddings [13] encoded too many details of entities, thus

are too distinctive for linking models to learn contextual commonality.

We hypothesize that fine-grained semantic types of entities can let the linking models learn

contextual commonality about semantic relatedness. For example, rugby related documents

would have entities of rugby player and rugby team. If a linking model learns the contextual

commonality of rugby related entities, it can correctly select entities of similar types using the

similar contextual information.

In this chapter, we propose a method FGS2EE to inject fine-grained semantic information

into entity embeddings to reduce the distinctiveness and facilitate the learning of contextual
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commonality. FGS2EE uses the word embeddings of semantic words that represent the hall-

marks of entities (e.g., writer, carmaker) to generate semantic embeddings. We find that the

training converges faster when using semantic reinforced entity embeddings.

Our proposed FGS2EE consists of four steps: (i) creating a dictionary of fine-grained semantic

words; (ii) extracting semantic type words from each entity’s Wikipedia article; (iii) gener-

ating semantic embedding for each entity; (iv) combining semantic embeddings with existing

embeddings through linear aggregation.

The rest of this chapter is organized as follows. We introduce the background in Section

3.2. The related work is reviewed in Section 3.3. We describe our motivation, method and

experiments in Section 3.4, Section 3.5-3.6 and Section 3.7, respectively.

3.2 Entity Linking Background

3.2.1 Task Description

Given a knowledge base containing a set of entities E and a text document in which a set of

named entity mentions M are identified in advance, the goal of entity linking is to map each

entity mention m ∈ M to its corresponding entity e ∈ E in the knowledge base [30]. Here, a

named entity mention m is a token sequence in text which potentially refers to some named

entity and is identified in advance. It is possible that some entity mention in text does not

have its corresponding entity record in the given knowledge base. This kind of mentions are

named ’unlinkable mentions’ and annotated with a special label NIL.

Entity linking is also nameded Named Entity Disambiguation (NED). This task is challenging

due to the the many-to-many ambiguity between surface form mentions and the entities they

refer to. In this research, we just focus on entity linking for English language, rather than

cross-lingual entity linking [40].

Typically, the task of entity linking is preceded by a named entity recognition stage, during

which boundaries of named entities in text are identified. While named entity recognition is

not the focus of this research, the technical details of approaches for named entity recognition
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task can be found in the survey paper [9]. In addition, there are many publicly available

named entity recognition tools, such as Stanford NER1, OpenNLP2, and LingPipe3.

3.2.2 Local Models for Entity Linking

Appearing before Congress, Mr Mueller said he had not
exonerated the president of obstruction of justice.

Robert	Swan	Mueller	III William	Richard	Mueller

Greg	Mueller

Ψ(ei, ci)

1

Figure 3.2: Local model for entity linking.

Local models rely only on local contexts of mentions and completely ignore interdependencies

between the linking decisions in the document (these interdependencies are usually referred

to as coherence). Suppose a document D contains a list of mentions m1, . . . ,mn. Let ci be a

local context of mention mi and Ψ(ei, ci) be a local score function. A local model [21] [38],

[13], [22] then tackles the problem by searching the highest scored candidate

e∗i = arg max
ei∈Emi

Ψ(ei, ci) (3.1)

for each mention i ∈ {1, . . . , n}.

The local score Ψ(ei, ci) is usually computed as follows:

Ψ(ei, ci) = e>i B f(ci) (3.2)

where ei ∈ Rd is the embedding of entity ei , B ∈ Rd×d is a diagonal matrix. The mapping

f(ci) applies an attention mechanism to context words in ci to obtain a feature representations

of context (f(ci) ∈ Rd).
1http://nlp.stanford.edu/ner/
2http://opennlp.apache.org/
3http://alias-i.com/lingpipe/

http://nlp.stanford.edu/ner/
http://opennlp.apache.org/
http://alias-i.com/lingpipe/
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Francis-Landau et al. [12] and He et al. [18] use convolutional neural networks (CNNs) and

stacked denoising auto-encoders, respectively, to learn representations of textual documents

and canonical entity pages. Entities for each mention are locally scored based on cosine

similarity with the respective document embedding. In a similar local setting, Sun et al. [31]

embed mentions, their immediate contexts and their candidate entities using word embeddings

and CNNs. However, their entity representations are restrictively built from entity titles and

entity categories only.

Ganea and Hofmann [13] employ attention mechanism [2] to select words that are informative

for the disambiguation decision. Their local score is a learned combination of the local entity-

mention score and a mention-entity prior p̂(ei|mi).

Ψ(ei,mi, ci) = f(Ψ(ei, ci), log p̂(ei|mi)) (3.3)

where f is a neural network with two fully connected layers of 100 hidden units and ReLU.

The mention-entity prior p̂(ei|mi) is computed by averaging probabilities from two indexes

build from mention entity hyperlink count statistics from Wikipedia and a large Web corpus.

The context-based local score is computed as follows:

Ψ(ei, ci) =
∑
w∈ci

β(w)e>i B ew (3.4)

where ew is the word embedding of contextual word w. ci is a reduced contextual words set. ci

contains only the informative words that are strongly related to at least one candidate entity

of mention mi. β(w) is an attention weight for w. Such an attention based local score has a

smaller memory footprint and is fast for both training and testing. However, some informative

contextual words that not appear in local contexts may be ignored.

3.2.3 Global Models for Entity Linking

A global model, besides using local context with Ψ(ei, ci), takes into account entity coherency.

It is captured by a coherence score function Φ(E,D):

E∗ = arg max
E∈Em1× ... ×Emn

n∑
i=1

Ψ(ei, ci) + Φ(E,D) (3.5)
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Global Disambiguation

Thomas Müller

Germany

final

cup

Φ(ei, ej)

Local Ψ(ei, ci)

14 / 25

Thomas Müller

Germany

final

cup

Thomas Müller, the midfielder of Germany, scored one goal
against Brazil in the final of the cup.

1

Figure 3.3: Global model for entity linking [13].

where E = (e1, . . . , en). The coherence score function, in the simplest form, is a sum over all

pairwise scores Φ(ei, ej , D) ([14], [16], [15], [37], as shown in Figure 3.3), resulting in:

E∗ = arg max
E∈Em1× ... ×Emn

n∑
i=1

Ψ(ei, ci) +
∑
i 6=j

Φ(ei, ej , D) (3.6)

where the pairwise score Φ(ei, ej , D) is usually computed as follows:

Φ(ei, ej , D) =
1

n− 1
e>i C ej (3.7)

where ei and ej ∈ Rd are are the embeddings of entity ei, ej respectively, C ∈ Rd×d is

a diagonal matrix. It should be noted that the pairwise score is agnostic to any relations

between entities or even to their ordering: it models e1, . . . , en simply as a bag of entities.

Le and Titov [22] propose to improve the pairwise score by exploiting latent relations between

entities. Their pairwise scores take into account relations between mentions which are repre-

sented by relation embeddings. They assume that there are K latent relations. Each relation

k is assigned to a mention pair (mi,mj) with a non-negative weight αijk. The pairwise score
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is computed as a weighted sum of relation-specific pairwise scores.

Φ(ei, ej , D) =

K∑
k=1

αijkΦ(ei, ej , D) (3.8)

They represent each relation k by a diagonal matrix Rk ∈ Rd×d, and the pairwise score

Φk(ei, ej , D) with relation k is computed as follows:

Φk(ei, ej , D) = e>i Rk ej (3.9)

The weights αijk are normalized scores:

αijk =
1

Zijk
exp

{f(mi, ci)
>Dkf(mj , cj)

d

}
(3.10)

where Zijk is a normalization factor, f(mi, ci) is a function mapping (mi, ci) onto Rd, and

Dk ∈ Rd×d is a diagonal matrix.

A disadvantage of global models is that exact decoding (Equation (3.6)) is NP-hard [33].

Previous work has investigated different approximation techniques, including: random graph

walks [16], personalized PageRank [28], inter-mention voting, graph pruning [19], integer linear

programming [5], or ranking SVMs [29]. Globerson et al. [15] propose a star model which

approximates the decoding problem in Equation (3.6) by approximately decomposing it into

n decoding problems, one per each ei by performing a single round of message passing with

attention. Ganea and Hofmann [14], [13] resolve mentions jointly using a fully-connected

pairwise conditional random field (CRF) [4] with parametrized potentials. The parameters

of potentials are learnt by casting loopy belief propagation (LBP) [27] as a rolled-out deep

network. Their linking model directly optimizes the marginal likelihoods, using the same

networks for learning and prediction. They use truncated fitting of LBP to a fixed number of

message passing iterations. This allows for back-propagating through the (truncated) message

passing, thereby optimizing the CRF potentials to work well in conjunction with the inference

scheme.

3.3 Related Work

Our research focuses on improving the vector representations of entities through fine-grained

semantic types. Related topics are as follows.
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Entity Embeddings Following the success and ubiquitous application of word embeddings

[32], [24], [20] in NLP tasks, works were done to embed entities and words in a common

low-dimensional vector space. Similar to word embeddings, entity embeddings are the vector

representations of entities. Entity embeddings are a key component to avoid hand-engineered

features, multiple disambiguation steps, or the need for additional adhoc heuristics when

solving the entity linking task. Entity embedding methods can be categorized into two types:

entity co-occurrences based and entity description based.

The entity co-occurences based methods [37], [41], [11] treat the entity mentions of the same

entity as special word. Such methods require data about entity-entity co-occurrences which

often suffers from sparsity.

The entity description based method [13], [22] bootstrap entity embeddings from their canoni-

cal entity pages and local context of their hyperlink annotations. This allows for more efficient

training and alleviates the need to compile co-linking statistics. However, there is discrepancy

between the Wikipedia articles, used by this method as training corpus for entity embedding,

and the newswire documents used by entity linking and real applications. The information

in the canonical entity articles also introduce noises. Ganea and Hofmann [13] learned entity

embeddings using words from canonical Wikipedia articles and local context surrounding an-

chor links. They used Word2Vec vectors [24] of positive words and random negative words as

input to the learning objective. Thus their entity embeddings are aligned with the Word2Vec

word embeddings.

Fine-grained Entity Typing Fine-grained entity typing is a task of classifying entities into

fine-grained types [35] or ultra fine-grained semantic labels [7]. Bhowmik and de Melo [3] used

a memory-based network to generate a short description of an entity, e.g. “Roger Federer”

is described as ‘Swiss tennis player’. In this chapter, we heuristically extract fine-grained

semantic types from the first sentence of Wikipedia articles.

Embeddings Aggregation Our research is closely related to the work on aggregation and

evaluation of the information content of embeddings from different sources (e.g., polysemous

words have multiple sense embeddings), and fusion of multiple data sources [34]. Arora et al. [1]

hypothesizes that the global word embedding is a linear combination of its sense embeddings.

They showed that senses can be recovered through sparse coding. Mu et al. [26] showed

that senses and word embeddings are linearly related and sense sub-spaces tend to intersect

over a line. Yaghoobzadeh et al. [36] probe the aggregated word embeddings of polysemous
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words for semantic classes. They created a WIKI-PSE corpus, where word and semantic class

pairs are annotated using Wikipedia anchor links, e.g., “apple” has two semantic classes: food

and organization. A separate embedding for each semantic class was learned based on the

WIKI-PSE corpus. They found that the linearly aggregated embeddings of polysemous words

represent well their semantic classes.

The most similar work is that of Gupta et al. [17], but there are many differences: (i) they

use the FIGER [35] type taxonomy that contains manually curated 112 types organized into

2 levels; we employ over 3000 vocabulary words as type, and we treat them as a flat list; (ii)

they mapped the Freebase types to FIGER types,but this method is less credible, as noted by

Daniel Gillick et al. [8]; we extract type words directly from Wikipedia articles, which is more

reliable. (iii) their entity vectors and type vectors are learned jointly on a limited corpus. Ours

are linear aggregations of existing entity vectors, and word vectors learned from a large corpus,

such fine-grained semantic word embeddings are helpful for capturing informative context.

3.4 Motivation

Coarse-grained semantic types (e.g. person) have been used for candidate selection [13]. We

observe that fine-grained semantic words appear frequently as apposition (e.g., Defense con-

tractor Raytheon), coreference (e.g., the company) or anonymous mentions (e.g., American

defense firms). These fine-grained types of entities can help capture local contexts and rela-

tions of entities.

Some of these semantic words have been used for learning entity embeddings, but they are

diluted by other unimportant or noisy words. We reinforce entity embeddings with such

fine-grained semantic types.

3.5 Extracting Fine-grained Semantic Types

We first create a dictionary of fine-grained semantic types, then we extract fine-grained types

for each entity.
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3.5.1 Semantic Type Dictionary

We select those words that can encode the hallmarks of individual entities. Desiderata are as

follows:

• profession/subject, e.g., footballer, soprano, biology, rugby.

• title, e.g., president, ceo, head, director.

• industry/genre, e.g., carmaker, manufacturer, defense contractor, hip hop.

• geospatial, e.g., canada, asian, australian.

• ideology/religion, e.g., communism, buddhism.

• miscellaneous, e.g., book, film, tv, ship, language.

We extract noun frequency from the first sentence of each entity in the Wikipedia dump. Then

some seed words are manually selected from frequent nouns. We use word similarity to extend

these seed words and finally got a dictionary with 3,227 fine-grained semantic words.

Specifically, we use spaCy4 to compute the similarity between words. For each seed word, we

find the top 100 similar words that also appear in Wikipedia articles. We then manually select

semantic words from these extended words.

3.5.2 Extracting Semantic Types

For each entity, we extract at most 11 dictionary words (phrases) from its Wikipedia article.

For example, “Robert Mueller” in Figure 3.1 will be typed as [american, lawyer, government,

official, director ]. The reasons for selecting at most 11 types are as follows: (i) most entities

have about 10 types; (ii) too few types cannot inject effective information; (iii) too many types

may introduce noisy words that are not directly related to the entity.

3.5.3 Remapping Semantic Words

For some semantic words (e.g., conchologist) or semantic phrases (e.g., rugby league), there

are no word embeddings available for generating the semantic entity embeddings. We remap

these semantic words to semantically similar words that are more common. For example, the

conchologist is remapped to zoologist, and rugby league is remapped to rugby league.

4https://spacy.io/

https://spacy.io/
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3.6 FGS2EE: Injecting Fine-Grained Semantic Information into

Entity Embeddings

FGS2EE first uses semantic words of each entity to generate semantic entity embeddings,

then combine them with existing entity embeddings to generate semantic reinforced entity

embeddings.

3.6.1 Semantic Entity Embeddings

Based on the semantic words of each entity, we can produce a semantic entity embedding. We

treat each semantic word as a sense of an entity. The embedding of each sense is represented by

the Word2Vec embedding of the semantic word. Suppose we only consider T semantic words

for each entity, and the set of entity words of entity e is denoted as Se. Then the semantic

entity embedding es of entity e is generated as follows:

es =
1

T

T∑
i=1

ewi (3.11)

where wi ∈ Se is the ith semantic word, ewi is the Word2Vec embedding5 of semantic word

wi. If |Se| < T , then T = |Se|.

3.6.2 Semantic Reinforced Entity Embeddings

We create a semantic reinforced embedding for each entity by linearly aggregating the seman-

tic entity embeddings and Word2Vec style entity embeddings [13] (hereafter referred to as

“Wikitext entity embeddings”).

Our semantic entity embeddings tend to be homogeneous. If we average them with the Wiki-

text embeddings, the aggregated embeddings would be homogeneous too. Thus the entity

linking model would not be able to distinguish between those similar candidates. Our seman-

tic reinforced entity embedding is a weighted sum of semantic entity embedding and Wikitext

entity embedding, similar to [36]. We use a parameter α to control the weight of semantic

entity embeddings. Thus the aggregated (semantic reinforced) entity embeddings achieve a

trade-off between homogeneity and heterogeneity.

5https://code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/
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ea = (1− α) ew + α es (3.12)

where ew is the Wikitext entity embedding of entity e.

3.7 Experiments

3.7.1 Datasets

We use the Wikipedia dump 20190401 to extract fine-grained semantic type dictionary and

semantic types for entities. We use the Wikitext entity embeddings shared by Le and Titov

[22, 23]. For entity linking corpora, we use the datesets shared by Ganea and Hofmann [13] and

Le and Titov [22, 23]. The publicly available corpora for entity linking are listed as follows.

AIDA-CoNLL [19] contains AIDA-train for training, AIDA-A for dev, and AIDA-B for

testing, having respectively 946, 216, and 231 documents.

MSNBC, AQUAINT, ACE2004, were cleaned and updated by Guo and Barbosa [16], and

have respectively 20, 50, and 36 documents for test only.

WNEDCWEB (CWEB), WNED-WIKI (WIKI), were automatically extracted from

ClueWeb and Wikipedia [16], [10]. and have 320 documents each for test only.

3.7.2 Evaluation Metrics

Like many other NLP tasks, entity linking is usually evaluated in terms of precision, recall, F1

measure, and accuracy. The precision of an entity linking system is computed as the fraction

of correctly linked entity mentions that are generated by the system.

precision =
|{correctly linked entity mentions}|

|{linked mentions generated by system}|
(3.13)

The recall is computed as the fraction of correctly linked entity mentions that should be linked.

recall =
|{correctly linked entity mentions}|
|{entity mentions that should be lined}|

(3.14)



Improving Entity Linking through Semantic Reinforced Entity Embeddings 57

E
n
ti
ty

E
m
b
e
d
d
in

g
s

L
in

k
in

g
M

e
th

o
d
s

A
ID

A
-B

M
S
N
B
C

A
Q
U
A
IN

T
A
C
E
2
0
0
4

C
W

E
B

W
IK

I
A
v
g

W
ik
ip
ed
ia

-
M

il
n

e
a
n

d
W

it
te

n
[2

5
]

-
7
8

8
5

8
1

6
4
.1

8
1
.7

7
7
.9

6
-

R
a
ti

n
o
v

et
a
l.

[2
9
]

-
7
5

8
3

8
2

5
6
.2

6
7
.2

7
2
.6

8
-

H
o
ff

a
rt

et
a
l.

[1
9
]

-
7
9

5
6

8
0

5
8
.6

6
3

6
7
.3

2
-

C
h

en
g

a
n

d
R

o
th

[5
]

-
9
0

9
0

8
6

6
7
.5

7
3
.4

8
1
.3

8
-

C
h

is
h

o
lm

a
n

d
H

a
ch

ey
[6

]
8
4
.9

-
-

-
-

-
-

W
ik
i
+

U
n
la
be
ll
ed

d
oc
u
m
en

ts
-

L
a
zi

c
et

a
l.

[2
1
]

8
6
.4

-
-

-
-

-
-

G
a
n

ea
a
n

d
H

o
fm

a
n

n
[1

3
]

L
e

a
n

d
T

it
o
v

[2
3
]

8
9
.6
6
±
0
.1
6

9
2
.2
±

0
.2

9
0
.7
±

0
.2

8
8
.1
±
0
.0

7
8
.2
±

0
.2

8
1
.7
±

0
.1

8
6
.1

8
T

=
6
,α

=
0
.1

L
e

a
n

d
T

it
o
v

[2
3
]

8
9
.5

8
±

0
.2

9
2
.3
±
0
.1

9
0
.9

3
±

0
.2

8
7
.8

8
±

0
.1

7
7
8
.4
7
±
0
.1
1

8
1
.7

1
±

0
.2

1
8
6
.2

6
T

=
1
1
,α

=
0
.2

L
e

a
n

d
T

it
o
v

[2
3
]

8
9
.2

3
±

0
.3

1
9
2
.1

5
±

0
.2

4
9
1
.2
2
±
0
.1
8

8
8
.0

2
±

0
.1

5
7
8
.2

9
±

0
.1

7
8
1
.9
2
±
0
.3
6

8
6
.3
2

W
ik
i
+

E
xt
ra

su
pe
rv
is
io
n

-
C

h
is

h
o
lm

a
n

d
H

a
ch

ey
[6

]
8
8
.7

-
-

-
-

-
-

F
u
ll
y
-s
u
pe
rv
is
ed
(W

ik
i+

A
ID

A
tr
a
in
)

-
G

u
o

a
n

d
B

a
rb

o
sa

[1
6
]

8
9
.0

9
2

8
7

8
8

7
7

8
4
.5

8
5
.7

-
G

lo
b

er
so

n
et

a
l.

[1
5
]

9
1
.0

-
-

-
-

-
-

Y
a
m

a
d

a
et

a
l.

[3
7
]

Y
a
m

a
d

a
et

a
l.

[3
7
]

9
1
.5

-
-

-
-

-
-

G
a
n

ea
a
n

d
H

o
fm

a
n

n
[1

3
]

G
a
n

ea
a
n

d
H

o
fm

a
n

n
[1

3
]

9
2
.2

2
±

0
.1

4
9
3
.7
±

0
.1

8
8
.5
±
0
.4

8
8
.5
±

0
.3

7
7
.9
±
0
.1

7
7
.5
±

0
.1

8
5
.2

2
G

a
n

ea
a
n

d
H

o
fm

a
n

n
[1

3
]

L
e

a
n

d
T

it
o
v

[2
2
]

9
3
.0

7
±

0
.2

7
9
3
.9
±

0
.2

8
8
.3
±

0
.6

8
9
.9
±

0
.8

7
7
.5
±

0
.1

7
8
.0
±

0
.1

8
5
.5

G
a
n

ea
a
n

d
H

o
fm

a
n

n
[1

3
]

D
C

A
Y

a
n

g
et

a
l.

[3
9
]

9
3
.7
3
±
0
.2

9
3
.8

0
±

0
.0

8
8
.2

5
±

0
.4

9
0
.1

4
±

0
.0

7
5
.5

9
±

0
.3

7
8
.8
4
±
0
.2

8
5
.3

2
T

=
6
,α

=
0
.1

L
e

a
n

d
T

it
o
v

[2
2
]

9
2
.2

9
±

0
.2

1
9
4
.1
±

0
.2

4
8
8
.0
±

0
.3

8
9
0
.1

4
±

0
.3

2
7
7
.2

3
±

0
.1

8
7
7
.1

6
±

0
.4

3
8
5
.3

3
T

=
1
1
,α

=
0
.2

L
e

a
n

d
T

it
o
v

[2
2
]

9
2
.6

3
±

0
.1

4
9
4
.2
6
±
0
.1
7

8
8
.4

7
±

0
.2

3
9
0
.7
±
0
.2
8

7
7
.4

1
±

0
.2

1
7
7
.6

6
±

0
.2

3
8
5
.7

T
a
b
l
e
3
.1
:

F
1

sc
or

es
on

si
x

te
st

se
ts

.
T

h
e

la
st

co
lu

m
n

is
th

e
av

er
a
g
e

o
f

F
1

sc
o
re

s
o
n

th
e

fi
ve

o
u

t-
d

o
m

a
in

te
st

se
ts

.



Improving Entity Linking through Semantic Reinforced Entity Embeddings 58

F1 score is defined as the harmonic mean of precision and recall.

F1 =
2 · precision · recall
precision+ recall

(3.15)

When the entity mentions that should be linked are give as the input, entity linking systems

are usually evaluated using the in-KB accuracy and micro F1 (averaged per mention) [13]

metrics.

For a fair comparison with prior work, we use the standard micro F1 score as evaluation metric.

Our data and source code are publicly available at https://github.com/fhou80/EntEmb/.

3.7.3 Experimental Settings

The parameters T in Equation (3.11) and α in Equation (3.12) are critical for the effectiveness

of our semantic reinforced entity embeddings. We got two sets of entity embeddings with two

combinations of parameters: T = 6, α = 0.1 and T = 11, α = 0.2

To test the effectiveness of our semantic reinforced entity embeddings, we use the entity linking

models mulrel [22] (ment-norm K = 3) and wnel [23] that are publicly available. We do not

optimize their entity linking code. We just replace the entity embeddings with our semantic

reinforced entity embeddings.

Similar to Ganea and Hofmann [13] and Le and Titov [22, 23], we run our system 5 times

for each combination of entity embeddings and linking model, and report the mean and 95%

confidence interval of the micro F1 score.

3.7.4 Results

The results on six testing datasets are shown in Table 3.1. For the mulrel model, our entity

embeddings (T = 11, α = 0.2) improved performance drastically on MSNBC, ACE2004 and

average of out-domain test sets. Be aware that CWEB and WIKI are believed to be less

reliable [13]. For the wnel model, our both sets of entity embeddings are more effective for

four of the five out-domain test sets and the average.

Our entity embeddings are better than that of Ganea and Hofmann [13] when tested on the

mulrel [22] (ment-norm K = 3) and wnel [23] entity linking models. Ganea and Hofmann

https://github.com/fhou80/EntEmb/
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Figure 3.4: Learning curves of mulrel [22] using two different sets of entity embeddings.
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[13] showed that their entity embeddings are better than that of Yamada et al. [37] using the

entity relatedness metrics.

One notable thing for our semantic reinforced entity embeddings is that the training using

our entity embeddings converges much faster than that using Wikitext entity embeddings, as

shown in Figure 3.4. One reasonable explanation is that the fine-grained semantic information

lets the linking models capture the commonality of semantic relatedness between entities and

contexts, hence facilitate the training.

The properties of two different sets of entity embeddings can be visually manifested in Figure

3.5. Our semantic reinforced entity embeddings draw entities of similar types closer, and

entities of different types further. For example, our semantic reinforced embeddings of “John

F. Kennedy University” and “Harvard University” are closer than the Wikitext embeddings,

while our embeddings of “John F. Kennedy International Airport” and “John F. Kennedy”

are further. We believe this property contributes to the faster convergence.

3.8 Conclusion

In this chapter, we presented a simple yet effective method, FGS2EE, to inject fine-grained

semantic information into entity embeddings to reduce the distinctiveness and facilitate the

learning of contextual commonality. FGS2EE first uses the word embeddings of semantic

type words to generate semantic embeddings, and then combines them with existing entity

embeddings through linear aggregation. Our entity embeddings draw entities of similar types

closer, while entities of different types are drawn further. Thus can facilitate the learning of

semantic commonalities about entity-context and entity-entity relations. We have achieved

new state-of-the-art performance using our entity embeddings.

For the future work, we are planning to extract fine-grained semantic types from unlabelled

documents and use the relatedness between the fine-grained types and contexts as distant

supervision for entity linking.
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Chapter 4

Improving Entity Linking through

Anonymous Entity Mentions

State-of-the-art named entity linking models normally use both local and global con-

textual information for ranking candidates. Global information exploits document level

coherence of the referenced entities by computing a pair-wise score between candidates of

a pair of named entity mentions (e.g., Raytheon and Boeing) in a document. However,

in a document, named entity mentions are significantly less frequent than anonymous

entity mentions (e.g., defense contractor and the company). In this chapter, we propose a

method, DOC-AET, to exploit the coherence between candidate entities and anonymous

entity mentions in a DOCument. We use the Anonymous Entity Type (AET) words to

extract anonymous entity mentions. We learn embeddings of AET words from the AET

words’ inter-paragraph co-occurrence matrix, thus the document-level entity type relat-

edness is encoded in the AET word embeddings. Then, we build AET entity embeddings

and document AET context embeddings using the AET word embeddings. The coherence

scores between candidate entities and anonymous entities are computed using the AET

entity embeddings and document context embeddings. By incorporating such coherence

scores for candidates ranking, DOC-AET has achieved new state-of-the-art results on

three of the five out-domain test sets for named entity linking.

4.1 Introduction

Named Entity Linking (NEL) or Named Entity Disambiguation (NED) is the task of linking the

ambiguous entity mentions in textual documents to the corresponding entities in a Knowledge

67
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Base (KB). For example, in Figure 3.1, the referenced entity of the mention “Nardelli” should

be the chief executive “Robert Nardelli”. NEL has been used in pre-processing for tasks such

as information extraction [16] and question answering [33].

Entity linking systems typically consist of two sequential modules: candidate entities genera-

tion and candidate entities ranking [27]. Research on NEL has largely focused on two types

of contextual information for candidate entities ranking: local information and global infor-

mation. Local information is based on words that appear in the context window around an

entity mention. For global information, the document-level coherence of the referenced entities

is exploited to make compatible linking decisions collectively [12, 31]. The global coherence

score is a pair-wise score computed by a bilinear form of the entity embeddings of candidates

of a pair of entity mentions in a document [10]. Multiple latent relations between mentions in

a document are also exploited to capture coherence [20]. Another way of using global informa-

tion is to sequentially link and accumulate dynamic context information from linked entities

[32].

All the aforementioned methods of using global information exploit the information of can-

didate entities of named entity mentions (e.g., “Nardelli” and “Home Depot Inc”). However,

such named entity mentions appear less frequently than anonymous entity mentions (e.g., the

company1 in Figure 4.1). Thus, such methods can only use limited global information, but

the more frequently occurring anonymous entity mentions are ignored. The anonymous entity

mentions always appear as fine-grained entity type words (e.g., the company, Canadian singer,

service provider, news agency etc.). These words are parts of anonymous entity mentions, and

we call such words Anonymous Entity Type (AET) words.

Coarse-grained entity type information (e.g., person, organization, location) has been used for

candidate entities selection [7, 10]. Fine-grained entity type information from BERT-encoding

[3] or Wikipedia articles [17] was incorporated into entity representations for candidates rank-

ing. However, these efforts focus on the type information of named entity mentions.

Our hypothesis is that the type information of anonymous entity mentions can capture more

contextual information. We can use the anonymous entity mentions in a document to infer

the types of the named entity mentions. For example, in Figure 3.1, company and chief

executive are highly related with each other in documents; when ranking the candidate entities

1We use italic font to represent anonymous entity mentions
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of “Nardelli”, the entity “Robert Nardelli” with type chief executive is more coherent with the

document that has many anonymous company mentions.

In this chapter, we propose a method DOC-AET to exploit DOCument-level coherence of

named entity mentions and anonymous entity mentions for improving entity linking. We use

the 3,227 fine-grained type words of Hou et al. [17] 2 as AET vocabulary. We use AET words

to extract anonymous entity mentions. We first learn embeddings of AET words from the

document-level AET words inter-paragraph co-occurrence matrix. Then we build AET entity

embeddings and document AET context embeddings using the AET word embeddings. The

coherence scores between candidate entities and anonymous entities are computed using the

AET entity embeddings and document context embeddings. By incorporating such coherence

scores for candidate ranking, we achieved new state-of-the-art performance on three of the five

out-domain test sets for NEL.

Our contributions can be summarized as follows:

• We are the first to explore the document-level relatedness of fine-grained types. We

propose a novel method to capture the relatedness of AET words from document-level

context, i.e., extract AET words’ inter-paragraph co-occurrence and learn AET word

embeddings. The document-level relatedness of AET words is encoded in the AET word

embeddings.

• We incorporate a new coherence score based on AET entity embeddings and document’s

AET context embeddings.

• We verify the effectiveness of the incorporated coherence score on standard benchmark

datasets and achieve significant improvement over the baselines.

The rest of this chapter is organized as follows. We introduce background in Section 4.2. The

related work is reviewed in Section 4.3. The overview of our method is provided in Section

4.4. We describe our method and experiments in Section 4.5-4.6 and Section 4.7 respectively.

2https://github.com/fhou80/EntEmb/

https://github.com/fhou80/EntEmb/
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4.2 Background

4.2.1 Named Entity Linking

Formally, given a knowledge base (KB) that contains a set of entities E and a document D in

which a set of named entity mentions M are identified in advance, the goal of entity linking

is to link each entity mention mi ∈ M to its corresponding entity ei ∈ E. It is possible that

an entity mention does not have its corresponding entity in the given KB (i.e., ei =NIL).

Because |E| can be very large, entity linking systems typically consist of two modules: candi-

date entity generation and candidate entity ranking. Candidate entity generation is to select

possibly referenced entities Em in the KB for mention m. Candidate entity ranking is to rank

the candidate entities in Em to find out which entity e ∈ Em is the most likely referenced

entity. Research on NEL has largely focused on the following two types of candidate ranking

scores.

4.2.2 Local Score for Candidate Ranking

The local context score Ψ(ei, ci) measures the relevance of entity candidates of each mention

independently. Neural network based NEL models usually compute Ψ as follows:

Ψ(ei, ci) = e>i B f(ci) (4.1)

where ei ∈ Rd is the embedding of candidate entity ei; B ∈ Rd×d is a diagonal matrix;

f(ci) ∈ Rd is a feature representation of local context ci surrounding mention mi.

The local context score is combined with the context-independent mention-entity prior p̂(e|m)

[10] as follows:

Ψ(ei, ci,mi) = f(Ψ(ei, ci), p̂(ei|mi)) (4.2)

where f is a neural network with two fully connected layers and ReLU activation function.

4.2.3 Global Score for Candidate Ranking

The global score adds a pairwise score Φ(ei, ej , D) to take the coherence between entities in

document D into account.

Φ(ei, ej , D) =
1

n− 1
e>i C ej (4.3)
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where ei and ej ∈ Rd are the embeddings of entity ei, ej , which are candidates for mention

mi and mj , respectively; C ∈ Rd×d is a diagonal matrix. The pairwise score of Le and Titov

[20] considers K latent relations between entities.

Φ(ei, ej , D) =
K∑
k=1

αijk e>i Rk ej (4.4)

where αijk is the weight for relation k, and Rk is a diagonal matrix for measuring relations k

between two entities.

4.3 Related Work

Our research focuses on improving NEL by exploiting coherence of candidate entities’ type

and anonymous entities’ type. We use linear aggregations of AET word embeddings to build

AET candidate entity embeddings and AET document context embeddings. Related topics

are as follows.

4.3.1 NEL Using Entity Type Information

Coarse-grained entity type information (e.g., person, organization, location) has been used for

candidate entities selection [7, 10]. Fine-grained entity type information is usually encoded

into entity embeddings. Entity embeddings are the vector representations of entities built

from entity-entity co-occurrences [9, 31, 35], or canonical Wikipedia articles and local context

surrounding anchor links [10].

Gupta et al. [14] map entities’ Freebase types to the FIGER [28] types, and learn entity

embeddings and type embeddings jointly on the training data. Chen et al. [3] extract latent

entity type information from the embeddings generated by applying the pre-trained BERT

encoder to the Wikipedia context of entities. The FGS2EE method [17] injects entity type

information into entity embeddings directly. FGS2EE first gets fine-grained types of entities by

extracting type words from the first paragraph of Wikipedia articles, and then computs typed

entity embeddings by averaging the Word2Vec vectors of type words. The linear aggregations

of Ganea and Hofmann [10] entity embeddings and typed entity embeddings are used for

candidate ranking.
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These efforts focus on the type information of named entity mentions. As such, we aim to

exploit the coherence between candidate entities and anonymous entity types (mentions) in

the documents.

4.3.2 Word Embeddings

Word embeddings, such as Word2Vec [22] and Glove [25], exclusively exploit the intra-sentence

context of words to capture the semantic and syntactic similarities. In this chapter, we use

the inter-paragraph co-occurrence of AET words to capture the document-level relatedness of

anonymous entity types.

4.3.3 Embeddings Aggregation

It has been proven that the global word embedding is a linear combination of its sense em-

beddings [1, 24]. Global embeddings of polysemous words [30] or entities [17] can be obtained

by linear aggregations. We use linear aggregations of AET word embeddings to generate

AET based representations of entities and a document. More details about related work on

embeddings aggregation can be found in Section 3.3 of Chapter 3.

4.3.4 Fine-grained Entity Typing

To use entity type information, the entities must firstly be typed. Fine-grained entity typing

(FGET) is a task of classifying entities into fine-grained types [28] or ultra fine-grained semantic

labels [6]. Mention-level FGET only infers the entity types that are coherent with a specific

context [11], while entity-level FGET considers all possible types [29]. Gupta et al. [14] mapped

the Freebase types of entities to FIGER [28] types, but this method is less credible, as noted

by Gillick et al. [11]. Bhowmik and de Melo [2] used a memory-based network to generate

a short description of an entity, e.g., “Roger Federer” is described as ‘Swiss tennis player’.

Hou et al. [17] heuristically extract fine-grained semantic types from the first paragraph of

Wikipedia articles, they employ over 3,000 vocabulary words as type, and treat types as a flat

list.
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4.4 DOC-AET: Method Overview

4.4.1 Motivation

Our DOC-AET method aims at exploiting the coherence between anonymous entity mentions

and candidate entities’ types to improve NEL. We observe that fine-grained AET words appear

frequently as apposition (e.g., Defense contractor Raytheon), coreference (e.g., the company)

or anonymous entities (e.g., American defense firms). We can use the AET words from

unlabelled documents to capture the document-level relatedness of anonymous entity types.

But to capture the longer contexts and document-level relatedness, we only consider the inter-

paragraph co-occurrence.

Robert Nardelli
[american, businessman, chairman, chief executive]

Francesco
Nardelli

[italian, italy, naturalist, species, co-founder]

[band, business, album]
Steve Nardelli

Ronald Sandler, chief executive of
Lloyd's of London, underwent a
second day of ...
Sandler was questioned ... by
lawyers for American investors...
Payne told Sandler firmly that the
company needed to have a  ...

"We are taking steps to revitalise
CompuServe"; said Chief Executive
Bob Massey.
The company said it would cut 150
jobs...
CompuServe also blamed the loss
on investments in ...

But in the end , analysts said , the criticism over Nardelli's hefty pay and The
Home Depot Inc. 's poor stock performance forced a change of heart . 
...
At Home Depot 's annual meeting last May , shareholder proposals to give
investors a say on ...
...
The company declined to make Blake available for comment , and messages

global	context	embedding	from	AET	words

chief executive
company
investor

[investor, company]

embeddings	of	AET	words	(from	inter-paragraph	co-occurence)

...

candidate	entity	embeddings	from	AET	words

Ψ(ei, D)

AET (ei)

AET (D)

1

Figure 4.1: The process of incorporating the coherence score between entity candidates and
Anonymous Entity Type (AET) words (anonymous entity mentions). The AET words are

highlighted.
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4.4.2 AET Dictionary

We use the type words dictionary of Hou et al. [17] as our AET word dictionary. The dictionary

contains 3,227 bigram and unigram types as follows:

• profession/subject, e.g., footballer, soprano, biology, rugby.

• title, e.g., president, ceo, head, director.

• industry/genre, e.g., carmaker, manufacturer, defense contractor, hip hop.

• geospatial, e.g., canada, asian, australian.

• ideology/religion, e.g., communism, buddhism.

• miscellaneous, e.g., book, film, tv, ship, language.

4.4.3 Process of DOC-AET Method

Exploiting the coherence between anonymous entity mentions and candidate entities’ types is

not trivial. As shown in Figure 4.1, the general process can be summarized as follows:

Step 1: Extract anonymous entity mentions (highlighted words) from unlabelled documents;

build document-level inter-paragraph co-occurrence matrix; learn inter-paragraph AET

words embeddings from co-occurrence. This step is shown in the upper part above

the dashed line.

Step 2: Generate AET entity embeddings using the entity types shared by [17]. For example,

the “Steve Nardelli” has three types: band, business and album, the entity embedding

is generated by averaging the embeddings of these three AET words.

Step 3: Incorporate a coherence score Ψ(ei, D) between candidate entities’ embeddings and

document AET context embeddings. For example, the document has two AET words:

investor and company, the AET context embedding is generated by averaging the

embeddings of these two AET words.

4.5 Generate AET Word Embeddings

We build AET words’ inter-paragraph co-occurrence matrix from unlabelled documents and

then learn the word embeddings from the inter-paragraph co-occurrence matrix. This process

is similar to method of Glove [25].
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4.5.1 Document-level Inter-paragraph Co-occurrence of AET Words

The local context score in Equation (4.1) captures the local context within a sentence, while

our DOC-AET score aims at capturing the entity type relatedness across paragraphs (i.e.

longer context). We only extract inter-paragraph co-occurrence of AET words, instead of the

immediate neighbouring context words.

For each document, we extract a list of AET words from each paragraph. Each document is

transformed into a structure of two-dimensional list of AET words. For example, the document

in Figure 4.2 can be represented as: [[’online’, ’service’ ], [], [’chief ’, ’executive’ ], [’company’,

’programme’ ]].

<p> ... reported a surprisingly large ... loss, blaming a decline in the
number of subscribers to the No. 2 online service and ... </p>
<p>CompuServe predicted a second-quarter loss but said earnings
would improve in the second half of the fiscal year.</p>
<p>"We are taking steps to revitalise CompuServe," said Chief
Executive Bob Massey.</p>
<p>The company said it would cut 150 jobs, or 4 percent of its work
force, as part of a cost-cutting programme expected to ...</p>
<p> ...     ...   ... </p>
....

[online, service]

[chief, executive]
[company, programme]

[ ]
P1:
P2:
P3:
P4:

(online, company)
(online, programme)
(service, company)
(service, programme)

(P1, P4)

Figure 4.2: Building AET words inter-paragraph co-occurrence matrix. AET words are
highlighted.

As shown in Figure 4.2, we build AET words’ inter-paragraph co-occurrence matrix from the

structured representations of documents. Each paragraph is treated as a word. For a pair of

paragraphs within context window, we pick one AET word from the left paragraph and right

paragraph respectively to count co-occurrence. For example, if paragraph [’online’, ’service’ ]

and paragraph [’company’, ’programme’ ] are picked, the co-occurrences of (online,company),

(online, programme), (service,company) and (service,programme) are updated. Paragraph

pairs that are p paragraphs apart contribute 1/p to the total count. We build a symmetric

co-occurrence matrix.
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4.5.2 Learn AET Word Embeddings

We use the weighted least squares regression model of Glove [25] to learn the AET word

embeddings. The cost function is as follows:

J =
V∑

i,j=1

h(Xij)(w
T
i w̃j + bi + b̃j − logXij)

where Xij is the co-occurrence count of word i and j, w ∈ Ra are the AET word embeddings.

The weighting function h(x) is defined as follows:

h(x) =


(x/xmax)α, if x < xmax

1, otherwise

(4.5)

The model generates two sets of word vectors w and w̃, w̃ ∈ Ra are separate word embeddings

(w and w̃ are equivalent as our X is symmetric) .

4.6 Incorporating AET Scores

4.6.1 Entity Embeddings from AET Words

We use the entity types shared by [17]. Suppose entity e has T AET words, the AET entity

embedding ae of e is generated by averaging the AET word embeddings of these T words.

ae =
1

T

T∑
i=1

wi (4.6)

where w ∈ Ra are the AET word embeddings.

4.6.2 Document Context Embeddings from AET Words

The document AET context embedding aD is generated similarly by averaging the embeddings

of AET words extracted from the document. Suppose L AET words are extracted from

document D, the AET context embeddings of D is

aD =
1

L

L∑
i=1

wi
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4.6.3 Local AET Scores Using Document Context

The AET coherence score of entity ei is computed as follow:

Ψ(ei, D) = a>i A aD (4.7)

where ai ∈ Ra is the AET embedding of candidate entity ei; A ∈ Ra×a is a diagonal matrix;

aD ∈ Ra is the AET context embedding of document D. After incorporating this score,

Equation (4.2) becomes:

Ψ(ei, ci,mi, D) = f(Ψ(ei, ci),Ψ(ei, D), p̂(ei|mi)) (4.8)

4.6.4 Model Training

Following Le and Titov [20], we use Equation (4.8) and Equation (4.4) to define a conditional

random field (CRF) as follows:

q(ED|D) ∝
{ n∑
i=1

Ψ(ei, ci,mi, D) +
∑
i 6=j

Φ(ei, ej , D)
}

(4.9)

The max-marginal probability for each mention-candidate is estimated using max-product

loopy belief propagation (LBP):

q̂i(ei|D) ≈ max
e1,...,ei−1,
ei+1,...,en

q(ED|D) (4.10)

The final score for ranking entity candidates is defined as follows:

ρi(e) = g(q̂i(e|D), p̂(e,mi))

where g is a two-layer neural network, and p̂(e|m) is the context-independent mention-entity

prior.

The other parts of training the model are the same as [20]. The key aspects are as follows:

• The model is trained by minimizing the marginal ranking loss as follows:

L(θ) =
∑
D∈D

∑
mi∈D

∑
e∈Emi

max(0, γ − ρi(e∗i ) + ρ(e)) (4.11)
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where θ are the model parameters, D is the collection of training documents.

• To encourage diversity, a regularization term is added to the loss function in Equation

4.11.

• Adam [18] is used as an optimizer.

4.7 Experiments

4.7.1 Datasets for AET Word Embeddings

We use the RCV1, TREC-Disk5 (LA TIMES) and TREC-Disk4 (FINANTIAL TIMES) as

training corpus for learning AET word embeddings. These datasets have paragraph segments

and our method extracts AET word inter-paragraph co-occurrence from these paragraph seg-

ments. We obtain 1,072,120 documents, and 3,140 AET words appear in these documents.

4.7.2 Datasets for NEL

We validate the effectiveness of our method on the following benchmark datasets:

We use the AIDA-CoNLL [15] dataset for in-domain training and validation. AIDA-CoNLL

contains AIDA-train for training, AIDA-A for dev, and AIDA-B for testing, having respectively

946, 216, and 231 documents.

We evaluate our trained NEL model based on the following out-domain datasets. MSNBC,

AQUAINT, ACE2004, were cleaned and updated by Guo and Barbosa [13], and have

respectively 20, 50, and 36 documents for test. WNEDCWEB (CWEB), WNED-WIKI

(WIKI), were automatically extracted from ClueWeb and Wikipedia [8, 13], and both have

320 documents for testing.

Following previous works, we use the pre-processed data shared by Ganea and Hofmann [10]

and Le and Titov [20, 21], and consider only mentions that have entities in the KB.

4.7.3 Evaluation Metrics and Baselines

We use the standard Micro-F1 score as evaluation metric. The method of computing Recall,

Precision and Micro-F1 can be found in the survey of Shen et al. [27].
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Our research is following the works of Ganea and Hofmann [10], Le and Titov [20] and

Hou et al. [17]. Thus, we use their linking methods (named DeepEd, DeepEd+MulRel,

DeepEd+MulRel+FGS2EE, respectively) as baselines. We also compare our method with

other state-of-the-art entity linking models.

4.7.4 Experimental Settings

For AET word embeddings, we set the dimension a to 100, and the xmax, α in Equation (4.5)

are set to 100 and 0.75, respectively. The context window for building inter-paragraph co-

occurrence is set to 10. We use the Wikipedia entity typing data shared by [17]3 to generate

the AET entity embeddings in Equation (4.6).

In Equation (4.1) and Equation (4.4), we use the semantic reinforced entity embeddings shared

by Hou et al. [17].

We modify the PyTorch code of MulRel [20] 4 to incorporate the AET coherence score.

Following Le and Titov [20], we use the following parameter values: γ = 0.01 (in Equation

4.11), the number of LBP loops is 10, the f in Equation 4.7 is a neural network with two fully

connected layers of 100 hidden units and ReLU non-linearities. We select ment-norm, K = 3

(in Equation 4.4). The learning rate starts with 10−4 and change to 10−5 when the F1 score

on dev set reaches 91.5%. The model is trained and evaluated on a single GTX 1080 GPU.

Similar to Ganea and Hofmann [10] and Le and Titov [20, 21], we run our NEL system 5 times

on the same datasets, and report the mean and 95% confidence interval of the Micro-F1 score.

Our data, source code and trained model are publicly available at https://github.com/

fhou80/DOC-AET.

4.7.5 Results

The results on six test sets are shown in Table 4.1. The linking methods are categorized into

four types.

3download from https://drive.google.com/open?id=1OtLnrH4SpDzdNNcuca-DdXCMwsDPsG3B
4https://github.com/lephong/mulrel-nel

https://github.com/fhou80/DOC-AET
https://github.com/fhou80/DOC-AET
https://drive.google.com/open?id=1OtLnrH4SpDzdNNcuca-DdXCMwsDPsG3B
https://github.com/lephong/mulrel-nel
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Linking Methods AIDA-B MSNBC AQUAINT ACE2004 CWEB WIKI
Wikipedia

Milne and Witten [23] - 78 85 81 64.1 81.7
Ratinov et al. [26] - 75 83 82 56.2 67.2
Hoffart et al. [15] - 79 56 80 58.6 63
Cheng and Roth [4] - 90 90 86 67.5 73.4
Chisholm and Hachey [5] 84.9 - - - - -

Wiki + Unlabelled data
Lazic et al. [19] 86.4 - - - - -
Le and Titov [21] 89.66±0.16 92.2±0.2 90.7±0.2 88.1±0.0 78.2±0.2 81.7±0.1

Wiki + Extra supervision
Chisholm and Hachey [5] 88.7 - - - - -

Fully-supervised(Wiki+ AIDA train)
Guo and Barbosa [13] 89.0 92 87 88 77 84.5
Globerson et al. [12] 91.0 - - - - -
Yamada et al. [31] 91.5 - - - - -
RMA [34] 91.5 93.2 88.3 89.3 79.3 82.2
DeepEd [10] 92.22±0.14 93.7±0.1 88.5±0.4 88.5±0.3 77.9±0.1 77.5±0.1
DeepEd + MulRel [20] 93.07±0.27 93.9±0.2 88.3±0.6 89.9±0.8 77.5±0.1 78.0±0.1
DCA-RL [32] 93.73±0.2 93.80±0.0 88.25±0.4 90.14±0.0 75.59±0.3 78.84±0.2
DeepEd + MulRel + FGS2EE [17] 92.63±0.14 94.26±0.17 88.47±0.23 90.7±0.28 77.41±0.21 77.66±0.23

+ DOC-AET 92.59±0.17 94.55±0.11 88.96±0.41 91.27±0.14 77.56±0.14 77.75±0.24

Table 4.1: F1 scores on six test sets. The AIDA-B dataset is the in-domain test set, while
the other five datasets are out-domain test sets. The methods in bold are our direct baselines.

Firstly, we compare our system to fully-supervised systems, which were trained on AIDA-

CoNLL documents. Recall that every mention in these documents has been manually anno-

tated or validated by a human expert. Comparing with all the fully-supervised systems, includ-

ing our direct baselines DeepEd [10], DeepEd+MulRel [20] and DeepEd+MulRel+FGS2EE

[17], our approach is very effective, and achieved significant improvement on three of the five

out-domain test sets. The three out-domain test sets, MSNBC, AQUAINT and ACE2004

are small data sets manually cleaned and labelled from news articles. The writing styles of

these news articles are similar to our datasets for learning AET word embeddings. Compar-

ing with DeepEd+MulRel+FGS2EE [17], it is fair to say that incorporating the AET

coherence scores can improve performance on all out-domain test sets with slight drop on the

in-domain test set.

We then compare our system to the systems that relied on Wikipedia and those which used

Wikipedia along with unlabeled data (‘Wikipedia + unlabelled data’). Our model outper-

formed all of them on the in-domain test set and two of the five out-domain test sets. It is

seen that the method of Le and Titov [21] outperformed our model on three out-domain test

sets: AQUAINT, CWEB and WIKI. But it should be noted that CWEB and WIKI are

believed to be less reliable [10], as they are automatically extracted (all entity linking systems

perform comparatively poor on the both test sets). Moreover, their model is trained on a

large training set with 30,000 documents, while the AIDA-CoNLL training set only has 946

documents. Our method only extracts the inter-paragraph co-occurrence of 3,140 words.
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Linking Methods Average F1
DeepEd [10] 85.22

+MulRel [20] 85.5
+FGS2EE [17] 85.7

+ DOC-AET 86.02

Table 4.2: Ablation analysis on the effectiveness of our proposed AET coherence scores.
The “Average F1” denotes the averaged F1 on the five out-domain test sets.

4.7.6 Ablation Analysis

As we mentioned, our research can be seen as novel but along the line of research by Ganea

and Hofmann [10], Le and Titov [20] and Hou et al. [17]. Thus, we perform ablation analysis

to gauge contributions of our research.

The method of DeepEd [10] is the first to leverage learned neural representations instead

of manually designed features. Their deep learning architecture for NEL combines entity

embeddings, a neural attention mechanism over local context windows, and unrolled differ-

entiable message passing for global inference. The MulRel method [20] improved DeepEd

by modelling latent multiple relations between textual mentions, i.e., the coherence scores of

entity candidates are computed using Equation 4.4 instead of Equation 4.3. Hou et al. [17]

inject fine-grained semantic information into entity embeddings to facilitate the learning of

contextual commonality.

We use the average F1 score on the five out-domain test sets to conduct ablation comparison,

as listed in Table 4.2. The MulRel improved the average F1 on the five out-domain test sets

by +0.28. Using the semantic reinforced entity embeddings of FGS2EE boost the average F1

by +0.2. Incorporating the coherence score between entity candidates and anonymous entity

mentions improved the average F1 by +0.32.

4.7.7 Model Complexity

Comparing with the model of MulRel [20], our model added the following 200 parameters:

(1) 100 parameters are the diagonal matrix A in Equation 4.7; (2) 100 more parameters are

integrated in the f function in Equation 4.8 to incorporate the AET coherence score Ψ(ei, D).

Thus the complexity of our model should be slightly more expensive than MulRel [20] and

DeepEd [10]. However, our model converges faster than MulRel: on average our model

needs 80 epochs, while MulRel needs 120 epochs and DeepEd needs 1250 epochs. In terms

of wall-clock time, our model requires less than 1 hour to train on a single GTX 1080, and
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AET Words
AET Cosine Glove Cosine Word2Vec Cosine
Similarity Similarity Similarity

investment 0.9381 0.7935 0.6319
stock 0.9341 0.4737 0.4529
trading 0.9236 0.5374 0.3381
equity 0.9230 0.7325 0.5259
market 0.9098 0.5695 0.4209
finance 0.8875 0.5504 0.3015
fund 0.8851 0.6151 0.3248
bank 0.8829 0.5119 0.2584
portfolio 0.8826 0.5637 0.3864
firm 0.8816 0.4944 0.3218

Table 4.3: Cosine similarity between “investor” and other AET words using different em-
beddings

the difference in training time between our model and MulRel is negligible. The training of

MulRel is ten times faster than that of DeepEd.

4.7.8 AET Word Embeddings Evaluation

Our AET word embeddings are learnt from AET words’ inter-paragraph co-occurrence, thus

they can capture the related anonymous entity mentions from longer contexts that may span

several paragraphs. Such AET word embeddings are used to compute the coherence scores

between entity candidates and other anonymous entity mentions in the same document.

In contrast, the Glove [25] and Word2Vec embeddings are learnt from local context. Such

embeddings can only be used to compute the coherence between entity candidates and local

context (Equation 4.1).

To demonstrate the difference between our AET word embeddings and Glove/Word2Vec,

we list the cosine similarities between investor and other AET words using different word

embeddings in Table 4.3. The words in the left column are the top-10 most similar words of

investor using AET embeddings. The documents they appear in are similar to the documents

where investor appears, thus the AET cosine similarities are higher. In contrast, the local

contexts where they appear are different; thus, the Glove and Word2Vec cosine similarities are

smaller.
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4.8 Conclusion

In this chapter, we present a method DOC-AET to exploit coherence of named entity mentions

and anonymous entity type (AET) words/mentions for improving named entity linking. We

show that incorporating the coherence score between candidate entities and AET mentions

can significantly improve NEL performance. DOC-AET used the fine-grained type words of

Hou et al. [17] as AET vocabulary to extract anonymous entity mentions. The document-

level relatedness between entity types is encoded into the AET word embeddings which are

learnt from the AET words’ inter-paragraph co-occurrence matrix. AET entity embeddings

and document AET context embeddings are computed using the AET word embeddings. The

coherence scores between candidate entities and anonymous entities are computed using the

AET entity embeddings and document context embeddings. By incorporating such coherence

scores for candidate ranking, we achieve state-of-the-art performance on three of the five out-

domain datasets.

For the future work, we plan to apply the document-level entity type coherence to the task of

fine-grained entity typing.
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Chapter 5

Exploiting Less Anisotropic Span

Representations for Entity

Coreference Resolution

It was found that less anisotropic (anisotropic embeddings are not directionally uni-

form) static word embeddings gain large improvements on downstream NLP tasks. The

state-of-the-art coreference resolution models use the output layer of a contextualization

model to build span embeddings, and employ the document-level semantics to refine the

span embeddings as higher-order coreference resolution. However, the contextualized and

higher-order refined span embeddings tend to be highly anisotropic, and make it difficult

to distinguish between related but distinct entities (e.g., pilots and flight attendants).

In this chapter, we propose five LASE (Less Anisotropic Span Embeddings) schemes for

coreference resolution, and investigate their effectiveness with experiments. We find that

when our Internal and LowerDep schemes are applied to ELECTRA and SpanBERT,

their performances are improved by +1.9 F1 and +0.5 F1 on the OntoNotes benchmark,

respectively. Extensive ablation studies also show that the longer-context-encoded con-

textualized representations of ELECTRA and SpanBERT are more effective than higher-

order span embeddings for coreference resolution.

5.1 Introduction

Coreference resolution is the task of identifying and clustering mentions in a document that

refer to the same entity. Traditional coreference resolution models [8, 9, 11, 26, 32] work

89
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in a pipeline fashion. They usually process the task in two stages: mention detection and

coreference resolution. At both stages, they rely on syntactic parsers to build complicated

hand-engineered features. Such pipelined models suffer from cascading errors and are difficult

to be generalized to new datasets and languages [19].

Lee et al. [19] proposed the first end-to-end model that tackles mention detection and coref-

erence resolution simultaneously. They consider all spans as mention candidates, and use two

scoring functions to learn which spans are entity mentions and which are their coreferential

antecedents. The training objective is to optimize the marginal log-likelihood of all correct

antecedents implied by the gold clustering. To control the model complexity, they use a unary

mention scoring function to prune the space of spans and antecedents, and a pair-wise an-

tecedent scoring function to compute the softmax distribution over antecedents for each span.

Both of the scoring functions are simple feed-forward neural networks, and the input to both

scoring functions are the learned span embeddings.

Thus, the core of end-to-end neural coreference resolution models is the learning of span

embeddings. Bi-directional LSTM was first used to generate the embedding representations of

spans [19, 33]. Following the success of contextualized representations, ELMO [20, 24], BERT

[14, 16, 18] and SpanBERT [17] are used to learn span embeddings.

However, the contextualized representations make it difficult to distinguish between related

but distinct entities (e.g., pilots and flight attendants [19]), and have recently been shown to

be anisotropic (i.e., not directionally uniform) [12], especially the topmost layer representa-

tions. Also, it has been found that less anisotropic embeddings lead to large improvements on

downstream NLP tasks [23]. More details about anisotropy can be found in Section ??.

In this chapter, we propose the following five LASE (Less Anisotropic Span Embeddings)

schemes to generate less anisotropic span embeddings: Boundary, Internal, Double, Penulti-

mate, LowerDep. Our extensive experiments show that:

1. When our Internal and LowerDep schemes are applied to ELECTRA [10] and Span-

BERT, their performances are improved by +1.9 F1 and +0.5 F1 on the OntoNotes

benchmark, respectively.

2. The span embeddings from longer-context-encoded contextualized representations of

ELECTRA and SpanBERT are more effective than higher-order span embeddings.
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3. The 12th layer embeddings of BERT-base are no better than the 11th layer embeddings

for coreference resolution.

4. The degree of anisotropy can be used as guidance for hyperparameter settings.

The rest of this chapter is organized as follows. We introduce background in Section 5.2. The

related work is reviewed in Section 5.3. The merits for gauging the degree of anisotropy are

given in Section 5.4. The sources of anisotropy are analyzed in Section 5.5. We propose five

LASE schemes in Section 5.6. The experimental results are reported and analyzed in Section

5.7.

5.2 Background of End-to-End Neural Coreference Resolution

5.2.1 Task Description

The end-to-end coreference resolution tackles mention detection and coreference resolution

simultaneously by span ranking, thus it is formulated as a task of assigning antecedents ai for

each span i. A possible span candidate is any continuous N-gram within a sentence. The set

of possible assignments ai is Ai = {1, . . . , i − 1, ε}, ε is called a ’dummy’ antecedent. If span

i is assigned to a non-dummy antecedent – span j, then we have ai = j. If span i is assigned

to dummy antecedent ε, then it indicates two scenarios: (1) span i is not an entity mention;

(2) span i is the first mention of a new entity (cluster). Through transitivity of coreferent

antecedents, these assignment decisions induce clusters of entities over the document.

5.2.2 First-order Coreference Resolution

The first-order end-to-end coreference resolution model [19] independently ranks each pair

of spans using a pairwise scoring function s(i, j). The scores are then used to compute the

antecedent distribution P (ai) for each span i:

P (ai) =
es(i,ai)∑
j∈Ai

es(i,j)
(5.1)

The coreferent score s(i, j) for a pair of spans includes three factors: (1) sm(i), the score for

span i being a mention, (2) sm(j), the score for span j being a mention, (3)sa(i, j), the score

of j being antecedent of i:
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s(i, j) =


0 j = ε

sm(i) + sm(j) + sa(i, j) j 6= ε

(5.2)

The scoring functions sm and sa take span representations g as input:

sm(i) = wm · FFNNm(gi)

sa(i, j) = wa · FFNNa([gi,gj ,gi ◦ gj , φ(i, j)])
(5.3)

where · denotes the dot product, ◦ denotes element-wise multiplication; FFNN denotes a

feed-forward neural network.

However, it is intractable to score every pair of spans in a document. There are O(W 2) spans

of potential mentions in a document (W is the number of words). Comparing every pair would

be O(W 4) complexity. Thus, pruning is performed according to the mention scores sm(i) to

reduce spans that are unlikely to be an entity mention.

5.2.3 Higher-order Coreference Resolution

The first-order coreference resolution models only consider pairs of spans, and do not directly

incorporate any information about the entities to which the spans might belong. Thus, the

first-order models may suffer from consistency errors.

Lee et al. [20] proposed a higher-order model that iteratively refine the span representations gni

of span i at nth iteration, using information from antecedents. The refined span representations

are used to compute the refined antecedent distribution Pn(ai):

Pn(ai) =
es(g

n
i ,g

n
ai

)∑
j∈Ai

es(g
n
i ,g

n
j )

(5.4)

At each iteration, the expected antecedent representation ani of each span i is computed using

the current antecedent distribution Pn(ai) as an attention mechanism:

ani =
∑
j∈Ai

Pn(j) · gnj (5.5)
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The current span representation gni is then updated via interpolation with its expected an-

tecedent representation ani :

gn+1
i = fni ◦ gni + (1− fni ) ◦ ani (5.6)

where fni = σ(Wf [gni ,a
n
i ]) is a learned gate vector. Thus, the span representation gn+1

i at

iteration n+ 1 is an element-wise weighted average of the current span representation gni and

its direct antecedents.

5.2.4 Span Embeddings Based on Contextualized Representations

The core of end-to-end neural coreference resolution models is the learning of the vectorized

representations of spans of text. The span representation gi of span i is usually a concatenation

of four vectors as follow:

gi = [g∗START (i),g
∗
END(i), ĝi, φ(i)] (5.7)

where START (i) and END(i) are the start position and end position of span i respec-

tively, Boundary representations g∗START (i),g
∗
END(i) are the vector representations of word

START (i) and END(i) respectively. Internal representation ĝi is a weighted sum of word

vectors in span i, φ(i) is a feature vector encoding the size of span i.

Assume the vector representations of each word are {x1, · · · ,xT } (T is the length of the

document), Lee et al. [19], Zhang et al. [33] and Lee et al. [20] use a bi-directional LSTM to

build the first three vectors of span representation gi:

g∗START (i) = BiLSTM(xSTART (i))

g∗END(i) = BiLSTM(xEND(i))

ĝi =

END(i)∑
t=START (i)

ai,t · xt

(5.8)

where ai,t is a learned weight computed from BiLSTM(xt), xt can be GloVe [15, 19], ELMO

[20, 24], or concatenation of GloVe and CNN character embeddings [27, 33].

Following the success of contextualized representations, Kantor and Globerson [18], Joshi et al.

[16] replace the LSTM-based encoder with the BERT transformer. They either use BERT in

a convolutional mode [18] or split the documents into fixed length before applying BERT [16].
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Kantor and Globerson [18] use a learnable weighted average of the last four layers of BERT

to build span representations. Joshi et al. [16] use the topmost layer output of BERT to

build span representations:

g∗START (i) = BERTl=top(wSTART (i))

g∗END(i) = BERTl=top(wEND(i))

ĝi =

END(i)∑
t=START (i)

ai,t ·BERTl=top(wt)

(5.9)

where BERTl(wi) is the lth layer contextualized embeddings of token wi, ai,t is a learned

weight computed from topmost layer output. They split documents into segments of fixed

length and apply BERT to each segment. They proposed two variants of splitting: overlap

and independent (non-overlapping). Surprisingly, the independent splitting performs better.

5.3 Related Work

End-to-end neural Coreference Resolution Our work on coreference resolution follows

the research of Lee et al. [19], Lee et al. [20], Joshi et al. [16], Joshi et al. [17], details about

their work can be found in Section 5.2.

Measures of Contextuality Ethayarajh [12] propose to measure how contextual a word

representation is using three different metrics: self-similarity, intra-sentence similarity, and

maximum explainable variance. We adopt their measures to gauge how anisotropic and how

contextual a word representation is, and set hyperparameters of our schemes of exploiting

lower layer embeddings.

Embeddings Aggregation Our research is closely related to the work on aggregation and

evaluation of the information content of embeddings from different sources (e.g., polysemous

words have multiple sense embeddings). More details about related work on embeddings

aggregation can be found in Section 3.3 of Chapter 3.

5.4 Gauging Contextualized Representations

Isotropy has both theoretical and empirical benefits. In theory, it allows for stronger “self-

normalization” during training [5], and in practice, less anisotropic static word embeddings
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achieved improvements on several downstream NLP tasks [23]. Anisotropy means that ele-

ments of vectorized representations are not uniformly distributed with respect to direction.

Instead, they occupy a narrow cone in the vector space. We first gauge the contextualized

representations before incorporating lower layer embeddings. We adopt the measures of Etha-

yarajh [12] to the gauging.

random similarity random similarity is the average cosine similarity between the represen-

tations of uniformly randomly sampled words from different contexts. We use it to measure

the degree of anisotropic.

self-similarity the self-similarity of a word w in layer l is the average cosine similarity between

its contextualized representations across its n unique contexts.

intra-sentence similarity intra-sentence similarity of a sentence is the average cosine sim-

ilarity between its word representations and the sentence vector, which is the mean of those

word vectors.

We use self-similarity and intra-sentence similarity to measure the degree of contextualiza-

tion.

5.5 Sources of Anisotropic Span Embeddings

For the higher-order coreference resolution task, we identify the following two sources of

anisotropic span embeddings.

• Higher-order Refining The span embeddings refinement for higher-order coreference

resolution, as shown in Equation (5.5) and (5.6), is essentially injecting information

from other spans into a span’s embedding. The more iterations for refining the span

embeddings, the more anisotropic the span embeddings will be.

• Contextualized Representations Ethayarajh [12] show that the contextualized word

representations of all words are anisotropic. Representations in higher layers are gener-

ally more anisotropic than those in lower ones. Building span embeddings directly from

the output layer contextualized word representations will inevitably cause anisotropy.
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5.6 Generating Less Anisotropic Span Embeddings

In this section, we describe our LASE schemes of generating less anisotropic span embeddings.

5.6.1 Lower Depth for Higher-order Refinement

To decrease the degree of anisotropy caused by span embedings refinement, we propse the

LowerDep scheme.

LowerDep scheme: apply span embeddings refinement Equation (5.5) and (5.6) only one

iteration.

5.6.2 Using Penultimate Layer Embeddings

For BERT, we gauge that the topmost layer output is no better than the embeddings of the

penultimate layer for coreference resolution. Thus we use BERT’s penultimate layer embed-

dings directly for coreference resolution.

Penultimate scheme: use penultimate layer embeddings directly:

g∗START (i) = BERTl=penult(wSTART (i))

g∗END(i) = BERTl=penult(wEND(i))

ĝi =

END(i)∑
t=START (i)

ai,t ·BERTl=penult(wt)

(5.10)

5.6.3 Using Linear Aggregations of Multiple Layers Embeddings

For SpanBERT and ELECTRA, we gauge that their contextualized embeddings efficiently

encoded the contextual information. Contextualized word representations are more context-

specific in higher layers. But the higher the layer, the more anisotropic the contextualized

representations. To reduce the degree of anisotropic while retaining the contextual information,

we use the linear aggregation of contextualized embeddings of the first layer and the topmost

layer. We propose the following three schemes.
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Boundary scheme: only apply aggregated embeddings to the boundary representations:

AT (wt) = α ◦ Tl=1(wt) + (1− α) ◦ Tl=top(wt)

g∗START (i) = AT (wSTART (i))

g∗END(i) = AT (wEND(i))

(5.11)

where Tl(w) is the lth layer Transformer [28] based contextualized embeddings of token w, AT

is the aggregated representation, scalar α is the weight of first layer embeddings.

Internal scheme: only apply aggregated embeddings to the internal representation:

AT (wt) = α ◦ Tl=1(wt) + (1− α) ◦ Tl=top(wt)

at = wa · FFNNa(AT (wt))

ai,t =
exp(at)

END(i)∑
k=START (i)

exp(ak)

ĝi =

END(i)∑
t=START (i)

ai,t ·AT (wt)

(5.12)

Double scheme: apply aggregated embeddings to both the boundary representations and the

internal representation.

5.7 Experiments

5.7.1 Implementation and Hyperparameters

We modify the Tensorflow implementation of Transformer based coreference resolution system

1 to incorporate lower layer embeddings. We use the similar hyperparameters, except that

we introduce some new hyperparameters: the weight of layer one embeddings α and schemes.

The base models are trained on our RTX 2080TI GPUs, while the large models are trained

on CPUs.

Similar to [16], we split the OntoNotes English documents into segments of 128, 256, 384,

and 512 word pieces and treat the segment length as one hyperparameter. We use cased

vocabulary for BERT and SpanBERT, and uncased vocabulary for ELECTRA. We use the

1https://github.com/mandarjoshi90/coref

https://github.com/mandarjoshi90/coref
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HuggingFace pytorch version ELECTRA 2 (discriminator). We also experiment with lower

depth of higher-order coreference resolution.

5.7.2 Baselines

We compare our method with two main baselines: (1) the original c2f-coref + BERT sys-

tem [16] and (2) c2f-coref + SpanBERT system [17]. We also compare with (3) c2f-coref +

ELECTRA system that does not use lower layer contextualized representations to test the

effectiveness of lower layer embeddings on ELECTRA.

5.7.3 Data Sets and Evaluation Metrics

5.7.3.1 Document Level Coreference Resolution: OntoNotes

OntoNotes (English) is a document-level dataset from the CoNLL-2012 shared task [25] on

coreference resolution. It consists of 2,802/343/348 train/development/test documents of dif-

ferent genres, such as newswire, magazine articles, broadcast news, broadcast conversations

etc.

Evaluation Metrics The main evaluation is the average F1 of three metrics: MUC [29],

B3 [6], and CEAFφ4 [21] on the test set according to the official CoNLL-2012 evaluation

scripts. These metrics are based on the comparison between the key entities (mentions) and

the response entities (mentions). The key refers to the gold-standard mentions or entities,

while the response denotes the mentions (entities) output by an entity coreference resolution

system. The definitions are as follows:

B3 Metric, a mention-based metric proposed by Bagga and Baldwin [6], computes a precision

and recall for each individual mention and takes the average as final metric.

Precision =
1

N

N∑
i=1

Precisionmi

Recall =
1

N

N∑
i=1

Recallmi

where N is the number of mentions in the document.

2https://github.com/huggingface/transformers

https://github.com/huggingface/transformers
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MUC Metric, proposed during the 6th MUC by Vilain et al. [29], is a link-based metric.

MUC score is computed based on the key and response partitions as follows.

Precision =

∑Nr
i=1(|Ri| − |p̂(Ri)|)∑Nr

i=1(|Ri| − 1)

Recall =

∑Nk
i=1(|Ki| − |p(Ki)|)∑Nk

i=1(|Ki| − 1)

where Ri is the ith response entity and p̂(Ri) is the set of partitions created by intersecting

Ri with kkey entities; Ki is the ith key entity and p(Ki) is the set of partitions created by

intersecting Ki with response entities; Nk and Nr are number of the key and response entities.

This metric is unable to reward successful indentification of singleton cluster, but is still widely

used.

CEAF Metric, proposed by Luo [21], is an entity-based metric. It evaluates coreference

outputs based on the best alignment between the clusters in the gold partition and those in

the system-generated partition.

CoNLL Metric, an aggregated metric proposed by Pradhan et al. [25] and used by the

CoNLL-2012 shared task, is calculated as the average of the B3 score, MUC score and the

CEAF score.

5.7.3.2 Paragraph Level Coreference Resolution: GAP

GAP [30] is a human-labeled corpus of ambiguous pronoun-name pairs derived from Wikipedia

snippets. Examples in the GAP dataset fit within a single segment, thus obviating the need

for cross-segment inference.

Evaluation Metrics The metrics are F1 score on Masculine and Feminine examples, Overall,

and the Bias factor (i.e. F/M). Following Webster et al. [30] and Joshi et al. [16], the corefer-

ence resolution system is trained on OntoNotes and only the testing is performed on GAP. The

dataset and scoring scripts is available at https://github.com/google-research-datasets/

gap-coreference.

https://github.com/google-research-datasets/gap-coreference
https://github.com/google-research-datasets/gap-coreference
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Figure 5.1: The degree of anisotropic is measured by random similarity, the average co-
sine similarity between uniformly randomly sampled words. The higher the layer, the more
anisotropic. Embeddings of layer 0 are the input layer word embeddings. (Figure 5.1-5.3 are

generated using the method of Ethayarajh [12])
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Figure 5.2: Intra-sentence similarities of contextualized representations. The intra-sentence
similarity is the average cosine similarity between each word representation in a sentence and

their mean.

5.7.3.3 Data Sets for Gauging Contextualized Representations

Similar to [12], we use the data from the SemEval Semantic Textual Similarity tasks from

years 2012 - 2016 [1–4]. The other settings are also the same.

5.7.4 Results and Findings

In this Subsection, we first report the results on the two data sets, and then we describe our

findings and analysis based on the gauging measures of anisotropic and contextualization.
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5.7.4.1 Results

The results on the two data sets are listed in Table 5.1 and Table 5.2 respectively. For BERT-

base, applying the Penultimate scheme achieved the same result as using the topmost layer.

However, adding the LowerDep scheme to BERT-base causes the performance drop slightly.

The results show that the 12th layer embeddings of BERT-base are no better than the 11th

layer embeddings for coreference resolution. We can observe that there are abnormal changes

from the 11th layer to the 12th layer in Figures 5.1-5.3. We conjecture that the abnormal

changes have some connection with the Penultimate phenomenon.

For SpanBERT-base, the Internal+LowerDep scheme offers an improvement of 0.5% over

the original span representations. The improvement over the original ELECTRA-base is 0.9%.

If we see the results in Table 5.1 jointly with Figure 5.1, we find that the more anisotropic,

the larger the α value for Internal scheme.

The performance of incorporating lower layer embeddings on GAP (Table 5.2) is not as sat-

isfying as that on OntoNotes. From the ablation studies in Table 5.3, we can see that the

span representations incorporating lower layer embeddings perform more robust on OntoNotes

benchmark, with smaller performance drop from dev set to test set.

For SpanBERT-large and ELECTRA-large, the topmost layer embeddings should be more

anisotropic, thus the larger α value is needed. ELECTRA-large+Internal+LowerDep scheme

achieves the new state-of-the-art performance on the OntoNotes coreference resolution task.
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Model
Masculine Feminine

Bias factor
Overall

P R F1 P R F1 P R F1
e2e-coref [19] - - 67.2 - - 62.2 0.92 - - 64.7
c2f-coref [20] - - 75.8 - - 71.1 0.94 - - 73.5
BERT-base [16] - - 84.4 - - 81.2 0.96 - - 82.8
BERT-large [16] - - 86.9 - - 83.0 0.95 - - 85.0
SpanBERT-base[17] 89.5 86.1 87.7 85.7 79.5 82.5 0.94 87.6 82.8 85.3

+ (α = 0.2, internal) 88.7 85.9 87.3 85.7 81.8 83.7 0.96 87.2 83.9 85.5
ELECTRA-base 88.8 85.0 86.9 86.9 80.1 83.3 0.96 87.9 82.6 85.1

+ (α = 0.3, internal) 90.0 85.0 87.4 87.1 80.0 83.4 0.95 88.6 82.5 85.4
SpanBERT-large[17] 92.6 87.4 89.9 89.1 80.7 84.7 0.94 90.9 84.0 87.3

+ (α = 0.2, internal) 92.8 87.3 90.0 89.3 81.9 85.4 0.95 91.1 84.6 87.7
ELECTRA-large 91.9 86.4 89.0 89.0 82.5 85.6 0.96 90.5 84.4 87.3

+ (α = 0.4, internal) 92.5 87.0 89.6 89.2 83.3 86.1 0.96 90.8 85.1 87.9

Table 5.2: Performance on the test set of GAP corpus. The metrics are F1 scores on
Masculine and Feminine examples, Overall F1 score, and a Bias factor(F/M).

Segment Length
Segment Num

Higher-order
Depth

α Value F1 dev F1 test

SpanBERT-base

384 × 2
2 0 77.4 77.1
2 0.1 77.7 77.5
1 0.1 77.9 77.6

384 × 3

2 0 77.7 77.4
1 0 77.8 77.5
1 0.1 77.7 77.5
1 0.2 77.8 77.9

512 × 2
1 0 77.7 77.3
1 0.2 77.4 77.3

ELECTRA-base

384 × 2

2 0 76.2 76.1
2 0.2 77.2 77.2
1 0 76.7 76.9
1 0.2 77.5 77.5

384 × 3
1 0 76.9 76.8
1 0.2 77.5 77.6
1 0.3 77.8 77.7

512 × 2
1 0 77.1 77.0
1 0.2 78.0 77.6
1 0.3 78.0 77.9

Table 5.3: Ablation studies of ELECTRA-base and SpanBERT-base. The metric is the
average F1 score on the OntoNotes dev set and test set using different combinations of hy-
perparameters. The underlined numbers denote that the performance on the test set is even
better than that on the dev set. The bold numbers denote the reported results in Table 5.1.

5.7.4.2 Findings and Analysis

The most effective scheme of incorporating layer 1 embeddings Of the three schemes

of incorporating layer 1 embeddings proposed in Section 5.6.3, the most effective one is the

internal scheme. The boundary scheme makes the coreference resolution model perform

worse. The double scheme performs better but slightly worse than the internal scheme.

This is in line with the fact that the boundary representations were designed to encode a

span’s contextual information, while the internal representation was designed to encode the

internal information of a span.
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Figure 5.3: Self-similarities of contextualized representations. Self-similarity is the average
cosine similarity between representations of the same word in different contexts.

Word Embeddings vs Layer 1 Embeddings As we can see in Figure 5.1, the layer 0 em-

beddings (the input layer word embeddings) and layer 1 embeddings are the least anisotropic,

thus we also experimented with input layer word embeddings. But we did not achieve salient

improvements. The difference is that layer 1 embeddings encode contextual information, thus

this shows that the internal representation ĝi still needs contextual information to better

encode a span’s internal structure.

Cased Vocabulary vs Uncased Vocabulary

Previous methods [16, 18] use the cased BERT, SpanBERT. Our experiments show that the

uncased ELECTRA achieves even better performance.

Higher-order Resolution vs Contextualized Representations We performed ablation

studies to test the effectiveness of different hyperparameter settings for coreference resolution.

As shown in Table 5.3, SpanBERT-base and ELECTRA-base achieve better results when using

a lower depth of higher-order coreference resolution. BERT-base still needs a deeper depth of

higher-order resolution to get the best result using segments of 128 word pieces.

As mentioned in Section 5.2, higher-order coreference resolution is to incorporate entity-level

information. Essentially it is to incorporate contextual information from longer contexts. That

is why BERT-base needs higher-order resolution to get the best result using shorter segments.

SpanBERT-base and ELECTRA-base achieve best results using segments of 384 and 512 word

pieces, respectively. Thus they are capable of encoding longer contextual information. Under

this circumstance, incorporating antecedents information using higher-order span embeddings

may introduce some misleading features.
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This suggests that the span embeddings from longer-context-encoded contextualized represen-

tations are better than the higher-order span embeddings for coreference resolution.

Why BERT performs poorly on coreference resolution?

As the results in Table 5.1 show, ELECTRA and SpanBERT gain improvements on OntoNotes

benchmark when incorporating layer one embeddings. But we did not achieve any improve-

ment for BERT-base by incorporating layer one embeddings, neither when using the topmost

layer embeddings nor when using the penultimate layer embeddings.

As shown in Figure 5.1, contextualized embeddings of BERT are highly anisotropic. Em-

beddings of every layer are more anisotropic than that of SpanBERT and ELECTRA. The

fine-tuned BERT for coreference resolution even becomes more anisotropic.

BERT-base achieve the best performance when using segments of 128 word pieces. This shows

that BERT-base is not capable of encoding longer contexts. Figure 5.2 and Figure 5.3 also

corroborate that BERT-base does not sufficiently encode the contextual information needed for

coreference resolution. This suggests that only the efficiently contextualized representations

(e.g. SpanBERT and ELECTRA) benefit from incorporating layer one embeddings.

5.8 Conclusion

In this chapter, we proposed five LASE schemes to generate less anisotropic span embed-

dings for coreference resolution. Before applying LASE, we use three measures to gauge the

contextualized representations of BERT, SpanBERT and ELECTRA.

The Internal+LowerDep scheme significantly improved the performance of SpanBERT and

ELECTRA on both datasets. ELECTRA-large with Internal+LowerDep achieved a new

state-of-the-art performance on the OntoNotes and GAP benchmark.

For BERT-base, we suspect the topmost layer embeddings are no better than the penultimate

layer embeddings because of the abnormal change of the three measures from the 11th layer

to the 12th layer. Experiments show that the 12th layer embeddings of BERT-base are no

better than the 11th layer embeddings for coreference resolution. The reasons are analyzed.

Experimental results also show that span embeddings from longer-context-encoded contextu-

alized representations are better than higher-order span embeddings for coreference resolution.
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Chapter 6

Conclusion

This chapter provides some concluding remarks about this thesis. Throughout this the-

sis, we have made contributions to three subtasks of entity analysis: transfer learning

for fine-grained entity typing (Chapter 2), entity linking using typed entity embeddings

(Chapter 3), improving entity linking through anonymous entity mentions (Chapter 4),

and exploiting less span embeddings for coreference resolution (Chapter 5). In this final

chapter, we will recapitulate the proposed methods, and provide an outlook into the future.

6.1 Research Summary

In this dissertation, we have studied three sub-tasks of entity analysis: fine-grained entity typ-

ing, entity linking and entity coreference resolution. A recap of our methods and contributions

is listed as follows.

Chapter 2 presented a new transfer learning based approach for fine-grained entity typing

(FGET) that contains three transfer learning schemes. Firstly, to avoid on-site learning word

vectors of out-of-vocabulary (OOV) words in mention phrases, we proposed to generate more

precise word embeddings for OOVs through transfer learning using sub-word information. Sec-

ondly, instead of learning contextual features using LSTM, we proposed to generate contextual

representations through transfer learning using a pre-trained bi-directional non-recurrent neu-

ral language model. Thirdly, to reduce the influence of label noises without twisting the original

labels, we proposed to refine the predicted labels at inference time using a pre-trained topic

model. The topic model associates types with topics through the so-called topic-anchors.

The experimental results on two standard FGET corpora validated the effectiveness of our

111



Conclusion 112

transfer learning approach. Compared with previous methods, our method can predict more

fine-grained labels and achieve the state-of-the-art performance.

Chapter 3 presented a simple yet effective method, FGS2EE, to inject fine-grained semantic

information into entity embeddings to reduce the distinctiveness and facilitate the learning

of contextual commonality. FGS2EE first uses the word embeddings of semantic type words

to generate semantic embeddings, and then combines them with existing entity embeddings

through linear aggregation. Our entity embeddings draw entities of similar types closer, while

entities of different types are drawn further. Thus can facilitate the learning of semantic

commonalities about entity-context and entity-entity relations. We have achieved new state-

of-the-art performance using our entity embeddings.

Chapter 4 presented a method DOC-AET to exploit DOCument-level coherence of named

entity mentions and anonymous entity type (AET) words/mentions for improving named en-

tity linking. We show that incorporating the coherence score between candidate entities and

AET mentions can significantly improve NEL performance. DOC-AET used the fine-grained

type words of Hou et al. [5] as AET vocabulary to extract anonymous entity mentions. The

document-level relatedness between entity types is encoded into the AET word embeddings

which are learnt from the AET words’ inter-paragraph co-occurrence matrix. AET entity em-

beddings and document AET context embeddings are computed using the AET word embed-

dings. The coherence scores between candidate entities and anonymous entities are computed

using the AET entity embeddings and document context embeddings. By incorporating such

coherence scores for candidate ranking, we achieve state-of-the-art performance on three of

the five out-domain datasets.

Chapter 5 proposed five LASE (Less Anisotropic Span Embeddings) schemes to generate less

anisotropic span embeddings for coreference resolution. Before applying LASE schemes, we use

three measures to gauge the contextualized representations of BERT [6], SpanBERT [7] and

ELECTRA [1]. The Internal+LowerDep scheme significantly improved the performance of

SpanBERT and ELECTRA on both datasets. ELECTRA-large with Internal+LowerDep

achieved a new state-of-the-art performance on the OntoNotes and GAP benchmark. For

BERT-base, we suspect the topmost layer embeddings are no better than the penultimate

layer embeddings because of the abnormal change of the three measures from the 11th layer to

the 12th layer. Experiments show that the 12th layer embeddings of BERT-base are no better
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than the 11th layer embeddings for coreference resolution. The reasons are analyzed. Exper-

imental results also show that span embeddings from longer-context-encoded contextualized

representations are better than higher-order span embeddings for coreference resolution.

6.2 Future Directions

In this section, we will give an outlook into the future for research on entity analysis.

Multi-task learning for entity linking and cluster-ranking coreference resolution.

Multi-task learning, motivated by Stein’s paradox [10], is a learning paradigm in which data

from multiple tasks is used with the hope to obtain superior performance over learning each

task independently. Multi-task learning in natural language processing [2], [4], is typically

conducted via hard parameter sharing among sequence labelling tasks. In hard parameter

sharing, a subset of the parameters is shared between tasks while other parameters are task-

specific. Typically, these parameters are learned by solving an optimization problem that

minimizes a weighted sum of the empirical risk for each task. Sener and Koltun [9] formulate

multi-task learning as multi-objective optimization (MOO) problem and they apply gradient-

based MOO to multi-task learning.

Entity linking and coreference resolution are synergistic as demonstrated by Durrett and Klein

[3]. On the one hand, coreferent clusters can provide more information for entity linking. On

the other hand, coreference resolution can also benefit from incremented knowledge through

linked entity mentions. For example, knowing from knowledge base (KB) that Donald Trump

is a U.S. president would be helpful for establishing the coreference relation between the two

mentions. However, it is difficult to obtain such information from KB without performing

entity linking.

A multi-objective reinforcement learning (MORL) based joint model for entity

linking and coreference resolution. Unlike Durrett and Klein [3], who use factor graph as

a joint model for entity analysis, we can put entity linking and coreference resolution under

the multi-objective reinforcement learning paradigm [8]. This joint model makes a sequence

of decisions about entity linking and coreference resolution. Firstly mentions that are easy to

resolve are resolved. Then entity linking is performed using coreferent information. Repeat

resolving the mentions that are difficult to resolve using KB information of linked entities.

Both tasks will benefit from incremented information.
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