Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Modelling and Analysis of Hydrogen-based Wind Energy Transmission and Storage Systems:

HyLink System at Totara Valley

A thesis presented in partial fulfilment of the requirements for the degree of

Master of Technology in Energy Management

at Massey University, Palmerston North, New Zealand.

Peter Sudol

Dipl.-Ing. (FH)

2009

Abstract

Distributed generation has the potential to reduce the supply-demand gap emerging in New Zealand's electricity market. Thereby it can improve the overall network efficiency, harness renewable energy resources and reduce the need for upgrading of existing distribution lines.

A typical New Zealand rural community consisting of three adjacent farms at Totara Valley near Woodville represents a demonstration site on distributed generation for Massey University and Industrial Research Limited. Local renewable energy resources are being used for the purpose of sustainable development. Alternative micro-scale technologies are being combined to achieve a valuable network support.

This paper is an in-depth report on the implementation process of the HyLink system; a system which utilises hydrogen as an energy carrier to balance and transport the fluctuating wind power. The report documents its development from the laboratory stage to commissioning at Totara Valley, which was carried out under direction of Industrial Research Limited.

The PEM electrolyser's performance at different stack temperatures was investigated. It was found that hydrogen production increases at the same voltage with a higher stack temperature. This is due to the improved kinetics of the electrochemical reactions and decreased thermodynamic energy requirement for water electrolysis. The electrolyser efficiency measurement at the half of its maximal power input (247 W) resulted in 65.3 %. Thereby the stack temperature attained less than half of the allowed limit of 80°C. The capture of the excess heat by insulation can improve the electrolyser's efficiency.

Pressure tests were performed on the 2 km long pipeline at Totara Valley using hydrogen and natural gas in order to test their permeability. The results were compared with previous studies at Massey University and with data obtained from the industry. The hydrogen permeability was measured to be 5.5×10^{-16} mol m m⁻² s⁻¹ Pa⁻¹ for a 2 km MDPE pipe. This is about half the result obtained from previous studies on

hydrogen permeability through MDPE at Massey University which was undertaken at room temperature. The reason for this discrepancy is likely to be the lower ambient temperature during the measurement at Totara Valley, which can be supported with the Arrhenius equation. It was furthermore measured that the power loss due to hydrogen diffusion through the pipeline walls during the fuel cell operation is about 1.5 W at the current system operation mode.

A techno-economic analysis of the system was undertaken applying the micro-power optimisation software HOMER as a simulation tool. Two operation modes of the system were investigated, the load following and the peak demand compensating. The simulation results reveal that the durability and the cost of the electrochemical energy conversion devices; electrolyser and fuel cell, are the main hurdles which need to be overcome on the path in introducing hydrogen based energy systems like HyLink.

Finally, economic optimisation modelling of the small-scale system by best component alignment was performed. It was found that the electrolyser capacity down-rating of 80% in relation to the wind turbine capacity, leads to a minimal system levelised cost. In addition to this, the impact of various wind turbine/electrolyser subsystems and pipeline storage capacities on the fuel cell capacity factor and on the system levelised cost in the load following operation mode was analysed. The outcomes can be useful for further HyLink related energy system planning.

Acknowledgements

My first thanks go to my research supervisors Prof Ralph Sims and Dr Attilio Pigneri for providing support and inspiration throughout the overall programme duration.

My thanks extend out to Mr Alister Gardiner, the energy research manager of Industrial Research Limited (IRL), and his engineering team: Mr Eoin McPherson, Mr Steve Broome and Dr Edward Pilbrow. I gained immense experience from their invitation to their laboratory in Christchurch, as well as from all the lessons I learnt during the system installation at Totara Valley. Thanks for involving me in your work.

My thanks are also owed to Mr Tom Lambert, the HOMER software co-developer of the Mistaya Engineering Inc., for his advice during the HyLink system modelling.

Thanks to Totara Valley residents, especially Geoff and his father, not just for allowing me to visit their farms and perform tests on the HyLink system, but also for lending me their farm bike when it was too slippery for a 4WD.

I also would like to thank Dr Jim Hargreaves of Massey University for advice in wind turbine mechanics, Dr Phil Murray of Allco Wind Energy NZ for providing me with data needed for the system simulation and Mr Mark Carter for advice in electronics.

Heartfelt thanks to my wife Ingrid and my children Layla, Jeremy and Benjamin for their love, devotion and support.

List of Contents

Abstract	i
Acknowledgements	iii
List of Contents	iv
List of Figures	vii
List of Tables	xi
1. Introduction	1
1.1 Objectives	3
2. Background	4
2.1 Motivation for Hydrogen as an Energy Carrier	4
2.2 Hydrogen as a Means of Balancing Wind Power	7
2.2.1 Large-Scale Considerations	7
2.2.2 Renewable Hydrogen Pilot Projects	10
2.3 Previous Studies at Massey University	11
2.3.1 Totara Valley Community Electricity Load Profiles	11
2.3.2 Wind Energy Resource – Totara Valley Region	12
2.3.3 Pipe Material Selection	14
3. HyLink System in the Laboratory Stage	17
3.1 Overall System Description	17
3.2 Electrolysis Setup Description	17
3.3 Integrated Electrolyser Stack	19
3.4 Integrated Alkaline Fuel Cell	22
3.5 Estimating the Overall System Efficiency	24
3.5.1 Lynntech Electrolyser Efficiency	24
3.5.2 DCI 1200 Fuel Cell Efficiency	25
3.6 Recording VI Curves at Various Electrolyser Stack Temperatures	26
4. HyLink System Transition to Totara Valley	29
4.1 Pipeline Installation	29
4.2 Electrolysis Setup	31
4.3 PEM Fuel Cell Integration	32
4.4 Installing the Wind Turbines	34
4.4.1 Proven	34

	4.4.2 Air-X	36
	4.5 Wind Power to Water Electrolysis Connection	38
	4.6 HyLink versus Power Line	39
5	Pressure Tests	41
	5.1 Estimating the Frictional Pressure Drop	41
	5.2 Hydrogen Diffusion Rate Measurement	42
	5.3 Permeability Comparison with Previous Studies at Massey University	44
	5.4 Methane Test	46
	5.5 Estimating the Maximal Power Transfer through the Pipeline	48
6	HyLink Modelling with HOMER – Data Inputs	50
	6.1 Electricity Load Data	50
	6.2 Wind Resource Data	52
	6.3 Solar Resource Data	54
	6.4 Grid Inputs	56
	6.5 Wind Turbine Inputs	57
	6.6 Photovoltaic Inputs	59
	6.7 Electrolyser Inputs	59
	6.8 Hydrogen Tank Inputs	60
	6.9 Fuel Cell Inputs	61
7.	Simulation of the Current HyLink Configuration	65
	7.1 PV Role within the HyLink System	65
	7.2 Air-X Power Output	67
	7.3 First Simulation Run	68
	7.4 HyLink as a Stand-Alone System in HOMER	71
	7.4.1 Economic Considerations	71
	7.4.2 Energy Flow within the HyLink System	73
	7.5 Simulation of the Grid-Connected HyLink System	76
	7.5.1 HyLink Cost Reduction	76
	7.5.2 Constraining the Grid Capacity	77
	7.6 HyLink in the Load Following Operation Mode	81
8	HyLink Optimisation Modelling	84
	8.1 Investigating the Wind Generator/Electrolyser Arrangement	84
	8.1.1 Current System Configuration	84
	8.1.2 Planned System Configurations	87

8.2 Investigating the Overall System Arrangement	91
8.2.1 Using the Present Pipeline Size	91
8.2.2 Using Different Pipeline Capacities	93
9. Conclusion	100
10. Appendices	
Appendix A	102
Appendix B	109
Appendix C	110
Appendix D	111
Appendix E	112
11. References	113

List of Figures

Figure 1.1	Totara Valley community	2
Figure 2.1	The 1-year modelled domestic and farm load profile for the	
	community (Murray, 2005)	11
Figure 2.2	The 1-year modelled water heating electricity load profile for the	
	community (Murray, 2005)	12
Figure 2.3	Wind sites monitored in the previous study	13
Figure 3.1	Electrolysis system setup (left) and MDPE pipe container (right)	18
Figure 3.2	Water tank (left), H_2 production unit with circulating water	
	reservoir underneath (middle), H_2 dehydration unit (right)	19
Figure 3.3	Electrolyser stack connection	20
Figure 3.4	Electrolyser stack connection from another perspective to show	
	better the hydrogen outlet with the hydrogen pressure gauge	20
Figure 3.5	Expanded view of the Lynntech electrolyser stack without titanium	
	endplate (source: Lynntech Industries)	21
Figure 3.6	Alkaline fuel cell DCI 1200 setup	22
Figure 3.7	DCI 1200 system overview (RISE, 2006)	23
Figure 3.8	LabVIEW user interface for the DCI-1200 fuel cell (IRL)	24
Figure 3.9	Recorded electrolyser stack VI curves at various temperatures	
	with a reference VI curve recorded by Lynntech at $60^{\circ}C$	27
Figure 4.1	HyLink system overview	29
Figure 4.2	Mole ploughing of the pipe (left), an electrofusion coupling	
	between two pipeline sectors (right)	30
Figure 4.3	Electrofusion welder	30
Figure 4.4	Hose clamps (left), crimping method (right)	31
Figure 4.5	Electrolysis setup in the container	32
Figure 4.6	PEM fuel cell integration	33
Figure 4.7	Proven wind turbine on the hilltop (left), Zebedee furl system	
	drawing by Proven (right)	34
Figure 4.8	Proven wind turbine installation	36
Figure 4.9	Air-X (manufactured by Southwest Windpower) during	
	operation on the hilltop	37

Figure 4.10	Wind power and water electrolysis control in the container	38
Figure 4.11	Container from the outside	39
Figure 5.1	Pressurising the pipe with hydrogen at the top riser	43
Figure 5.2	Pressurising the pipe with CNG (left) and nitrogen (right)	
	at the bottom riser	47
Figure 5.3	The maximum energy flowrate of hydrogen versus nozzle	
	or pipe size, over a 4 bar pressure differential (IRL)	48
Figure 6.1	Mean hourly electricity load profiles for the whole Totara Valley	
	community including the domestic load, the farm load	
	and the water heating	50
Figure 6.2	The primary load inputs in HOMER	51
Figure 6.3	The primary load inputs in HOMER after applying random	
	variability	51
Figure 6.4	Wind resource inputs in HOMER	53
Figure 6.5	Wind speed variation with height in HOMER	53
Figure 6.6	Weibull probability density distribution of the simulated wind	
	speed data	54
Figure 6.7	Solar resource inputs in HOMER	55
Figure 6.8	Global horizontal solar radiation (kW/m ²) daily profiles for	
	each month at the subject site	55
Figure 6.9	The entered grid values for HOMER simulation	57
Figure 6.10	Air-X wind turbine inputs in HOMER	58
Figure 6.11	Air-X power curve provided by the manufacturer	58
Figure 6.12	PV inputs in HOMER	59
Figure 6.13	Electrolyser inputs in HOMER	60
Figure 6.14	Hydrogen tank inputs in HOMER	61
Figure 6.15	PEM fuel cell inputs in HOMER	62
Figure 6.16	Schematic of the HyLink system in HOMER after	
	accomplishing the data inputs	62
Figure 6.17	The ReliOn's hydrogen consumption in HOMER	63
Figure 7.1	File Preferences in HOMER	65
Figure 7.2	Simulated PV power output over a year	66
Figure 7.3	Wind power based HyLink system schematic	67

Figure 7.4	Simulated Air-X power output over a year based on the power	
	curve provided by the manufacturer	67
Figure 7.5	HyLink stand-alone system schematic	71
Figure 7.6	Costs of the HyLink components – overview	72
Figure 7.7	HyLink related cash flows over the project lifetime of 25 years	73
Figure 7.8	Comparison of the mean hourly power profiles - primary load,	
	wind turbine output and fuel cell output	74
Figure 7.9	Ratio of the wind turbine and the fuel cell generation	74
Figure 7.10	Pipe content distribution	76
Figure 7.11	Ratio of the grid, Air-X and PEMFC generation	77
Figure 7.12	HyLink fully compensating the peak demand in May	78
Figure 7.13	HyLink's not optimal peak demand compensation in July	78
Figure 7.14	Wind turbine's output flows prior to capacity shortages	79
Figure 7.15	Daily pipeline filling process with hydrogen	79
Figure 7.16	Pipe content frequency for HyLink as a peak demand	
	compensation unit	80
Figure 7.17	Cost of the HyLink components in the load following	
	operation mode	81
Figure 7.18	Pipe content frequency for HyLink in the load following	
	operation mode	83
Figure 8.1	Graphical presentation of HyLink's COE in relation to	
	the electrolyser's capacity factor and the electrolyser/wind	
	turbine arrangement	86
Figure 8.2	Air-X's excess generation versus electrolyser capacity	86
Figure 8.3	Electrolyser/Air-X capacity ratio versus excess wind	
	generation fraction	87
Figure 8.4	Air-X/Proven inputs in HOMER	88
Figure 8.5	Graphical presentation of HyLink's COE in relation to	
	the electrolyser's capacity factor and the electrolyser/wind turbine	
	arrangement considering the planned system configuration	89
Figure 8.6	Both wind turbines' excess generation versus electrolyser	
	capacity	90
Figure 8.7	Electrolyser/wind turbines capacity ratio vs. excess wind	
	power fraction	90

Figure 8.8	Comparison of Air-X and Proven power output profiles	91
Figure 8.9	Relative system levelised cost at different wind	
	turbine/electrolyser subsystem capacities	92
Figure 8.10	Capacity factors of the HyLink components at different wind	
	turbine/electrolyser subsystem capacities	93
Figure 8.11	Impact of different pipeline sizes on the relative system	
	levelised cost at different wind turbine/electrolyser subsystem	
	capacities	94
Figure 8.12	Impact of different pipeline sizes on the fuel cell capacity factor	95
Figure 8.13	Annual capacity factors for pipes with different storage capacities	96
Figure 8.14	Annual fuel cell operational hours for modelled system	
	configurations	97
Figure 8.15	Relative system COE versus fuel cell capacity factor	98
Figure 8.16	Relative System COE versus pipeline capacity factor	99
Figure 10.1	VI curve at 8 - 9°C	102
Figure 10.2	VI curve at $8 - 10.5^{\circ}C$	103
Figure 10.3	VI curve at $9-10^{\circ}C$	103
Figure 10.4	VI curve at $11 - 13^{\circ}C$	104
Figure 10.5	VI curve at $16 - 18^{\circ}C$	104
Figure 10.6	VI curve at $22 - 24^{\circ}C$	105
Figure 10.7	VI curve at $23 - 24^{\circ}C$	105
Figure 10.8	<i>VI curve at 26.5 – 28.5°C</i>	106
Figure 10.9	VI curve at $30 - 31^{\circ}C$	106
Figure 10.10	<i>VI curve at $34 - 36^{\circ}C$</i>	107
Figure 10.11	<i>VI curve at 36 – 37.5°C</i>	107
Figure 10.12	VI curve at 60°C	108

List of Tables

Table 2.1	The physical and chemical properties of hydrogen as	
	compared with methane and propane (Ackermann, 2005)	4
Table 2.2	Summary of fuel cell types (Larminie & Dicks, 2003)	6
Table 2.3	Model calculation for surplus wind energy that cannot	
	be absorbed by the electricity grid as a function of wind penetration	
	in the grid (Steinberger-Wilckens, 1993)	8
Table 2.4	The descriptive statistics useful for wind modelling in HOMER	
	at the end of the monitoring duration (Murray, 2005)	14
Table 2.5	Specifications of the pipes tested at MU (Sims, Hargreaves,	
	McQueen & Guldin, 2005)	15
Table 2.6	Permeability values calculated for each pipe tested (Sims,	
	Hargreaves, McQueen & Guldin, 2005)	16
Table 4.1	HyLink comparison with the alternative power line installation	40
Table 7.1	Summarised yearly PV data	66
Table 7.2	Summarised yearly Air-X data	68
Table 7.3	Optimisation results of the first simulation run	70
Table 7.4	Cost of the HyLink stand-alone system over the project	
	lifetime of 25 years	72
Table 7.5	Summarised yearly fuel cell data	75
Table 7.6	Summarised yearly fuel cell performance data	75
Table 7.7	Cost of the HyLink in load following operation mode	
	over the project lifetime of 25 years	81
Table 7.8	Summarised yearly fuel cell data in the load following	
	operation mode	82
Table 7.9	Summarised yearly fuel cell performance data in the load	
	following operation mode	82
Table 8.1	HyLink's relative levelised cost and electrolyser's capacity	
	factor at different electrolyser capacities	85
Table 8.2	Relative levelised cost and electrolyser's capacity factor at	
	different electrolyser capacities for the planned system	
	configuration	88

Table 8.3	Relative system COE and component capacity factors	
	at different wind turbine/electrolyser subsystem capacities	92
Table 8.4	Relative system levelised cost at different pipeline sizes	
	and different wind turbine/electrolyser subsystem capacities	94
Table 8.5	Fuel cell capacity factor at different pipeline sizes	95
Table 8.6	Pipeline capacity factor at different system configurations	96
Table 8.7	Fuel cell's operational hours at different system configurations	97