
Copyright is owned by the Author of the thesis.  Permission is given for 
a copy to be downloaded by an individual for the purpose of research and 
private study only.  The thesis may not be reproduced elsewhere without 
the permission of the Author. 
 



 
1 

Orchard Yield Estimation using Multi-Angle 

Image Processing 

 

Leon Ripa 

 

Submitted to the School of Food and Advanced Technology in partial fulfilment of the requirements 

for the degree of 

 Master of Engineering in Mechatronics 

 At 

 Massey University, Auckland  

November 2023 

 

 

 

 

 

 

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

School of Food and Advanced Technology 

 November 7, 2023  

 

 

 

 

Supervised by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Dr Khalid Arif  

 

 

  



 
2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
3 

Orchard Yield Estimation using Multi-Angle 

Image Processing 

 

by  

Leon Ripa 

 

Abstract  

The rise of autonomous robots and deep learning techniques in recent times has sparked a 

surge in complex multi robot system (MRS), leveraging these technologies to handle intricate 

tasks and complement human labour. As the agricultural landscape has evolved from labour-

intensive, small-scale farming to vast macro-managed expanses, precision agriculture (PA) 

has emerged to address the challenge. PA offers farmers micro-scale insights into their farms, 

enabling precise knowledge of pest presence, crop growth variations, and expected yields. 

For kiwi fruit farmers in New Zealand—spanning over 15,500 hectares and yielding more than 

11.65 thousand trays per season—issues persist due to the absence of a mechanical 

harvesting solution. The inability to accurately estimate yields results in potential profitability 

concerns, often leading to over, or underemployment during fruit picking. Furthermore, the 

spread of viruses and diseases poses significant challenges, compelling the need to minimize 

human intervention and activity under kiwi orchards. Integrating PA techniques not only 

facilitates fruit counting but also provides crucial insights into fruit density, aiding in identifying 

underperforming areas for better farm management and potential yield enhancement.  

This thesis introduces current methods used for orchard yield estimation and presents a novel 

approach tailored for estimating yields in kiwi fruit orchards. It discusses established solutions 

for similar agricultural challenges and explores their integration to devise the most effective 

method for estimating kiwi orchard yields. The proposed solution employs object detection 

through a convolutional neural network to identify, track, and count kiwi fruits. This is facilitated 

by images captured by a hexa-drone UAV flown beneath kiwi orchards, ensuring smoother 

camera capture for increased accuracy in object detection throughout the orchard. This data 

not only enables farmers to estimate current kiwi production but also aids in identifying 

sections of orchards that may be overperforming or underperforming. 
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Chapter 1 
 

1.1   Introduction  
 

Autonomous robots and deep learning techniques have been gaining a lot of attention in 

recent times partly due to their rapid increase in development, real world uses and availability 

to the public. This has led to complex MRS’s being developed which take advantage of these 

new technology’s creating robotic systems capable of taking on more complex tasks than any 

one robot could, complementing human effort in a helpful way. 

The introduction of agricultural machines such as tractors, and the vast types of harvesters 

has changed the way farmers operate and tend to their farms. From being labour intensive, 

small plots of land, being micromanaged, to now the large-scale macro managing of farms 

that extend for hundreds or even thousands of hectors. With the vast increase in farm sizes, 

the level of attention to detail, that used to be given to farms has been lost and is now too 

large a task for humans to take on. This is where precision agriculture (PA) comes into play. 

PA allows the farmer to have more micro scale knowledge of their farm, may this be for 

example, knowledge on where pests and diseases are present, where crops are not growing 

well or where they are doing better than expected. PA can allow a farmer to accurately know 

the crop yield he can expect or autonomously fertilise specific sections of crops or even detect 

harmful urine patches on farms[1]. In New Zealand one of the most popular fruits grown by 

farmers are kiwi fruit. With current agriculture techniques Kiwi farms in New Zealand now span 

over 15,500 hectares [2] and produce over 11.65 thousand trays per season [3].  

Unfortunately for kiwi fruit farmers, a solely mechanical harvesting machine for the fruits has 

not yet been developed, and so picking the fruits must still be done by hand Figure 58. Issues 

arise when the farmers are unsure of the quantity of kiwis that their orchards have produced. 

Talking to local kiwi farmers, an average yield of less than 70 fruit per m2 is considered non 

profitable. Additionally, during picking, farmers may hire too many or too few kiwi fruit pickers 

for the farm, lowering their yield or increasing the cost of production. With the handling of fruit 

picking being one major issue for kiwi farmers, another is the preventing of spread of viruses 

and diseases such as Cherry leaf roll virus and soil borne pathogens [4]. These can be spread 

faster from row to row or farm to farm if farmers are walking under and touching the vines and 

moving soil via their walking. Spending less time under kiwi orchards is preferred and so PA 

techniques that can mitigate the risk of spreading disseises is ideal. 
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In addition to counting fruits using PA techniques, higher level information about fruit density 

in specific regions of the orchard can also be obtained, allowing farmers to detect areas that 

unbeknownst to them are under performing, or areas that are over performing on average. 

Such higher-level Information can allow a farmer to regain important information to better 

manage and utilise current farm space to increase yield. Increasing yield can be done by 

grafting additional branches onto kiwifruit trees that are underperforming.  

With two types of kiwi fruit being vastly dominant but different in colour and slightly different in 

shape, only the golden kiwi fruit will be discussed and talked about in this paper. Current trends 

in New Zealand show a steady increase in the percentage of golden kiwis being grown Figure 

1. For this reason, green kiwis will be outside the scope of this project. Importantly only kiwi 

fruit quantities will be discussed, where judging the ripeness of the fruit is not in the scope of 

this paper. 

  

 

 

 

 

 

Figure 1:  Kiwifruit Variety by canopy area. 

N.Z. Agricultural production statistics: June 2020. 07 May 2021 

 



 
15 

 

1.2   Motivation 

 

Motivation for this research comes in the form of having the ability to create a robotic solution 

for a large range of niche applications, living in rural New Zealand with kiwi farms in the area, 

adding to the niche of precision agriculture for kiwi farmers and what application they find 

useful. While talking to a small start-up company in New Zealand, it became clear that there 

is a high demand for PA in the Kiwifruit industry and has many research avenues to explore. 

Current research has been focused on finding the best method to count the fruits reliably. 

Several three and four wheeled remote-controlled robots, using a variety of camera, sensors 

and post processing techniques have been tested, but no commercial product has emerged 

hinting that the area of research is still ongoing to find the ideal solution.  Noticing that no 

drones had been tested for such an application, the first idea was to fly a drone above the 

orchard, and simultaneously drive a remote-controlled car underneath. such a multirobot 

system could ideally identify more kiwi fruits and get more accurate results. This method 

turned out to not be as effective as originally thought, due to the heavy canopy above the 

fruits. Unlike most orchards, kiwifruits grow under the cover of a thick layer of leaves, hanging 

down on short vines under the leaves.  The second method that is tested consist of flying a 

drone under the kiwi orchards. Having worked on a few projects focused on the use of 

Convolutional Neural Networks in the past, as well as ROS based projects utilising a Kinect 

Camera, the motivation to apply similar techniques to this project was a natural choice.  

The aim of this project is to perform fundamental research that will determine whether flying 

drones under kiwi orchards allows for an optimal kiwi fruit counting method, and whether it is 

better than other current methods due to the inherent advantages. This information can be 

used to create useful products in the farming industry.  
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1.3   Project Scope 
 

The scope of this project encompases the development and testing of methods that can 

identify the efficacy of counting kiwi fruits when using a drone flown under the orchard, as well 

as find other areas of research that are required to further develop this idea for widespread 

use of this technique in countries beyond New Zealand. The scope is restricted to developing 

the research platform necessary (the drone), as well as any additional platforms for testing 

purposes. In addition, the scope will be contained to the development of the appropriate 

kiwifruit detection framework needed. The scope will be limited using affordable and available 

components and software, where expensive hardware is less ideal for the overall aim of 

developing a cheap solution as well as staying within the projects budget. The development 

of a user friendly and visually appealing GUI will be out of this projects scope. Only the data 

for assessing the effectiveness of the fundamental ideas will be mandatory. The overall 

accuracy of the system will be used as a baseline that could be improved with hardware and 

software improvements, but perfection is not the goal here.  

 

1.4   Objectives 
 

To effectively accomplish the aim of this project, the following objectives have been identified. 

• Identify and analys existing methods for orchard yield estimation in the literature, 

identifying techniques with high accuracy and effectiveness.   

• Identify various drone platforms used for orchard-based precision agriculture 

implementation. 

• Develop a research platform capable of carrying out all necessary objectives identified 

in relation to orchard yield estimation.  

• Conduct experiments to determine the capability and effectiveness of the research 

platform.   

• Develop kiwifruit detection method with a real time implementation for proof of concept. 

• Conduct experiments to identify possible improvements or shortcomings with design 

and rectify where possible.  
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1.5 Thesis Outline  
 

Chapter 1: Outlines the background information, the fundamental issue relating to further PA 

requirements in the Kiwi Fruit industry, motivations, and objectives within the project scope.  

Chapter 2: Focuses on the literature review, current research methods related to drone yield 

estimation techniques are discussed, including multirobot communication and coordination 

methods that were researched prior to the initial testing phase. Additional in-depth methods 

used for object detection and appropriate hardware, that has been successfully implemented 

for orchard yield estimation, which is appropriate for this project is discussed. 

Chapter 3: Investigates the physical side of the project, incorporating discussions of the 

physical development of the platform as it developed over time. Additionally, the hardware 

selection is discussed, including test methods and results that lead to a better final research 

platform. Finally in this chapter the electronics and circuits that are utilised / developed are 

described and discussed including some software features of the flight controller. 

Chapter 4: This chapter goes into an in-depth discussion about object detection methods that 

were tested, test results are discussed, with an emphasis on the development choices and 

results of the resulting object detection YOLOv7 model are described.    

Chapter 5: Discusses the experimental results obtained from the improved robotic drone 

platform and are compared to actual orchard yields obtained from picking.  

Chapter 6: Discussions and review of the process/ methodology used to include justifications 

for decisions are made throughout the project, with future improvements also discussed.    

Chapter 7: Concludes the thesis, disuses successful aspects and not successful aspects and 

describes how future works might proceed from here. 
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Chapter 2  
 

 

Literature Review  

 

2.0.0   Chapter Overview 
 

The development of an agricultural drone, from design to onboard processing and algorithms 

spans a broad spectrum of research. For such a drone to fly remotely, autonomously and for 

extended periods of time with a reasonable weight requires research into drone layouts and 

hardware options as well as onboard flight controllers.  

With the idea of using both a UAV (Unmanned Aerial Vehicle) and a AGV (Autonomous 

Ground Vehicle) simultaneously research into multi robot systems is required, to understand 

the ideal communication, cooperation and composition would best suit the kiwi orchard 

environment.  

The key component of identifying and counting kiwi fruits hanging in an orchard must be 

performed by the done, via object detection and classification. Object detection and 

classification is a rapidly developing area of research and is able perform the task of counting 

objects with high speed and accuracy which is of the high importance in the scope of this 

project. Creating the ideal model for this application requires research into various methods of 

object detection, their various architectures, and implementation techniques, accuracy to be 

expected as well as processing power required are discussed in detail.  

Sensors, microprocessors, and image capture techniques are researched to find the most 

effective and relevant for use on a drone, with the concepts of light weight, affordability, 

obtainability, and low power consumption aspects being some of the most important factors 

that are focused on.  
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2.0.1   Drone Platform  
 

The drone platform should be able to carry all necessary equipment required for, navigation, 

object avoidance, and onboard object detection in real time, including the necessary cameras 

and sensors. The platform should be easy to use such that a farmer can operate it with minimal 

training. The flight time must be reasonable to conduct the necessary testing, but not to such 

a degree that a commercially available product would. The test platform must be modular to 

accept the testing of different components and configurations such to find an optimal design 

for further development.  

 

2.0.2   Autonomous Ground Vehicle Test Platform  
 

The ground vehicle platform is aimed to perform the same task as the drone platform and 

should also be able to carry all necessary equipment, for navigation, object avoidance, and 

onboard object detection in real time, including the necessary camera, with one exception. 

The ground vehicle may perform both the object detection in real time for the drone as well as 

for itself, as carrying the necessary equipment for this task is easier for a ground vehicle due 

to weight limitations on a drone. The ground vehicle must be easy to control and operate and 

be a modular test platform.  

 

2.1.0   Multi Robot System Classification 
 

MRS’s are defined not only by the methods in which they communicate but also the relation 

that the robots within the given system have to one another. Thus, before deciding what 

communication system to use between robots it is important to define the type of relationship 

the robots have to one another. This is what MRS classification is. [5] has “defined five 

dimensions” in which any MRS communication/ information sharing methods can be classified 

under. These methods are as follows. Coordinated and Non-coordinated, composition, 

cooperative and competitive environment, communicating and non-communicating, reactive 

and deliberative communication Figure 2. The method used to communicate in a MRS 

depends on the task being performed. 
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2.1.1  Multi Robot System Coordination Overview  
 

While standalone robots are useful there are many situations where the collaborative and 

coordinated work of multiple robots is needed to properly complete a task or increase 

efficiency to a level that any single robot could not achieve. Any number of scenarios can be 

imagined where more than one robot is needed, for example one application could be cleaning 

and picking up garbage from public areas. A flying robot can map, scan, and navigate a large 

area, locating coordinates for a ground-based robot to visit and perform cleaning or rubbish 

picking operations.  

Complex multi robot systems such as this require a lot of coordination and communication to 

get the job done, this is usually archived via GPS capability’s, RGBD vision systems, Wi-Fi 

communications, collision detection sensors and reachability. There are many more functions 

a multi robot system could utilise to complete a task, but choosing the ideal combination of 

functions, communication, and coordination techniques for any given multi robot system is 

very important.   

Making any multi robot system a highly coordinated and communicating system may seem 

like a obvious answer, but it is not always so simple. There are many ways in which such a 

system should behave and can designed.  

 

 

 

Figure 2: Multi Robot System’s 
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2.1.2   MRS Coordination and Communication 

Classifications 
 

Communication as discussed is essentially a method used to facilitate cooperation. Naturally 

when high levels of cooperation are needed in a MRS, high levels of communication are also 

required. Likewise, when a low level of coordination is used in a MRS, a lower level of 

communication can be used but this does not mean a low level of communication is required. 

When many multiple robots are used in a MRS not only does each “robot pay attention to their 

own works but also need to know if there are more urgent tasks from the partner” [6]. These 

varying levels of communication needs can be classified under such as decision-making 

protocol, speed of communication, centralised/ decentralised, and other hybrid variations. One 

such classifications can be seen in Figure 3  

 

 

 

2.2.0   Existing Drone Platforms  
 

The idea of using drones for precision agriculture techniques is not a new idea, and many 

working systems have been developed on drone platforms. Fruit / tree counting with the use 

of a UAV have also been attempted. Four variants are discussed here;  DJI Mavic 2 Pro [7]; 

custom HexaCopter [8] ; modified tarot T960 & APD-616X Agricultural spray drone [9]; 

modified DJI F550 HexaCopter [10].  

Figure 3 Multi Robot System Coordination.  
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The DJI Mavic 2 Pro platform used by [7] is designed to perform aerial surveillance, extracting 

canopy images from apple and pear orchards. Their workflow included construction of a digital 

orthophoto map (DOM), digital surface models (DSMs), and digital terrain models (DTMs) 

using the Structure from Motion (SfM) and Multi-View Stereo (MVS) approaches, as well as 

the calculation of the Excess Green minus Excess Red Index (ExGR) and the selection of 

various thresholds. This method resulted in a 95% accuracy in detecting the fruits. The use of 

the DJI Mavic 2 pro platform here benefits from the fine-tuned commercially available platform, 

with an integrated high quality 4k 30 fps capable Hasselblad L1D-20c camera. The use of a 

commercially available drone in this application is ideal as the drone is flown at 50m above 

the canopy, using only a GRB camera to obtain data. Additionally with the high-altitude flight 

no obstacle avoidance is necessary and the inclusion of the down facing camera of the DKI 

Mavic 2 pro is likely ideal for such an application. As the application is aimed at large scale 

counting, where regular use of such a technique is not required. This factor makes 

postprocessing of a custom desktop computer acceptable and lowers the required complexity 

of the drone platform.  

The custom HexaCopter used In [8] hovers alongside orange tree orchards in a predefined 

path. The drone platform has frame arm dimensions of 21.5cm and a frame of 10.8 cm X 10.8 

cm, such that the total diameter of the drone is around 53 cm. The drone uses a Pixhawk flight 

controller, capable of autonomous flight along predetermined flight paths. The use of the 

Pixhawk in this paper allows for pre-programmed take-off and landing, which is utilised in this 

paper for self-charging of the drone at the landing sight via solar panels. The flight controller 

allows for imaging individual trees by holding a hover position, before repeating the process 

at the next tree in the orchard Figure 4. A Raspberry Pi 3 Model B microcontroller mounted on 

top of the drone is employed to process the images after landing. Having employed a Rpi3B, 

the object detection via computer vision is ideal, and boats an impressive 80% accuracy in 

detecting the fruits, with consistent repeated results. With processing taking place after 

landing, the limited processing power of the RPI3B is somewhat overcome and is proven to 

work in this paper. To lower weight on the custom drone the frame arms are made of 

fiberglass, additionally the drone frame incorporates a inbuilt PCB making wiring easier while 

also saving weight on additional wires. The drone can take-off within 5 seconds, fly’s vertically 

at a hight of 10m, with a maximum flight speed of 3-4m/s. the 5000mAH LiPo battery provides 

a 15min flight time for the 3kg drone. Additional specifications can be seen in Table 1.  
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The modified tarot T960 & APD-616X Agricultural spray drone used in [9] work together, where 

the modified T960 acts as a reconnaissance drone, identifying pests on longan fruit trees. The 

T960 tarot reconnaissance drone has a much smaller diameter of 1m, capable of providing 

around 2kg of thrust per arm when using 340KV motors and a 6S LiPo. With a bare drone 

platform and battery weighing on average about 4.5-5kg the drone can carry an additional 3-

4kg of weight [11]. In [9] the reconnaissance drone uses a ZENMUSE X3 camera from DIJ, a 

Pixhawk 4 flight controller with a jetson TX2 being used for onboard image processing in real 

time Figure 5. To identify the longan fruit the drone uses a custom YOLOv3 model, later 

changing to the use of Tiny-YOLOv3, a smaller and less accurate, but less computationally 

heavy and thus faster architecture. The technique used shoes a mAP of .93% at 2.98 FPS 

and .89% at 8.71 FPS for the YOLOv3 and Tiny-YOLOv3 respectively. The combination of 

these two drones working together has a reported 95% control of the pest being sprayed, a 

reduction in water volume used by 12.5% and a 50% reduction in manual labour.   

Table 1: Specifications of the Drone in [8] 

Components Commercial Drone Customised Drone 

ESC Simonk 30A Single Shot Simonk 30A Single Shot 

Motors 1200kV 1400kV 

Propellers 6” 10” 

Weight 2Kg 3Kg 

Radio Transmitter / Receiver 2.4 GHz 6 Channel 2.4 GHz 6 Channel 

Battery 2200mAH 5000mAH 

Figure 4 Aerial view of drone movement.  

Surekha, P., et al. An Automatic Drone to Survey Orchards using Image Processing and Solar 

Energy. in 2020 IEEE 17th India Council International Conference (INDICON). 2020. IEEE. 
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A DJI F550 frame used in [10] which is also a hexa-copter is implemented with a Pixhawk 

flight controller once again, this time using two cameras, one being a monocular camera and 

a RGBD stereo camera that allows easier detecting of orchard boundaries Figure 6. The drone 

built here fly’s horizontally next to the orchards allowing for a front on view instead of the usual 

above view gained by most UAV’s. The paper tested the feasibility of orchard navigation with 

the use of monocular and binocular cameras, finding that the binocular RGBD camera was 

not able to be used to navigate areas in the same way a AGV can, this is due to the drone 

tilting forward during flight, causing the stereo reconstruction data to have an arbitrary 

rotational offset. Additional altitude variations introduce more noise. In this study the RGBD 

camera was not able to be demonstrate advantages over the standard monocular RGB 

camera. These results point towards a RGBD camera likely only having object avoidance and 

object detection benefits for a drone application.   

Figure 5 reconnaissance drone.  

Chen, C.-J., et al., Identification of fruit tree pests with deep learning 

on embedded drone to achieve accurate pesticide spraying. 2021. 9: 

p. 21986-21997. 
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In [12] the use of an Octocopter is employed to detect and count citrus trees in a cultivated 

environment spanning 73.5 ha in turkey. To count the citrus trees over such a large area the 

drone is flown at a hight of 55m at 5m/s. This pushed the need for an octocopter over a 

hexatone as it is more able to deal with larger gusts of wind and carry larger batteries for 

extended flight times over the large area. The frame used is a DJI v8 Octocopter model. Built 

very similarly to the tarot drones its frame, arms and landing gear are carbon fibre. The dry 

weight is 4.4kg with a 11Kg take-off weight [13]. The drone is powered by 320KV brushless 

motors, 6s 22000mAH LiPo. For added localisation accuracy a GPS triangulation method is 

used. Three identical GPS modules are mounted on the drone in a triangle configuration, this 

method greatly increases the accuracy of waypoint coordinates, and in-flight stability Figure 7. 

Although this paper uses three GPS modules any number of GPS’s can be used to increase 

accuracy. To image the citrus trees a multi-spectral camera and RGB camera are used in 

combination. The Multi-spectral camera Figure 7, provides a larger amount of information, 

consisting of a red, green, blue band, Near-IR and Red Edge spectrums. These additional 

spectrums reveal additional information not visible to the human eye or RGB cameras, such 

as vegetation health, moisture content and other environmental factors. To count the citrus 

trees a comprehensive approach combining sequential CCL algorithm and morphological 

image operations was employed, the resulting accuracy was .979%, with the Red-Edge band 

providing the best results. To help with mapping the Pix4Dfields software is used.  

Figure 6 DJI F550 frame with Pixhawk flight controller. 

Stefas, N., H. Bayram, and V.J.I.-P. Isler, Vision-based UAV 

navigation in orchards. 2016. 49(16): p. 10-15 
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2.3.0   Existing Fruit Detection Methods 
 

The task of Fruit detection can be accomplished using the fundamental idea of image 

categorisation. Image categorisation is a technique used to pinpoint an image's characteristics 

and assign it to a certain label or category. This can be accomplished using a variety of 

different techniques such as Support vector machines (SVMs), computer vision, convolutional 

neural networks (CNNs), and deep learning are commonly used for image classification [14], 

[15].  

 

Figure 8: SVM visualisation showing margin. [15]  

Dutcosky, R., Support Vector Machine (SVM) 
Practical Implementation. 2020. 

 

 

Figure 7: Octocopter, GPS triangulation Left, Multispectral camera Right. [12] 

Donmez, C., et al., Computer vision-based citrus tree detection in a cultivated environment using UAV imagery. 

Computers and Electronics in Agriculture, 2021. 187 
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2.3.1   Support Vector Machines 
 

All object detection techniques work on the principle of identifying points on an image, 

assigning the data points a value or weighting, followed by applying a given technique to 

separate the data points into predefined categories. SVMs are classified as supervised 

machine learning algorithms [16]. For SVMs data points are separated by what is called a 

hyperplane, this effectively separates classes data points, on opposite sides of the hyper plane 

(In two or three dimensions), with the distance that separates the categories being the margin. 

The goal of the SVM is to find the optimal hyperplane that maximises the margin between the 

two categories, this hyper plane is the support vector. This is a supervised learning algorithm, 

with advantages for small data sets [17], they can be easy to implement, use and interpret. 

Fundamentally it could be said that SVMs don’t support multiple class classification although 

multi-class SVM can be created, and have been successful at identifying orange fruits in 

orchards[18]. Reference RBF image Figure 9. 

In [19] with the goal of harvesting of citrus fruit to maximise market fruit value, a multi-class 

SVM was used to identify citrus fruits in orchards. To achieve this colour images of the fruit 

were taken on a clear day with natural daylight during the harvesting period when the fruits 

would be ready for harvest. The images contained both the fruit, leaves, tree-branches, and 

grass. Images were obtained using a colour CCD camera with 650*480-pixel resolution. Due 

to the complexity of the Images, standard computer vison thresholding and segmentation 

techniques were not successful in separating citrus fruits from the other “obstacles” in the 

image. Thus, a multi-class SVM was used. Using the features of each pixel to separate pixels 

into classes, such as sky, branch, leaf etc the citrus fruits were able to be segmented using a 

multi class SVM (using the one-against-one method), followed by a noise reduction 

thresholding method. To create a Multi class SVM, one can create multiple two class SMV 

classifiers, combining them to create a one-against-rest method or a one-against-one method, 

with other options / combinations also being possible. As only two classes can be compared 

at a time in a 2D SVM or 3 classes in a 3D SVM. Segmenting the fruits from the background 

after classification was done with an RBF Kernel function. The training of the Multi-class SVM 

was done using 87 images containing 592 mature Citrus fruits, with an accuracy claimed at 

92.4% where the accuracy was calculated from the correct detection of 547 fruits out of a 

possible 597.  
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Figure 9: SVM Regularization RBF Kernel 

 BILOGUR, A. Kernels and support vector machine regularization. 2018; 

Available from: https://www.kaggle.com/code/residentmario/kernels-and-

support-vector-machine-regularization/notebook. 
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2.3.2   Convolutional Neural Networks &          

Deep Learning  
 

CNN’s and deep learning approach are fundamentally very similar, with deep learning 

approaches being a more complex or “deep” version of the fundamental architecture that is a 

CNN. Deep learning methods typically use more layers to accomplish the same goal of image 

categorisation. These deep learning models are more computationally expensive than 

traditional machine learning models, however, generally offer higher accuracy and 

performance. As seen in Figure 10, the difference between a CNN and Deep learning is but a 

loose definition of increased complexity, where the separation point is in between the two 

examples shown. Model M2 in Figure 10 being that of the most simple CNN containing more 

than one Convolutional layer, developed by [20].Figure 10 also shows a box diagram 

approximation of the YOLOv1 Architecture, agreed in the literature [21], [22], [23] to be a deep 

learning model with an accuracy / mAP of 63.4 [24]. 

 

YOLOV1 Deep CNN Simplified 

Architecture Block Diagram 

Figure 10: CNN vs Deep CNN diagrams with Key 

Model2 / M2, Basic CNN Architecture. 

71.6% accuracy. 

 

M2 & YOLOV1 CNN Block Diagram Key. 
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2.3.2.1   Deep Learning & Tracking in Practice   
 

The system created in [25] proposes the implementation of a multiclass-FRCNN, where one 

class is used to detect the presence of fruit and the other class detects quality of the sweet 

peppers. Their system takes inspiration from the DeepFruits technique [26]. Using a version 

of the FasterRCNN network, which utilises multiple convolutional layers, followed by a fully 

connected layer, is implemented in TensorFlow 1. Developing the number of classes, where 

N represents the number of quality grades, their system considers N + 1 classes, where one 

class is reserved for a negative class consisting of no fruits / background, and the remaining 

classes are for the fruit. Counting the number of fruits detected by the deep neural network, a 

tracking via detection method is proposed. The two-stage technique first starts by taking the 

initial frame of the image run and is considered the initialisation frame. All fruits detected in 

this frame are counted as unique fruits, and subsequently stored as active fruits and given an 

active track. On subsequent frames, detections are compared with previous detections, 

comparing their intersection over union (IoU), which is a method of calculating the “overlap” of 

the detections. This is possible with the set up as the camera is mounted to a driving robot 

where the camera is at a constant hight and angle, where the distance travelled between each 

frame is minimal. Thus, the IoU will be large for fruits that are being tracked. For the second 

part, detections that were not associated with an active track via the IoU equation, are 

evaluated to be counted as new fruits. This is done by calculating the boundary threshold 

between the detection and active tracks, the age of the detected fruit frames can be changed 

depending on the user’s needs, to fine tune the tracking ability. 

 

2.3.2.2   Training Data & Effects on Accuracy  
 

Data Acquisition for neural networks is a very important step to produce an accurate and 

versatile model that is able to perform under changing conditions. For example, being able to 

track fruits both on a bright sunny day where sun glare is present and also being able to track 

fruits on days where light levels are low due to cloud cover or rain. In [25] images of sweet 

peppers were taken using a RealSense SR300 for training. Images were taken in varying 

stages of maturity, with the largest amount of data taken when fruits were mature just prior to 

picking. Number of images taken was not specified. In [27] a model was trained on 1,120 
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images with 308 * 202 resolution, as well as images of size 500 * 500 pixels, with a total 

number of 9000 annotations of apples. Their FRCNN model has a yield estimation accuracy 

ranging from 95.56% to 97.83%. the resulting accuracy of a CNN can be directly linked to the 

quantity and quality of images it has been trained on as seen in [28]. Four different network 

architectures were tested on the same data sets, testing for accuracy before and after 

increasing the training data set size. Initial training was done using a “partial” data set of 

images taken from a drone flying over an apple orchard. The raw initial dataset is made up of 

oblique drone imagery where pixel resolution is 5472 * 3648, containing about 100 trees. Due 

to time restraints only 107 images containing 2,709 apples were used. The baseline models 

used vary in the backbone architecture, namely: inception V2, ResNet 101 and ResNet 50, 

later adding the Inception ResNet v2 Atrous network. For training, images were split 80:20 for 

training and testing data sets respectively, as well as an 80:20 split for training and validation 

data sets. After initial training the apple detection accuracy mAP were .5235, .6700 & .6160 

for inception V2, ResNet 10 & ResNet 50 respectively. Increasing the data set size from 107 

to 435 images, and the total apple from 2,709 to 13,439 resulted in an average mAP increase 

of 13% after approximately quadrupling the data set Figure 11. Class discrepancy also shrunk.   

 

 

 

Figure 11: Effect of more training data on a deep learning-based apple detection mAP 

Baird, A. and S.J.a.p.a. Giani, An Artificial Intelligence System for Combined Fruit 

Detection and Georeferencing, Using RTK-Based Perspective Projection in Drone 

Imagery. 2021. 
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Varying the training image resolution can have a significant effect on the final accuracy of a 

neural network, Higher resolution images have more detail, allowing the network to better 

distinguish between different classes[29]. However, higher resolution images also require 

more processing and memory to train a deep CNN. Therefore, the trade-off between accuracy 

and speed must be considered when choosing a resolution for training, but importantly the 

increase in computation time is only seen on the training side and is not carried over to the 

speed of the model in terms of image classification making the issue more of a “one off” trade. 

Where increase image resolution allows for more detailed models, Down sampling images to 

a lower resolution can cause information loss, making image recognition more difficult. As its 

important to remember the convolution within the network already attempts to down sample 

image data to increase training speed when it comes to the fully connected layer. To address 

this issue, [29] found that an ensemble of models trained with high and low-resolution images 

could achieve a lower top-5 error rate than a single model trained with either resolution. Super-

resolution convolutional neural networks (SRCNNs) and super-resolution generative 

adversarial networks (SRGANs) can be used to up sample images to a higher resolution.  

Including high resolution and down sampled images within the training data set does help 

increase model accuracy, but other methods of data augmentation can also be used to 

increase data set size and training accuracy. Some common and basic techniques include 

Flipping, colour space transformations, cropping, rotation, translation, noise injection, kernel 

filters, random erasing, and image mixing [30].  Combining these image augmentation 

techniques is also common practice, with the use of these techniques individually, top-5 

accuracy scores can see an increase on average by 5.6% [30], with even higher increase in 

accuracy given the use of a number of these techniques.  

The performance of the Faster R-CNN, YOLO v3 and SSD models was tested in [31] for AG 

(Agricultural greenhouse) detection from high-resolution satellite images. For their tests two 

sets of images were used, GF-1 consisting of images with a resolution equal to 2 meters and 

GF-1 where resolution was halved to 2m. The best results were achieved using the YOLO v3 

network, with Faster R-CNN providing accurate localization. Although SSD had lower 

accuracy when using lower resolution images, it was faster than Faster R-CNN. Spatial 

resolution is a key factor affecting detection performance and higher resolution yields better 

detection quality. It’s important to note that YOLO models are also SSD networks and have a 

faster detection rate as a fundamental feature of the networks simplicity.  
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2.3.3   Computer Vision 
 

Computer vision differs from the other object detection techniques as it follows a loose set of 

“rules” that allows a user to implement various algorithms that when applied in specific orders 

to images can result in the specific segmentation and identification of objects within an image. 

As Computer vision refers to the use of image manipulation via algorithms. Many researchers 

use pre-made libraries containing appropriate algorithms such as those provided by OpenCV 

to easier implement their ideas. OpenCV’s powerful libraries can be used to identify the objects 

of interest, detect faces and facial features, recognize objects in a scene, and detect objects 

in videos. OpenCV also provides a range of pre-trained models that can be used for object 

detection. These models provide a good starting point for object detection tasks and can be 

used to quickly build an object detectors and counters for a specific task. 

The work conducted by [32] looks to computer vision, assisted by open CV libraries to achieve 

detection and yield estimation of fruits. The techniques employed follows a familiar series of 

steps used by many computers vision architecture to achieve accurate object detection. A 

basic overview of steps that may be taken are as follows. 

1. Acquire image.  

2. segment fruit by colour and shape analysis. 

3. colour analysis via thresholding. 

4. shape analysis via contours and connected components.  

5. counting via circular fitting  

In [32] Images are captured and pre-processed using a graph cut method Figure 13, the 

background is suppressed by use of inbuilt convolution to extract the foreground. The 

foreground is then separated into individual colours after HSV from RGB conversion Figure 

13. This conversion in necessary as with RGB, data can be hard to group in terms a computer 

can understand. This is where HSV and other colour space conversions become very useful. 

Table 2: Metric comparison of various models with varying training data and resolution. 

 Li, M., et al., Agricultural Greenhouses Detection in High-Resolution Satellite Images Based on Convolutional 

Neural Networks: Comparison of Faster R-CNN, YOLO v3 and SSD. Sensors (Basel), 2020. 20(17) 

Metrics  Faster R-CNN YOLO v3 SSD 

mAP (GF-1 & GF-2) 86.0% 90.4% 84.9% 

mAP (GF-1) 64.0% 73.0% 60.9% 

mAP (GF-2) 88.3% 93.2% 87.9% 

FPS 12 73 35 
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An HSV conversion changes the saturation and hue value of the image; thus, the image can 

be decomposed into several parts, differentiated by colour. With the HSV conversion and 

decomposition the images components of interest can be extracted via thresholding. The 

thresholding range is manually selected to work with the object in question, also known as 

colour thresholding Figure 13. 

Shape analysis is used to separate the now remaining individual and overlapping fruits within 

the image into individual components. This is done via canny edge detection Figure 13. Cany 

edge detection is a combination of inbuilt processes, namely, smoothing, gradient 

computation, non-maximum suppression, and thresholding. This method can give the optimal 

edges of the individual objects. To lower the noise remaining in the image a gaussian filter is 

used. The system used in [32] produced an accuracy of 83.33% for orange detection and a 

accuracy of up to 100% for cherry, mango, pomegranate, apple and lemons. Although their 

sample sizes were small the true accuracy of such a system implemented at large scale will 

certainly be less favourable. 

Table 3: Computer vision counting accuracy of various fruits. 

T. GAYATHRI DEVI, D.P.N., S. SUDHA, Image Processing System for Automatic Segmentation and Yield 

Prediction of Fruits using Open CV. International Conference on Current Trends in Computer, Electrical, 

Electronics and Communication (CTCEEC), 2017: p. 758–762. 

 

In [33] a computer vision AGV system is described for the use of detecting trees and picking 

oranges, the system uses two cameras and a Ultra sonic sensor: ZED Stereo camera for long 

distance measurements and tree detection and a web camera mounted on the robotic arm for 

picking.  

Processing is done via an onboard laptop, with an Arduino micro controller responsible for the 

movement of the AGV and robotic arm and wheels. The system is divided into two main parts, 

one for detecting trees and the other for detecting oranges. The tree detection is accomplished 

Fruit Colour Actual count Algorithmic 

count 

Accuracy  

Cherry Red 8 8 100% 

Mango Yellow 2 2 100% 

Orange1  Orange 9 8 88.88% 

apple Red 3 3 100% 

Pomegranate Red 3 3 100% 

Orange2 Orange 18 17 94.44% 

Orange3 Orange 12 10 83.33% 

Lemon1 Yellow 14 13 92% 

Lemon2 Yellow 3 3 100% 
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via green detection in a YCrCB colour space (Testing was done indoors with little green other 

than the trees present).  

The system detects the tree by first handling the calibration of the YCrCB minimum and 

maximum values necessary for green colour detection. Once the calibration of the colour is 

correctly filtered, the filtered tree colour is stored in a threshold. Morphological operations, 

such as dilation and erosion, are used to eliminate the noise background that surrounds the 

tree. Erosion erodes away the boundaries of the forefront pixels, while dilation gradually 

enlarges the boundaries of regions of pixels that are in front. The tree is detected when the 

contour area of the tree provides a set of x and y coordinates as the centre of the tree area. 

The system then moves the AGV to the detected position of the tree using the value of the 

centre of the contour area with help of the depth given from the ultrasonic sensor Figure 12 

left.   

 

 

 

Figure 12: Green detection (Left). Orange detection (Right). 

Kathleen Anne M, A., Rona Mae G. Babaran, Bryan Jones C. Carzon, Karl Patrick K. Cu, Jasmine M. Lalanto, 

and Alexander C. Abad., Autonomous Fruit Harvester with Machine Vision. Journal of Telecommunication, 

Electronic and Computer Engineering, 2018. 10: p. 1-6. 
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For the detection of oranges, a slightly different approach is used. The process starts with 

video capture from the web camera, which is then processed using OpenCV in Microsoft 

Visual Studio. The captured image is converted from RGB to HSV and the HSVmin and 

HSVmax values are calibrated for the types of orange in question. Next, the image is divided 

into five divisions horizontally and vertically to make the movement of the arm more precise to 

how the orange is detected. Morphological operations such as erosion and dilation are applied 

to the threshold image to filter out noise and improve the accuracy of the detection. The filtered 

image is then passed through the Find Contours function, which identifies and locates the fruit 

within the image using the moment method. Finally, the X and Y coordinates of the centroid 

of the fruit are obtained and sent as output characters to the Arduino for movement of the 

robotic arm Figure 12 right. The arm had a reported accuracy of 26/30 correct grips (the 

accuracy is a combination of both the detection system and the programming of the arm 

movement). Overall, this project demonstrates the successful implementation of an 

autonomous fruit harvester using machine vision and OpenCV, which can be used not only in 

fruit picking but also in the manufacturing industry for pick and place processes 

 Figure 13: Computer vision object detection in parts.  

T. GAYATHRI DEVI, D.P.N., S. SUDHA, Image Processing System for Automatic Segmentation and Yield 

Prediction of Fruits using Open CV. International Conference on Current Trends in Computer, Electrical, 

Electronics and Communication (CTCEEC), 2017: p. 758–762. 

Image Input HSV Image. 

Canny Edge Detection Segmented / Connected Components 
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2.4.0   Image Capture and Range Finder  
 

To get a precise yield estimation of kiwi fruit and avoid hitting the orchards with the drone a 

well-suited imaging, obstacle avoidance and global positioning system is required. With the 

goal of object avoidance many 3D sensors and mapping technologies fall into the scope of 

appropriate technology to utilise. Creating a 3D geometric representation of the environment 

is a useful idea, given the requirements of the project. However, to simplify the project, and 

keep the cost down, 3D mapping techniques such as SLAM (Simultaneous Localization and 

Mapping) will be out of the scope of this project. There are numerous amounts of technology 

that can be employed as a solution, either through one integrated solution that combines both 

RGB imaging and range finding technology into one product, or the use of individual 

standalone RGB imaging and range finding. Both options have their advantages and 

disadvantages. The various technologies available to the project will be discussed in detail. 

 

 

 

2.4.1 RGB Camera / Neural Network  
 

The use of RGB cameras Figure 14, [34] to perform object avoidance instead of object 

detection is a far less common practice, especially when looking at the quantity of literature. 

To achieve obstacle avoidance with a RGB camera as with object detection computer vison 

or neural networks are required/ implemented. One example as seen in [35] demonstrates a 

UAVs ability to avoid trees in a park via a three class object avoidance geared neural network 

based on Faster R-CNN and Inception v2, and shows the use case for basic object avoidance 

via a CNN. The type of camera that is used for either object detection or avoidance via a CNN 

would have the same requirements. With many available on the market, the available options 

are large. As described in [29] a high resolution camera brings an increase in correct 

detections, a large field of view to capture the full breadth of a kiwi orchard (around 3-4 meters 

as measured locally). With sun glare being a real issue faced a camera with good exposure 

Figure 14: Image and ranging sensors. Zenmuse x3 [Left], RealSense D435 [Middle], TFMini-s [Right]. [43] 

[36] [40]. 
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control will help increase detection accuracy. When it comes to full frame camera a high 

shutter speed will be required to decrease motion blur, with image stabilisation being 

advantageous. The selected camera also requires a port for a live video feed. For a full-frame 

camera, the Canon EOS 5D Mark IV or Nikon D850 are good potential candidates for the 

purpose of image capture in orchards with drones. Both cameras can capture high quality 

video at 4k and offer a wide range of features, such as fast auto-focus, weather-resistant 

bodies, and long-battery life. Additionally, they are relatively light for a DSLR. Other potential 

camera options include the zenmuse x3 Figure 14, equipped with a wide angle lens, capable 

of 4k 30FPS video, and is specifically designed for DJI drones & successfully used by [9]. 

Currently the most used cameras on quad copters are the Yuneec Q500 4K, DJI Phantom 3 

Professional and the GoPro HERO4 Black. With the use of a gyro, cameras without image 

stabilisation can become more suitable.  

 

2.4.2 RGB-D Camera 
 

RGB-D cameras Figure 14, [36], are a type of 3D camera that combines the capabilities of 

both a traditional RGB camera and a depth sensing camera into one module. There are two 

fundamental methods used to measure depth when using infrared light, namely time of flight 

and structured light [37]. As the name suggests time of flight sensing relies on measuring the 

time taken for light to bounce back from an object to determine its distance. The second variant 

uses structured light, this is accomplished by projecting inferred light to display a pattern of IR 

dots on its target, the pattern is then detected by a sensor, and by measuring its distortion of 

the unique pattern the depth can be calculated. This allows RGB-D cameras to accurately 

measure the distance between objects and the camera itself. The sensor then takes the data 

from the infrared projector and creates per-pixel depth information. This map is used to 

generate an image or 3D model of the environment, which can then be used for various 

applications including navigation and commonly used for SLAM and 3D mapping and tracking 

[38], as accurate integration of the depth and the colour images can provide robust frame 

matching and loop closure. More importantly for this project the advantage here would be the 

use of RGB-D for object recognition a seen in [26], [39], [40] being complementary to obstacle 

avoidance, as depth data can be correlated with the RGB camera, yielding an RGB image 

with a depth associated with each pixel. This is often represented as a depth cloud and 

converted into a point cloud. 

Common RGB-D sensors include the Microsoft Kinect-1 & 2, ASUS Xtion pro, Intel RealSense 

and Orbbec Astra. Overall RGB-D cameras provide a denser information regarding the 
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environment, are useful for SLAM, 3D mapping, object detection, and pose estimation in 

robotics. They also have significant drawbacks including limited measurement ranges where 

depth information lacks in accuracy, resolution when compared to its RGB counterpart. With 

outdoor use of IR technology having the additional hurdle of IR noise emitted from the sun, 

the additional cost must also be considered, where such RGBD cameras can easily be multiple 

times the price of a comparable RGB camera. 

 

2.4.3 Lidar / mm-Wave Radar 
 

Lidar and millimetre wave radars Figure 14, [41] are active imaging sensors that have been 

employed in autonomous vehicle systems to provide relatively accurate measurements of 

obstacles in low visibility conditions. Lidar is an acronym for “light detection and ranging” and 

uses eye-safe laser beams to create a 3D representation of the surveyed environment. It is 

used in many industries, such as automotive, infrastructure, robotics, trucking, UAV/drones, 

industrial, and mapping [42]. MMW radar provides consistent range measurements and 

produces a large beam, so radar returns may be interpreted using the interaction of the beam 

with a finite but relatively large region of the environment. The TF mini–Lidar Module is a low-

cost, miniature, and accurate ranging sensor with an excellent price to performance ratio. It is 

designed specifically for applications such as UAVs, robots, and autonomous vehicles. It offers 

a wide range of features, such as built-in motor driver, low-noise and low-power consumption, 

wide detection range, and high precision. It is capable of detecting objects up to 12 meters 

away, with a resolution of 0.4cm [43]. It is also able to detect objects in complete darkness. 

Mm-Wave radars are often found on Autonomous vehicles performing object avoidance. Like 

the RGBD camera, the mm-Wave radars are susceptible to noise from sunlight and reduces 

the effective detecting range in outdoor environments during the daytime. Additionally, such 

radars have a relatively small detection area, which increases in a cone shape, the further 

away the object lies. Other Lidars such as the OS0 sensors can be used on a drone to perform 

more complex object avoidance tasks or mapping via a SLAM technique. Such lidars are in 

the range of 0.5Kg and have many upsides when used for the right tasks, but for object 

avoidance in an orchard where 3D mapping is not required would be a bad choice.   
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2.4.4 Sensor Fusion  
 

As expected, all sensors have advantages and disadvantages in their own regard, though 

some of the drawbacks can be mitigated via sensor fusion. Sensor fusion is the process of 

combining two or more sensors that gather similar information, whose data can be combined 

to reduce errors, increase accuracy, or increase the range of collected data [44]. The use of 

two separate yet identical sensors can also be used for sensor fusion to gain a wider range of 

view, as well as the use of two or more different and non-identical sensors such as a RGB 

camera and mm-Wave Radio. In [45] sensor fusion of a Xtion Pro RGB-D camera and Hokuyo 

UTM-30LX LiDAR were used for the tracking of a moving object. To locate the moving target 

visual tracking algorithms, depth information of the structured light sensor, and a low-level 

vision-LiDAR fusion algorithm were used. The use of these two sensors allowed the 

researchers to overcome the limited depth accuracy of the RGBD camera.  The RGBD 

cameras depth accuracy significantly decreasing at a range of 5 meters. The 2D LiDAR 

scanner being tested up to 8 meters and proving to be accurate throughout the range. 

Although the LiDAR’s range well exceeded that of the RGBD camera, the overall tracking 

failed past 5 meters due to the limited sensing range of the Xtion Pro GRB-D camera. 

Nevertheless, the sensor fusion improved the object tracking accuracy within the 5m range 

proving a robust approach for the given application, and highlighting the limits of sensor fusion, 

where not all the shortcomings of one sensor can be counteracted by the addition of a different 

sensor. 

[46] Used sensor fusion to create an indoor object tracking system through the combination of 

two IWR1642BOOST mm-Wave radars via a laptop. Fusion of the two sensors data was 

achieved using a UKF (uncentered Kellerman filter), after finding it to be better performing 

than the EKF (extended Kellerman Filter). The methodology involved generating and parsing 

point clouds, reducing noise, data fusion, clustering objects, identifying centroids, and tracking 

the centroids using the UKF algorithm. The results showed that the fusion system was more 

accurate than previous systems, with an error of .2136m in the X direction and .2290m in the 

y direction. The average position errors obtained from a Texas Instrument sensor was .5401m 

and .5601m in the X & Y directions respectively. Combining the data of two mm-Wave radios 

improved accuracy, decreased error from occlusions at higher numbers of weak data and 

increased the field of view, claiming the fusion of these two sensors improved tracking 

accuracy dramatically. 
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2.5.0   Microprocessors  

 

 

 

 

Microprocessors are small, integrated circuits that contain comparable components to that of 

a desktop computer. Microprocessors are found in smartphones, tablets, complex home 

utilities, cars, and drones to name a few. The value in microprocessors lie in the fact that they 

are essentially a very small computer, but with the addition of GPIO (General Purpose Input 

Output) pins that are not found on home computers, this allows them to be used to take outside 

information collected from sensors such as cameras, microphones, touch screens, manipulate 

the data and produce an output to motors, screens etc. all microprocessors contain a CPU, 

RAM, Memory, and a range of external ports and peripherals [47]. The main differences when 

it comes to various microprocessors are the potential inclusion of a GPU, the architecture, 

clocks speed, number of cores, available ports, number of IO pins, storage space, size, power 

consumption, price, and availability. These are all import aspects to consider when choosing 

a microprocessor for a given application. For the use of object detection in real time when 

mounted to a drone the ideal microprocessor would have a combination of small footprint, low 

weight and power consumption, good graphics processing / inference power and in the scope 

of this project a low price and ease of availability are important.  

 

 

 

 

 

 

Figure 15: Microprocessors. Coral Edge Board [Left], Raspberry Pi 4 [Middle], Nvidia Jetson Nano [ Right]. 

[47] [50] [54] 
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Table 4: Microprocessor and Edge TPU Accelerator Comparison 

Micro Processor / 
accelerator 

Size CPU GPU Cores Power 
consumption  

RAM Price 

Jetson TX 2 170*170mm Dual Core 64 bit 
OR Quad core 
ARM 

256 NVIDIA 
core + 256 
CUDA 
cores 

7.5-15W 8GB 680$ 

Jetson Nano 80*95mm Quad core ARM 128 CUDA 
cores 

5 - 15 W 4GB 350$ 

Raspberry Pi 4 
model B 

86*56mm Quad core 64 bit Integrated 
graphics  

5W 1/2/4GB 230$ 

Google Edge TPU 
Developer Kit 

86*56mm Quad core 64 bit Integrated 
graphics + 
2X TPU 

5 - 12.5 W 1/2/4GB 280$ 

Coral M.2 Edge 

Accelerator 
 

22*30mm 
 

- 2X TPU 
 

4W - 143$ 

Coral USB Edge 
accelerator  

65*30mm - 1X TPU  
 

2W - 200$ 
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2.5.1   Google Coral Edge TPU M.2 & USB 

Accelerator  

 

 

 

 

The Google Coral M.2 and USB Edge TPU Accelerators [48], are small form factor ASIC 

Devices developed by google for the use of high-speed inference on TensorFlow neural 

network models. Essentially a comparable yet more efficient version of a GPU, that can only 

perform inference on Models of the correct architecture. Thus, models such as YOLO would 

not run on these devices. The Coral Edge TPUs are designed to also be more power efficient 

and cannot be used to train models. The devices vary only in terms of connector and amount 

of Edge TPUs contained within. The USB version Figure 16 has a USB connector and one 

Edge TPU, whereas the M.2 version can connect to a PCIe sort, A+E, B+M or M.2 E-Key slot, 

the latter containing 2 Edge TPUs. Each TPU is capable of 4 TOPS (trillion operations per 

second) at 2 TOPS per watt [49] Table 4. Looking at current availability of these TPU 

accelerators it is clear sourcing one would be a challenge, likely due to worldwide chip 

shortages. Work produced by [50] showed the use of a Coral Edge TPU combined with a 

Raspberry Pi to perform indoor detection of people via sensor fusion or a RGB camera, and 

mm Radar via a multi-modal CNN with cross fusion highways Figure 16. With the use of the 

raspberry pi and Edge TPU the cross-fusion CNN was able to operate at 30FPS (limited by 

the camera). Although not specified what TPU module was used (as the raspberry Pi has 

connectivity for various versions) or how much the TPU aided the performance of the custom 

CNN the addition of the Edge-TPU was likely necessary as the small Quad copter would not 

have unnecessary components added due to weight constraints. A microprocessor using 

Edge-TPUs will massively benefit from their low weight and power consumption compared to 

their huge computing power (although limited to the ASIC operations within the TPU.) 

Figure 16: Coral Edge USB TPU [Left], Implemented on drone [Right]. 

Safa, A., et al., Exploring Cross-fusion and Curriculum Learning for Multi-modal Human Detection on Drones, 

in System Engineering for constrained embedded systems. 2022. p. 2. 
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2.5.2    Raspberry Pi  
 

The Raspberry Pi (RPi) Figure 15, [51], is the most common and most community supported 

microprocessor board on the market today, aimed at students, hobbyist, researchers, and 

often used in robotics applications. With its long history there have been many iterations since 

2012. Namely the RPi Model A, B the RPi 2 and 3, and now the most powerful to date the RPi 

Model 4. Powered by a ARM8 64-bit processor running Linux, inbuilt Wi-Fi, Bluetooth, and 

extensive range of I/O ports is what makes the board such a strong contender when it comes 

to microprocessors. The processor included with the Raspberry Pi Model 4 is a quad-core 

ARM Cortex-A72, although powerful, it is the least capable when compared to the NVIDIA 

Jetson Nano and Google Coral Edge TPU Dev Boards processors, nor does it have ports for 

multiple high definition cameras through USB ports instead uses specialised MIPI CSI camera 

interface via the 40pin GPIO header, making it a trickier board to integrate with assorted 

hardware. As with the TPU accelerator RPIs are difficult to source at the time of writing. As 

shown by [50] the Raspberry pi is capable of fast real time object detection and computation 

of sensor fusion, but this was with the help of a Coral Edge TPU accelerator. Without the help 

of such an inference ASIC the Raspberry pi is a less capable board as shown in [52] the use 

of a RPi 3 Model B+ which is less powerful than the RPi 4 with the main difference being an 

increase from 1GB of RAM to 4GB of RAM. Never the less the results shown by [52] indicate 

that the use of a standalone RPi on a drone used for object detection was subpar. Using the 

SSDLite_MobileNET_V2 the RPi was performing at .71FPS/ 2.29% of the max FPS, where 

100% would allow processing of 30 FPS. With the CNN processing 0.71 FPS, the real time 

response is not good enough for real time applications and would be a non-safe solution for 

the use on a drone. In [53] the RPi 3 Model B+ was implemented for the use of tomato 

detection via computer vision techniques, with a aim to perform colour discernment of ripe and 

unripe tomatoes, using OpenCV and a webcam. Although the algorithm is much less 

computationally expensive the RPi 3 was able to accurately discern between ripe and unripe 

tomatoes with an accuracy of 98%, making the use of the microprocessor appropriate in this 

case. The rate of throughput of tomatoes by the conveyor limited need for a fast 

implementation of computer vision, so the full extent of the capabilities of the RPi are not 

shown. Using machine vision with the RPi is a better choice than the use of a CNN as machine 

vision implemented through Open CV does not require large GPU processing power and relies 

more on the CPU, which is still very powerful on the RPi, thus likely giving such a good result 

in the detection of various ripe and unripe tomatoes.  
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2.5.3   Google Coral Edge TPU Dev Board 
 

The Coral Edge TPU Dev Board  (CEDB) Figure 15 is powerful microprocessor board 

specifically designed for machine learning tasks, includes a large number of ports and I/O 

pins, and includes an integrated dual Edge TPU processing unit [54]. The board finds itself 

most used in robotics and autonomous applications, edge computing, image and video 

processing, natural language processing and object detection in real time such as with 

surveillance cameras. As with the RPi the CEDB also runs on a Linux operating system, with 

the addition of the TensorFlow Lite API allowing for an easier setup of CNN. One drawback of 

the CEDB is that it can only perform well on TensorFlow Lite based neural networks, while 

being a popular and well established and well performing architecture it does limit the type of 

models available, some work arounds can be achieved to allow some YOLO Lite models to 

run using the TPUs also. With the board only running Edge TPU optimised models efficiently 

this limits the number of architectures that can be tested in a research-based environment, 

causing a researcher to be forced to use a TensorFlow Lite model in their projects without 

knowing if such a model is best suited to their application. Other than the TPUs imbedded on 

the board the integrated graphics included are not comparable in terms of running a non-

TensorFlow model thus severely limiting the boards capabilities. Some advantages that the 

CEDB has is the fact that the I/O pins are based on that of the RPi. This allows a level of 

familiarity of the new board to researchers, reducing the learning curve, additionally the board 

becomes more compatible with pre-existing range of accessories and peripherals that are 

designed for the RPi such as cameras, displays, sensors as well as allowing someone with a 

CEDB board to look for help on issues with the RPi community thus benefiting from a larger 

knowledge base. Looking at the power draw of the CEBD Table 4. It is considerably less than 

a comparable machine such as the Jetson Nano using CUDA cores, this is due to the high 

efficiency seen with the Edge TPU. This is a major advantage to consider when looking at 

adding such a device to a drone running on batteries. The CEBD runs on a 5v 3A DC power 

supply when using the Edge TPUs. With CEBD being release in 2019 the number of papers 

containing the board are limited and no relevant examples are present, current chip shortages 

may be partly responsible also as it is very difficult to source a CEBD at the time of writing.   

 

 

 



 
46 

2.5.4   Nvidia Jetson Nano   
 

Like the Coral Edge TPU Dev Board the Nvidia Jetson Nano Figure 15, [55], is specifically 

designed for machine learning applications, the main difference between being the inclusion 

of CUDA cores contained in the GPU of the Jetson Nano. The advantage here is the diverse 

workloads that can be taken on by such cores when compared to TPUs in the CEBD or 

accelerators. CUDA cores are designed to accelerate parallel computing tasks and can excite 

many tasks simultaneously. Applications range from simulations, video game graphics, and 

excel in parallel processing workloads such as deep learning and image processing. Having 

a Graphics processing unit that contains a mix of GPUs (General processing units), VPUs 

(Video processing units), TMUs (Texture Mapping Units) are useful for more general 

workloads and can be found in home computer graphics cards. When it comes to real time 

processing of images, a lower latency allows for higher frame rate cameras to be implemented, 

where a camera feed for 30FPS, the maximum latency is 33.3ms between frames, with faster 

cameras at 90 FPS the latency limit drops to 11.1ms, thus with better resolution and framerate 

the processing time allowed for real time solutions decreases requiring more streamlined and 

efficient processing solutions. To decrease the latency, it is best to maximise the efficiency of 

the task requiring the largest workload, in CNNs the maximum workload is found in the 

Convolution[56]. With the use of cuDNN (CUDA Deep Neural Network library) these heavy 

workloads can be optimised. Some major advantages of the Jetson Nano are its already 

widely tested use in robotics applications, with many successful published works regarding 

AGVs and UAVs. In work published by [57] a Jetson Nano mounted to a Tarot Quadcopter, 

using SSD MobileNet framework achieved 26 FPS with a mAP% of 92.7, for the use of 

detecting forest fires. This is a good example of a near perfect real time detection 

implementation. [58] utilised a NVIDIA Jetson Nano for Kiwi fruit classification, with a FPS of 

30 being reaching, and a detection accuracy mAP of 97.79% further showing the suitability of 

the microprocessor for such applications. Other examples of a successful object detection 

implementations in the orchard realm via a jetson nano can be seen by [59],[60],[61] and many 

more previously mentioned. The NVIDA Jetson Nano is a flexible platform able to run both 

machine vision and a range of neural network architectures and traditional algorithms with a 

high efficiency and throughput. With its low 5-15w power consumption and small size it is an 

ideal good choice for developers looking for a versatile platform. Current availability of the 

Jetson Nano is also limited, but due to previous projects I have acquired one some time ago 

making availability a non-issue for this device. 
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2.6.0   Literature Summary  
 

The literature review has extensively covered important topics directly related to the scope of 

this project, covering four main aspects namely Multi robot coordination techniques, existing 

Robot platforms, common fruit detection methods, sensors used for fruit detection & collision 

avoidance as well as appropriate processing hardware. The research into existing robot 

platforms highlighted techniques that have been proven to work, such as the common use of 

a Pixhawk flight controller to allow for an easier flight control and tuning of a custom drone as 

well as the ability to support autonomous navigation with ease. The chapter also reinforced 

ideas later touched upon such as the use of gimbal cameras, NVIDIA based microprocessors 

and CNNs and computer vision used for object detection thus giving a good understanding for 

the importance of later sections covered.  

The next sections compared various techniques critical for the implementation of object 

detection, highlighting accuracy advantages that come with CNNs, and their draw back on the 

need for high computational power, when compared to other computer vision and supervised 

machine learning techniques. The widespread use of CNNs due to their advantages is seen 

reflected in the vast number of papers implementing them, including the amount of research 

done towards CNN optimisation further highlighting confidence in the field. When discussing 

the necessary hardware for object detection and collision avoidance it became clear that many 

researchers have opted to use a combination of RGBD cameras and sensor fusion of a 

secondary sensor and to assist with a better mAP% / accuracy and collision avoidance. 

Although the number of research into the use of RGBD cameras was significantly high, the 

main advantage of a RGBD camera seems to be when the addition of environment mapping 

is required via a SLAM technique on a AGV. RGBD cameras are shown to be useful for object 

detection but when compared to techniques using only a RGB camera the increase in mAP% 

does not stand out.  

Finally, the “brain” of the robotic system was discussed due to its obvious importance. When 

looking at the most current microprocessors used in the hobbyist / researcher field today all 

three microprocessors compared very closely with one another when the addition of Machine 

learning Accelerators was taken into consideration. The Raspberry Pi, Jetson Nano and 

Google Coral Edge TPU Dev board are capable of real time object detection when the 

appropriate detection algorithm is chosen for board in question, or in the case of the RPi the 

TPU Accelerator is used to assist with inference bringing it closer to pa with the other two 

boards when using a CNN. Current availability due to chip shortages will thus be a main factor 

to consider for this project.  
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Chapter 3    

 

Drone Research Platform  
 

3.0.0   Chapter Overview  
 

This chapter discusses development of the UAV robotic research platform used for capturing 

orchard video data Figure 17. The design has been chosen to be affordable, durable, re-

creatable and can be used in a variety of different kiwi orchards. The mechanical, electrical 

and software systems used are discussed. Initial mechanical and electrical testing of the UAV 

with and out the integration of the Kiwifruit detection hardware system, is discussed in this 

section. Challenges are addressed and the methodology used for in orchard kiwifruit data 

acquisition is described.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Drone Platform 
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3.0.1   Research Platform  
 

The research UAV aims to use readily available and affordable components to allow for future 

replication, repeatability, and further research development of such technology in later 

research. To achieve these goals well-established hardware and software is used, and when 

custom parts are needed additive manufacturing/3D printing is utilised.  

To properly tune and develop the system, one must expect accident and crashes to occur, so 

the UAV is designed to be robust as possible given the restraints. This calls for the use of 

carbon fibre and engineering grade 3d filaments. For autonomous movement through 

orchards the drone must also be capable of accurate GPS navigation and collision avoidance. 

For ease of use a real time processing approach is ideal, with an output easily visible for users 

to read basic information critical for orchard yield estimation, without the need for complicated 

post processing that can’t be expected to be performed by farmers.   

 

3.0.2   System Requirements 
 

Creating a system that can exceed the minimum requirements of a research platform and can 

instead already be used for useful data acquisition of a kiwi farm is a much better goal to aim 

for, as it pushes the design closer to that of a commercial grade application thus furthering the 

usefulness of such research for later analysis. Thus, the system requirements are that the 

drone must be able to perform orchard yield estimation, yield mapping, undergo orchard 

navigation via a pre-determined path, have a robust collision avoidance, and have a flight time 

capable of navigating an entire orchard, and be designed with the ease of use in mind such 

that a regular farmer can perform these tasks on their own.  

 

3.1.0   Mechanical System  
 

The Drone System Figure 17 is a HexaCopter based on a second hand commercially available 

Tarot 680 carbon fibre platform. The Drone consists of five levels, the lowest level holds the 

LiPo batteries, GoPro3+ mounted to a dual axis Gyro and two TFMini-s mm-Wave radars for 

obstacle avoidance. The second level houses the foldable propeller arms, telemetry, and GPS 

Mount. The third level has the most accessible surface area and holds many electronic 

modules such as the PDB, FPV camera, Secondary GPS, radio receiver, microprocessor 
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voltage regulator and more. The fourth level is where the Jetson nano is mounted, and above, 

on the fifth level is where the Pixhawk Flight controller and LCD is located such to have minimal 

EMI (Electromagnetic interference) and provide a better centre of mass / gravity.  

To allow for such a setup several mounts were created in solid works and FDM printed out of 

appropriate materials. Again, from the bottom up, two battery spacers were designed such 

that a 6000mah and 16000mah 4s LiPo batteries could be used as not to require re-calibration 

when switching between batteries due to a change in COM (Centre of Mass). On the 

second level a new landing gear brace was designed as the second-hand drone had seen 

some damage and the braces had been replaced by aluminium sheets. Additionally, a taller 

GPS mount was created due to high EMI. On the third level the battery and associated low 

power cut off circuit powering the jetson nano is used, and a suitable cover is designed such 

to keep it safe during a potential crash. Between the 3rd and 4th level, a mount to hold the 

NVIDIA Jetson Nano was designed as to keep it away from the PDB. And a 5th level mount to 

hold the Pixhawk Flight controller and LCD screen was designed. 

3.1.1   System Layout and Overview 

The current and final UAV research platform has gone through many stages of development 

and redevelopment, to arrive at the current point. In its final design review Figure 17 the UAV 

features, a full carbon fibre folding tarot-680 frame, Turnigy Multi-star 3508-640Kv 14 Pole 

Multi-Rotor motors, dual cameras, one adjusted for an ideal FPV (First Person View), the other 

a GoPro-Hero3+ Silver, 2-axis gyro, Matek PDB, Pixhawk 2.4.8, Cam-Link, ESCs. The UAV 

research platform has gone through several stages of redesign to become a more stable, more 

durable, modifiable, and functional drone system. Figure 25 show the final configuration which 

was used to test the CNN detection system within the KIWI orchards. Figure 18, shows the 

setup used for under orchard test flights.  

 

Figure 18: Prior drone Platform iteration. 
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The difference between the final drone platform and the prior iteration Figure 18 is the fixing 

of some stability and obstacle avoidance issues. Namely the difference lies in the layout of 

components, and addition of obstacle avoidance systems. In the prior iteration the five distinct 

levels also existed as size is a restraint, most of the available space is found vertically. This 

caused inherent stability issues, although this could also have been overcome with a wider 

drone, although this would restrict the number of orchards the drone can operate under.  

In the prior iteration the bottom level provided space for a S4 Li-po battery holder, and mounts 

for the GoPro gyro/ GoPro camera. Mounting the batteries and other heavy equipment on the 

bottom level is a relatively common design choice for drones except for some FPV drones as 

it allows for more stabilised flight. The second level housed the six foldable carbon fibre arms, 

with ESC wires running through the inside of the arms, with additional space to spare the FPV 

radio telemetry module and Pixhawk communications is mounted towards the front of the 

second level. The third level is the most accessible and so contained most of the electronic 

components. These include the FPV camera mounted to the front, secondary GPS module a 

Camlink module to allow for real time video capture from the GoPro, Radio-link 9-channel 

receiver, buzzer, and a low power cut-off, 5v5a power supply for the Jetson Nano. The fourth 

level housed the Pixhawk 2.4.8. Finally on the top the Jetson Nano and a 16x2 LCD screen 

for real time detection outputs were mounted. The GPS stand is mounted to the lowest level, 

but the GPS sits above the rest of the electronics.  

The main differences between these two designs were the swapping of the Pixhawk and 

Jetson Nanos positions, as well as the addition of the forward and downward facing TFMini-s 

mm-Wave radars. These additions have helped improve flight stability but were not necessary 

to compete testing of the real time object detection system. 
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3.1.1   Electronic Hardware Components 
 

The final iteration of the drone comprises the electronic components listed in Table 5.  

Programming was carried out using the NVIDIA Jetson Nano and the Pixhawk 2.4.8, both of 

which are connected to the other hardware components on the drone. 

 

Table 5:Hardware components in final drone iteration. 

Pixhawk 2.4.8 5.8G Gimbal transmitter 4S 16000mAh LiPo 

Matek PDB XT60 12v FPV camera 4s 6000mAh LiPo 

APM2.8 power module M8N GPS and compass 3S 2000mAh 10c discharge  

Anti-vibration board Secondary GPS Turnigy 3508-640KV motor 

FPV radio telemetry module Go-Pro Hero 3+ Platinum Pro 30A ESC 

Eachine 7” 5.8GHz FPV 
Monitor 

Tarot 2-Axis Brushless 
Gimbal 

14X4.7 Slowfly propellers  

Safety Buzzer Camlink 4K  Nvidia Jetson Nano 

Safety Switch  5V5A voltage regulator Secondary altimeter 

Radio Link AT9 controller  
HDMI to 90⁰Micro HDMI 
ribbon 

12x2 LCD display 

2* TF Mini-s mm radar  I2C interface  barometer 

 

   

 

3.1.2   Additive Manufacturing  
 

Additive manufacturing, also known as 3D printing, is a process that involves creating a 

physical object from a digital model. It uses a variety of techniques, including extrusion, 

powder bed fusion, and vat photopolymerization. The process is used to create a wide range 

of products and parts, including prototypes, tools, and end-use parts. It can be used to produce 

parts with complex geometries, which would be difficult or impossible to make using traditional 

manufacturing techniques. Additive manufacturing can offer significant advantages over 

traditional manufacturing, including faster production times, lower costs, and improved product 

performance. For this project it was very useful for producing prototypes and light weight end 

use parts from a low-cost standpoint. 
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3.1.2.0   PLA+ Filament Properties  
 

The most popular filament among 3D printing enthusiasts is PLA+, a thermoplastic polymer 

made from renewable resources like corn starch or sugar cane that is simple to use and 

produces a smooth finish. In addition to being non-toxic and one of the most reasonably priced 

3D printing materials, it is also safe to use at home. PLA+ is also more resilient than 

conventional PLA, allowing for the printing of bigger and more complicated things without the 

worry of warping or cracking. Lastly, PLA+ is the best filament for producing delicate and 

detailed prints since it has a low shrinking rate and strong layer adhesion. This is ideal for the 

printing of the battery spacers and some parts used to house electronics as the parts are 

designed to be as thin as possible such to keep the weight down. PLA+ has a lower density 

than PETG, making it ideal for parts that are not directly exposed to the sun on the drone 

platform.  The Print Properties [62] are shown below in Table 6.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6: PLA + Properties 

                          PLA+ 

Elastic Modulus MPa 3500 

Poisson’s Ratio 0.36 

Shear Modulus MPa 1287 

Mass Density g/cm3 1.252 

Tensile Strength MPa 59 

Flexural Strength MPa 87 

Flexural Modulus MPa 3600 

Yield Strength MPa 70 

Elongation at break  7% 
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3.1.2.1   PETG Fillament Properties  
 

PETG (Polyethylene terephthalate glycol-modified) is a thermoplastic filament material used 

in 3D printing. It is a popular 3D printing material because of its combination of excellent 

physical and chemical properties [63] and is ideal for the use in outdoor parts that will 

experience high levels of UV light and moisture [64] such as those found in New Zealand.  

Table 7: PETG properties 

Physical Properties Chemical Properties 

High strength and stiffness High chemical resistance 

Good impact and flexural strength Low toxicity 

High heat deflection temperature Low odour 

Good chemical resistance High biocompatibility 

Low water absorption Good thermal stability 

High dimensional stability Good flame retardance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8: PETG Print Properties 

                           PETG 

Elastic Modulus GPa 22 

Poisson’s Ratio 0.38 

Shear Modulus GPa 1.275 

Mass Density kg/m3 1280 

Tensile Strength MPa 53 

Compressive Strength MPa 55 

Yield Strength Pa 4.79e7 

Elongation at break XY 6.8% 

Elongation at break Z 1.3% 
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3.1.2.2   FDM / 3D printer overview  
 

The 3D printer used to produce and test of components is an Original PRUSA Mini + kit. This 

printer was aquired for its high quality prints and low cost of entry from the prusa range, with 

a custom fillament run out sensor. The FDM printer is devided into the components listed in 

Table 9, depicted in Figure 19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.2.3   Printing Calibration  
 

To get an ideal print quality with any filament the 3D printer must be calibrated so suit the 

individual printer. Using trial and error the settings were honed in. Adjusting the initial first layer 

print temperature to 235 °C then increasing to 245 °C for other layers gave good bed and layer 

adhesion when using PETG. Support contact was set to .3mm top and bottom to create a 

cleaner finish after removing supports, with the elephant’s foot compensation set to .2mm to 

get dimensionally accurate edges on parts with no brim. more printing properties for this 

specific Prusa Mini printing PETG filament from Marvle3D can be seen in Table 10. Print 

Properties used for PLA + can be seen on Table 11. 

  X-Axis

 

  Z-Axis

 

  Printhead 

Filament Box Electronics Box 

Bowden 

Tube 

Heat Sink 

Fan 

   Level Sensor  .4 mm Nozzle 

Print Bead SD/USB Port Encoder Filament Run Out 

Sensor 

Heater 

Figure 19: FDM Printer Details. 
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Table 9: 3D Printer Components / Details. 

 

 

 

 

 

 

 

 

Printer Part Part Description 

Print Head Houses the level sensor, nozzle, heater core, Bowden tube. 

X-Axis Is the printer’s X-axis. Max length of 180mm. 

Y-Axis Is the printer’s Y-axis. Max depth of 180mm. 

Z-Axis Is the printer’s Z-axis. Max hight of 180mm. 

Filament Box This box keeps the hydroscopic filament dry, to ensure print quality. 

Electronics Box Houses the motherboard & stepper drivers.  

Bowden Tube Provides a reactive force on the filament, to maintain feed pressure. 

Heat Sink Fan Regulates printing temperature and cools filament to prevent drooping. 

 Level Sensor Measures the hight and warp of the bed to set the nozzle at a predefined 

hight before each print. 

.4 mm Nozzle Standard .4mm brass nozzle with .4mm print diameter. 

Heating Element  Sets the temperature of heater core to pre-melt the filament for extrusion. 

Filament Run Out 
Sensor 

Sensor to pause prints when filament runs out. (Currently un-plugged) 

Encoder Allows navigation of the LCD / settings. 

SD/USB Port Allows the user to upload G-code from printing software. 

Print Bead A heated, flexible steel bed to adhere the print and release after cooling. 
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Printer Setting PLA + Value 

Infill % 10% 

Solid layers Bottom  3 

Solid layer Top 3 

Overhand threshold  Draw on supports  

Infill Pattern  Gyroid 

Layer Hight .2 

Perimeters  4 

Minimum Shell Thickness  .7mm 

Bed Temperature First Layer 60 °C 

Bed Temperature Other Layer 60 °C 

Nozzle Temperature First Layer 215 °C 

Nozzle Temperature Other Layer 210 °C 

X & Y Movement Speed Perimeters  40 mm/s 

Infill Speed 80 mm/s 

Bridges Speed 25mm/s 

Table 10: 3D Printing Settings for PETG on Prusa Mini 

Table 11: 3D Printing Settings for PLA + on Prusa Mini 

Printer Setting PETG Value 

Infill % 20% 

Solid layers Bottom  4 

Solid layer Top 4 

Overhand threshold  50% 

Infill Pattern  Gyroid 

Layer Hight .2 

Perimeters  4 

Minimum Shell Thickness  .7mm 

Bed Temperature First Layer 85 °C 

Bed Temperature Other Layer 90 °C 

Nozzle Temperature First Layer 235 °C 

Nozzle Temperature Other Layer 245 °C 

X & Y Movement Speed Perimeters  40 mm/s 

Infill Speed 80 mm/s 

Bridges Speed 25mm/s 
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3.1.2.4   Manufacture Software (SOLIDWORKS 

& PrusaSlicer)  

 

Software selection has a large impact on part quality and manufacture time [65], with 

PrusaSlicer being one of the top and open source slicers on the market, as well as being 

specifically designed to work well with the PRUSA Mini, it was an obvious choice. To create 

the G-code used on the Prusa Mini FDM Printer, the 3D models were first created on 

SOLIDWORKS. As PrusaSlicer utilises STL (Standard Triangle Language) to create G-code, 

thus the SOLIDWORKS models were exported in a high resolution STL format, as the quality 

of the STL files determines the dimensional accuracy of the printed part. once STL files are 

imported into PrusaSlicer Figure 20 the G-code generation can begin, this is called slicing.  

 

 

 

 

PrusaSlicer is ideal when it comes to the slicing procedure, as it shows importantly the final 

weight of the printed part, which is not accurate in the prior steps to making the part as 

SOLIDWORKS does not account for the was FDM printing. The software also allows the user 

to get optimal surface finish and accurately shows supports, with the additional feature not 

present on many other slicers that is “draw on supports”.  

 

 

 

 
 

 

 

 

Print feature information.  Print 

volume. 

Print / Filament 

settings.  

   STL Position/ Sliced view. Layer reconstructor 

slider. 

Print information. 

Weight, print 

time, filament 

length used. 

 Figure 20: PrusaSlicer user interface. 
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UAV Platform Development  
 

3.2.1   Flight Controller, Microprocessor and PDB 

Mounting.  
 

Utilising the Pre-built Tarot-680 frame comes with many advantages when compared to 

creating a custom frame, namely having most components built from carbon fibre allows for a 

light weight and rigid drone. The Tarot-680 frame also has many extra mounting holes that 

can be used for further customisation. When adding many more components than what a 

standard drone has this comes in very useful. The addition of the NVIDIA Jetson Nano 

microprocessor is the largest and heaviest non-standard component that need to be added, 

the weight distribution, ease of accessibility and EMI (Electro Magnetic Interference) must be 

considered when designing the mounting of all components. This is more exaggerated with 

the microprocessor due to its high current use. Initially only the ease of accessibility was 

considered such that various models and programming changes could be made. The previous 

iterations of the drone saw the NVIDIA Jetson Nano mounted on the 5th level, Figure 21, while 

using the smaller 6000mah LiPo battery with no spacer mount. Subsequently this resulted in 

a shaky flight due to a COM being above the rotor plane, additionally carbon fibre blades were 

used during these test flights. The rigidity of carbon fibre blades reduces the ability for a large 

discrepancy of COM from the static rotor plane, as the rigid blades create a very exact rotor 

plane, with little flexibility in the hight of the driven rotor plane. As shown in [66] an unstable 

pair of nodes are generated when the COM moves above the rotor plane, causing vibrations 

Figure 21. A second factor contributing to unstable flight during testing of the entire system 

(Including the real time kiwifruit detection), was EMI effecting the GPS and compass.  

 

 

 

 

 

 

 
Figure 21: Impact of Centre of Gravity during flight [Left]. Early UAV platform iteration [Right]. 

Pierre-Jean Bristeau, P.M., Erwan Salaün, Nicolas Petit, The role of propeller aerodynamics in the model of a 

quadrotor UAV. European Control Conference 2009, 2009: p. 683-688. 
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These fundamental issues are discussed and resolved in later iterations of the UAV platform. 

The mounting of the PDB, Jetson Nano and Pixhawk flight controller is spread over three 

mounting platfourms Figure 22. The lower level PDB mount is designed to have sturdy 

mounting points, where the lower four “pillars” are directly screwed into the carbonfibre 

drone frame. Printed out of PLA to keep weight low. Directly to these “pillars” the second 

level where the Jetson nano frame are screwed in using M3 heat set thredded brass insirts. 

The jetson nano then has a protective cover to prevent damage to electronics from above, 

also printed from PLA. The third level is screwed directly into and over the Jetson Nano 

hetasink, that has had M3 holes tapped in. This mount has a hole to prevent overheating of 

the Jetson Nano, and is printed in PETG as it is sun exposed and more vountable to 

damage during crashes (this was discovered the hard way)Figure 22. Using M3 heat set 

threaded insirts again the Pixhawk fligt controller dampner is screwed in to this mount, where 

the Pixhawk is mounted to the damper via shock absorbing double sided foam tape as 

recommended by pixhawk manual. The 2x16 LCD adds regidity to the frame holding it up 

completing the stack of electronics.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M3 Heat set insert.  

GPU Vent Hole  

Pixhawk Damper  

Jetson Nano 

Jetson cover 

PDB mount/ 

Pillars 

 

2*16 LCD 

Screen 

Pixhawk APM 

Pixhawk/LCD 

Mount 

Matek X6 PDB 

Jetson Nano 

mount 

Figure 22:Pixhawk & LCD mount [Top] Drone Mounts CAD model [Bottom]. 
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3.2.2   Battery Mount  
 

A modular battery holder was designed and 3D printed, using PLA for its low weight/ density 

and ease of printing Figure 23. This design is intended to compensate for the use of a smaller 

6000mAh LiPo battery, or when in the shorter configuration, to hold the larger 16000 mAh 

LiPo battery. After several test flights, additional bumps were added to the holder to prevent 

the battery from moving during flight, causing the COM (Centre of Mass) to change. 

The battery holder is designed such that the COM does not change regardless of what battery 

type is used, rather only the total weight of the Drone changes. This massively improves 

stability/ removes the need to recalibrate the autopilot after changing batteries and is only 

done to save money and time. Buying two identical batteries, is recommended.  

The battery spacers were designed by first measuring the centre of mass of the drone, by 

hanging it from a string (without batteries), from multiple angles. The COM is .043m from the 

bottom of battery mount of the drone. The COM for the batteries, small and large respectively 

.022m & .037m from the mounting edge. Their masses are .588kg & 1.318kg respectively. 

The large battery spacer is .02m in height. Thus, the spacer for the smaller battery is .104m 

derived from the following equations.   

𝑥 =
𝑚₂𝑑

𝑚+𝑚₂
     𝑥 =

(1.318∗ .100)

(3.112+1.318)
 𝑑 =

𝑚𝑥

𝑚₂
+

𝑥

1
   𝑑 =

3.112×.03

.588
+

.03

1
  (3.2.2.1) 

    𝑑 = .189m                         

 

 

 

 

 

 

 

 

 

 

 

Figure 23: Modular Battery Spacer Holding 16000mah LiPo next to 6000mah LiPo. 
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3.2.3   GPS/Compass Mount 
 

The GPS mount that came with the drone may have been well suited for standard drone set 

up, but with the additional Jetson Nano, and associated electronics the EMI (Electro Magnetic 

Interference) induced onto the GPS was considerably higher, so a taller mount was designed. 

Generally, the ESC’s are mounted close to the PDB, with the signal wires stretching to the 

motors, this is done to reduce the EMI induced [67], but with space constraints, and design of 

the Tarot-680 frame such mounting was not possible, this is likely the reason a standard GPS 

mount did not suffice.   

To keep the weight of the drone as low as possible, the GPS bottom bracket was designed 

with the use of as little material as possible and 3D printed out of PLA, for the mast, the inside 

was hollowed out and printed out of PETG, as it would be a sun exposed part of the drone, as 

well as having a higher impact tolerance, making it more likely to survive in a crash then if it 

was made out of PLA [68]. 

To test the validity of the printed mount an EMI test was conducted, by inverting the propellers, 

and rotating them one position around the frame, and loading the motors at max thrust/ 

current, thus pushing the drone down into the ground when powered on, allowing a test at full 

load.  

 

 

 

 

Figure 24. Electromagnetic interference in GPS, various mounts.  
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3.2.3.0   EMI Interference Levels. 
 

As seen in Figure 24 the internal EMI in the GPS is very high with no stand, reaching 62% 

when the rate of change of throttle/current is high, as well as the proximity of the 5v5a Jetson 

Nano power cable. With the Jetson powered off the same test was conducted, and the 

interference dropped to 40%, this is likely only because the GPS is close to the 5V5A voltage 

regulator that powers the jetson.  

The GPS was then mounted to the original stand and again the EMI was tested and found to 

have 13% interference, This is considered acceptable [69]. But for autonomous flight the 

steadier the drone can be the better and is directly correlated to EMI. In graph D, finally the 

EMI is very low at 4%, due to the larger distance between GPS and other current carrying 

wires. Other methods for lowering EMI were considered such as using a shielding cover [62], 

but this would require a minimum of adding grounded aluminium foil wrapped around all wires 

capable of affecting the EMI, and this would add considerably more weight to the drone. Safe 

GPS and Compass distances from small metal objects and electronics such as phones is set 

at 15cm by [69] further reinforcing the need for the addition of the GPS stand.  The Final 

iteration of the GPS mount that resulted in minimum EMI, with Jetson Nano mounted Under 

Pixhawk Flight controller, at 16cm from the LCD.  

 

 

 

 

 

 

 

 

 

 

 

Figure 25: GPS / compass mount after accounting for EMI 
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3.2.4.0   ESC and Prop. 
 

An ESC (Electronic Speed Controller) is a necessary component to regulate the speed of 

motors in drones. This is done by varying the power delivered to the motor, which can be used 

to control the speed, direction, and braking of the motors. Not all ESCs are the same, as the 

way the PWM (Pulse Width Modulation) signal is sent to the motor affects the thrust produced 

at a certain RPM. Initially, the ESC that came with the drone was used for testing, but due to 

the heavier weight of the drone, modifications were necessary to prevent the ESC or motor 

from burning out from an extended flight or overheating. Therefore, selecting the correct ESC, 

motor, and propeller combination is essential to achieve optimal thrust and efficiency in a 

drone. The ESC acts as the “brain” of the system, sending power to the motor, the motor 

determines how much power can be delivered to the propeller, and the propeller determines 

how much, and how fast air can be moved at a certain RPM, resulting in the thrust. Thus, even 

when consuming the same amount of power, a different combination of these three items can 

have large differences in thrust at varying loads. 

The selected components can be seen on Table 12, where each component was tested 

against one another for thrust output at selected RPMs, and a constant voltage. The resulting 

combination will be able to extend the drones battery life (potentially allowing for the use of a 

lighter weight battery), lower noise levels, and increased longevity of the electrical components 

involved.    

 

 

 

 

 

 

 

Table 12:Thrust Optimization Components 

Component  Price (per item) 

Turnigy Multistar 3508-640Kv 14 pole motor $52.74 NZD  

Platinum pro 30amp ESC $49 NZD  

TURNIGY 40amp ESC $40.47 NZD 

HQProp Multi-Rotor 12x4.5 propeller $9.6 NZD (pair) 

Quantum Carbon Fibre 13x4 propeller $20.93 NZD (pair) 

GWS Style Slowfly 14x4.7 Propeller $7.82 NZD (pair) 

Figure 26: Thrust Optimization Components. 
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3.2.4.1   Thrust Optimisation Results.  
 

To Optimise thrust using the various components and to lower the required load on the motors 

and ESC to produces the required lift, a test rig was created that can incorporate all 

combinations of the Propellers, ESCs and Motor, thus testing the efficiency of each 

combination against one another. Rather than testing each individual component separately. 

The test rig consists of a HX711 Load Cell amplifier circuit board, a 5KG rated loadcell, Arduino 

UNO microcontroller and a custom motor mount Figure 27. 

This test rig allows the accurate measurement of thrust produced at various RPMs, produced 

by the 6 combinations of components being tested. The Load Cell contains two strain gauges 

and two 120Ω resistors arranged in a Wheatstone Bridge configuration, secured to a rigid 

aluminium frame. The strain gauges return a resistance value dependant on the amount of 

deformation/strain experienced by the circuit. The Loadcell is connected to the Load Cell AMP 

HX711 such to convert the signal from the Load Cell into a legible signal for processing on the 

Arduino UNO. The Load Cell Amp is thus connected to the Arduino UNO, running a custom 

script that allows both the reading of the loadcell and a PWM Duty Cycle input signal to be 

sent to the ESC. The Arduino UNO is therefor also connected to the ESC and PC. The ESC 

is powered by the 16000mah LiPo used in the drone, additionally the LiPo is not directly 

connected to the ESC but rather to the drone and the ESC is connected to the drone for a 

more accurate current supply making the test more accurate due to current drop experienced 

through the drone wires. As described the Loadcell returns an arbitrary resistance value 

dependant on the strain experienced, therefore a calibration measurement must be carried 

out to determine the conversion rate of Ohms to lift Force. This is done by first reading the 

resistance value (an arbitrary large number) given to the Arduino when the loadcell has only 

the motor mount attached. This value can be considered the null point where “no force” is 

experienced by the loadcell. Next a 100g weight is placed on the motor stand and the now 

changed arbitrary value is measured again. This new value corresponds to a force = to 100g. 

This ratio is calculated and repeated for 200g and 500g to gain an average value, concluding 

the calibration method for the loadcell. Each combination of components was tested at five 

intervals starting at the minimum Duty Cycle required to spin the blades sufficiently, to 

maximum RPM. The result from this experiment shows the best parts to use in combination 

are the Platinum Pro 30A ESC, 14X4.7 Slowfly propellers and Turnigy 3508-640KV motor, as 

listed in  

Table 13.  

 



 
66 

 

 

Table 13: Lift Force generated at various PWM Duty Cycles 

PWM      

Dudy cycle 

Black Prop 

Turnigy ESC 

Carbon Prop 

Turnigy ESC 

Silver Prop 

Turnigy 

ESC 

Silver Prop 

Platinum 

ESC 

Carbon Prop 

Platinum 

ESC 

Black Prop 

Platinum 

ESC 

Lift(g) 5% 

Dudy cycle 

38.31 185.2 256.4 18.9 13.8 21.0 

Lift(g) 25% 

Dudy cycle 

196.2 723.9 870.6 406.65 223.5 234.4 

Lift(g) 50% 

Dudy cycle 

541.1 1087.5 1248.9 1157.75 809.7 804.7 

Lift(g) 75% 

Dudy cycle 

967.4 1057.9 1207.8 1371.2 1318.4 1338.3 

Lift(g) 100% 

Dudy cycle 

963.0 863.9 1159.6 1378.8 1341.1 1324.3 

Average over 5 values 200g calibration HX711 Loadcell 

Figure 27: Loadcell strain VS PWM plot [Top], Test Rig calibration [Left], Test Setup [Right]. 
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3.2.5   Landing Brace 
 

The second-hand Tarot-680 frame had been damaged in the past, most notably on the landing 

gear mounts, which hand been replaced completely with an aluminium part Figure 28. While 

the repairs are adequate for casual flying of the drone, due to the added weight that the drone 

now must carry, any possible weight saving should be pursued.  

The 2mm aluminium landing gear mount that was used to repair the drone weight 16 grams, 

with a total of 4 being used thus adding up to 64 grams. Although already a relatively light and 

strong repair, the part was hand cut and loose due to an incorrect/ inaccurate through hole 

size being used Figure 28, with further weight savings possible.  

Using SOLIDWORKS the aluminium mounts were used as a template to understand where 

the mounting points must be positioned, a square mount was designed to be made from 

PETG. To further reduce the weight a topology study was conducted as suggested by [70], 

with best stiffness to weight ratio, and mass minimisation restraints. As seen in Figure 29 the 

resulting shape was 50% lighter than the original PETG square iteration, as well as being able 

to withstand a fully loaded landing at 2G, with a safety factor of 1.5. the resulting part weighs 

just 4.5 grams. A small handle was also added to allow easier lifting of the drone. Some 

precautions should be taken when performing a FEA analysis using 3D printing materials as 

the layer adhesions are not considered and can result in unaccounted for weak spots in the 

design, hence the 1.5* safety factor. The printed PETG part can be seen installed in Figure 

29. 

 

 

 

 

 

 

 

 

 

 

 
Figure 28: Original Tarot-680 Landing mount [Left], Old Aluminium landing gear mount [Right]. 

Team, H.S. TAROT T960 HEXACOPTER KIT. 2022; Available from: https://hobbystation.co.nz/tarot-t960-

hexacopter-kit/ 

https://hobbystation.co.nz/tarot-t960-hexacopter-kit/
https://hobbystation.co.nz/tarot-t960-hexacopter-kit/
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3.2.6   Go-Pro Mounting  
 

The GoPro HERO 3+ silver is mounted to the gyro in an upside-down fashion Figure 30, this 

is due to the micro-HDMI port being obstructed by the mounting mechanism when mounted 

the correct way around, with the lens being surrounded by the blue bracket. Mounting the 

GoPro upside down brings the lens further down and allows the micro-HDMI port to be 

accessed. Flipping the output image can be done in the GoPro settings via: 

menu>settings>capture settings>UP>ON>EXIT. The menu button is not obstructed by the 

mount in this configuration, although it is not required to be pressed at any time. The HDMI to 

micro-HDMI cable is a custom light weight ribbon cable with a 900 micro-HDMI port Figure 31. 

This is a requirement as a standard thick cable has too much weight and tension which 

prevents the gyro motors from keeping the GoPro at the desired angle, disrupting stability. 

The HDMI cable is then directly plugs into the Elgato CAM LINK video capture device 

registering the GoPro as a webcam on the Jetson Nano.  

 

 

 

 

 

 

Figure 29: PETG Topology study [Left]. PETG Revised mount [Right]. 
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3.2.7   Experimental Flight  
 

To validate the drone platform’s ability to fly within a confined space, both vertically and 

laterally the drone is tested in the orchard. Due to the time of year, there are no kiwi fruits 

hanging from the orchard vines and so provide an extra 6 inches of vertical hight.                  

Figure 66  show the drone in the orchards and detailed images Figure 30. With lateral flight 

being stable, but vertical flight is difficult to achieve at a stable altitude due to barometer 

readings being highly inaccurate bellow 20m elevation. To increase the test flights accuracy 

the full object detection system is mounted and turned on for further electronic testing. 

Although no object detection is taking place, provides good feedback for the progress of the 

project. (Some components such as the updated landing brace, GPS stand, Blades, Go-Pro 

cable, updates electronics stack etc were a result of this test flight and so are not in the images) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 30: Early orchard test flight [Top], Upside down GoPro mount, without ribbon micro to standard HDMI 

cable [Left]. Rear of drone [Right]. 
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Electronics  
 

3.3.1   TF Mini-s mm Radar  
 

After initial flight testing through the orchards, it became clear that using elevation data from 

the GPS and barometer is not sufficient to keep the drone at a stead hight, especially when 

accounting for the fact that many orchards are planted on a gradient. To fix this the TFMini-s 

mm-Wave radar is employed, with and Additional TFMini-s used for obstacle avoidance. Using 

sensor fusion for both TFMini’s, one pointing down and the other forwards, a stable vertical 

flight as well as obstacle avoidance is achieved. To keep a safe distance from the top of the 

orchards, as well as any low hanging vines/ leaves a high of 1m is used. For the obstacle 

avoidance, the TFMini can sense up to a 12m range [43]. Due to outside conditions such as 

light which can introduce noise into the radar, a shorter distance of 6m is more-suitable, but 

still well within an acceptable range for this application. Lowering the sensing range to two 

meters, and a command to stop at a 1m distance from obstacles the drone can more 

accurately determine when the end of the orchard is reached and decreases power 

consumption by the sensor. Mounting the TFMini-s on the front of the drone was done via a 

custom PETG mount, that positions the sensor directly at the front of the drone, fastening 

slightly behind the cameras point of view. (It is slightly obscuring the FPV camera 

however)Figure 31. This mount incudes 2 grub screw locking points to prevent sliding back 

and forth on the rails. The TF Mini-s responsible for high sensing is mounted on the rear of 

the drone, under the GPS mount Figure 31. This is a simple flat PETG print with the 

appropriate mounting holes attached to a spare gyro mount. The programming & flashing of 

the TFMini-s was done with the help of the product manual which supports Pixhawk flight 

controller [43], and the supporting software available on Benewake website.  
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Figure 31: TFMini-s front obstacle avoidance [Top Left], TFMini-s Hight sensing (Rear) [Top Right], 

TFMini-s Hight estimation (Rangefinder1) and Obstacle avoidance tuned to 2m [Bottom Right], 

(sensing my hand at 1.8m). 
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3.3.2   5V5A Regulator  
 

To power the Jetson nano a 5V5A power supply is required, unlike most electronics the current 

supply must be very close to the specified 5A or the jetson will not power on and seems to be 

a common issue among many users. Initially a 5V5A buck converter Circuit was purchased 

for the use on the drone, but it was not able to supply a stable current likely due to cheap 

components on the board. Additionally using the large LiPo to power the Jetson as well as the 

flight controller, additional electronics and the motors would have negatively affected the 

performance of the drone due to the high current draw. For these reasons, a custom 5V5A 

voltage regulator was designed and manufactured. Utilising voltage regulators is a cheap 

method of achieving the intended goal but come with the downside of being less efficient than 

other methods, with the drone being a test platform this is acceptable and within the scope of 

the project. Additional time was limited with Kiwi fruit being in season for only a few days 

before picking. Purchasing a new pre-made voltage regulator with low voltage cut off 

protection was not an option due to time restraints. A custom 5V5A low power cut off circuit to 

run off an additional onboard 2000mAh 3s LiPo, was designed with an inbuilt Seeeduino Xiao. 

The purpose of the circuit is to deliver an accurate and stable 5V5A supply to the NVIDIA 

Jetson Nano, where the low voltage cut off circuit prevents over discharge of the battery such 

that it can be safely recharged after use.  

Table 14:5V5A Low voltage cut off Voltage regulator components. 

 

 

The Circuit is designed using Altium Designer, a leading PCB and electronics design software. 

With the intent of using an available PCB router, the design is kept simple, as only a single-

sided PCB can be created from such a router. The use of a 5V5A capable Lm1084 linear 

voltage regulator was chosen due to ease of accessibility, but it does come with some 

drawbacks. Ideally a Buck converter or premade power supply module would be used, or a 

switching regulator to increase the efficiency of the system. The use of a 3S LiPo battery was 

chosen as a 7.4V 2S LiPo with sufficient mAh, is hard to find. 

 

2* LM1084 5V5A 

Regulator 

OJE-SH-105HM,5V 

Relay 

2* 10nF capacitors 2* 10µF capacitors 

Seeeduino Xiao 1200 Ω through hole 110 Ω through hole Screw Terminal 2 hole 

Barrel Jack Male Barrel Jack Female BC337 NPN Transistor 20W Heat Sink 
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Using a 11.1V 3S LiPo is not ideal when combined with a Linear Voltage regulator as the 

relative power loss will be large and will require a large heatsink adding more weight to the 

overall design. Nevertheless, the circuit was designed due to time constraints, and proved 

successful for the use of testing, but should by no means, be used on a commercial version 

of such a drone. The Schematics and traces can be seen in Figure 32.  

 

 

 

 

 

 

 

 

 

 

 

Using two linear voltage regulators in series was chosen due to the increased stability gained, 

where the first regulator will provide a relatively stable output voltage, and the second regulator 

will further filter any noise left by the first, as well as any fluctuations from the power source. 

This is of high importance as mentioned the Jetson Nano is very sensitive to noise. Additionally 

connecting these in series provides a higher efficiency, due to lower dropout voltages causing 

less power to be dissipated in heat.  

The choice to use both 10µF and 10nF capacitors also provides advantages, namely the 10nF 

capacitors placed before the linear voltage regulator filter out high-frequency noise, while the 

10µF capacitors placed after the linear voltage regulator filter out low frequency noise 

improving ripple rejection, thus resulting in lower output impedance, and may be somewhat 

overkill for the application.  

 

 

Figure 32: 5V5A Low voltage cut off Voltage regulator Altium schematics [Left], Altium traces. [Right]. 
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(3.3.2.1) 

 

The other half of the circuit is the low voltage cut off, starting at the voltage divider the 1200Ω 

and 110Ω resistors provide a peak 2.81V to the 3V analogue input pin A1. Using this as an 

input. The voltage supplied to the A1 pin, as the battery voltage drops allows the 

microcontroller to cut power supplied to Jetson Nano once the 3s-LiPo battery voltage drops 

too low preventing further discharge, for safety of the LiPo and the subsequent charging 

process. The microcontroller is connected to the relay, via the NPN transistor, where a high 

signal is sent to the relay when the voltage to the A1 pin drops below a threshold signalling 

the LiPo is at the minimum 5.1V. The microcontroller is powered by a 5v supply from the 

drones PDB. The circuit is placed into a 3D printed PLA cover for protection Figure 33. Due to 

the use of the linear voltage regulators an appropriate heat sink needed to be added. A 25w 

heat sink was selected given the 25W of power supplied. Although the equation 𝑃𝑑 =

 (12.6𝑉 –  5𝑉) 𝑋 5𝐴 =  38𝑊 suggest the use of a larger heatsink, due to the nature of the large 

airflow over the drone a smaller heatsink is acceptable, with the addition of adding a small 

20m fan on top of the heat sink via the Jetson Nano GPU fan connector, which is not in use. 

  

 

 

Equation used for voltage divider:  

 

𝑉𝑜𝑢𝑡 = (𝑉𝑖𝑛 × 𝑅2) (𝑅1 + 𝑅2)⁄  

𝑉𝑜𝑢𝑡 = (14.8𝑉 × 1200Ω) (110Ω + 1200Ω)⁄  

𝑉𝑜𝑢𝑡 = 2.81𝑉 

 

 

 

Figure 33: Voltage Regulator Circuit, with and without cover. 
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3.3.3   PDB 
 

The power distribution board is the center of the electronic connections on the drone, here the 

14.7V Dc supply from the 4S LiPo is devided between the 6 motors, the 12V outlet is used to 

power the gyro and FPV camera. The 5V out is used to power the Seeeduino Xiao on the 

Jetson Nano voltage regulator. The Pixhawk flight controller is powered by its own voltage 

regulator connected in parallel to keep a stable voltage supply to both the PDB and Pixhawk. 

The Matec PDB is of a good quality that can provide a stabel power output to the drones 

motors for iumpoved stability and safety Figure 34.  

 

 

 

 

 

 

 

 

 

4S LiPo Vin 

Motor Vout 

5V Seeeduino 

Xiao 

FPV & Gyro  

Figure 34: PDB. 
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3.3.4   Autonomous Flight  
 

Setting up the Pixhawk autonomous mission is relatively straight forward. To test the system 

a test flight is conducted from home, using the mission planner API. The take-off, waypoints 

and landing position can be set, along with many other possible options such as loiter time, 

delay between each waypoint, the altitude, the flight modes and options and reactions to 

sensor inputs such as the range finders. To test the viability of the system a simple loop flight 

is set up from home Figure 35. Due to the hilly nature of the property an altitude of 110m is 

set. Using the Pixhawk API determining the altitude of certain areas is possible, showing an 

elevation of 105m at the take-off sight. To lower the chance of any crashes the drone is set to 

take off from the deck, fly in a C shape across the field and land on the driveway, approximately 

40m from the take-off site. Getting the GPS coordinates accurate on the first flight is difficult, 

as the Pixhawk GPS coordinates and the actual positioning of the drone are hard to determine. 

The test flight, including autonomous take-off and landing is successful, being completely 

performed without the need for a remote control.  Using a telemetry connection from the 

Pixhawk to the desktop computer allows for adjustments to the flight path, even while the flight 

is in progress, with the addition of receiving telemetry data such as current GPS position, 

altitude etc. Using the telemetry, the flight path can be fine-tuned, and any prior errors between 

the GPS position and actual position can be adjusted. After the first flight the landing sight 

position is found to be approximately 3m offset from the GPS position selected on the mission 

planner API.  

 

 
Figure 35:Home loop Autonomous flight path 
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3.3.4.1   Orchard Autonomous Flight  
 

To carry out an autonomous flight in the orchards, accurate coordinates would be required, 

due to the lack of a laptop the autonomous flight is not tested in the orchards, but a mock flight 

path, encompassing all five rows of the golden kiwi fruit orchards Is seen in Figure 36. 

Additionally, the gold kiwi orchard is highlighted in yellow, with green orchards highlighted in 

green Figure 36. To create an autonomous flight under the orchards we can first measure the 

width of each row. The kiwifruit orchard used for testing has a width of 4m, with some variance 

along the rows due to protruding branches a general width of 3.5m can be assumed. with the 

drone’s width including the slow fly propeller is 1.1m. to determine a GPS accuracy a minimum 

clearance of 0.5m on either side of the drone should be assumed. This would give a GPS 

tolerance of 2.1m. Given the specifications of the GPS module used [71] a normal position 

reporting accuracy is 3-5m. Although this is larger than the 2.1m accuracy required, areas 

within range of (SBAS) Satellite Based Augmentation Service, accuracy can improve to 1m. 

Additionally further accuracy can be obtained from the use of F9P GPS modules [71]. Australia 

and new Zealand have a joint project names South-PAN in development to provide SBAS 

across Oceania, and is planned for 2028 [72]. Due to the covered nature of the kiwi fruit 

orchard, creating a flight path without further adjustments in the field, is not possible. As seen 

in Figure 36, judging the separation point of each orchard is difficult from areal imagery. 

Although not attempted the autonomous flight within the orchards should be achievable using 

the Pixhawk fight controller in the future and is an area in need of further research.   

 Figure 36: Potential Autonomous Kiwi Orchard Flight Path. 
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Chapter 4  
 

Convolutional Neural Network  
 

4.0.0   Chapter Overview  
 

This chapter will cover the widely used convolutional neural networks Faster R-CNN, YOLOv7 

and YOLOv7-Tiny, for object detection. It will cover the selection, creation, comparison, and 

implementation of these networks.   

4.1.0 TensorFlow’s Faster R-CNN 
 

TensorFlow’s Faster R-CNN is a very respected object detection neural network and has been 

implemented for the use of orchard yield estimation with a high accuracy result in [73],[27] & 

[25] to name a few. When Faster R-CNN was released in 2015, designed as an improvement 

on prior iterations namely R-CNN and Fast R-CNN, it outperformed prior state of the art 

models in terms of mAP scores on popular benchmarks such as PASCAL VOC and COCO 

datasets. Despite not being the fastest Neural Network, being outperformed by SSD and 

YOLOv2 in speed, its accuracy and precision remains high and competitive. Additionally, 

being part of the TensorFlow framework it is a very flexible and adaptable model with the major 

advantage of being massively speed up when TPUs are used, which are specifically designed 

to maximise the inference and training of TensorFlow based models, making Faster-RCNN 

more attractive for time sensitive Realtime object detection applications, outperforming 

traditionally faster models such as YOLO.  

4.1.1   YOLO V7 
 

YOLOv7 was released during this papers testing stages of Faster R-CNN, making a 

compelling case for outperforming Faster R-CNNs mAP scores, combined with a higher 

detection speed (when not considering the physical implementation of TPUs on the drone 

platform) YOLOv7 is an attractive architecture to use. [74] compares YOLOv7 with F-RCNN-

R101-FPN+, a variant of the Faster R-CNN architecture that uses a backbone combination 

from ResNet-101 and feature pyramid network (FPN), with additional feature maps to improve 

performance. Tested on the 2017 COCO train and test data sets, the results showed a 
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APtest/APval of 44.0% vs 51.4% for YOLOv7.  But when looking at the Map when confidence is 

set to .5 in APtest50 the R-CNN based network shows a score of 72.4% vs YOLOv7 at 69.7% 

which is interesting Table 15. Additional advantages are the size of the YOLOv7 model being 

smaller, using only 36.9m parameters while Faster-RCNN uses 60m parameters, as expected 

a larger number of parameters correlates with a slower detection speed as more calculations 

are required in the convolutional layers etc. additionally YOLO is based on a single shot 

detector (SSD), giving it more advantages in terms of speed, higher computational efficiency, 

require less memory, and are better suited to real time detection on low power devices. With 

the main drawback being a decrease in accuracy when compared to traditional methods (in 

theory).  

4.1.2   YOLOv7-Tiny 
 

YOLOv7 is capable of a high mAP score, but its main advantages are focused on the speed 

of detection, it would be ideal to maximise the benefits of the detection speed, and sacrifice 

some of the accuracy/ mAP score. This is what YOLOv7-Tiny is designed to do. YOLOv7-Tiny 

is a lighter version of YOLOv7, designed for faster detection speeds with the compromise 

being a lower mAP score when trained on equal data. YOLOv7-Tiny has only 6.2 million 

parameters. In [74] when compared to YOLOv7 on the COCO dataset 286 FPS with a 

APtest/APval = 38.7%/38.7%. with the highest being a APtest50 = 56.7%. this shows it is likely 

necessary to set the detection confidence to a higher level such as .5 to get accurate results 

when comparing YOLOv7 APtest50 = 69.7% Table 15. The Massive increase in FPS makes 

this model a good choice for real time object detection implementation on an Edge devices, 

drones, smartphones and other low processing, low power devices. The increase in FPS 

comes from using fewer convolutional layers and a smaller number of filters in each layer. It 

also uses anchor boxes to improve the accuracy of object detection. 

 

Table 15: various model scores on important parameters tested on the same COCO dataset. 

Model #Param FLOPs FPS APtest50 

F-RCNN-R101-

FPN+ 

60.0M 246.0G 20 72.4% 

YOLOv7 36.9M 104.7G 161 69.7% 

YOLOv7-tiny 6.2M 13.8G 286 56.7% 
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4.2.0   Training Data Collection  
 

  

 

Collecting the training data to create a custom neural network is the most important step 

regarding the model accuracy that can be achieved, as no amount of image manipulation, to 

increase dataset size and variance can make up for a bad training data collection [28]. To 

create a neural network with the foremost goal of accurately counting kiwi fruit orchard yields 

prior to picking, the neural network should be trained on ripe kiwifruit just prior to picking, 

making the same conditions as a farmer would deploy the system in. On the 26th of April 2022, 

images of a local kiwifruit farm were acquired between 12:00 noon and 5pm. The day was a 

mildly overcast day with good sunshine at times. Flying the drone over the top of the orchard 

with the hopes of being able to capture kiwifruit from the above angle proved unsuccessful, 

and so plan B, where flying the drone underneath the orchard worked very well giving a smooth 

image capture of the kiwifruits. The GoPro lens proved to have a wide enough angle to capture 

the whole width of each kiwi row within a very near distance.  To acquire images the drone 

was flown through several rows using the GoPro that will be used to perform the object 

detection later. Additionally, more images were taken at a different resolution with two iPhones 

(iPhone 8 and iPhone 11). To further increase the accuracy of the model [30]. additionally 

golden kiwis were purchased from a local supermarket, and photos were taken of them with 

different backgrounds (to prevent underfitting the store-bought kiwis had their stems 

reintroduced). This technique further improves the accuracy of the trained models as the 

background in kiwi orchards will not always be so similar. For example, the kiwi farm we visited 

was outside, but other farms may be under protective domes or have different colour soil or 

fencing as in Figure 37 [Web Image]. To further increase the generalisation of acquired images 

several appropriate golden kiwi’s orchard images were acquired from the internet and 

handpicked for image quality.    

Figure 37: Padded Store Bought [Left], Padded Web Image [Middle], Padded Drone Capture [Right]. 
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4.2.1   Image Augmentation  
From the 600 Raw images, three image augmentation techniques were selected to increase 

the dataset size. First all 600 images were resized using padding to a 1000 X 1000 resolution. 

Picking the correct resizing size is more complicated when the same images are used across 

different model architectures. For Faster-RCNN a larger size such as 800x1200 or 1000x1200 

is recommended due to its multistage architecture, whereas YOLOv7 works best with square 

shaped images, ideally at a multiple of 32 due to its SSD architecture. As neither can be 

satisfied with the same images, a square of 1000*1000 was chosen to better fit the high-

resolution, wide-angle images, while not unfairly giving an advantage to either architecture for 

testing.  Padding is done via a Python script. After padding the 600 images Figure 38, 

augmentations are applied. An intensity-based augmentation is applied by increasing the 

brightness and contrast. This type of augmentation makes the model more robust during 

changing lighting conditions, ideal for an outdoor farm application. Secondly salt and pepper 

noise was introduced to a further 600 images. This augmentation helps prevent overfitting, 

forcing the model to learn more robust features, additionally it helps create a more generalised 

model, by learning the underling structure of the kiwi. Lately random translation was added to 

600 images. Translation is ideal to use as the kiwi is relatively featureless, this augmentation 

increases feature recognition robustness [30].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Padded Kiwi. 

Padded + Salt & Pepper Noise 

Padded + Intensity Augmentation. 

Padded + Translation. 

Figure 38: Image Augmentation Techniques used. 
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Although a larger number of raw images were taken via the video and combined iPhones, 

reducing the number of raw images was necessary due to time restraints, with many images 

containing more than several hundred kiwis each, labelling images becomes extremely time 

consuming. Image labelling was done using the Labellmg software. Using close-up high-

quality images from the iPhone for training allows the model to become more diverse and 

create better feature maps to identify kiwis, this will come in useful when the drone is flown at 

different hights by various farmers as the kiwis will appear larger or smaller. Image 

augmentations were performed with the help of ImageJ an open-source image processing and 

analysis software. Conversion of image labels for training from .XML format, used by the 

TensorFlow framework for F R-CNN were converted to a YOLO Keras .txt format, with a 

python script to save time relabelling all images a second time.  

 

 

 

 

 

 

 

Figure 39: Orchard Training Image Capture Via Drone. 
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Figure 40: 3309 individual kiwis in test labels. (.CSV) 

Figure 41: 9166 individual Kiwis in Train labels. (.CSV) 
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4.3   Model Selection  
 

Using the TensorFlow object detection API, Training the data set was done using the Faster 

R-CNN inception v2 coco (FRC-NNV2) model using TensorFlow 1.15.0. FRC-NNV2. 

YOLOv7 was also tested; YOLOv7 is a single stage detector with the advantage being a higher 

processing time, but lower accuracy in theory to other architectures. YOLOv7 currently claims 

to “surpass all known object detectors in both speed and accuracy” [74]. Using supervised 

learning both models are trained on equal training and validation data sets. Calculating the 

mean average precision or mAP is a standard method used to understand the accuracy of a 

given model. mAP considers the trade-offs between the precision (the model’s ability to find 

true positives given all positive predictions) and recall (the models ability to find true positives 

given all predictions) 

Training is performed on a home PC using a 2060 super NVIDIA graphics card. Using an older 

graphics card was required, as CUDA 10.0 and cuDNN 7.4.2 used by TensorFlow 1.15.0 does 

not support the architecture of newer graphics cards. Using CUDA to train both models allows 

for much faster training times [56] (around 24 hours). CUDA was also used to train YOLOv7 

and YOLOv7-Tiny, with 600 epochs used for training. Testing various amounts of images and 

types of images was conducted, until the final 2400 images as described was found to be most 

effective. This is where testing the effectiveness of both image manipulation, as well as the 

use of closeup individual kiwis were introduced as suggested by [30].   

To compare the effective mAP of the models, 10 images containing a total of 334 kiwifruits 

Figure 64, with a variety of environment cases were chosen from under orchard drone footage. 

Images of clearly visible kiwis, sunstruck images, and low light level images were tested with 

a IoU range of 0.05:0.1:0.95 + .005 the addition of the .005 range was added due to its 

significance in test results.  The tests show all three models accurately predicting correct 

kiwifruit locations, but often miss possible detections, resulting in a high precision but relatively 

low recall, with the Faster-RCNN model at IoU = 0.5 having a particularly bad recall under 0.5 

meaning less than half of the total kiwis in each image are not detected. The low recall could 

be caused by a lack of training image diversity, suboptimal model architecture or 

hyperparameters. This could be improved by further training experimentation. At IoU of 0.5 

The Precision of the Faster R-CNN model is .982. this makes the model good at predicting 

true positives, showing it is not inaccurately labelling objects as kiwis. With an F1 score of .621 

and AP of .699 the model has moderate to good performance. Comparing these scores to 

recorded scores of similar Faster R-CNN models we can see that the model likely needed a 

few more training images to be trained appropriately. Expected mAP scores are in the range 
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of 0.7 - 0.8 on popular datasets such as COCO or PASCAL VOC, so a score of 0.699 falls just 

short. 

Testing the YOLOv7 Model shows a better result across each category, with a mAP of .898 

the model is well trained Table 16, Table 17, Figure 42. When looking at the precision and 

recall in the IoU range of [0.005, 0.05, 0.1, 0.5] we see precision of [0.949, 0.972, 0.996, 1] 

and recall [0.901, 0.718, 0.706, 0.575] These results show that the model is performing better 

on average, the lower the IoU threshold. While the model can make predictions with high 

precision across the range of IoU values, the recall increases steadily as IoU drops, thus 

detecting a higher percentage of all objects within view the lower the confidence. The mAP 

indicates the model has a high accuracy in the given class. The F1 score shows a good 

balance between precision and recall. Overall, the metrics show the model is performing well, 

and I suspect that with less challenging test images the results would be of higher accuracy 

across the range. As the images used for testing were not contained in the training data, it can 

be said the model is not showing overfitting and is generalising well. But as the test images 

are still from the same orchard used to train the data, so more tests will be needed to confirm 

this accuracy.  

Testing Yolov7-Tiny showed some surprising results, with a mAP score = 0.844 Table 16, we 

see that it is slightly less accurate when compared to YOLOv7 across a broad range of 

confidence. Looking at the precision and recall in the IoU range of [0.005, 0.05, 0.1, 0.5], 

precision is [0.962, 0.988, 0.966, 1] with recall [0.832, 0.739, 0.729, 0.605]. we see that again 

a higher overall AP can be found when the IoU confidence is low. This is again due to many 

obstructed Kiwi Fruits in the test images, just as would be seen in an orchard situation. The 

high precision in this case prevents the model from finding too many false positive predictions 

when the confidence is lowered, and instead can start detecting kiwis that are, 40,50,80% and 

more obstructed behind other Kiwi fruits. Overall looking at the total number of kiwi fruits 

detected, vs the total number contained in the test images, at no tested IoU threshold do the 

number of predictions exceed the total number within all the images, although, on some 

individual images the total detection count was higher than the total number of kiwis present. 

This only occurred at IoU thresholds =< .005. furthermore, with the addition of the tracking 

algorithm in the upcoming section the likely hood of counting a false detection is reduced 

again. Overall, both the YOLOv7 and YOLOv7-Tiny models show very good results with mAP 

= 0.898 and 0.844 respectively. The selection of the CNN to be used on in the drone will also 

depend on the FPS capability of the model and is discussed in the next section.  

Due to the high amount of obstructed fruit, looking at Table 17, using a IoU threshold around 

0.1 will be most useful, in regard to predicting accurate yield estimations when the object 
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detection is combined with the object tracking algorithm. Even a moderate amount of false 

positives predictions is acceptable, along as the true positives+ false Positives is ≈ actual yield 

count. As the tracking algorithm can, in some ways, eliminate false positives, if they are not 

too prevalent, the highly obstructed and sun struck fruits will benefit from a low IoU threshold. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

TP + FP
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
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TP + FN
 

𝐹1 = 2 ∗
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𝑚𝐴𝑃 =
1
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Figure 42: mAP sun struck Test Image, YOLOv7[Left], FRCNNv2[Right], YOLOv7-Tiny [Bottom]. 
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Table 16: Table of mAP scores across 10 images at IoU of 0.5. 

 

 

Table 17: YOLOv7-Tiny mAP value matrix, sum of data points across 10 images tested at various IoU ranges. 

Yolov7-

tiny conf 

#KIWIs True + False 

+ 

False - Prediction 

conf 

precision recall F1 

.005 334 278 11 56 61.63 .962 .832 .892 

.05 334 247 3 87 75.5 .988 .739 .846 

.1 334 243 1 91 81.17 .996 .728 .816 

.2 334 230 0 104 83.5 1 .689 .816 

.3 334 217 0 117 84.2 1 .650 .787 

.4 334 207 0 127 85.1 1 .620 .765 

.5 334 202 0 132 86.4 1 .605 .754 

.6 334 195 0 139 88.9 1 .584 .737 

.7 334 189 0 145 90.5 1 .566 .722 

.8 334 170 0 164 92.4 1 .510 .675 

.9 334 109 0 225 95.3 1 .326 .492 

.95 334 22 0 312 97.1 1 .065 .124 

.995 334 0 0 334 0 0 0 0 

Average  334 177.6 1.25 156.4 78.6 .919 .576 .741 

 

 

model            mAP 
@0.05:0.1:0.95        

+ .005  

Average    
Precision  
At IoU = 0.5 

Precision 
At IoU = 
0.5 

Recall 
At IoU = 
0.5 

F1 
At IoU 
= 0.5 

FRCNNv2           .782 .699 .982 .466 .621 

YOLOv7         0.898 .712 1 .567 .719 

YOLOv7-Tiny         .8442 .777 .998 .615 .754 
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Figure 43: YOLOv7-Tiny median AP@0.05:0.1:0.95 + 0.005   mAP = .844 

 

Table 18: YOLOv7 mAP value matrix, sum of data points across 10 images tested at various IoU ranges. 

YOLOv7 

Conf  

#kiwi/img True + False 

+ 

False - Average 

prediction 

conf 

precision recall F1 

.005 334 301 16 33 58 0.949527 0.901198 0.924731 

.05 334 240 7 94 66.4 0.97166 0.718563 0.826162 

.1 334 236 1 98 71.4 0.995781 0.706587 0.82662 

.2 334 219 0 115 73.7 1 0.655689 0.792043 

.3 334 211 0 123 75.1 1 0.631737 0.774312 

.4 334 198 0 136 78.9 1 0.592814 0.744361 

.5 334 192 0 142 83.3 1 0.57485 0.730038 

.6 334 188 0 146 86.8 1 0.562874 0.720307 

.7 334 182 0 152 92.2 1 0.54491 0.705426 

.8 334 158 0 172 95.5 1 0.478788 0.647541 

.9 334 83 0 215 98.2 1 0.278523 0.435696 

.95 334 3 0 331 0 1 0.00898 0 

.995 334 0 0 334 0 0 0 0 
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Figure 44: YOLOv7 median AP@0.05:0.1:0.95 + 0.005   mAP = .898 

 

Comparison and selection of the model’s accuracy is performed on the same PC used to train 

the models, the PC data can be used for mAP, Recall, Precision and F1 scores. However, 

when it comes to FPS the models will need to be tested on the hardware to be used on the 

drone namely the NVIDIA Jetson Nano. For comparison the 2060 Super GPU in the PC has 

2176 CUDA cores where the Jetson Nano has 128 Cores. While testing on the PC the Faster-

RCNN model averaged 8 FPS while the YOLOv7 Model was able to perform at 25 FPS, equal 

to the video input.  For these reasons the YOLOv7 and YOLOv7-Tiny Models are chosen to 

be implemented and tested on the Jetson Nano. Due to time restraints only the YOLO models 

that have the same CUDA requirements are tested on the Jetson, as the ARM architecture 

requires a long setup time and debugging for such implementations. These results are again 

agreeing with [74] where Faster R-CNN reached 20 FPS and the YOLOv7 model reached 161 

FPS on the COCO dataset. (a cloud-based GPU was used for processing). The processing 

time per image capture is important as a longer processing time results in an effective lower 

FPS of the camera. This results in either a decrease in accuracy in kiwis counted, or a slower 

flight speed for the drone, neither of which are advantages.  
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4.4   YOLOv7 FPS on Jetson Nano  
 

To test the FPS capability of the JETSON Nano, a test video is used, that had been captured 

by the drone in the kiwi orchard, the day before picking. As testing the hardware on a live 

video stream in the orchard is not possible, getting truly accurate results is somewhat tricky. 

The time to load images from the internal SD card and the output from the GOPro3+ silver is 

slightly faster. Initial testing is done on the same kiwi orchard video between models and 

iterations in this section.   

Testing the YOLOv7 model named “yolov7_custom” shows a total frame processing time in 

the range of ~699ms / 1.4 FPS to ~544ms / 1.8 FPS. This result is suboptimal, as this has all 

CUDA cores enabled. The JETSON Nano comes with 4GB of ram and an additional 494.6 

megabytes per CPU core of swap memory (a SSD partition allocated for the use of extra RAM 

storage) while this swap memory is considerably slower in read and write speed, it can prevent 

bottle necks, system freeze and crashes due to kernel panic as seen when I took the 

screenshot in Figure 45.  

As the JETSON Nano does not allow for the addition of RAM, I allocated 2GB of swap memory 

per CPU core into the partition, totalling 8GB of swap memory. This allowed the YOLOv7 

model to speed up a little, inference time decreased by around 50ms or an extra .2 FPS, and 

average inference time became more consistent.  

Now testing the speed of the YOLOv7-Tiny model shows a significant increase in FPS, 

additionally this model consumes around 5.3gb of RAM, thus only using 1.2 GB of additional 

swap memory, much less than the standard 2GB of swap found on the OS on startup, thus 

freeing up more space on the SD card for additional video storage.  

Running the YOLOv7-Tiny on the same video with a bitwise_and operation, additional swap 

memory, and the tracking and counting algorithm (with an LCD output) the inference time + 

the NMS (Non-Maximum Suppression, post processing step removing overlapping detections) 

is between 85.5ms and 94.3ms, in the range of 10.6 and 11.7 FPS. This result is much more 

favourable than the 1.4-1.8 FPS rate with the YOLOv7 model.  

To determine the accuracy of the two models, we can look at the total kiwi fruit detection count 

when using the track and count algorithm on the same video. The final kiwi count of the 

YOLOv7 model with a IoU of 0.5 shows a total of 932 and 809 Kiwi Fruit for YOLOv7-Tiny 

respectively. The actual number of kiwis in the video is unknown to me as it would be extremely 

difficult to count each one individually.  
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This video is footage of 1/3 of a kiwi orchard row. The accuracy of the count may be increased 

with a modification to the Region of Interests width, discussed later.  

The system seems to allocate some memory into the Swap Memory partition no matter how 

much free space is available on the RAM, this may cause an additional bottleneck that is 

avoidable. Ideally all swap memory is removed in the final iteration to force the use of the RAM 

module exclusively Figure 45. 

The use of a more optimised model via implementation of Tensor RT is also possible, but 

current development for implementation of a custom YOLOv7 model is not yet possible, such 

an implementation could see a higher FPS of around 20-25 FPS based on non-custom 

YOLOv7 tenors RT models running on a jetson nano 4GB. 
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Figure 45: YOLOv7 inference + NMS time at 2GB Swap Memory [TOP], YOLOv7 8GB swap memory 

[Middle], YOLOv7-Tiny 8GB swap memory [Bottom]. 
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4.5.0   Track and Count Kiwi Fruit  
 

Detecting fruit using the YOLOv7 Convolutional neural network is half the process required to 

achieve yield estimation. The tracking of individual kiwi detections, followed by accurate 

counting is required. To try speed up the system more an additional bitwise_and operation 

was performed on each incoming image in the detection algorithm, with a .PNG mask that 

contained all (0,0,0) black pixels to cover out any parts of the image that was not crucial for 

detecting the kiwis, ideally this would prevent predictions being made in non-useful areas of 

the image, and is a feature included during the model training stages, where (0,0,0) padding 

was used to obtain images of the correct dimensions. Surprisingly this method did not result 

in a large improvement of inference speeds. Notably, without this operation the model could 

be used to also detect floor kiwi fruit, via an additional ROI in the tracking algorithm to further 

increase PA information. Next a tracking algorithm is used to prevent counting the same object 

multiple times. To do this the Deep SORT (Simple Online and Realtime Tracking with a Deep 

Association Metric) algorithm, which has been shown to be highly effective at tracking objects 

in challenging and crowded scenarios. To use this tracking algorithm to count, the following is 

done. Each kiwi is given an ID and added to a list via DeepSORT. Next adding two lines that 

stretch from one side of the image to the next allows for a region of interest in which any 

tracked kiwi, that first enters this region is counted and considered a true positive detection. 

This allows the algorithm to count each kiwi only once. Essentially the added constraint of 

needing to have been tracked for X frames in a row is what allows the tracking and counting 

algorithms to work together, producing high accuracy results. The algorithms can be finetuned 

to give an optimal result, which has been done in detail, in the following section. The addition 

of the tracking algorithm does not affect the speed of inference by any noticeable amount. 

Figure 46: raw video input with total current detection output 
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Figure 47: track and count with bitwise_and operation pre-Edge detection optimisation. 

Figure 48: Bitwise_and on input image 
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The LCD screen count Figure 49, allows for the real time output of the count number, thus 

making the whole process from setting up the drone to acquiring the total count number much 

shorter for the farmer. Gaining more accurate information such as region-specific yield 

estimation requires a keyboard, mouse, and monitor.  

 

 

 

 

 

            

 

 

 

 

 

 

 

 

 

 

Additionally, the YOLOv7-Tiny model and track and count algorithm, is scripted to launch on 

power up, with an additional Q button press for closing and saving the detection, track, and 

count detection file for later analysis, further streamlining the operations needed to operate 

the orchard yield estimation system for the farmer.  

 

 

 

 

 

 

Figure 49: YOLOv7-Tiny on JETSON Nano + LCD 
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4.5.1   Track and Count Accuracy  
 

To determine the accuracy of the count number produced by the track and count algorithm, a 

few tests can be conducted. To determine the ideal settings to produce the more accurate 

results several parameters must be adjusted. Namely. IoU threshold of the detection 

algorithm, region of interest hight and location used for counting, “Sort_max_age” variable 

used to discard incorrectly identified kiwi fruits after X iterations of no subsequent detections 

following the initial detection, in other words the number of frames an unmatched tracker ID 

exists for.  “Sort_min_hits” a variable used to count kiwi fruits only after they have been 

detected X frames in a row. “sort_IoU_thresh” used in the sort script and has the same function 

as the regular IoU. Additionally, the bounding box sizes intersect/ overlap can be adjusted to 

improve tracking with a lower FPS.  

To simulate the real-world scenario more accurately, a 25FPS, 5 second video with a known 

number of kiwifruits is selected. The parameters mentioned are adjusted until the number of 

detections matches as closely as possible the number of known kiwis in the video. Additionally, 

a second video is used, which has had every second frame removed from the 5 second video, 

to simulate a 12.5 FPS video stream, which more closely represents the FPS achieved on the 

JETSON Nano.  

To further increase the accuracy of the tracking algorithm, two additional regions of interest 

are placed on the very edge of the screen, this allows for a “wider” view angle Figure 50. Due 

to the drone moving forward in the centre of the orchard, fruits follow a path on the screen, 

that is not a straight vertical line from bottom to top, rather they move outwards from the centre, 

thus fruit on the edge of the screen will move out of the field of view via the left or right side of 

the camera field of view, before being given a chance to be counted by the horizontal region 

of interest at the top of the “screen” field of view. When fruit are counted their centre point 

turns red.    
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To determine the number of fruits in the five second video, the video is split into 2 frames, 

clearly containing all the kiwis in the video, that end up in the ROI. This is done simply by 

analysing the start and stop positions of the Region of Interest, in the short five second video, 

and subsequently extracting 2 frames that encompass this area. Using the detection algorithm 

on the two still images, the total number can be obtained with reasonable accuracy, 

additionally the fruit were counted by hand and a total of 341 acceptably visible fruit were 

counted. Thus, a detection result of 341 will be considered a 100% accuracy result for the 

track and count algorithm. 

 

 

 

Figure 50: visualisation of fruit perceived movement [Top], uncounted fruit, moving off edge of screen. 

[Left], additional ROI for detecting fruits moving off side of screen, but being counted [Right] 

 

Figure 51: Five second test video, to fine tune and determine tracking algorithm accuracy split into two frames. 
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Table 19: Total Kiwi Fruit count, given various deep sort variable weights on Yolov7(Green) & Yolov7-Tiny 

(Yellow) from a 5second video containing ~341 Fruit. 

IoU Threshold 

Sort 
Max 
Age 

Sort 
Min 
Hits 

YOLOv7-
Tiny 

 +edge 
detection YOLOv7 

 +edge 
detection 

0.05 5 2 427 479 572 426 

0.1 5 1 432 483 408 461 

0.1 4 1 435 484 417 470 

0.1 3 1 443 492 430 483 

0.1 2 1 450 498 445 499 

0.1 1 1 470 517 485 541 

0.1 5 2 379 419 527 407 

0.1 4 2 379 419 363 412 

0.1 3 2 380 420 369 418 

0.1 2 2 380 423 382 433 

0.1 1 2 395 431 412 464 

0.1 5 3 346 380 334 380 

0.1 4 3 351 384 338 384 

0.1 3 3 351 384 344 390 

0.1 2 3 351 384 353 401 

0.1 1 3 358 390 382 429 

0.1 5 4 327 356 327 367 

 0.1 4 4 329 359 329 369 

0.1 3 4 328 358 334 374 

0.1 2 4 327 356 341 382 

0.1 1 4 331 359 364 405 

0.1 5 5 320 344 313 353 

0.1 4 5 323 348 319 359 

0.1 3 5 319 344 328 369 

0.1 2 5 314 339 345 386 

0.1 1 5 316 342 345 386 

0.1 6 5 305 327 313 353 

0.1 6 6 305 327 306 343 
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Running YOLOv7 object detection on a 25 FPS video allows us to see the ideal settings given 

an ideal circumstance, which can be used to understand the results in the YOLOv7-Tiny at 

12.5 FPS case. Additionally this information is useful for further research purposes where a 

more powerful microprocessor may be implemented. In terms of the scope of this project, only 

the Yolov7-Tiny results are of true importance. And the parameters will be tuned to generate 

the most accurate result for Yolov7-Tiny at 12.5 FPS.  

Sort Max Age: The Sort Max Age parameter determines how many frames a once detected 

fruit has its ID stored for, after not being detected, before it is removed from the list. Increasing 

the Sort Max Age can help prevent true positives from being excluded from the count, but it 

can also cause false positives detections to be counted, as the new detection of a false positive 

with the same ID can then be counted assuming it passes the Sort Min Hits check. In this 

case, we can see that increasing the Sort Max Age results in a decrease in the total count 

number for both detection methods, suggesting that the algorithm is losing track of false 

positives, then counting them later due to the increase probability that it is detected again and 

stored as a detection. 

Sort Min Hits: The Sort Min Hits parameter determines how many frames a detected fruit must 

be tracked before it is added to the count list. Increasing the Sort Min Hits parameter can help 

filter out false positives, but it may also cause valid detections to be missed if they are not 

tracked for long enough. In this case, we can see that increasing the Sort Min Hits parameter 

generally results in a decrease in the total count number for both detection methods, indicating 

that the algorithm is detecting and tracking false positives, but has a lower possibility of 

continuous tracking and counting of the false positives. 

Edge Detection: The edge detection parameter affects how fruits that move off the edge of the 

frame are counted. When edge detection is turned off, fruits that move off the edge of the 

frame are not counted, resulting in a lower total count number. When edge detection is turned 

on, fruits that move off the edge of the frame before entering the region of interest are counted, 

resulting in a higher total count number. In this case, we can see that turning on edge detection 

generally results in a higher total count number. 

To find the perfect balance between tracking a true positive and counting it before it moves off 

the screen, as well as deleting false positive IDs before they are counted suggests a higher 

Sort Max Age, combined with a higher Sort Min Hits. The addition of the Edge Detection also 

increases the accuracy of the tracking algorithm, by gaining a “wider view” to count the full 

width of the orchard. This is reflected in  Table 19, where looking in the yellow column, we see 

when Sort Max Age and Sort Min Hits are high, the accuracy is improved.  
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4.6   Summery of Chapter Four  
 

Comparing the CNN models, provide a clear answer as to the ideal model given the scope of 

this project. Seeing the advantages in both mAP score and inference time on the YOLO 

models, when compared to the FR-CNN architecture the answer is clear. YOLO v7 is able to 

outperfourm the FR-CNN model. With the addition of YOLOv7-Tiny. A smaller, faster, although 

slightly less accurate model architecture, we are provided with the perfect mix between 

accuracy and inference time, allowing this project to be successful in achieving its real time 

detection goals. Training the models, proved time consuming and more complex than one 

might first imagine. Over 12,000 individual kiwis contained within images were used to train 

the models, this was required to achieve a well performing model. Having to use a generally 

lower IoU threshold than what is standard, is likely due to large amounts of partially visible 

Fruit, this may be unavoidable, unless a model is specifically trained to detect partial fruit with 

more certainty. Using DeepSORT for tracking proved successful, with the correct tuning of 

tracking parameters, accurate to within a 97%-99% range, although further testing is needed 

to confirm this with higher certainty. While the use of other frameworks such as keras were 

not explored due to their lack of previlance in letrature related to fruit detection. These other 

archetectures are certainly an avenue for further research in the future. Additinaly the use of 

pre trained models/ Libraries to identify kiwifruits was also not explored in depth. This is due 

to pre trained models such as the massive tensorflows COCO model data set being trained 

on 2.5 million label instances of common objects ( Common Objects in Context). Such detailed 

models only contain regular or common objects such as houshold items, animals etc. other 

popular pre trained models compatible with YOLO or tensorflow were investigated, but the 

class for kiwifruit was not found. 

Although pre trained models were not used, the use of pre labeled images of kiwifuris were 

also explored, but due to the specific natuire of images required by the drones angle, no usefull 

librarys were found. This resulted in all images and labels being created from scratch via the 

drone combined with manual labelling.   

 

 

 

 



 
101 

Chapter 5     
 

Experiments and Results  
 

5.1   Chapter Overview  
 

This chapter presents and analyses the results from the experiments encompassing all 

aspects of the project into a single experiment, the methodology used to obtain the data is 

explained, with results for various augmentations of the system being discussed. The 

experiments consist of results obtained from the drone system, being compared to results 

gained from the picking and counting of the orchard, to better understand the accuracy and 

implement ability of the overall system. 

 

5.2   Method  
 

Testing the drone orchard yield estimation system under the orchards is done on the 7th May 

2023, one year 11 days after the image acquisitions of kiwi fruit from the same orchard. The 

test flight took place on an overcast day, with intermittent rain. During the two-week period 

before kiwi fruit picking took place, New Zealand was experiencing a period of heavy rain, 

stormy, windy weather, and severe flooding. The drone flight is done two days before flooding 

of the orchards, with picking planned for the next day, but was delayed for 9 days. It is not 

known how many fruits had fallen to the floor during the storm, comparison image before and 

after of the orchard floor.  Looking at the ripeness and shape of the gold kiwi fruit from this 

season, compared to the last season from which images are acquired, the shape, size and 

colour is very similar. This is ideal for the detection system. However, the overcast weather 

does reduce lighting conditions bellow what was seen during the image acquisition, Figure 62. 

Due to rains the orchards were wet and dripping occasionally, for this reason a protective 

cover was placed over the electronics of the drone to prevent damage Figure 52, leaving only 

the LCD screen visible. An additional tuning flight was carried out with the cover in a nearby 

field. Additionally, the FPV camera was not plugged in and the jetson nano was powered off 

to save battery during fine tuning, also seen in Figure 52.  Due to space restraints in the 

orchard, the stability tune needed to be caried out in the nearby field.  
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Figure 52: Field Tune flight with open cover 

Figure 53: Hover in field 
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To carryout the test flight, the drone is placed on the takeoff/ landing matt, to allow for a smoth 

take off, preventing grass tangeling the landing gear, fortunately the grass had been mowed 

around the outside of the orchard anyway. As seen in Figure 54, Figure 55 the orchard floor 

has not been mowed towards the end of the row (the row actually continues for a extra 20m 

after the high grass), but it had not been mowed or trimmed in a long time, preventing the 

drone from flying the whole way. The high grass cuting across the middle of the orchard row 

is present due to a recent removal of a canopy, leaving a large 4m wide gap in the orchard.  

So the decision is made to fly the drone remote-controlled upto the end of the visable orchard, 

and land on reaching the “end”, while still under the orchard. Due to flying the drone, taking 

images of the drone flying under the orchard was not possible. Flying the legth of the orchard, 

at a speed of around 1m/ 3-5s the flight time is around 3 miniutes. After two flight causing 

issues with hight and obstical avoidance due to hanging vines, the third flight was able to reach 

the end of the half row in a constant speed, resulting in a yeild estimate of reading of 8782 

fruits Figure 55. To further assess the accuracy of the system a second video is taken on the 

day of picking, using the flight only to record the orchard, to determine the diffrince on count 

when using post processing rather than real time processing, thus resulting in a higher FPS 

video. These results are also discussed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 54: Pre-flight take-off position. 
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Figure 55: Drone at the start of the tall grass [Left]. LCD detection result [Right]. Length of orchard flown 

[Bottom]. 
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5.3   Kiwi Fruit Picking  
 

On the 16th may kiwifruit picking was carried out by a team of ~ 40 pickers. To gain an accurate 

understanding of the yield, four pickers were happy to assist in the project. The method of 

picking is simple, one tractor carrying either 3 or 4 kiwifruit crates is driven down a central row, 

with a row on either side of the tractor. With five rows of orchards on this section, two tractors 

were driven down the central rows. Pickers then make their way down from the top of the row, 

following the tractor, to the bottom (nearest to the entrance) picking fruit into their basket, then 

emptying their baskets into the central crates pulled by the tractors Figure 59. Once the tractor 

crates are filled level a new set of crates is brought in. To gain an accurate estimate of total 

yield one could ask each picker to count every kiwi fruit they pick and tally their total down, 

although possible this was not done. Instead, for the four men picking fruit in the row of interest, 

an average of the number of fruits that fit into their picking basket was taken, and the total 

number of baskets filled is counted, thus the total number of fruits picked from the row is an 

estimate. Each of the four pickers is asked in intervals to count the total number of fruits that 

fit into their basket, results ranged from 120-156 fruit per basket. As mentioned earlier prior to 

picking and fruit spraying a video is taken to obtain 48 FPS video (the highest FPS available 

on the Go Pro at 1080p resolution) of the full orchard row, this video is used to run Yolov7 and 

Yolov7-tiny on the home desktop, to compare the neural network to the actual count acquired 

later in that same day. To prepare for picking, the fruits are sprayed down with a consumption 

safe preservative three hours before picking starts. Due to light rains earlier, the pickers wait 

for the fruit to completely dry in the sun, this prevents moisture from causing bacterial growth 

and rotting during later storage, this puts a time pressure to pick all the fruits before another 

light shower begins.   

 

 

 

 

 

 

 

 

 
Figure 56: Fruit preservative spraying pre picking.  
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Figure 58: Four pickers picking only from the row in question. 

Figure 57: level full bags ~ 120 fruit 
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Figure 59:  tally result from first and second half of row. [Top], Crate of kiwifruit filled [Left], Crates waiting to 

be filled [Right]. 
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5.4   Actual Fruit Yield  
 

Table 20: quantity of Kiwi fruit per basket 

Number of 

fruits per 

basket.  

Picker 1 Picker 2 Picker 3 Picker 4 

156 138 155 120 

129 134 146 132 

138 148 134 133 

140 134 153 140 

 

total baskets picked in first half of row = 80. Total baskets in second half of row = 67.5, full 

row = 147.5 

To generate an accurate estimate of the total fruit picked over the 147 baskets, a statistical 

analysis is done. Creating a probability estimation to determine the average number of fruits 

collected in each basket via a normal distribution, in the range of 120-156. Using the 

observed data, creating a cumulative distribution function (CDF) of the normal distribution as 

a statistical method of yield estimation. Using the R software, we can generate a normal 

distribution.  

Average Fruits per basket = 139 

X is the number of fruits in each basket. µ is the mean = 139 n is # of observations = 16 

Standard deviation   𝜎 = √(
∑(𝑥−𝜇)2

𝑛
)    𝜎 = 9.67 

Estimate number per basket = (CDF (156 – CDF (120)) * 80 * 139  

Using R a fruit yield estimate is calculated, with a margin of error at 95% confidence interval, 

and creating the normal distribution graph.  

 

> mean_value <- 139 

> sd_value <- 9.67 

> basket_count <- 80 

>  

> cdf_120 <- pnorm(120, mean = mean_value, sd = sd_value) 

> cdf_156 <- pnorm(156, mean = mean_value, sd = sd_value) 



 
109 

> probability_range <- cdf_156 - cdf_120 

> print(probability_range) 

[1] 0.9359111 

>  

> estimated_total <- probability_range * basket_count * mean_value 

> print(estimated_total) 

[1] 10407.33 

>  

> # Calculate the standard error 

> standard_error <- sd_value / sqrt(basket_count) 

> print(standard_error) 

[1] 1.081139 

>  

> critical_value <- qnorm(0.975, mean = mean_value, sd = sd_value) 

> print(critical_value) 

[1] 157.9529 

>  

> margin_of_error <- standard_error * critical_value 

> print(margin_of_error) 

[1] 170.769 

>  

> # Calculate the lower and upper bounds of the confidence interval 

> lower_bound <- round(estimated_total - margin_of_error) 

> upper_bound <- round(estimated_total + margin_of_error) 

>  

> # Display the estimated total and the confidence interval 

> cat("Estimated Total: ", round(estimated_total), "\n") 

Estimated Total:  10407  

> cat("95% Confidence Interval: [", lower_bound, " - ", upper_bound, "]\n") 

95% Confidence Interval: [ 10237  -  10578 ] 

[1] 10407.33 
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Using this statistical analysis, we find that the total number of kiwis in the first half of the 

orchard row is, 10407 with an error of 170 giving a range between [ 10237 - 10578] with the 

<95% confidence interval.  

To further analyse the accuracy of the system the full orchard row yield estimate is also 

calculated. Using the same method, only changing the number of baskets collected to include 

all the baskets counted. Thus, the basket_count variable is changed to 147 instead of 80. 

Performing these calculations shows a full row yield of 19123, with a 95% confidence interval 

of [18997 – 19249]  

 

 

 

Figure 60: Normal distribution of fruits per basket / yield estimate 
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Table 21: various Orchard yield estimation techniques vs actual orchard yield count 

 Real Time 

(YOLOv7-Tiny) 

12.5 FPS 

YOLOv7-Tiny 

24FPS YOLOv7 Actual count  

Half row yield  8782 8220  8766 10407+-170 

Full row yield  --- 15577 16739 19123+-126 

 

 

Comparing the various methods of orchard yield estimation shows some interesting results, 

both in actual yield result and method of acquisition. Looking at the 8782 - kiwi fruit yield count 

obtained from the real time processing drone flight, we can see that the method proposed by 

this paper has some merit, with the actual count being close to 10407 for the same section. 

Expressed as a percentage the result is 84.3% accurate with a 1.93% variance. Looking at 

the mAP scores of YOLOv7-Tiny in Table 16, shows a map score of 84.42. this correlates very 

well with the accuracy of the model when tested in the field. Similarly, when testing YOLOv7-

Tiny on a 12.5 FPS video on a video taken on the day of picking shows a result of 8220 for 

the first half of the row and 15577 for the full row. When compared to the actual count of 10407 

+- 170 and 19123 +- 126, shows an accuracy of 78.98% +- 2.06% and 81.45% +- .8% 

respectively for the half and full row.  

 

Real Time (YOLOv7-
Tiny)

12.5 FPS YOLOv7-Tiny 24FPS YOLOv7 Actual count

8782 8220 8766

10407

NA

15577
16739

19123

COMPARISON OF YIELD COUNTS

Half row yield Full row yield

Figure 61:Comparison of yield estimation techniques 
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Using the YOLOv7 model, gives a less accurate result of the first half row equal to 8766 or 

84.2% +- 1.9%, but become more accurate over the full length of the orchard row with the 

result of 16739 or 87.5% +- .75%. Comparing these results to the mAP for this particular, 

YOLOv7 model, a mAP of .898 or a general accuracy of 89.8% which makes the results of 

84.2 and 87.5 expected. Additionally, the accuracy of the track and count algorithm must also 

be taken into consideration. The results of the track and count algorithm show that the fine 

tuning of the Deep SORT algorithm directly influence the accuracy of the overall system, with 

finetuning of the system mostly focused on the YOLOv7-Tiny model, the discrepancy in the 

accuracy of the two systems becomes more reasonable. Additionally, the accuracy of the 

model is affected by the storm which occurred after the full system test, and before the 

counting of the kiwi fruit via picking and statistical analysis. This undoubtably gives the drone 

test flight bias to a higher than actual count when compared to the picking method. While the 

total number of fallen fruits during the storm remains unknown making the analysis difficult. 

Overall, the system does show to be capable of performing Kiwi fruit orchard yield estimation 

at a high accuracy Figure 61, Table 21.  
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Figure 62: Orchard before storm [Top], After storm [Bottom]. 
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Chapter 6 

 

Discussion  

6.0   Chapter Overview 
This chapter discusses the results of the experiments, both for experiments directly linked to 

orchard yield estimation, as well as the results and performance of sensors used for the overall 

system to function as designed. Additionally, the chapter highlights shortcomings within the 

overall system, as well as personal opinions on how errors were introduced into the system, 

how to mitigate these issues, leading to further improvements to the system as well as 

suggestions on how I would personally tackle the problem of kiwi fruit orchard yield estimation 

differently in the future.    

6.1   Orchard Yield Estimation Results 
  

Overall, the results from both the real time processing flights and post processing produced 

results of high accuracy for a prototype system. These prove a successful implementation of 

the solution to the problem of kiwifruit orchard yield estimation. The YOLOv7 CNN architecture 

proved to be an exceptional object detector, as well as the Jetson Nano proving to be a high 

quality, and powerful microprocessor. The methodology used can accurately detect and count 

kiwi fruits with an accuracy relative to the mAP of the CNN architecture, suggesting that over 

time this method of orchard yield estimation will only improve. Some limitations are introduced 

when considering the lateral horizontal and vertical movement of the drone due to drift, wind 

gusts or obstacles such as leaves and vines hanging from the orchard. Additional errors are 

introduced when sun strike on the camera is high, and when kiwifruit is positioned directly 

behind one another making them hidden to a front facing camera angle. The system also relies 

on a clear orchard floor, although mowing in not required, the hinderance of tall grass 

completely prevents the system from functioning. Additionally, the low battery life available for 

the jetson nano presents additional limitations for the length of orchards that can be counted, 

combined with the slow flight speed required to gain an acceptable result due to low FPS. 

Overall, the use of the DeepSort tracking algorithm proved highly effective and allowed for a 

high level of fine-tuning dependant on the relative speed of the camera and the FPS. Finding 

the ideal weighting for each variable in the DeepSort algorithm, although time consuming does 

result in accurate and repeatable results.  
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6.2   CNN Model Validation  
 

The YOLOv7-Tiny model has a mAP of .8442 when trained on the Kiwi Fruit data set, with the 

IoU range of .05:0.1:0.95 +.005. While the IoU range is larger than normal, due to the nature 

of the project, where overlapping and partially hidden fruit are common, the wider range used 

to calculate the mAP become more appropriate. Additionally, during the experiment a less 

common IoU value of .1 is used, this further reflects the need to extend the mAP IoU 

calculation range, as this is where the model became most accurate. Overall, the model is 

suitable for the application, but further improvements are possible. To achieve this more 

images of sunstruck kiwifruits would need to be added to the training data, with more training 

data overall being beneficial. This would lower the need for the use of a low IoU value during 

inference. Ideally the model would perform best at a IoU of 0.5, showing an equal ability to 

detect true positives and true negatives at an equal rate, and should be aimed for in future 

iterations of the system, and may require a new camera angle. Additionally, the use of a CNN 

was chosen as a fundamental method of object detection not purely based on accuracy but 

verticality. The use of a SVM could be a better option for a system that only detects one or 

two classes. The reason CNNs were chosen as the fundamental method of object detection 

is due to their ability to detect many classes with high accuracy. With this project being a proof 

of concept in terms of the YOLO architecture, later iterations should focus on making full use 

of the architecture and add gold, green and red kiwifruit classes. Additionally further classes 

can be added for fallen or “ground” kiwifruit which could be of use to farmers in their pursuit of 

PA.  Overall, the model performed well, but a higher mAP can be achieved and should be 

aimed for.  

 

6.3.0   Areas of Improvement  
 

Although all the systems used in the drone work to a level capable of producing a high 

accuracy result, many individual components, changed could further improve accuracy, flight 

time, safety, ease of use of the overall system. The following sections highlight important areas 

that could use improvement assuming this style of system was to be taken further in 

development.  
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6.3.1   Microprocessor  
 

Although a mAP of 0.844 and an FPS of ~12.5 is a very good result, the overall result falls just 

short of a truly real time solution operating at 25-30 FPS. Such a result can in my opinion be 

achieved, with a simple addition of a Coral Edge TPU device, or a change of the 

microprocessor. A More powerful variant of the jetson nano such as the Nvidia Orin NX, which 

when compared to the jetson nano with 0.5TFLOPS of AI performance the Orin NX has ~ 

21TOPS of AI performance. Although far out of budget for this project, the Orin NX would be 

an ideal candidate as it features the same footprint, and comparable architecture / operating 

system to the Jetson Nano. With such an upgrade allowing for a full 30FPS real time operation 

of the YOLOv7-Tiny model, additionally it may be able to handle a higher resolution, wider 

angle camera thus further increasing the accuracy of the system.  

6.3.2   Camera  
 

The GoPro-Hero3 Silver proved to be a good and reliable camera choice for this project, with 

a count of more than 20 drone crashes during multiple test flights throughout the project, the 

Go Pro survived all the crashes with just a few scratches. Its ability to change several settings 

related to resolution, field of view, megapixels, FPS, and low light. The ability to change the 

resolution down from 4k to 1080p, adjusting the field of view such in encompass the correct 

width of the orchard, as well as the FPS and low light settings to further optimise the system. 

The only downside of the camera is the inability to handle bad lens flare (when the sun strikes 

the lens) this causes a loss of contrast and a washed-out appearance. This was more 

noticeable on sunny days as caused issues with the accuracy of the object detection system. 

So, although the GoPro was a good choice, a higher quality camera able to better deal with 

changing light conditions would significantly improve the system overall.  

 

6.3.3   Obstacle Avoidance / mm-Radar  
 

The use of the mm-Radars/TFMini-s used for hight estimation and obstacle avoidance, 

provided both a cheap, long range, quality solution that was relatively easy to implement when 

compared to the other components on the drone.  The use of the mm-Radar for hight 

estimation was one of the best decisions in this project. Due to the lack in accuracy of the 

altimeter at low latitudes, and the necessity to keep the drone at a steady hight result in the 
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necessity for a range finder to carryout hight estimation. Although other more capable 

solutions are on the market the TFMini-s performed well in this case. Additionally with the 

orchards on a slight angle, flying the drone under the orchards without it was more than 

problematic.  Additionally, due to the nature of the sensor pointing down there didn’t seem to 

be much noise introduced into the sensor. Using a second TFMini-s mm-radar for object 

avoidance also worked as expected, with the drone programmed to stop when within 1m of 

an obstacle. However, this can be somewhat annoying to use while the drone is in manual 

flight/ flown via remote control. This is due to noise introduced by the sun, low hanging leaves 

or the most common issue leaves from the ground that had been lifted into the air. Due to the 

use of a large drone the amount of air moved by the drone is also large. This causes any dead 

leaves that are not wet (and there is a good amount on the floor during picking season). These 

leaves cause the drone to momentarily stop whenever a leaf happens to fly in front of it for 

just a moment. These leaves also cause more issues discussed later. Due to this when flying 

remotely the obstacle avoidance sensor is a hindrance, and when not flying remotely it would 

be advisable that the floor is racked before flight under the orchards.  

 

6.3.4   5V5A Regulator  
 

The custom 5V5A linear regulator designed for the project worked as expected, cutting power 

from the LiPo before reaching the minimum 5V required to power the Jetson Nano. The use 

of the linear voltage regulator was not an ideal choice and was only used out of accessibility 

and necessity for the project. Future iterations should use a more efficient, high quality buck 

converter, capable of providing a smooth 5V5A, thus majorly reducing weight of the circuit 

board due to not requiring a large heatsink, as well as prolonging the battery life, making the 

system more capable. 

 

6.3.5   Drone Platform  
 

The Hexadrone platform was chosen for its inherent stability, capability to lift heavy loads, 

relatively small size, and successful use in similar projects in the past. The use of the Tarot 

680 carbon fibre Frame did prove to perform well in these areas, as well as providing a large 

surface area for mounting of the many modules needed for a successful flight. However, there 

are likely better frames to choose for such a project in the future. The largest issue the tarot 

frame faces was the inability for truly fasten the motor mounts to the motor arms in a way that 
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completely prevents moving/rotating of the motor after a slightly hard landing or crash. This 

issue causes the user to constantly tune and retune the drone for the stability needed for such 

accurate flight. A better option for a similar project would be to use a standard four arm drone 

but utilising eight motors. For example, the Droidwork Skyjib X4 featuring 4 arms, with 2 

motors mounted to each arm, with a smaller overall footprint, larger lifting power, and space 

to carry 2 large LiPos at a time. Such a drone would be more capable of flying under orchards, 

for longer periods of time with added weight of a higher resolution camera assuming price is 

a non-issue. Figure 63, [75]. 

 

Figure 63: Droidwork Skyjib X4 with dual batteries. [74]. 

 

6.3.6   FPV System  

 

The FPV system used in the drone worked as expected, providing the user with a clear screen 

from which to remotely fly the drone from, the camera used for the FPV system is small, light 

and of high quality and does not require any improvement. The main advantage of the FPV 

system is that it allows the user to always view the drone from a front facing view. When flying 

the drone without a FPV camera, flying the drone can become confusing quickly as the pitch 

and yaw no longer correlate to the drone movement as the drone changes rotation. This is 

one important reason to implement a FPV system. Additionally, although autonomous flight 

via the Pixhawk is an option, remote flying allows for far superior accuracy of drone positioning 

in the orchard. The FPV system used in this project however has one major flaw, that was not 

considered during purchase. This is that the screen used to display the FPV output does not 
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run on battery power. Due to the orchard being in the middle of a farm the FPV system was 

not usable when doing flights under the orchard thus rendering it useless. Due to this, this 

aspect of the drone system that did not function in practice when compared to test flight at 

home. Additionally, instead of a screen to display the FPV output, a better option may be the 

use of battery powered FPV goggles. This would reduce the sun glare from the screen and 

may provide a better overall experience.  

 

3.3.7   Autonomous Flight  
 

While the autonomous flight/ mission planner itself is a usable and more than capable system, 

the GPS and surrounding GPS infostructure require both upgrading and further development 

such to allow GPS guided autonomous flight through the orchards.  The current GPS setup 

onboard the drone system uses 2 GPS modules, one located in the Pixhawk Flight controller, 

and the second in the GPS/compass module mounted on the GPS stand. To further improve 

this system GPS triangulation should be implemented. GPS triangulation consists of mounting 

three identical GPS/compass modules in a triangle configuration as seen in Figure 5 by [9]. 

Such a setup may allow for an acceptable GPS tolerance within 2.1m. Furthermore, if this 

method of yield estimation is attempted in many parts of Europe, Asia, or America, it is likely 

that the region will be covered by SBAS, allowing for high accuracy GPS localisation via the 

use of a F9P GPS module. Although not tested the ability to perform GPS guided navigation 

through a kiwi orchard by a drone is very likely possible and should be investigated further.  
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Chapter 7 

 

Conclusion and Future Work 

7.1   Conclusion 
 

This master's project aimed to demonstrate the effectiveness of a new kiwi orchard yield 

estimation technique, focusing on the utilization of neural networks. To assess the 

effectiveness of this new technique, the project can be divided into three main aspects: the 

accuracy of a neural network in identifying kiwi fruit, the drone's suitability as a robotic platform 

under a kiwi orchard, and the microcontrollers' capacity to perform real-time CNN object 

detection. 

After experimentation, it can be concluded that all three fundamental aspects of the project 

can work in unison at an acceptable level to achieve real-time kiwifruit orchard yield estimation. 

Analysing these three aspects individually allows us to better understand the system's 

strengths, weaknesses, and areas that require improvement. Experimental results revealed 

that while many convolutional neural networks possess the accuracy required for kiwifruit 

object detection, their shortcoming lies in the speed of the networks. The YOLOv7 neural 

network, although a new iteration of the YOLO architecture, proved sufficient in both accuracy 

and speed for this project. 

The Hexadrone platform used is capable of carrying all the necessary components but has 

some limitations. Primarily, the size of the Hexadrone restricts lateral movement under the 

orchard, resulting in a less safe and slower flight to prevent crashes. Additionally, the drone's 

size can cause leaves and other debris to be lifted into the air, reducing the stability of the 

flight—a crucial aspect of this project. Despite these shortcomings, the drone platform can 

perform yield estimation, albeit at a slower rate than desired. 

The microprocessor used provided sufficient processing power for real-time object detection 

and can be upgraded via tensor cores to further enhance processing power without 

significantly adding to the weight. It can be considered a successful implementation for the 

project. Although all three aspects have room for improvement that could significantly enhance 

system performance, the current combination of software, hardware, and the robotic platform 

provides a proof of concept for further development. 
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7.2    Recommendations  
 

To achieve an enhanced overall result, it is suggested to pursue two different approaches for 

further development. Firstly, improving the current system involves using a coaxial quadcopter 

to reduce the footprint while maintaining the drone's lift capacity. Secondly, employing a more 

powerful microcontroller capable of providing a higher FPS and, consequently, a faster flight 

speed would enhance both the accuracy of detection and the distance the drone can cover, 

such as with the NVIDIA Jetson Orin. Although YOLOv7 has proven to be a capable CNN, the 

latest YOLO iteration, namely YOLOv8, may offer further improvements in accuracy and 

inference time for the object detection system. 

The camera used for object detection should be upgraded to reduce sun glare and improve 

visibility, especially during overcast days. This enhancement would significantly increase the 

accuracy and usability of the overall system. Finally, while the mm-radars have proven 

effective for height estimation and object avoidance directly in front of the drone, an 

improvement could be the use of a 360-degree Lidar, capable of reducing the lateral drift of 

the drone under the orchards. 

This method of orchard yield estimation could lead to several fundamental changes based on 

the findings of this thesis. Firstly, to enhance the versatility, manoeuvrability, and capabilities 

of the drone platform, a smaller, more agile drone, specifically a freestyle drone, could be 

implemented. These drones are compact enough to be handheld and designed for navigating 

tight corners, flying under trees, and around obstacles. Using such a drone might enable users 

to fly under orchards without the need to clear tall grass or remove broken branches, 

minimizing the lift force required to prevent ground debris from becoming airborne. 

Although this platform would not support an onboard microprocessor, this limitation could be 

overcome by using a portable laptop capable of receiving a live video feed from a secondary 

camera mounted at an upward-facing angle. This setup aims to further reduce occlusion of 

kiwifruits. Additionally, the laptop could perform real-time object detection given it possesses 

the necessary hardware capabilities. While this system differs significantly from the one used 

in this project, the fundamental concept of real-time kiwifruit orchard yield estimation via a 

drone is still achieved, potentially offering improved results. 

Although such a method of performing kiwi fruit yield estimation, namely via a small drone, 

relaying video data to a server or personal computer to process the data in real time or even 

at a later stage was considered, this path was not taken intentionally. This is due to a few 

important reasons. Firstly, such a method of implementation is simply too basic and trivial for 
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a master’s thesis. Secondly having a computer/ server process the data introduces 

complexities in terms of real-life implementation. Using such a method means 

farmers/customers must have a larger investment to implement the system. Have increased 

complexity regarding data transfer, requiring cellular network coverage or a strong Wi-Fi signal 

from a base station. Finaly such a method would results in a longer time to realise the orchard 

yield count. Having the drone system incorporate all aspects needed on the drone platform 

results in a cheaper and simpler method for the end user as well as a faster yield count result. 

The down side is that the design, construction and coding of such a system is more 

complicated. For these reasons the latter option, which focuses more heavily on mechatronic 

principles was decided to be the best fit for this projects scope.  
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Appendix   
 

R calculations: 
 

> mean_value <- 139 

> sd_value <- 9.67 

> basket_count <- 147 

> cdf_120 <- pnorm(120, mean = mean_value, sd = sd_value) 

> cdf_156 <- pnorm(156, mean = mean_value, sd = sd_value) 

> probability_range <- cdf_156 - cdf_120 

> print(probability_range) 

[1] 0.9359111 

>  

> estimated_total <- probability_range * basket_count * mean_value 

> print(estimated_total) 

[1] 19123.47 

>  

> # Calculate the standard error 

> standard_error <- sd_value / sqrt(basket_count) 

> print(standard_error) 

[1] 0.7975682 

>  

> critical_value <- qnorm(0.975, mean = mean_value, sd = sd_value) 

> print(critical_value) 

[1] 157.9529 

>  

> margin_of_error <- standard_error * critical_value 

> print(margin_of_error) 

[1] 125.9782 

>  

> # Calculate the lower and upper bounds of the confidence interval 
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> lower_bound <- round(estimated_total - margin_of_error) 

> upper_bound <- round(estimated_total + margin_of_error) 

>  

> # Display the estimated total and the confidence interval 

> cat("Estimated Total: ", round(estimated_total), "\n") 

Estimated Total:  19123  

> cat("95% Confidence Interval: [", lower_bound, " - ", upper_bound, "]\n") 

95% Confidence Interval: [ 18997  -  19249 ] 

 

 

Generate Graph: 

> x <- seq(mean_value - 4 * sd_value, mean_value + 4 * sd_value, length.out = 100) 

> y <- dnorm(x, mean = mean_value, sd = sd_value) 

> plot(x, y, type = "l", xlab = "Fruit Count", ylab = "Probability Density", main = "Normal 

Distribution of Fruits per Basket") 

 

 

> mean_value <- 139 

> sd_value <- 9.67 

> basket_count <- 80 

>  

> cdf_120 <- pnorm(120, mean = mean_value, sd = sd_value) 

> cdf_156 <- pnorm(156, mean = mean_value, sd = sd_value) 

> probability_range <- cdf_156 - cdf_120 

> print(probability_range) 

[1] 0.9359111 

>  

> estimated_total <- probability_range * basket_count * mean_value 

> print(estimated_total) 

[1] 10407.33 

>  
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> # Calculate the standard error 

> standard_error <- sd_value / sqrt(basket_count) 

> print(standard_error) 

[1] 1.081139 

>  

> critical_value <- qnorm(0.975, mean = mean_value, sd = sd_value) 

> print(critical_value) 

[1] 157.9529 

>  

> margin_of_error <- standard_error * critical_value 

> print(margin_of_error) 

[1] 170.769 

>  

> # Calculate the lower and upper bounds of the confidence interval 

> lower_bound <- round(estimated_total - margin_of_error) 

> upper_bound <- round(estimated_total + margin_of_error) 

>  

> # Display the estimated total and the confidence interval 

> cat("Estimated Total: ", round(estimated_total), "\n") 

Estimated Total:  10407  

> cat("95% Confidence Interval: [", lower_bound, " - ", upper_bound, "]\n") 

95% Confidence Interval: [ 10237  -  10578 ] 

 

 

 

 

 

 

 

 

 



 
130 

 

Image 
Number 

#kiwis YOLOv7 True 
+ 

False 
+ 

False - 
Average 
confidence 

precision recall 
F1 

/IMG Conf 0.5      

1 46 29 29 0 17 82.6 1 0.63043478 0.773333 

2 59 43 42 1 17 90 1 0.71186441 0.831683 

3 31 21 21 0 10 88.2 1 0.67741935 0.807692 

4 9 5 5 0 4 88.2 1 0.55555556 0.714286 

5 14 7 7 0 7 83.3 1 0.5 0.666667 

6 51 24 24 0 27 85.4 1 0.47058824 0.64 

7 43 16 16 0 27 85 1 0.37209302 0.542373 

8 21 13 13 0 8 91 1 0.61904762 0.764706 

9 31 16 16 0 15 88.9 1 0.51612903 0.680851 

10 29 18 18 0 11 85.3 1 0.62068966 0.765957 

 

Image 
Number 

#kiwis YOLOv7-
Tiny  0.5 

True 
+ 

False 
+ 

False 
- 

Average 
confidence 

precision recall 
F1 

/IMG      

1 46 28 28 0 18 83.7 1 0.60869565 0.756757 

2 59 42 42 1 17 92.4 0.976744 0.71186441 0.823529 

3 31 24 24 0 7 85.6 1 0.77419355 0.872727 

4 9 7 7 0 2 81.2 1 0.77777778 0.875 

5 14 7 7 0 7 90.3 1 0.5 0.666667 

6 51 28 28 0 23 88 1 0.54901961 0.708861 

7 43 17 17 0 26 86.5 1 0.39534884 0.566667 

8 21 14 14 0 7 93 1 0.66666667 0.8 

9 31 18 18 0 13 81.4 1 0.58064516 0.734694 

10 29 17 17 0 12 88.7 1 0.5862069 0.73913 

 

Image 
Number 

#kiwis FRCNN FRCNN  
False + False - 

Average 
confidence 

precision 
recall 

AP = 0.699 

/IMG Conf 0.5 True +   F1 

1 46 19 19 0 27 94.7 1 0.41304348 0.584615 

2 59 20 19 1 40 100 0.95 0.3220339 0.481013 

3 31 17 16 1 15 97.7 0.941176 0.51612903 0.666667 

4 9 5 5 0 4 99.8 1 0.55555556 0.714286 

5 14 6 6 0 8 99 1 0.42857143 0.6 

6 51 15 15 0 36 84.1 1 0.29411765 0.454545 

7 43 14 13 1 30 82.7 0.928571 0.30232558 0.45614 

8 21 16 16 0 5 97.4 1 0.76190476 0.864865 

9 31 15 15 0 16 93.3 1 0.48387097 0.652174 

10 29 17 17 0 12 78.3 1 0.5862069 0.73913 
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Yolov7-

tiny conf 

#KIWIs True + False + False - Prediction 

conf 

precision recall F1 

.005 334 278 11 56 61.63 .962 .832 .892 

.05 334 247 3 87 75.5 .988 .739 .846 

.1 334 243 1 91 81.17 .996 .728 .816 

.2 334 230 0 104 83.5 1 .689 .816 

.3 334 217 0 117 84.2 1 .650 .787 

.4 334 207 0 127 85.1 1 .620 .765 

.5 334 202 0 132 86.4 1 .605 .754 

.6 334 195 0 139 88.9 1 .584 .737 

.7 334 189 0 145 90.5 1 .566 .722 

.8 334 170 0 164 92.4 1 .510 .675 

.9 334 109 0 225 95.3 1 .326 .492 

.95 334 22 0 312 97.1 1 .065 .124 

.995 334 0 0 334 0 0 0 0 

Average  334 177.6 1.25 156.4 78.6 .919 .576 .741 

 

 

 

 

mAP of YOLOv7-Tiny = .8442 
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YOLOv7 

Conf  

#kiwi/img True + False 

+ 

False - Average 

prediction 

conf 

precision recall F1 

.005 334 301 16 33 58 0.949527 0.901198 0.924731 

.05 334 240 7 94 71.4 0.97166 0.718563 0.826162 

.1 334 236 1 98 71.4 0.995781 0.706587 0.82662 

.2 334 219 0 115 75.1 1 0.655689 0.792043 

.3 334 211 0 123 75.1 1 0.631737 0.774312 

.4 334 198 0 136 75.1 1 0.592814 0.744361 

.5 334 192 0 142 83.3 1 0.57485 0.730038 

.6 334 188 0 146 87.5 1 0.562874 0.720307 

.7 334 182 0 152 87.5 1 0.54491 0.705426 

.8 334 158 0 172 87.5 1 0.478788 0.647541 

.9 334 83 0 215 90 1 0.278523 0.435696 

.95 334 3 0 331 0 1 0.00898 0 

.995 334 0 0 334 0 0 0 0 

 

 

 

 

YOLOv7 mAP = 0.898 
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Figure 64: mAP Test Images (Padding Removed) 
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Figure 65:selection of FasterRCNN mAP test images. (Sunstruck image top right as shown for YOLOv7 in 

Chapter 4 for comparison.) 
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Figure 67: Jetson nano .sh script with Q command 

#!/bin/bash 

trap 'echo "script terminated by leon." ; deactivate ; exit 1' SIGINT  

source /home/leon/.virtualenvs/yolov7/bin/activate 

cd /home/leon/yolo/yolov7 

python detect_count_and_track.py --weights YOLOv7Tiny.pt --conf 0.1 --img-size 640 --

source 0 --view-img --no-trace & 

#loop until user presses 'q' key 

while true  

do  

 echo "press 'Q' to quit." 

 read -n 1 input 

 if [[ $input == "q"]] 

 then 

  echo "Exiting script." 

  deactivate 

  exit 0 

 fi 

 

Figure 66: Early drone test flight 
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Figure 68: Drone View from above the orchards 

 


