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Abstract 

Colour classification vision systems face difficulty when a scene contains both very 

bright and dark regions. An indistinguishable colour at one exposure may be 

distinguishable at another. The use of multiple cameras with varying levels of 

sensitivity is explored in this thesis, aiding the classification of colours in scenes with 

high illumination ranges.  Titled the Multiple Image Dynamic Exposure Colour 

Classification (MIDECC) System, pie-slice classifiers are optimised for normalised 

red/green and cyan/magenta colour spaces. The MIDECC system finds a limited section 

of hyperspace for each classifier, resulting in a process which requires minimal manual 

input with the ability to filter background samples without specialised training. In 

experimental implementation, automatic multiple-camera exposure, data sampling, 

training and colour space evaluation to recognise 8 target colours across 14 different 

lighting scenarios is processed in approximately 30 seconds. The system provides 

computationally effective training and classification, outputting an overall true positive 

score of 92.4% with an illumination range between bright and dim regions of 880 lux. 

False positive classifications are minimised to 4.24%, assisted by heuristic background 

filtering. The limited search space classifiers and layout of the colour spaces ensures the 

MIDECC system is less likely to classify dissimilar colours, requiring a certain 

‘confidence’ level before a match is outputted. Unfortunately the system struggles to 

classify colours under extremely bright illumination due to the simplistic classification 

building technique. Results are compared to the common machine learning algorithms 

Naïve Bayes, Neural Networks, Random Tree and C4.5 Tree Classifiers. These 

algorithms return greater than 98.5% true positives and less than 1.53% false positives, 

with Random Tree and Naïve Bayes providing the best and worst comparable 

algorithms, respectively. Although resulting in a lower classification rate, the MIDECC 

system trains with minimal user input, ignores background and untrained samples when 

classifying and trains faster than most of the studied machine learning algorithms.  
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Chapter 1 

1. Research Description 

Reliably classifying colours in a computer vision system is a difficult and often 

computationally expensive task. In comparison, the human vision system is well apt at 

both detecting subtle differences in similar colours and recognising the same colour 

when subject to varying illuminations.  

1.1 Overview of the Current State of Technology 

Current implementations of colour classifiers, such as Fuzzy Colour Contrast Fusion 

(FCCF) successfully compensate for limited illumination variation, searching a pie-slice 

decision region using colour contrast rules to strengthen or weaken matches to a 

particular colour classification [1]. FCCF requires the user to manually calibrate each 

colour into a pie-slice decision region, before using a brute-force method to choose 

contrast operations to run on the incoming red, green and blue channels. It will be 

imperative to this research to automate as much of the classifier generation as possible, 

while assessing if FCCF is a valid addition to the processing pipeline. 

A current implementation of automatic exposure practices histogram matching to 

compare a stored reference value with the current input image [2]. While this method is 

robust enough to be run in real time, this research will focus on the use of no external 

reference points, minimising human interaction once the training process has begun. 

Other research has been conducted into which the background of a scanned text 

document is removed, emphasising the typescript and images later to be scanned by an 

Optical Character Recognition (OCR) program [3]. The various steps to the overall 

process and use of a standardised ‘Ostu’s method’ of binary thresholding will be 

amongst the techniques used to reduce processing time for this research paper.  
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Different approaches have been reviewed regarding multiple camera inputs, with one 

paper suggesting the distribution of computational processing throughout the network, 

reducing camera system traffic [4]. Reducing the amount of processing by only running 

the minimum required on a ‘slave’ camera is also studied [5], while another paper 

highlighting the difficulties in multiple camera alignment and processing [6].  

1.2 Research Objectives 

1.2.1 General Objective 

To develop a robust and efficient automatic colour classification system which assesses 

multiple frames taken simultaneously from three different cameras. Each camera is to 

have a distinct exposure setting, widening the dynamic range captured. 

The system will endeavour to find an optimal classifier, providing robust results when 

classifying colours in as many bright and dim lighting scenarios as possible.  

1.2.2 Specific Objectives 

1. To investigate how three input images may be combined to provide select 

regions where each specialises in a particular exposure range for the explicit task 

of colour recognition. 

2. To investigate the reduction of ambiguity by prioritising matches when multiple 

classifiers do not return a unanimous result. 

3. To investigate the use of a novel colour space, ‘normalised cyan/magenta’ to 

complement the strengths of the normalised red/green colour space using a pie-

slice classifier. 

4. To investigate background image removal without reducing the accuracy of 

colour classification. 

5. To investigate the feasibility of implementing FCCF to strengthen classification 

results. 
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1.3 Significance of Research 

This research employs multiple sub-processes to create a simple multiple image colour 

classification system: 

• A unique colour space is introduced, complementary to previous research to aid 

the classification in difficult illumination (Section 4.2) 

• An automatic exposure process calibrates each camera exposure, resulting in 

each camera specialising in a particular brightness region (Section 4.3.3) 

• Colour classifiers are spread amongst two colour spaces, extending the feature 

classification range while using only the ‘preferred’ space, reducing processing 

time (Section 4.5.2) 

• A simple, yet effective method of prioritising classifiers is used if multiple 

classifiers match, providing reliable output (Section 4.5.4) 

 

The MIDECC system trains in a supervised learning environment, faster than three of 

the four common machine learning algorithms discussed in Section 2.6. Once the data is 

collected for each colour, assuming a normal distribution quickly calculates a pie slice 

classifier, discussed in Section 4.5.1. 

1.4 Scope and Limitations of Research 

This research is limited to the colours definable in the normalised red/green colour 

space. Due to the layout of the colour space, this excludes colours such as white, grey 

and black.  

It is assumed that the colour patches are a matte finish and are an acceptable size to be 

recognised by the camera at a reasonable distance. It is also assumed that the lighting of 

the testing environment is relatively free of colour cast or shadows that may disrupt the 

training process. 

Much of the proposed system will be automated, however some values may require 

manual fine-tuning. Manual parameters to be provided are the sampling of colours for 

the exposure selection process (Section 4.3.3) and the threshold at which colours are 

classified as background pixels (Section 4.6). Setting these parameters do not require 

specialist knowledge of the system, as settings will be easily accessible and their actions 

immediately observable in the system output.  
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The system will be tested to classify illumination varying from 175 lux to 11,230 lux. It 

is expected that the system may struggle at these extremities, however limitations and 

evaluated ranges will be discussed, concluding this thesis. 

1.5 Structure of Thesis 

This thesis begins in Chapter 2 by covering concepts such as colour, image adjustments 

such as contrast and sharpness, geometric transforms and the use of Fuzzy Logic. 

Introductions to the comparison classifiers are given to provide a background to the 

standardised testing the system is evaluated against in Section 2.6. 

Previous research is discussed in Chapter 3, exploring papers which focus on colour 

classification, image contrast adjustment, image exposure selection and multiple image 

processing. 

A complementary colour space, the Normalised Cyan/Magenta chromaticity is 

introduced in Section 4.2, along with the system process for exposure selection, colour 

classification, and evaluation in the remainder of Chapter 4. These processes combine, 

creating the MIDECC system, implemented Chapter 5. Results will be discussed in 

Chapter 6 and conclusions drawn in Chapter 7. 

 



Theoretical Framework 

 5 

 

 
 
Chapter 2 

2. Theoretical Framework 

2.1 Colour 

Observed by H. E. Smithson, the human sensory system is apt at distinguishing an 

objects’ colour constantly despite changes in illumination [7]. The ability to judge the 

spectral reflectance or colour, despite changing illumination is described by the term 

‘colour consistency’. 

The human visual system senses colour based on three spectral receptive cones, namely 

the S-, M- and L-cones. Known as a trichromatic system, colour information is 

conveyed as three separate channels to these cones as blue, green and red.  

Photoreceptors known as rods detect brightness. The colour of an object is perceived as 

a combination of reflected and absorbed wavelengths in the visible spectrum.  

 

 
Figure 2-1: Electromagnetic Spectrum with the visible spectrum highlighted 

Figure created by Philip Ronan, Wikipedia 
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Digital camera sensors record the visible wavelengths of light by using an array of small 

‘photosites’, assessing how many photons of light falls into each in a given exposure 

time [8]. The photosites are organised into an array, with colour filters covering the 

sensors in a certain pattern. The pattern below is the most common used in digital 

cameras, the Bayer array: 

        
Figure 2-2: Bayer Colour Filter Array (left), Photosites with Colour Filters (right)  

 

This pattern results in twice as many green sensors compared to blue and red. This is 

due to the human eye being more sensitive to green light, as producing an image with 

more green light appears less noisy and highlights greater detail when seen by the 

human eye. 

2.2 Colour Spaces 

A colour space is an organised set of colours that allow reproductions of colour both 

using digital and analogue representations.  

 

 
Figure 2-3: Example of a RGB colour cube 

Figure created by Michael Horvath, Wikipedia 
 

Figure 2-3 is representative of the simple RGB colour space, where each colour is 

represented by Red, Green and Blue ratios.  
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2.2.1 HSL and HSV colour models 

The Hue, Saturation and Lightness (HSL) and the Hue, Saturation and Value (HSV) 

models were developed in the 1970s for computer graphics applications. While the 

tertiary attribute ‘Lightness’ and ‘Value’ differs greatly, the Hue and Saturation values 

are identical. 

 

     
Figure 2-4: HSL Cylinder (left), HSV Cylinder (right) 

Figures created by Michael Horvath, Wikipedia 
 

Existing in the RGB colour space, the HSI model is often used in Computer Vision 

applications. Colour images in RGB format are converted to HSI, as assessing Red, 

Green and Blue values of an object relates to the amount of light hitting said object, 

compared to an actual hue. The values of Hue and Saturation provide a computer vision 

system with more information about the reflected wavelengths, whereas the Intensity 

value indicates the radiance of reflected light only. 

 

2.2.2 Normalised Red/Green Chromaticity 

The normalised red/green colour space or ‘rg chromaticity’ is created by normalising 

the red and green channels of the RGB colour space. The blue channel may be omitted 

as once normalised, the red and green channels both provide proportions of the resulting 

colour, summing to one. This means the blue value may be calculated if required.  

The rg chromaticity does not include intensity information, therefore it is ideal for 

identifying colours where changes in illumination may negatively effect other colour 

models [1].  
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Figure 2-5: rg-chromaticity (left)  

 

The above formulae shows the conversion from the intensity of Red (R), Green (G) and 

Blue (B) in an original colour being converted to normalised red (r), green (g) and  

blue (b) values. This colour model excels with a pie-slice classifier, moving the origin 

to (0.333, 0.333), indicated in Figure 2-5.  

2.3 Image Exposure 

The photographic term of exposure refers to the time a camera shutter is open in order 

to capture an image. An image is described as ‘over exposed’ when areas of interest are 

‘washed out’, or seen as solid white. In contrast, an ‘under exposed image’ is when 

areas of interest are ‘muddy’ or too dark to distinguish [9].  

A faster exposure time results in the shutter of a camera being open for less time, 

capturing a darker image with less blur. An image taken with a faster exposure time will 

result in more detail in areas with a greater illumination. Increasing the exposure time 

will produce a brighter image, capturing more detail in areas with less illumination.  

 

 
Figure 2-6: Differences between an under, over and correctly exposed image 
Image from Exposure Guide (http://www.exposureguide.com/exposure.htm) 
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2.4 Homographic Transformations 

Homographic processing is to be used extensively in this thesis, removing any rotation 

or perspective skewness due to the camera position. Homography is frequently used in 

computer vision applications, introduced to study the appearance of objects from two 

different points of view.  

 

 
Figure 2-7: Diagram representing a simple homographic adjustment 

Figure created by Xavier Philippeau, Developpez.com 
 

Seen above, each of the four vertices of the input grid on the left side induces a bijection 

through a homographic relationship, straightening the image.  

 

The OpenCV C++ programming library is to be used to calculate the perspective 

transformations for this thesis, specifically using the findHomography() function. While 

this thesis employs the use of an optimised function, this section explains the key 

equations used in this important step of image preparation. This function returns the 

perspective transformation H between the source and destination planes: 

 

   

 

So that the back-projection error, below, is minimised: 

 

 

 

The resulting matrix returned from the OpenCV function may then be sent to the 

warpPerspective() function, which applies the transform to the image [10], [11]. 
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2.5 Fuzzy Logic 

A form of many-valued logic, fuzzy logic uses linguistic rules to apply weighted values 

to an output. A simple example would be a single input, single output system 

controlling the speed of a cooling fan. 

 

IF temperature IS cold THEN stop fan 

IF temperature IS warm THEN slow fan 

IF temperature IS hot THEN fast fan 

 

As seen by the rules, the input is a temperature value, while the output is the fan speed. 

Firstly, the temperature must be classified as one of the three values - cold, warm or hot. 

The outputs are to be a specified value, for example ‘stop fan’ may be stationary, ‘slow 

fan’ may be 600 revolutions per minute (rpm), while ‘fast fan’ may be 1350 rpm.  

This is matched by the use of a membership function, outputting a weighted value for 

each input classifier. 

 
Figure 2-8: Fuzzy Logic membership function 
Figure created by Wikipedia user ‘fullofstars’ 

 

The measured temperature is indicated along the X-axis, while the Y-axis represents the 

weighting of each rule to be evaluated. The black line, indicated by the three arrows in 

Figure 2-8, shows a moderately cold input temperature. It is estimated that the 

weightings of each rule would be as follows: 

 

(80%) IF temperature IS cold THEN stop fan 

(20%) IF temperature IS warm THEN slow fan 

(0%) IF temperature IS hot THEN fast fan 

 

This would result in the system combining the outputs of ‘stop’ (80% of 0 rpm) with 

‘warm’ (20% of 600rpm). This would output a final ‘defuzzified’ value of 120rpm.  

While it is unlikely the membership functions of this research will be overlapping, the 

use of linguistic terms will be used to aid processing. 
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2.6 Background to Comparison Classifiers 

The following classifiers are to be compared to the MIDECC system, as a method of 

judging the systems’ training time and overall accuracy. The classifiers are trained and 

evaluated using the Waikato Environment for Knowledge Analysis (WEKA), 

Java-based open source software developed by the University of Waikato [12]. 

2.6.1 Naïve Bayes Classifier 

The Naïve Bayes technique is a simple process, assigning ‘class labels’ to problem 

values. The technique then assumes that for each class label, the value of a particular 

feature is independent to any other feature. Although very simplistic, Naïve Bayes 

classifiers have functioned well when compared to other, more complex classifiers [13].  

Bayesian classifiers, such as the Naïve Bayes classifiers, follow Bayes Theorem [14], 

below: 

 

Where 

  = Probability of instance d being in class  

 What is to be computed 

  = probability of generating instance d given class  

 Classified in class , the probability of having feature d 

  = probability of instance d occurring 

 Constant value for all classes 

 

The Bayes Theorem, when used with a Naïve Bayes classifier, assumes that all 

attributes have independent distributions, estimating the following: 

 

 

 

By assuming independent distributions, Naive Bayes is both storage and 

computationally efficient.  The classifier is often seen as a ‘baseline’ for category 

sorting algorithms such as spam filters, being able to operate on more complex data sets 

in a supervised learning environment, where training data has the desired output or 

supervisory signal.  
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2.6.2 J48 Tree Classifier 

A Java implementation of the C4.5 algorithm developed by Ross Quinlan, this classifier 

generates a decision tree, often referred to as a statistical classifier [15]. The decision 

tree operates on the general algorithm below, splitting the data at the attribute with the 

highest normalisation gain. 

 

The algorithm attempts to match the following base cases first: 

• All the samples in the list belong to the same class.  

The end of the branch - the final output value has been found. 

• None of the features provide any information gain.  

The end of  the branch for half the equation, continue for the remaining data. 

• Instance of previously-unseen class encountered.  

The end of  the branch for half the equation, continue for the remaining data. 

 

If these cases are not met, the following algorithm is run: 

Algorithm 2-1: C4.5 Classification  

For each attribute a 
 Find the normalised information gain ratio from splitting a 
 Let a_best be the attribute with the highest normalised information gain 
 Create a decision node that splits at a_best 
 Recur on the sub-data at a_best, adding nodes as the children of node 

 

The C4.5 algorithm and J48 implementation became popular after ranking best in the 

‘Top 10 Algorithms in Data Mining’ paper, published in 2008 [16]. 

When used in this research, WEKA is instructed to generate a J48 decision tree with a 

pruning confidence threshold of 0.25 and a minimum of 2 attribute instances per leaf. 
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2.6.3 Random Tree Classifier 

Similar to the J48 classifier, the Random Tree classifier generates a decision tree. 

Unlike the J48 classifier, Random Tree does not ‘prune’ or optimise the resulting tree. 

This produces a significantly larger tree size, however training takes much less time.  

Using a much larger tree may become restrictive when storing and processing the 

classifier on a small embedded computer system. Due to this reason, research has been 

conducted on determining the length of the longest path in a binary search tree [17].  

It has been discovered that a binary tree with n nodes will have the following longest 

path: 

 

 

 

Where  is a unique number in the range  satisfying the equation: 

 

 

  

Nodes are inserted one at a time randomly, as opposed to the J48 classifier which 

assesses the normalised information gain to narrow down the tree size during training.  

When used in this research, WEKA is instructed to generate a Random Tree classifier 

with a minimum of 1 attribute per leaf and seed the random number generator with ‘1’. 

2.6.4 Neural Network Classifier 

The Neutral Network classifier is a biologically-inspired method, in particular, by the 

brain. The system is presented as a network of ‘neurons’ in a chosen number of ‘layers’. 

Each neuron may have a particular weighting or bias from a particular input, outputting 

a certain value only when certain inputs are met. A simple single-layer neural network 

is depicted in Figure 2-9. Five inputs to the network are connected to one output 

through a single ‘hidden’ layer, consisting of three nodes. 
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Figure 2-9: Single Layer Neural Network 

Figure Created by Julien Cretel, StackExchange 
 

The system trains by passing in an expected value and assessing the output. The most 

common method is by using a back-propagation algorithm to update the weights for 

each node in the network. This weight-updating rate, known as the learning rate, 

directly effects the training speed compared to quality. 

The following process is used to train a simple neural network with back-propagation: 

Algorithm 2-2: Neural Network Back Propagation 

Phase 1: Propagation 
 Propagate the training signal through the network,  
  activating the output nodes. 
 Back propagate the training signal, generating delta ‘error’ values for  
  the hidden and output nodes. 
Phase 2: Weight Update 
 For each weight; 
  Calculate the weight gradient by multiplying the output delta  
   and input activation. 
  Subtract the learning rate ratio of the gradient from the weight. 

 

A network with a single hidden layer, has the limitation of only ‘learning’ a function 

which does not require abstract features. Training a neural network to identify a model 

of car based on colour, size and number of wheels, for example, will require multiple 

hidden layers.  
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It is expected that the neural network will be one of the top performers in this research, 

even as a simple single layer network. This is due to the binary classification nature - 

something a single layer network excels in. When used in this research, WEKA is 

instructed to train the Neural Network at a learning rate of 0.3 with a back propagation 

momentum rate of 0.2 for 20 epochs. 

 

2.7 Summary 

A brief overview has been given to frameworks used in this paper - colour and the 

theoretical layout in the RGB colour space, the property of image exposure, perspective 

transformations and Fuzzy Logic. Four classifiers are to be used to judge the 

effectiveness of the MIDECC system. These classifiers have been chosen for being 

internationally recognised as standard machine learning methods, covering a range of 

complexities.  

 





 

 
 
Chapter 3 

3. Review of Related Literature 

The human eye identifies colours quickly based on surrounding perceptions and 

lighting. This task is difficult for a computer vision based solution, as one colour may 

appear different hues under disparate conditions. Previous research has been conducted 

in an effort to both identify lighting conditions and the potential adjustments to clarify 

colours. In this chapter, research that looks at the main components of classification, 

adjustment and transformation are reviewed. 

3.1 Colour Classification 

Recognising colours requires a reliable classification process which includes the ability 

to account for similar colours and varying illumination [18]. Additionally, a proposed 

system must allow for small intricacies that occur in differing cameras such as the 

behaviour to reflected light, noise, lens glare [19] and even quantum electrical effects in 

the camera sensor chip [1]. The following research examines different colour classifiers 

for use in varying conditions.  

3.1.1 Robustness of Colour Detection for Robot Soccer 

P J Thomas, Russel J Stonier and P J Wolfs, 2002 [19] 

The ‘pie slice’ classifier is introduced in this paper as an alternative colour classification 

method. The use of standard rectangular colour ‘decision regions’ (Figure 3-1) may 

result in misclassifications if the luminosity varies slightly from the trained values. It is 

stated that a preferred classifier would be ‘insensitive to colour drift and glare’.  



 18

 
Figure 3-1: Rectangular decision region in the YUV colour space 

 

In the YUV colour space, changes to the colour temperature would result in the colour 

rotating around the Y-axis, while changes to the saturation would adjust the distance of 

the point from the Y-axis.  

Thomas et al., presented the pie slice classifier an alternative classifier that ignores the 

luminance component (Y) in this colour space. 

 

 
Figure 3-2: Pie Slice classifier in the YUV colour space 

 
In Figure 3-2, an angle and radius value constructs a ‘pie slice’ inside the selected 

colour space. The angle ranges define a set of hues, while a minimum radius value 

ensure saturation is limited.  

Thomas et al., found that if the radius is set too low, too many objects are classified in 

the playing field. Setting the radius too high resulted in the opposite - the number of 

classified pixels would decrease, insufficient to perform identification.  

Interestingly, in the experimental observations it is noted that the pie slice classifier has 

specific strengths. Identifying blue, yellow and pink colours, even in changing lighting 

conditions from warm-temperature quartz-halogen to cooler fluorescent lighting caused 

no issues. It was also mentioned that the pie slice classifier is able to identify multiple 

shades of green successfully, a feature that will be explored further in this research. 
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The above formula is an example of a simple classifier proposed by Thomas et al., 

classifying a colour if an input angle and radius match defined ranges. In this formula, 

Φ represents the input angle, while dist represents the distance from the centre of the 

colour space. This simplistic style of classifier will be used extensively in this research, 

as it enables simply binary-like matching of colours. 

3.1.2 Knowledge-Based Fuzzy Colour Processing 

Lars Hildebrand and Madjid Fathi, 2004 [20] 

This paper explores a knowledge-based approach, generating a fuzzy logic based 

system to assess the quality of resistance spot welding. This proposed system identifies 

the size, colour and shape of three different regions of interest (ROI) in an input image. 

 

    
Figure 3-3: ROI for a Resistance Spot Weld (left),  

Table depicting Quality Criteria for comparing good and poor welding spots (right) 
 

The above figure and table outlines the regions of interest, with the quality criteria to be 

examined. The paper explains the use of the HSI colour model, highlighting advantages 

such as the grouping of colours similar to the human eye, with a clear distinction 

between grey and saturated colours. Converting the three components of red, green and 

blue to the HSI model utilises the following definitions: 

                 

Where Iu, R, Ru and Gu are needed to define unit vectors for transformation.  
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Next, an extended version of the atant(x,y) function is introduced: 

 

 

 

Where 

 

And 

 

 

After these values have been defined, the transformation to HSI model from RGB 

values may now be expressed as: 

 

With 

 

And 

 

 

 

 

 

 

These calculations result in Hue, Saturation and Intensity values which describe the 

same colour as CRGB.   
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Figure 3-4: HSI Model for I = 1.0 

 

Removing a dimension from the 3D model enables Hildebrand and Fathi to introduce 

the Fuzzy membership functions, highlighted in Figure 3-5. Removing the intensity 

value is accomplished by setting this value to a constant 1.0, while removing the 

saturation value sets this value to a constant 1.0. 

Removing the intensity coordinates when lighter colours are important or the saturation 

coordinates when darker colours are important creates unique HS and HI-colour spaces. 

The HS-colour space is a subspace of HSI where the Intensity value is fixed at 1.0, 

while the HI-colour space is a subset where the saturation value is fixed at 1.0. 

Incorporating a fuzzy set over the HS-colour space is defined by eight points. Each 

corner of the fuzzy set is represented by a point, depicted below. 

 

  
Figure 3-5: Fuzzy set, defined over the HS-colour space (left), Definition of the colour red (right) 

 

The points are named using the terminology ‘support’ and ‘core’, with the letters I and 

O for inner and outer, respectively.  Hildebrand and Fathi successfully create a process 

which incorporates a fuzzy logic system and unique colour spaces. The performance of 

the proposed system excels at correctly assessing quality welds, the first system 

developed to run without human supervision. 
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The below data plots show the frequency distributions of good samples compared to 

poor samples. 

           
Figure 3-6: Frequency distribution of a good sample (left) compared to a poor sample (right) 

 

3.1.3 Colour Classification using margin-setting with ellipsoids 

Kaveh Heidary and H. John Caulfield [21] 

The genetic algorithm presented in this paper designs ellipsoids which group pixels by a 

certain colour, partitioning the image. Once the image has been partitioned, classifiers 

are generated which are able to identify similar colours quickly with high accuracy. 

The process, introduced as margin-setting, identify two parts of each colour. The two 

training parts are split by areas which can be classified by a large margin - easier to 

identify, while the other area is comprised of points which do not classify well. Areas 

which do not train well may include edges of different coloured objects, or similar 

coloured objects placed next to each other. 

This paper uses ellipses in the RGB colour space, comprising of a foci-pair  and 

a radius parameter R. An arbitrary vector is classed as ‘inside’ a particular ellipsoid if 

the sum of its distances to the foci-pair is less than the ellipsoid radius R. 

The equation below describes a vector-ellipsoid relationship, used to calculate the 

relationship between different classes during classification. 

 

 

 

Where  represents the vector-ellipsoid distance,  is the arbitrary RGB vector, 

 are the foci-pair of the ellipsoid and  denotes the L2-norm or 

Euclidean distance of . 
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Figure 3-7: Result of filtering the source image into class one (left) and class two (right) with a zero-margin classifier 
 

Above, the result of filtering a simple scene with two distinct ‘classes’ is shown. In this 

example, one class - the leaf, has been correctly separated from the other class - the 

background books. Near the edge of the leaf in the right-hand ‘class two’ image, small 

areas of green can be seen where the algorithm struggled. Also note the light green 

rectangles in the left-hand ‘class one’ image - a similar colour to accents in the leaf, 

however these areas have been identified in the book background, incorrectly. 

 

 
Figure 3-8: Result of filtering the source image into class one (left) and class two (right) with a 25% margin classifier 
 

The above comparison with a 25 percent margin classifier results in less leaf-edge from 

showing on the right-side ‘class two’ image, with no background light green ‘bleed’ 

from the books in the class one image. Note there are some pronounced gaps in the 

middle of the leaf, where the colour classification system has misclassified the classes. 

Heidary and Caulfield state this indicates the systems’ ‘indecision’, where the higher 

margin resulted in pixels not captured by the filter. 

In conclusion, this paper presenting margin-setting with ellipsoidal decision surfaces is 

a robust and computationally efficient, even when providing a minimal number of 

training samples for each class.  
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The setting of a margin value can vary the required ‘certainty’ of each pixel, however 

setting this value too high results in more unclassified pixels. It is suggested that groups 

of unclassified pixels or ‘holes’ in the image may be filled with techniques such as 

median filtering or mathematical morphology. 

3.2 Contrast Adjustment 

Adjusting the contrast of the input image enables a proposed system to ‘push’ or ‘pull’ 

colours into a classifier [1].  If implemented correctly, adjustment of contrast may be set 

to enable a wider range of colours or counter texture or illumination differences. The 

following research papers explore adjustment of contrast for the use of expanding 

classification results. 

3.2.1 Colour image enhancement using correlated intensity and 

saturation adjustments 

Ngaiming Kwok, Haiyan Shi, Gu Fang, Quang Ha, Ying-Hao Yu, Tonghai Wu, 

Huaizhong Li and Thai Nguyen (2015) [22] 

Two approaches to contrast adjustment are presented in this paper to emphasise object 

edges and saturation. The process has been tuned to only boost saturation in regions of 

interest. 

The first proposed algorithm, named ‘Intensity and saturation adjustment by intensity 

and saturation’ (ISAIS) employs two separate formulae to calculate the output intensity 

and saturation: 
 

 

where k1, k2 are gain factors for the intensity and saturation, respectively.  The 

differences between input intensity and saturation attributes and local average are 

calculated as below: 
 

 

where the local averages are derived from averaging pixel magnitudes in a square patch 

of size 3x3 pixels.  
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The second approach, a refinement to the above algorithm titled ‘Intensity and 

saturation adjustment by intensity and saturation correlation’ (ISAISC) uses the 

correlation between the intensity and saturation values, resulting in more effective 

output values. 
 

 

 

where the correlation value (u,v) is calculated with the below formula, 

 

 

 

where  is reported to be 3, creating an average area of 3x3 pixels for further examples.  

 
Figure 3-9: ISAISC General System Architecture 

 

Seen in the above ISAISC block diagram, four scale factors - k1 to k4 control strengths 

of adjustment. For the below examples, all scale factors are set to a value of 2.0. 
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Figure 3-10: Source Image (top), ISAIS Result (left), ISAISC Result (right) 

 

The outputs from the proposed approaches highlight the rock texture closer to the 

camera, while also highlighting the far end of the house. The ISAISC results in more 

detail being highlighted in the garden to the far left, however it is noted that ISAISC is 

computationally more expensive due to the correlation calculations. It is stated by 

Kwok et al., that the difference between the two methods largely rests on the time-

consuming correlation calculations - ISAIS provides an acceptable middle ground 

between speed and quality, while ISAISC provides the highest quality processing. 

3.2.2 Dynamic Colour Object Recognition Using Fuzzy Logic 

Napoleon H. Reyes and Elmer P. Dadios (2003) [1] 

This research paper proposes a fuzzy logic-based algorithm to enhance or degrade the 

red, green and blue channels of an input image. Additionally, the paper introduces the 

previously discussed pie slice classifier and its’ use with the normalised rg-chromaticity 

space. 
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Figure 3-11: Pie Slice colour decision region in rg-colour space (left), rg-colour space (right) 

 

The normalised rg-chromaticity colour space, above right, features heavily in this paper. 

The colour space layout reduces the effect of brightness variation, however when 

combined with the pie slice classifier, negative effects such as hue-drift and 

misclassifications due to changes in brightness are considerably reduced.  

Deriving the pie-slice angle and radius in relation to the normalised rg-chromaticity 

(r,g) colour space from RGB values are as follows: 

1. Compute the normalised rg-chromaticities from the input RGB values 

 

  

 

2. Assigning white, located at (0.333, 0.333) as the origin, compute the 

rg-Saturation (radius) and rg-Hue (angle) as a point extending  

for any given chromaticity.  

 

  

 

 

Discussed in previous research, Reyes and Dadios highlight the pie-slice classifiers’ 

ability to envelope neighbouring colours and reduce the effects of glare.  

This is further complemented by using the normalised rg-chromaticity colour space, 

however the importance of excluding a ‘grey zone’ is stressed.  

As both the colour space and pie-slice classifier reduce the effects of brightness, 

plotting high or low brightness data points into the colour space may produce 

unexpected results. 
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Once the system is trained, Reyes and Dadios use a look-up table to convert each angle 

and radius pair to a corresponding colour. The lookup table is generated for all possible 

colours using rules of the form: 

 

 

 

The paper describes a system which adjusts the red, green and blue values in order to 

adjust the colour hue and saturation. These adjustments are designed to enable the 

system to identify colours in a larger range of illumination. The two complementary 

colour contrast adjustment operations are as follows: 

1. Contrast Intensification Operator 

This operator uses the Logistic function to alter the colour channel contrast. This 

function intensifies an input signal closer to 1.0, increasing the contrast.  

 

 

 

 
Figure 3-12: Contrast intensification operator 

 

Successive iterations of the logistic function creates a binary-like contrast 

adjustment. It is noted that the certain strengths of the enhancement may be 

suited to certain applications - scenes with greater dynamic range may require a 

higher level of adjustment, for example. 
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2. Contrast Degradation Operator 

This operator uses the Logit function to alter the colour channel contrast. This 

function degrades an input signal towards half the threshold of 0.5, decreasing 

contrast. 

 

 

 

 
Figure 3-13: Contrast degradation operator 

 

Complementary to the logistic function, successive applications of the logit function 

produce a stronger pull to the half-threshold value, seen above. The Logic-Logistic 

Fuzzy Colour Constancy algorithm presented in this paper uses fuzzy logic to apply 

different strengths of intensification or degradation to the input camera signal. This 

adjusted signal is then classified using the pie-slice classifier on the rg-chromaticity 

colour space, identifying a single colour.  

The paper also mentioned that for the optimum mapping of membership functions, 

adjustments should be made precise up to at least one decimal place. 

In conclusion, Reyes and Dadios have successfully built a system which uses a unique 

contrast adjusting algorithm. This algorithm successfully identifies light blue, blue and 

violet at 96%, 94% and 72% respectively. It is reported that the techniques presented 

show robust classification under spatially varying illumination, object position and 

rotation. 
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3.3 Image Exposure Selection 

There are several methods of choosing an ideal camera exposure, some of which are 

researched below. Papers were chosen based on their automatic exposure finding 

process - research which includes unknowns such as the lack of external reference 

points are included, as this represents a goal of this research. It is expected that this 

research proposal will allow for automatic exposure calibration with minimal reference 

points or previous knowledge. 

3.3.1 Acquisition of Agronomic Images with Sufficient Quality by 

Automatic Exposure Time Control and Histogram Matching  

Martín Montavlo, José M. Gurrero, Juan Romeo, María Guijarro, Jesús M. de la Cruz 

and Gonzalo Pajares (Advanced Concepts for Intelligent Vision Systems, 15th 

International Conference AACIVS 2013, Poznań, Poland, October 2013) [2] 

This research focuses on adjusting the exposure time of a Kodak KAI 04050M/C sensor 

in order to accurately detect crop lines and identify weeds in an agricultural setting. 

Proposed is a system which analyses an image histogram to provide the exposure 

adjustment. The system also accounts when higher-exposure images are taken from a 

moving tractor, resulting in a blurry, unstable input. 

 

 
Figure 3-14: General Architecture of the Automatic ET Control and Histogram Matching System 

 

The block diagram of the proposed system highlights a fixed reference histogram which 

is introduced to the ‘decision making’ block where the histogram analysis is run.  
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Figure 3-15: Input Image highlighting the ROI (left), Histogram for the RGB channels in the ROI (right) 

 

The use of the histogram has been found to provide an accurate representation of image 

quality. A histogram with concentration in the low or high regions indicates under 

exposure or over exposure, respectively. Letting g be a random variable denoting grey 

levels, where the nth moment of g about the mean is defined as: 

 

  

 

This equation assists in further analysis of the ‘most important statistical parameters’ to 

assess image quality; mean [ m ], variance [ v = μ2(g) ], skewness [ γ = μ3(g)μ2
-3/2 ] and 

kurtosis [κ = μ4(g)μ2
-2 ]. While the commonly used mean and variance are used to assess 

the average and distribution of values, the skewness measures the asymmetry of the 

distribution, while the kurtosis value indicates the ‘peakedness’ of values. In this paper, 

the mean and skewness are the only values found to be needed for the successful 

Exposure Time decision making process. These values are used as follows; 

 

While  

 

 

 

Otherwise ET =   

 

The empirically selected Exposure Time (ET) value is run twice, once for the red and 

once for the green channel. The specific agricultural application researched in this paper 

does not require the use of the blue channel in the region of interest. 
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A total of 1,358 images were processed in this paper, while the tractor moved at 

approximately 4 km/h. The images were taken with varying exposure times for 

adjusting parameters.  

 

 
Figure 3-16: Images captured with different exposure times for adjusting parameters 

 

Each of these images are analysed in their respective ROI until the highest possible 

degree of satisfaction is established, scored by the above Exposure Time decision 

making process. Once this has been completed, the reference histogram is saved for 

future adjustments. This paper then successfully continues to identify crop lines and 

weed patches in the region of interest, however an emphasis is placed on the method of 

exposure selection for this research. 

 

 
Figure 3-17: Identification of crop lines and weed patches in the ROI 
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3.3.2 OCR Accuracy Improvement on Document Images through a 

novel pre-processing approach 

A. El Harraj and N. Raissouni (2015) [3] 

This paper focuses on adjusting illumination for optical character recognition. The 

research experiments within the RGB, LAB, HSV and YUV colour spaces to estimate 

brightness levels and calculate possible brightness and contrast adjustments. The 

research also sharpens the image then uses Otsu thresholding to remove the background.  

 

 
Figure 3-18: Block Diagram of the OCR pre-processing approach 

 

The above system diagram depicts the individual steps, including the recursive 

illumination adjustment. It is stressed that the proposed solution is suitable for any kind 

of document.  

El Harraj and Raissouni have previously discussed a process called ‘Contract Limited 

Adaptive Histogram Equalisation’ (CLAHE) in an earlier paper as a method of making 

hidden features of an image more visible. CLAHE was originally developed for medical 

imaging, specialised from Adaptive Histogram Equalisation [23] where background 

image noise may be incorrectly amplified.  
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Discussed is the use of Value in the HSV colour space in order to gauge an image 

brightness. It is stated that this is inaccurate for brightness estimation due to the value of 

1.0 for white, as well as any ‘pure colour’. The research states that for the first stage of 

illumination adjustment, CLAHE is used to enhance the areas of interest. In this 

research, the areas of interest include the edges of text on a page.  

This process results in the below right-hand image, compared to the input image on the 

left. 

 

       
Figure 3-19: Original Image (left), Enhanced image using CLAHE equalisation (right) 

 

The next stage of the system processing is to estimate the brightness of the image. 

El Harraj and Raissouni found Luma (Y’) from the Y’UV colour space provides the 

best estimate of brightness, using the weighted average of gamma-corrected R, G and B 

values. The relationship between Y’UV  and RGB can be seen in the below matrix: 

 

 

Which may be simplified to: 

 

 

The last pre-processing step implements the Otsu Binarisation approach. A limitation of 

the Otsu algorithm is the assumption of uniform illumination. By using the Luma (Y’) 

value calculated above, the paper proposes a simple and efficient pixel transform to 

create an operator for brightness and contrast adjustment.  This transform is represented 

by the equation: 

 

 

Where f(x,y) is the source image, g(x,y) is the processed image. 

Using the Luma value calculated previously, the paper states the proposed approach 

uses α = 1.4 and β = 50. 
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Figure 3-20: Original Image (left), Enhanced image using the proposed brightness and contrast adjustments (right) 

 

For text recognition, images involving intensity values only are adequate for 

identification. Grey scale representations are often used for extracting descriptors as it 

simplifies the algorithm and reduces computational requirements.  This paper uses the 

luminance algorithm, shown below: 

 

 

 

      
Figure 3-21: Image after contrast and brightness adjustment (left),  

Result of luminance algorithm for grey scale conversion (right) 
 

With the pre-processing complete, the next step uses an Un-sharp masking filter to 

enhance text details. Also known as an edge enhancement filter, the un-sharp masking 

filter is a simple operator which subtracts a blurred image from the original. 

Blurring the image using a Gaussian filter with a reported size of 3x3, the image is then 

run through the un-sharp masking filter which is built into the OpenCV library.  

The reported values of Amount = 1.5, Radius = 0.5 and Threshold = 0, produce the 

following output: 

 

      
Figure 3-22: Grey scale image (left), Result of un-sharp masking filter (right) 
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Un-sharp masking is very successful at sharpening images, however it is noted that with 

incorrect values, these results may be detrimental producing undesirable effects 

including artefacts near edges. 

The last step of image processing before being sent to the Optical Character 

Recognition system is cleaning or removing the document background. A simple 

threshold requires fine tuning in order to successfully classify each pixel as an object or 

background. This fine tuning would result in variances across a high dynamic range 

picture, resulting in misclassifications. For this reason, El Harraj and Raissouni 

implemented Otsu’s thresholding method to minimise the interclass variance of 

thresholded pixels [24]. 

 

 

where 

 

 

 

 

 

The result of running the Otsu algorithm on the previous steps’ sharpened output is 

below: 

     
Figure 3-23: Grey scale sharpened image (left),  

Result of binarised image using Otsu thresholding approach (right) 
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Once the above processing has been completed on each image, it was then sent to 

Tesseract-OCR software to compare against the original image. The paper reports a 

2% - 6.8% increase in text classification accuracy. 

3.4 Multiple Camera Input and Processing 

Receiving multiple input images enables a computer vision system to see multiple 

angles or exposures. A processing system may then ‘choose’ which image is preferred 

depending on certain criteria. The following research explores some examples of 

multiple camera input and different processing methods. For brevity, just the input 

architecture of the proposed systems is studied.   

3.4.1 A unified framework for multi-sensor HDR video reconstruction 

Joel Kronander, Stefan Gustavson, Gerhard Bonnet, Anders Ynnerman and Jonas 

Unger (2014) [6] 

Presenting a novel High Dynamic Range (HDR) image sensor, this paper does not 

require alignment of input images as the single input lens houses three individually 

tuned and processed Kodak KAI-04050 sensors. Each sensor receives a fraction of the 

input light, depending on the beam splitter layout and neutral density (ND) filter. A 

filtering framework is proposed which addresses all of the commonly found issues with 

HDR pipeline processing simultaneously in a formalised way. 

 

 
Figure 3-24: Common HDR System processing steps 

 

Kronander et al., states the vast majority of previous HDR treat the following processes 

as separate tasks, with input from each Low Dynamic Range (LDR) sensor: 

• Demosaicing of a colour filter array (CFA) sampled data, reconstructing the full 

colour image from the LDR sensor data 

• Resampling which corrects for any geometric misalignments between each LDR 

sensor 

• HDR Assembly, an important step where regions of each LDR image are 

selected for output in the final image 

• Denoising which reduces image and colour noise 
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The paper notes that there are several issues with the above pipeline architecture: 

• Performing demosaicing before the HDR Assembly step increases bad or 

missing data around saturated pixels 

• Performing demosaicing after the HDR Assembly increases blur and ghosting 

unless the sensors are perfectly aligned. 

 

Aligning multiple high-resolution sensors is reported to be problematic and costly, 

especially if attempting to align each with the precision required for the CFA patterns to 

match for the first processing step of Demosaicing.  

While this paper continues to discuss the use of calibration and combining the LDR 

images to a HDR output, the points regarding the multiple camera pipeline architecture 

are the main contributions to this research.  

3.4.2 Object Tracking in the Presence of Occlusions Using Multiple 

Cameras: A Sensor Network Approach  

Ali O. Ercan, Abbas El Gamal and Leonidas J. Guibas (2013) [4] 

This article proposes a unique method of reducing data transmission required by each 

camera, speeding up computation time. It is noted that current research attempts to 

compress the signal or perform sophisticated vision processing at each camera. While 

signal compression still requires a high speed of communication, processing at the 

camera requires a significant computational energy at the remote camera location. 

Proposed is a task driven approach, where ‘simple local processing’ is performed at 

each camera, extracting only the essential information required. This substantially 

decreases the data to be transmitted from the camera while reducing the computational 

energy required. 

This paper focuses on the efficient selection of the target object, removing other 

elements in order to reduce network traffic.  
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Figure 3-25: Illustration of the Object Tracking in the Presence of Occlusions problem setup 

 

For each camera in Figure 3-25, it is assumed that: 

• The roll angle (rotation around the optical axis) is zero 

• The pitch angle (vertical tilt) is close to zero 

• The cameras are mounted slightly above the height of an average human 

Given these assumptions, the calibration for each camera consists of the camera 

coordinates and yaw angle (rotation around the vertical axis). It is also assumed that the 

object to track is a ‘point object’ - meaning it is possible to detect by some specific 

point features. There are to be M other moving objects, each modelled to a cylindrical 

shape of diameter D. It is also assumed that the identification of either ‘object to be 

found’ or the ‘moving occluder’ has been completed, as this paper focuses on 

minimising network traffic, compared to the actual identification.  The positions and 

shapes of static occluders in the room are to be known in advance. 

For each camera, background subtraction is performed locally as part of the object 

detection process.  

 
Figure 3-26: Perspective Camera measurement model, with unoccluded object at x. 
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If the object has been found in the camera field of view, its horizontal position in the 

image plane is estimated and sent to the cluster head. It is noted that this is a very small 

amount of data compared to transmitting the whole image. This horizontal position of 

the object in the image plane is given by: 

 

  

 

Where x is the location of the object, fi is the focal length for camera i, and hi(x) and 

di(x) are distances defined in the above figure. The value vi is a value that allows for 

readout noise and calibration inaccuracies.  

This paper explores the use of a moderate amount of processing at the camera ‘head’, 

enabling more cameras to be networked together without significant data congestion. 

This paper continues on to discuss detailed calculations to be run on the cluster head, 

however these methods are not applicable to the research needs of this paper so have 

been omitted from the review. 

 

3.4.3 3D Scene Analysis by Real-Time Stereovision 

Giovanni Garibotto and Carlo Cibei (2005) [5] 

This paper proposes a system that detects moving 3D objects across a plane. Scanning 

across the plane at different heights results in a 3D map being created by the use of 

homography and multiple cameras. Object segmentation and tracking is performed after 

the system has used 3D perception to detect change in an actual object, compared to a 

‘phantom’ shadow or highlight. 

 

Figure 3-27 depicts the processing pipeline for two cameras - indicated as a ‘master’ 

and ‘slave’. Interestingly only the master camera includes the motion and edge detection 

before being sent to the homography prediction and rectification process.  

Garibotto and Cibei state many current systems are limited by partial occlusions - when 

many people ‘hide’ others from the camera image. 
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Figure 3-27: 3D Scene Analysis System General Architecture 

 

The main objective of this research is to use a slave camera to create a ‘virtual 

projection’ of the scene. 

Framing the scene by two cameras, the two images are related by the ‘epipolar 

constraint’, depicted below: 

 
Figure 3-28: Example of Epipolar Geometry 
Figure created by Wikipedia user ‘ZooFari’ 

 

A point p1 in the master image maps to the point p2 in the second image, as: 
 

k2 p2 = k1 * H∞ * p1 + k2e * e2 
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Where k1, k2 and k3 are real numbers, e2 is the epipole of the master camera on the slave 

image. H∞ is the homography matrix (at infinity), mapping the first image onto the 

second. 

Homography is used to adjust the rotation between the two cameras, obtained using at 

least four reference points visible to each camera. Once the homographic matrix H0 has 

been calculated using as many reference points as possible, the use of the infinite 

homographic plane H∞ assists in obtaining all other homographic functions Hz at any 

other parallel plane as a linear combination: 
 

Hz = λz H0 + (1 - λz ) H∞ 

 

Where λz → 0 when z → ∞ (plane at infinity) and λz → 1 when z → h (reference plane). 

The best estimate of the relationship between the two cameras is given by λz = h/z, 

which leads to the interpolation equation: 
 

Hz = h/z H0 + (z – h) / z H∞ 

 

This interpolation equation may now be used to map the projected points along the 

epipolar line on the slave image. Using this approach, Garibotto and Cibei state that the 

scene may now be ‘sliced’ by 3D parallel lines. 

The remainder of the paper discusses calibration by using vanishing points that may 

assist in discovering the main calibration parameters. Once the vanishing point has been 

identified, it would be possible to recover the H∞ matrix.  

Vanishing points may be computed by identifying vertical and horizontal lines in the 

image. It is noted that this may not be the most precise identification, as it is very 

sensitive to small pixel noise.  

3.5 Summary 

Research has been reviewed which covers different methods of classifying colours, 

exposure selection, adjusting image contrast and the processing of multiple input 

images. 

Classifying colour is a priority for this research, as a reliable classifier that has the 

capability to be somewhat resilient to changes in illumination.  
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The pie slice classifier introduced by P J Thomas, Russel J Stonier and P K Wolfs 

successfully ignores luminance in the YUV colour space. It is noted that this classifier 

has specific strengths, as identifying Blue, Yellow and Pink colours yield higher 

classification results compared to other colours. This classifier in use with the 

normalised r/g colour space has proven to provide a heightened resistance to changes in 

illumination. A basic ‘binary’ classifier is to be used to classify each colour, however 

the use of additional probabilistic calculations are to be explored for comparison 

between other standard machine learning algorithms. 

 

Lars Hildebrand and Madjid Fathi introduced a unique Fuzzy Logic based solution to 

classify regions of interest in a metallic welding joint. The ability of the system to 

visually output the data points as a plot provides immediate feedback on quality, while 

the data points themselves may be used statistically, providing a greater level of 

feedback. The distribution of data points in a colour space is to be further examined in 

this research. 

 

Kaveh Heidary and H. John Caulfield highlight the difficulties when detected edges of a 

brightly coloured object compare to the background.  The algorithms’ use of a 

‘certainty’ value before a particular colour is classified, results in a system reduces 

ambiguity between two or more possible matches. This simplistic method of resolving 

conflicting disparate classifiers may be used later in this research to prioritise both 

colours and cameras. 

 

Ngaiming Kwok and fellow researchers introduced two methods for adjusting the 

intensity and saturation of an image in specific regions of interest. The processes may 

be run on the whole input image, where adjustments will be made automatically to areas 

where details may be enhanced. It is noted that while providing a higher quality output, 

the ISAISC algorithm is computationally more expensive due to extra processing 

compared to the ISAIS. These methods have highlighted the importance of developing a 

computationally efficient algorithm. The strengths of the algorithms presented include 

the ability to enhance only the regions where additional noise will not be generated. The 

idea of an algorithm that intelligently ‘skips’ areas of non-interest will be explored later 

in this paper.  
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Discussed previously, Napoleon H. Reyes and Elmer P. Dadios paired the pie slice 

classifier with the red/green chromaticity colour space. The paper discusses a successful 

colour contrast adjustment process called ‘Fuzzy Colour Contrast Fusion’ (FCCF). It 

has proven a successful method of adjusting the red, green or blue channel of an input 

image in order to shift a colour into or out of a pie slice classifier. Overall, this process 

increases true positive matches, while reducing false negative classifications. While the 

process appears robust for a single input image, it is yet to be attempted with a multiple 

image input system. This research will attempt to implement the FCCF system in order 

to increase classification reliability.   

 

Martín Montavlo and fellow researchers presented an automatic exposure adjustment 

solution powerful enough to run real-time from a slow moving vehicle with varying 

image qualities. The proposed system used histogram matching to heuristically adjust 

the exposure time of a single camera, requiring the use of reference points in the input 

image, or a previously known histogram reference. It is a goal of this research to 

automatically adjust the exposure with the target colours known only. 

 

A. El Harraj and N. Raissouni presented automatic adjustment of the Value channel in 

the HSV colour space in order to clarify text on a page for an optical character 

recognition (OCR) program. The proposed process then uses the Y’UV colour space to 

estimate the brightness of the image, used in conjunction with a simple pixel 

transformation equation to adjust the brightness of the image. Techniques such as 

applying an unsharp-mask filter to increase clarity and Otsu thresholding to remove the 

background also assisted in the OCR program in increasing accuracy. 

 

Joel Kronander and fellow researchers presented an overview of the current state of 

high dynamic range imagery processing, highlighting the various processing stages 

from a multiple low dynamic range images to a single high dynamic range output. 

While the paper does present a novel method of testing and introducing a new method 

of taking perfectly aligned LDR images from multiple sensors, these details were 

omitted from the review as it does not assist in the multiple camera colour-oriented 

system. This paper did emphasise the importance of processing steps - reordering the 

HDR assembly process produces substantially differing results. 
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Ali O. Ercan, Abbas El Gamal and Leonidas J. Guibas note the possibility of reducing 

data transmission across a camera network by running minimal processing on the 

camera before passing ROI coordinates to a ‘cluster head’ processor for further analysis. 

An emphasis is given on the known-values that are required for correct calibration. The 

lack of all known-values may result in a camera being unable to locate an object, 

producing erroneous results.  While this paper focuses on reducing the traffic from the 

camera to the processing system, removing data early on from a colour classification 

system-processing pipeline may hinder results. The probabilistic approach to be used 

for the proposed colour classifier system requires the use of as much data as possible, so 

it is unlikely this method could be employed.  

 

Giovanni Garibotto and Carlo Cibei present calculations from which two cameras may 

work in tandem to create a 3D representation of a scene. Saving on computational 

power, only the dedicated ‘master’ camera includes processing steps such as motion and 

edge detection, while the ‘slave’ camera is used to calculate epipolar constraints. 

Homographic perspective processing will be used in the MIDECC system as a method 

of removing rotational differences between the three input cameras. 

 

Many ideas have been explored, providing different methods to implement a colour 

classification system. The Pie Slice classifier will feature heavily in the proposed 

solution, while additional processing stages such as Fuzzy Colour Contrast Fusion and 

background removal will be explored further. 

 





 
 
 
Chapter 4 

4. Multiple Image Dynamic Exposure Colour 
Classification (MIDECC) System 

This chapter introduces the Multiple Image Dynamic Exposure Colour Classification 

(MIDECC) System at the heart of this research. Each of the four main stages are 

discussed, from the image input and data sampling, to construction and final evaluation 

of the colour classifiers. 

Unique systems are introduced, including an automated multi-camera exposure system, 

a complementary normalised cyan/magenta colour space and a simple yet effective 

method of resolving disputes between classifiers if multiple matches occur.  
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4.1 MIDECC General Architecture  

The following diagram depicts the classification process used by the MIDECC System, 

highlighting the four unique processes novel to this research. 

 

 
Figure 4-1: MIDECC System Classification Architecture 
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The following diagram depicts the training process used by the MIDECC system, 

splitting the process into four sub-processes that are explained in detail further in this 

chapter. 

 

 
Figure 4-2: MIDECC System Training Architecture 
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4.2 Introducing the Normalised Cyan/Magenta Colour Space 

It has been noted in previous research the pie slice classifier has particular strength 

identifying blue, yellow and pink colours [19].  

 

         
Figure 4-3: Normalised R/G Colour Space (left) and Normalised C/M Colour Space (right)  

with areas of strength highlighted 
 

When plotted onto the red/green colour space, above left, it can be noted that the areas 

of strength where two colours meet, for example green/blue, green/yellow and red/blue. 

It is hypothesised that the colour space excels in these areas due to the ‘squashed’ nature 

of these regions. Data representing the colours of blue, yellow and pink plotted in these 

regions are grouped together tightly, ideal for a classifier based on radius and angle 

ranges. This paper introduces a colour space complementary to the red/green 

chromaticity; the cyan/magenta chromaticity, above right. 

It is expected that this colour space will excel in orange, darker blue colours and green. 

The formulae for calculating the normalised cm-chromaticities from RGB values are 

below, highlighting the complementary nature of this space to the rg-chromaticity: 

 

 

 

 

 

Where R, G and B are values of red, green and blue, respectively. 
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4.3 Multiple Camera Input Pre-Processing 

In order to maximise the dynamic ranges and reduce specular lighting reflections, three 

cameras are used as inputs to the system. These cameras are to be placed at different 

angles to the planar surface. Each camera will have an exposure ‘locked’, chosen by an 

arbitrary exposure setting process, discussed in Section 4.3.3. This process will ensure 

brighter areas are focused on by one camera, darker areas another, while the final 

camera will focus on the ‘best overall’. 

 

 
Figure 4-4: Exposure ranges spread across three input cameras 

 

Above, the lower three black and white representations of the input image indicate the 

regions of strength, white, compared to the regions of ambiguity, depicted in black. 
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4.3.1 Camera Calibration  

Homographic isometric transforms are used to warp the image, correcting the 

perspective and rendering the input images the same for each camera.  

 

 
Figure 4-5: Examples of perspective-skewed images from each input camera 

 

Each camera image is then scaled to the same aspect ratio; as isometric transforms may 

result a slightly wider or longer image. The perspective adjustments are to be made by 

the user, manually selecting four corners on the camera input image.  

A camera designated as the ‘main’ input will be chosen to base scaling and isometric 

distortions from. Ideally the camera that has the least correction required, resulting in 

the least corrections possible. 

Aspect ratio scaling is to be performed by inputting the expected dimensions of the 

focus surface. The main input image is then used to scale the length and width of each 

of the remaining input images. 

After image perspective and aspect ratio correction, each image may not be aligned with 

the precision required for comparison. This becomes a problem when identifying a 

particular pixel between two cameras. Another process of alignment is to be run where a 

central circle, found on all three input images is automatically identified and position 

calculated. This position is saved as an alignment-adjust value, further creating a 

comparable image for each input. The effectiveness of this process will be visible by 

‘blending’ each camera image and noting any overlap of the central circle, seen in 

Section 5.1.1.2. 
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4.3.2 Scenario and Lighting Capture 

Using three cameras, the system is expected to identify colours across varying lighting 

conditions. In order to identify these differing conditions, the terminology of ‘lighting 

scenarios’ is used.  A single scenario is denoted as a specific layout of light projecting 

onto the focus surface. These scenes have been sorted into three distinct categories, with 

varying sub-categories further denoting one of nine conditions; 

 

Even Lighting – A scene where lighting is evenly distributed across the field. 

Even lighting may be bright, medium or dim in brightness. 

 
Figure 4-6: Even Lighting Scenario examples 

 

Uneven Lighting – A scene where lighting is darker towards one side of the field. 

Uneven lighting may be slight, moderate or severe in dynamic range. 

 
Figure 4-7: Uneven Lighting Scenario examples 

 

Harsh Lighting – A scene where a bright halogen spotlight is used to shine directly onto 

the playing field. 

Harsh lighting may be slight, moderate or severe in dynamic range. 

 
Figure 4-8: Harsh Lighting Scenario examples 
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The three different categories, coupled with known-areas of the colour patches provide 

the system with training data to create the pie slice classifiers.  

The three input frames from each camera, locked at their unique exposures, are then 

saved as a single ‘scenario’. Once a single scenario has been saved, the lighting 

conditions may be changed. The exact illumination values will be measured in Section 

5.1.3.1, highlighting each scenes’ illumination variance. 

The variation of lighting conditions is important, as turning off a particular set of lights 

or moving the halogen spotlight may create a different hue for a known-colour. This can 

be both a positive or negative addition to sample data, depending on the classification 

technique. At this stage of data processing, the three input image frames are saved as 

Portable Network Graphics (PNG) files, retaining as much data as possible.  

4.3.3 Exposure Selection Process 

Crucial to the success of the system, each camera must have an exclusive exposure 

setting. This setting needs to provide a unique input image, ensuring each camera 

focuses on a different lighting range. The three exposures are to be determined by 

stepping through each cameras’ exposure value, recording an overall ‘score’ for each. 

The scoring function for each exposure value, for each camera, is calculated as follows: 

 

 
Figure 4-9: MIDECCS Exposure Selection Process 
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The externally provided manual colour reference is set before the training process 

begins. Samples of the chosen colours are to be stored as pie slice angle and radius 

values, selected from an on-screen image by the user. This sets a baseline hue for each 

classifier and is one of the few manual inputs required. The manual colour reference can 

be chosen on-screen from any camera. Adding multiple colour references may assist in 

training, however there are tolerances set so the exact values are not required - see the 

example in Section 5.1.2.3. 

The exposure selection process is slightly different for each camera, as scoring must 

take into account the pixels previously ‘focused’ on. 

The algorithms below explain the differences in the camera exposure selection process: 

Algorithm 4-1: Camera A Exposure Selection (Best Overall) 

For each e  every exposure value from minimum to maximum  
 Fetch an input image frame 
 Identify colour matches in ‘known areas’ of the input image 
 Calculate a score based on the number of matches / total possible matches 
 Store the score for this exposure 
Lock Camera A exposure at ‘best’ scored exposure 
Save ‘mask’ where Camera A has correctly identified a colour 

 

Algorithm 4-2: Camera B Exposure Selection (Darker Exposure, Focuses on Brighter Areas) 

For each e  every exposure value from Camera A exposure to maximum  
 Fetch an input image frame 
 Apply ‘mask’ to input image, ignoring pixels already classified by Cam A 
 Identify colour matches in ‘known areas’ of the input image 
 Calculate score based on the number of matches / total possible matches 
 Store the score for this exposure 
Lock Camera B exposure at ‘best’ scored exposure 

 

Algorithm 4-3: Camera C Exposure Selection (Brighter Exposure, Focuses on Darker Areas) 

For each e  every exposure value from Camera A exposure to minimum  
 Fetch an input image frame 
 Apply ‘mask’ to input image, ignoring pixels already classified by Cam A 
 Identify colour matches in ‘known areas’ of the input image 
 Calculate score based on the number of matches / total possible matches 
 Store the score for this exposure 
Lock Camera C exposure at ‘best’ scored exposure 



 56

Each of the exposure setting algorithms require the camera image and colour patch 

locations to generate the exposure score, while Cameras B and C also require the results 

from Camera A in order to ‘ignore’ the currently ‘focused’ areas.  

False positives were not counted in this process as the search hyperspace in the colour 

space is already so limited, false positives would be minimal and not likely to affect the 

camera exposure setting process. 

The exposure selection process is to be run during the ‘worst case’ lighting conditions.  

The goal of providing the greatest range of sample exposures is important so a wide 

range of colour samples are taken into account. 

4.4 Sampling Training and Test Data 

Generating usable data from the scene PNG files involves conversion to a pie slice 

angle and radius value. This process must be run twice for each input image pixel - once 

for each colour space.  

At this stage, both colour spaces are simultaneously processed before a weighted score 

is calculated to determine the best colour space for each colour, for each camera. 

 

 
Figure 4-10: Incorrect sampling of known-areas, without margins 

 

Due to camera alignment, highlighting a certain rectangular area at position (x,y), with 

size (w,h) in one input image may not necessarily match the exact coordinates in 

another image. 

The solution implemented in this research is to ignore pixel values that are within a 

certain ‘margin’ of the chosen area. This ensures that the background is not provided as 

training data, as well as ignoring the edges of the patch that may reflect different 

colours due to lower resolution cameras. 
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Figure 4-11: Correct sampling of known-areas, with margins 

 

The above example, showing two red outlines around each patch, indicates a margin 

inside which pixels are ignored both for statistic gathering and classification.  

In the MIDECC system implementation, a margin value of 6 pixels was used to 

successfully filter patch edges for data set gathering.  

4.4.1 Conversion to Pie Slice 

Converting large numbers of RGB values to respective pie slice angle and radius values 

needs to be as computationally efficient as possible. The largest numbers of 

computations, processed during exposure selection, are processed using lookup tables 

(LUTs). The LUTs will ease processing for each pixel in the input images, being used 

roughly 480,000 times for each exposure setting, for each camera. The tables are pre-

generated, holding all 16.5 million possible red, green and blue values with 

corresponding double precision angle and radius outputs.  

The drawback of using such large lookup tables is the loading time at the start of each 

runtime – approximately 15 seconds for each colour space. Due to this limitation, once 

the exposure processing has been completed, RGB to pie slice conversion is done 

‘on-demand’ for each colour. This is fairly quick due to the limited number of colour 

conversions required, compared to the whole image processing of the exposure 

algorithms. RGB values are converted to r/g and c/m colour spaces using equations 

discussed in Sections 3.2.2 and 4.2 respectively.  

4.4.2 Data Collection and Storage 

Data is stored separately for comparison classifiers, namely Comma Separated Values 

(CSV) files to be loaded into Waikato Environment for Knowledge Analysis (WEKA).  
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Given 14 different lighting scenes, each with 11 different sample areas of roughly 200 

pixels in size, the following number of samples are collected for each class: 

 
Table 4-1: Training and test set class sizes 

Class Number of Training 
and Test Samples 

Orange 81,116 

Light Blue 85,792 

Red 91,378 

Pink 91,056 

Dark Blue 92,106 

Light Green 89,152 

Yellow 86,492 

Dark Green 88,942 

Background  5,740,504 
 

Note that the background samples are only to be used by the MIDECC system during 

testing, as the training process only requires the known-areas and minimal manual 

colour references. 

The CSV files consist of twelve ‘dimensions’ of data, ensuring the comparison 

classifiers are ‘fed’ as much data as possible. Each line of data consists of angle (Ang) 

and radius (Rad) values for each of the three cameras, in both colour spaces.  

 
Table 4-2: Example of CSV file layout for WEKA Classifier training and testing 

Camera A Camera B Camera C 

Ex
pe

ct
ed

 
V

al
ue

 

R/G C/M R/G C/M R/G C/M 
Ang Rad Ang Rad Ang Rad Ang Rad Ang Rad Ang Rad 

             

             

             
 

An additional 14 lighting scenarios have been captured with slight variances, for 

example consecutive frames or slight halogen lamp movements. This set is to be used as 

a test set.  
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4.5 Building Classifiers 

The following sections in this chapter relate to the unique system proposed by this 

research. The evaluation of pie slice data to construct the classifier is directly linked to 

the pie slice and colour space chosen in Section 4.5.2, while classifier constriction in the 

next section is last to consider both colour spaces. 

4.5.1 Pie Slice Classifier Construction 

Once the approximately 90,000 data points per colour have been converted to angle and 

radius values, the points are plotted into the colour space. 

The angle and radius ranges are then calculated, along with the mean values and 

standard deviations. These values are then used to assume a normal distribution, used 

later to calculate the probability or ‘confidence’ of each camera’s match. 

Individual colour classifiers are created by adding and subtracting a single standard 

deviation from the mean angles and radii. By using a spread of one standard deviation, 

it is expected to cover approximately 68% of the sampled colour data, excluding 

extreme outliers, such as almost-black or almost-white samples. It is important to 

exclude extreme values as widening the pie slice classifier both by angle (hue) or radius 

(saturation) would result in a significant increase in false positive matches.  

 

 
Figure 4-12: Pie Slice classifier, indicating the two priority regions 

 

The classifier matching system includes standard deviation based priority, discussed in 

Section 4.5.3, further widening the classifier as a ‘last resort’ to match a colour. 

 



 60

Classifiers are individually stored in standard text files. This enables manual checks and 

editing if required. For a system with three cameras, identifying eight colours, a total of 

24 classifiers are generated. For each colour, only the colour space identified in the next 

section is used to save the classifier. 

4.5.2 Colour Space Selection Process 

Up until this point, all colours have been processed in parallel using both colour spaces. 

The next stage of processing selects the best colour space based on a range of evaluation 

criteria. The classifier is then saved in the best colour space – no further processing is 

run for that colour in the worse-off colour space. 

Colour spaces are compared by the following criteria: 

Maximising True Positives; Score = Score + 0.40 

Maximise the matches that have been correctly found in the known-areas for this 

colour.  

Minimising False Positives; Score = Score + 0.35 

Minimise the matches that have been incorrectly found outside any known-areas 

for this colour. This is a simple comparison between the two colour space 

percentages. 

Minimise Angle Range; Score = Score + 0.15 

Minimise the difference of the maximum and minimum angles for this colour. 

Angle and radius ranges are calculated by subtracting the minimum value from 

the maximum value. 

Minimise Radius Range; Score = Score + 0.05 

Minimise the difference of the maximum and minimum radii for this colour. 

Minimise Grey False Negatives; Score = Score + 0.05 

Minimise the number of matches that occur less than the minimum radius value. 

These values are closer to the ambiguous ‘grey area’ of the colour space, 

discussed in Section 2.2.2. 

 

Once these scores have been added, the colour space with the higher score will be 

selected for the final classifier for this colour. The scores were chosen based on the 

criteria’s ability to introduce false negatives or reduce the number of true positives. 

Manual adjustment of these scores during experimental development has ensured the 

correct colour space is chosen. 
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In the event that a tie between colour spaces occurs, the cyan/magenta colour space is  

selected. This is due to experimental results of the cyan/magenta colour space matching 

or exceeding the performance of the red/green colour space in most tests.  

4.5.3 Standard Deviation Priority during Classification 

Discussed previously, each colour classifier is based on the ranges of a single standard 

deviation from each angle and radius mean. As the data is assumed to be a simple 

normal distribution, this would expect to cover approximately 68 percent of cases for 

that exposure.  

Adding another standard deviation either side of the range, effectively making the 

classifier ± 2 standard deviations either side of the mean would result in approximately 

95 percent of the data points being covered.  

In practice, expecting 95 percent of the data points is difficult due to the layout of each 

colour space, however this extra standard deviation is seen as a ‘last resort’, only being 

added if no other classifiers are matched.  

Terminology of a ‘direct match’ is used if the classifier has not been extended, matching 

within one standard deviation, while it is said to be a ‘plus one’ match if an additional 

standard deviation has been added. 

The following algorithm explains the classification for each colour, with respect to the 

standard deviation priority levels: 

Algorithm 4-4: Matching a classifier with multiple priority levels 

For each c  every classifier 
 Check for a direct match with classifier c 
 Check for a plus one match with classifier c 
If one or more direct matches Then 
 Find best colour (see Section 4.5.4) 
Else If one or more plus one matches Then 
 Find best colour (see Section 4.5.4) 
Else no match for this pixel 
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Examples below explain how the prioritising system works with regard to the two 

classifier ‘match types’: 

 

 
Figure 4-13: Example of multiple classifiers matching Dark Blue 

 

Seen above, Camera A and Camera C have both matched with Blue classifiers, however 

Camera A matched Dark Blue, while Camera B matched Light Blue. 

As Camera A has matched its colour within the red ‘direct match’ (single standard 

deviation) area, this camera takes priority over Camera C. The final output would be 

Dark Blue. 

 

 
Figure 4-14: Example of multiple classifiers matching Yellow 

 

Despite two cameras matching the same colour, priority is given to the colour which has 

a direct match, this being Camera B, outputting Yellow. 
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Figure 4-15: Example of multiple classifiers matching, with no priority 

 

This example does not have a direct match, so there is no standard deviation ordering 

required. It is notable that all cameras have matched contradictory colours, so further 

processing is required to decide which colour is correct. The normal density function, 

discussed in the next section calculates the probability of each classifier, picking the 

most probable.  

4.5.4 Handling Multiple Classifications  

There are occasions when the system has classified multiple colours for the same pixel. 

This may be due to overlapping classifiers or particularly difficult lighting conditions, 

where two cameras classify different colours. These conflicts are resolved by comparing 

the normal density function of both the angle and radii of conflicting colours.  

 

 

 

The normal density function above, is run for both the radius and angle of each 

classifier match. These values, when added together, create a value which increases the 

closer to the mean point of each pie slice. It would be expected that a data point aligned 

perfectly in the centre of the pie slice classifier would output a normal density value 

close to 1, while a further away point would output a number closer to 0.  

The output from this function is treated as a confidence level, prioritising one particular 

colour above others when multiple matches occur. In manual calculation tests, multiple 

matches between similar colours, such as light blue and dark blue, were resolved 

successfully with the correct colour being classified. 
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4.6 Background Removal 

Discussed in multiple sections, the ‘grey area’ of the r/g colour space highlights the 

small area around the origin where colour classification is unreliable. 

 

 
Figure 4-16: Grey Area, highlighted in the R/G colour space 

 

The colours which would be classified in this region would include grey, white and 

black. This fact is to be used for background removal, ignoring pixels if they are below 

a certain threshold.  

A small amount of fine tuning of the constant filtering value is to be expected - setting 

the value too low may result in the background not being removed, while setting the 

value too high may result in the filtering of valuable colour information.  The ideal 

value for background removal will result in no or little loss of classification reliability.  

4.7 Evaluating Classifiers 

Evaluating the effectiveness of a classifier can be done in multiple ways: 

• Training the system without a ‘background’ class, effectively limiting the 

system to identifying the known colours only.  

This would result in a specialised system which cannot identify background 

pixels, attempting to classify every sample as a known colour (including a 

background pixel). This is a valid assessment method if the background was 

filtered out of an image during a pre-processing phase for example. 

• Training the system with a background class, evaluating both the classification 

of known areas (true positives) and misclassifications of known areas and 

classifications outside known areas (false positives). 
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This results in a general classification system, allowing any colour, background 

or not, to be classified as either a valid classified colour or part of the 

background. 

 

The MIDECC system has the advantage of being able to train from the known-colours 

only, without the need for additional background samples. This is explained and 

compared further to the requirements of the WEKA standard classifiers in the next 

section. 

4.7.1 Classifier Evaluation Methods 

It has been decided to compare the MIDECC system with both methods described 

above, training once without background information before being tested to classify all 

lighting scenarios with and without background data. 

The WEKA classifiers will be trained and evaluated twice, once without background 

data or ‘known-areas only’, then again with background data. 

 
Table 4-3: Data Collected for Training and Testing 

Process Data to Collect 

Training, Known-Areas Only Colour patches only from the Training Set 

Testing, Known-Areas Only Colour patches only from the Test Set 

Training, Background Included Colour Patches and Background, ignoring margins  
from the Training Set 

Testing, Background Included Colour Patches and Background, ignoring margins  
from the Test Set 

 

4.7.2 Sampling Test Data 

Discussed in Section 4.5.1, test data samples have been collected and stored as CSV 

files. Test data consists of the same lighting scenes as training, however input image 

frames have been refreshed and the lighting subtly adjusted. This provides different data 

for the system to test itself, yet still within the same scenarios as explained in Section 

4.3.2. This is the same data that will be sent to the Waikato Environment for Knowledge 

Analysis (WEKA) program. 
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4.8 Summary 

Proposed is a new concept to create classifiers that are based on multiple lighting 

scenarios.  

The exposure setting process for each camera ensures different cameras focus on 

different areas with minimal overlap. The use of different lighting scenarios ensure the 

pie slice colour space descriptors generate a spread of data points, while assuming a 

normally distributed dataset ensures a simple normal density function may prioritise 

multiple matches if required.  

In the next chapter, the MIDECC system is implemented and compared against 

common machine learning algorithms.  

 

 



 

 
 
Chapter 5 

5. Experimental Setup 

Experiments were performed using three cameras mounted above a robot soccer playing 

field in a computer laboratory with controlled lighting. Eight target colours spread 

across eleven regions are assessed at a capture resolution of 800 x 600 (WVGA). The 

eleven regions were strategically positioned across the field to ensure a spread of 

differing illumination conditions. The lighting in the room can be controlled to a 

repeatable level, matching the discussed lighting scenarios in the previous chapters. 

5.1 Environment Setup 

The environment choice for testing the proposed system is significant as its’ results will 

help determine the scalability and uniformity of results. Consumer electronics were 

used where appropriate to ensure the results weren’t subject to specialised hardware. 

5.1.1 Cameras 

Three Logitech QuickCam Pro 9000 web cameras were used as inputs for the system. 

The auto focus feature was enabled on power up only, to ensure a focused input image. 

Auto exposure was disabled, as the exposure setting process manually sets this value. 

The cameras were run at WVGA (800x600) resolution as opposed to their native 2-

megapixel rating as three cameras at WVGA resolution met the limit of the Universal 

Serial Bus (USB) connection to the processing computer. Commands are sent to the 

cameras via the ‘Video 4 Linux 2’ (vl42) command line interface, enabling the system 

to command the cameras directly. 
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Figure 5-1: Logitech Camera locations, emphasis added 

5.1.1.1  Locations 
The three cameras were located approximately 2.5 meters above a robot soccer field, 

centred length-wise and spread along the fields’ width. The two cameras near each edge 

of the field are angled towards the centre at approximately 25 degrees. Mentioned 

previously, this layout is used to minimise any reflective properties of the playing field 

reflecting the harsh halogen light back into the camera lenses. 

5.1.1.2 Transformations 
Removing the perspective angle and aligning the three input images is crucial for 

pixel-to-pixel comparisons. If the images were not aligned, one pixel, which is at 

position (150,250) to one camera, may be at location (154,248) on another for example. 

This can result in many conflicts where one camera is at an edge of a colour patch, 

while another is on the black background. In the worst case scenario, this would 

severely negatively affect training and exposure adjustments. 

The Open Computer Vision (OpenCV) library is used for image transformation, as it is 

optimised at performing image warping and homographic isomorphic adjustments. 

Firstly, the edges of the playing field are set manually by selection on the camera input 

image. This sets four ‘perspective’ points from which the homography matrix may be 

calculated using the findHomography() function. This function returns an adjustment 

matrix, which removes the image perspective when passed to the OpenCV 

warpPerspective() function. 
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Figure 5-2: Camera Raw Input images with red outline around focus plane (top),  

same images with pre-processing completed (bottom) 
 

Secondly, the images are stretched slightly to match a standard aspect ratio. This 

ensures that once the homography warping is complete, squares remain as squares while 

the central playing field circle, used in the next processing step, also remains circular. 

The aspect ratio is calculated by the real-life playing field measurements, using the 

camera in the centre of the playing field as a reference. 

 

Lastly, the three images are shifted on the X and Y axis to align the centre circle on the 

playing field. This process uses the houghCircles() function to find the central white 

circle on the playing field. The location differences are then calculated and saved with 

each camera calibration file, resulting in faster future processing. 

 
Table 5-1: Camera Alignment values 

Camera A Reference Camera 

Camera B +2 on X-Axis, +9 on Y-Axis 

Camera C +3 on X-Axis, -5 on Y-Axis 
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Figure 5-3: Camera Alignment testing output 

 

The alignment test image above, appears as a single circle cropped from the centre of 

the input images. This image actually has 33% opacity from each camera, blended 

together to give a preview of the alignment results. An image with no overlap or visible 

‘ghosting’ around the white central lines means each camera is successfully aligned. 

5.1.2 Known-Area Colour Patches 

Eight colours are to be detected in eleven different areas on the playing field, totalling 

88 different patches in one frame. The locations of the eleven patches corresponding to 

each colour are saved with the program, enabling the system to keep track of expected 

colour locations. The eight colours are reproduced using coloured matte paper. These 

squares of paper each measure approximately 80 by 80 mm in size, turning into roughly 

20 x 20 pixel rectangles on the input camera image.  

 

 
Figure 5-4: Sample of known-area colour patches on the focusing plane 

 

Mentioned in Section 4.4, 6 pixel wide margins are used to assist in camera alignment 

and minimise false data collection. Figure 5-5 highlights the margin filtering between 

multiple cameras for Area 2, Dark Blue in the ‘Even Bright’ training scenario. 
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Figure 5-5: Area 2 highlighting the importance of the margin value for each camera 

 

5.1.2.1 Colour Choices 
The following table shows the colours that are used in this research experiment. Colours 

in the table have been picked directly from Camera A (best overall exposure), 

‘Even Bright’ training lighting scenario. 

 
Table 5-2: Colours sampled from pre-processed images 

        

Red Orange Yellow Pink Light  
Blue 

Dark  
Blue 

Light 
Green 

Dark  
Green 

 

These colours have been chosen both to test the range of hues available while 

challenging the system with similar colours. Light and dark blue are difficult to 

distinguish in certain lighting conditions, while dark green may turn into light green in 

bright conditions. It is a goal for the system to continue working reliably under varying 

illuminations. 

5.1.2.2 Patch Locations 
The locations of the eleven groups of colours have been chosen to offer a wide range of 

illuminations per scenario. This is especially noticeable during the ‘severe’ lighting 

scenarios, demonstrated below. 

   
Figure 5-6: Patch locations throughout the focusing plane, viewed through multiple cameras 
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5.1.2.3 Manual Colour Entry 
During the exposure setting process, the system assigns a score to each exposure by 

searching through known areas with a basic pie slice classifier. This classifier is 

generated manually by clicking on examples of the colour on the input images. These 

‘hand trained’ classifiers are only used for the exposure selection process, after which 

the automatically generated versions are trained. Figure 5-7 shows samples of the 

manually trained classifier for dark green. The outer ‘slice’ features an added tolerance, 

matching a greater range of colours. While the lesser the tolerance the better, the values 

seen below allow the known-areas to be found without introducing further noise or false 

positives. It is also worth noting that these manually trained classifiers are only 

specialised at the single lighting scenario they are created in – further training is 

required to create a general illumination independent classifier.  

 

     
Figure 5-7: Manual colour entry samples (left), the manually classified pie slice (centre),  

with tolerance adjustments (right) 
 

Indicating the manual colour entry test points for dark green, the six entered colours on 

the left side of Figure 5-7 generate the smaller pie slice in the centre image.  

The tolerance settings on the right are adding 7 degrees either side of the manually 

entered colours, while adding 0.1 points to the radius range, generating the thicker-lined 

pie slice seen in the c/m colour space. It is this pie slice which is used as the reference 

colour when the automatic exposure process is running. 

5.1.3 Lighting 

Controlled lighting is essential for this research, as small changes in illumination may 

result in previously measured lighting levels becoming incomparable for training.  
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The robotics computer laboratory is able to provide many different lighting 

combinations due to the multitude of light sources specially built above the robot soccer 

field. 

 

 
Figure 5-8: Room lighting locations and terminology 

 

Each corner of the playing field has a pair of overhead in-ceiling fluorescent lights, 

designated ‘Close Fluros’ and ‘Far Fluros’. A third cluster of florescent lights are placed 

over the centre of the soccer field, named ‘Mid Fluros’.  

Four halogen spotlights, spaced around the Mid Fluros are given the name ‘Mid Spots’, 

while a portable halogen floodlight provides harsh lighting, to be moved to the corner 

and edge of the field when required. 

5.1.3.1 Scenarios 
Each combination of lighting results in a different lighting ‘scenario’. This creates a 

unique set of data points for training. Despite training data being combined, it is 

important to be able to identify problematic scenes and compare results during classifier 

evaluation. 

Table 5-3 describes each scenario, with the illumination values measured at each corner 

and once in the centre.  Illumination values were measured with a 

Konica Minolta CL-200A portable Chroma meter, depicted Figure 5-9. 
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Figure 5-9: Measuring illumination in the centre of the plane (left) and in corners (centre),  

corner terminology (right) 
 

Table 5-3: Lighting Scenarios 

Scenario 
Name 

Lighting 
Setup 

Expected 
Illumination Corner 1 Corner 2 Corner 3 Corner 4 Centre 

Even Lighting 

Bright 
  

1,378 lux 1,383 lux 1,376 lux 1,382 lux 1,498 lux 

Medium 
  

884 lux 901 lux 892 lux 876 lux 751 lux 

Dim 
  

364 lux 300 lux 293 lux 372 lux 581 lux 

Uneven Lighting 

Slight 
  

865 lux 439 lux 415 lux 832 lux 685 lux 

Moderate 1 
  

345 lux 696 lux 725 lux 327 lux 568 lux 

Moderate 2 
  

669 lux 263 lux 250 lux 689 lux 603 lux 

Severe 1 
  

210 lux 601 lux 667 lux 246 lux 382 lux 

Severe 2 
  

529 lux 206 lux 150 lux 458 lux 221 lux 

Harsh Lighting 

Slight 1 
  

1,311 lux 11,230 lux 1,266 lux 1,216 lux 1,694 lux 

Slight 2 
  

1,171 lux 1,646 lux 1,657 lux 1,197 lux 1,119 lux 

Moderate 1 
  

607 lux 10,680 lux 448 lux 515 lux 1,225 lux 

Moderate 2 
  

514 lux 1,124 lux 1,097 lux 494 lux 1,375 lux 

Severe 1 
  

220 lux 10,170 lux 175 lux 129 lux 226 lux 

Severe 2 
  

176 lux 860 lux 830 lux 180 lux 873 lux 
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5.2 Exposure Selection 

Each of the Logitech cameras has been programmed to adjust to 43 different exposure 

times, ranging from 1/80 (very bright image, able to focus on darker areas) to 1/18000 

(very dark image, able to focus on brighter areas). The exposure selection process 

discussed in Section 4.3.3 is followed, assessing pixels in the known-areas for each 

colour.  

For the results obtained in this research, exposure selection was run with Scenario 

‘Harsh Severe 1’. This successfully spread the camera exposures across bright, medium 

and dark regions. For the remainder of this research and classification results, the three 

cameras have exposures locked as follows: 

 
Table 5-4: Locked exposure settings for each camera 

Camera Visual Identifier Strength Exposure Value 

Camera A Mid-Exposure Image Mid-Exposed Areas 1/320 

Camera B Darker Image Brighter Areas 1/1120 

Camera C Brighter Image Darker Areas 1/280 

 

   
Figure 5-10: Multiple camera inputs highlighting exposure spread for scenario 'Harsh Severe 1' 

 

The process takes approximately 15 seconds to complete, limited by the time taken for 

the web cameras to stabilise after the exposure adjust command is called. Wait-times 

are used in the program code to slow the statistic gathering, otherwise processing would 

complete before a valid exposure reading is taken. 
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5.3 Lighting Scenario Capture 

Once the cameras are locked to the exposures mentioned in Table 5-4, all 14 lighting 

scenarios were captured to file. This involved recreating the lighting setups listed in 

Table 5-3, running homography, aspect ratio adjustment and alignment before saving 

each frame to a Portable Network Graphics (PNG) file. This resulted in 42 PNG files 

saved for training purposes – three images for each scenario.  

An additional 42 PNG files were saved for testing purposes after slight adjustments 

were made to the lighting conditions. 

The Portable Network Graphics (PNG) file format was chosen to save data, as it is a 

lossless bitmap image format which can be read and written by both Qt development 

software and OpenCV. 

5.4 Building Classifiers 

Sampling the known-areas is processed scenario-by-scenario, colour-by-colour. The 

method is flexible in the selection of which scenarios are used for training, with 

immediate feedback on true positives, false positives and a visual spatial layout of data 

points in the colour spaces. 

 

 
Figure 5-11: MIDECCS Experimental Program outputting classifiers in both  

colour spaces with corresponding statistics 
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At this point if a training data sample is below a certain radius threshold, it is discarded. 

This is the only ‘thinning’ of data that is done throughout the collection and sorting 

process. The fixed value for both colour spaces ensures that ‘grey area’ data from 

cameras do not negatively affect the training data. Through manual tuning, any values 

less than 0.015 in radius are ignored.  The below colour space charts outline the 

difference between ‘grey area filtering’ and standard collection of all data. 

 

    
Figure 5-12: Grey Area filtering disabled, producing a wider pie slice classifier (left),  

Grey Area filtering enabled at 0.015, producing the preferred classifier (right) 
 

Based on the spatial layout and pie slice classifier ranges alone, often it is visually clear 

which colour space should be used for each classifier, due to one colour spaces’ data 

points being scattered or clumped together. The ideal colour space should have the data 

points grouped within a small area, not too close to the ‘grey area’ centre. At this point, 

weightings of the true positives compared to the false negatives are to be assessed, as a 

colour space with a brilliant true positive score should not be used if the corresponding 

false negative percentage is also high. 

This process has been automated using the weighted colour space selection process 

discussed in Section 4.5.2. Pages 78 to 79 highlight some of the comparative outcomes 

of this process. 
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Table 5-5: Colour Space selection example for Camera A, Red 

 Camera A, Red  

Normalised Red/Green Colour Space Normalised Cyan/Magenta Colour Space 

  
Pie Slice Angles: 313.12° - 336.5° (5.23° range) +0.15 Pie Slice Angles: 141.6° - 168.7° (27.08° range)  

Pie Slice Radii: 0.293 - 0.405 (0.11 range) +0.05 Pie Slice Radii: 0.092 - 0.251 (0.16 range)  

True Positives: 50.9%  True Positives: 65.1% +0.40 

False Positives: 0.519% +0.35 False Positives: 13.222%  

Grey False Neg: 15.8% +0.05 Grey False Neg: 32.1%  

 Total Red/Green Score: 0.60 Total Cyan/Magenta Score: 0.40 

Weighted Colour Space Choice: Normalised Red/Green 

 
Table 5-6: Colour Space selection example for Camera A, Light Green 

 Camera A, Light Green  

Normalised Red/Green Colour Space Normalised Cyan/Magenta Colour Space 

  
Pie Slice Angles: 56.04° - 74.94° (18.09° range) +0.15 Pie Slice Angles: 227.7° - 259.5° (31.75° range)  

Pie Slice Radii: 0.044 - 0.075 (0.03 range) +0.05 Pie Slice Radii: 0.031 - 0.108 (0.08 range)  

True Positives: 42.5%  True Positives: 64.0% +0.40 

False Positives: 1.945% +0.35 False Positives: 7.604%  

Grey False Neg: 24.5%  Grey False Neg: 19.3% +0.05 

 Total Red/Green Score: 0.55 Total Cyan/Magenta Score: 0.45 

Weighted Colour Space Choice: Normalised Red/Green 
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Table 5-7: Colour Space selection example for Camera B, Red 

 Camera B, Red  

Normalised Red/Green Colour Space Normalised Cyan/Magenta Colour Space 

  
Pie Slice Angles: 329.99° - 336.20° (6.21° range)  Pie Slice Angles: 149.5° - 155.6° (6.14° range) +0.15 

Pie Slice Radii: 0.364 - 0.469 (0.10 range) +0.05 Pie Slice Radii: 0.031 - 0.141 (0.11 range)  

True Positives: 53.9%  True Positives: 58.5% +0.40 

False Positives: 0.561% +0.35 False Positives: 3.802%  

Grey False Neg: 20.5%  Grey False Neg: 15.6% +0.05 

 Total Red/Green Score: 0.40 Total Cyan/Magenta Score: 0.60 

Weighted Colour Space Choice: Normalised Cyan/Magenta 

 
Table 5-8: Colour Space selection example for Camera B, Light Green 

 Camera B, Light Green  

Normalised Red/Green Colour Space Normalised Cyan/Magenta Colour Space 

  
Pie Slice Angles: 49.71° - 82.41° (32.70° range)  Pie Slice Angles: 231.3° - 262.7° (31.33° range) +0.15 

Pie Slice Radii: 0.055 - 0.097 (0.04 range)  Pie Slice Radii: 0.015 - 0.053 (0.04 range)  

True Positives: 47.8%  True Positives: 52.8% +0.40 

False Positives: 11.153%  False Positives: 5.006% +0.35 

Grey False Neg: 22.8%  Grey False Neg: 15.1% +0.05 

 Total Red/Green Score: 0.00 Total Cyan/Magenta Score: 0.95 

Weighted Colour Space Choice: Normalised Cyan/Magenta 
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5.5 Classifier Evaluation 

At this stage of the process, each camera input has a preferred colour space for each 

colour and the pie slice classifier angle and radius have been optimised.  

The following table lists each classifier, preferred colour space and statistic features. 

 
Table 5-9: Final Classifiers to be used by the MIDECC System 

Colour Colour 
Space 

Angle  
Range 

Angle  
Mean 

Angle  
Std Dev 

Radius  
Range 

Radius 
Mean 

Radius  
Std Dev 

Camera A 

Red R/G 331.12° - 336.35° 333.73° 2.615° 0.293 - 0.405 0.349 0.056 

Orange C/M 157.03° - 184.33° 170.68° 13.650° 0.106 - 0.249 0.177 0.072 

Yellow R/G 20.54° - 31.75° 26.15° 5.602° 0.155 - 0.23 0.193 0.379 

Pink R/G 316.53° - 325.38° 320.96° 4.427° 0.099 - 0.145 0.122 0.023 

Light Blue R/G 148.52° - 157.81° 153.16° 4.645° 0.066 - 0.103 0.084 0.018 

Dark Blue R/G 159.9° - 166.46° 163.18° 3.280° 0.168 - 0.241 0.205 0.037 

Light Green R/G 56.04° - 74.94° 65.49° 9.448° 0.044 - 0.075 0.060 0.015 

Dark Green R/G 97.98° - 110.3° 104.14° 6.159° 0.165 - 0.266 0.215 0.050 

Camera B 

Red C/M 149.54° - 155.68° 152.61° 3.071° 0.031 - 0.141 0.086 0.055 

Orange C/M 159.41° - 167.11° 163.26° 3.846° 0.041 - 0.141 0.091 0.050 

Yellow C/M 192.39° - 205.99° 199.19° 6.798° 0.025 - 0.115 0.070 0.045 

Pink C/M 135.61° - 146.92° 141.26° 5.652° 0.024 - 0.111 0.067 0.044 

Light Blue R/G 146.8° - 162.28° 154.54° 7.741° 0.080 - 0.133 0.106 0.027 

Dark Blue R/G 160.49° - 171.42° 165.96° 5.467° 0.193 - 0.274 0.233 0.040 

Light Green C/M 231.38° - 262.71° 247.04° 15.665° 0.015 - 0.053 0.034 0.019 

Dark Green C/M 281.54° - 296.4° 288.97° 7.430° 0.023 - 0.085 0.054 0.031 

Camera C 

Red C/M 329.76° - 337.38° 333.57° 3.813° 0.273 - 0.413 0.343 0.070 

Orange R/G 157.11° - 187.04° 172.08° 14.962° 0.188 - 0.257 0.188 0.069 

Yellow R/G 21.12° - 33.64° 27.38° 6.260° 0.145 - 0.233 0.189 0.044 

Pink R/G 315.41° - 325.5° 320.31° 4.898° 0.092 - 0.141 0.117 0.024 

Light Blue R/G 148.81° - 157.76° 153.28° 4.473° 0.064 - 0.101 0.082 0.018 

Dark Blue R/G 158.53° - 165.76° 162.15° 3.617° 0.156 - 0.248 0.202 0.046 

Light Green R/G 56.77° - 78.59° 67.68° 10.910° 0.043 - 0.073 0.058 0.015 

Dark Green R/G 97.58° - 110.48° 104.03° 6.450° 0.158 - 0.264 0.211 0.053 

 

Indicated in the table, each colour now has a preferred colour space to run classification 

in. It can be noted that Camera B, the camera which focuses on the brighter colour 

patches, predominantly is associated with the c/m colour space, while Cameras A and C 

are associated with the r/g colour space. The positioning of each of the colours in these 

colour spaces are depicted in the diagrams on Page 81. 
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Figure 5-13: Classifier Layout for Camera A 

 

 
Figure 5-14: Classifier Layout for Camera B 

 

 
Figure 5-15: Classifier Layout for Camera C 
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5.6 Background Removal 

The background of the output image is filtered to reduce noise and false positives. As 

discussed previously, a minimum radius value is to be set as a threshold in an attempt to 

reduce incorrect matches occurring in black, grey or white areas of the image. 

This experiment has proven to be very successful at reducing the background noise, 

with little to no effect on the classification results of known-areas. Results from the 

MIDECC system were processed using a background removal radius of 0.035, meaning 

any pixels with a r/g or c/m radius value of less than 0.035 were ignored. 

 

 
Figure 5-16: MIDECCS Output of 'Even Bright' training scenario with background removal turned off (left half of 

image) compared to turned on (right half of image) 
 

With background filtering turned off (left half of image), the system classifies many 

more lighter colours as these are closer to the central ‘grey area’ of the colour spaces. 

The system reports 20.66% of the pixels in the output image are noise, while with noise 

filtering turned on, this number falls to 1.68%. 
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Figure 5-17: MIDECCS Output for 'Even Bright' training scenario with statistic shading 

 

Depicting the ‘stats shading’ of noise for the ‘Even Bright’ training scenario, the above 

image highlights classifications outside known-areas in red, while classifications in 

known-areas as green. There is small amount of noise along the bottom edge of the 

image, where the white foam barrier has been classified as orange and yellow (See 

Figure 5-16 above) and a small amount of noise on the white lines of the playing field. 

The misclassifications around the edges of the known areas are often identified as the 

colour orange. Likely coming from Camera A or C, these orange misclassifications may 

be a result of the large angle range that the system has generated for this classifier. 

These relatively small amounts of noise are not a concern as setting a ‘minimum size’ 

for an expected colour patch would safely ignore these areas. 

 

It is also noted that a small amount of detail may be lost when classifying the lighter 

colours, visible in the light green (upper left patch) of the central collection of colour 

patches. Decreasing the minimum radius value to 0.33 fills this patch in, at the expense 

of adding more noise to the image. The value of 0.35 has been manually adjusted to 

provide the least amount of classification disruption possible, while removing the 

maximum amount of background noise. 
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The graph below show the classification results per colour, both with and without the 

background noise reduction. 

  

 
Figure 5-18: Chart indicating minimal difference in true positives with background removal 

 
 



 

 
 
Chapter 6 

6. Experiment Results and Analysis 

It is important to note that the following true positive and false positive result outputs 

from the MIDECC system do not add to 100%. This is due to the heuristic based 

classification system not matching every single sample provided. If a particular sample 

does not match any given classifier, it does not return a result, neither classifying a 

colour or background sample. It is possible to calculate the ‘missing’ or ‘unclassified’ 

pixels by evaluating the difference between the true positives, false positives and 100%. 

6.1 System Results; Known-Areas Only 

The MIDECC system was trained with the following number of instances per class: 

 
Table 6-1: Training sample sizes, known-areas only 

Class Number of Samples 

Orange 81,116 

Light Blue 85,792 

Red 91,378 

Pink 91,056 

Dark Blue 92,106 

Light Green 89,152 

Yellow 86,492 

Dark Green 88,942 

 706,034 
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Identical data was supplied to WEKA and the MIDECC system, generating the 

following results: 

 
Table 6-2: Classifier training set results, known-areas only 

Training Set True Positives False Positives 

MIDECC System 1 92.582 % 2.050 % 

Naïve Bayes Classifiers 98.478 % 1.523 % 

J48 Tree Classifiers 99.985 % 0.012 % 

Random Tree Classifiers 99.999 % 0.0001 % 

Neural Network Classifiers 99.107 % 0.893 % 
 

Table 6-3: MIDECCS training set results, per scenario, known-areas only 

MIDECC Training Set 1 True Positives False Positives 

Even Bright 99.383 % 0.470 % 

Even Dim 99.532 % 0.337 % 

Even Medium 98.608 % 1.386 % 

Harsh Moderate 1 90.831 % 1.126 % 

Harsh Moderate 2 88.047 % 3.036 % 

Harsh Severe 1 83.498 % 2.857 % 

Harsh Severe 2 79.197 % 7.323 % 

Harsh Slight 1 88.574 % 3.153 % 

Harsh Slight 2 84.448 % 3.421 % 

Uneven Moderate 1 98.412 % 1.388 % 

Uneven Moderate 2 98.192 % 0.882 % 

Uneven Severe 1 98.019 % 1.491 % 

Uneven Severe 2 88.906 % 2.962 % 

Uneven Slight 98.610 % 1.287 % 
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Table 6-4: Classifier test set results, known-areas only 

Test Set True Positives False Positives  

MIDECC System 1 92.447 % 2.223 % 

Naïve Bayes Classifier 98.555 % 1.448 % 

J48 Tree Classifier 99.852 % 0.148 % 

Random Tree Classifier 99.713 % 0.288 % 

Neural Network Classifier 98.924 % 1.077 % 
 

Table 6-5: MIDECCS test set results, per scenario, known areas only 

MIDECC Test Set 1 True Positives False Positives 

Even Bright 99.375 % 0.547 % 

Even Dim 99.508 % 0.329 % 

Even Medium 98.562 % 1.430 % 

Harsh Moderate 1 89.984 % 1.856 % 

Harsh Moderate 2 85.729 % 3.010 % 

Harsh Severe 1 83.572 % 3.030 % 

Harsh Severe 2 83.423 % 4.424 % 

Harsh Slight 1 89.320 % 3.074 % 

Harsh Slight 2 83.419 % 4.037 % 

Uneven Moderate 1 98.447 % 1.370 % 

Uneven Moderate 2 98.342 % 0.807 % 

Uneven Severe 1 97.924 % 1.670 % 

Uneven Severe 2 90.068 % 1.610 % 

Uneven Slight 98.477 % 1.509 % 
 

It is noted that the system struggles to classify colours in scenarios that include the 

halogen floodlight, designated with ‘Harsh’ in the name. This may be due to the 

classification process assuming a normal distribution, however this is studied further in 

Section 6.4.1. Selected scenarios from the table above are discussed over the new few 

pages, highlighting the strengths and weaknesses of the system. 

 

 

                                                
 
1 Note the MIDECC system results do not sum to 100%, discussed at the beginning of this chapter. 
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Figure 6-1: Inputs (left) and MIDECCS result (right) of 'Even Bright' training scenario, known-areas only 

 

Above, the output for the relatively easy-to-classify scenario ‘Even Bright’ from the 

training set results in a high classification value of 99.383% with low false positives of 

0.470%.  

 
Table 6-6: MIDECCS Confusion matrix for 'Even Bright' training scenario, known-areas only 

MIDECCS Classified As: Actual Colour 
Patch:         

5794 Orange 

6128 Light Blue 

212 6308 7 Red 

6504 Pink 

4 6565 Dark Blue 

6304 Light Green 

6178 Yellow 

14 6339 Dark Green 

 

The confusion matrix indicates the system classified 212 pixels incorrectly as orange, 

where the correct colour is red. This can be seen in the red colour patch in the lower left 

corner of the output image.  
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Figure 6-2: Inputs (left) and MIDECCS result (right) of 'Uneven Moderate 2' test scenario, known-areas only 

 

The ‘Uneven Moderate 2’ test scenario provides a greater challenge for the system, as 

the right edge of the scene is moderately darker than the left. This can be seen by the 

input images above, where the colour patches on the right is easily visible from 

Camera C, while too dark to see in Camera B. This scenario scored 89.342% accuracy, 

with 0.807% false positives. These results are visible by no large patches of missing or 

inaccurate colour. It is noticeable that the lighter colours, light green and light blue, 

begin to start misclassifying at this low light level. Although not classified as another 

colour, the system simply does not classify as any result.  

 
Table 6-7: MIDECCS Confusion matrix for 'Uneven Moderate 2' test scenario, known-areas only 

MIDECCS Classified As: Actual Colour 
Patch:         

5769 25 Orange 

5911 Light Blue 

300 6181 46 Red 

9 26 6469 Pink 

6579 Dark Blue 

6160 Light Green 

6176 Yellow 

1 6350 Dark Green 
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Figure 6-3: Inputs (left) and MIDECCS result (right) of 'Harsh Moderate 1' test scenario, known-areas only 

 

The ‘Harsh Moderate 1’ test scenario highlights the system struggling under extremely 

bright conditions. The halogen light in the upper right corner results in most colours in 

that area becoming completely washed out, however the system continues to classify 

blue and light blue. Overall, this scenario scores a slightly disappointing total of 

89.984% true positives and 1.856% false positives.  
 

Table 6-8: MIDECCS Confusion matrix for 'Harsh Moderate 1' test scenario, known-areas only 

MIDECCS Classified As: Actual Colour 
Patch:         

5338 Orange 

5935 Light Blue 

147 5413 421 Red 

6 5976 Pink 

300 6254 Dark Blue 

5037 Light Green 

1 46 5569 Yellow 

15 5858 Dark Green 
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Table 6-9: MIDECCS Confusion matrix for all 14 test scenarios, known-areas only 

MIDECCS Classified As: Actual Colour 
Patch:         

76254 1778 Orange 

79578 132 6 Light Blue 

3748 83850 822 Red 

1876 2579 82212 Pink 

2950 88588 Dark Blue 

76704 21 730 Light Green 

352 558 80880 Yellow 

142 84641 Dark Green 

 

 
Table 6-10: MIDECCS Confusion matrix for all 14 test scenarios, known-areas only 

MIDECCS Classified As: Actual Colour 
Patch:         

76730 1178 1 Orange 

80467 80 4 Light Blue 

4021 82435 1404 Red 

1289 1664 83567 Pink 

2834 88826 Dark Blue 

75779 43 955 Light Green 

212 584 81332 Yellow 

2 204 84526 Dark Green 
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6.1.1 Naïve Bayes Classifiers   

The Naïve Bayes classifier appears to classify colours correctly, reporting an overall 

correct percentage of 98.47% for the test set and 98.56% for the training set.  

Looking closer at the confusion matrix, it appears the classifier struggles to differentiate 

between similar colours. 

The classifier took 2.34 seconds to train from the 706,034 training data points. 

 
Table 6-11: Naïve Bayes Confusion matrix for all 14 training scenarios, known-areas only  

Naïve Bayes Classified As: Actual Colour 
Patch:         

78524 2372 220 Orange 

85523 153 55 61 Light Blue 

2238 88201 827 12 Red 

47 15 90994 Pink 

2719 89387 Dark Blue 

39 32 5 88759 311 Light Green 

362 2 167 85836 125 Yellow 

19 861 88062 Dark Green 

 

 
Table 6-12: Naive Bays Confusion matrix for all 14 test scenarios, known-areas only 

Naïve Bayes Classified As: Actual Colour 
Patch:         

78851 2035 228 2 Orange 

85535 165 60 Light Blue 

2213 88400 765 Red 

39 18 90999 Pink 

2430 89676 369 Dark Blue 

21 9 3 85942 369 Light Green 

335 97 85942 118 Yellow 

9 1246 87687 Dark Green 
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6.1.2 J48 Tree Classifiers 

The J48 classifier took 53.75 seconds to train the 531-branch decision tree. Reporting a 

99.99% correct classification rate for the training set and slightly lower 99.85% rate for 

the test set, the J48 classifier correctly distinguished similar colours, with a very small 

amount of misclassifications in the test set confusion matrix. 

 
Table 6-13: J48 Confusion matrix for all 14 training scenarios, known-areas only 

J48 Classified As: Actual Colour 
Patch:         

81108 8 Orange 

85768 5 17 2 Light Blue 

8 91367 3 Red 

1 91051 4 Pink 

22 92084 Dark Blue 

5 16 89140 4 3 Light Green 

16 86476 Yellow 

3 3 88936 Dark Green 

 

 
Table 6-14: J48 Confusion matrix for all 14 test scenarios, known-areas only 

J48 Classified As: Actual Colour 
Patch:         

80995 86 1 33 1 Orange 

85632 140 4 16 Light Blue 

129 91190 59 Red 

2 91048 6 Pink 

131 91974 1 Dark Blue 

20 89039 24 69 Light Green 

2 2 296 86192 Yellow 

7 1 13 88921 Dark Green 
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6.1.3 Random Tree Classifiers 

The Random Tree classifier took 14.3 seconds to build a 3,783-branch decision tree. 

The decision tree reclassified the training set with almost no misclassifications at 

99.99% success, however the test set introduced a very small amount of 

misclassifications at 99.71% success. 

  
Table 6-15: Random Tree Confusion matrix for all 14 training scenarios, known-areas only 

Random Tree Classified As: Actual Colour 
Patch:         

81116 Orange 

85791 1 Light Blue 

91378 Red 

91056 Pink 

92106 Dark Blue 

89152 Light Green 

86492 Yellow 

88942 Dark Green 

  

 
Table 6-16: Random Tree Confusion matrix for all 14 test scenarios, known-areas only 

Random Tree Classified As: Actual Colour 
Patch:         

80775 331 10 Orange 

85385 2 38 226 130 11 Light Blue 

81 25 912241 13 18 Red 

2 1 339 90499 215 Pink 

218 2 4 91817 65 Dark Blue 

3 22 88994 82 51 Light Green 

3 6 72 86407 4 Yellow 

12 44 88886 Dark Green 
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6.1.4 Neural Network Classifiers 

The Neural Network training process was run on a simple single-layer neural network, 

depicted on Page 96. The network was left to train for 20 epochs, totalling 4 minutes 

and 22 seconds of processing, with a learning rate of 0.3. While this is considered a 

rudimental Neural Network, this network was purposely configured to train for a limited 

number of epochs. While it is possible to configure more layers or train the network for 

longer lengths of time, the performance obtained by this simple Neural Network 

provides sufficient comparison data for this thesis.  

Despite the short training process, the network still managed to classify colours with 

considerable accuracy. Evaluating the training set resulted in a 99.11% success rate, 

while evaluating the test set resulted in a slight decrease to 98.92% success rate. 

 
Table 6-17: Neural Networks Confusion matrix for all 14 training scenarios, known-areas only 

Neural Networks Classified As: Actual Colour 
Patch:         

794974 49 1426 5 5 137 Orange 

85642 8 5 28 11 7 91 Light Blue 

136 91213 21 8 Red 

10 19 91027 Pink 

322 633 91151 Dark Blue 

1944 33 971 199 18 85986 21 156 Light Green 

92 21 33 68318 28 Yellow 

14 20 5 6 88897 Dark Green 

 

 
Table 6-18: Neural Networks Confusion matrix for all 14 test scenarios, known-areas only 

Neural Networks Classified As: Actual Colour 
Patch:         

79456 48 1209 6 8 28 361 Orange 

84896 3 3 738 50 102 Light Blue 

113 91228 33 1 Red 

10 148 90898 Pink 

444 560 91102 Dark Blue 

1804 30 978 183 7 85997 16 137 Light Green 

93 19 381 85953 46 Yellow 

8 19 6 5 88904 Dark Green 
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Figure 6-4: Single Layer Neural Network, generated and trained by WEKA 
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6.2 System Results; Known-Areas and Background 

The MIDECC system did not require retraining, as the system may be run on input 

images with its’ current pie slice classifiers.  The four WEKA classifiers are to be 

retrained using the following data set, where the colour patch data is identical to 

Section 6.1. 

 
Table 6-19: Training sample sizes, including background 

Class Number of Samples 

Orange 81,116 

Light Blue 85,792 

Red 91,378 

Pink 91,056 

Dark Blue 92,106 

Light Green 89,152 

Yellow 86,492 

Dark Green 88,942 

Background 4,000,024 

 4,706,058 
 

The number of background instances for training have been reduced from the actual 

sampled number of 5,740,504 due to computational memory limitations. This was done 

by removing duplicate values from the data set. Despite the greater amount of 

background samples, the MIDECC system would not overfit with background 

classifications as training data which does not match a classifier being trained is 

discarded.  
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Table 6-20: Classifier training set results, including background 

Training Set True Positives False Positives 

MIDECC System 1 92.447 % 4.387 % 

Naïve Bayes Classifier 99.344 % 0.656 % 

J48 Tree Classifier 99.920 % 0.080 % 

Random Tree Classifier 99.899 % 0.101 % 

Neural Network Classifier 99.842 % 0.158 % 
 

Table 6-21: MIDECCS training set results, per scenario, including background 

MIDECC Training Set 1 True Positives False Positives 

Even Bright 99.383 % 3.528 % 

Even Dim 99.532 % 0.744 % 

Even Medium 98.608 % 2.191 % 

Harsh Moderate 1 90.831 % 3.262 % 

Harsh Moderate 2 88.047 % 6.448 % 

Harsh Severe 1 83.498 % 5.046 % 

Harsh Severe 2 79.197 % 10.511 % 

Harsh Slight 1 88.574 % 6.554 % 

Harsh Slight 2 84.448 % 11.035 % 

Uneven Moderate 1 98.412 % 2.328 % 

Uneven Moderate 2 98.192 % 2.356 % 

Uneven Severe 1 98.019 % 1.925 % 

Uneven Severe 2 88.906 % 3.145 % 

Uneven Slight 98.610 % 2.346 % 
 

Due to computational memory limitations, the test set was split across two data files and 

results combined. The data sets were ordered by colour, followed by background 

samples. The data was then split down the middle, creating two smaller, manageable 

files to load into WEKA. The first data file consisted of all colours and some 

background samples, while the second data file consisted of background samples only. 

As the WEKA classifiers do not change during testing, combined results obtained with 

two files are directly comparable to a system which tests with one data file. 

The testing of the WEKA classifiers incorporated all 5,740,504 background colour 

samples to produce the following results. 
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Table 6-22: Classifier test set results, including background 

Test Set True Positives False Positives 

MIDECC System 1 92.582 % 4.247 % 

Naïve Bayes Classifiers 99.266 % 0.834 % 

J48 Tree Classifiers 99.910 % 0.090 % 

Random Tree Classifiers 99.901 % 0.099 % 

Neural Network Classifiers 99.754 % 0.246 % 
 

Table 6-23: MIDECCS test set results, per scenario, including background 

MIDECC Test Set 1 True Positives False Positives 

Even Bright 99.375 % 3.658 % 

Even Dim 99.508 % 0.724 % 

Even Medium 98.562 % 2.467 % 

Harsh Moderate 1 89.984 % 4.065 % 

Harsh Moderate 2 85.729 % 6.284 % 

Harsh Severe 1 83.572 % 5.177 % 

Harsh Severe 2 83.423 % 7.727 % 

Harsh Slight 1 89.320 % 7.010 % 

Harsh Slight 2 83.419 % 11.263 % 

Uneven Moderate 1 98.447 % 2.044 % 

Uneven Moderate 2 98.342 % 2.338 % 

Uneven Severe 1 97.924 % 1.937 % 

Uneven Severe 2 90.068 % 1.921 % 

Uneven Slight 98.477 % 2.847 % 
 

Again, the ‘Harsh’ scenarios reduce the overall classification scoring for the MIDECC 

system. While staying at a similar percentage of classification scoring, it is noticeable 

that the WEKA classifiers have a greater amount of false positives, albeit by a small 

amount. The reasoning behind the MIDECC system lower true positives is to be 

discussed in Section 6.4.1.   

The same scenarios highlighted in the previous section will be explored again with the 

addition of background pixels to compare results. The confusion matrices for the 

                                                
 
1 Note the MIDECC system results do not sum to 100%, discussed at the beginning of this chapter. 
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MIDECC system are the size of 9 rows by 9 columns, however much of the 9th column 

will remain empty. While it is possible the system mistakenly classifies the background 

as a colour, it does not classify a background class.  

 
Figure 6-5: Inputs (left) and MIDECCS result (right) of ‘Even Bright' training scenario, including background 

 

Introduction of the background pixels has resulted in the system increasing the false 

positives from 0.470% to 3.528% for the ‘Even Bright’ training scenario. This increase 

in false positives is visible with the lighter colours such as yellow, orange and red being 

classified in the background. A total of 1,542 pixels were incorrectly classified in the 

background. 
Table 6-24: MIDECCS Confusion matrix for 'Even Bright' training scenario, including background 

MIDECCS Classified As: Actual 
Colour:         BG 

5794  Orange 

6128  Light Blue 

212 6308 7  Red 

6504  Pink 

4 6565  Dark Blue 

6304  Light Green 

6178  Yellow 

14 6339  Dark Green 

2822 95 1495 882 933 919 337 171 408494 Background 
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Figure 6-6: Inputs (left) and MIDECCS result (right) of ‘Uneven Moderate 2’ test scenario, including background 

 

The ‘Uneven Moderate 2’ test scenario classifies the same true positive and false 

positive results of 89.342% and 2.338%, respectively. Adding the background samples 

resulted in 772 background pixels being incorrectly classified as a colour. 

 
Table 6-25: MIDECCS Confusion matrix for Uneven Moderate 2’ test scenario, including background 

MIDECCS Classified As: Actual 
Colour:         BG 

5769 25  Orange 

5911  Light Blue 

300 6181 46  Red 

9 26 6469  Pink 

6579  Dark Blue 

6160  Light Green 

6176  Yellow 

1 6350  Dark Green 

408  54 25  198 87  409264 Background 

 

Once again the highest classified colour for the background is orange, followed by light 

green. 
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Figure 6-7: Inputs (left) and MIDECCS result (right) of ‘Harsh Moderate 1’ test scenario, including background 

 

Under the halogen flood lamp in the ‘Harsh Moderate 1’ scenario, the background is 

misclassified 1,114 times. This is especially visible around the edges of the brightly lit 

corner patches, where the light and slight misalignment of cameras have resulted in a 

very thin strip of pixels being classified. 

 
Table 6-26: MIDECCS Confusion matrix for 'Harsh Moderate 1' test scenario, including background 

MIDECCS Classified As: Actual 
Colour:         BG 

5338  Orange 

5935  Light Blue 

147 5413 421  Red 

6 5976  Pink 

300 6254  Dark Blue 

5037  Light Green 

1 46 5569  Yellow 

15 5858  Dark Green 

337 304 125 120 28 169 5 26 408922 Background 

 

Lighter colours such as orange, pink, light blue and light green have been classified 

more often as the background compared to other colours. 
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Table 6-27: MIDECCS Confusion matrix for all 14 training scenarios, including background 

MIDECCS Classified As: Actual 
Colour:         BG 

76254 1778  Orange 

79578 132 6  Light Blue 

3748 83850 822  Red 

1876 2579 82212  Pink 

2950 88588  Dark Blue 

76704 21 730  Light Green 

352 558 80880  Yellow 

142 84641  Dark Green 

7767 1622 1252 991 195 2523 726 204 5725224 Background 

 

 
Table 6-28: MIDECCS Confusion matrix for all 14 test scenarios, including background 

MIDECCS Classified As: Actual 
Colour:         BG 

76730 1178 1  Orange 

80467 80 4  Light Blue 

4021 82435 1404  Red 

1289 1664 83567  Pink 

2834 88826  Dark Blue 

75779 43 955  Light Green 

212 584 81332  Yellow 

2 204 84526  Dark Green 

7888 1702 1272 1040 203 2180 1052 176 5724991 Background 
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6.2.1 Naïve Bayes Classifiers   

Taking 18.54 seconds to train, the Naïve Bayes classifier reports a greater true positive 

percentage when trained with the background pixels compared to known-areas only. 

This may be due to more ‘splits’ in the colour space data, allowing greater definition of 

each feature due to the Naïve assumptions the classifier makes during training. The 

decrease of false positives to 0.656% also supports this theory, where it is likely that the 

Naïve Bayes classifier may now make better assumptions due to the greater spread of 

training data. 

 
Table 6-29: Naive Bays Confusion matrix for all 14 training scenarios, including background 

Naïve Bayes Classified As: Actual 
Colour:         BG 

78518 2372 222 4 Orange 

81309 11 7 14 4451 Light Blue 

2334 88201 817 6 20 Red 

47 15 87936 3058 Pink 

1681 89267 1158 Dark Blue 

84765 9 6 4372 Light Green 

262 93 85225 6 906 Yellow 

215 87615 1112 Dark Green 

2822 95 1495 882 933 919 337 171 3992370 Background 

 
Table 6-30: Naive Bays Confusion matrix for all 14 test scenarios, including background 

Naïve Bayes Classified As: Actual 
Colour:         BG 

78833 2035 223 15 Orange 

81442 23 4 14 4309 Light Blue 

2211 88402 764 1 Red 

39 19 87806 3193 Pink 

1427 89588 1091 Dark Blue 

84761 33 1 4357 Light Green 

245 55 85342 2 848 Yellow 

2 327 86432 981 Dark Green 

2902 85 1545 916 1090 993 373 139 5732461 Background 
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6.2.2 J48 Tree Classifier 

The J48 classifier generated a 587-leaf decision tree in just under 12 minutes. This long 

processing time resulted in similar scores in true positive and false positives compared 

to the no-background data set. This highlights the optimisations present in the 

processing of this classifier, being able to output a high accuracy score with a variety of 

information such as the 4.7 million background data samples. 

 
Table 6-31: J48 Confusion matrix for all 14 training scenarios, including background 

J48 Classified As: Actual 
Colour:         BG 

81103 13  Orange 

85687 8 20 2 75 Light Blue 

9 91367 2  Red 

1 91044 6 1 4 Pink 

21 92066 19 Dark Blue 

3 2 89090 3 54 Light Green 

1 13 86477 1 Yellow 

6 1 88934 1 Dark Green 

 10 1 2 2 14 1 1 3999993 Background 

 
Table 6-32: J48 Confusion matrix for all 14 test scenarios, including background 

J48 Classified As: Actual 
Colour:         BG 

80876 97 1 138 4 Orange 

85285 52 105 1 10 339 Light Blue 

151 90953 274  Red 

1 6 90244 76 1 728 Pink 

93 91925 6 82 Dark Blue 

29 8 88872 93 19 131 Light Green 

45 86437 10 Yellow 

228 3 2 88704 5 Dark Green 

4 76 16 20 43 171 16 2 5740156 Background 
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6.2.3 Random Tree Classifier 

Building a large 7,199 branch decision tree, the Random Tree classifier took 1 minute 

and 11 seconds to train with background samples. Assessing the Training Set, the 

classifier scored extremely highly, expected for a large decision tree. Re-evaluation on 

the test set resulted in minimal incorrect background classifications, however due to the 

scattered data samples in the confusion matrix it can be concluded that the Random 

Tree classifier has trouble distinguishing between the lighter colours. 

 
Table 6-33: Random Tree Confusion matrix for all 14 training scenarios, including background 

Random Tree Classified As: Actual 
Colour:         BG 

81116  Orange 

85790 1 1  Light Blue 

91378  Red 

91053 3  Pink 

92106  Dark Blue 

89152  Light Green 

86492  Yellow 

88942  Dark Green 

        4000024 Background 

 
Table 6-34: Random Tree Confusion matrix for all 14 test scenarios, including background 

Random Tree Classified As: Actual 
Colour:         BG 

80746 258 50 41 21 Orange 

85122 375 50 19 226 Light Blue 

149 2 91192 19 3 13 Red 

8 5 116 90644 261 22 Pink 

135 194 40 91426 12 28 17 254 Dark Blue 

99 88940 33 20 60 Light Green 

27 2 1 409 86001 37 15 Yellow 

20 1 43 26 88848 2 Dark Green 

23 341 21 67 101 285 27 13 5739626 Background 
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6.2.4 Neural Network Classifier 

Training the single layer network for 20 epochs at the learning rate of 0.3, the Neural 

Network classifier took just under 12 minutes with the background samples. Evaluating 

the training set resulted in 99.84% correct classifications with minimal (0.158%) false 

positives. Re-evaluating the test set with the total number of background samples 

produces 99.75% true positives and 0.246% false positives. 

 
Table 6-35: Neural Network Confusion matrix for all 14 training scenarios, including background 

Neural Network Classified As: Actual 
Colour:         BG 

79811 183 193 38 659 232 Orange 

85509 7 30 95 151 Light Blue 

367 90965 39 6 Red 

7 91026 23 Pink 

966 91033 25 82 Dark Blue 

4 85964 7 1877 1300 Light Green 

211 85917 2 362 Yellow 

6 182 48 88673 33 Dark Green 

13 5 14 101 9 114 44 1 3999723 Background 

 
Table 6-36: Neural Network Confusion matrix for all 14 test scenarios, including background 

Neural Network Classified As: Actual 
Colour:         BG 

79766 178 163 116 717 176 Orange 

85267 161 34 109 221 Light Blue 

417 1 90612 345 3 Red 

124 140 90755 37 Pink 

1102 90805 6 193 Dark Blue 

85700 9 1936 1507 Light Green 

262 85864 2 364 Yellow 

5 209 68 88634 26 Dark Green 

24 3 19 125 17 91 49 3 5740173 Background 
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6.3 Summary 

After analysing the confusion matrices for each classifier, it is noticeable that if a pixel 

is deemed too bright or too dark, the MIDECC system will not classify any colour. This 

is visible by the confusion matrix data being grouped together, compared to being 

spread over many different colours. The grouping of data on the confusion matrix 

indicates the MIDECC system classifying similar colours distinctly, minimising 

misclassifications. 

The Naïve Bayes classifier generated a strong true positive classification value, 

however of all WEKA classifiers, it generated the most false positives. The false 

positive rate did drop significantly once the background data was added, indicating that 

the assumption-based training works better with the additional background data for this 

task. 

The J48 Tree classifier proved to be robust with both the training and test sets, 

minimising classification errors. The J48 classifiers were let down by the longer 

training processing time, nevertheless the classifiers do perform well, with greater than 

99% success.  

Training very quickly, the Random Tree classifiers built a very large decision tree 

which would be expected to return its’ 99.99% success rate for the training set. This 

value falls only slightly with a small number of misclassifications for the testing set. 

Light blue and light green are two colours which have a multitude of misclassified 

colours, compared to the robust detection of the other colours. 

Neural Networks classifiers trained 20 epochs, taking four and a half minutes for no 

background data and just under 12 minutes with background data. The single layer 

network resulted in a 98.9% success rate, although similar colours such as red and pink 

did cause the majority of misclassifications. It is noted that the Neural Network 

classifier was excellent at separating the background compared to the coloured patches, 

correctly classifying nearly all of the background pixels as the background class. 
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6.4 Discussion 

The MIDECC system has been tested with 14 different testing scenarios of slight to 

severe illumination difference. The overall system confusion matrix indicates minimal 

misclassifications of similar colours, with orange and red being the most troublesome. 

Yellow and dark blue, followed by green are the best classified colours. Dim scenarios 

such as ‘Even Dim’ and ‘Uneven Severe’ are classified excellently, excelling over a 

single camera setup.  

The overall classification result of over 92% for both training and test data sets 

highlight the effectiveness of a relatively simple classification system coupled with the 

probabilistic approach in resolving multiple classifier matches. 

It is also notable that the MIDECC system is less likely to misclassify vastly different 

colours, for example blue and red. This is due to the classifiers’ ordering of data in the 

hyperspace, placing similar colours next to one another. The fundamental layout of the 

red/green and cyan/magenta colour space result in the system being likely to classify the 

correct colour, compared with an arbitrary classification space, used by the WEKA 

classifiers. The MIDECC system did struggle under harsh illumination, where two out 

of the three cameras could not classify a colour. Often the lighter colours such as light 

blue and light green are more likely to be misclassified, as these colours are located near 

the centre of the colour spaces. This location results in the possibility of being 

disregarded by the background filtering process or being less saturated, outside the pie 

slice classifier. 

The following sub-sections discuss the limitations and possible Fuzzy Colour Contrast 

Fusion (FCCF) [1] implementation results. 

6.4.1 Harsh Lighting Limitations 

After further testing, the classifier construction method appears to be the culprit for the 

misclassifications in the harsh lighting scenarios. The system uses the assumption of a 

normally distributed spread of data when generating the classifier.  



 110

Take the below spread of data that may be generated during the training process for 

Red: 

 
Figure 6-8: Example of sample data for Red 

 

The classifier construction process states that the system is to use a single standard 

deviation either side of the mean, covering an estimated 68% of sample data, shaded 

green, below. 

 
Figure 6-9: Classifier generated for 1x Standard Deviation either side of the mean 

 

During the classification process, the system searches inside the above green ‘generated 

classifier’ region, before expanding the search an additional standard deviation in an 

attempt to match a colour if none is found: 

 

 
Figure 6-10: Extended search space, generated by 2x Standard Deviations either side of the mean 

 

Due to the calculated standard deviation, this estimated search space will cover 

approximately 95% of the sample data.  

The decision not to extend the search process to a third standard deviation was chosen 

due to the addition of noise and false positives. 
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Figure 6-11: Clockwise, from upper left: 1x Standard Deviation, 2x Standard Deviations,  

3x Standard Deviations, 4x Standard Deviations 
 

Colour Key: 

Correctly Classified  or  

Incorrectly Classified  

Incorrectly Classified, 
within angle ranges but  
outside radius ranges 

 

 

The above samples are statistical coloured output of Camera B, searching for Red in the 

‘Harsh Severe’ training scenario.  

It is important to ignore the red ‘noise’ in the background of the images, as this is 

removed by the background filtering further in the pipeline. What can be seen clearly is 

the misclassifications (shown in red) increasing as the standard deviations increase.  

At four standard deviations, the brightest area of the image correctly classifies. This 

comes at the expense of also classifying most of the orange areas as red also, negating 

any gains. 

Without pre-processing or further experiments into selective standard deviation 

additions, the brightest illuminated areas in the harsh scenarios are too difficult for the 

MIDECC system to process reliably. 
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6.4.2 Classification with FCCF 

Fuzzy Colour Contrast Fusion (FCCF), introduced by Reyes and Dadios appeared to be 

a promising addition to the system, adjusting the contrast for the red, green and blue 

channels of each camera. The use of fuzzy logic ensures the correct contrast operators 

are assigned to each camera at the optimum strengths. FCCF was successfully 

implemented with the MIDECC system, automatically choosing the optimum contrast 

operators for each colour under each camera by testing each combination. 

Many of the colours did not require FCCF correction, with the results of the brute-force 

testing method returning ‘No Change’ for all three colour channels.  

 
Table 6-37: FCCF Rules derived using brute force, as outlined in [1] 

 Camera A (Best 
Overall) Camera B (Darker) Camera C (Brighter) 

R G B R G B R G B 
 D1 NC E1    NC NC D1 
          
    D2 NC NC D2 E1 E1 
          
          
    D1 D1 D1    
    NC NC E1    
    E1 NC E2    

 

Where Dx and Ex denotes contrast degradation or enhancement at the numbered 

strength, respectively, while NC denotes ‘No Change’. Blank cells were returned as ‘No 

Change’ and are excluded from the table for ease of visualisation. 

The formulas used to calculate contrast degradation and enhancement can be found in 

Section 3.2.2. 

 

Unfortunately the FCCF process outlined by Reyes and Dadios did not improve results 

with the proposed system - in fact reducing the total number of classifications.  

The promising algorithm works excellently for a single camera setup, however further 

study will be needed for optimum implementation with multiple cameras. 
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It is thought that this result is due to the incorrect prioritising of cameras. Without 

FCCF, the normal densities calculation of the angle and radius create a classifier 

‘confidence’ level successfully, prioritising the correct colour or camera over another. 

With FCCF however, colours which have FCCF rules will naturally be a ‘better fit’ to 

the classifier, generating a greater confidence level. The results of the proposed system 

including FCCF processing are 89.27% for the training data set and 89.57% for the test 

data set.   

Further study into this issue may include a more selective approach to FCCF, or at the 

very least weighting classifier priority if the FCCF process has changed the colour 

significantly. 

 

 





 

 
 
Chapter 7 

7. Conclusions 

The Multiple Image Dynamic Exposure Colour Classification (MIDECC) System was 

developed in an effort to provide reliable colour classification for a scene with extreme 

variations in lighting conditions. 

Development of different sub-systems which pre-process multiple camera images 

(Section 4.3), remove background samples (Section 4.6) and score unique colour space 

models (Section 4.5.2) result in a robust system which requires minimal user training 

parameters. The MIDECC System is quick to train, with the majority of time spent 

averaging samples or waiting for external camera inputs to stabilise.  

Drawing on previous research into a unique classifier [19] and normalised red/green 

chromaticity [1], a novel complementary cyan/magenta chromaticity is proposed which 

further assists the system by providing a greater separation between individual 

classifiers, grouping certain colours together while separating others. 

The MIDECC System does not require retraining for a data set that includes background 

samples, as the background removal process largely deals with the eradication of false 

positives, while keeping the true positive rate the same as without background input. 

When different input images match dissimilar classifiers, a simple normal density 

function is assessed in the preferred classifiers’ colour space. This provides a relatively 

quick and reliable way of prioritising matches, resulting in a single classifier output. 

The results of experiments herald a 92.46% true positive rate, while minimising false 

positives to 4.25%.  The system has been observed to reliably classify colours in 

illumination ranging from 210 lux to 1,097 lux in the same frame.  

The lower illumination limit of 210 lux is equivalent to two standard fluorescent tubes 

at a height of 3 meters illuminating a room totally occluded from sunlight, while the 

upper limit of 1,097 lux is comparable 14 standard fluorescent tubes and 4 halogen 

spotlights illuminating the room at the same height. 



 116

7.1 Suggestions for Future Work 

 

There are four areas that have been identified for further work: 

 

1. Implementation of a weighted FCCF system, allowing the MIDECC normal 

density function to correctly prioritise FCCF adjusted colours. 

Currently, the system incorrectly gives priority to any colour adjusted by FCCF 

as the normal density function returns a high value. It is expected that this would 

improve the overall true positive classification rate of the MIDECC System, 

expanding the illumination classification range. 

 

2. Implementation of a ‘worst case’ classifier matching process, where the pie 

slices of likely classifiers are expanded to match a coloured pixel. 

This would enable the matching of the outliers in extremely bright or dim 

illuminated regions, working together with the background removal system to 

reduce additional false positive matches. 

 

3. Conversion of final values into a lookup table, resulting in faster classification 

times. 

Although the lookup table would be large, the MIDECC system could be 

developed to run real time without complex calculations. At this stage, the 

experimental implementation of the MIDECC system takes approximately 5 

seconds per frame as statistics are recalculated often. 

 

4. Manual reference inputs such as the colour selection may be automated. 

Provided known-areas are marked out for the system, all matches for a particular 

area may be plotted to a colour space, before selecting a group or cluster for the 

colour exposure selection reference. 
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Appendix A: Experiment Implementation 

The MIDECC System was implemented in C++ in the Qt IDE, allowing rich GUI 

functionality. Additional libraries were also used, listed below. 

Software Version Use in MIDECC System 

Qt IDE 
www.qt.io 

 

5.2.1 
GCC 4.8.2 

64-bit 

• C++ Framework  
• User Interface & Window 

Management 
• File I/O 
• Multithreading 
• Painting output graphics 

OpenCV 
www.opencv.org 

3.0 • Camera Image Input 
• Homography Processing 
• Image Pre-processing 

QCustomPlot 
www.qcustomplot.com 

1.3.1 • Colour space graphics & plot 
display 

Video4Linux 
linuxtv.org 

2.0 • Camera command 

 

 
This program facilitates the image pre-processing by manually selected homographic 

points, scales image based on the real-life measurements entered, then automatically 

aligns each camera. The exposure selection process is run using the defined colours and 

areas, before allowing lighting scenarios to be saved to file. 
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Camera C, shown above, ready for alignment. The homographic points, generated by 

clicking on the live image, are shown as a red dotted rectangle. 

 

 
 

The next program loads the PNG image files and known-areas, plotting data to the two 

colour spaces. Testing then prioritises one over the other, before saving the classifier to 

file. As mentioned in Section 4.5, 24 classifiers are saved in total. 
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This final program loads each classifier from file, along with a particular lighting 

scenario. Outputs such as confusion matrices, true positives and false positives are 

generated here for each scene, saved directly to CSV file for further analysis. 

 

Appendix B: Visual MIDDEC System Results 

The pages following list all of the results for the MIDECC system, showing inputs and 

outputs for corresponding lighting scenarios. 
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Scenario Background Data Set TP FP 

Even Bright Known-Areas Only Training 99.38% 0.47% 

 

 

 

 
 

 

Scenario Background Data Set TP FP 

Even Dim Known-Areas Only Training 99.53% 0.34% 
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Scenario Background Data Set TP FP 

Even Medium Known-Areas Only Training 98.61% 1.39% 

 

 

 

 
 

 

Scenario Background Data Set TP FP 

Harsh Moderate 1 Known-Areas Only Training 90.83% 1.13% 
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Scenario Background Data Set TP FP 

Harsh Moderate 2 Known-Areas Only Training 88.05% 3.04% 

 

 

 

 
 

 

Scenario Background Data Set TP FP 

Harsh Severe 1 Known-Areas Only Training 83.50% 2.86% 
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Scenario Background Data Set TP FP 

Harsh Severe 2 Known-Areas Only Training 79.20% 7.32% 

 

 

 

 
 

 

Scenario Background Data Set TP FP 

Harsh Slight 1 Known-Areas Only Training 88.57% 3.15% 

 

 

 

 



 126

 

Scenario Background Data Set TP FP 

Harsh Slight 2 Known-Areas Only Training 84.45% 3.42% 

 

 

 

 
 

 

Scenario Background Data Set TP FP 

Uneven Moderate 1 Known-Areas Only Training 98.41% 1.39% 
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Scenario Background Data Set TP FP 

Uneven Moderate 2 Known-Areas Only Training 98.19% 0.88% 

 

 

 

 
 

 

Scenario Background Data Set TP FP 

Uneven Severe 1 Known-Areas Only Training 98.02% 1.49% 
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Scenario Background Data Set TP FP 

Uneven Severe 2 Known-Areas Only Training 88.91% 2.96% 

 

 

 

 
 

 

Scenario Background Data Set TP FP 

Uneven Slight Known-Areas Only Training 98.61% 1.29% 
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Scenario Background Data Set TP FP 

Even Bright Known-Areas Only Test 99.38% 0.55% 

 

 

 

 
 

 

Scenario Background Data Set TP FP 

Even Dim Known-Areas Only Test 99.51% 0.33% 
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Scenario Background Data Set TP FP 

Even Medium Known-Areas Only Test 98.56% 1.43% 

 

 

 

 
 

 

Scenario Background Data Set TP FP 

Harsh Moderate 1 Known-Areas Only Test 89.98% 1.86% 
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Scenario Background Data Set TP FP 

Harsh Moderate 2 Known-Areas Only Test 85.73% 3.01% 

 

 

 

 
 

 

Scenario Background Data Set TP FP 

Harsh Severe 1 Known-Areas Only Test 83.57% 3.03% 
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Scenario Background Data Set TP FP 

Harsh Severe 2 Known-Areas Only Test 83.42% 4.42% 

 

 

 

 
 

 

Scenario Background Data Set TP FP 

Harsh Slight 1 Known-Areas Only Test 89.32% 3.07% 
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Scenario Background Data Set TP FP 

Harsh Slight 2 Known-Areas Only Test 83.42% 4.04% 

 

 

 

 
 

 

Scenario Background Data Set TP FP 

Uneven Moderate 1 Known-Areas Only Test 98.45% 1.37% 
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Scenario Background Data Set TP FP 

Uneven Moderate 2 Known-Areas Only Test 98.34% 0.81% 

 

 

 

 
 

 

Scenario Background Data Set TP FP 

Uneven Severe 1 Known-Areas Only Test 97.92% 1.67% 
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Scenario Background Data Set TP FP 

Uneven Severe 2 Known-Areas Only Test 90.07% 1.61% 

 

 

 

 
 

 

Scenario Background Data Set TP FP 

Uneven Slight Known-Areas Only Test 98.48% 1.51% 
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Scenario Background Data Set TP FP 

Even Bright Background Included Training 99.38% 3.53% 

 

 

 

 
 

 

Scenario Background Data Set TP FP 

Even Dim Background Included Training 99.53% 0.74% 
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Scenario Background Data Set TP FP 

Even Medium Background Included Training 98.61% 2.19% 

 

 

 

 
 

 

Scenario Background Data Set TP FP 

Harsh Moderate 1 Background Included Training 90.83% 3.26% 
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Scenario Background Data Set TP FP 

Harsh Moderate 2 Background Included Training 88.05% 6.45% 

 

 

 

 
 

 

Scenario Background Data Set TP FP 

Harsh Severe 1 Background Included Training 83.50% 5.05% 
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Scenario Background Data Set TP FP 

Harsh Severe 2 Background Included Training 79.20% 10.51% 

 

 

 

 
 

 

Scenario Background Data Set TP FP 

Harsh Slight 1 Background Included Training 88.57% 6.55% 
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Scenario Background Data Set TP FP 

Harsh Slight 2 Background Included Training 84.45% 11.03% 

 

 

 

 
 

 

Scenario Background Data Set TP FP 

Uneven Moderate 1 Background Included Training 98.41% 2.33% 
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Scenario Background Data Set TP FP 

Uneven Moderate 2 Background Included Training 98.19% 2.36% 

 

 

 

 
 

 

Scenario Background Data Set TP FP 

Uneven Severe 1 Background Included Training 98.02% 1.93% 
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Scenario Background Data Set TP FP 

Uneven Severe 2 Background Included Training 88.91% 3.14% 

 

 

 

 
 

 

Scenario Background Data Set TP FP 

Uneven Slight Background Included Training 98.61% 2.35% 
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Scenario Background Data Set TP FP 

Even Bright Background Included Test 99.38% 3.66% 

 

 

 

 
 

 

Scenario Background Data Set TP FP 

Even Dim Background Included Test 99.51% 0.72% 
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Scenario Background Data Set TP FP 

Even Medium Background Included Test 98.56% 2.47% 

 

 

 

 
 

 

Scenario Background Data Set TP FP 

Harsh Moderate 1 Background Included Test 89.98% 4.06% 
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Scenario Background Data Set TP FP 

Harsh Moderate 2 Background Included Test 85.73% 6.28% 

 

 

 

 
 

 

Scenario Background Data Set TP FP 

Harsh Severe 1 Background Included Test 83.57% 5.18% 
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Scenario Background Data Set TP FP 

Harsh Severe 2 Background Included Test 83.42% 7.73% 

 

 

 

 
 

 

Scenario Background Data Set TP FP 

Harsh Slight 1 Background Included Test 89.32% 7.01% 
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Scenario Background Data Set TP FP 

Harsh Slight 2 Background Included Test 83.42% 11.26% 

 

 

 

 
 

 

Scenario Background Data Set TP FP 

Uneven Moderate 1 Background Included Test 98.45% 2.04% 
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Scenario Background Data Set TP FP 

Uneven Moderate 2 Background Included Test 98.34% 2.34% 

 

 

 

 
 

 

Scenario Background Data Set TP FP 

Uneven Severe 1 Background Included Test 97.92% 1.94% 
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Scenario Background Data Set TP FP 

Uneven Severe 2 Background Included Test 90.07% 1.92% 

 

 

 

 
 

 

Scenario Background Data Set TP FP 

Uneven Slight Background Included Test 98.48% 2.85% 
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