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Abstract 

Modelling of volcanic ashfall has been attempted by volcanologists but very little 
work has been done by mathematicians. In this thesis we show that mathematical 
models can accurately describe the distribution of particulate materials that fall to 
the ground following an eruption. We also report on the development and analysis 
of mathematical models to calculate the ash concentration in the atmosphere during 
ashfall after eruptions. Some of these models have analytical solutions. 

The mathematical models reported on in this thesis not only describe the distribution 
of ash fall on the ground but are also able to take into account the effect of variation 
of wind direction with elevation. In order to model the complexity of the atmospheric 
flow, the atmosphere is divided into horizontal layers. Each layer moves steadily and 
parallel to the ground: the wind velocity components, particle settling speed and dis­
persion coefficients are assumed constant within each layer but may differ from layer 
to layer. This allows for elevation-dependent wind and turbulence profiles, as well as 
changing particle settling speeds, the last allowing the effects of the agglomeration of 
particles to be taken into account . 
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Notation 

c particle mass concentration in the atmosphere [kg m-3] 
Cs drag constant 
Dc cross-wind dispersion [m2 S-l] 
Dd downwind dispersion [m2 S-l] 
Dh horizontal dispersion in x - y plane [m2 S-l] 
Dv vertical dispersion [m2 S-l] 
Dx horizontal dispersion in x direction [m2 S-l] 
Dy horizontal dispersion in y direction [m2 S-l] 
Dz vertical dispersion [m2 S-l] 
9 gravity [m S-2] 
H z-coordinate of the release point [m] 
L turbulence length scale [m] 
M source mass rate [kg m-3 S-l] 
Q mass release [kg] 
q rate of mass release [kg S-l] 
R particle radius [m] 
Re Reynolds number 
S settling speed [m S-l] 
U mean horizontal wind speed in x direction [m S-l] 
V mean horizontal wind speed in y direction [m S-l] 
t time [s] 
Xo x-coordinate of the release point [m] 
x x-coordinate [m] 
Yo y-coordinate of the release point [m] 
y y-coordinate [m] 
z z-coordinate [m] 
Zj interface height [m] 
Ma dynamic viscosity of the air [kg m-I S-l] 
Va kinematic viscosity of the air [m2 S-l] 
Pa mass density of the air [kg m-3] 
Pr mass density of the particles [kg m-3] 
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