Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

MODELLING OF VOLCANIC ASHFALL

A thesis presented in partial fulfilment of the

requirements for the degree of

Doctor of Philosophy

in

Mathematics

 \mathbf{at}

Massey University, Albany

New Zealand

Leng Leng Lim

2006

Abstract

Modelling of volcanic ashfall has been attempted by volcanologists but very little work has been done by mathematicians. In this thesis we show that mathematical models can accurately describe the distribution of particulate materials that fall to the ground following an eruption. We also report on the development and analysis of mathematical models to calculate the ash concentration in the atmosphere during ashfall after eruptions. Some of these models have analytical solutions.

The mathematical models reported on in this thesis not only describe the distribution of ashfall on the ground but are also able to take into account the effect of variation of wind direction with elevation. In order to model the complexity of the atmospheric flow, the atmosphere is divided into horizontal layers. Each layer moves steadily and parallel to the ground: the wind velocity components, particle settling speed and dispersion coefficients are assumed constant within each layer but may differ from layer to layer. This allows for elevation-dependent wind and turbulence profiles, as well as changing particle settling speeds, the last allowing the effects of the agglomeration of particles to be taken into account.

Acknowledgments

I would like to express my appreciation to my two supervisors, Prof. Robert McKibbin and Dr Winston L. Sweatman of the Institute of Information and Mathematical Sciences at Massey University, for giving me the opportunity to engage in this PhD study. I thank them for their teaching, patience, encouragement and the motivation given to me throughout the time of my study. In addition, I would like to thank Prof. Robert McKibbin for giving me the opportunity to attend conferences during this period. This has helped to build my confidence.

Next I would like to thank Massey University for giving me a three year PhD scholarship to fulfil my dream.

I would also like to express my special thanks to Dr Shehenaz Adam from the University of Alaska, Dr Mark Harmer from Massey University and Dr Mark Nelson from the University of Wollongong for patiently proofreading this thesis.

I would like to thank Mr Samir Bishay and Mr Stephen Ford, staff members of the Institute of Information and Mathematical Sciences at Massey University, for computer support during the time of my PhD study.

I would like to thank Prof. Chuck Connor of the Department of Geology at the University of South Florida for providing eruption data and contributing his ideas about volcanic modelling.

Last but not least I thank my family who are awaiting in Singapore for the completion of my PhD study and all my friends for constantly giving me moral support. Most importantly, I thank you God for keeping me safe, healthy and for the company throughout these three years in New Zealand.

Contents

Abstract i						
Acknowledgments i						
No	Notation					
1	INT	RODUCTION	1			
	1.1	Volcanic activity in New Zealand	1			
	1.2	General Review	2			
		1.2.1 Physical nature of volcanoes	2			
		1.2.2 Eruption styles	2			
		1.2.3 Ashfall	3			
		1.2.4 Why model volcanic ashfall?	3			
	1.3	Why mathematical models?	4			
	1.4	Some Existing Models	5			
	1.5	Purpose	7			
	1.6	Problem	8			
	1.7	Overview of the Thesis	10			
2	UN	FORM ATMOSPHERE MODELS	12			
	2.1	Modelling	13			
	2.2	Why Advection-Dispersion Equation?	13			
		2.2.1 Advection due to the wind	15			
		2.2.2 Dispersion	15			
		2.2.3 Settling speed	16			
		2.2.4 Advection-dispersion model	19			
	2.3	Case A: Instantaneous Release in Whole Space	20			
		2.3.1 One-dimensional model	20			
		2.3.2 Two-dimensional model	21			
		2.3.3 Three-dimensional model	22			
	2.4	Case B: Instantaneous Release in Half Space	23			
		2.4.1 One-dimensional model	24			
		2.4.2 Two-dimensional model	25			
		2.4.3 Three-dimensional model	26			
	2.5	Case C: Continuous Release in Whole Space	27			

		2.5.1 One-dimensional model	28
		2.5.2 Two-dimensional model	29
		2.5.3 Three-dimensional model	29
	2.6	Case D: Continuous Release in Half Space	30
		2.6.1 One-dimensional model	31
	2.7	Summary	32
3	LAY	YERED ATMOSPHERE MODELS	33
	3.1	Modelling	33
	3.2	Advection-Dispersion Equation	34
		3.2.1 A point source instantaneous release	34
		3.2.2 A point source continuous release in steady state	36
	3.3	Instantaneous Release	36
		3.3.1 The one-dimensional model	36
		3.3.2 Two-dimensional model	37
		3.3.3 Three-dimensional model	40
	3.4	A Continuous Release in Steady State	48
		3.4.1 One-dimensional model	48
		3.4.2 Two-dimensional model	52
		3.4.3 Three-dimensional model	57
	3.5	Summary	62
4	AN	ALYSIS OF DEPOSITS	63
	4.1	Thickness of the Deposit	63
	4.2	Centre of the Deposit	64
	4.3	Deposition from an Instantaneous Point Source Release in a Uniform	C A
		Whole Space \dots	$\begin{array}{c} 64 \\ 65 \end{array}$
		4.3.1 The case $D_z \neq 0$	66
	4.4	4.3.2 The case $D_z = 0$	00
	1.1	Half-Space	67
		4.4.1 The case $D_z \neq 0$	67
		4.4.2 The case $D_z = 0$	69
	4.5	Deposition from Two Point Sources with Instantaneous Release in a	00
		Half-Space and $D_z = 0$	69
		4.5.1 Experiment 1 - different release heights	70
		4.5.2 Experiment 2 - larger dispersion	72
		4.5.3 Experiment 3 - change in wind speeds	74
		4.5.4 Experiment 4 - different settling speeds	74
		4.5.5 Experiment 5 - different settling speeds with change in wind	
		speed and direction	77
	4.6	Deposit for Sources of Different Shapes in a uniform atmosphere with	
		$D_z = 0$	77
		4.6.1 Release from a horizontal line	79
		4.6.2 Release from a vertical line	81

		4.6.3 Release from a rectangle	,		
		4.6.4 Release from a circle	,		
	4.7	Summary)		
5		NALYSIS OF PARAMETERS 89			
	5.1	Analyses			
		5.1.1 Uniform atmosphere			
		5.1.2 Two-layered atmosphere			
		5.1.3 $x_{max \ ratio}$ versus $S_r U_r$ for $Z_r = 0, \ 0.25, \ 0.5, \ 0.75$ and $1 \dots 95$			
		5.1.4 $f_{max \ ratio}$ versus $L_r S_r U_r$ for $Z_r = 0, 0.25, 0.5, 0.75$ and 1 96)		
		5.1.5 σ_{ratio} versus $L_r S_r U_r$ for $Z_r = 0, 0.25, 0.5, 0.75$ and 1 97	,		
		5.1.6 $x_{max \ ratio}$ versus Z_r for $S_r U_r = 0.5$, 1 and 1.5 $\ldots \ldots \ldots 98$	ì		
		5.1.7 $f_{max \ ratio}$ versus Z_r for $L_r S_r U_r = 0.5, 1$ and 1.5 $\ldots \ldots 99$)		
		5.1.8 σ_{ratio} versus Z_r for $L_r S_r U_r = 0.5$, 1 and 1.5 100)		
		5.1.9 Deposition versus standard deviation			
	5.2	Summary			
6	PAI	AMETER ESTIMATION 103	;		
	6.1	Introduction $\ldots \ldots 103$;		
	6.2	Analogy	i		
		$6.2.1 \text{Uniform whole space model} \dots \dots \dots \dots \dots \dots 104$:		
		$6.2.2 \text{Uniform half space model} \dots \dots \dots \dots \dots \dots 108$	\$		
		6.2.3 Simplification 1	1		
		6.2.4 Simplification 2			
	6.3	Discussion			
7		CUSSION AND CONCLUSIONS 113			
	7.1	Summary	•		
	7.2	Analyses	:		
	7.3	Conclusions			
	7.4	Consideration for Publication as Papers)		
	7.5	Future Work	j.		
B	IBLI	GRAPHY 117	•		
A	PPE	IDICES 122	;		
Α	SO	E WORKINGS 122	;		
	A.1	Concentration for Instantaneous Release in Uniform Whole Space \therefore 123	j		
		A.1.1 Three-dimensional model (Section 2.3.3) $\ldots \ldots \ldots \ldots \ldots \ldots 123$,		
	A.2	Concentration for Instantaneous Release in Uniform Half-Space \ldots 125)		
		A.2.1 One-dimensional model (Section 2.4.1) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 125$)		
		A.2.2 Two- and three-dimensional models (Section 2.4.2 and 2.4.3) . 130)		
		A.2.3 Verification of the three-dimensional model	;		
	A.3	Steady State Concentration for a Constant Release in a Uniform Whole			
		Space	:		

	A.3.1 Two-dimensional model (Section 2.5.2)	134
	A.3.2 Three-dimensional model (Section 2.5.3)	138
A.4	The Deposit for Instantaneous Release in a Three-dimensional Uniform	
	Whole Space with $D_z \neq 0$ (Section 2.3.3)	141
A.5	The Deposit for Instantaneous Release in a Three-dimensional Uniform	
	Half-Space with $D_z = 0$ (Section 4.4.2)	142
A.6	Total Mass Deposit for Instantaneous Release in a Three-dimensional	
	Uniform Whole and Half Spaces	144
	A.6.1 Whole space with $D_z \neq 0$	144
	A.6.2 Whole space with $D_z = 0$	145
	A.6.3 Half space with $D_z \neq 0$	146
A.7	Moment Equations	150
	A.7.1 Uniform whole space (Section 6.2.1)	150
	A.7.2 Uniform half space (Section 6.2.2)	151

Notation

С	particle mass concentration in the atmosphere	$[\mathrm{kg} \mathrm{m}^{-3}]$
C_s	drag constant	
D_c	cross-wind dispersion	$[m^2 s^{-1}]$
D_d	downwind dispersion	$[m^2 s^{-1}]$
D_h	horizontal dispersion in $x - y$ plane	$[m^2 s^{-1}]$
D_v	vertical dispersion	$[m^2 s^{-1}]$
D_x	horizontal dispersion in x direction	$[m^2 s^{-1}]$
D_{y}	horizontal dispersion in y direction	$[m^2 s^{-1}]$
D_z	vertical dispersion	$[m^2 s^{-1}]$
g	gravity	$[m s^{-2}]$
-	z-coordinate of the release point	[m]
L	turbulence length scale	[m]
M	source mass rate	$[kg m^{-3} s^{-1}]$
Q	mass release	[kg]
q	rate of mass release	$[\text{kg s}^{-1}]$
R	particle radius	[m]
Re	Reynolds number	
S	settling speed	$[m \ s^{-1}]$
U	mean horizontal wind speed in x direction	$[m \ s^{-1}]$
V	mean horizontal wind speed in y direction	$[m \ s^{-1}]$
t	time	[s]
X_0	x-coordinate of the release point	[m]
x	x-coordinate	[m]
Y_0	y-coordinate of the release point	[m]
y	y-coordinate	[m]
z	z-coordinate	[m]
Z_j	interface height	[m]
μ_a	dynamic viscosity of the air	$[kg m^{-1} s^{-1}]$
$ u_a$	kinematic viscosity of the air	$[m^2 s^{-1}]$
$ ho_a$	mass density of the air	$[kg m^{-3}]$
ρ_r	mass density of the particles	$[\mathrm{kg} \mathrm{m}^{-3}]$