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Abstract 
A computer-based process information system was developed to gather 

operational information about the headrig handsaw at the Timber Technology 

Centre (TiTC) sawmill in the Waiariki Institute of Technology, store the data in a 

database, and display the information in various forms to the user. 

The project was the first part of an encompassing programme to instrument an 

entire commercial sawmill. This research programme aims to determine which 

variables are crucial to quantifying the sawing processes and to investigate the 

best techniques for measuring the variables. 

The system developed was extremely modular. Both analysis modules and 

sensor hardware can be added or removed without any need for restarting the 

system. A client-server architecture using networking communications was used 

to facilitate this. A central server gathers and stores the data, and individual 

clients analyse the data and display the information to the user. This enables 

analysis modules to be added and removed without even restarting the system. 

An experiment to determine the effect of wood density on the variables measured 

was used to test the viability of the completed system. The system successfully 

gathered all of the information required for the experiment and performed 70% 

of the data collation and analysis automatically. The remainder was performed 

using spreadsheets as this was deemed to be the most suitable method. 

The loosely coupled design of the system allows it to be up-scaled to a mill-wide 

program easily. Experiments performed to gather information about pivotal 

process variables are currently being planned, and should be underway as the 

expansion into other machine stations is being designed. 
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Peter Bayne, Don Bailey, John Roper Introduction 

1.1 Application of Technology to Sawmilling 

The popular opinion among many in the forestry sector is that solid wood 

processing is a low technology industry. It is thought that it is simply a matter of 

cutting logs into pieces of suitable dimension, and then selling them. The focus 

is mainly on how many cubic metres of product can be produced in a given day, 

and what the raw material cost is, in order to increase the margins. This has lead 

to a commodity market for timber, where it is sold largely by volume. 

The result is a low margin industry with a belief that investment in new 

technology, which claims to improve the quality of their process, is not feasible. 

This belief has been perpetuated through the use of machinery that is decades old 

in many of New Zealand's sawmills, some of which have shown sustained 

successful operation. Many prefer the older machines and techniques because 

they can understand them, and know what to do when they fail in any way. An 

example of this is the overseas research into thinner sawblades, which can reduce 

the amount of fibre lost to sawdust. Commercial trials of this technology in New 

Zealand have had mixed results because of the level of control of the process 

required to use it. Thinner blades need more precise maintenance and have a 

tighter envelope of operation to be successful (Beauregard, 1995). Figures on the 

sensitivity of the technology to varying New Zealand practices would help 

sawmillers to make the decision whether to use it. 

Higgs (Higgs, 1989) stated in a keynote address "There are three basic barriers 

to the adoption of today's saw technology: fear of the cost. fear of the cost, and 

fear of the cost. Horror stories abound regarding: 

I. Initial costs in adopting new technology 

2. Costs in operating and maintaining a 'sensitive' technology 

3. The cost to egos and careers, 'bruised' by saw program failures 

What often goes unheralded, however, are the profits a successful sawmill can 

gamer through technological adaptation. Competition tends to hush success." 

The fact that there is any investment at all in modem technology shows that at 

least some of the industry would like to make higher value products, but many 

have expressed views that upgrading is too hard. Edlin (Edlin, 1994) stated that 

2 



Peter Bayne, Don Bailey, John Roper Introduction 

"The big constraint is the old problem of capital investment, and shifting 

production towards rrwre refined products with less product volatility". Some of 

the complaints directed at new technology are that the new machines and 

techniques are too fussy and include a range of hidden costs. This seems to be 

due to the high level of refinement of these technologies in order to produce high 

quality products overseas, but which have to be altered to perform in New 

Zealand. An example of this is the typical North American log handling 

apparatus installed in New Zealand. The typical New Zealand Pinus Radiata log 

is both bigger in diameter and denser than the typical North American hardwood 

log that most of these systems are designed for. When installed in New Zealand 

without modification they have been known to either break within weeks of 

installation due to the excess loading or are unable to hold the logs in the correct 

position throughout processing (Labeda, 1993). The high cost of altering an off

the-shelf product so that it still performs as well in NZ as in the country of origin 

can be prohibitive, and unexpected. This is also reflected in the comments that 

new machines take too long to commission and do not gain as much as promised 

when complete. 

In order to evaluate the suitability of technology to the operating environment of 

the New Zealand solid wood processing industry, and to determine the relative 

costs and benefits of implementing of the technology, it is necessary to consider 

internationally standard techniques or procedures by which the effectiveness of 

the technology may be determined. Technology is defined here as techniques or 

machinery applied directly to a given process with a view to improving the 

effectiveness or efficiency of the process. 

1.2 Traditional evaluation techniques 

The traditional method of evaluating a manufacturing plant is to break down the 

plant into discrete elements that each perform a conceptually simple task. The 

value added to the product as it moves through the plant is summed to produce 

the total value added in the plant. This concept is known as the "Value Chain" 

(Tzafestas, 1997). Therefore, to evaluate the manufacturing process's 

performance the process is similarly broken up into discrete elements and 

evaluated piece by piece. 
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Tzafestas later states that these elements need to be examined from different 

points of view, so that the total impact can be realised. Three views are 

suggested: 

1. User View. The impact that the technology has on the operator or user. Such 

things as ease-of-use, speed, and effectiveness of the operator due to the 

technology are taken into account. 

2. Technology View. The impact of the interconnections of the elements in the 

plant. Things such as throughput that affects bottlenecks, compatibility with 

neighbours, and plant logistics are considered. 

3. Enterprise View. The cost of the machinery and maintenance and the 

changeover cost, as well as the overall value to the company as a business is 

part of this view. 

Often it seems that one or two of these points are considered and well catered for 

when budgeting for a change in a plant, but very rarely are all three. 

Currie (Currie, 1994) offers some techniques for measuring some of these 

factors, such as Payback Period and ABC1
, but points out that in order to 

embrace advanced manufacturing technologies organisational changes are 

required. Regular performance measures are stressed and some trusted 

management techniques are suggested, such as JIT2
, TQM3

, and TPM4
. Currie 

points out that if this is to be successful, then it needs to be part of a long-term 

(longer than 3 years) plan. However, in some large New Zealand forestry 

companies it is indicated that a payback period of less than 9 months is required 

on any new technology investments. 

Regular measurement of processes and taking action on the information gathered 

seems to be the cornerstone of improving manufacturing processes. This seems 

1 Activity Based Costing 

2 Just in Time 

3 Total Quality Management 

4 Total Productivity Management 
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to be something that is taken for granted by manufacturing industries but is found 

lacking in the solid-wood processing industry. In the development of the 

syllabus of a Joint European Project education programme for computer 

integrated manufacturing the topic of process control was considered too basic 

for inclusion. 

"Comparatively low attention is given to such problems as control theory and 

automation, although these subjects form an indispensable part of the education 

process. This is due to the fact that these topics are covered by separate 

publications and are traditional from a certain point of view." (Adelsberger et al, 

1995) 

The New Zealand solid-wood processing industry needs to identify the factors 

that are crucial to its industry and the build a comprehensive process control 

programme around them before it can consider becoming a world-class 

manufacturing and processing industry. 

1.3 Factors determining performance 

Many factors contribute to the successful performance of a sawmill. In New 

Zealand the log resource has a large impact on a sawmill's performance. ln 

every situation, each log is different from the next, and requires different 

processing in order to produce the optimum yield of lumber. However, 

"Optimising the value of products from logs and lumber requires accurate 

information about the types and locations of defects ... " (Tian et al, 1997). This 

has lead to a booming industry producing log scanners utilising more and more 

innovative techniques. For instance the Lasar™ log imaging system developed 

by Perceptron, Vancouver, Canada, which uses a modified conventional laser log 

scanner and records time-of-flight data rather than triangulating the reflection 

with a CCD camera. This gives a unique three-dimensional map of the log from 

a single point of view in one single 'snapshot'. Many of these products have 

been produced for northern hemisphere hardwood species, and are therefore not 

always suitable for New Zealand radiata pine due to differing feature 

characteristics. 
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There is also a factor of uncontrolled use of the machines, even when they are 

suitable for the job. Libeda (Labeda, 1993) states " ... sawmills invest huge 

amounts of money ... and then they do not control the effect of their function". 

Once scanned and a solution generated, the process must be monitored in order 

to determine the level of deviation from the ideal solution. 

One of the most common factors used in today's mills to evaluate performance 

on an individual and aggregate machine basis is sawing variation, and ultimately 

saw stability. A survey of New Zealand mills in 1986 (Doyle, 1986) showed that 

the average standard deviation in lumber size was 1.318mm and was allowed for 

by over-cutting the final dimensions by 2.79mm. A general rule of thumb used 

in the forestry industry is that reducing the over-cut by 1 mm will produce 

another l % of annual turnover in revenue. Consequently, there is a lot of 

research in reducing sawing variation. 

The Operating Envelope (Beauregard, l 995;Lunstrum, 1985) has been used in 

New Zealand as a guide to keep saw machines within limits as dictated by 

allowable sawing variation. 
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Figure 1-1: Operating Envelope 

70% of the tooth gullet filled with sawdust upon exiting the cut has been 

determined to be the maximum allowable limit before excessive sawing variation 

occurs, as illustrated by Lunstrum (1985, page 4). The Maximum and minimum 

feed speeds for a workpiece are calculated from the bite per tooth that the saw 

design can handle, and the 70% gullet filling line is calculated from the depth of 
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the cut and the feed speed. This produces a closed envelope as shown in Figure 

1-1, where the best operating position is next to the curved 70% line and just 

inside the envelope. 

Analysis of vibrations in sawblades have been researched in Canada for some 

time and have shown that " ... because of a combination of some avoidable and 

some unavoidable circumstances real handsaws always vibrate even during 

idling conditions" (Hutton, 1997). There has been research to try to understand 

and perhaps remedy some of these circumstances using theoretical physics, 

especially on circular saws, such as Sindre Holpyen's work at the Norsk 

Tretensik Institutt in Norway (Hol!ZSyen, 1983), and has had limited success in 

translating into today's sawmills. Other researchers have attempted to remove 

vibrations using innovative damping techniques, irrespective of the causes of the 

vibrations. A fairly successful example is the work performed by Tan, Huang, 

and Fan at Wayne State University, Michigan. He states "The on-line control is 

performed through a DSP (Digital Signal Processor) board and control 

actuation is provided by non-contact electromagnetic forces" (Tan et al, 1997). 

Vibrations in the affected saw are reported to be "significantly reduced". 

One of the most common methods that is used to keep a saw stable is a guide. 

Usually, a guide is a lubricated, composite rubber block placed on either side of 

the non-cutting surface of the saw. Gary Schajer stated that in 1985 "About half 

of the rotary gang-saw machines currently in use have guided sawblades" 

(Schajer, 1986). However, it has been noted that guides in handsaws are not 

designed to eliminate some non-vibrational instability. Taylor (Taylor et al, 

1997a) states "Laboratory and sawmill cutting experiments have shown that 

handsaws tend to cut off-line, i.e., the mean sawblade displacement during the 

cut is biased toward one side." Taylor is currently investigating methods of 

reducing this effect. 

The preparation in the sawshop is just as crucial as setting the guides up 

correctly. Chabrier (Chabrier et al, 1999) gives a good overview of the different 

aspects of saw doctoring listing some of the attributes that should be measured 

and benchmarked before a saw is released into service. Some of the factors 

mentioned include critical speeds, blade tension, and temperature effects, and the 

interaction of the three. The differences between static measurements on the saw 
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bench and dynamic measurements when the blade 1s spinning are also 

highlighted as important. 

The surface finish and the visual grading of the product are areas that have been 

largely subjective. Features such as roughness and knottiness have only recently 

been able to be measured in an objective way. At the Institut fiir 

Werkzeugmaschinen und Fertigungstechnik in Braunschweig, Germany, " ... a 

new method is being designed and tested which can separately evaluate 

topographic characteristics originating in the wood anatomy and in the 

machining process by means of image processing" (Westkamper et al, 1995). 

They suggest that the quality measure in this respect is a signal to noise ratio of 

the visual and tactile effect of the natural wood characteristics versus the 

machining marks. 

With the advent of the Resource Management Act, the noise produced as a side 

effect of the process can be considered a performance criterion. Rhemrev 

(Rhemev et al, 1997) shows how noise levels can be monitored objectively and 

how saws may be redesigned to reduce the noise level without reducing 

throughput. Conjecture within the industry is that low noise saws also produce 

less sawing variation due to the reduction of single frequency vibration in the 

saw, but this has yet to be tested. 

Productivity and the economic bottom line seem to be the major driving factors 

in determining performance. However, Hol!,1yen (Hol!,1yen et al , 1991) states that 

sawmill productivity, as opposed to production, is not measured effectively if 

only described in subjective terms. He suggests an objective scheme of on-line 

productivity measurement to remedy this. Ultimately, a sawmill is part of a 

business; in order to evaluate any advance in sawmilling practices, the monetary 

effect on the business of any change must always be taken into account. 

1.4 Outline of Thesis 

There are several techniques in advanced manufacturing and processmg 

industries that could be applied in the New Zealand solid-wood processing 

industry to better evaluate new technology. While these techniques are standard 

in other industries, they are not being regularly applied within sawmills. Part of 

8 



Peter Bayne, Don Bailey, John Roper Introduction 

the problem here is that many of these techniques require regular measurement of 

pivotal process variables in the form of data, and this data is not readily available 

in most mills. Many process variables and the techniques required to measure 

them are available, but it is unclear which variables are pivotal to the sawmilling 

process and exactly what their interactions are. The research programme that 

encompasses this thesis is focussed on identifying and ranking these factors and 

their interactions as a first step towards world-class status. To achieve this, we 

need to have available a fully instrumented sawmill that is capable of providing 

the required data. 

Chapter 2 describes the requirements of such a facility. While fully 

instrumenting a sawmill is beyond the scope of this project, this chapter goes on 

to describe the requirements in instrumenting a single machine station, the 

headrig handsaw. The instrumentation set up as part of this thesis is described in 

chapter 3. The design of the software that captures the information, and makes it 

available to both the user and the technologist is described in chapter 4. 

One of the significant problems identified in current sawmills is sawmg 

variation. Chapter 5 describes an experiment whereby the initial system is tested 

by gathering and analysing data relating the effect of log density on saw 

variation. Two key variables measured are blade deviation and bandwheel 

displacement. 

In order to evaluate the success of the project key performance criteria of the 

information system are measured. Chapter 6 details the results of these 

measurements, in particular the responsiveness of the system, and discusses the 

implications. 

The final conclusions are made in Chapter 7, which are then set back into the 

context of the greater research programme. The scalability of the single machine 

model to a mill-wide system through the use of a local network is discussed. 
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