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Abstract 
This project is concerned with the development and application of an interface for a 

fuzzy neural network (FuNN). The original program, for which the interface was 

written, is a tool to research the mapping of problem knowledge to initialize the 

weights of a FuNN. The interface concentrates on allowing the user to efficiently 

manipulate network settings and to be able to easily perform large numbers of 

experiments. After the interface was completed, the new integrated application was 

used to investigate the use of problem knowledge on FuNN training in specific image 

processing problems. 
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Chapter 1: Introduction 

Overview 

This thesis can effectively be broken down into two main sections: 

The primary aim of this research is to produce a functional graphical user interface for 

a fuzzy neural network (FuNN) application, for use by academics and students 

studying the use of neural networks. The original program was developed by 

Gunetileke (2001 ), and though fully functional contained only a basic, mostly 

command line interface. The user interface will conform as closely as possible to the 

client requirements. 

The secondary aim is to use the program to conduct experiments to determine the 

effect of using neural networks on two specific image-processing problems. The first 

problem will involve categorising various types of pollen. Textural and shape 

information, such as entropy, energy and area will be used to train the neural network, 

so it can identify each pollen type. The second problem will involve finding the best 

combination of inputs, into a neural network that will detect the iris edge from test 

images. Two or three significant inputs will be investigated to determine what effect 

they have on the final output. 

Contents by chapter 

Chapter 2 reports some of the relevant previous work in the field of FuNN' s. This 

includes components of image processing, neural networks and Boolean logic. 

Chapter 3 details the most important parts of the development of the interface for the 

SuperFuNN application program. It describes the life cycle development process, 

planning and analysis, requirements elicitation, design and design considerations. 
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In Chapter 4, the results of the interface development project are presented. This 

includes screen shots of the actual interface and descriptions of its features. It also 

includes information on user interface testing and function testing including an 

example unit and integration test. 

Chapter 5 describes the first of the two image processmg problems, iris edge 

detection. Although the iris edge detection problem has been looked at by previous 

researchers, this experiment looked at the effects of changing specific input variables 

to find the best combination for this problem. 

Chapter 6 describes the problem of pollen classification using image processing and 

fuzzy neural networks. It describes a series of experiments dealing with the problem, 

and their results. 

Chapter 7 looks at the usefulness of the interface, after having used it for real world 

problems. It also mentions ideas for future work to be done. 

In Appendix 1, the list of pollen types with their scientific name, picture and there 

corresponding codes used during testing are displayed. 

Appendix 2 contains Chapters One Two and Three of the user manual. Chapter one 

describes set-up and installation instruction, while Chapter Two is about 'Getting 

Started' with the SuperFuNN application. Chapter Three describes an actual example 

experiment. It also contains a list of common user mistakes and current application 

shortcomings. 

In Appendix 3, the program code for the interface is listed. It includes all functions 

that were developed specifically for the interface, as well as those existing functions 

(from the original application) that have been significantly altered. 
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Chapter 2: Background 

Introduction 

This chapter will explain some of the background knowledge used during the course 

of this project. Fuzzy Neural networks (FuNN's) combine the fields of image 

processing, fuzzy logic and artificial neural networks. 

Fuzzy Logic 

Many of the terms people use in their description of objects and situations are difficult 

to model using mathematical equations. Often imprecise terms such as large, small, 

close, far, tall and short are used as descriptors in real world situations. However, 

these are difficult to translate into a mathematical form that might be suitable for input 

into computer programs. Such terms can be called 'fuzzy' because they cannot be 

sharply defined (Nguyen, 1997). Mathematical modelling of fuzzy concepts, now 

known as fuzzy logic, was presented by Zadeh in 1965. His contention was that 

meaning in natural language is a matter of degree. If we have the proposition that 

'John is young', then it is not always possible to assert this is true or false. If John's 

age is x, then the compatibility of x with 'is young' is a matter of degree. This 

suggests that membership in a fuzzy subset should not be on a O or 1 (false or true) 

basis, but rather on a O to 1 scale. Figure 2.1 below shows how one might model the 

fuzzy concept of young, based on age (x), using the following model: 

Y(x)= 

I if x < 40 

80-x 
-- if 40s;x s;60 

40 
70-x 

20 
0 

if 60 < X s;7Q 

if 70< X 
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Figure 2.1 A fuzzy membership function for young. 

Example of a Rule 

Membership functions can be developed for both the antecedent (if~) and consequent 

(then ~) parts of a rule. Figure 2.2 shows the membership functions for the 

antecedent and consequent of the following rule: 

If a pollen is big then the likelihood it is a type 'A' is high. 

Problem knowledge for current image processing problem can be described similarly. 

Small Big Lo,v High 
1 

0. 0. 

o. 0. 

o. o. 

o. 0. 

0. 0. 

0. 0. 

0. 

0. 

O 0-5 1 0 0.5 1 

l\Iemberships fi}r antecedent l\Iembernhips frif consequent 

Figure 2.2 Membership function for an example rule 
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Artificial Neural Networks 

The human brain is an example of a biological neural network. It consists of an 

enormously complex system of neurons, synapses, axons and dendrites. Haykin 

(1994) describes a neural network as a massively parallel distributed processor that 

has a natural propensity for storing experiential knowledge and making it available for 

use. He notes that it resembles the brain in two respects: 

• Knowledge is acquired by the network through a learning process 

• Interneuron connection strengths known as synaptic weights are used to store 

the knowledge 

Generally speaking, an artificial neural network tries to replicate the biological neural 

network through the use of computers. An artificial neural network, like the human 

brain, can learn by experience. A 'learning' neural network makes an iterative process 

of adjustments to adapt to its environment. There are three basic classes of learning 

paradigm: supervised learning, reinforcement learning and self-organised 

(unsupervised) learning. Supervised learning is performed under the supervision of an 

external teacher. Reinforcement learning is learning of input-output mapping through 

a process of trail and error. In unsupervised learning, there is no external teacher to 

instruct synaptic weight changes in the network (Haykin, 1994). The results change as 

a result of the nature of the data present. The FuNN developed by Kasabov (1996) 

used the supervised type training algorithm, as did Gunetileke (2001) when he 

developed his FuNN application program. 

Usually the training weights of a neural network are initialised with small random 

numbers. Researchers have looked at using problem knowledge to help initialise a 

network. Proper initialisation is one of the prerequisites for fast convergence of a 

feed-forward network (Thimm et al., 1997). There are various ideas that have been 

proposed for the initialisation of neural networks. Siroki (1998) and Gunetileke 

(2001) studied a problem knowledge based weight initialisation scheme. Rules 

representing problem knowledge are generated in an 'if~ then~' form, and used to 
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initialise the input weights into a network. The rules are implemented using a fuzzy 

neural network architecture. 

Fuzzy Neural Networks 

A Fuzzy Neural network is an architecture that combines neural networks and fuzzy 

logic (Kasabov, 1996). Kasabov notes that a FuNN consists of five layers, represented 

diagrammatically below in figure 2.2. For the input layer, a node represents an input 

variable as crisp values. These values are fed into the condition layer which performs 

the 'fuzzification' by triangular membership functions with the centres represented as 

the weights (Siroki, 1998). The values from the input layer that are fed into the 

condition layer are all in the range O - 1. Gunetileke (2001) notes that expert 

knowledge can be used to initialise the spacing of the membership functions. An 

important aspect of this layer is that different inputs can have different numbers of 

membership functions. 

The output of the condition layer is passed to the rule layer, where each node 

represents a single 'fuzzy rule'. The rule layer is equivalent to the hidden layer of a 

multi layer perceptron (MLP) network. The activation of the rule layer node is the 

degree to which input data matches the antecedent component of an associated rule. 

Outputs from the rule layer are fed to the action element layer. In this layer each node 

represents a fuzzy label from the fuzzy quantification space of an output variable, for 

example "short", "medium" or "long". The activation of the node represents the 

degree to which this membership function is supported by the current data (Siroki, 

1998). 

Siroki (1998) explains that the output layer performs a modified centre of gravity 

defuzzification. Singletons representing centres of triangular membership functions 

are attached to the connections from the action to the output layer. Linear activation 

functions are used in this layer. 
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Figure 2.2 Architecture of a FuNN (Kasabov, 1996) 
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There are three methods to update the weights of a FuNN. The method used by 

Gunetileke (2001) for his FuNN application was, a partially adaptive version where 

the membership functions of the input and output variables do not change during 

training. The MLP section was trained using a modified back-propagation algorithm. 

The training algorithm 

This section describes the algorithm used for FuNN training as described in 

Gunetileke (2001 ). The algorithm is discussed in terms of neurons as they are the 

focus of the fuzzy architecture. 

Forward Pass 

The activation values for all the nodes in the network, from the first to the fifth layer 

are computated during this phase. A superscript indicates the layer and a subscript 

indicates a connection between layers. 

Input Layer (first layer) 

The input layer of neurons represents the input variables as crisp values. These values 

are fed into the condition layer which performs fuzzification. 
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Condition Layer ( second layer) 

This layer acts as a fuzzifier. The output from this layer is the degree to which the 

input belongs to the given membership function. The input weight to the condition 

node represents the centre for that particular membership function with the minimum 

and maximum determined using the centre of the adjacent membership functions. For 

the first and last membership functions for a variable, a shoulder is used instead. Each 

membership function is triangular and an input signal activates only two neighbouring 

membership functions simultaneously. The sum of the grades of these two 

membership functions for any given input is always one. For a triangular membership 

function the activation functions for a node i are: 

If h A 
c 1 x-a; 

a; <x<a;+i ten ct;= ----
a;+1 -a; 

If h A c a. -x aH <x<a; ten ct; =1---' --
a; -a;-i 

If x = a; then Act;" = 1, where a; is the centre of the triangular membership function. 

Rule Layer ( third layer) 

The pre-condition matching of fuzzy rules is done through the connections from the 

condition layer to the rule layer. The connection weights in this layer may be set 

either randomly or according to a set of rules. The net input is given by the formula: 

while the activation is given by: 

Actr = 1 
, where g is the gain factor. 

} + e(-gxNet') 

Action Layer (forth layer) 

The nodes in this layer and the connection weights function as those in the rule layer 

for net input and activation: 
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1 
Acta=---­

I + e(-gxNet") 

Output Layer (fifth layer) 

Defuzzification to produce a crisp output value is performed in this layer. The centre 

of gravity (COG) defuzzification is used to convert from fuzzy to crisp. 

A O Net 0 

ct =---
IActa 

Backward Pass 

The goal for this phase is to minimise the error function: 

Error=_!_ L(Yd - ya)2 
2 

where/ is the desired output and ya is the current output. 

Hence the general learning rule (gradient descent) used is: 

8E 
Liw~--

aw 

where T/ is the learning rate and a is the momentum coefficient, and 

aE = aE x 8Net = -ox Act 
aw 8Net 8w 

Thus, the weight update rule is: 

~w,+1 = TJO x Act+ a~w, 

Output Layer (fifth layer) 

When the weights are adapted the constraining rule is taken into account, which 

imposes restrictions to the change of the centres of the membership functions. 

50 = - SE = _ __§§__ X oAct
0 

= yd - ya 
oNet 0 0Act 0 oNet0 

9 



Action Layer ( forth layer) 

The error for each node in this layer is calculated individually based on the output 

error and on the activation of this node having in mind the type of membership 

functions (triangular) used in the defuzzification layer as well as the type of 

defuzzification. 

Ifai<y<ai+ithen da =1- y a; 
a;+1 -a; 

a -y 
If ai-1 < y < ai then d a = 1-_,_· --

a; - aH 

Hence, 

Rule Layer ( third layer) 

5r = Actr (1-Actr) x })war x oa) 

Condition Layer ( second layer) 

The weight W;c is assigned as follows. If xi lies in the fuzzy segment, then the 

corresponding weight should be increased directly proportionally to the propagated 

error from the previous layer as the error is caused by the weight. This proposition can 

be expressed by the following equation: 

5c = Actc x L (wrc x or) 

Thus, the weight updating rule for this layer is: 

The new centres of the input triangular membership functions are also adjusted 

according to a partition range as for the output layer (Gunetileke, 2001). 
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Image Processing 

The values fed into the FuNN can be gleaned from images through the 

implementation of image processing techniques. Image processing refers to the 

altering or analysing of images through a variety of techniques. When using 

computers, images are normally read in as matrix of numbers, each number ( or set of 

three numbers for colour images) represents one pixel or 'dot' on the image. 

Mathematical operations can be performed on this 'matrix' to obtain information from 

it, and even change it. 

Window filters can be used to obtain information about groups of pixels in the image 

as shown in figure 2.2 below. In this figure, the output image is defined as a function 

of the pixel in a window surrounding the equivalent position in the input image 

Gunetileke (2001). The filtering operation can be based on linear, non-linear or rule 

based functions. 

Input Image 

Window filter 

// 41 ,,---·,:::i .1..::, 
1,-...::_:-

Figure 2.2 Operation of a window filter. 

Often the selection of an appropriate window filter for image processmg 1s an 

empirical process, which relies on skill and experience (Siroki, 1998). Sometimes it is 

possible to train a neural network to perform the filter operation. As most neural 

networks require both input and target variables to learn, so to does the neural 

network window filter (NNWF) (Gunetileke, 2001). Thus, for each image used for 

training the NNWF, an appropriate target image must be created. 
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Gunetileke (2001) describes the use of a fuzzy neural network window filter for use in 

image processing problems. The FuNNWF is represented visually in the figure 2.3 

below. 

Input Image 

Neural Network Window Filter 

Condition 
Layer Rule 

Figure 2.3 A Fuzzy neural network window filter. 

Rule Mapping 

Output Image 

Expert knowledge about a problem can be transformed into low level 'rules' that 

define the problem. These rules are then mapped to the weights of a FuNN during its 

initialisation to assist in its training. The main aims of the rules are to: 

• Allow the network to start training from a position closer to the final solution 

• To cover regions of the input-target space for which there is no training data 

• To increase the robustness of the network 

Two methods of mapping have been developed: Boolean logic rule mapping and 

conditional rule mapping. Boolean logic rule mapping effectively produces rules in 

the form: 

IfJJ=M2 12=MI Then Ol=M2 

Where I- represents input values into the network, M- represents fuzzy membership 

values (for example Ml=0, M2=1) and 0- stands for network 'output'. 

Conditional rule mapping produces rules of the form: 

If Il<M2 12>M3 Then Ol=M2 
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Gunetileke (2001) notes that conditional rules are more powerful than Boo lean logic 

rules. For a more detailed explanation of rule mapping see Gunetileke (2001) chapter 

3. 

Usually a 'complete' set of rules for describing a real world image processing 

problem cannot be derived. In this case the number of rule nodes in the network is 

made larger than the number of rules (creating 'free nodes'), so the network has 

enough freedom to adapt. The rules developed for real world image processing 

problems are unlikely to be 100 percent correct or complete. In this case the 

'saturation value' associated with the rules can be adjusted according to the problem. 

A high saturation value represents high certainty in the correctness and completeness 

of each rule and effectively stops the training from changing the weights. A low 

saturation value means the rules are incomplete and/or uncertain and allows the 

training to alter the weight values relatively easily. Also, the 'quality factor' setting 

can be adjusted depending on the certainty of a rule. A high quality factor should be 

used for strong rules and a low quality factor used for weak rules. An incorrect rule 

with a high quality factor can have a degrading effect on network performance, as the 

correct rules and free nodes will try to compensate for them. As quality factor drops 

the weights associated with the incorrect rules can change more easily and the weights 

associated with the rule nodes change less (Gunetileke, 2001). 
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