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Abstract 

New Zealand forest has been affected by both natural and anthropogenic disturbances. 

Protecting and restoring indigenous forest is one of the focal issues in conservation of 

New Zealand, and understanding vegetation dynamics is a key part of management 

strategies. The longevity of most of New Zealand trees impedes short-term vegetation 

dynamic studies. Instead fossil pollen records provide one of the most valuable sources of 

long term data to trace vegetation development. In this study, pollen records are used as 

proxies of vegetation population to test the roles of long-term climate change and 

transient environmental disturbances in vegetation dynamics. Two sediment cores, from 

Sponge Swamp, Haast, and Tiniroto Lakes, Gisborne, were collected as representatives 

of undisturbed and disturbed sites, the former being used as a reference site to separate 

out the effects of climate and evaluate the impact of disturbance on the vegetation. 

Pollen data were inspected using Tilia, and zones defined .  Principal component analysis 

(PCA) was performed on pollen data to summarise the change in species composition 

over time, and the sample scores of the first PCA axis were exploited as an index of 

vegetation dynamics for further comparison. Redundancy analysis (RDA) is also applied 

to help interpretation of the vegetation change with respect to environmental factors. 

The result of this study indicates that the vegetation development in both sites is 

characterized by non-equilibrium dynamics, in which vegetation composition is changing 

continually through time. In Sponge Swamp, this change is steady and consistent over the 

whole time span, with a consistent decline of Ascarina lucida and a progressive increase 

of cold tolerant or moisture-stressed taxa, like Gleichenia and Lycopodium australianum. 

Subsequently there is a partial replacement of swamp forest taxa such as Dacrycarps 

dacrydioides and tree ferns by Prumnopitys taxifolia, and further expansion of 

Nothofagus and Phyllocladus is distinguished. A climate gradient, from mild and wet to 

cooler and/or drier is suggested from the pollen evidence, and appears the driving force 

for the vegetation dynamics at that undisturbed site. At Tiniroto, however, the vegetation 
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development is divided into two stages. Before c. 2300 yr BP, the vegetation change is 

steady and consistent which is comparable to that from Sponge Swamp. A forest invasion, 

a process of gradually replacing open land and l ight-adapted taxa, such as Dodonaea 

viscosa, Coprosma, Pseudopanax, Schefflera digitata, Pteridium, Hebe and members of 

the family Fabaceae and Asteraceae, by increasing proportions of forest taxa, characterise 

this change. Climate amelioration with increased rainfall is responsible. After c. 2300 yr 

BP, this trend was frequently punctuated by disturbances, in which sudden changes of 

vegetation occur, generating substantial fluctuations about the trend. 

From RDA, sample age explains more than 20% of the variance of species data at both 

sites. The long-term directional climate change derived from pollen evidence of Sponge 

Swamp and at least partly at the Tiniroto site, may be represented by the explanatory 

variable age. At Tiniroto, addit ional variance is also explained by the explanatory 

variables charcoal and pollen taxonomic richness, suggesting the impact of disturbance 

on vegetation dynamics. The impact of disturbance on vegetation dynamics becomes 

clearer after the climate gradient is removed. Autocorrelation analysis on detrended 

sample scores of the first PCA axis suggests further differences between the two s ites, in 

response to local disturbances. There is little dependence of the present state of 

vegetation composition on its past state in the Sponge Swamp site; instead, the vegetation 

composit ion is affected by various "random" events, implying small disturbances such as 

floods, or landslides caused by earthquakes etc. At Tiniroto, the change of vegetation 

composition is more "successional", and the present state of vegetation depends only on 

the immediate past state, due to the impact of catastrophic d isturbance. 

Despite the Tiniroto site having been subjected to a long history of disturbance, the 

climate gradient, which is d istinct at the earlier stage, becomes less identifiable and 

partially masked by outbreaks of disturbances only since c. 2300 yr BP. This impl ies that 

the relative role of disturbance on vegetation dynamics with respect to climate is 

depended on different types or different levels of disturbances and different responses by 

the vegetation. 
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Short-term vegetation responses to different types of disturbance were examined by fine 

resolution pollen analyses around five disturbance episodes, including the Taupo 

(1850±1O yr BP), Waimihia (3280±20 yr BP), Whakatane (4830±20 yr BP) eruptions, 

and two charcoal peaks (c. 1100 yr BP and c. 2300 yr BP). Almost no vegetation change 

occurred relative to the eruption within the Whakatane and Waimihia episodes, except 

that a temporary rise of shrubs and ferns corresponded with intermittent occurrence of 

charcoal particles. Substantial vegetation change relative to disturbance was found within 

both the Taupo episode and the fire episode around c. 2300 yr BP, in which establishment 

of ensuing semi-open vegetation was encouraged for decades. The fire c. 2300 yr BP 

transformed part of the forest into fernland, while the Taupo eruption turned part of the 

shrubs and tree ferns into bracken field. Although it is difficult to judge the effect of the 

fire around 1100 yr BP as the result was unreliable due to contamination, the vegetation 

at Tiniroto is suggested to be more vulnerable to fire than tephra. 

Non-equilibrium dynamics are common in New Zealand forests, even at stable sites such 

as Sponge Swamp, due to climate change. Locally these non-equilibrium dynamics 

appear highly responsive to disturbances, esp. at Tiniroto. Even disturbances at Tiniroto 

are dynamic and a change of disturbance regime is suggested around the later disturbance 

episodes. This change is possibly due to climate increasing the fire frequency, but an 

alternative explanation is the presence of humans earlier than currently accepted. Forests 

and forest ecological studies in New Zealand are very dynamic, and forest management 

needs to improve to incorporate these dynamics. 
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