Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

MECHANISTIC STUDIES ON SHEEP LIVER ALDEHYDE DEHYDROGENASES

A thesis presented in partial fulfilment of the requirements for the degree of

> Doctor of Philosophy in Chemistry

> > at

Massey University, New Zealand.

Alastair Kenneth Hugh MACGIBBON

1976

ABSTRACT

The enzyme aldehyde dehydrogenase has been extensively purified from the cytoplasmic fraction of sheep liver and a study of its kinetic behaviour has been made.

Studies showed that the nucleotide fluorescence of NADH increased on binding to cytoplasmic aldehyde dehydrogenase and the 5.6 fold enhancement of fluorescence has been used to determine the binding site concentration of enzyme solutions. These binding studies showed that the NADH binding sites on the enzyme were all equivalent and possessed a dissociation constant for NADH of 1.2μ M. No significant amounts of zinc were detected in the purified enzyme samples.

Steady-state kinetic studies at pH 7.6 showed that the enzyme was capable of utilizing a wide range of aldehydes as substrates and the enzyme also possessed the ability to hydrolyze p-nitrophenyl acetate. The mechanism of action of cytoplasmic aldehyde dehydrogenase using propionaldehyde as a substrate was found to be ordered, with NAD⁺ binding pror released before NADH. Michaelis constants for NAD⁺ and propionaldehyde were 2.2µM and 1.4µM respectively while the dissociation constant for NAD⁺ was 8µM. At high aldehyde concentration (both for propionaldehyde and acetaldehyde) substrate activation was observed. Steady-state kinetic results were also reported at pH 9.3.

Stopped-flow fluorimetric studies of NADH displacement from aldehyde dehydrogenase using a series of displacing agents $(NAD^+, deamino-NAD^+, ADP$ -ribose and 1,10-phenanthroline) show that this process is biphasic with rate constants of $0.85s^{-1}$ and $0.22s^{-1}$. This has been interpreted as a two step displacement process. The $0.22s^{-1}$ rate constant is similar to the maximum enzyme reaction velocity in the steady-state at high aldehyde concentrations. The association of NADH with the enzyme was also found to be biphasic, one phase being dependent on the NADH concentration while the other was independent.

Stopped-flow experiments where aldehyde dehydrogenase was rapidly mixed with the coenzyme and propionaldehyde showed a burst of NADH formation followed by a slower steady-state turnover. The maximum burst rate constants were 11s⁻¹ and 23s⁻¹ for propionaldehyde and acetaldehyde respectively. A mechanism has been postulated for the observed burst and values for various individual rates constants derived.

The general features of the kinetics of sheep liver cytoplasmic aldehyde dehydrogenase have been compared with those of the mitochondrial enzyme from the same source and except for the value of the NAD⁺ binding rate constant the two enzymes have been shown to be remarkably similar. I wish to thank my supervisors Dr. Len F. Blackwell and Paul D. Buckley for their enthusiasm and invaluable advice throughout the course of this study.

I would also like to thank the other members of the alcohol research group, especially:

Kathy Crow for her assistance in isolating the cytoplasmic aldehyde dehydrogenase. Dr. Trevor M. Kitson for supplying the mitochondrial aldehyde dehydrogenase. Terry B. Braggins for his expert technical assistance.

Thanks are also extended to all the members of the Chemistry, Biochemistry and Biophysics Department for their help, and in particular to Nancy Reaburn.

Finally, I would like to thank Jenny Parry for typing the thesis.

CONTENTS

	Page
ABSTRACT	ii
ACKNOWLEDGEMENT	iv
SECTION 1	
INTRODUCTION	1
SECTION 2	
PURIFICATION OF CYTOPLASMIC ALDEHYDE DEHYDROGENASE FROM SHEEP LIVER	
2.1 Introduction	4
2.2 Methods 2.2.1 Buffers 2.2.2 Protein determination 2.2.3 Ammonium sulphate precipitation 2.2.4 Temperature 2.2.5 Gel electrophoresis 2.2.6 Preparation of the affinity column 2.2.7 Enzyme assays	5 5 5 5 5 5 6 7
2.3 Results 2.3.1 Development of the enzyme purification procedure 2.3.2 Affinity chromatography 2.3.3 Purification scheme for cytoplasmic aldehyd dehydrogenase	8 8 10 de 12
2.3.4 Furity of the aldehyde dehydrogenase sample 2.4 Discussion	e 13
L., JISCUSSION	10

SECTION 3

EQUILIBRIUM STUDIES AND THIOL DETERMINATIONS

3.1	Introduction	19
	3.1.1 Coenzyme binding	19
	3.1.2 Theory of ligand binding	20

V

		Page
	3.1.3 Application to fluorescence titration	21
	3.1.4 Thiol determinations	22
3.2	Materials and Methods	23
	3.2.1 U.V. spectra	23
	3.2.2 Fluorimeter	24
	3.2.3 Titration reagents	24
	3.2.4 Titration method	25
	3.2.5 Treatment of data	25
	3.2.6 Enzyme assay	26
	3.2.7 Zinc content	26
	3.2.8 Thiol determinations	26
3.3	Results	29
	3.3.1 U.V. spectra	29
	3.3.2 Fluorescence spectra	29
	3.3.3 NADH titration	29
	3.3.4 Fluorescence enhancement (Q)	31
	3.3.5 Comparison of the enzyme binding sites with	33
	enzyme activity	
	3.3.6 Effect of additional compounds on the	33
	titration of the enzyme	
	3.3.7 Zinc content	35
	3.3.8 Thiol determinations	36
3.4	Discussion	39
	SECTION 4	
	STEADY-STATE KINETICS	46
4.1	Introduction	46
4.2	Methods	57
	4.2.1 Spectrophotometric assays at pH 9.3	57
	4.2.1.1 Assay of aldehyde dehydrogenase	57
	4.2.1.2 Buffers for pH profile	57
	4.2.1.3 Esterase activity	57
	4.2.2 Fluorimetry	58
	4.2.2.1 Instrumentation	58

4.2.2.2 Linearity of NADH fluorescence 4.2.2.3 Influence of pH on NADH fluorescence vi

58 58

				Page
		4.2.2.4	Fluorimetric assay at pH 9.3	60
		4.2.2.5	Distillation of propionaldehyde	60
		4.2.2.6	Determination of aldehyde concen-	60
			tration	
		4.2.2.7	Fluorimetric assay at pH 7.6	61
		4.2.2.8	Attempts to initiate the reverse	62
			reaction	
	4.2.3	Treatmer	nt of data	62
4.3	Result	S		63
	4.3.1	Steady-s	state kinetics at pH 9.3 using	63
		spectrop	photometry	
		4.3.1.1	Specificity of aldehyde dehydrogenase	63
		4.3.1.2	Esterase activity	63
		4.3.1.3	Initial velocity studies with	64
			glyceraldehyde at pH 9.3	
		4.3.1.4	Effect of pH on K _m for glyceraldehyde	65
		4.3.1.5	Initial velocity studies with MAD^+	65
			at pH 9.3	
		4.3.1.6	Difficulties in initial velocity	65
			studies	
	4.3.2	Steady-s	state kinetics at pH 9.3 using	68
		fluorime	etry	
		4.3.2.1	Initial velocity studies with prop-	68
			ionaldehyde and \mathtt{NAD}^+ as substrates	
		4.3.2.2	Inhibition studies	69
	4.3.3	Steady-s	state kinetic studies at pH 7.6	69
		4.3.3.1	Initial velocity studies at pH 7.6	69
		4.3.3.2	Relationship between enzyme concen-	72
			tration and initial velocity	
		4.3.3.3	Effect of pH on $K_{\rm m}$ for propional dehyde	; 72
		4.3.3.4	Product inhibition	74
		4.3.3.5	Dead end inhibition	74
		4.3.3.6	Attempt to initiate the reverse	75
			reaction	
		4.3.3.7	Effect of high propionaldehyde con-	76
			centration	
		4.3.3.8	Effect of high acetaldehyde concen-	76
			tration	
		4.3.3.9	Substrate specificity	78

7	٦.			
- 1	- ;	3.6	76	2
-		~~	Э,	-

SECTION 5

7	9
	~

		PRESTEADY-STATE KINETICS	91	
5.1	Introd	luction	91	
5.2	2 Methods			
	5.2.1	Stopped-flow apparatus	96	
	5.2.2	Standardization of fluorescence signal	97	
	5.2.3	Buffers and reagents	97	
	5.2.4	NAD ⁺ purification	98	
	5.2.5	Esterase activity	99	
	5.2.6	Enzyme concentration	99	
	5.2.7	Displacement experiments	99	
	5.2.8	Treatment of displacement data	100	
	5.2.9	Treatment of burst data	102	
	5.2.10	Computer simulation	104	
5.3	Result	58	106	
	5.3.1	Displacement experiments	106	
		5.3.1.1 Displacement of NADH	106	
		5.3.1.2 Displacement of NADH analogue	108	
		5.3.1.3 Effect of pH on the displacement	109	
		of NADH		
		5.3.1.4 Limits to the use of the Guggenheim	110	
		plot		
		5.3.1.5 Note on NADH displacement from	110	
		alcohol dehydrogenase		
		5.3.1.6 Concentration jump	111	
		5.3.1.7 Association of enzyme and NADH	113	
	5.3.2	Burst analysis	115	
		5.3.2.1 Observation of the presteady-state	115	
		phase	445	
		5.3.2.2 Effect of NAD concentration on the	115	
		5 3 2 3 Effect of propionaldebyde concentra-	117	
		tion on the burst	/	
		5.3.2.4 Effect of pH on the burst	117	
		5.3.2.5 NAD ⁺ analogues	119	

					Page
		5.3.2.6	Inhibition of the burst		121
		5.3.2.7	Effect of acetaldehyde on the bur	st	122
		5.3.2.8	Other substrates		122
		5.3.2.9	Burst amplitude		124
		5.3.2.10	Esterase activity		125
		5.3.2.11	Protein fluorescence		125
		5.3.2.12	Computer simulation of the burst		127
5.4	Discus	ssion			129
	5.4.1	Displacer	nent		129
	5.4.2	Burst			136

SECTION 6

	COMPARISON OF MITOCHONDRIAL AND CYTOPLASMIC	
	ALDEHYDE DEHYDROGENASES	144
6.1	Introduction	144
6.2	Methods	147
6.3	Results	147
	6.3.1 Equilibrium studies	147
	6.3.2 Steady-state studies	147
	6.3.3 Presteady-state studies	147
6.4	Discussion	151

SECTION 7

	CONCLUSION	153
APPENDIX I		159
APPENDIX II		161
REFERENCES		163

Figure No.	Title	Page
2.1	Gel filtration of cytoplasmic aldehyde dehydro- genase	11
2.2	Elution profile of contaminating enzymes on Biogel gel filtration column	15
3.1	Column separation of mercaptoethanol from an enzyme solution	28
3.2	Fluorescence spectra	30
3.3	Fluorescence titration of aldehyde dehydrogenase	32
3.4	Hill plot of NADH binding to aldehyde dehydro- genase	34
3.5	Reaction of enzyme thiol groups with Ellman's reagent	38
3.6	Relationship between enzyme activity and thiol reaction	38
4.1	Double reciprocal plot for bisubstrate reactions	51
4.2	Effect of inhibition patterns on the double reciprocal plot	54
4.3	Fluorescence of NADH solutions	59
4.4	Double reciprocal plot of initial velocity with respect to propionaldehyde at fixed concentra- tions of NAD ⁺ at pH 9.3	66
4.5	Secondary plots of data from Fig. 4.4	67
4.6	Double reciprocal plot of initial velocity with respect to NAD^+ at fixed concentrations of propionaldehyde at pH 7.6	70
4.7	Secondary plots of data from Fig. 4.6	71
4.8	Relationship between the initial velocity and the enzyme concentration	e 73
4.9	Effect of wide range of aldehyde concentrations on the initial velocity at pH 7.6	76
4.10	Possible mechanism consistent with steady-state kinetic results	83

Figure No.	Title	Page
4.11	Attempt to fit a two enzyme system to the biphasic double reciprocal plots for aldehydes	86
4.12	Hill plot of propionaldehyde and acetaldehyde data of Fig. 4.9	89
5.1	Stopped-flow apparatus	94
5.2	Graphical derivation of rate constants from a biphasic plot	101
5.3	Observation of biphasic displacement from dehydro- genases by nucleotide fluorescence and absorbance	105
5.4	Typical graphical derivation of rate constants from the displacement experiment	107
5.5	NADH analogue displacement and NADH association to aldehyde dehydrogenase	112
5.6	NADH association to aldehyde dehydrogenase followed by nucleotide fluorescence	114
5.7	Observation of a burst in nucleotide fluorescence for the reaction of aldehyde dehydrogenase	116
5.8	Dependence of observed burst rate constant on ${\rm NAD}^+$ concentration	118
5.9	Double reciprocal dependence of the observed burst rate constant on propionaldehyde concentration	120
5.10	Kinetic isotope effect on the observed burst rate constant with acetaldehyde	123
5.11	NAD ⁺ association to aldehyde dehydrogenase followed by protein fluorescence	126
6.1	Attempt at NADH titration for mitochondrial aldehyde dehydrogenase	146
6.2	Double reciprocal plot of initial velocity against acetaldehyde concentration for mitochondrial aldehyde dehydrogenase	150
7.1	Postulated mechanism of enzymatic oxidation of aldehydes	154

xi

	LIST OF TABLES	
Table	Title	Page
2.1	Purification of cytoplasmic aldehyde dehydro- genase from sheep liver	14
3.1	Effect of enzyme activity on concentration of NADH binding sites	33
3.2	Effect of chelating agents on NADH titration	35
3.3	Zinc concentration of two dialysed enzyme samples	35
3.4	Reaction of aldehyde dehydrogenase with 5,5'- dithiobis(2-nitrobenzoic acid) in the presence and absence of sodium dodecylsulphate	36
3.5	Application of thiol reaction mixture to column	37
4.1	Product inhibition patterns for sequential BiBi mechanisms	56
4.2	Variation of NADH fluorescence with pH	58
4.3a	Substrate specificity of aldehyde dehydrogenase	63
4.30	Esterase activity of sheep liver aldehyde dehydrogenase	64
4.4	Kinetic parameters of aldehyde dehydrogenase reaction at pH 9.3	69
4.5	Kinetic parameters for aldehyde dehydrogenase in pH 7.6 phosphate buffer	72
4.6	Inhibition of sheep liver cytoplasmic aldehyde dehydrogenase	75
4.7	Quantitative production of product	77
4.8	Substrate specificity at pH 7.6	78
5.1	Displacement rate constants for the enzyme-NADH complex	108
5.2	Effect of pH on NADH displacement	109
5.3	Effect of pH on the burst	119
5.4	Effect of pH with benzaldehyde as substrate	119
5.5	Various aldehydes which produce a presteady- state phase at pH 7.6	124

xii

Table No.	Title	Page
5.6	Rate constants for scheme (1) used in burst simulation	127
6.1	NADH displacement from mitochondrial aldehyde dehydrogenase	148
6.2	NAD ⁺ binding to the mitochondrial enzyme followed by quenching of protein fluorescence.	149

xiii