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ABSTRACT 

This thesis describes the design of a general purpose tool for 

debugging and developing multimicroprocessor process control 

systems. With the decreasing price of computers, 

multimicroprocessors are increasingly being used for process 

control. However, the lack of published information on 

multiprocessing systems and distributed systems has meant 

that methodologies and tools for debugging and developing 

such systems have been slow to develop. The monitor designed 

here is system independent, a considerable advantage over 

other such tools that are currently available. 
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Chapter 1 

Introduction 

This thesis is divided into five chapters. This first chapter is the 

introduction, giving the background of the work to be done. 

Chapter Two considers tools for debugging multiprocessing 

systems and looks at existing multiprocessing process control 

systems. 

Chapter Three outlines multiprocessing considerations and 

decisions which were encountered in the design of the monitor. 

Chapter Four outlines the monitor requirements and design 

specifications, g1vmg a scenario of activities for which the 

monitor may be used. 

Chapter Five descibes the implementation of the monitor. It 

outlines the hardware and software used and how they fit 

together. 

Finally, Chapter Six contains the conclusions and a proposal for 

furthur research which has stemmed from this thesis. 

1.1 Process Contro11ers 

Digital industrial controllers, with control functions realised in 

software are now common place. They must meet stringent 

reliability and availability specifications. This has led to the 

design of real-time systems with software designed with the 

requirements of reliability, safety and management in mind. 
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However a control system encompasses much more than the 

process control functions themselves. Indeed it can be argued 

that the following support functions: 

- process interface, 

- user interface, 

- alarm monitoring, 

- data logging, 

- start-up and shut-down, 

- sequence control 

are as important as the controller. Certainly they are 

inordinate consumers of computing resources. 

The traditional approach to servicing the above functions has 

been to use a bigger and faster monoprocessor computer, but 

with the advent of low cost powerful microcomputers the 

multiprocessor solution can be economically explored. Many 

different machine architectures and software packages 

[3,8,24,25,26,30,39,42,47] have been proposed. The 

difficulties of deciding which structures are optimal or even 

suitable for a given control system are not only caused by 

implementation costs but also by the lack of suitable tools 

for fault tracing and performance assessment in 

multiprocessor systems. 

RTS, a small digital controller will be used to illustrate the 

associated problems, and later to assist in the design and 

testing of a multiprocessor. 
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1.2 RTS 

RTS (real-time system) 1s a real-time process control system 

which was designed and the program written by Dr. T. Hesketh 

[19]. It has been used in a number of practical applications 

including controlling the atmosphere m the climate rooms at 

the DSIR and the drum temperature at a wool scourer. The 

program runs on a single Z80 processor and is written mainly 

in PL/I with some routines in Z80 assembly language. It has 

been written so that it is relatively easy to alter. 

RTS is a general purpose process controller which may be set 

up m a specialised configuration when it is to control a specific 

situation. It assumes multi-independent single variable loops. 

These are loops where a given manipulated variable affects 

only its own controlled variable and there is no interaction 

between the loops. RTS implements three of the five functions 

mentioned above: 

- user interface function, 

- process interface function, 

- control interface function. 

The other functions were not incorporated because they would 

overload the processor. An 8-bit microprocessor has a limited 

capability and so priorities must be given to the activities 

which are considered for implementation. The control function 

has the highest priority and the data logging the least. 
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Start-up and shut-down actions do not occur automatically in 

RTS. The sequences can be carried out manually by the 

operator. This is possible in this situation as the operator usrng 

the system would be skilled. This gives the operator more 

flexibility in the operation of the process. 

1.2.1 User Interface Function 

The user interface function has been minimised to reduce 

processor loading. This function in RTS includes: 

- menu display, 

- process, state and set-up displays, 

- user responses, 

- plotting and printing. 

1.2.2 Process Interface Function 

The process interface function includes: 

- AID and D/A operations, 

- filtering operations, 

- alarm monitoring. 

1.2.3 Control Interface Function 

The control interface function incorporates the following five 

sections: 

- measurement of the process behaviour, 

- determination of the model, 

- design of the controller, 

- subsequent definition of feedback gams by the controller, 
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- use of feedback gains to obtain a control signal. 

Measurement of the Process Behaviour 

In this phase, system-specific information must be gathered. 

This information comprises: 

- sampling and control time intervals, 

- the signals and their interconnections (loops). 

There are three different time intervals: 

- the interrupt time interval (usually in the order of milli­

seconds), 

- measurement sample rate, set by the user, 

- actuation sample rate, also set by the user. 

A signal in RTS is a data structure for the definition of 

external variables i.e. set-point, measurement, actuation. 

Loops are hierarchically superior data structures which are 

incorporated in the system to associate signals in groups. 

Determination of the Model 

The system identification involves a recursive procedure 

whereby the data which becomes available at the beginning of 

each sampling interval are used to improve the previous 

estimate of the system model. The technique of extended least 

squares [2] is used to determine the model and a Kalman Filter 

[23] is used to obtain parameter estimates also recursively. 
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The plant can be operated at user-selected operating points 

and have pseudo-random disturbances created by RTS. The 

subsequent measurements are used in the system 

identification to estimate model parameters. 

Design of Controller 

In RTS there are a number of different controller design 

methods used. They are designed for both on- and off-line 

operation and include the following controller designs: 

- optimal controller, 

- self-tuning controller, 

- user defined controller, 

- three term controller. 

The design of an optimal controller uses the Ricatti Equation 

[27]. To determine the gains of the system it is necessary to 

iteratively solve an initial value problem for a Ricatti 

Equation. 

The self-tuning controller works well but as it operates on­

line, it can begin to model the noise if the system remains in 

this mode once the system has settled. 

The user defined controller allows the user to define and 

design a controller. 

It is necessary to consider the categories of variables which 

exist. 
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1.3 Variables in Process Control 

There are four important categories of variables related to 

process control [41]: 

- manipulated variables, 

- disturbances, 

- controlled variables, 

- intermediates. 

The values of manipulated variables can be adjusted by the 

control system. Examples include input raw material flow 

rate, steam pressure etc. 

Variables whose values affect the operation of the process but 

are not subject to adjustment via the control system are 

known as disturbances (e.g. composition of raw material, 

ambient air temperature etc.) 

Control variables are those whose values measure the 

performance of the plant, and as such are those which the 

control system must keep at some set-point (e.g. production 

rate, production quality etc.) 

The intermediate variables appear at some intermediate stage 

in the process and can not normally be measured. 

The general control problem is to adjust the manipulated 

variables so as to maintain the controlled variables at their 

set-point in the face of disturbances. The set-point is the 

value at which the user wants the control variables to operate. 
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The intermediates may be used advantageously, if they can be 

measured, in determining what control action should be taken. 

One major problem with process plants is the difficulty in 

deriving a mathematical model of the process from its 

characteristics. The characteristics depend firstly on the level 

of the plant operation (the plant often cannot be descibed using 

a linear model) and secondly, even under constant operating 

conditions the plant's characteristics change with time. The 

abilities of a computer make it attractive in this situation 

where it can collect large quantities of data, analyse it and 

make logical decisions based on the results. 

1.4 Real-Time Programming 

The term "real-time" has been described as "any information 

processing activity or system which has to respond to 

externally generated input stimuli with a finite and 

specifiable delay" [33]. 

For real-time process control systems the delay must not only 

be specifiable, it must also be constant as the theory of the 

identification and controller design is based on the assumption 

of regular measurement and actuation. 

Software for real-time process control systems must respond 

to "clock tick" interrupts, user requests and changes in the 

process, so there are time critical components. The software 

must interact with the dynamic properties of the industrial 

system and must react to stochastically occurring events. 
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There are two different types of events: 

1. events which must be serviced whenever a time interval 

boundary is reached, 

2. events which are serviced as and when required. 

With both types of event, the control software must react 

within a certain time and parallel tasks must also be 

synchronised within the software system. 

1.5 Multiprocessing vs Multiprogramming 

To alleviate the problems in RTS and indeed any other 

processor bound process control systems, it is possible to 

implement the system as either a multiprogramming system or 

a multiprocessing system. 

A multiprogramming system appears to execute many tasks at 

the same time. However there is always only ever one set of 

instructions being executed at a particular time. A 

multiprogramming system time-slices, devoting a set amount 

of time to all the processes that are currently being run. In the 

case of RTS, the use of multiprogramming would not increase 

the speed of operation. R TS cannot have other functions added 

as it is presently processor bound (section 1.2). 
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Multiprogramming provides no relief from this situation as the 

implementation of multiprogramming would take up more 

processing power, and hence make RTS slower. In real-time 

process control systems, the interrupts must be serviced 

immediately. Interrupt systems like this would complicate a 

multiprogramming operating system and the software would be 

difficu It to write. 

The definition of multiprocessing differs from paper to paper. 

In many books only tightly coupled systems (section 3.6) are 

considered multiprocessing systems. In this thesis, a broader 

interpretation will be used, in which a multiprocessing system 

consists of both tightly and loosely coupled systems. A 

multiprocessing system consists of two or more processors 

linked together to perform one function. It was thought that 

RTS would run more efficiently as a multiprocessing system 

as it is presently processor bound, and there is a lot of code 

that could be executed in parallel, hence saving time. RTS can 

be divided into four functional subunits which could be 

executing at the same time. They are: 

- the user interface function, 

- the processor interface function, 

- the control interface function where this could be 

implemented as an identification function and a control 

function. 
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1.6 Objectives of th is Project 

As mentioned previously (section 1.1), the advent of 

microprocessors has generated interest in alternative, 

multiprocessor-based methods of providing process control 

functions. The main objective of this project has been to 

design a monitor (a tool for debugging systems) for use in the 

development of such multiprocessor-based systems. This 

monitor was developed for the conversion of RTS from a single 

processor to a multiprocessor system. Every effort has been 

made to keep the monitor as general as possible. To this end, 

as few assumptions as possible about the nature of the 

multiprocessing system have been made. Any design decision 

that was made was considered from a general view-point and 

if a decision could not be reached then the logic and the 

structure of RTS was taken into account in reaching the 

decision. 
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Chapter 2 

Current Research 

This chapter covers some of the tools which are being used 

for the development and testing of multiprocessing systems 

and gives the reasons why a monitor was chosen for this task 

in this design exercise. It continues with the background 

information pertaining to multiprocessing control systems and 

a description of some multiprocessing process control 

systems which have already been developed. 

2.1 Testing Multiprocessor Products 

There are a number of possible ways to test and develop 

microprocessor based systems. They include analytical 

modelling, simulation modelling, system prototyping or using 

some kind of tool or testbed. The testbed approach is closely 

related to prototyping, since they both involve modelling the 

specific system being investigated. However the testbed 

approach can be used as a universal tool whereas prototyping 

is a one-off method. 

Traditionally, a mathematical or statistical model was used to 

represent a process. The model would be run on a different 

computer from the one being designed and the output would be 

a listing of the computer code, a document describing the 

computer code, and a set of results that exemplified the 

solution to the problem being considered. This method was 

expensive in terms of both time and money, and was inflexible 
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to change. In comparison the testbed approach ensures 

performance is exact because the final system can use 

functionally equivalent hardware which is ideal for real-time 

systems, and while the software is varied in testing, it will be 

finalised to real system software [6]. 

The tools designed for single processor systems (often 

referred to as development systems) can be general purpose or 

universal investigative aids that support several 

microprocessor types, or dedicated aids restricted 

specifically to a single microprocessor type of family. Such 

systems can assist the designer in evaluating alternative 

hardware or software prototypes. Simultaneous testing of 

hardware and software produces powerful debugging 

capabilities. In-circuit emulators provide the most accurate 

method for testing and checking microcomputer systems 

hardware and software. They replace the central processing 

unit in the system under test and provide the ability to 

examine, change or modify CPU registers and storage memory. 

The monitoring of the program execution permits rapid and 

easy hardware and software testing [14]. 

The above applies equally to multiprocessing systems. 

However the tools designed for systems which have only one 

processor usually do not completely fulfil the needs of 

systems which have many processors working together. 
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A tool for a multiprocessor system is more complicated than 

one for a single processor system because it must test for the 

synchronisation of processors, for communication between 

processors and must record the data on traffic and the 

utilisation of any of the processors. 

The software and hardware of each individual processor can be 

tested using methods used for single processors. However we 

are interested in the next stage of the testing, when the single 

processors are connected to form a multiprocessor system. 

Berg [4] says "Many inherent problems need to be overcome 

before the benefits of distributed systems can 

be realised .... Among the causes of difficulties 

with distributed processing are the lack of 

experience with, and data about, distributed 

systems and a lack of appropriate 

methodologies and tools for designing 

distributed systems and their application". 

2.2 Summary of Multiprocessor Test Systems 

Below is a summary of some of the tools which have been 

developed for testing multiprocessor systems. 

2.2.1 Modular Multiprocessor System Design 

Hirschman, Ali and Swan [20] devised a structural approach to 

multimicroprocessor system design. This approach uses 

computer modules based on the Texas Instruments TMS 9900 
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microprocessor as building blocks to configure systems. It can 

handle a range of microprocessor products, from limited 

standalone controllers, through loosely coupled networks to 

closely coupled multiprocessors. 

The principle benefits of this approach are modularity, 

expandability, software simplification and low cost. 

There are three limitations to this system. The first is the 

use of a single interprocesssor bus. This can constrain the 

volume of communication traffic that can be supported. To 

prevent impaired system performance, each processor's 

executable code must have a high degree of locality, requiring 

infrequent access to the interprocessor bus. The second 

limitation is that the rigidity of this system confines choices 

of the designer of the multiprocessing system and therefore 

the flexibility of the system being designed. The product must 

follow the principle of "circuit switching", rather than "packet 

switching" [43]; it must use specified hardware, and use the 

bus arbitration system specified. Finally it is also designed 

specifically for designing a product and not for testing the 

product once it has been designed, so it does not collect any 

data. If data was collected it could be analysed to estimate the 

best performance of the system and this often helps the 

designer make design decisions. 
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2.2.2 Concert 

Halstead, Anderson, Osbourne and Sterling [17] describe a 

system called Concert, which is a shared memory 

multiprocessor testbed. It is intended to faci I itate 

experimentation with parallel programs and programming 

languages. The designers did not design it as a direct prototype 

for highly parallel computers of the future. They designed it as 

a tool to teach enough about parallel processing to specify 

future designs. Concert is not designed for microprocessors. 

However, a lot can be learnt from the principles used in 

designing tools for larger systems and applying the same 

principles where applicable to tools for microprocessor 

products. 

Concert was designed with a ringbus network. The advantages 

of this are its suitability as an interconnection medium that 

has adequate bandwidth and does not require high clock speeds 

or present other technical difficulties that might have made it 

riskier to build and debug. 

Another decision the designers made was to use shared 

memory as the principle medium for interprocessor 

communication. This presents difficulties in the queueing for 

accessing memory, deadlocks, and ensuring the processors get 

the most current information. 

To reduce design and construction time, "off the shelf" 

commercially available components were used wherever 

possible. 
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2.2.3 The Cm* Testbed 

This testbed has been designed for testing a specific system, 

which consists of minicomputers. The Cm* testbed has taken a 

large part in determining whether multiprocessor 

architectures in general have an important role to play in 

providing computational power. 

In writing about the Cm* testbed Gehringer, Jones, and Segall 

[13] indicate that a distributed system can be considered to 

have two components - an architectural component and a 

behavioural component. The first consists of hardware, 

firmware and software elements, and the relationship between 

them. The architectural component should be flexible. The 

second is characterised by the way the architecture acts in the 

presence of a workload. The behavioural component should 

provide controllable and measurable behaviour. 

The architectural and behavioural components are incorporated 

in the Cm* testbed which has a programmable interconnection 

network for hardware architecture flexibility. The software 

includes the operating systems - StarOS and Medusa - they 

provide adaptable mechanisms and policies for running 

experiments with applications programs. 

The behavioural component, the workload, the measurement 

tools and the experimentation control are integrated into an 

experimental environment, and they complement the other 

support programs for specifying, monitoring and analysing 

experiments. 
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There are three hook processors in the testbed which are 

special microcomputers. They run a debugging tool called KDP 

which can load, start, stop and single step a Kmap and examine 

its registers or RAMs. There is a Kmap per cluster, through 

which the clusters communicate. With KDP, microcode can be 

debugged on the Cm* itself - this is important as microcode 

bugs are often timing dependent and cannot be recreated. 

The diagnostic processor is a PDP 11/10. It runs diagnostic 

programs on processors which are not used and maintains an 

error log. 

The operating systems contain sensors to allow monitoring, 

and the utilities to run as user programs on top of an operating 

system. The top level of the experimental environment 

consists of three components, a schema manager, a monitor 

and a workload generator, which allow speedy construction of 

synthetic tasks to exercise various portions of the 

multiprocessor. 

The Cm* testbed has allowed approaches which were heuristic 

to provide a basis for more extensive and rigorous 

investigation. 
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2.2.4 Rochester's Intelligent Gateway [28] 

While developing this system Lantz, Gradischnig, Feldman and 

Rashid had no separate debugging tool as such. RIG supports 

Mantis which is a reasonably sophisticated system-level 

debugger designed to debug a stand-alone monoprocessor 

system. Using Mantis the system must swap from its present 

mode to debug mode so the entire RIG system on the processor 

with the debugger is suspended. It does however allow the user 

sitting at the system console to examine the state of all 

internal data structures of the RIG kernel and all processes 

using symbolic traces. 

There have been changes made to the kernel and Mantis so that 

an Alto can act as a systems console for more than one RIG 

host simultaneously. The advantages of this are: 

- that manual breaks to Mantis can be broadcast to all 

systems involved in the distributed activity, 

- a software break on one system is immediately detected 

by the Alto, which then simulates a manual break for the 

other systems involved. 

Process-level debugging remains a hit-and-miss proposition, 

relying primarily on the use of multiple virtual terminals and a 

user-level message switcher. 
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Realising that distributed operating systems are complex, and 

numerous logic and design problems must be solved during 

development, the designers of RIG incorporated a monitor. By 

monitoring the communication between processes, the 

kernel(s) can propagate the concurrency potential of processes 

directly involved with active system components, such as a file 

system process or a network server, to processes 

communicating with them directly or indirectly. The 

concurrency potential of a process shows its ability or 

likelihood of starting the activity of an active system 

component, defined as any device capable of acting without the 

attention of the CPU. The data collected enables the kernel to 

maintain a directed graph of processes that are blocking each 

other. This helps in making good replacement and scheduling 

policy decisions. 

The monitor consists of two parts, a collector m the RIG kernel, 

and a supervisor residing on an Alto. 

The collector records the event trace m a circular buffer. When 

the buffer becomes full the data 1s transmitted to the 

supervisor. When set up just to collect data without 

transmitting it, it is a useful tool for debugging. 

The supervisor can compress the data in real-time and can 

collect some or all the desired statistics, or it can modify the 

tracing process dynamically, depending on the recorded events 

without interrupting the system. 
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From the data collected it should be possible to derive the 

following information: 

- the state of any process at any time, 

- the time when state changes occur, 

- the state of all the system queues, 

- the cause of state changes (particularly the reason for the 

suspension of a process), 

- the scheduling sequence, 

- the state of all the active components in the system, 

- the swapping behaviour, 

- the time spent in system mode, and the time spent in user 

mode, 

- the messages being exchanged. 

2.2.5 The µ * Multimicroprocessor 

This system was built to aid in the setting up of tools and 

facilities for software development. It has a separate 

software development station which has the usual 

development tools for a microprocessor based machine 

(editors, assemblers, compilers, linkers etc.). 

In this system the debugging was divided into the two phases, 

debugging a single task at monoprocessor level and debugging 

the cooperation of the tasks. 
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The first phase was carried out as usual and the second by a 

distributed set of system· processes (OMS), that centralise the 

debugging activity of all user software to a unique working 

station. The user sees the process as a process similar to the 

usual multitasking system so it is irrelevant which processor 

a task is running on. 

The functions of the system monitor are expanded to allow for 

monitoring of the process and debugging. The tasks are 

identified by name and number. This allows duplicated tasks on 

different processors, all with the same name. (This could be 

useful for system tasks). 

The debug firmware has been built with two different layers 

which communicate with each other: 

- the Display and Command Monitor (DCM), which interfaces 

interactively with the operator and consists of a single 

task running on a processor, 

- the local monitors (LM). They are the lower level, residing 

on each processor. 

The main tasks of the DCM are: 

- to edit and parse operator commands, to format and send 

them to the destination environment (Local Monitors) for 

execution. The DCM therefore acts as a filter to the LMs. 

- to receive messages from any task in the system 

(particularly from the LMs) and to display them on the 

CRT screen. 
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The LM always sends an answer back to DCM to synchronise its 

activities. The answer contains the acknowledgement of the 

message received, the information requested, and error flags. 

The commands available to the operator include : 

LOAD, RUN, SUSPEND,. DELETE (cancels a tasks activation 

record), BREAKPOINT, DISPLAY REGISTERS, STATUS, DISPLAY 

MEMORY, SET MEMORY, SEND (sends a message to any processor 

in the system). 

2.3 Simulation vs. Emulation vs. Monitor 

In the above section some of the methods currently used for 

testing multiprocessor systems have been reviewed. It is now 

necessary to ask why a monitor has been chosen as the most 

suitable method for developing and testing a multiprocessing 

process control system. This is explained in this section with 

specific references to RTS. The three main practical test 

procedures would be simulation, emulation or the use of a 

monitor. Once the target system is completed, the test method 

should allow the comparison of different hardware and 

software combinations in the target system. The performance 

of a certain architecture is very much program dependent and 

can vary widely from one algorithm to another. 
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There are various multiprocessing simulation packages 

available - SIMON [11] and ALGAN [45] are two examples. Both 

of these simulation packages expect the system to be modified 

to fit into their philosophy. It 1s necessary to use the 

programming language provided and hardware that can run 

the provided software. 

The benefits of simulation include improved or less costly 

design procedures for plant and machinery of vanous kinds, 

increased understanding of the problem, validation of 

hypotheses and educational benefits [7]. 

As the multiprocessing hardware is available, it is not 

going to be more costly to introduce a model system. R TS is a 

working system on a single processor thus the initial problem 

has already been understood and this has validated the 

hypotheses posed by RTS. 

If this project was simulated the most effective method 

would be to run the simulation on the Cromemco, which was 

already available, so a special purpose simulation language 

would have to be written. The question must now be asked "Is 

it worth simulating RTS as a multiprocessing system on a 

monoprocessor?". The gains would be the understanding of the 

scheduling and synchronising of processes, understanding some 

of the timing problems, and the comparison of some of the 

hardware and software configurations. One disadvantage would 

be the time necessary to set up such a simulation. Also the final 

simulation would be quite different from the final system, and 

the resources that are available (i.e. hardware and 
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software) would not be used. So it would be very costly in 

terms of both computing and human resources. 

Another method of testing a system is using emulation. 

Emulation is the replacement of a processor with a processor 

which implements the same instruction set and architecture 

as that which is replaced. The new processor can be linked to a 

host system, allowing the user to control the operation and the 

necessary signals of the target system. This allows the 

debugging and testing of software to be done in real-time. The 

target system is remote from the emulator allowing debugging 

in-situ on the target with full control from the emulator. An 

additional benefit is that many facilities of the emulator are 

now available to the target hardware. All the gains from the 

simulation apply here - the scheduling, synchronisation and 

timing are more easily understood as the process is running in 

real-time. If the programs can be down-loaded from the 

emulator and the connections between the hardware are not 

fixed, the comparisons of configurations can still be 

performed. The disadvantages of the simulation are also 

overcome as the existing hardware and software are being 

used. Emulation incorporates the final system, decreasing the 

time necessary to set up such an implementation. 

Unfortunately problems of scale are difficult to study using 

either simulation or emulation. No emulation system can be 

large enough to contain all the situations of interest for test 

and analysis. 
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The final choice, the monitor, has the advantages of the other 

methods and also overcomes their disadvantages. A monitor is 

a separate processor which is included in the system as an 

observer without altering the target system. It allows the use 

of the most realistic data possible, and the impact of day-to­

day events can be ascertained. It can be used as a development, 

test and debugging tool throughout all the stages of the 

implementation of ATS as a multiprocessor system. 
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2.4 Multiprocessing Control Systems 

Computers have been used in process control activities for a 

long time (since the ea·rly "1960s [26]). Initially mainframes 

were used, but because of their cost, only large plants with 

hundreds of control loops could afford them. Mainframes were 

later replaced by general purpose minicomputers. Many of the 

techniques developed for mainframes were passed on to the 

development of minicomputer process control systems. 

The use of minicomputers resulted in a single complex 

software program resident in main memory [24]. One of the 

general architectures for a minicomputer system is illustrated 

in Fig. "1. The minicomputer uses either interrupts or polling to 

service the 1/0 devices. Polling increases the 1/0 servicing 

latency period, however polling software is generally easier to 

write than interrupt servicing software. 

There are still three areas where improvements could be made 

in the minicomputer system: 

- The cost could decrease. Although such systems are 

cheaper than systems involving a mainframe, the cost of 

process control systems can be decreased further. 

- The system could be more fault tolerant. When the 

computer breaks down, control of the process is lost. The 

second improvement is to stop this occurring. 

- Finally the scanning and update rate can also be improved. 

In this system the computer has to access each loop and 

recompute its output signal. 
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Fi~. 1 General Architecture of a Minicomputer Process 
Control System 

A system which overcomes the problems m minicomputer 

systems outlined above, is the multimicroprocessor system. The 

microprocessors are generally cheaper and more flexible. The 

system is more fault tolerant, because if one processor breaks 

down, another processor can take over for it or the rest of the 

system can continue without that processor. Each processor can 

be scanning at the same time, so if they are connected as 

illustrated in Fig. 2, each processor can do the input and output 

for the loop they are controlling. 
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Fi2, 2 An Architecture of a Mu1timicroprocessor 
Process Control System 

This multimicroprocessor process control system has a 

microprocessor to process information from each I/0 unit. The 

partitioning leads to the concept of a "smart" controller. This is 

only one type of architecture which 1s available for 

multiprocessor based process control systems. There would 

need to be interaction between the controllers for the loops for 

multivariable control so this system works only for single loop 

processes. 

There are five fundamental differences between the two 

systems illustrated above: 

- The processor bus m the multimicroprocessor based 

system can be run at a lower data rate than in the 

minicomputer based system. The processor memory bus 

need not be the same as the bus between the processor 
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and the peripheral devices, and therefore the electrical 

interfacing problem· becomes simpler. 

- In the minicomputer system the entire software for the 

system is concentrated, resident in a single memory. In 

the multimicroprocessor system the software 1s 

distributed i.e. each microprocessor memory contains 

software that is customised to that part of the system. 

- The single high speed bus in the minicomputer is replaced 

by several lower speed buses in the multimicroprocessor 

system. This physical partitioning of the system into 

self-contained modules, which communicate at low 

speed, serves to simplify the bus design. 

- The multimicroprocessor can be adapted to a variety of 

bus configurations and process interfaces. 

- System software development is simplified due to the 

modular and standalone nature of the microprocessors. 

2.5 Advantages of Multiprocessing 

Multiprocessing is suitable when there are a large number of 

processes which can be executed at the same time or want to 

use the same software or a copy of it. In the RTS control system 

there are a large number of processes which want to execute 

the same software. This software involves a lot of sequential 

action. Modern design th.eory allows designing to be done on­

line which demands a lot of computation quickly and one of the 

cheapest methods for servicing this need is multiprocessing. 
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2.6 Summary of Multiprocessin2 Process Control 

Systems 

This section contains the description of seven multiprocessing 

process control systems. 

2.6.1 NARCIS Project 

Vernel, Lagier and Husson [47] felt there were inadequacies in 

the traditional minicomputers for real-time process control 

applications so they undertook a project called N.A.R.C.I.S. 

(Nouvelle Architecture de Calculateur Industriel Specialise) in 

the early 1970s. They felt the inadequacies lay in both the 

hardware and software. The inadequacies in the hardware 

were the lack of reliability, speed and capacity for expansion. 

The software inadequacies were the inflexibility of the real 

time monitors and the lack of a real time language. 

They decided to build a process control system which was 

reliable, fast and modular. 

To realise these features NARCIS was designed as a 

multicomputer system w.ith the hardware based on modules 

that are physically identical rn order to simplify 

reconfiguration processes. Each module has a microprocessor, a 

ROM (to store programs), and a working memory. 
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The modules differ m their software. There are two different 

types: 

IOP or input-output processor for i/o operations. 

- TP or treatment processor for computing operations. 

The IOPs do the data logging, send commands, translate code 

and can monitor the process when necessary. The TPs take the 

data collected in the plant and treat according to control laws. 

Any necessary exchanges between the different processors 

takes place through a common memory. 

There is a control unit which is responsible for allocating the 

tasks the processors must perform. 

The software can be thought of as two separate levels, the 

software used to control the computer, and the software used 

to control the application. 

The first of these is the operating system, responsible for 

scheduling various other portions of the software system and 

maintaining communications between the various programs in 

use. 

The second is divided into three levels which are characterised 

by the time requirements to respond to outside events. These 

levels are: 

- data logging and the sending of commands, 

- computing of the set-point control, 

- adaptive control or optimisation algorithms. 
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Within NARCIS the aims of the project were fulfilled. The 

reliability is satisfied by the number of redundant modules in 

the system. There is also an automatic maintenance system 

(A.M.S.) which consists of a combination of failure detectors 

distributed across the various operation levels of the system. 

The failure detection no longer compromises the development 

of a program so the A.M.S. contributes to increasing the 

processing speed. Also distinct operations can be carried out 

simultaneously on various processors. 

The use of the treatment processor (TP) and input-output 

processor (IOP) increase the modularity and give the potential 

to enlarge the system according to need. 

2.6.2 A Distributed Computer Control System 

The system described in this paper [25] was designed around an 

existing plant control system. The proposed multiprocessor 

system fitted naturally into an hierarchical structure. 

In the first implementation interfaces such as the operator 

desks and their existing meters and auto/manual stations were 

retained. Another constraint was to utilise the existing plant­

mounted transducers and actuators. The existing system was a 

control system for a 120MW boiler. The areas that were 

controlled were: 

- feedwater control, 

- superheater temperature control, 

- reheater temperature control, 
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- furnace pressure control, 

- air control, 

- mill control, 

- steam pressure control. 

To control these areas, five subsystems were chosen: 

- feedwater control, 

- temperature control, 

- air control, 

- coal firing control, 

- steam pressure control. 

Each subsystem remains at a steady state when the 

interactions of the subsystems are being ignored. However it 

is known that there is some interaction over the full-load 

range so a management supervisory processor was included to 

investigate and define some of the higher level control 

functions. 

Between the subsystem machines, and between the subsystem 

machine and the management machine, a modified form of the 

BISYNC data communications protocol [43] was used on 20mA 

[29,33] serial links. Data transfer between subsystem 

processors is routed through and handled by the management 

processor. 
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The management processor carries out such functions as data 

logging, operator display and supervisory functions. A disk is 

provided for medium term data storage for the display and 

alarm functions. Down-line loading to the subsystem machines 

is also provided through the management processor and a copy 

of the schemes in the subsystem processors is held on disc. In 

the event of a failure in the subsystem machine, automatic 

program reloading may be achieved. 

Commercially available equipment was used to keep hardware 

development to a minimum. MEDIA plant interface equipment 

was used along with PDP, '1-03 microcomputers for the 

subsystems, and PDP'1 '1 _·34 for the management system. Most 

of the computers were placed in a single room. 

The software for the system is written in CORAL 66. Design is 

such that any failure in communications is fail-safe and 

minimised. 

The main design features included: 

- provision for all common modulating control functions e.g. 

PIO controllers etc., 

- provision for selectable control strategies in response to 

plant state, 

- provision for inter-control loop communication when 

dealing with interactive control situations, 
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- communication facilities to other machines for distributed 

and hierarchical control systems, 

- capability for efficiency or other plant performance driven 

control via communication with logging/display 

machines, 

- smooth manual/auto transfers and control schemes 

switching, 

- automatic loop start sequencing for cascade systems, 

- automatic prevention of integral wind-up and related 

problems due to valve endstop or other constraints, 

- built-in error checking and fail-safe response for 

communication link or local plant input/output failures, 

- watchdog backup check for processor or other basic 

hardware failure, 

- simple to use control language to set the system up 

providing on site configuration, 

- security features for controlling access for controller 

settings, set-points etc. 

The conclusions that were reached were that the control 

system of a large power generator unit, which this was, can be 

broken down into a distributed form using five subunits and 

that considerable advantages in terms of higher security and 

improved control performance could be achieved by adopting 

this distributed hierarchical structure. 

36 



2.6.3 A Hydrological Monitoring System 

The hydrological data monitoring system in this paper [39] 

consists of clusters. The clusters are interconnected with the 

RWS packet-switched-data communication network in 

combination with public data communication services. This 

allows for distributed processing and distributed data storage. 

The design of the clusters makes distributed processing 

possible. A cluster consists of a number n (where 4 < n < 50) of 

monoprocessor microcomputers interconnected with the data 

communication system. Each microcomputer has an identical 

software data communications kernel and could in principle 

perform every existing function. However there are differences 

introduced with discs, plotters, sensors etc. 

There are five basic types of processors: 

- dictionary processor, 

- library processor, 

- executing processor, 

- user processor, 

- link processor. 

There is one dictionary processor per cluster. It takes care 

of the allocation of processing power and of storage capacity. 

Every background storage medium will have a library 

processor to abstract its behaviour from the cluster. The 

distribution of files among library processors is taken care of 

by the dictionary processor. 
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Every processor without a process will execute without 

default its data communication kernel and can be loaded with 

any process. These empty processors are called executing 

processors. At start-up time all processors are of this type. 

The user processor executes a high-level language 

interpreter to accept user commands from a terminal. 

It is necessary to have a minimum of two link processors to 

interconnect two clusters via a packet-switched network. This 

processor abstracts the behaviour of the packet-switched 

network from the cluster. With abstraction the two clusters 

look like one. Only the inter-cluster messages have a time­

delay. 

A simulation was carried out based on the processors in the 

clusters being joined in a ring net with a twisted pair cable. 

All processors are connected to the bus through input/output 

processors (IOPs). The IOPs have enough memory to handle all 

incoming or outgoing traffic but they are limited in their 

accessability due to a restriction in the number of 1/0 ports. 

They keep track of the transmission control, time slot 

synchronisation and bus interfacing. A seventeen bit counter is 

synchronised by the first synchronisation character issued by 

the monitor on the first restart procedure, and provides the 

time slot counter with word counts. Transmissions are only 

acknowledged on a message base, so no handshaking takes 

place at the word level. 
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The simulation was carried out before implementing into 

hardware one of the ring network configurations. This 

simulation was naturally very specific to this system. The 

information to be obtained was: 

- the relation between the ring response time and the 

number of time slots in the ring net, 

- the relation between the connect time and the number of 

time slots in the ring net, 

- the influence of the ring load and the connect time and 

ring response time, 

- the influence of the number of 1/0 ports in each processor 

on the connect time and the response time and, 

- the fact that it takes sometime before a processor can 

start the transmission of an output messsage can cause 

queueing of messages. The queue length was investigated 

for different configurations and ring loads. 

The simulation program was written in Simula 67 and all 

activities were defined using Evaluation Nets (E-Nets) [35]. 

The results of the simulation showed that the introduction of 

time slots resulted in a deterioration of the connect time if 

the number of 1/0 ports in each processor was not increased at 

the same time. A double ring was introduced with two time 

slots and two 1/0 ports per processor, and this was preferred 

for reasons of connect times, throughput and reliability. 
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2.6.4 Modular Multiple Microprocessor System for 

Control Applications 

This proposed modular multibus multiprocessor system [30] 

was designed to overcome resource contention and 

performance degradation, and also to take advantage of 

definitions in process control which slot naturally into the 

multiprocessing system. 

There are three main parts to this system. They are the 

processor (P), the common memory (M), and the bus (B). Each 

processor has its own local memory (LM), 1/0 capabilities (1/0) 

and bus interface (Bl). The common memory also has the 1/0 

capabilities and bus interface. The bus module has arbitration 

logic (AL), which is used to manage the bus. 
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Fig. 3 The Structure of the Modular Multiple 
Microprocessor System 
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The choice of topology was based on the following factors: 

- reliability, 

- fault tolerance, 

- modularity, 

- bandwidth, 

- number of processors, 

- expandability, 

- moderate cost. 

The systems bus management and the basic synchronisation 

functions are supported by hardware. The multibus 

interconnection scheme is used in preference to the crossbar 

because it is less expensive and more fault tolerant. It also 

gives the same effective bandwidth with an adequate number 

of buses. Even though the arbiter required in the multibus 

system is more complex, it was shown to be cost-effective 

and fast. 

The major feature of the system buses is that the software 

does not need to know how the buses are configured or how 

many of them are working. 

Each microprocessor has a "window" to look at the common 

memory module. Due to the memory-mapped 1/0, some common 

memory addresses can be used to support the common 

peripherals. The 1/0 subsystem is organised in two levels, 

local 1/0 and global 1/0. 
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The local 1/0 involves the interfaces and devices which are 

directly associated with the processors. This direct 

association gives minimum response time for interrupt driven 

tasks. The global address region contains the physical 

addresses of the peripherals used for global 1/0. 

A concurrent programming scheme was used, based on 

"processes" and "monitors" [22]. As a process is a self­

contained sequential program with its own data, it can access 

its own private data but cannot operate on data belonging to 

other processes. The monitor allows certain data structures to 

be shared. 

A monitor defines a shared data structure and all the 

operations which can be performed on it. As well as 

transmitting data between processes, monitors can be used as 

synchronisation structures, enforcing exclusive access to 

shared data by executing one process at a time. 

The system allows the allocation of a process to a processor 

to be fixed or dynamic. The management of communication 

between processors is simpler with fixed mapping. 

In the prototype, the processes are given priorities based on 

their function and speqification in the application. Factors 

affecting priority are: 

- whether the processes are interrupt driven, 

- if a bounded response time to process activation is 

expected etc. 
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The processes with top priority are stored in local memories 

and have their own processor. The other processes are stored 

either in local or global memory. The processes in global 

memory can be executed on any processor when activated. 

However they can be interrupted by a process with a higher 

priority. The global processes can be executed on processors 

with other processes in local memory or on processors without 

other processes in local memory. If some processors are set 

aside especially for global processes, the run-time-processor 

availability is increased. 

The interconnection scheme is based on the common memory 

modules. A processor can use these common memory modules 

in one of two ways. The processor can either block the entire 

memory module for its own use or it can share the memory 

module with other processors. In the latter case, special 

hardware and/or software is needed to ensure that a processor 

is not attempting to access a part of the memory that it does 

not have access rights to. 

The global operation is carried out in three steps: 

- the common memory module is selected, 

- the access form is selected, 

- the request is executed. 

The access form can be an 1/0 port request or an instruction 

fetch request. The 1/0 port request involves executing an 

output instruction for a special 1/0 port. The instruction fetch 

request is carried out during the instruction fetch cycle. If the 
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address of the instruction is in the range of the 

microprocessor window then a positive response is received. 

Once the request has been acknowledged, the desired module is 

selected. The access is in two parts: 

- an arbiter is needed to make allocation decisions, when a 

simultaneous multiple request is made for a common 

memory module. 

- the arbitration logic assigns the buses at request time. 

A common memory module access is achieved only if the 

selected module is available and there is a free bus. 

The arbiter is used for arbitration of simultaneous multiple 

requests for common memory modules and also for bus 

assignment. 

A modular system was designed and the prototype 

implemented. This paper explains the system architecture, the 

programming scheme, the interconnection structure and the 

arbitration scheme. Although the paper sometimes refers to 

the prototype, the system was designed as a general purpose 

system with control applications in mind. 
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2.6.5 MODUMAT 800 

Like the other systems described above Modumat 800 is a 

distributed system for the control of industrial processes [3]. It 

consists of functional processors ( e.g. control units and operator 

units) linked by a communications structure. The 

communication structure has one interface processor per 

functional processor and is connected by a serial bus. 

Distribution IS achieved at the levels of function and 

implementation. 

In the implementation level, there are multiple processors at 

each function level. 

There is a programmable multiloop regulator which IS designed 

to handle from one to eight loops. The regulator is made up of 

three basic blocks: 

- process interface module (PIM), 

- multiloop processing unit (MPU), 

- serial bus interface board (SBI). 

There is one process interface module (PIM) per loop. It 

supports two main functions. The first function is to acquire 

data from the process, including sampling and AID conversions. 

It also sends output values to the process and carries out the 

DIA conversions. The second function is to carry out fault 

detection and recovery when the MPU fails. 
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The MPU also has two mam functions. It runs the regulation 

algorithms for the possible eight loops and their possible 

interactions. The MPU also handles exchanges with the PIMs 

and the Serial Bus Interface. The exchanges include requesting 

data and sending results. 

The SBI is in charge of handling the communication on the bus 

which includes the bus allocation and low-level transmission 

protocols usmg an HDLC frame based mechanism. It Is 

connected directly to the PIMs when a faulty MPU Is 

disconnected. This makes it possible to directly access the data 

in the PIMs and transmit/receive it on the bus. The SBI is 

made up of four parts: 

- a processor interface, 

- a computing unit, 

- a line interface, 

- a board watchdog. 

The processor interface receives the functional processor's 

requests and sends back corresponding messages. 

A Z80 is used as a computing unit. Its main functions are firstly 

to analyse the messages received, prepare answers and 

transmit them; secondly to transmit/receive to/from the 

functional processor, to ensure that the compulsory logical 

transformations between the two interface parts of the SBI 

occur. The counter-timer chip is used for time out generation 

and clocking in general. 
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The line interface deals with the biphase encoding/decoding. 

If not periodically retriggered by software, the board 

watchdog resets the board. 

The operator unit is the man/machine interface. It allows the 

operator to select a given number of views of the industrial 

process data from a preestablished list. This is also where the 

operator commands are interpreted. 

The operator unit includes a processor to implement the above 

functions, two mini floppy disks containing the coloured 

views, graphs or drawings and an SBI board connecting the unit 

to the other processors. At least two display units need to be 

connected : one in charge of the synthetic view and the other(s) 

to observe specific parts. 

The communication hardware consists of the serial bus and the 

serial bus interface boards. The bus is a shielded twisted 

electrical pair. It is duplicated for reliability. Each functional 

processor is connected to an SBI board. 

The software methodology used was based on the use of 

Communicating Sequential Processes (CSP) [21] and Petri nets 

[36]. 

For detection software there is a list of access capabilities, 

any attempt to make illegal accesses is refused. There is also 

a processor which acts as an observer. For each exchange on 

the bus, it verifies that in that particular partial state of the 

system, that exchange is allowed by the net. 
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Part of the communication scheme is located on each SBI and 

is known as the local communication scheme (LCS). 

Cooperation of the LCSs results in sharing of the bus resource 

between SBls, based on a virtual ring. The SBI which is the 

primary station at a particular time can address any other SBI. 

When its primary station time is over, it relinquishes primary 

status to the next one on the ring. A boss/slave system is 

introduced in case of fault in an LCS. 

Each LCS is the same, whatever processor is connected to the 

S81. Its primary functions are: 

- transmitting/receiving to/from the bus 

- primary status handling 

- access list handling 

- message passing type cooperation between processes 

inside the S81. 

The LCS is based on a multi-tasking kernel, supporting a 

message passing synchronisation scheme. A process is either 

SENDing or WAITing, this is similar to the traditional P and V 

operations semaphores. 

In the first implementation the master status is centralised in 

a single boss known as the controller. The controller 

constitutes the global system timing mechanism. The 

controller is duplicated. The second controller runs, 

controlling itself and the other one but its transmission 

circuits are turned off. If a fault occurs in the first controller 

the operator manually switches controller 1 off and controller 

2 on. They aim to develop the protocols so that they are more 
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sophisticated than the send-and-wait one now existing. New 

protocols must be supported to encourage evolved 

communication and global distributed control. 

2.6.6 Microcomputer Systems for Chemical Process 

Control 

The system descibed here [8] uses a modular approach. This 

makes the construction· of special interfaces and control 

circuits possible. It also enables custom-fitting of the 

microcomputer controller to a given process control 

application. The logic modules are computer elements 

assembled on printed circuit boards of a specified size which 

plug into a chassis and carry data and control signals in a 

parallel format between the modules. The memory addressing 

and input/output control are carried out on supporting 

electronic circuits. The module design approach makes 

possible the construction of custom made dedicated 

microcomputers with a minimum of circuit wiring and 

peripheral control logic design. Additional impetus for 

extending the modular design concept to peripheral functions 

is the engineering goal of adapting the microcomputer to a 

large number of speciality applications. 

The basic 8-bit microcomputer system built around the Intel 

8008 consists of a CPU and the supporting LSI circuit 

components on three standard printed circuit boards; the 

central processor board, the input/output board and the 
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memory address board. They supply all the timing, tri-state 

buffering and address decoding needed to support the 

operations of the basic microcomputer. 

Another basic microcomputer system has been set up based on 

the Intel 8080 microprocessor as a two card module. The 

microprocessor module contains the Intel 8080 CPU chip and 

logic circuits for timing and control signal processing. The 

8080 control module contains the clock generator and 

generates all timing, control and status signals for the 8080 

microprocessor module, the RAM and the PROM. 

The program push-pop stack module has been designed as a 

peripheral circuit to the 8008-based microcomputer. The 

module is used in complex multilevel software applications to 

store the state of the machine at a program breakpoint, and to 

hold the parameters for subroutine calls and returns. The dual­

restart board functions as a manual restart of the 

microprocessors, or as an automatic restart at a stored 

location in memory. It is useful in software debugging and also 

in executing two-level priority interrupts. The A/D and D/A 

converters are 12-bit resistance ladder network devices with 

a sampling time of >= 25µs. The D/A converter has a decoder 

circuit on the module which sequentially stores the high-order 

and low-order 8 bits on a tristate latch connected to the data 

bus. 
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A general interface was developed to interface the 

microprocessor to different devices. Other special interfaces 

were also devised on a one-off type basis. It was proposed that 

the CAMAC [34] system, with its major international backing, 

could become the standard for remote data transmission. 

The special purpose systems which were based on this system 

included: 

- process monitoring, 

- gas-chromatography control, 

- electrochemical process control, 

- general purpose control applications. 

2.6.7 Distributed Hierarchical Computer System 

At City University where this paper [28] was written there are 

several pilot-scale processes which are required to be 

operational simultaneously. Each pilot-scale process has its 

own local digital controller, which performs such tasks as 

data logging, parameter estimation and direct digital control. 

The local controllers independently transmit data to a 

minicomputer for processing and graphical display, and, in turn 

receive local control parameters. A star network is used as the 

only communication necessary is between the local controller 

and the minicomputer, rather than between two local 

controllers. 

The simultaneity of the plant has been met by a time-shared 

operating system on the central computer. This limits the time 
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taken for an interrupt signal to be processed, but this was not 

a disadvantage on this system. 

There are two levels, the supremal level which includes the 

central computer, and the infimal level which are the local 

controllers. 

The infimal level contains four I-MIC (8085 based) 

microcomputers and a DEC LSl11/02 minicomputer, which are 

used (depending on the application, for data acquisition), 

direct digital control and local optimisation. A DEC LSl11 /23 

is used at the supremal level to coordinate the computers at 

the infimal level. 

At the time the paper was written, the 1-MICs controlled a 

pilot scale freon vaporiser, a mixing process and an analogue 

computer simulation of a two subsystem interconnected plant. 

The LSl11/02 controls a pilot scale travelling load furnace. 

Peripherals include twin 20Mbyte Winchester discs and a 

1.2Mbyte floppy disc. Others available at the supremal level 

include a colour graphics terminal and a graphics terminal 

with hard copy unit. 

Each computer at the infimal level is interfaced to its 

respective plant using plug-in memory-mapped interface 

cards. Communication between the 1-M I Cs and the LSl11 /23 

takes place over 20mA current loop serial lines at 1200bd, 

while communication between the LSl11/02 and LSl11/23 

takes place over a 16 bit optically isolated parallel link. 

The software for the 1-MICs is mainly written in CONTROL 

BASIC, with a few routines like the link communication 
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routines written in 8085 machine code for speed reasons. The 

LSl11/02 is programmed in FORTRAN IV, using system 

software for 1/0 programming and interrupt handling. The 

LSl11/23 is programmed mainly in FORTRAN IV using software 

written in MACRO-11 to drive the colour graphics terminal. At 

the start of each communication the local controller transmits 

the length of the frame of data to be transmitted from itself 

to the supremal level. This is stored and the length of the 

frame of data to be transmitted from the supremal level to the 

local controller is transmitted back to the local controller. 

The rest of the data is then transferred. On the completion of 

the exchange of data a check is performed to ensure that a 

transmission error has not occurred. 

The sampling time used for the freon vaporiser is four 

seconds, which is adequate in view of the slow process 

dynamics. At each sampling time the process variables are 

read, the control signals are calculated and the digital signal 

to the valve actuators is output. The conversational program 

running at the supremal level enables the operator to change 

process set-points etc. while the process is running, to select 

the mode of printing, i.e. VDU, line printer or file, to call the 

colour graphic display terminal to display the process state on 

a mimic diagram; to call for process optimization; and to 

request process shut-down. 
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Adaptive control was used and new iterative optimisation 

techniques were tried. The iterative optimisation techniques 

are resident at the supremal level and use measurements 

supplied by the local I-MIC controller to update process set­

points to be automatically transferred to the local controller 

for implementation on the process. 

The control software for the mixing process follows similar 

lines to that described for the vaporiser. Due to the 

interactions occurring between the control loops, the process 

has been seen to be a valuable vehicle as a demonstration of 

multi-variable control techniques. The non-interacting control 

method [9] and the Inverse Nyquist Array Method [40] have been 

found suitable. 

A steady state model consisting of two interconnected 

subprocesses, simulated by an analogue computer, is used to 

investigate different coordination methods for closed loop 

hierarchical control such as interaction balance and 

interaction prediction methods with global and local feedback. 

An EAL Pace TR48 analogue computer is used to simulate the 

interconnected process. First order constants are introduced to 

the interaction inputs and controls within the simulated real 

process. Synchronisation and interprocess communication 

problems arise at the decision unit level, so this has also been 

tested. Two methods have been considered. They are the 

elapsed time method and the semaphore method. 

Future possible developments are likely to include upgrading of 

the LSl11/23 to accommodate research in robotics and the 
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replacement of the local controllers by more powerful 

microcomputers to enable local optimisation to be performed. 
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· Chapter 3 

Design Considerations 

This chapter summarises properties which multiprocessor 

systems exhibit [5]. These differing properties had to be 

considered when the monitor was designed. The properties 

include: 

- partitioning of functions, 

- interconnection topology, 

- the bus, 

- the structure of the processors, 

- bus protocol, 

- the coupling of the processors, 

- the information needed in the frames. 

3.1 Partitioning of Functions 

Good partitions lead to good systems. The definition of the 

system is partitioned into processes. Good partitions are 

produced when there Is very little overlap between the 

processes. When there is little overlap, there is only minimal 

data to be passed between the processors. The system is then 

more tolerant of faults, because the processors are more 

independent. 

The allocation of processes to processors may be dedicated or 

dynamic. The dedicated approach simplifies the control 

software but decreases the flexibility of the system. The 

alternative Is obviously more complex to control and 
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implement. However dynamic allocation increases the 

flexibility of the system. 

3.2 Interconnection Topologies 

There are many interconnection topologies. Fig. 4 shows some 

topologies which are considered. The choice of topology used 

depends on the following features: 

- performance bottlenecks, 

- modularity, 

- fault tolerance and reconfigurability, 

- interconnection complexity. 

Not all these attributes are always important, however any 

interconnection schemes can be compared using this list as a 

reference. 
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(a) Loop (b) Fully Interconnected 

Memory 

(c) Common Memory (d) Multidrop 

(e) Regular Network 

Fig. 4 Interconnection Topologies 

3.3 The Bus 

The paths between the nodes can be implemented in many 

different ways. Along these paths pass all the data and control 
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information. These paths are the buses in the system and the 

connection is known as inter-processor communication. 

Traditionally the bus structures have "occurred" in an ad hoc 

manner. However as systems become more complex, the design 

of the bus becomes more important [ 44]. The bus can often be 

the limiting factor in performance, modularity and reliability. 

There are three major issues involved in the design of buses. 

They are: 

- dedicated or shared lines, 

- the communication technique, 

- the data transfer conventions. 

A dedicated line is always assigned to one physical pair of 

devices. A shared line can be shared by a number of physical 

devices and so needs special control hardware and/or software. 

A number of questions arise about the efficiency of protocols, 

and the interactions with other protocol design decisions, and 

system design decisions. 

There are a number of basic data transfer conventions which 

determine how the data is sent along the bus e.g. single word 

transfers only, fixed length block transfers only, single word or 

variable length block etc. The width of the bus also has a large 

impact on the system. 

The buses may be parallel or serial. In parallel mode the 

entire data word is transferred at one time. A serial bus is 

usually a single circuit interconnection between source and 
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destination. The data is transferred only one bit at a time. The 

single circuit is used for both control and data transfers. 

The volume of data transferred during the connection of source 

and destination tends to influence decisions on the other 

factors. Data volume can be assigned as: 

- single word, 

- fixed length block, 

- variable length block. 

3.4 The Structure of the Processors 

Processors may be logically equal or hierarchically structured. 

A hierarchical structure implies a master-slave relationship. 

These systems are usually easier to build but less flexible. 

Logically equal systems are more difficult to build but more 

flexible, reliable and capable of dynamic load sharing. 

3.5 Bus Protocol 

The main bus protocols are synchronous and asynchronous. 

The total data transferred includes bits required by the 

protocol plus the message. Thus the actual transfer of n bits of 

data requires some m bits of protocol signals, and the 

effective bandwith in message bits per second is lower than 

the bit transfer rate of the bus. Obviously the protocols are a 

necessary overhead which determines the bandwidth of the 

bus. There is a trade off between costly protocols and 

bandwidth. The cost is the number of signal lines, drivers etc. 
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required to implement the protocol as well as the logic cost of 

the components required for implementation. 

The asynchronous protocols fall into two categories, the one­

way protocols and request/acknowledge protocols. 

One-way protocols are either source or destination controlled. 

Timing between source and sink is implicit and no 

acknowledgement of data reception is given. The major 

problem is ensuring an appropriate delay so that data is valid 

before it is captured. The advantage is the simplicity. 

A request/acknowledge protocol demands an acknowledge from 

the receiver and in some cases a negative acknowledge. 

Three issues must be considered for synchronous 

communications, they are: 

- the mechanics of synchronisation, 

- data transmission, 

- verification. 

The synchronisation can be generated either locally or 

centrally. A centralised system has a clock signal which is 

generated to all units on the bus. This is subject to errors due 

to skew as distances increase. A framing signal can be 

propagated which is decoded by each unit and used to drive 

local counters which then identify the correct time. The 

framing sequence may be distributed by a separate bus or 

mixed with data. 
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Having reached an agreement on time, each unit can be 

allocated a time interval (slot) during which it utilises the bus. 

These slots are allocated on a dedicated or non-dedicated basis. 

Verification of the data by the receiver is usually required to 

ensure the reliability of the transfer. This requires an 

acknowledgement to be transmitted back to the sender in the 

appropriate time slot. Verification by default is often used, 

which implies a request for retransmission in a designated time 

slot only if an error occurs. 

3,6 The Couplin1: of the Processors 

Systems can be tightly coupled or loosely coupled. A tightly 

coupled system has a common memory. The loosely coupled 

systems have a memory for each processor. A lot of systems 

are somewhere between tightly and loosely coupled. Loosely 

coupled systems cut down on queueing to access memory and 

decreases the occurrence of deadlock situations. Deadlock can 

occur however when one processor is waiting for some 

information before it continues executing. This can be 

eliminated if the information is held in a variable and the last 

available information is always used (i.e. it is not necessarily 

the most current information but it does prevent deadlock 

from occurring). 

If a system is loosely coupled and the only communication 

between the processors 1s through messages then the 

processors are independent of one another. This makes a 
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system fault-tolerant because when one processor malfunctions 

it has very little effect on the others in the system. 

3.7 Information Contained in the Frames 

The final matter to be considered is the way the frames [ 43] 

are to be constructed. This is of course dependent on all the 

factors discussed above. A frame may contain any of the 

following [33]: 

- a synchronisation bit ( one or two), 

- a field to indicate the type of the frame, 

- a count indicating the number of bits in the message, 

- start of header marker, 

a header containing the address of the receiver, address 

of sender etc., 

- start of text mark.er, 

- end of text marker, 

- the message, 

- the cyclic redundancy code. 

It is necessary to keep information to a minimum while 

retaining all the appropriate information, especially when the 

messages are short (section 3.5). 

3.8 Systems which can be Monitored 

Many systems do not fit tightly within the categories outlined 

above. In fact, it has been shown m Chapter Two that 

multiprocessing techniques are not clearly defined, so some 
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limitations must be placed on the systems we are able to 

monitor. To make the monitor as general as possible it was 

necessary to break it into two parts, the main monitor section 

and the communications handler. 

The main monitor section remains constant for any system 

that is being monitored. It is necessary to change the 

communications handler however, to suit the features of the 

system being monitored. 

So generally this monitor will work for any system which has 

a common bus, some form of common clock, and some means of 

halting all system processes eg. for the monitor designed for 

RTS a signal of the bus is used for the NMI. 

The number of processors this monitor can analyse is not 

limited by the hardware or software. The system is built so 

that any number of processors could be added. The limiting 

factor would be the speed. 

It is necessary to decide on a system to test the monitor on, so 

the rest of this thesis refers to the monitor as it was designed 

for RTS, keeping the monitor as general as is practical. 

3.9 ATS 

At this point it is necessary to look at how RTS is partitioned 

as this may influence some decisions which are made when 

designing the monitor. 

RTS can be partitioned into four separate functions: 

- 1/0 
' 

- Keyboard/Display, 
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- Identifier (Id), 

- Control. 

When the partitioning was initially considered, one processsor 

was dedicated to a system observer. However the monitor will 

now do this task. 

The I/O involves the A/D and D/A conversions, and the 

communications with other peripherals. Each task would have 

to be given a priority, and the A/D and D/A conversions would 

be top priority because these operations must be done in real­

time. 

The Keyboard/Display function performs the man/machine 

interface. 

The Id identifies the model and state from AID parameters. 

With this executing at the same time as the control function, 

the speed should be increased. 

The control function is there to determine new actuator values 

at each time step. 

With this partitioning the data to be passed between processors 

is at a minimum. 
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Id 

loop status 
gains 

Id 
Setpt 
gains 
loop status 
Measurement 

gains 
states 

message 

K/D 

Fig. 5 Communication Between Processors 

Fig. 5 illustrates the connections which are necessary between 

the functions and the information which must be passed. Notice 

that this structure is quite different than the structure m fig. 2 

where each processor acts as a local controller. Fig. 5 1s not the 

physical topology of RTS. RTS would be set up as a loop or ring 

network (see fig. 4) and the messages would be passed around 

the system from processor to processor until the message 

reached its destination. 

Unfortunately the amount of information passed between 

processors is not always quantifiable. Some figures depend on 

the numbers of loops in the system while others are dependent 

on the number of system states or the order of the process. As 
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RTS stands the amount of the information passed is as follows: 

1/0 to Id 

actuation 

measurement 

total 

2 bytes 

2 bytes 

4 bytes/loop 

This is the amount of information passed for one loop. A 

system can have a range from one to several hundred loops. 

However for a small system we are envisaging between one 

and ten loops. 

1/0 to Keyboard/Display 

message This may only be 1 byte, it is dependant on whether 

a key is used or not. 

1/0 to Control 

Id 2 bytes 

setpoint 2 bytes 

measurement 2 bytes 

gains 45 bytes 

loop status 1 byte 

total 52 bytes 
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The gains are dependant on the order of the process. The 

number of states in most systems is between three and five. 

The loop status and gains need only be passed if the ID goes 

down. 

Control to 1/0 

actuation 

Control to Id 

gains 

loop status 

total 

Id to Control 

gains 

states 

total 

2 bytes 

45 bytes 

1 byte-

46 bytes 

45 bytes 

180 bytes 

225 bytes 

Keyboard/Display to Control 

loop info this can be of variable length 

Keyboard/Display to Id 

loop info this can be of variable length 
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The figures above illustrate that there is not a great deal of 

information passed between the processors. The other 

important point about partitioning 1s that when one processor 

fails the rest of the system should be able to carry on or close 

all necessary activities down rather than simply allow them to 

crash. That is, the system should be fault tolerant and should 

degrade gracefully. Looking at the system as it stands, if the 

I/O processor fails it would be necessary to stop the entire 

process or keep it at some steady state. A message would be 

displayed on the operator's terminal indicating that a fault had 

occurred. 

If the Keybord/Display processor crashed, it would only be 

necessary to stop that processor and the rest of the system 

could continue in a limited form. 

RTS is designed around the possibility of the Id processor 

failing, so this would have no effect. 

If the Control procesor failed, the outputs could be set at some 

safe condition values. 

It was considered that serial communications would be 

necessary for such a system as all processors may not 

necessarily be resident in the one box and they could indeed be 

distributed over a long distance. It would be impractical to use 

parallel communication from the point of view of both the 

noise and the cost. For . a serial connection no provision has 

been made in the hardware for an NMI. However the RS-232C 

signal DCD can be used to generate an interrupt on all 
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processors. This doesn't have the priority of an NMI, however it 

is the best that can be done with serial communications. A 

high priority interrupt is necessary to force the processor to 

take some form of action no matter what it was doing before 

being interrupted. 
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Chapter 4 

Design Specifications 

Many papers have been written expressing the difficulties of 

debugging a real-time system [15, 37, 48] but few include the 

complication of debugging a real-time distributed system. This 

thesis outlines the design of a monitor for the development and 

debugging of a real-time distributed process control system. 

Some of the papers which discuss debugging a real-time 

distributed system [10,12] describe a system where special 

software must be included m each processor. These monitoring 

system are not as general as they could be, therefore they are 

not as easily adapted for use with other distributed systems. 

Earl Van Horn [ 46] outlines three criteria for designing 

computer systems to facilitate debugging: 

- record input streams, 

- specify the input stream, 

- reproduce an output stream. 

These criteria do facilitate debugging of a batch-type system. 

However reproducing an output stream is impossible in real­

time systems because the output not only depends on the input 

stream but also on the timing. Van Horn indicates allowances 

can be made so that the third criterion can be met, but this 

adds unnecessary complications to the system involved. 
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The word "monitor" 1s used throughout computing literature. 

There are a number of software and hardware items which are 

all called monitors e.g. those used m operating systems [38, 39, 

43]. The monitors m this thesis have the same definition as 

those referred to by Witschorik [ 48]. A monitor is a tool 

designed for the debugging of systems. In this case the system 

is a real-time distributed process control system. 

The properties of a performance monitor as listed by Allworth 

[1] are: 

- it should be possible to extract the necessary performance 

characteristics from the system being measured, 

- it must cause minimum interference to the system being 

measured, 

- it must be convenient to use. 

These three properties also apply to the debugging monitor 

designed below. 

4.1 Monitor Requirements 

This section outlines assumptions which this monitor lS built 

around, and then lists the requirements of such a monitor. 

An outline of activities a user may wish to carry out lS given. 

Using the requirements as defined, a description lS given 

showing how the activities can be satisfied. 

The requirements are listed again outlining their importance 

by showing the priority of their implementation. 

Finally the details of how these requirements can be 

implemented is described. 
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4.1.1 Initial Assumptions 

Before the target system (i.e. system to be monitored) can be 

run under the control of the monitor the following assumptions 

must be met: 

- the individual processors must be tested as far as 

possible (e.g. with an off-the-shelf ICE (in circuit 

emulator)), before interconnecting them and using the 

monitor, 

- it should be possible to download programs to all 

processors, 

- the states in the target system must be able to be set 

using the target system. 

4.1.2 Requirements 

The monitor must be able to meet the following requirements 

to be viable: 

- Start and finish times must be able to be synchronised 

both at the beginning of the program and at breakpoints. 

- It should be possible to set breakpoints based on time or 

on the beginning or end of message transmission. 

- An interrupt mechanism must exist so that the user can 

push a control key (e.g. BREAK) to stop the system. 

- A user should be able to view the values of certain 

variables. He should be able to list which variables he 
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wants to view the values of and perhaps set up a screen 

format for these variables. To make this possible the 

user would have to enter both the processor id and the 

address of the variable within that processor. 

- A user should be able to view the data at i/o ports. The 

messages to be viewed would have to be qualified by 

destination, source or message type. 

- Records timing data (i.e. times when messages are sent 

and received); and times when processors are active and 

inactive. 

- Statistics should be calculated from the above when the 

processors are halted. 

- The relevant log data should be stored (i.e. data that is 

necessary in the running of the target system (eg. RTS)). 

The availability of logs allows designers to make the 

best decisions. 

- Get info on processor states when processmg has been 

halted. 

- The monitor should be able to act as a process-to-be­

controlled. The monitor stores the messages sent from 

the target system when instructed. The monitor can then 
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act as the target system by sending all these messages at 

the appropriate time. This is the closest to reproducing an 

output that is possible for a real-time system. 

4.2 Possible Scenarios Using the Monitor 

Assuming each processor has been checked separately (e.g. 

using an ICE), the testing now concentrates on the interaction 

between the processors ie. message transmission, timing, 

synchronisation and the effect of the processors on the other 

individual processors. 

The following descriptions are possible problems and 

scenarios applied to debug or decipher the system, using the 

activities described above. 

Problem The target system stops. 

Action : 1. set breakpoints 

2. at each breakpoint, look at all messages that are 

passed and see if they are as expected. 

3. at each breakpoint, look at all values m the log 

and estimate if they are as expected. 

4. at each breakpoint, view values of specified 

variables. 

5. the above process can be run in an iterative 

manner, narrowing down the problem area all the 

time. 

6. the interrupt mechanism can be used to stop the 

system as desired. 
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Problem The target system is rn an infinite loop. 

Action : 1. same as above. 

Problem : The target system has a runtime error e.g. variable is 

uninitialised (this is possible if it is waiting to be initialised 

from another processor), read/write error etc. 

Action : 

Problem 

crashes. 

Action : 

1. set breakpoints 

2. view values of specified variables 

The target system has run for days and suddenly 

1. look at log data 

2. look at timing data 

3. look at info on the present states of the 

processors 

4. attempt to set-up RTS as it was when it crashed 

(it would take too long to go all the way through 

the processing again). 

5. run the monitor as the process-to-be-controlled. 

Problem : The data displayed on the screen is not changing 

(this could be because the processors are not communicating). 

One or more of the processors may have crashed. 

Action : 1. look at the messages being passed between 

certain processors. 
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2. look at the timing data - when messages are sent 

or received, and when the processors start and 

stop. 

Prob 1 em The target system is working but the values 

displayed are unlikely. 

Action : 1. set breakpoints. 

2. view values of certain variables. 

3. look at messages being passed to certain 

processors. 

4. run the monitor as the process-to-be-controlled. 

Problem : Values in memory are wrong (something could be 

overwriting memory). 

Action : 1. same as above. 

Prob 1 em : Find the performance of the target system or 

compare different systems. 

Action : 1. look at the. timing data - when messages are sent 

and received, when processors start and stop. 

2. analyse the statistics. 

4.3 Priorities of Requirements 

The requirements listed above fall into three categories: 

- the necessary requirements, 

- those which are useful for the user to have available, 

- those which are a luxury, but are still nice to have. 
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This section indicates priorities and hence an order of 

implementation (i.e. "key" requirements should be 

implemented before "make life easier" requirements). 

4.3.1 Key 

- breakpoints, at set times, 

- view values of specified variables, 

- view i/o port information, 

- record timing data - sending/receiving messages, 

active/inactive processors, 

- synchronise start/finish, 

- run the monitor as the process-to-be-controlled. 

4.3.2 Make Life Easier 

- breakpoints, after a qualified type of message 

transmission, 

- view i/o port information either to or from set 

processors, 

- log the relevant data, 

- info on procesor states at present. 

4.3.3 Nice to Have 

- set up screen formats for v1ewmg variables, 

- statistics on the timing data. 
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4.4 The Imp1ementation of the Monitor Requirements 

The monitor must be user-friendly or people will not use it. To 

this end the requirements must be implemented so that they 

are readily available to the user and not difficult for the user to 

administer. 

The NMI line or a top priority interrupt and a common clock 

must be connected to all processes. For parallel communications 

this is easily achieved. However, for serial communications this 

implies synchronous transmission where the baud rate or the 

bit rate clock recovered from the transmission will serve as 

"clock ticks". 

In the implementation an NMI Is used for synchronisation 

whenever the system is started or stopped so the NMI line can 

not be used in the target system. The use of the NMI is the 

preferred mechanism for the start/stop synchronisation, 

however if it is not possible then an interrupt with the highest 

priority will do. In this monitor design INT is used for the 

synchronisation of "clock ticks". The synchronisation using NMI 

and INT could be given usrng some other mechanism in other 

implementations. This would make it necessary to change 

something in the communications handler - no changes would 

be necessary in the central monitor at all. 

In defining the requirements, the monitor Is recognised as 

being target-system dependent. It is dependent on the message 

representation, and the physical system structure. One of the 

main aims of the monitor was to keep it as general as possible. 

This is accomplished by dividing the monitor into two sections 
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- a communications handler and the central monitor. All the 

changes that occur affect the communications handler so this is 

the part of the program which is changed. The central monitor 

and the interface between the communications handler and the 

central monitor are standard and are unaffected by the 

differences between implementations. 

The size of the logs will be dependent on the amount and 

allocation of memory available in the monitor. This can be 

increased simply by changing values in the declarations in the 

programs and recompiling them. If they are likely to change 

often, it would be possible to ask the user how many values he 

wants logged for various histories. 

The rest of this section indicates how the requirements listed in 

section 4.1 can be implemented. 

4.4.1 Synchronised Start and Stop. 

There would be one line connected to the NMI on all the 

processors, used for starting and stopping the processing. If all 

the processors are in the STOP state then an interrupt on the 

NMI line will put them in the START state, and vice versa. 

During the stopped phase all processors read the line for 

messages and/or commands from the monitor. 

4.4.2 Breakpoints 

It is relatively easy to base breakpoints on time. The user 

enters n (the number of clock ticks between breaks) and the 

system counts n ticks before sending an NMI (section 4.1.1). 
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Setting breakpoints, based on messages, involves viewmg each 

message and inspecting a list to see if that message should 

cause a breakpoint. The message passing differs for different 

system topologies. 

Physical Structure and Message Passing 

If the topology of the system is a loop (fig. 4a), the messages 

are transmitted from the source and are removed from the 

loop when they return to the source. As each message passes 

past the monitor, it can be investigated. 

If the topology of the system is multi-drop (fig. 4d), the 

messages are effectively broadcast so any message sent will 

arrive at the monitor (as well as at the destination node), and 

can then be analysed. Each node removes the copy of the 

message which they receive. 

Once the monitor is able to recognise the messages, it can stop 

the processing after the appropriate message (section 4.4.1 ). 

4.4.3 Interrupt Mechanism 

A key must be recognised by the monitor as an interrupt (e.g. 

BREAK). The monitor would then make the NMI line active 

(section 4.4.1 ). 

4.4.4 View Values of Variables 

The user must know which processor, and where m that 

processor the variables are stored (i.e. the processor number 

and address of the variable). The processor, the address and 
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the name of the variable can be entered and a table will be set 

up in the monitor. The name is entered so the data can be 

printed out on the screen along with the name. 

The monitor can investigate the values of these variables in the 

processors after an NMI occurs i.e. the values of these variables 

are not logged in real-time: they are logged when a breakpoint 

(section 4.4.2) or interrupt (section 4.4.3) from the monitor 

occurs. The monitor sends a message to the relevant processor 

requesting the value and the processor sends a return message 

giving the value. The use of messages in this manner allows the 

monitor to maintain its generality. The message mechanism 

already exists in the target system. 

4.4,5 View Data at 1/0 Ports 

The user enters information indicating which messages he 

wants logged, based on type, source or destination. He also 

indicates if the whole message should be stored or only the 

header. The messages can be investigated when they reach the 

monitor (section 4.4.2). 

4.4.6 Record Timing Data 

The monitor can simply store the necessary information when 

it identifies a message (section 4.4.2). 

To detect if the processors are active or inactive it would be 

necessary for each processor to have two variables - active 

start and inactive start. The time when the processors become 

active and inactive can be stored, and when the processor 
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This would take up very little processmg time (unless a 

processor is starting and stopping a lot). 

4.4. 7 Statistics 

The monitor designer for the specific system must decide what 

statistics are necessary. Most of the necessary information is 

already logged (section 4.4.6). 

4.4.8 Buffering of Log Data 

Most of the information can be read from messages of a certain 

type so it would be necessary for the monitor to know how to 

identify these messages and get the relevant information from 

them (section 4.4.2). It could be possible for the user to enter 

templates for each message on a floppy disk at the beginning of 

a monitor session - this would allow the monitor to be less 

target-system dependent. 

4.4.9 Activity State of the Processor 

This can be read from the activity flag or the timing 

information which is logged (section 4.4.6). 

4.4. 10 Monitor as Process-to-be-Controlled 

The user must initially say that the messages to be logged are 

those from the A/D converter. The monitor will then be able to 

feed these values back into the system as though they were 

coming from the process-to-be-controlled. Ideally the monitor 

should be able to operate as normal as well (i.e. be able to log 
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various variables values etc.) but this may not be possible as it 

may cause timing problems. 
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Chapter 5 

Details of the Implementation 

Although the central monitor has been designed to be 

independent of the hardware implementation, a decision must 

be made about the structure of the monitor system. This 

decision is influenced by the hardware implementation of the 

multiprocessor system to be tested. This chapter 1s a 

description of a multiprocessor design implementation for a 

system with only two processor boards. The reasons for the 

choice of vehicle for this implementation is also described. The 

same processor boards will be used for the multiprocessor 

implementation of RTS, so RTS is also considered throughout 

this chapter. There are a lot of decisions outlined which are 

decisions of the multiprocessor designer. 

This implementation involves two microprocessor boards and a 

Cromemco linked together in a loop, with a serial bus. The 

Cromemco acts as the monitor. The serial bus is used because 

the number of messages passed between processors is small 

and the use of the serial bus minimised the hardware 

requirements for RTS. As the communication is over very short 

distances with very little noise, there is no handshaking 

protocol introduced between the processors [31]. This would be 

a decision of the multiprocessor designer. 
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5.1 Hardware of the Target System 

The microprocessors (Z80s) were chosen for their availability, 

cost effectiveness, simplicity and reliability. A box had been 

constructed for a controller and it was decided that the same 

box could be used for a multiprocessing version of RTS. This 

system was chosen to reduce design and development time. 

A Cromemco was used as the monitor as it was readily 

available and had the ne_cessary support software. 

5.1.1 The Board for RTS 

The boards have a processor, memory and input/output 

hardware. The hardware is structured rn two levels so 

processors can be identical or designed to suit any particular 

requirements. The connections between boxes have a serial 

connection. 

5.1.2 The Relationship of the Monitor to the Target 

System 

The monitor simply fits into the target system as though it is 

another processor in the loop network. In a system where 

there is no central controller, and no dedicated lines, the 

monitor can be inserted at any point. There is a screen and 

keyboard connected to the monitor processor to enable the 

monitor user to communicate with the monitor. 
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5.2 Language 

The languages used to code the software for the monitor were 

PL/I and Z80 assembly language. They were used in the 

development of R TS and all the necessary facilities were 

available to test and debug the system. PL/I also: 

- allows the user to construct the necessary data structures, 

- allows the user to incorporate assembly language 

subroutines. This is especially necessary in the case 

where a command must take exactly one machine cycle 

(section 5.3). 

- has exception handling facilities which allows the user to 

trap errors without crashing the system, 

- is very readable, 

- is portable from one machine to another, 

- leads to a structured approach to program design. 

5.3 Design of the Communication Handler/Monitor 

Interface 

The monitor itself is divided into two processes, the 

communications handler and the central monitor. They operate 

as foreground/background processes where the central monitor 

1s the foreground process and the communications handler runs 

m the background. The background function is interrupt driven 

and has higher priority. The communications handler will differ 

from implementation to implementation. However within an 

implementation the communications handler for this processor 

(i.e. the monitor) is a superset of the processor communications 
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of the other processors in the target system. The processor 

communications are independent of the monitor. While the 

communications handler differs for every different processor 

communications, the central monitor remains the same. Fig. 6 

shows the structure of this processor and indicates where the 

communications interface occurs. 

Communications 
Handler 

Monitor 

Fig. 6 Structure of the Monitor Processor and its 
Interface with the Target System 

One of the aims of the design is to keep the interface between 

the communication handler process and the central monitor 

process as simple and as general as possible. 

88 



Bowen and Buhr [5] describe a possible method usmg two 

queues of buffers and two semaphores. One queue is for full 

buffers and the other for empty buffers. The semaphores 

indicate when all buffers are full and all buffers are empty. 

They extend the example to where either the receiver or 

sender is an interrupt service routine (ISR). The difference is 

that the ISR is operating in real-time so it cannot wait on a 

semaphore. Problems can be avoided by continuing to use 

semaphores and disabling the interrupts at the start of the 

critical region and enabling them at the end. 

This method is effective· but it would involve both processes 

sharing all buffers so the interface between the processes 

would not be as well defined as it possibly could be and the 

processes would depend on each other. This is a reasonable 

method for a fixed design. However for a monitor where the 

communications handler is necessarily redesigned for every 

implementation, the boundaries between the communications 

handler and the monitor should be precisely defined and their 

operation easily observed. 

Fig. 7 illustrates the proposed communications handler/monitor 

interface. When the topology of a network is a loop (section 

4.4.2), the messages which are received by this processor must 

be passed on to the next processor and a copy is taken for this 

processor to analyse. The connection between the "receive 

process" and "transmit process" achieves this. If the network is 

a multidrop system, this connection is not necessary because all 
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messages are broadcast to· all the processors so all the messages 

would be sent to the monitor and would terminate at this point. 

The message which is received may be in a different format 

from that which the monitor is expecting. In this case the 

message is reformatted in the communications handler section. 

It is then stored in the ring buffer and the variable rxcn t is 

incremented for each character passed. Every "clock tick" the 

monitor checks to see if rxcn t is greater than zero. If it is, the 

monitor receives the message, decrementing rxcnt, and stores 

the message in an array of messages. 

When a message is sent from the monitor to the 

communications handler, it is initially stored in a ring buffer 

and the variable sxcnt is incremented. Sxcnt is also checked 

on the "clock tick". The message is stored in a buffer in the 

communications handler, reformatted if necessary, and 

transmitted. 

Rxbase, rxlength, sxbase and sxlength are variables which 

are set at compile time so if there are a lot of ring buffer 

overflows, these values can be changed and the programs 

recompiled. 

Deadlock [5] could occur if both the communications handler 

and the monitor were attempting to access either rxcnt or 

s xc n t at the same time. This can be overcome by using an 

instruction of only one machine cycle to do the addition and 

subtraction, because interrupts occur only at the end of 

machine cycles. This was achieved by two Z80 assembly 

language subroutines. 
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lrxbase I 
lrxlength I 
receive messages 
and put into an 
array of messages 

lrxbase I 
lrxlengthl 

,------,1----il'-\rray for one reformat 
inc. message process 

jsxlength I ~xlength 

MONITOR COMMUNICATIONS HANDLER 

Fig. 7 Communications Handler/Monitor Interface 

Another feature which the designer of the multiprocessing 

system must account for is the synchronisation of messages. 

Synchronisation of messages on the line can be a problem, i.e. if 

a processor is putting a message on the line when there is 

another message passing by, it could insert the message in the 

midst of the passing message. This is not a problem in systems 

with a loop structure because no messages go straight past a 

processor. Every message is taken into a ring buffer and the 

appropriate action is taken (i.e. it is passed on, or killed, or it is 

analysed). 
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All the information transmitted from this processor (i.e. the 

messages with a source number of this processor) is sent when 

the system has been halted. These messages are very short 

requesting some information from an addressed processor. 

5.4 The Information in the Frames for RTS 

Section 3.7 gives a general review of the information which is 

generally contained 1n the frames [ 43]. In the initial 

implementation the message template system was not 

implemented so a standard message was defined. As these 

messages are travelling over very short distances in an 

environment with very little noise, it was decided to keep the 

messages simple and each message contains: 

- start of text marker (STX), 

- type of message (section 5.5.1), 

- the source of the message, 

- the destination of the message, 

- the data, 

- an end of text marker (ETX). 

The central monitor expects messages m the circular buffer of 

the communications handler to be formatted as above. If the 

messages which are passed around the multiprocessor system 

are in a different format, they must then be reformatted in the 

communications handler before being put into the circular 

buffer. 
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5.5 Data Structures Involved 

It is necessary to have some data structures to hold: 

- the information about which messages to log, 

- the messages themselves when they arrive, 

- the information about the variables to be logged, 

- the values of those variables, 

- the message templates. 

This is as well as those data structures mentioned above for the 

temporary storage of messages when they are being 

transmitted or received. 

5.5.1 Information About M essa2es 
The program will ask the user if he wants all messages of a 

certain type stored (T), all messages from a certain destination 

(D) or all messages to a certain source (S). This information will 

be stored in a type field. An integer must then be given to 

identify the particular type, source or destination. The user can 

then choose what action is to be taken when a message of this 

type is encountered: 

- log the header only (H), 

- log the header and the information m the message (D) or 

- cause a breakpoint (ie. halt the system) (B). 
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The data structure used for this 1s a linked list of records and is 

shown in fig. 8. 

Type (ch) Id (int) Action (ch) 

T H 

s D 

D B 

Fig. 8 Table Used to Store Information about Messages 
to be Logged 

The structure where the messages are to be stored can be 

viewed as a sequential block of memory. The messages are 

stored sequentially in the order in which they arrive. The only 

method of accessing these messages is sequentially, and is 

therefore rather slow. This structure was chosen on a 

time/space tradeoff. The space requirement had priority over 

speed as logged messages are not accessed in real-time. 
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header I data I time I header 

data I time I etc. 

Fig. 9 How the Messages are Stored when Logged 

Fig. 10 shows the structure in which the message templates 

are stored. It was necessary to have such a table to allow for 

different systems to have different message formats. 

type length (bytes) 

Fig. 10 Structure of Table for Message Templates 
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5.5.2 Information about Variables to be Logged 

The information about variables to be logged and the values of 

the logged variables are stored in a single data structure. There 

is a linked list of records which stores the information about 

the variables to be logged. One of the fields in the structure is 

for a pointer, which can point to a dynamic linked list. When 

the table is constructed the user chooses how many values are 

to be logged and that number of nodes is created for the linked 

list. This linked list contains the values which the variables has 

had m a circular list. When the circular list has no more empty 

nodes, the oldest value is overwritten by the new value to be 

logged. 

name processor address number pointer 
number of bytes 

Fig. 11 Structure where the Information about 
Variables to be Logged and their Values is Stored. 

5.6 Menus 

The system is menu based. This enables the user to use the tool 

without any programming skills or specialist computing 

knowledge. When a tool is easy to use, there is no distraction 
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from the problem at · hand 1.e. developing an efficient 

multi processing control system. However if the tool is difficult 

to use a lot of time can be spent learning to use it without any 

direct results. 

Looking at the menus and their connections can give some idea 

of the way the control of the program is passed. 

A map of the menus is outlined below: 

on: 
1. time 
2. message 

How many 
ticks before 
a breakpoint 

Do you want to : 
1. Start target system running 
2. Set breakpoints 
3. Set up watchlist of variables 
4. Set u watchlist of messa es 

For each message category, state 
whether the message is based on 

For each variable you 
require to view give 
name, processor number, 
address, number of bytes, 
number of values lo ed 

type (T), source (S) or destination(D) 
Then enter the integer for the previous 
class. Finally enter H if you want only 
the header stored otherwise D. 

Fi2. 12 The Relationship between the Menus 
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After a breakpoint has occurred, the following screens are 
displayed: 

you want listed? 
1. by processor 
2. address within 

processor 
3. all 

processor 
number 

1. screen 
2. printer 

BREAKPOINT : Now what ? 
1. List variables 
2. List timing data 
3. List messages 
4. Do statistics 
5. Use monitor as process-to-be-controlled 
6. Set breakpoint 
7. Continue 

processo 
number/ 
address 

What category of 
message do you want 
listed? (message 
type/integer) 

Fig. 12 cont. The Relationship Between the Menus 
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Chapter 6 

Conclusions and Future Developments 

6.1 Conclusions 

The main objective of this project was to design a monitor to 

enable the development and debugging of multiprocessor 

systems for process control. This has been achieved and 

partially implemented. 

While the monitor was kept as general as possible, it was 

decided that any monitor of this type had to be tailored to the 

system being designed. The effect of tailoring the monitor to 

whatever process control system was being designed was 

minimised by dividing the monitor into two sections: the 

communications handler and the central part of the monitor. 

All the necessary changes for different target systems could be 

made to the communications handler. So the central part of the 

monitor and the interface between the communications handler 

and the central monitor remain standard. 

The use of the Cromemco to contain the monitor meant that the 

programs could be downloaded, and all the software which is 

available on the Cromemco could be used for development, i.e. 

the assemblers, compilers, linkers etc. 

The final conclusion was that, although there were very few 

assumptions made initially, it is best to first have the monitor 

(i.e. a tool for development and testing) before the target 

system is designed as it ensures that the system is designed so 
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as not to preclude the use of the monitor and not upset the 

structure of the multiprocessing system. 

This system, as it is designed, meets the criteria outlined by 

Allworth [1]: 

- the necessary performance characteristics can be 

extracted, 

- there is very little interference with the target system, 

- it is convenient to use. 

6.2 Future Developments 

6.2.1 Complete the Monitor 

The monitor is presently only partially finished so it does need 

to have other features added. The priorities set out in Chapter 

Four should be adhered to. 

6.2.2 Man/Machine Interface 

There are further refinements which could be added to the 

monitor, e.g. improving the man/machine interface. 

6.2.3 Implement RTS ·as a Multiprocessin2 System 

Now the tool has been designed, the task of implementing RTS 

as a multiprocessing system is simplified. RTS can be 

partitioned as described in Chapter One. With the use of the 

monitor, the multiprocessing will not appear such an awesome 

concept and the programmer can concentrate on equally 

important issues such as user-friendliness, fault tolerance, and 

the efficiency of the system. 
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6.2.4 Performance Criteria 

The monitor was also designed for the analysis and prediction 

of specific aspects of software performance. To test the 

performance of the system it is necessary to lay out a criteria 

of how the performance is being measured. There are a 

number of papers and books written on testing system 

performance [ 18, 3 2]. 

6,2.5 Implement RTS with Different Partitionin2 

It would be interesting to implement R TS as a multiprocessing 

system, with the partitioning as shown in fig. 2, and then to 

compare the relative efficiency and speed of the two different 

process control systems. 

6.2.6 Implement another Process Control System Usin2 

the Monitor 

This would be an interesting exercise as it would indicate how 

R TS biased any necessary decisions in the design of the 

monitor. The designer of the new system would need to decide 

on their own communications handler. One could design a 

system using the monitor and also design the system without 

using the monitor, to test its usefulness. The author of this 

thesis thinks the results would show that the process control 

system designed using the monitor was designed in a more 

logical fashion and be running before the other system. A 

logically designed system is a lot easier to debug and change. 
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6.2. 7 Exhaustive Testing 

Introduce some method of programming the monitor so that 

steps are set out for it to run as the process-to-be-controlled 

1.e. the process-to-be-controlled 1s programmed to test 

different situations. In this way the multiprocessor product can 

be exhaustively tested without doing any damage to plant or 

equipment. 
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MEXIBRN.PLI 

This is a file of external declarations, which are used in a 

number of routines. They are kept here for easy access and to 

aid in documentation. 

GETFIX.PLI is a procedure which displays a message on the 

screen asking a user for a value of type fixed. 

GETFLT.PLI is a procedure which displays a message on the 

screen asking the user for a value of type float. 

INTER.Z80 are assembler routines, taken mainly from RTS for 

various activities. Two other routines have been added. One of 

them increments a parameter, m one machine cycle. A 

command which takes one machine cycle is an indivisable 

operation, hence cannot be interrupted. The other routine 

decrements a parameter, in one machine cycle. 

SEND.PL! outputs a character (if there is one to send) to a 

specified channel. 

XFER.COM 1s used to transfer files from one disc to another. 

ADDONE.PLI is used to increment the array indices. ie. the 

column count is incremented and if it is equal to 80 then it's set 

to 1, and the row count is incremented. If row is equal to 80 

then both the row and column counts are reset to 1. 
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Maxwell files : 

MONITOR.PL! is the main program that controls the monitor 

and directs the action. 

There are a number of procedures which all fit together and 

should be useful when testing to see if two processors 

communicate with one another. Unfortunately as the 

multiprocessor system was not available none of these 

procedures have been tested: 

TWOPROC.PLI, 

INPROC.PLI, 

SEND.PL!, 

OUTPROC.PLI, 

DISPLAY.PL!. 

TWOPROC is the mam procedure for this group. It gets a 

message from the screen, formats it, and puts it in the output 

buffer ready for another procedure to collect. 

INPROC is the input interrupt procedure. It receives a character 

off the bus. 

OUTPROC is the output interrupt procedure. It indicates that an 

output interrupt has been received by setting ou tint to true, 

then calls send. 

DISPLAY indicates whether everything happened as expected. 

It should display the message on the screen of the receiving 

processor. 
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There is also a suite of programs for inserting messages into a 

data structure, asking the user which messages to log, logging 

them and listing them. 

This includes: 

MESSAGE.PL!, 

WA TMESS.PLI, 

LISTMESS .PLI, 

LOGMESS.PLI, 

LMSDATA.PLI, 

MESSAGE is the mam program for testing these procedures. 

WA TMESS asks the user what messages he wants logged. They 

can either be of a certain type, to a certain source, or from a 

certain des tin at ion. This information is stored in the 

necessary linked list. 

LISTMESS asks the user what messages he wants listed, and 

whether they are to be listed to the screen or printer. It then 

lists them. 

LOG MESS takes the messages from rxar, checks to see if they 

should be logged, and logs them if necessary. 

LMSDATA was simply used to test WATMESS. 
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There are a number of dummy procedures, which simply print 

out a line saymg that they are executing. These are stubs to be 

replaced later by procedures that do the specified tasks. They 

are: 

GETDISC.PLI, 

START.PLI, 

BPT.PLI, 

DOWNLOAD.PLI. 

GETDISC is designed to read information from a disc. 

START is the loop which the monitor processes until a clock tick 

is reached. 

BPT is activated when a breakpoint occurs. It displays a 

message on the screen asking the user what to do next. 

DOWNLOAD is the program which downloads the programs 

through the monitor into the appropriate processors. 

MESS.CMD 1s the batch file which tells the system to link the 

message suite together. 

T.CMD is the batch file which links the monitor procedures 

together. 

SETBRK.PLI asks the user whether he wants to set breakpoints 

on time or on a certain message. It gains the rest of the 

necessary data and either puts it in bptime, or in the message 

table. 
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TEMPL.PLI allows the information on how the messages are 

constructed to be entered from a disc. This information is then 

stored in the table for this data. 
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Var Files : 

There is a similar suite to the programs for message storage. 

This suite is used for the storage of variables and their values: 

V ARIAB .PLI, 

WATVAR.PLI, 

GETV AR.PL!, 

RECV AL.PL!, 

LISTV ARS.PLI, 

PRINTY AR.PL!, 

LVAR.PLI. 

V ARIAB is the mam program for this test sess10n. It calls 

watvar, getvar, recval and listvars. 

W ATV AR asks the user what variables to log, and how many 

values he wants logged. The data structure is then constructed 

for storing these variables. 

GETV AR sends messages out to all the processors for each of 

the variables in the list, asking them to send the value of the 

particular variable. 

RECVAL is used only for testing these procedures. It takes a 

message which includes a variables value from the screen, and 

places the value in the appropriate data structure. 

LISTV ARS lists all the variables which the user has requested 

to be logged. He can specify them either by processor number, 

by address within processor or request that all the logged 

variables be listed. 
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PRINTY AR is called from listvars. It prints a line of information 

about the variable then lists its values. 

L VAR lists the variables to be logged. It tests watvar. 

V AR.CMD is the instruction which allows all the variable 

handling programs to be linked. 

TESTREC.PLI is used to test that the receive procedure works. 

TESTSEND.PLI is used to test that the send procedure works. 

TEST.PL! is used to test if the assembler routines add and sub 

are working. 

RECEIVE.PL! receives a message from the circular buffer m the 

communications handler. 
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A2. Structure Dia2rams 

Structure diagrams have been drawn for the procedures which 

will be part of the monitor. There is also a structure diagram 

drawn for the procedures which test that the two processors 

are communicating, however there are no structure diagrams 

for the other test procedures. 

To gain an appreciation of the workings of the monitor it IS 

important to read the thesis as well as this appendix. The most 

important chapter Is " Chapter 5 Details of 

Implementation". 
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Structure Dia2rams for Monitor 

node in node in t e order 

setbrk 

etdisc 
line 

Fig. Al The Relationship of the Monitor Procedures 
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Structure Diagrams for Monitor cont. 

put data in node 
n address in processor 

number order ariable nodes 

etdisc 
line) 

getdisc 
(line) 

if disc 

Fig. Al cont. The Relationship of the Monitor 
Procedures 
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Structure Dia2rams for Monitor cont. 
listmess 

y 

repeat 
until end 
of line 

n 

display 'NO 
MESSAGE OF 
HIS TYPE 

LOGGED' 

repeat til 
end of message 
dump 

scree9( 
choice,proc, 
add,where) 

raverse the 
emory dump 

list message if 
right type 

y 

listvars 

repeat until 
the end of 
the list 

n 

get next line 
in table 

newvar, 
where) 

if choice = 1 and the processor 
numbers are the same 

printvar(newvar 
where 

if choice = 2 and the processors number 
and addresses are the same 

y 

printvar(newva 
where 

Fi2, Al cont. The Re1ationship of the Monitor 
Procedures 
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Structure Diagram for Monitor cont. 
printvar 

line contains 
variable name, 
processor number 
and address 

display line 
on printer 

display line 
on screen 

from current 
rocessor 

getvar 

repeat for each 
variable. in 
the table 

logmess 

processor in 
table 

repeat while there are 
still messa es to rocess 

type in the buffer 

y 

log message 

repeat til no 
more values 
to print 

display line 
on printer 

display line 
on screen 

Fig. Al cont. The Relationship of the Monitor 
Procedures 
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Structure for Unwritten Procedures 

y 

break poin 
action 

Fig. A2 Main Processing Once Monitor has Started 

Fig. A3 Action After Breakpoint has Occurred 

messages 

use monitor as 
process-to-be­

controlled 

running 

send messages 
when necessary 

Fig. A4 Monitor as Process-to-be-Controlled 
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Structure Diagrams of Procedures that Test that the 
Processors are Communicating 

TWOPROC 

initialise variables 
inst, infin, outst, 
outfin + 1 

send 

output 
characters 

point inst to 
start of message, 
past header 

if SENDING 

set SENDING output 
reset OUTINT character 

set the line up to 
be displayed, character 
by character 

set ROY 
flag 

Fig. AS The Relationship between the Test Procedures 
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Structure Diag:ram of Procedures that Test that 
Processors are Communicating: cont. 

display 

Fig:, AS cont. The Relationship between the Test 
Procedures 
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3. PROGRAM LISTINGS 

These programs are listed in the same order which they were 

referred to in the program description. 

Files on both the MAXWELL and VAR Discs 

MEXTERN.PLI 

/* external declarations or common routines and variables*/ 

%replace home by 'A[H'; 

%replace clear by f A [ v' ; 

%replace true by '1' b; 

%replace false by '0' b; 

%replace STX by , AB' ; 

%replace ETX by , AC'; 

%replace monitornum by 3; 
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%replace vartype by 1; /* message type when monitor sends message to get 

variable information*/ 

dcl (gets,puts,getdisc) entry (char(80) varying), 

send entry(char(80) varying,fixed), 

getfix entry (char(80) varying,fixed,fixed,fixed), 

watmess entry(bit(l)), 

disc bit(l) external, 

(finrow,fincol,bptime,tick) fixed external, 

line char(80) varying, 

choice fixed, 

logit bit(l), 

(tail,messptr,newmess,prev) pointer external, 

(temptr,newtemp,varptr,newvar) pointer external, 

(sxbase,sxchcnt,rxchcnt,rxbase,cycpos) fixed external, 

(sxcyc(200),rxcyc(200)) char external, 

rxar(80,80) char external, 

(logcnt,arcnt) fixed external, 

messdump(80,80) char external, 



1 messnode based, 

2 type char, 

2 id fixed, 

2 action char, 

2 nextmess pointer, 

/* ordered on id within type*/ 

1 varnode based, /* address in processor order*/ 

2 name char{20) varying, 

2 prnum fixed, 

2 address fixed, 

2 numbytes fixed, 

2 current pointer, 

2 nextvar pointer, 

2 infoptr pointer, 

1 infonode based, 

2 info float, 

2 nextinfo pointer, 

1 messtemp based, 

2 messtype fixed, 

2 lgth fixed, 

2 nextemp pointer; 

/*sequential*/ 

/* message type*/ 
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GETFIX.PLI 

getfix: procedure(prompt,number,min,max); 

/* displays prompt on screen, receives number from user and returns it*/ 

dcl 

(gets,puts) entry(char(80) varying), 

line char(80) varying external, 

prompt char(80) varying, 

(number,min,max) fixed; 

on error begin; 

line='RANGE' I !mini !max; 

call puts(line); 

goto onerr; 

end; 

prompt=prompt I I ' (' I I number I I ' ) ' ; 

onerr: 

call puts(prompt); call gets(line); 

if length(line)>O then number=line; 

if (number<min) I (number>max) then signal error(255); 

end; 

GETFLT.PLI 

getflt: procedure(prompt,number,min,max); 
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/* displays prompt on the screen, accepts number from the user and returns it*/ 

dcl 

(gets,puts) entry(char(80) varying), 

line char(80) varying external, 

prompt char(80) varying, 

(number,min,max) float; 

on error begin; 

line='RANGE' I !mini lmax; 

call puts(line); 

goto onerr; 

end; 



prompt=promptl I'(' I lnumberl I') '; 

onerr: 

call puts(prompt); call gets(line); 

if length(line)>O then number=line; 

if (number<min) I (number>max) then signal error(255); 

end; 

INTER.Z80 

getpar: 

getone: 

random: 

entry kbwait,print,inpt,output,gets,puts,keyhit,sub,add 

ld e, (hl) 

inc hl 

ld d, (hl) 

inc hl 

ex de,hl 

ld c, (hl) 

ex de,hl 

ld e, (hl) 

inc hl 

ld d, (hl) 

ex de,hl 

ld a, (hl) 

ret 

call getone 

ld b,a 

inc hl 

ld a, (hl) 

scf 

ccf 

bit O,b 

jr z,un 

ccf 

un: bit 2,b 

jr z,deux 

ccf 

deux: bit 3,b 

jr z,trois 

ccf 
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trois: bit 4,b 

jr z,quatre 

ccf 

quatre: rr a 

rr b 

gets: 

ld (hl),a 

dee hl 

ld (hl),b 

ld h,b 

ld l,a 

ret 

call getone 

push hl 

ld c,O 

inc hl 

getin: call kbwait 

ld b,a 

sub Odh 

jr z,crlf 

ld a,b 

sub 07fh 

jr z,delete 

ld a,b 

sub 08h 

jr z,delete 

ld a,b 

sub a,020h 

jp m,getin 

ld a,b 

call outch 

ld (hl),b 

inc hl 

inc c 

jr getin 
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delete: ld a,Offh 

and a,c 

jr z,getin 

ld a,08h 

call outch 

ld a,020h 

call outch 

ld a,08h 

call outch 

dee hl 

dee c 

ld a,O 

ld (hl), a 

jr getin 

crlf: ld a,b 

call outch 

ld a,Oah 

call outch 

pop hl 

ld (hl), c 

ret 

puts: call getone 

ld b,a 

inc hl 

getout: ld a, (hl) 

inc hl 

call outch 

djnz getout 

ret 

outch: out 1,a 

waitou: in a,O 

and a,080h 

jr z,waitou 

ret 

inpt: call getpar 

in a, ( c) 

ld (hl) ,a 

ret 
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output: call getpar 

out (c), a 

ret 

print: call getone 

ld b,a 

inc hl 

more: ld a, (hl) 

inc hl 

and a,07fh 

out 054h,a 

or a,080h 

out 054h,a 

still: in a,054h 

and a,020h 

jr nz,still 

djnz more 

ret 

kbwait: in a,O 

and a,040h 

jr z,kbwait 

in a,1 

and a,07fh 

ret 

keyhit: call getone 

in a,O 

and a,040h 

ld (hl), a 

in a,1 

ret 



onst: macro 

push af 

push be 

push de 

push hl 

push ix 

push iy 

exx 

ex af,af' 

push af 

push be 

push de 

push hl 

mend 

offst: macro 

nokb: 

pop hl 

pop de 

pop be 

pop af 

ex af,af' 

exx 

pop iy 

pop ix 

pop hl 

pop de 

pop be 

pop af 

mend 

offst 

ei 

reti 

getnum: ld e, (hl) 

inc hl 

ld d, (hl) 

ex de,hl 

ld e, (hl) 

ld d, (hl) 

ex de,hl 

ret 
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sub: call getnum 

dee hl 

ret 

add: call getnum 

inc hl 

ret 

end 

SEND.PLI 

send: procedure; 

/* outputs a character if there is one to send, to a special port*/ 

%include 'extern.pli'; 

ch = ' '; 

if outint then do; 

if sending then do; 

if outst ~= outfin then ch= outbuff(outst); 

end; 

end; 

end; 

if ch~= '"B' outst ~= outfin then do; 

call output(chan,ch); 

if outst+l > outmax then outst 

outint = 'O'b; 

end; 

else sending 

end; 

'0' b; 

if ~sending then do; 

if rdy then do; 

sending= 'l'b; 

outint = 'O'b; 

ch= outbuff(outst); 

call output(chan,ch); 

if outst+l > outmax then outst 

end; 

end; 

1; else outst 

1; else outst 

outst + 1; 

outst + 1; 
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ADDONE.PLI 

addone : procedure(row,col); 

/* increments array indices of an 80X80 array*/ 

%include 'mextern.pli'; 

dcl (row,col) fixed; 

if (col~= 80) then col=col + l; 

else do; 

if (row~=SO) then row 

col= l; 

end; 

end addone; 

row+ l; else row 
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MAXWELL Disc 

MONITOR.PLI 

monitor : procedure options(main); 

/* main program which controls monitor and directs its action*/ 

%include 'b:mextern.pli'; 

dcl (download, templ, start, setbrk) entry, 

lmsdata entry, 

watvar entry(bit(l)); 

screel : procedure(choice); 

dcl choice fixed; 

call puts(clear); 

call puts('AMAJDo you want to?'); 

call puts('AMAJ 0 Exit from the System'); 

call puts('AMAJ 1 Start Target System Running'); 

call puts('AMAJ 

call puts('AMAJ 

call puts('AMAJ 

2 Set Breakpoints'); 

3 Set Up Watchlist for Variables'); 

4 Set Up Watchlist for Messages'); 

call getfix('AMAJEnter Choice' ,choice,0,4); 

end screel; 

on error begin; 

call puts('AMAJ error, push return to continue'); 

call gets(line); 

goto thend; 

end; 

messptr null; 

call download; 

call templ; 

disc= 'l'b; 

call watvar(disc); 

call watmess(disc); 

disc='0'b; 

choice= l; 
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do while (choice~= O}; 

call screel(choice}; 

if choice= 1 then call start; 

else if choice 

else if choice 

else if choice 

end; 

thend: 

end monitor; 

TWOPROC.PLI 

2 then call setbrk; 

3 then call watvar(disc); 

4 then call watmess(disc); 

twoproc : procedure options(main); 

/* main program for the two processor test. It receives message, */ 

/* formats it, and puts it in an output buffer for another procedure*/ 

/* to collect*/ 

%include 'extern.pli'; 

dcl i fixed; 

inst= 1; 

infin 1; 

outst 1; 

outfin = 1; 

do while('l'b}; 

line= 'AMAJEnter message'; 

call puts(line}; 

call gets(line}; 

datatype = 1; 

line = 'AB' I I dest I I source I I data type I I line I I' AC'; 

i = 1; 

do while(substr(line,i,1) ~=' '}; 

outbuff(outfin} substr(line,i,1); 

i = i + 1; 

138 

if outfin+l > outmax then outfin 

end; 

1; else outfin outfin + 1; 

rdy 'l'b; 

end; 

end; 

end; 



INPROC.PLI 

inproc procedure; 

/* input interrupt procedure. It receives characters from the bus*/ 

%include 'extern.pli'; 

dcl (display,send) entry; 

if infin ~= inst-1 then do; 

call inpt(chan,ch); 

inbuff(infin) = ch; 

if ch= 'AC' then call display; 

end; 

if infin+l > inmax then infin 

call send; 

return; 

end; 

end; 

OUTPROC.PLI 

outproc : procedure; 

1; else infin infin + 1; 
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/* output interrupt procedure. Indicates that an output interrupt has been*/ 

/* received by setting outint to true, then calls send*/ 

%include 'extern.pli'; 

dcl send entry; 

outint = 'l'b; 

call send; 

return; 

end; 



DISPLAY.PLI 

display: procedure; 

/* displays message on the screen of the receiving processor*/ 

%include 'extern.pli'; 

dcl i fixed; 

/* skip header*/ 

if inst+3 > inmax then inst= 3-(inmax - inst); else inst 

i = 1; 

do while(inbuff(inst) ~= '~C'); 

substr(line,i,1) = inbuff(inst); 

if inst+l > inmax then inst= 1; else inst 

i = i + 1; 

end; 

inst+ 1; 

inst+3; 
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if inst+l > inmax then inst 

call puts(line); 

1; else inst inst+ 1; /* skip trailer*/ 

end; 

end; 

MESSAGE.PLI 

message : procedure options(main); 

/* main program for directing the message test suite*/ 

%include 'mextern.pli'; 

dcl ch char, 

(i,j) fixed,ADDONE ENTRY(fixed,fixed), 

arpos fixed, 

(logmess,listmess) entry; 

putmess : procedure; 

dcl addone entry(fixed,fixed); 

logcnt = 0; 

arcnt = 0; 

line , , . 
I 



do while (line~='.'); 

arpos = 0; 

call gets(line); 

if (line~='.') then do; 

arcnt = arcnt + l; 

call addone(arcnt,arpos); 

rxar(arcnt,arpos) = STX; 

ch = ' '; 

do while (ch~='.'); 

ch= substr(line,1,1); 

line= substr(line,2); 

call addone(arcnt,arpos); 

rxar(arcnt,arpos) = ch; 

end; 

call addone(arcnt,arpos); 

rxar(arcnt,arpos) = ETX; 

end; /*if*/ 

end; /*do*/ 

end putmess; 

on error begin; 

line= 'out of range'; 

call puts(line); 

call gets(line); 

goto ntline; 

end; 

call watmess; 

call putmess; 

ntline: 

call logmess; 

call listmess; 

end message; 
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WATMESS.PLI 

watmess : procedure(disc); 

/* asks user what messages are to be logged. The entered info is stored*/ 

/* in a linked list*/ 

%include 'b:mextern.pli'; 

dcl found bit(l), 

temp char (80) varying, 

num char; 

scree6 procedure; 

call puts(clear); 

line= 'AMAJFor each message category, state whether'; 

call puts(line); 

line= 'the message is based on type (T), '; 

call puts(line); 

line= 'AMAJsource (S), or destination (D). Then'; 

call puts(line); 

line= 'enter the integer describing the'; 

call puts(line); 

line= 'AMAJtype/source/destination. '; 

call puts(line); 
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line= 'AMAJFinally enter (H) to store the header, (D) to store the'; 

call puts(line); 

line= 'header and data, or (B) to cause a breakpoint. '; 

call puts(line); 

line= 'AMAJeg. T/5/H/ says the message is TYPE 5 '; 

call puts(line); 

line= 'and you simply wish to store the header.AMAJ'; 

call puts(line); 

call puts('AMAJFor the final line simply enter'' .''AMAJ'); 

end scree6; 



getlet : procedure(let); 

dcl let char; 

temp= substr(line,1,index(line,' /')-1); 

let= substr(temp,1,1); 

if (rank(let)>=97) & (rank(let)<= 122) then 

let= ascii(rank(let)-32); 

end; 

on error begin; 

line= 'out of range'; 

call puts(line); 

goto ntline; 

end; 

if ~disc then do; 

call scree6; 

call gets(line); 

end; 

else call getdisc(line); 

prev = null; 
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do while (line~='.'); 

allocate messnode set(newmess); 

temp= substr(line,1,index(line,'/')-1); 

call getlet(newmess->type); 

line= substr(line,index(line,'/')+1); 

if ((rank(newmess->type) = 0) & (prev ~= null)) then 

newmess->type = prev->type; 

temp= substr(line,1,index(line,'/')-1); 

num = substr(temp,1,1); 

if rank(num) = 0 then newmess->id = O; 

else newmess->id = decimal(substr(temp,1)); 

line= substr(line,index(line,'/')+1); 

if (newmess->id=O) & (prev ~= null) then 

newmess->id = prev->id; 

temp= substr(line,1,index(line,'/')-1); 

call getlet(newmess->action); 

line= substr(line,index(line,'/')+1); 

if (rank(newmess->action)=O) & (prev null) then 

newmess->action = prev->action; 

newmess->nextmess = null; 

prev = newmess; 

if messptr = null then messptr 

else do; 

found 'O'b; 

newmess = messptr; 

newmess; 

do while ((prev->type >= newmess->type) & (~found) 

& (newmess->nextmess ~= null)); 
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if (prev->type = newmess->type) & (prev->id <= newmess->id) 

then found= 'l'b; 

else do; 

tail= newmess; 

newmess = newmess->nextmess; 

end; 

end; 



if (newmess = messptr) then do; 

prev->nextmess = newmess; 

messptr=prev; 

end; 
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/* insert at start*/ 

else if (newmess->nextmess = null) then /* insert at end*/ 

newmess->nextmess = prev; 

else do; /* insert in middle*/ 

tail->nextmess 

prev->nextmess 

end; 

end; /*else*/ 

ntline : 

prev; 

newmess; 

if disc then call getdisc(line); 

else call gets(line); 

end; 

end watmess; 

/*while*/ 



LISTMESS.PLI 

listmess : procedure; 

/* asks user what messages to list, whether they are to be listed to the*/ 

/* printer or screen and then lists them*/ 

%include 'mextern.pli'; 

dcl (int,trow,tcol,row,col) fixed, 

temp char(80) varying, 

found bit(l), 

addone entry(fixed,fixed), 

(act,typ) char; 

test : procedure(typ,int,found,act); 

dcl (act,typ) char, 

messtmp pointer, 

int fixed, 

found bit (1); 

messtmp = messptr; 

found= false; 

do while ((~found) & (messtmp ~= null)); 

if ((messtmp->type = typ) & (messtmp->id 

then found= true; 

else do; 

messtmp messtmp->nextmess; 

end; /*do*/ 

end; /*do*/ 

if found then act= messtmp->action; 

end test; 

int)) 
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screes : procedure{line); 

dcl line char{80) varying; 
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do while {{substr{line,1,l)~='T') & (substr(line,1,1) ~= 'S') & 

(substr(line,1,1) ~= 'D') & (substr(line,1,1)~= '.')); 

call puts(clear); 

call puts('What category of message do you want listed? '); 

call puts('AMAJEnter message type/integer/ eg. D/5/ for'); 

call puts{'messages whose destination is 5AMAJ'); 

call gets{line); 

end; /*do*/ 

end scree8; 

line = ' ' ; 

do while (line~='.'); 

call scree8(line); 

if (line~='.') then do; 

typ = substr{line,1,1); 

line= substr(line,3); 

int 

act 

decimal(substr(line,1,index(line,'/')-1)); 
, , . 

I 

call test(typ,int,found,act); 

if (~found) then 

call puts('AMAJNO MESSAGE OF THIS TYPE LOGGEDAMAJ'); 

else do; 

row= 1; col 1; 

do while {(row<= finrow) & {col<= fincol)); 

do while ((messdump{row,col) ~= STX) & (col<= fincol)); 

call addone(row,col); 

end; 

found= false; 

if (messdump(row,col)) = STX then do; 

/* looking for typ and int*/ 

call addone(row,col); 

if (messdump(row,col)=act) then do; 

call addone(row,col); 

trow= row; tcol = col; 
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if { {typ 

else do; 

'T') & {messdump{trow,tcol) int)) then 

call addone{trow,tcol); 

if {typ = 'S') & {messdump{trow,tcol) 

found= true; 

else do; 

call addone{trow,tcol); 

int) then 

if {typ = 'D') & {messdump{trow,tcol))= int 

then found= true; 

end; 

end; 

end; 

end; 

if found then do; 

do while {{messdump{row,col)~=ETX)& 

{messdump{row,col)~=STX)); 

call puts{messdump{row,col)); 

call addone{row,col); 

end; 

end; 

end; /* do *I 

/*do*/ end; 

end; /*if*/ 

call puts('AMAJPush <RETURN> to continue'); 

call gets {temp); 

end; /*do*/ 

end listmess; 



LOGMESS.PLI 

logmess : procedure; 

/* messages are stored one per line in rxar */ 

/* the messages that need to be logged are stored in messdump */ 

%include 'mextern.pli'; 

dcl messtmp pointer, 

(hlog,dlog,found) bit(l), 

addone entry(fixed,fixed), 

(i,row,col) fixed, 

bpt entry; 

row= 1; col= O; 

do while (arcnt ~= logcnt); 

logcnt = logcnt + 1; 

messtmp = messptr; hlog false; dlog 

do while (messtmp ~= null); 

found= false; 

false; 

if ((messtmp->type = 'T') & (messtmp->id =rxar(logcnt,2) )) 

((messtmp->type 'S') & (messtmp->id rxar(logcnt,3) )) 

( (messtmp->type 'D') & (messtmp->id rxar(logcnt,4) )) 

then found= 'l'b; 

if (found)&(((messtmp->action = 'H')&(~hlog)) 

((messtmp->action ='D')&{~dlog))) then do; 

call addone(row,col); 

messdump(row,col) = STX; 

call addone(row,col); 

if messtmp->action = 'H' then messdump{row,col) = 'H'; 
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else if messtmp->action = 'D' then messdump(row,col) = 'D'; 

if messtmp->action 

hlog = true; 

do i = 2 to 4; 

'H' then do; 

call addone(row,col); 

messdump(row,col) = rxar(logcnt,i); 

end; 



end; 

if messtmp->action 

i = 2; 

dlog = true; 

'D' then do; 

do while (rxar(logcnt,i) ~= ETX); 

call addone(row,col); 

messdump(row,col) = rxar(logcnt,i); 

i = i + 1; 

end; 

end; 

tick= 1; /* just temporarily*/ 

if (messtmp->action = 'D') (messtmp->action 

call addone(row,col); 

messdump(row,col) = character(tick); 

call addone(row,col); 

messdump(row,col) = ETX; 

end; 

if (messtmp->action 

end; /*if*/ 

'B') then call bpt; 

messtmp = messtmp->nextmess; 

end; /*while*/ 

150 

'H') then do; 

/* could blank a field in rxar to show that message is dealt with*/ 

end; /*while*/ 

finrow row; fincol = col; 

end logmess; 



LMSDATA.PLI 

lmsdata : procedure; 

/* prints out info stored in the message table. Tests watmess */ 

%include 'mextern.pli'; 

dcl pt pointer; 

pt= messptr; 

do while(pt ~= null); 
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line= 'AMAJtype' I lpt->typel l'id' I lpt->idl !'action' I lpt->action; 

call puts(line); 

pt pt->nextmess; 

end; 

call puts('AMAJPush any key to continueAMAJ'); 

call gets(line); 

end lmsdata; 

GETDISC.PLI 

getdisc : procedure(temp); 

/* will eventually read information from disc*/ 

%include 'mextern.pli'; 

dcl temp char(80) varying; 

temp='.'; 

call puts('AMAJgetting info from disc'); 

end; 

end getdisc; 

START.PLI 

start : procedure; 

/* will eventually be loop processed until clock tick occurs*/ 

%include 'b:mextern.pli'; 

line=' 

entered start' ; 

call puts(line); 

end start; 
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BPT.PLI 

bpt : procedure; 

/* activated when a breakpoint occurs. Will eventually display a message on*/ 

/* the screen asking user what to do next*/ 

%include 'mextern.pli'; 

call puts('AMAJdoing bpt'); 

end bpt; 

DOWNLOAD.PLI 

download: procedure; 

/* will be program which downloads the programs through the monitor*/ 

/* into the appropriate processors*/ 

%include 'b:mextern.pli'; 

line= 'AMAJ entered download'; 

call puts(line); 

end download; 
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MESS.CMD 

link b:message,b:addone,b:watmess,b:logmess,b:listmess,b:getdisc,b:bpt,b:inter 

b:message 

T.CMD 

link b:monitor,b:download,b:getdisc,b:templ,b:watvar,b:watmess,b:start,& 

b:monitor 

SETBRK.PLI 

setbrk : procedure; 

/* sets up time or the message table with information from the user*/ 

/* about when next breakpoint should occur*/ 

%include 'b:mextern.pli'; 

scree2 : procedure(choice); 

dcl choice fixed; 

choice= l; 

call puts(clear); 

call puts('AMAJSet breakpoints based on'); 

call puts('AMAJ 

call puts('AMAJ 

1 Time'); 

2 Message'); 

call getfix('AMAJEnter choice' ,choice,1,2); 

end scree2; 

scree3 : procedure(choice); 

dcl choice fixed; 

call puts('AMAJHow many ticks before the breakpoint?'); 

call getfix('AMAJEnter number of ticks' ,choice,1,1000); 

end scree3; 



call scree2(choice); 

if choice= 1 then do; 

call scree3(choice); 

bptime =tick+ choice; 

end; 

else call watmess(disc); 

end setbrk; 

TEMPL.PLI 

templ : procedure; 

/* information on how messages are to be stored is entered from disc*/ 

/* then stored in a table*/ 

%include 'b:mextern.pli'; 

call getdisc(line); 

prev = null; 

do while(line ~= '.'); 

allocate messtemp set (newtemp); 

newtemp->messtype = decimal(substr(line,l,index(line,' /')-1)); 

line= substr(line,index(line,' /')+l); 

if (newtemp->messtype=O) & (prev ~= null) then 

newtemp->messtype = prev->messtype; 

newtemp->length = decimal(substr(line,l,index(line,'/')-1)); 

if (newtemp->length = 0) & (prev ~= null) then 

newtemp->length = prev->length; 

newtemp->nextemp null; 

prev = newtemp; 

if temptr = null then temptr newtemp; 

else do; 

newtemp = temptr; 

do while ((prev->messtype > newtemp->messtype) & 

(newtemp->nextemp ~= null)); 

tail= newtemp; 

newtemp = newtemp->nextemp; 

end; 

154 



if newtemp = temptr then do; 

prev->nextemp = newtemp; 

temptr = prev; 

end; 

else if (newtemp->nextemp = null) & 

(prev->messtype > newtemp-> messtype) then 

newtemp->nextemp = prev; 

else do; 

tail->nextemp 

prev->nextemp 

end; 

prev; 

newtemp; 

end; /*else*/ 

call getdisc(line); 

end; /*while*/ 

end templ; 
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VAR Disc 

VARIAB.PLI 

variab : procedure options(main); 

/* main program for the variable test suite. It calls watvar, getvar, */ 

/* recval and listvars */ 

%include 'mextern.pli'; 

dcl watvar entry(bit(l)), 

(getvar,recval,listvars) entry; 

on error begin; 

call puts('AMAJerror has occured,push RETURN to continue'); 

call gets(line); 

goto theend; 

end; 

disc = false; 

call watvar(disc); 
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call getvar; /* changed so it sends message to the screen*/ 

call recval; /* changed so it receives values from the screen*/ 

call listvars; 

theend: 

end variab; 



WATVAR.PLI 

watvar : procedure(disc); 

/* asks user what variables and how many values to log. The data*/ 

/* structure is then constructed for storing these variables*/ 

%include 'b:rnextern.pli'; 

dcl found bit(l), 

(lastn,n,i) fixed, 

(previnfo,newinfo,temp) pointer; 

screes : procedure(line); 

dcl line char(80) varying; 

call puts(clear); 

call puts('AMAJFor each variable you want to view give'); 

call puts('AMAJname,processor number,address,number of bytes'); 

call puts('AMAJnumber of values logged'); 

call puts('AMAJFor the final line simply enter'' .''AMAJ'); 

end screes; 

on error begin; 

line= 'out of range'; 

call puts(line); 

goto ntvar; 

end; 

if ~disc then do; 

call screes; 

call gets(line); 

end; 

else call getdisc(line); 

prev = null; lastn = 0; 

do while (line~='.'); 

allocate varnode set(newvar); 

newvar->name = substr(line,1,index(line,' /')-1); 

line= substr(line,index(line,'/')+1); 

if ((newvar->narne =' ') & (prev ~= null)) then 

newvar->name = prev->narne; 
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newvar->prnum = decimal{substr{line,l,index{line,'/')-1)); 

line= substr{line,index{line,'/')+1); 

if {newvar->prnum=0) & {prev ~= null) then 

newvar->prnum = prev->prnum; 

newvar->address = decimal{substr{line,1,index{line,'/')-1)); 

line= substr{line,index{line,'/')+1); 

if {newvar->address = 0) & {prev ~= null) then 

newvar->address = prev->address; 

newvar->numbytes = decimal{substr{line,1,index{line,' /')-1) ); 

line= substr{line,index{line,'/')+1); 

if {newvar->numbytes = 0) & {prev ~= null) then 

newvar->numbytes = prev->numbytes; 

n = decimal{substr{line,1,index{line,' /')-1)); 

if n = 0 then n lastn; lastn = n; 

newvar->nextvar null; 

prev = newvar; 

if varptr = null then varptr 

else do; 

found= '0'b; 

newvar = varptr; 

newvar; 
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do while ((prev->prnum >= newvar->prnum) & (~found) 

& (newvar->nextvar ~= null)); 

if (prev->prnum = newvar->prnum) & 

(prev->address<=newvar->address) then found 

if ~found then do; 

tail= newvar; 

newvar = newvar->nextvar; 

end; 

end; 

'1' b; 
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if (newvar = varptr) & (prev->prnum < newvar->prnum) then do; 

prev->nextvar = newvar; 

varptr = prev; 

end; 

/* insert at start*/ 

else if (newvar->nextvar = null) then /* insert at end*/ 

prev; newvar->nextvar 

else do; /* insert within list*/ 

tail->nextvar 

prev->nextvar 

end; 

end; 

if (n>0) then do; 

prev; 

newvar; 

allocate infonode set(temp); 

prev->infoptr = temp; 

previnfo = prev->infoptr; 

previnfo->info = 0; 

i = 1; 

do while (i<n); 

allocate infonode set(newinfo); 

previnfo->nextinfo = newinfo; 

previnfo = newinfo; 

previnfo->info = 0; 

i=i+l; 

end; 

previnfo->nextinfo = prev->infoptr; 

prev->current = prev->infoptr; 

/* make ring*/ 

/* indicates where to put 

next value*/ 



ntvar : 

if disc then call getdisc(line); 

else call gets(line); 

end; 

end; 

end watvar; 

GETVAR.PLI 

getvar : procedure; 

/*while*/ 

160 

/* sends message out to processors for each of the variables in the list*/ 

/* asking them to send the values of a particular variable*/ 

%include 'mextern.pli'; 

dcl message char(80) varying, 

temp fixed; 

newvar = varptr; 

do while (newvar ~= null); /* put message in buffer*/ 

message= STXI lvartypel lnewvar->prnuml lmonitornuml jnewvar->address; 

message= message I IETX; 

/* temp= length(message); 

call send(message,temp); 

*/ 

message ='AMAJ' I !message; 

call puts(message); 

newvar 

end; 

end getvar; 

RECVAL.PLI 

recval : procedure; 

newvar->nextvar; 

/* used only for test purposes. */ 

/* receives the value from the message and places it in a pointer table*/ 

%include 'mextern.pli'; 

dcl found bit(l), 

message char(80) varying, 

(ntinfo,temp,valtmp) pointer; 

message=' '; 

call puts('AMAJType in valuesAMAJ'); 



do while (message~='.'); 

call gets(message); 

if (message~='.') then do; 

found= false; 

temp= varptr; 

do while ((~found) & (temp~= null)); 

found= ((temp->prnum=decimal(substr(message,4,1)))& 

(temp->address=decimal(substr(message,5,1)))); 

if ~found then temp= temp->nextvar; 

end; 

if found then do; 

valtmp = temp->current; 

valtmp->info = decimal(substr(message,6,1)); 

temp->current = valtmp->nextinfo; 

end; 

end; 

end; 

end; /* recval */ 

LISTVARS.PLI 

listvars:procedure; 

/* lists all the variables which the user has requested to be logged*/ 

%include 'mextern.pli'; 

dcl (proc,add,where) fixed, 

printvar entry(pointer,fixed); 

scree9 : procedure(choice,proc,add,where); 

dcl (choice,proc,add,where) fixed; 

call puts(clear); 

call puts('AMAJWhich variables do you want listed?'); 

call puts('AMAJl 

call puts('AMAJ2 

call puts('AMAJ3 

by processor'); 

address within processor'); 

all') ; 

call getfix('AMAJEnter choice' ,choice,1,3); 

line 

proc 

, , . 
I 

O;add 0; 
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if choice= 1 then do; 

call puts('AMAJEnter processor number'); 

call gets(line); proc = line; 

end; 

else if choice= 2 then do; 

call puts('AMAJEnter processor number/address'); 

call gets{line); 

proc decimal{substr(line,1,index(line,'/')-1)); 

line substr(line,index{line,'/')+1); 

add= decimal{substr{line,1,index{line,'/')-1)); 

end; 

call getfix{'AMAJList at 1 screen, or 2 Printer' ,where,1,2); 

end scree9; 

call scree9{choice,proc,add,where); 

newvar = varptr; 

do while {newvar ~= null); 

if choice= 3 then call printvar{newvar,where); 

else if (choice= 1) & {newvar->prnum=proc) then 

call printvar{newvar,where); 
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else if {choice=2) & {newvar->prnum=proc) & {newvar->address=add) 

then call printvar{newvar,where); 

newvar = newvar->nextvar; 

end; 

end listvars; 

PRINTVAR.PLI 

printvar : procedure{newvar,where); 

/* called from listvar. Prints information about variable then lists values*/ 

%include 'mextern.pli'; 

dcl where fixed, 

print entry{char{80) varying), 

{previn,newinfo) pointer; 

output : procedure(line); 

dcl line char{80) varying; 

if where 

end output; 

2 then call print{line); else call puts{line); 



line= 'AMAJ' I lnewvar->namel lnewvar->prnuml lnewvar->address; 

call output(line); 

newinfo = newvar->current->nextinfo; 
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previn = null; /* introduced so final value can be printed*/ 

do while (previn newvar->current); 

if (newinfo->info >= 0) & (newinfo->info <= 9) then do; 

line= newinfo->info; 

previn = newinfo; 

call output(line); newinfo 

end; 

end; 

newinfo->nextinfo; 

end printvar; 

LVAR.PLI 

lvar : procedure; 

/* lists the variables to be logged. Tests watvar */ 

%include 'mextern.pli'; 

dcl pt pointer; 

pt= varptr; 

do while (pt~= null); 

line= 'AMAJname 'I lpt->namel I' prnum 'I lpt->prnum; 

call puts(line); 

line=' address' I lpt->addressl I' numbytes 'I lpt->numbytes; 

call puts(line); 

pt pt->nextvar; 

end; 

call puts('Push any key to continue'); 

call gets(line); 

end lvar; 

VAR.CMD 

link b:variab,b:getvar,b:recval,b:listvars,b:printvar,b:watvar,b:getfix,& 

b:variab 



TESTREC.PLI 

testrec : procedure options(main); 

/* tests that receive procedure works*/ 

%include 'mextern.pli'; 

dcl (putcyc,arpos) fixed, 

ch char; 

on error begin; 

call puts('AMAJerror '); 

call gets(line); 

goto thend; 

end; 

call puts('AMAJType in messages, one/line, each ending with''.'''); 

call puts('AMAJThe final line should contain only'' .''AMAJ'); 

call gets(line); 

putcyc = 0; rxchcnt = 0; 

do while (line~='.'); 

if (putcyc < 200) then putcyc 

rxcyc(putcyc) = STX; 

call add(rxchcnt); 

ch substr(line,1,1); 

do while (ch~='.'); 

line= substr(line,2); 

if (putcyc < 200) then putcyc 

rxcyc(putcyc) = ch; 

ch= substr(line,1,1); 

call add(rxchcnt); 

end; 

if (putcyc < 200) then putcyc 

rxcyc(putcyc) = ETX; 

call add(rxchcnt); 

call gets(line); 

end; 

call receive; 

putcyc + l; else putcyc 1; 

putcyc + 1; else putcyc 1; 

putcyc + 1; else putcyc 1; 
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call puts('AMAJMessages in rxar are'); 

logcnt = 0; 

do while (logcnt < arcnt); 

call puts('AMAJ'); 

logcnt = logcnt + l; 

arpos = 2; 

do while (rxar(logcnt,arpos) ~= ETX); 

call puts(rxar(logcnt,arpos)); 

arpos = arpos + l; 

end; 

end; 

thend: 

end testrec; 

TESTSEND.PLI 

testsend: procedure options(main); 

/* tests that send procedure works*/ 

%include 'mextern.pli'; 

dcl loopcnt fixed; 

sxchcnt = 0; 

call puts('AMAJEnter lines, finishing with'' .''AMAJ'); 

call gets(line); 

do while ((line~='.') & (length(line)>0)); 

call send(line,length(line)); 

call gets(line); 

end; 

loopcnt = 0; 

do while (loopcnt < sxpos); 

call puts('AMAJ'); 

do while (sxcyc(loopcnt) ~= ETX); 

call sub(sxchcnt); 

call puts(sxcyc(loopcnt)); 
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if (loopcnt < 200) then loopcnt loopcnt + l; else loopcnt =l; 

end; 

end; 

line= 'AMAJsxchcnt is' I lsxchcnt; 

call puts(line); 

end testsend; 



TEST.PLI 

test : procedure options(main); 

/* tests to see if the assembler routines add and sub are working*/ 

%include 'mextern.pli'; 

dcl (testcnt,i) fixed; 

testcnt = 0; 

do i = 1 to 4; 

call add(testcnt); 

end; 

line= 'AMAJvalue of testcnt is' I ltestcnt; 

call puts(line); 

do i = 1 to 3; 

call sub(testcnt); 

end; 

line= 'AMAJvalue of testcnt is' I ltestcnt; 

call puts(line); 

end test; 
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RECEIVE.PLI 

receive : procedure; 

/* receive message from circular buffer in the comms handler*/ 

%include 'mextern.pli'; 

dcl arpos fixed; 

do while (rxchcnt ~= 0); 

arcnt 

arpos 

arcnt + l; 

l; 

do while (rxcyc(cycpos) ETX); 

if (cycpos < 200) then cycpos 

call sub(rxchcnt); 

cycpos + l; else cycpos 

end; 

do while (rxcyc(cycpos) ~= ETX); 

rxar(arcnt,arpos) = rxcyc(cycpos); 

if (cycpos < 200) then cycpos = cycpos + l; 

else cycpos = l; 

if arpos < 200 then arpos 

call sub(rxchcnt); 

end; 

rxar(arcnt,arpos) 

end; 

end receive; 

ETX; 

arpos + l; else arpos 1; 
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1; 


