Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Enhancing Sensitivity in the Analysis of Small Biomolecules by Surface Plasmon Resonance

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Chemistry

at Massey University, Manawatu, New Zealand.

UNIVERSITY OF NEW ZEALAND

Gaile Suzanne Dombroski

2012

Abstract

Highly potent biological micro-pollutants in the aquatic environment can potentially have detrimental effects on marine and human health, but the development of highly sensitive test methods suitable for use in a field environment remains a challenge.

Surface plasmon resonance (SPR) is an optical-electrical phenomenon, which can be applied to the monitoring of surface binding, allowing the measurement of biomolecular interactions in real time, without the use of radioisotope or fluorescent labeling. The technique has wide utility in the application to biological sensing, including quantitative concentration measurements and the qualitative comparison of binding partners.

The central focus of this study was to investigate quantitative techniques and improve sensitivity using various strategies, including the incorporation of linkers into one of the binding partners and exploiting the signal enhancement properties of secondary antibodies and gold nanoparticles. The use of functionalised terthiophene as an alternative scaffold for immobilising the binding partner was investigated. The effect of attaching the binding partner as a protein conjugate compared to its protein-free counterpart was explored.

Presented here is the use of SPR to investigate an estrone-antibody binding system, which has potential application in the analysis of wastewaters. The binding of a number of estrone derivatives was evaluated, with a view to being able to 'tune' the binding system so that the sensitivity range fell within a range suitable for the application. The use of secondary antibodies and gold nanoparticles to enhance the sensitivity further was also examined in the estrone system. The findings were later applied to the development of a highly sensitive test method for the detection of the shellfish toxin, domoic acid. Finally, investigations into an alternative scaffold to which one binding partner was attached to form the recognition element on the

biosensor surface were carried out with a view to creating a generic scaffold for SPR sensor surfaces.

Acknowledgements

I would like to acknowledge the many people who have contributed to this research and the thesis. Firstly, I would like to thank my supervisors, Associate Professor Ashton Partridge and Professor Peter Derrick. I am thankful for Ashton's infectious enthusiasm, particularly in the early stages of the project and for Peter's readiness to take up the supervisory reins when Ashton departed for Auckland. Peter's advice has been particularly helpful during the often arduous writing stage.

Thanks must also go to laboratory colleagues past and present for their camaraderie and willingness to help. Two members of the research group deserve particular mention. The advice and support of Dr Krishanthi Jayasundera and Dr Wayne Campbell has been invaluable in keeping me on track and both have provided clarity and encouragement when necessary.

A special mention must go to Associate Professor Len Blackwell for his practical expertise and for kindly supplying estrone antibodies and reference materials. The advice of Dr Yinqiu Wu (Plant and Food Research) was also invaluable, particularly in the early stages. Thanks also go to Professor Richard Haverkamp for carrying out the AFM, and to Professor Simon Hall and Nessha Wise for assistance with electrochemistry. I must also thank Professor Keith Gordon from the University of Otago for carrying out resonance Raman and dispersion experiments.

I would like to thank Dr Doug Mountfort and Dr Patrick Holland of the Cawthron Institute for generating the domoic acid project, and Professor Christopher Elliot and Dr Katrina Campbell of Queen's University for supplying antibody and advice.

I must acknowledge the financial contribution of the Institute of Fundamental Sciences, Massey University and the MacDiarmid Institute for Advanced Materials and Nanotechnology for my scholarship and funding.

Finally, I would like to thank family and friends for their support and encouragement, particularly Jeremy, Anna and Libby.

Table of Contents

Abstract	t	i
Acknow	ledge	mentsiii
Table of	Cont	entsiv
List of Fi	igures	xi
List of Ta	ables.	
List of So	chem	es xxiii
Abbrevia	ations	s xxiv
Chapter	1: Int	roduction1
1.1	Chal	lenges for the Aquatic Environment1
1.1	.1	Estrogens in Wastewater1
1.1	.2	Shellfish Toxins2
1.2	Surfa	ace Plasmon Resonance4
1.2	.1	Background and Introduction to Surface Plasmon Resonance4
1.2	.2	Surface Plasmon Resonance in Practice6
1.3	Brid	ging Linkers8
1.4	Signa	al Enhancement: Secondary Antibodies and Gold Nanoparticles11
1.5	The	Scaffold Layer for SPR12
1.6	Aims	5
Chapter	2: Ex	perimental Terms and Techniques16
2.1	Imm	unoassays

An	ntibodies	16
На	apten	18
Ap	ptamers	18
2.2	Immobilisation	19
2.2	2.1 Immobilisation Chemistry	19
2.3	Regeneration	20
2.4	Concentration analysis in Surface Plasmon Resonance	21
2.4	4.1 Direct-Binding Assay:	21
2.4	4.2 Inhibition or Competition Assay:	22
2.5	Assay Design	22
2.6	Antibody Sensitivity:	24
2.7	Assay Sensitivity:	24
2.8	Choice of Binding Partners:	25
2.9	Enzyme Linked Immunosorbant Assay (ELISA)	26
Chapte	er 3: Surface Plasmon Resonance of Estrone Analogues	27
3.1	Materials and Methods	30
3.2	The Sensor Surface:	31
3.3	SPR Antibody Binding Studies	32
3.4	Inhibitive Immunoassays (Standard Curves)	32
3.5	SPR Signal Enhancement – Experimental Details	34
3.5	5.1 Signal Enhancement with Secondary Antibodies	35

3.5.2	Signal Enhancement with Gold nanoparticles: 40 nm Gold-IgG-
Perox	idase Conjugate37
252	Signal Enhancement with Gold nanonarticles: 20 nm Gold-19G-
Derov	idase Conjugate
Perux	luase conjugate
3.6 Re	esults and Discussion40
Effects c	of Linker Length on Sensitivity40
3.6.1	New Monoclonal Antibody W Stock:43
3.6.2	'Double-Curve' Inhibition Assays44
The Effe	ct of Signal Enhancement on Sensitivity52
3.7 Su	ummary64
Chapter 4:	Domoic Acid 66
4.1 M	laterials and Methods68
4.2 In	nmobilisation to CM5 Chip Surfaces68
4.2.1	Immobilisation of Ovalbumin Conjugates70
4.3 Pr	reparation of the Ovalbumin Conjugates71
4.4 Er	nzyme-Linked Immunosorbent Assay (ELISA)74
4.4.1	ELISA Procedure74
4.5 Su	urface Plasmon Resonance (SPR)76
4.5.1	SPR Scouting with ELISA Antibody76
4.5.2	Domoic Acid-Ovalbumin SPR Chip – Binding Curve (Enhanced)76
4.5.3	Domoic Acid-Ovalbumin SPR Chip – Standard Curve (Enhanced)76
4.6 Re	esults and Discussion77

4.7 Summary
Chapter 5: A Dextran-Free Terthiophene Scaffold
5.1 Materials and Methods91
5.2 Functionalised Terthiophene-on-Gold Surface (Immersion Method)91
Ferric Chloride Treatment92
5.2.1 Immobilisation of Ovalbumin on Functionalised Terthiophene-on-Gold
5.2.2 Estrone Glucuronide Conjugate on Functionalised Terthiophene-on-
Gold Surface
5.3 Progesterone
5.3.1 Preparation of P4-OEG-COOH and P4-OEG-NH ₂ 94
5.3.2 Preparation of a Progesterone-OEG-Ovalbumin Conjugate (24)94
5.3.3 Immobilisation of Progesterone95
5.3.4 Antibody Binding Studies:95
5.3.5 Inhibitive Immunoassays (Standard Curves) Using Surface Plasmon
Resonance
5.4 Electrochemistry97
5.4.1 Materials and Methods97
5.4.2 Electrochemical Set up98
5.4.3 Electrochemical Characterisation of Terthiophene-OEG-COOH:101
5.4.4 Electrochemical Coating Methods:101
Potential-Pulse Method101

	5.4.5	Purpose-Built Electrochemical Cell	102
	Coating	Conditions:	104
	5.4.6	Optimisation of Potential Pulse Coating conditions:	104
	5.4.7	Optimisation of Potentiodynamic Coating Conditions:	104
	5.4.8	Preparation of Surface Plasmon Resonance Scaffolds	105
	5.4.9	Surface Plasmon Resonance of Electrochemically Coated SPR chips	 105
	5.4.10 Electroo	Functionalised Terthiophene Scaffold: Immersion Method vs chemically Deposited Surface	107
5.	.5 Res	ults and Discussion	108
	5.5.1	Progesterone:	109
	Immobi	ilisation Results:	110
	Progest	erone Antibody Binding Studies:	111
	Scaffold	l Stability	114
	5.5.2	Terthiophene:	115
	5.5.3	Electrochemical Characterisation of Terthiophene-OEG-COOH	116
	5.5.4	Potentiodynamic Coating of Gold-on-Glass Slides:	119
	5.5.5	Potential-Pulse Coating of two SPR chips:	121
	5.5.6	Optimisation of Potential-Pulse Coating:	123
	5.5.7	Optimisation of Potentiodynamic Coating:	125
	5.5.8	Surface Plasmon Resonance:	133
5	.6 Sun	nmary	147

Chapter 6: Conclusions	150
Appendix	152
Synthesis of Estrone Derivatives	152
1,3,5(10)-Estratrien-3-(hydroxyl propianoic acid ethyl ester)-17 one (28)	153
1,3,5(10)-Estratrien-3-(hydroxyl propianoic acid)-17 one (29)	154
E1C3, C5 (9)	154
E1G, OEG (10) and E1C3, OEG (11) (Scheme 5)	156
Preparation of Estrone Linker-Ovalbumin conjugates (Scheme 6)	157
Synthesis of Progesterone derivatives (Scheme 7)	158
P4-OEG-NHBOC (33)	158
P4-OEG-NH ₂ (23)	160
Р4-ОЕG-СООН (25)	161
Synthesis of Functionalised Terthiophene (Scheme 8)	162
2, 5-Dibromothiophene-3-carboxylic acid (38)	162
2, 5-Dibromothiophene-3-carbonyl chloride (35)	163
Dibromothiophene-OEG-BOC (39)	163
2-Thienylboronic acid (40)	163
Terthiophene-OEG-BOC (41)	164
Terthiophene-OEG-NH ₂ (42)	164
Terthiophene-OEG-COOH (22)	165
Electrochemistry	166

List of Figures

Figure 1: The natural estrogens E1 and E2, and synthetic EE22
Figure 2: Schematic of the evanescent field, which decays exponentially with the
distance from the sensor surface. A 100 nm carboxymethylated dextran scaffold is
shown5
Figure 3: A schematic illustration of Surface Plasmon Resonance applied to a
binding system. Here, an antibody in solution is shown binding to its binding
partner immobilised on the surface of the sensor chip
Figure 4: The change in surface plasmon resonance angle observed upon binding6
Figure 5: Estrone with the steroid numbering included10
Figure 6: Antibody Structure (IgG1). The heavy chains consist of three constant
domains ($C_H 1$, $C_H 2$ and $C_H 3$) and one variable domain (V_H), linked to a light chain
consisting of one constant domain (C_L) and one variable domain (V_L). The variable
domains on both the light and heavy chains have highly variable complementarity
determining regions (or CDRs) which bind to the antigen
Figure 7: Immunoassay formats commonly used in surface plasmon resonance
measurements
Figure 8: Effect of antibody concentration on assay sensitivity
Figure 9: The estrone derivatives and their corresponding ovalbumin conjugates
used in sensor surfaces for surface plasmon resonance
Figure 10: Antibody response (binding) curves for CM5 sensor surfaces prepared
using ovalbumin conjugates of the estrone derivatives: estrone glucuronide, E1G-
OEG, E1C3,C5, and E1C3, OEG. Antibody is monoclonal antibody W. Error bars
shown on the graphs represent one standard deviation (SD) of the mean43
Figure 11: Inhibition assay standard curve for estrone glucuronide on a CM5 sensor
surface immobilised with E1G-OVA. Antibody W mAb used for this assay. SPR
Response Unit (RU) against the logarithm of concentration (in ng/mL) of estrone
glucuronide. Error bars shown on the graph represent one standard deviation (SD)
of the mean46

Figure 12: Inhibition assay standard curve for estrone glucuronide on a CM5 sensor
surface immobilised with E1G, OEG-OVA. Antibody W mAb was used for this assay.
SPR Response Unit (RU) against the logarithm of concentration (in ng/mL) of
estrone glucuronide. Error bars shown on the graph represent one standard
deviation (SD) of the mean47
Figure 13: Inhibition assay standard curve for estrone glucuronide on a CM5 sensor
surface immobilised with E1C3, C5-OVA. Antibody W mAb used for this assay. SPR
Response Unit (RU) against the logarithm of concentration (in ng/mL) of estrone
glucuronide. Error bars shown on the graph represent one standard deviation (SD)
of the mean48
Figure 14: Inhibition assay standard curve for estrone glucuronide on a CM5 sensor
surface immobilised with E1C3, OEG-OVA. Antibody W mAb used for this assay. SPR
Response Unit (RU) against the logarithm of concentration (in ng/mL) of estrone
glucuronide. Error bars shown on the graph represent one standard deviation (SD)
of the mean49
Figure 15: Inhibition assay standard curve for estrone glucuronide on a CM5 sensor
surface immobilised with E1G-OVA. Monoclonal antibody C used for this assay. SPR
Response Unit (RU) plotted against the logarithm of concentration (in ng/mL) of
estrone glucuronide. Error bars shown on the graph represent one standard
deviation (SD) of the mean50
Figure 16: Inhibition assay standard curve for estrone sulphate on a CM5 sensor
surface immobilised with E1G-OVA. Antibody W mAb used for this assay. SPR
Response Unit (RU) against the logarithm of concentration (in ng/mL) of estrone
sulphate. Error bars shown on the graph represent one standard deviation (SD) of
the mean
Figure 17: Inhibition assay standard curve for estrone glucuronide on a CM5 sensor
surface immobilised with E1G-OVA. Ascites fluid was used for this assay. SPR
Response Unit (RU) is plotted against the logarithm of concentration (in ng/mL) of
estrone glucuronide52
Figure 18: Optimisation of secondary antibody loading

Figure 19: Antibody binding response plot for primary monoclonal antibody only
and secondary antibody-enhanced binding. Secondary antibody concentration
A9044 is 212 μ g/mL. Signal enhancement 5.0. Error bars shown on the graph
represent one standard deviation (SD) of the mean56
Figure 20: The sensorgram of the primary antibody binding event, the secondary
antibody binding event, and the regeneration step. The secondary antibody shown
here is conjugated to a gold nanoparticle57
Figure 21: Maxymum [™] recovery tubes used in the conjugation of A9044 anti-
mouse antibody to a commercially available 40 nm gold nanoparticle. Note residual
gold deposited on the walls of the tubes59
Figure 22: Antibody binding response plot for primary monoclonal antibody only
and 20 nm gold:A9044 secondary antibody conjugate enhanced binding. Signal
enhancement 8.5. Error bars shown on the graph represent one standard deviation
(SD) of the mean60
Figure 23: Secondary antibody enhanced assay – low concentration range of
estrone glucuronide. LOD is 13 pg/mL. Error bars shown on the graph represent one
standard deviation (SD) of the mean61
Figure 24: The neurotoxin domoic acid and <i>N</i> -acetylglutamic acid67
Figure 25: Schematic of sensor surface prepared with ethylenediamine linker, and
with remaining activated sites capped using ethanolamine78
Figure 26: Schematic of sensor surface prepared using a mixture of OEG linker and
ethanolamine
Figure 27: Sensorgram for the immobilisation of domoic acid-ovalbumin conjugate
to the surface of a CM5 chip. Two pulses of EDC/NHS mixture activated the surface
esters. Four pulses of the conjugate showed increasing levels of conjugate binding.
The final pulse of ethanolamine 'capped' any remaining activated esters81
Figure 28: Sensorgram for the immobilisation of activated domoic acid to the
surface of a CM5 chip. Two pulses of EDC/NHS mixture activated the surface esters.
Four pulses of 1M ethylenediamine pH 8.5 formed the short linker on the sensor
surface. Finally, four pulses of pre-activated domoic acid were injected. The

difference between the initial response and the final response is smaller than in
Figure 27 above, where the much larger domoic acid-ovalbumin conjugate was
immobilised81
Figure 29: The calibration curve for the assay of domoic acid using the Biosense
ELISA kit. Error bars shown on the graph represent one standard deviation (SD) of
the mean
Figure 30: Domoic Acid Binding Curve, Plot of signal response (RU) vs R866 pAb
concentration for pAb signal alone (solid line) and with IgG-nanogold 20nm
enhancement (broken line). Error bars shown on the graph represent one standard
deviation (SD) of the mean
Figure 31: Surface plasmon resonance inhibition assay standard curve for domoic
acid, using domoic acid-ovalbumin conjugate immobilised on a CM5 chip as the
sensing surface, and polyclonal antibody R866 as the detecting element. The
primary antibody (broken line) and secondary antibody:20 nm gold enhanced assay
(solid line) curves are shown. Error bars shown on the graph represent one
standard deviation (SD) of the mean85
standard deviation (SD) of the mean85 Figure 32: Assay standard curve for IgG-nanogold 20 nm enhanced SPR assay of
standard deviation (SD) of the mean85 Figure 32: Assay standard curve for IgG-nanogold 20 nm enhanced SPR assay of domoic acid. Error bars shown on the graph represent one standard deviation (SD)
standard deviation (SD) of the mean

Figure 36: The electrochemical cell used for coating gold-on-glass slides and SPR sensor surfaces. Copper wire was placed over both ends of the chip to provide contact, a gasket fitted over the stainless steel rods and then the Teflon block was lowered into position. The platinum counter electrode and the silver wire reference electrode were lowered into position at a constant depth, after addition of 450 μ L Figure 37: Antibody binding response curves for the anti-progesterone rat antibody P1922 on each of the four progesterone sensor surfaces......111 Figure 39: Binding curve for P4-OEG-OVA conjugate on the functionalised Figure 40: Cyclic voltammetry of terthiophene on a gold voltammetry electrode (surface area 1.8 mm²). Supporting electrolyte 0.1 M TBAP in acetonitrile. Potential limits 0/+1.0 V. 15 cycles. Scan rate 100 mV/s. Stainless steel counter electrode. 115 Figure 41: Post-coating cyclic voltammogram of terthiophene on a gold voltammetry electrode (surface area 1.8 mm²) in supporting electrolyte (0.1 M TBAP in acetonitrile). Potential limits 0/+1.0 V. 10 cycles. Scan rate 100 mV/s. Stainless steel counter electrode......116 Figure 42: Cyclic voltammogram of ferrocene on a platinum disc electrode (surface area 1.8 mm²) in supporting electrolyte (0.1M TBAP in acetonitrile). Potential limits 0/+1.2V. Scan rate 100 mV/s. Platinum voltammetry counter electrode......117 Figure 43: Cyclic voltammetry of terthiophene-OEG-COOH on a platinum voltammetry electrode (surface area 1.8 mm²). Supporting electrolyte 0.1 M TBAP in acetonitrile. Potential limits 0/+1.2 V. 11 cycles. Scan rate 100 mV/s. Platinum voltammetry counter electrode......118 Figure 44: Post-coating cyclic voltammogram of terthiophene-OEG-COOH on a platinum voltammetry electrode (surface area 1.8 mm²) in supporting electrolyte (0.1 M TBAP in acetonitrile). Potential limits 0/+1.2 V. 5 cycles. Scan rate 100 mV/s.

Figure 45: Cyclic voltammetry of terthiophene-OEG-COOH on a gold voltammetry
electrode (surface area 1.8 mm2). Supporting electrolyte 0.1 M TBAP in acetonitrile.
Potential limits 0/+1.2 V. 11 cycles. Scan rate 100 mV/s. Platinum voltammetry
counter electrode119
Figure 46: Post-coating cyclic voltammogram of terthiophene-OEG-COOH on a gold
voltammetry electrode (surface area 1.8 mm ²) in supporting electrolyte (0.1 M
TBAP in acetonitrile). Potential limits 0/+1.2 V. 5 cycles. Scan rate 100 mV/s.
Platinum voltammetry counter electrode
Figure 47: Cyclic voltammetry of terthiophene-OEG-COOH using a sputter-coated
gold-on-glass working electrode. Supporting electrolyte 0.1 M TBAP in acetonitrile.
Potential limits 0/+1.2 V. 11 cycles. Scan rate 100 mV/s. Stainless steel counter
electrode120
Figure 48: Post-coating cyclic voltammogram of terthiophene-OEG-COOH on a
sputter-coated gold-on-glass working electrode in supporting electrolyte (0.1 M
TBAP in acetonitrile). Potential limits 0/+1.2 V. 5 cycles. Scan rate 100 mV/s.
Stainless steel counter electrode120
Stainless steel counter electrode120 Figure 49: Chronoamperogram of the potential pulse coating of terthiophene-OEG-
Stainless steel counter electrode
Stainless steel counter electrode
Stainless steel counter electrode
Stainless steel counter electrode.120Figure 49: Chronoamperogram of the potential pulse coating of terthiophene-OEG-COOH on a gold SPR chip surface (single pulse only shown). Supporting electrolyte0.1 M TBAP in acetonitrile. Pulsed at 1.25 V for 50 ms. Stainless steel counterelectrode.121Figure 50: Immobilisation of estrone glucuronide conjugate on a terthiophene-OEG-
Stainless steel counter electrode

Figure 53: Post-coating cyclic voltammogram in supporting electrolyte (0.1 M TBAP in acetonitrile) of terthiophene-OEG-COOH deposited on a sputter-coated gold-onglass surface using the potential-pulse method. Potential limits 0/+1.2 V. 5 cycles. Figure 54: Cyclic voltammetric coating of terthiophene-OEG-COOH on a sputtercoated gold-on-glass surface. Supporting electrolyte 0.1 M TBAP in acetonitrile. Potential limits 0/+1.2 V. 50 cycles. Scan rate 5 V/s. Stainless steel counter Figure 55: Post-coating cyclic voltammogram in supporting electrolyte (0.1 M TBAP in acetonitrile) of terthiophene-OEG-COOH coated on a sputter-coated gold-onglass surface. Potential limits 0/+1.2 V. 5 cycles. Scan rate 100 mV/s. Stainless steel Figure 56: Cyclic voltammetric coating of terthiophene-OEG-COOH on a gold SPR chip surface. Supporting electrolyte 0.1 M TBAP in acetonitrile. Potential limits Figure 57: Post-coating cyclic voltammogram in supporting electrolyte (0.1 M TBAP in acetonitrile) of terthiophene-OEG-COOH coated on a gold SPR chip surface (50 cycles to coat). Potential limits 0/+1.2 V. 5 cycles. Scan rate 100 mV/s. Stainless Figure 58: Cyclic voltammetric coating of terthiophene-OEG-COOH on a gold SPR chip surface. Supporting electrolyte 0.1 M TBAP in acetonitrile. Potential limits Figure 59: Post-coating cyclic voltammogram in supporting electrolyte (0.1 M TBAP in acetonitrile) of terthiophene-OEG-COOH coated on a gold SPR chip surface (10 cycles to coat). Potential limits 0/+1.2 V. 5 cycles. Scan rate 100 mV/s. Stainless steel counter electrode......130 Figure 60: Cyclic voltammetric coating of terthiophene-OEG-COOH on a gold SPR chip surface. Supporting electrolyte 0.1 M TBAP in acetonitrile. Potential limits 0/+1.2 V. 5 cycles. Scan rate 5 V/s. Stainless steel counter electrode.131 Figure 61: Post-coating cyclic voltammogram in supporting electrolyte (0.1 M TBAP in acetonitrile) of terthiophene-OEG-COOH coated on a gold SPR chip surface (5 cycles to coat). Potential limits 0/+1.2 V. 5 cycles. Scan rate 100 mV/s. Stainless steel counter electrode......131 Figure 62: Cyclic voltammetric coating of terthiophene-OEG-COOH on a gold SPR chip surface. Supporting electrolyte 0.1 M TBAP in acetonitrile. Potential limits 0/+1.2 V. 1 cycle. Scan rate 5 V/s. Stainless steel counter electrode......132 Figure 63: Post-coating cyclic voltammogram in supporting electrolyte (0.1 M TBAP in acetonitrile) of terthiophene-OEG-COOH coating on a gold SPR chip surface (1 cycle to coat). Potential limits 0/+1.2 V. 5 cycles. Scan rate 100 mV/s. Stainless steel counter electrode......132 Figure 64: Cyclic voltammetric coating of terthiophene-OEG-COOH on gold SPR chip surface (Chips A-D). Supporting electrolyte 0.1 M TBAP in acetonitrile. Potential Figure 65: Post-coating cyclic voltammogram in supporting electrolyte (0.1 M TBAP in acetonitrile) of terthiophene-OEG-COOH coated on gold SPR chip surface (Chips A-D) (1 cycle to coat). Potential limits 0/+1.2 V. 5 cycles. Scan rate 100 mV/s. Stainless steel counter electrode......136 Figure 66: Antibody response (binding curves) for three electrochemically coated terthiophene-OEG-COOH SPR sensor surfaces immobilised with progesterone-OEG-OVA. All three chips A, B, and C were electrochemically coated (1 cycle at 5 V/s). Note that for Chip A, surface regeneration was incomplete before subsequent injections of antibody, resulting in curvature at higher antibody concentrations..140 Figure 67: Inhibition assay standard curve for progesterone on an electrochemically coated terthiophene-OEG-COOH sensor surface immobilised with progesterone-OEG-OVA. Chip C (1 cycle at 5V/S) was used for this assay. Error bars shown on the graph represent one standard deviation (SD) of the mean......140 Figure 68: Inhibition assay standard curves for progesterone on CM5 and terthiophene-OEG-COOH sensor surfaces immobilised with progesterone-OEG-NH₂ and progesterone-OEG-OVA......141

Figure 69: AFM (top) and the height image of a cross section (below) of an area of
gold SPR chip surface taken at the border between bare gold and the
electrochemically coated surface145
Figure 70: Background cyclic voltammogram of supporting electrolyte 0.1 M TBAP
in acetonitrile on a gold surface. Potential limits 0/+1.2 V. 5 cycles. Scan rate 5 V/s.
Stainless steel counter electrode166
Figure 71: Cyclic voltammograms of supporting electrolyte 0.1 M TBAP in
acetonitrile. Potential limits 0/+1.2 V. 5 cycles. Scan rate 100 mV/s. Stainless steel
counter electrode167

List of Tables

Table 1: Results of the determination of mass spectrometry of hapten ratio (estrone to ovalbumin) in the estrone conjugates, and the corresponding level of conjugate immobilisation on sensor surfaces. Flow cell 1 was immobilised with ovalbumin only, to act as a reference, and flow cell 2 with the respective estroneovalbumin conjugate......40 **Table 2:** The Limits of detection and IC_{50} for the calibration curves of the four Table 3: Limits of detection and IC₅₀ values for an estrone glucuronide assay using the second batch of antibody W stock, at 1.0 μ g antibody W/mL on an E1G-OVA sensor chip. Values given for both (H) high and (L) low concentration ranges of estrone glucuronide. The signal size of this second batch is given by RU.mL/ μ g.44 Table 4: Assessment of secondary antibodies on the signal enhancement of the primary antibody signal, and the effect of buffer modifiers on the primary antibody signal size and the degree of non-specific binding. The non-specific binding level (*i.e.* the response when the secondary antibody is injected in the absence of the primary antibody) is expressed as a percentage of the total primary and secondary binding (to 1 significant figure)......54 Table 5: IC₅₀ and LOD values in are given in ng/mL, unless otherwise stated. All errors quoted are standard errors. (H) and (L) refer to high- and low- concentration ranges of estrone glucuronide. 20 and 40 nm refer to the size of gold nanoparticle used to prepare the secondary antibody-gold nanoparticle conjugate. The limit of detection (LOD) is the IC₉₀ value, and the sensitivity in (RU.mL/ μ g) is the size of the antibody signal relative to amount of antibody in solution, determined from the binding curve. "Not Valid" signifies that the signal variation was large, and no curve was produced......63
 Table 7: Mass spectrometry results for the glutamic acid- and domoic acid
conjugates. The hapten number per ovalbumin value is the molar ratio of the

Table 8: Response of the two anti-domoic acid antibodies on different sensor
surfaces. ND=Not Detected80
Table 9: Limits of Detection, IC_{50} and working range for the enhanced and un-
enhanced SPR assay of domoic acid. The domoic acid-ovalbumin conjugate
immobilised on a CM5 chip was used as the sensing surface85
Table 10: Anti-estrone glucuronide antibody (monoclonal antibody W) binding
response for SPR chips immobilised with estrone glucuronide conjugate, on a
terthiophene-OEG-COOH surface and on a terthiophene-OEG-COOH surface which
had been treated with ferric chloride solution108
Table 11: Immobilisation of the progesterone-OEG-ovalbumin conjugate and
progesterone-OEG-NH $_2$ on the CM5 surface, and on the terthiophene-OEG-COOH
surface. Flow cell 1 is the reference flow cell, and flow cell 2 contains the sensing
element progesterone either as the ovalbumin conjugate or in the un-conjugated
form where the amine moiety attaches to the surface111
Table 12: Surface plasmon resonance immobilisation and antibody response data
for sensor surfaces prepared by the potential-pulse coating of the gold surface with
functionalised terthiophene
Table 13: Immobilisation and conditioning results for four sensor surfaces prepared
by electrochemically coating 5 mM terthiophene-OEG-COOH at 5 V/s for 50, 10, 5,
and 1 cycle respectively. A potentiodynamic method was used here134
Table 14: Antibody response and stability check results for four sensor surfaces
prepared by electrochemically coating 5 mM terthiophene-OEG-COOH at 5 V/s for
50, 10, 5, and 1 cycle respectively. A potentiodynamic method was used here. Note
that the difference is calculated over 7 injections, because the last three injections
of ten were not collected for the 50 cycle chip135
Table 15: Immobilisation and conditioning results for three sensor surfaces
prepared by electrochemically coating 5 mM terthiophene-OEG-COOH (1 cycle at 5
V/s) and immobilisation with progesterone-OEG-OVA conjugate in flow cell 2, and
with ovalbumin in the reference flow cell 1. The cyclic voltammetry
(potentiodynamic) method for coating was used here137

Table 16: Antibody response and stability check results for three SPR sensor surfaces prepared with electrochemically coated terthiophene-PEG-COOH (1 cycle at 5 V/s) and immobilised with progesterone-PEG-OVA conjugate in flow cell 2, and with ovalbumin in the reference flow cell 1. The cyclic voltammetry (potentiodynamic) method for coating was used here. The difference between first and last antibody injection is presented as absolute value (Beg-End RU), and as a percentage of the initial response......138 Table 17: Limits of detection (LOD), IC₅₀ values and antibody response values (in RU.mL/ μ g) for CM5 and terthiophene-OEG-COOH sensor surfaces immobilised with progesterone-OEG-NH₂ and progesterone-OEG-OVA.^a denotes that the functionalised terthiophene scaffold was prepared using the immersion method, ^b the scaffold was an electrochemically deposited layer of functionalised Table 18: Antibody response and stability check results for SPR sensor surfaces prepared by the immersion method and by electrochemically depositing terthiophene-OEG-COOH (1 cycle at 5 V/s). Both surfaces were immobilised with progesterone-OEG-OVA conjugate in flow cell 2, and with ovalbumin in the reference flow cell 1. The difference between the first and last antibody injection is presented as absolute value (Beg-End RU), and as a percentage of the initial

List of Schemes

Scheme 1: Activation of the surface of a carboxymethylated dextran sensor chip
with <i>N</i> -ethyl- <i>N</i> -(3-dimethylaminopropyl)-carbodiimide as the hydrochloride (EDC)
(5) and N-hydroxysuccinimide NHS (6) to give reactive succinimide esters. The
activated esters react spontaneously with nucleophilic groups such as amines,
allowing direct immobilisation of molecules containing such groups20
Scheme 2: Conjugation of N-acetyl glutamic acid to ovalbumin. The formation of
more than one species of activated succinimide ester is possible and illustrated
here, but only the 'single' conjugate is shown72
Scheme 3: Conjugation of domoic acid to ovalbumin73
Scheme 4: Synthesis of estrone derivative E1C3, C5 from estrone153
Scheme 5: General procedure for linker insertion to E1 esters
Scheme 6: Conjugation of E1 derivatives to ovalbumin
Scheme 7: Synthesis of progesterone-OEG linker-NH ₂ and progesterone-OEG linker-
ovalbumin conjugate used as sensing elements in the SPR sensor chip surface160
Scheme 8: Synthesis of a functionalised terthiophene for use as a scaffold on an SPR
sensor surface

Abbreviations

AFM	atomic force microscopy
АР	alkaline phosphatase
вос	tertiary butoxide protecting group
brs	broad singlet
BSA	bovine serum albumin
CE	counter electrode
CV	cyclic voltammetry
d	doublet
DCC	N,N'-Dicyclohexylcarbodiimide
DCM	dichloromethane
dil.	dilute
DME	1,2-dimethoxyethane
DMF	dimethylformamide
E1	estrone
E1G	estrone glucuronide
E2	estradiol
EDC	N-ethyl-N-(3-dimethylaminopropyl)-carbodiimide (as the hydrochloride)
EDTA	ethylenediamine tetra-acetic acid
EE2	17α -ethynylestradiol

EI	electron ionisation
ELISA	enzyme-linked immunosorbent assay
equiv.	equivalents
EtOAc	ethyl acetate
eV	electron volts
FC	flow cell
FCC	flash column chromatography
h	hour(s)
HEPES	4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid
Hex	hexane
НОАс	acetic acid
HRMS	high resolution mass spectrometry
HRP	horse radish peroxidase
IFC	integrated fluidics cartridge
LC-MS	liquid chromatography - mass spectrometry
LOD	limit of detection
m	multiplet
mAb	monoclonal antibody
MALDI	matrix assisted laser desorption ionisation
mg	milligrams
ms	milliseconds

MHz	megahertz
Milli-Q water	ultrapure water filtered through a 0.22 micron filter with a resistivity 18.2 M Ω ·cm at 25 °C
min	minute
MIP	molecularly-imprinted polymer
mL	milliliters
mmol	millimoles
MS	mass spectroscopy
MW	molecular weight
nBuLi	n-butyllithium
ND	not detected
<i>N</i> -Glu	N-acetylglutamic acid
NHS	<i>N</i> -hydroxysuccinimide
NMR	nuclear magnetic resonance
NSB	non-specific binding
OEG	oligo(ethylene glycol)
OVA	ovalbumin
pAb	polyclonal antibody
PBS	phosphate buffered saline
PBS/T	phosphate buffered saline with Tween
PEG	poly(ethylene glycol)

PES	phenylether sulphone
q	quartet
RE	reference electrode
rt	room temperature
RU	response unit
SAM	self-assembled monolayer
SD	standard deviation
SEM	scanning electron microscopy
SPR	surface plasmon resonance
t	triplet
ТВАР	tetrabutylammonium perchlorate
TFA	trifluoroacetic acid
THF	tetrahydrofuran
ТМВ	tetramethyl benzidine
TOF	time-of-flight
UV	ultra-violet
WE	working electrode