Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

THE PARAMETER SPACE BOUNDARY FOR ESCAPE AND CHAOS IN THE DUFFING TWIN-WELL OSCILLATOR

A thesis presented in partial fulfilment of the requirements for the degree of doctor of philosophy in Physics at Massey University

> Christopher I. Reid November 1999

Contents

Li	st of	Tables	iv
Li	st of	Figures	viii
A	bstra	nct	ix
A	cknov	wledgements	x
In	trod	uction	xi
1	Cub	pic Oscillations	1
	1.1	Cubic Oscillators	1
	1.2	Pure cubic oscillator	4
	1.3	Duffing's method of solution	5
	1.4	Twin-Well Oscillator	6
		1.4.1 Numerical Analysis	11
2	\mathbf{Exp}	erimental Apparatus	13
	2.1	Physical Description	13
	2.2	The Stepping Motor Drive System	17
		2.2.1 Stepping Motor Control	18
		2.2.2 Harmonic content of the stepped sinewave	19
	2.3	Ultrasound Detection System	22
3	Exp	perimental Results	25
	3.1	System Parameters	25
	3.2	'Typical' Behaviour	27

		3.2.1 Unforced Oscillations	27
		3.2.2 Forced Oscillations	27
	3.3	Experimental Lyapunov Exponents	39
	3.4	SW orbit - Chaos Boundary	43
	3.5	DW orbit Behaviour	44
	3.6	Summary	46
4	Mo	delling the Chaos Boundary	49
	4.1	Modelling the Single Well orbit	50
	4.2	Criteria for Escape and Chaos	55
		4.2.1 Threshold Criteria	55
		4.2.2 Holmes-Melnikov Criterion	60
	4.3	Stability analysis of the SW orbit	61
5	Con	aclusion	70
A	App	paratus Specifications	74
Α	Арр А.1	Daratus Specifications V-scope Data Records	74 74
A B	App A.1 Pas	Daratus Specifications V-scope Data Records Scal Code	74 74 75
A B	App A.1 Pas B.1	Daratus Specifications V-scope Data Records scal Code Poincaré plot algorithm	74 74 75 75
A B	App A.1 Pas B.1 B.2	Daratus Specifications V-scope Data Records Scal Code Poincaré plot algorithm Stepped sinewave Fourier analysis	 74 74 75 75 79
A B	App A.1 Pas B.1 B.2 B.3	Daratus Specifications V-scope Data Records Scal Code Poincaré plot algorithm Stepped sinewave Fourier analysis Fourier Representation Algorithm	 74 74 75 75 79 80
A	App A.1 Pas B.1 B.2 B.3 B.4	Daratus Specifications V-scope Data Records Scal Code Poincaré plot algorithm Stepped sinewave Fourier analysis Fourier Representation Algorithm Interval Bisection algorithm	 74 74 75 75 79 80 83
A	App A.1 Pas B.1 B.2 B.3 B.4 B.5	Daratus Specifications V-scope Data Records Scal Code Poincaré plot algorithm Stepped sinewave Fourier analysis Fourier Representation Algorithm Interval Bisection algorithm Lyapunov Exponents	 74 74 75 79 80 83 85
A B C	 App A.1 Pas B.1 B.2 B.3 B.4 B.5 Der 	Daratus Specifications V-scope Data Records Scal Code Poincaré plot algorithm Stepped sinewave Fourier analysis Fourier Representation Algorithm Interval Bisection algorithm Lyapunov Exponents ivations for chapter 4.	 74 74 75 79 80 83 85 87
A B C	App A.1 Pas B.1 B.2 B.3 B.4 B.5 Der C.1	Daratus Specifications V-scope Data Records Scal Code Poincaré plot algorithm Stepped sinewave Fourier analysis Fourier Representation Algorithm Interval Bisection algorithm Lyapunov Exponents ivations for chapter 4. Derivation of response function by Harmonic Balance	 74 74 75 79 80 83 85 87 87
A B C	App A.1 Pas B.1 B.2 B.3 B.4 B.5 Der C.1 C.2	Daratus Specifications V-scope Data Records Scal Code Poincaré plot algorithm Stepped sinewave Fourier analysis Fourier Representation Algorithm Interval Bisection algorithm Lyapunov Exponents ivations for chapter 4. Derivation of response function by Harmonic Balance The determinants of section 4.3	 74 74 75 79 80 83 85 87 89

List of Tables

2.1	Apparatus Dimensions and Parameters	16
2.2	Parameters associated with the stepping motor system	18
3.3	Experimental system parameters	27
3.4	Comparison of algorithms to estimate λ_{max} . In each case, $m = 1$.	42

List of Figures

0.1	Intuitive representation of a twin-well potential system	xii
0.2	Numerical results reproduced from figure 4, Janicki and Szem-	
	plińska-Stupnicka [14] for parameter values α = 0.5, β = 0.5 and	
	$\gamma = 0.1.$	xiii
1.3	Spring geometry (a) Glider orientation (b) Variables defined	1
1.4	Glider coordinates defined	2
1.5	Typical response curves for (a) 'Hard' spring. (b) Linear spring.	
	(c) 'Soft' spring	3
1.6	Hysteresis sequence A-B-C-D-E illustrated for the 'Hard' spring case.	4
1.7	Experimental response curve from [32]	5
1.8	(a) Restoring force $f(x)$ vs x and (b) Potential $V(x)$ vs x for $a =$	
	7.21	7
1.9	Phase plane $(v \ vs \ x)$ behaviour for $c = 0, F = 0, a = 7.21$, from	
	the Hamiltonian, equation 1.19, for $H = 1.2, 0, -0.4$ and -1.2 .	9
1.10	Phase plane character near critical points for $c \neq 0$, $F = 0$, $a = 7.21$.	9
1.11	Response curve given by roots to equation 1.30 for $a = 7.21$, $F = 1.51$.	12
2.12	Overview of the apparatus. The stepping motor cable and coun-	
	terweight are seen in the top left of the figure. \ldots \ldots \ldots \ldots	14
2.13	Close-up view of the air track showing the spring geometry and	
	V-scope receiver towers.	14
2.14	Detail of the glider showing the V-scope 'button' transmitter, rod	
	connections and, on the side, the damping magnet attachment. $\ .$	15
2.15	(left to right) PC2, PC1. stepping motor (between table legs, near	
	the floor), control box, power supplies and V-scope microprocessor.	15

2.16	Schematic of the experimental apparatus	16
2.17	A 1 Hz 'stepped' sinewave, amplitude $N = 10$ steps, with its con-	
	tinuous counterpart.	19
2.18	Odd Fourier series coefficients, normalised to the fundamental, for	
	the 'worst case' stepped sine wave of amplitude $N=50$ steps	21
2.19	Data array for calculation of velocity	23
3.20	Measured restoring force $f(r)$ vs r with polynomial fit	26
3.21	(a) Decay oscillation and (b) Log plot of the (normalised) amplitudes.	26
3.22	Relaxation oscillation ($\Gamma = 0$) (a) x vs t (b) v vs x	28
3.23	SW orbit for $\Gamma = 0.093$ N, $\omega = 3.19 \ rad.s^{-1}$. (a) x vs t (b) v vs x.	29
3.24	SW frequency response curve for $\Gamma = 0.06$ N	29
3.25	SW orbit at low frequency $\Gamma=0.143$ N, $\omega=1.44\ rad.s^{-1}$ (a) $x\ vs$	
	t (b) v us x	30
3.26	Bifurcation of SW orbit occurs as ω decreases; in this case a fre-	
	quency change of $\Delta \omega = 0.06 \ rad.s^{-1}$.	31
3.27	SW orbit after period doubling for Γ = 0.093 N, ω = 3.15 $rad.s^{-1}$	
	(a) $x vs t$ (b) $v vs x$	31
3.28	Bifurcation diagram for $\Gamma = 0.093$ N	32
3.29	Sketch of the SW response for Γ large	33
3.30	122 s of chaos for $\Gamma=0.143$ N, $\omega=2.92\ rad.s^{-1}.$ (a) $x\ vs\ t$ (b) v	
	$vs \ x. \ \ldots \ $	34
3.31	Poincaré section for $\phi = 120^{\circ}$	35
3.32	Experimentally obtained Poincaré sections, P_{ϕ} , with the drive phase	
	angle given in degrees.	36
3.33	DW orbit for $\Gamma = 0.143$ N, $\omega = 3.13 \ rad.s^{-1}$. (a) x vs t (b) v vs x.	37
3.34	$\Gamma = 0.152$ N, $\omega = 3.14 \ rad.s^{-1}$ (a) x vs t (b) v vs t	37
3.35	DW orbit at low frequency: Γ = 0.152 N, ω = 1.51 $rad.s^{-1}$ (a) x	
	vs t (b) $v vs x$	38
3.36	Evolution of trajectories from a small sphere of initial points	40
3.37	Boundary in the (ω , Γ)-plane between chaotic and SW-orbit peri-	
	odic motion. Experimental data (connected dots); Numerical data	
	(plain line).	43

3.38	Experimental boundaries in the (ω, Γ) -plane for the stability of the	
	DW orbit (lower) and transition to the DW orbit from chaos (upper).	45
3.39	Plot of all experimental boundaries in the (ω, Γ) -plane	46
3.40	Detail reproduced from figure 4, Janicki and Szemplińska-Stupnicka	
	[14]	48
4.41	(a) SW orbit for $\omega = 2.78 \ rad.s^{-1}$, $F = 1.57$. and (b) Harmonic	
	components of $x(t)$	51
4.42	Z vs ω for $a = 7.21, c = 0.257, F = 0.2, 0.39, 1.2, \dots$	53
4.43	$Z^2 vs \omega^2$ for $a = 7.21, c = 0.02, F = 0.2.$	54
4.44	Comparison of response curves generated by Duffing's method (equa-	
	tions $1.30, 4.56$) (points) and Harmonic Balance (equation 4.54)	
	(solid line) for $F = 1.5$, $a = 7.21$, $c = 0$	54
4.45	Figure 3. reproduced from Moon [19]. Experimental data is ac-	
	companied by a curve given by equation 4.58	56
4.46	Theoretical escape boundary (solid line) derived from the response	
	equation 4.54 with a 'critical amplitude' together with the numer-	
	ically obtained boundary (points)	57
4.47	Simplified response curve (points) obtained from equation 4.60 to-	
	gether with the original response curve from equation 4.54 (solid	
	line)	58
4.48	'Low frequency' boundary from equation 4.61 (solid line) with the	
	numerical boundary (points) for comparison	59
4.49	Holmes-Melnikov criterion for chaos (solid line) together with the	
	numerical data.	60
4.50	Boundary lines generated using the stability condition equation	
	4.84 with the response equation generated via Duffing's method	
	(equation 1.30) together with numerically obtained points for the	
	same parameters.	67
4.51	Boundary lines generated by equation 4.85 for the system parame-	
	ters together with the numerical points; F_+ : heavy line, F : light	
	line	68

4.52	Detail of the plot of the analytic boundaries (solid lines) from equa-	
	tion 4.85 for the system parameter values (table 3.3) together with	
	the numerical points in the chaos region. \ldots \ldots \ldots \ldots \ldots	69
5.53	Plot of all experimental boundaries in the (ω , Γ)-plane. Repro-	
	duced from figure 3.39, section 3.6.	71

Abstract

The Duffing 'twin-well' oscillator is investigated both experimentally and theoretically. The construction of a physical, nonlinear air-track oscillator with an ultrasound position detection system permits observation of a wide range of oscillatory behaviours, including chaotic motion, on a human scale (amplitudes of \sim metre).

Phase space and Poincaré sections are constructed in real time and, in the case of chaos, Lyapunov exponents determined. The range of control space conditions which give rise to chaos is investigated. In particular, the boundaries between chaotic and periodic motion are measured experimentally.

An analytic description of the primary boundaries of interest is constructed via a harmonic-balance generated solution to the governing differential equation and a perturbation style stability analysis. Successful theoretical prediction of the chaos boundary is achieved without recourse to numerical methods.

Acknowledgements

It is a pleasure to acknowledge the contributions of the following people:

My supervisor, Dr Scott Whineray of the Department of Physics. Albany, for his guidance, wisdom and wit.

Mr Joe Wang and Dr Geoffrey Dingley of the Department of Physics who built the stepping motor drive system and controlling software described in section 2.2. Dr Peter Kay of Computer Science, who lent valuable assistance in establishing RS-232 communication between the PC and the ultrasound detection system (section 2.3).

Professor Ian Watson for assisting with the funding of the project and Professor David Parry for his support.