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Abstract 

TIH� DuHing 'twin-well' oscillator is investigated both experimentally and theo­

retically, The construction of a physical, nonlinear air-track oscillator vvit.h an 

ultrasound position detection system permits observation of a wide range of os­

cillatory beh,wioms, including chaotic lllotion, on a human scale (amplitudes of 

",-,metre). 

Phase space and Poincarc sections are constructed in rN11 time and, in the case 

of chaos, Lyapullov exponents determined. Tlw range of control space conditions 

\vhich give ris(; to chaos is investigated. In particular. the boundaries betvveen 

chaotic and periodic motion are measured experimentally. 

An analytic description of the primary boundaries of interest is constructed 

v ia a harmonic-balance generated solution to the governing differential equation 

aIld a perturbation se,vIe stability analysis. Successful theoretical prediction of the 

chaos boundary is achieved vvithout recourse to numerical methods. 
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