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Abstract

The Dufling ‘twin-well” oscillator is investigated both experimentally and theo-
retically. The construction of a physical, nonlinear air-track oscillator with an
ultrasound position detection system permits observation of a wide range of os-
cillatory behaviours, including chaotic motion, on a human scale (amplitudes of
~ometre).

Phase space and Poincaré sections are constructed in real time and, in the case
of chaos, Lyapunov exponents determined. The range of control space conditions
which give rise to chaos is investigated. In particular, the boundaries between
chaotic and periodic motion are measured experimentally.

An analytic description of the primary boundaries of interest is constructed
via a harmonic-balance generated solution to the governing differential equation
and a perturbation style stability analysis. Successful theoretical prediction of the

chaos boundary is achieved without recourse to numerical methods.
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