
Copyright is owned by the Author of the thesis.  Permission is given for 
a copy to be downloaded by an individual for the purpose of research and 
private study only.  The thesis may not be reproduced elsewhere without 
the permission of the Author. 
 



 

 

 

Assessing the value of a geomorphic toolbox to 

assist with determining ecological health of 

wadable streams within the Waikato Region 

 

 

 

A thesis presented in partial fulfilment of the requirements for the degree of 

 

Master of Science 

 in 

Geography 

  

at Massey University, New Zealand. 

 

 

 

 

Teryll Alexandra Lepper 

2020 

 

  



 

 

 

 

 

 

 

 

 

 

Kaua e kōrero mō te awa, kōrero ki te awa 

Don’t talk about the river, talk to the river 

 



i 

Abstract  

Ecological measures such as quantification of taxa and chemical indicators are well 

established as tools for assessing river health, but the geomorphic component is often 

left out despite forming the template on which all other processes occur. To address 

the missing geomorphic component in monitoring river health, this research focused 

on framing river health within a geomorphic context and formulated a Waikato 

Region-specific geomorphic toolbox to be integrated with existing river health 

monitoring, providing a more holistic understanding of rivers in the region.  

Six indicators were chosen to assess geomorphic condition and develop a toolbox: 

riparian zone, wood, bank erosion, particle size, connectivity and geomorphic units. 

Reference conditions were established for each site based on ‘minimally disturbed’ 

conditions. Qualitative and semi-quantitative techniques for assessing each indicator 

were outlined and tested against six monitoring sites – four ecological reference state 

and two non-reference state – within the Waikato Region using desktop based ‘apriori’ 

methods, as well as in-field monitoring. Assessment outputs included a qualitative 

proforma of each stream and a scoring mechanism to provide comparable results of 

each streams. Streams were given an assessment level from ‘Excellent’ to ‘Very Poor’ 

depending on their geomorphic quality.  

Four reference sites were assessed as ‘Excellent’, while the two non-reference sites were 

assessed as ‘Poor’ for geomorphic quality. Comparisons to ecological monitoring data 

of the same reaches showed a relationship between ecological and geomorphic health, 

such as the excellent fish and MCI scores corresponding with ‘Excellent’ 

geomorphology. However, proximity to the coast can skew fish indicators due to the 

diadromous nature of many native New Zealand fish; whilst the Whangarahi Stream 

was considered ‘Poor’ for geomorphic health, it was inhabited by an order of magnitude 

more eels than any other reach assessed.  

The use of reference conditions is integral to a well-functioning geomorphic toolbox, 

although further exploration is needed around whether reference conditions should 

represent ‘minimally disturbed’ or ‘best attainable’ condition given existing land use 

patterns. Inclusion of more encompassing geomorphic unit indicators, as well as bed 

structure would strengthen the toolbox.  
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The geomorphic toolbox was created to provide meaningful and comparable data for 

assessing geomorphic health in a time- and cost-efficient manner, which has been 

achieved. Subject to further testing and refinement of variables to maintain relevance 

to a range of geomorphic contexts, the toolbox is considered adequate for inclusion 

into State of the Environment reporting structures for the Waikato Region.   
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1. Introduction  

Rivers are of paramount importance to life, both in terms of human and ecosystem 

health (Reid et al., 2008) and yet are some of the most degraded landforms worldwide 

(Raven et al., 2010). River health is a measure of catchment health, which in turn 

provides an indication of both environmental and social health (Brierley & Fryirs, 

2005). Given their necessity for quality of life and ecosystems, rivers are beginning to 

be seen and valued for their roles as the template in which other processes and 

functions of river and ecosystem health occur (Lake et al., 2007; Brierley & Fryirs, 2016; 

Wohl, 2016; Fuller & Death, 2017; Fuller et al., 2019). However, contemporary 

rehabilitation and river management tend to focus on the ecological, hydrological and 

chemical attributes of a river, while neglecting the geomorphic processes (Norris & 

Thoms, 1999; Brierley et al., 2010; Wohl et al., 2019). It is increasingly apparent that the 

geomorphic tapestry can dictate the efficacy of other river quality attributes such as 

taxa quantity and quality, water temperature, and even chemical indicators. Whilst the 

legislative context in New Zealand for the natural environment provides a degree of 

protection to rivers, a lack of integrated geomorphic measures presents a gap in the 

collective understanding of the current state of river health in the regions. Appropriate 

mitigation, rehabilitation and change cannot be achieved consistently without a 

comprehensive understanding of the drivers of change, including the geomorphology 

of New Zealand’s river catchments (McFarlane et al., 2011). This thesis assesses the 

suitability of creating a ‘fit-for-purpose’ geomorphic assessment toolbox for use 

alongside other existing river health assessments under national and regional statutory 

requirements, and to appraise the geomorphic quality of both reference and non-

reference sites within the Waikato Region. 

1.1. Research gap 

Regional Councils, including Waikato Regional Council (WRC), are obligated under 

Section 35 of the Resource Management Act 1991 (RMA) to undertake monitoring and 

reporting on the state of the environment every five years. This includes freshwater 

(rivers) across the region to identify any temporal changes to water quality or river 

conditions. WRC has identified a geomorphological gap within the analysis whereby 

the current State of the Environment (SOE) approach for river condition assessments 

is primarily concerned with water quality, habitat quality, and indicator species 
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(McFarlane et al., 2011). As a result, the opportunity to assess changes in river health 

and river condition through identification of geomorphic form, process and evolution 

(McFarlane et al., 2011) is marginalised. Efforts to manage and monitor river condition 

in a meaningful way may be ineffective without genuine effort to detect the 

interrelationships between water quality, ecosystem health and geomorphology. This 

is important because river health is about more than just water quality and quantity; 

geomorphology sets the physical template upon which lotic processes operate (Fuller 

et al., 2019; Wohl et al., 2019). Therefore, WRC are seeking to develop a fluvio-

geomorphic condition assessment to incorporate meaningful data into the SOE 

reporting to further strengthen their understanding of river health within the Waikato 

Region.  

1.2. Objectives 

The overall aim of this research was to answer the following question:  

Can geomorphological characteristics of a reach contribute to a realistic 

measurement of the ecological health in a river or a catchment? 

WRC undertakes annual ecological monitoring (macroinvertebrates and fish) at a 

number of ‘natural state’ (reference sites) and ‘developed land’ (non-reference sites) 

streams and rivers throughout the region. Reference conditions for SOE reporting are 

specified as “the chemical, physical or biological conditions that can be expected in 

streams and rivers with minimal or no anthropogenic influence” (McDowell et al., 

2013a, p. 6). The objective of the research was to determine if it is possible to develop a 

geomorphological toolbox that can contribute to determining the ecological condition 

of a reach and assist in explaining spatial or temporal differences between catchments 

and reaches. As such, temporal and spatial replication of the toolbox were imperative 

to the success of incorporating geomorphic assessment into the existing SOE reporting.  

The aim was answered by using the following objectives to guide the investigation 

and research: 

▪ Identify and establish the connections between geomorphology and ecological 

health in national and international literature;  
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▪ Identify existing geomorphic techniques and methodologies to determine the 

characteristics and methods that could apply to a New Zealand and Waikato 

perspective to infer ecological health; 

▪ Formulate a toolbox approach for measuring geomorphic units within 

Waikato Region rivers to assess geomorphic diversity and / or quality;  

▪ Compare the results of the toolbox assessment with ecological data collected 

independently by WRC;  

▪ Critically assess the application of the geomorphic toolbox to wadable streams 

in the Waikato Region; and  

▪ Provide recommendations for refinements and / or temporal applicability of 

the proposed toolbox. 
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2. Literature Review 
2.1. Introduction  

Rivers and streams are under significant threat from a range of anthropogenic stresses 

(Fuller & Death, 2017; Reid et al., 2019) with habitat degradation a leading cause of 

population declines in freshwater systems (Reid et al., 2019). This is concerning due to 

the reliance of communities on freshwater assets and ecosystem services (Beechie et 

al., 2010). As a result, the benefits of monitoring river health are increasingly recognised 

for the purposes of understanding the state of the environment and undertaking 

appropriate management regimes for reversing degradation (Vaughan et al., 2007). 

River health cannot be measured directly, and instead a range of surrogate measures 

and observations are used to indicate a system’s capacity to support key processes 

(Davies et al., 2010). Research prior to the 21st Century had a key focus on ecological 

and water quality considerations (Fryirs, 2003), perhaps due to their ability to provide 

a definitive quantitative assessment that can be readily compared and applied across 

different reaches and catchments. However, these measurements scale poorly (Feld et 

al., 2010) and it is becoming recognised that physical, chemical, and biological 

characteristics must be successfully integrated if sustainable stream management 

practices are to be achieved (Norris & Thoms, 1999; Fryirs, 2003; Vaughan et al., 2007). 

The geomorphic condition can provide a critical template upon which other 

biophysical interactions can be interpreted or measures measured, as shown in Figure 

1 (Fryirs, 2003; McFarlane et al., 2011; Fryirs & Brierley, 2013; Fuller et al., 2019), although 

debate over its degree of influence and importance is ongoing. As such, understanding 

the connection between geomorphological characteristics and river health is arguably 

integral.  
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Figure 1 Geomorphology as a template upon with other processes and interactions can occur. An understanding 
of the geomorphic condition provides a greater understanding of processes occurring and interacting within the 
environment (Fryirs & Brierley, 2013) 

This literature review discusses river health, and the relationship of fluvial monitoring 

within a New Zealand policy context. It also discusses specific morphological features 

and processes that indicate geomorphological quality of the riverine environment, in 

addition to providing an overview of key existing assessment frameworks. Significant 

challenges exist with successfully applying the geomorphic context to river health 

monitoring due to the highly context dependent set of parameters that exist for each 

river based on unique relationships between climate, geology, elevation, and 

biodiversity. Scale-related variability both within and between river systems also 

provides an added dimension of complexity for geomorphic assessments (Raven et al., 

2010). Regardless, steps toward integrating geomorphological considerations into river 

health assessments are essential to framing management and restoration strategies 

within a physical context of what the river landscape can be expected to achieve 

(McFarlane et al., 2011).  

2.2. River Health and Naturalness 

Rivers are complex systems, with the form and behaviour reflecting the interaction of 

geomorphological and ecological processes (Dollar et al., 2007) (Figure 2). Freshwater 

bodies are also among the most fragmented, degraded and threatened ecosystems in 

the world (Raven et al., 2010), with their physical form significantly altered as a result 

of human intervention (Jungwirth et al., 2002; Brierley & Fryirs, 2008). Brierley and 

Fryirs (2005) frame river health as “the ability of a river and its associated ecosystem to 

perform its natural functions” (p. 1). 
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Figure 2 Components and processes within a channel-floodplain ecosystem, with interactions between 

components shown as directional arrows (Davies et al., 2010) 

Contemporary fluvial literature stresses the role of the physical environment as a 

template in which the lotic system can develop and flourish (Norris & Thoms, 1999; 

Brierley et al., 2010; Wohl et al., 2019). Therefore, if the physical habitat is in poor 

condition or not resilient, we could expect adverse effects on the biological health of 

the stream (Norris & Thoms, 1999; Fuller et al., 2019). Elosegi and Sabater (2013) argue 

that even light hydromorphological impact can have far reaching effects on ecosystem 

function, and different variables can induce significantly diverse responses. River 

processes are also influenced by the wider catchment, such as the components of the 

riparian zone and the floodplain, which will also have an influence on the overall health 

of both physical and biological components of a waterbody (Fryirs & Brierley, 2013). 

Natural rivers can vary immensely in different landscape and climatic settings through 

variability of discharge regimes, vegetation coverage, slope and confinement, and 

sediment supply (Fryirs & Brierley, 2009). This means river naturalness can exist on a 

spectrum which reflects a continuum of environmental conditions including physical 

(e.g. flood or drought), chemical (e.g. trace elements, isotopes) and biological (e.g. 
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disease, predation, invasion) variability, whereby the natural regime in one location 

may never be exactly emulated under different conditions based on geology, elevation 

and vegetation (Stanford et al., 2005; Vaughan & Ormerod, 2010). Fundamental to the 

assessment of river health and biotic integrity is an understanding of the links between 

riverine habitat and the factors that shape it (Fryirs & Brierley, 2013; O'Brien et al., 2016) 

(Figure 2).  

A geomorphic perspective views a natural river as one with a character and behaviour 

that is expected within the boundary conditions set by the landscape within which the 

river operates (Brierley & Fryirs, 2005; Fryirs & Brierley, 2009). Naturalness is therefore 

a functional state that adjusts in response to flow, sediments, and vegetation fluxes  

(Brierley & Fryirs, 2005; Fryirs & Brierley, 2009). In such a case, a river could feasibly be 

expected to function within its boundary conditions despite being ‘degraded’ or not 

representative of a refence condition stream. Given enough time, a natural river will 

respond with resilience to even the largest of disturbances because its natural form will 

adjust and recover over time; the problem being faced now is that many rivers are no 

longer in a natural catchment setting and therefore a river’s natural resilience is also 

compromised (Fryirs & Brierley, 2013; Fuller et al., 2019). Geomorphic resilience 

describes the amount of change a system can undergo whilst essentially retaining the 

same functions and structures through resistance to and recovery from internal and 

external forces (Fuller et al., 2019).  

Resilience trajectories can vary depending on the unique combination of variables for 

specific rivers and reaches, as described in Figure 3. Geomorphic resilience can be 

expressed as static or steady state, whereby disturbance has no effect on reach 

geomorphology due to not reaching necessary thresholds or being readily absorbed and 

quickly returning to pre-disturbance levels, or dynamic, whereby progressive change 

can occur in a system while adjusting to new boundaries as a result of a disturbance 

(Fuller et al., 2019). As rivers are dynamic, a range of natural variation or disturbance is 

required to maintain resilience (Baron et al., 2002). It is therefore clear that 

transformative boundaries being crossed do not automatically classify river health as 

poor, as long as the affected reach can function within expected parameters of its 

reference condition. On the other hand, not all resilient rivers are healthy rivers, 

particularly where anthropogenic intervention seeks to stabilise a river or reach when 

its natural tendency is for change and dynamism (Fuller et al., 2019). 
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Figure 3 Resilience trajectories describing steady state or static resilience where a disturbance has little to no 
effect on the geomorphic template (a and c), compared to dynamic resilience that adapts to new geomorphic 
parameters as a result of a disturbance (b and d) (Fuller et al., 2019) 

Contemporary research frames rivers within a social-ecological system that considers 

rivers for their ecosystem services potential; a river in which anthropogenic 

communities interact with in order to achieve social and economic wellbeings cannot 

(and should not) achieve a wholly ‘natural’ state (Brierley & Fryirs, 2005; Brierley & 

Fryirs, 2009; Pingram et al., 2019). Monitoring should therefore serve the purpose of 

understanding the benchmarks of attribute qualities within a fluvial system that are 

necessary to achieve the function of that river, being some combination of 

environmental, social, economic, or cultural outcomes (Wohl et al., 2019). 
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2.3. Policy Context – New Zealand 

Natural resource use is managed by Regional Councils through the RMA. As the 

principal environmental legislation for New Zealand, the RMA sets the framework 

through which central government provides direction to Regional Councils through 

mechanisms such as National Policy Statements (NPSs) and National Environmental 

Standards (NESs) (New Zealand Goverment 1991, 1991). Additionally, the RMA requires 

ongoing monitoring to be undertaken by Regional Councils for the purposes of 

understanding the state of the environment pursuant to s35(2)(a) (New Zealand 

Goverment 1991, 1991; Tadaki et al., 2014). The New Zealand legislative environment 

culminating in monitoring requirements within the Waikato Region is outlined in 

Table 1. 

Table 1 Relevant central and local government legislation and policies that relate to geomorphic monitoring of 
rivers in New Zealand. 

Government 

Hierarchy 

Legislation 

/ Policy 
Relationship to geomorphic monitoring 

Central Resource 

Management 

Act 1991 

▪ Principal environmental legislation in New Zealand 

▪ Provides central government direction to Regional Councils  

▪ Can require National Policy Statements and National 

Environmental Standards 

▪ Requires regional council to undertake and publish state of the 

environment reports at least every five years pursuant to s35(2)(a) 

(New Zealand Goverment 1991, 1991) 

Central National 

Policy 

Statement 

for 

Freshwater 

Management 

2017 (NPS-

FM 2017) 

▪ First released in 2011 and amended in 2014 and 2017 

▪ Purpose of the NPS-FM is to set national direction of the 

management of freshwater to reflect the catchment-level variation 

and different demands on freshwater across regions (Ministry for 

the Environment, 2017b) 

▪ Two Key Elements: 

▪ Te Mana o Te Wai: an integrate and holistic approach to the 

wellbeing of a freshwater body and the accompanying 

objectives for managing water in an integrated and 

sustainable way, while providing for economic growth within 

set water quantity and quality limits 

▪ The National Objective Framework, which is to provide a 

nationally consistent approach to establishing freshwater 

values that recognises regional and local circumstances.  

▪ Regional authorities manage freshwater within Freshwater 

Management Units (FMUs) 
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Government 

Hierarchy 

Legislation 

/ Policy 
Relationship to geomorphic monitoring 

FMU scale is set by regional authority and dictates the 

location and extent of monitoring 

Water quality in FMU required to be maintained or 

improved 

Each FMU requires a monitoring plan 

No explicit requirement to incorporate geomorphological 

processes into monitoring.  

Central Proposed 

National 

Policy 

Statement 

for 

Freshwater 

Management 

2020 (Draft 

NPSFM) 

▪ Draft released in September 2019 and expected to be gazetted in 

late 2020 

▪ Further entrenches Te Mana o Te Wai, including a hierarchy of 

objectives stating that resources must be managed in a way that 

prioritises: 

▪ first, the health and wellbeing of waterbodies and freshwater 

ecosystems; and 

▪ second, the essential health needs of people; and 

▪ third, the ability of people and communities to provide for 

their social, economic, and cultural wellbeing, now and in the 

future (Ministry for the Environment, 2019a)  

▪ Similarly uses the National Objectives Framework  

▪ Must manage freshwater through FMUs 

▪ FMU to be set by regional council, including location and 

extent of monitoring 

▪ Expansion of Ecosystem Health as a compulsory value to 

include biophysical component of Habitat: 

“The physical form, structure and extent of the waterbody, 

its bed, banks and margins, riparian vegetation and 

connections to the floodplain” (Ministry for the 

Environment, 2019a, p. 24) 

No parameters or guidance for undertaking habitat 

monitoring and therefore can still result in regional and 

FMU discrepancies. 
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Government 

Hierarchy 

Legislation 

/ Policy 
Relationship to geomorphic monitoring 

Central Proposed 

RMA 

Resource 

Management 

Amendment 

Bill 2020 

▪ Draft released in September 2019 and expected to be gazetted in 

late 2020 

▪ For the purpose of responding to the “urgent need to improve 

freshwater management” (Ministry for the Environment, 2019b, p. 

5) 

▪ Creates new plan making process that must give use to give effect 

to the draft NPS-FM within the Regional Policy Statement (RPS) 

and Regional Plan(s) 

▪ Truncated timeline, whereby Regional Councils must publicly 

notify changes to the RPS to reflect the draft NPS-FM by 31 

December 2023 and make final decisions by 31 December 2025 

Currently regional councils have to 31 December 2030.  

Representative of the urgency necessary to reverse 

declining freshwater health trends 

Potential impacts on creating adequate monitoring 

schemes for each FMU. 

Regional  Waikato 

Regional 

Policy 

Statement 

▪ Waikato Regional Policy Statement (RPS) is required pursuant 

to s62 of the RMA  

▪ RPS must give effect to any NPS pursuant to s61(1) and s55(2) of 

the RMA 

▪ Overview of resource management issues of the Waikato Region, 

including polices and methods to achieve integrated 

management 

▪ Must give effect to higher order documents including relevant 

NPSs and National Environmental Standards 

▪ Objective 3.14(e) requires WRC to establish objectives, limits, 

and targets for freshwater bodies to determine how they will be 

managed 

▪ Policy 4.1(h) – Integrated Approach establishes the requirement 

for a planning framework which sets clear limits and thresholds 

for resource use 

▪ Method 4.1.14 requires WRC to develop and maintain processes 

and resources to enable the effects of activities to be monitored, 

and ensure an appropriate level of understanding is available and 

maintained 

▪ Method 8.1.4 requires WRC to consider, among other values, the 

natural character, natural function, ecosystems and habitats. 

Whilst not explicitly included, Method 8.1.4 does not exclude the 

incorporation of geomorphological factors into monitoring. 



12 

Whilst geomorphic monitoring is not explicitly mandated within the central 

government or regional authority policy, the objectives and policies of the draft NPS 

for Freshwater Management (Draft NPS-FM) and Waikato Regional Policy Statement 

allow for the incorporation of geomorphic principles into existing monitoring regimes. 

Consideration of the Waikato River Authority Vision and Strategy is also required 

within the Waikato and Waipa River catchments., although no specific geomorphic 

metrics are indicated within this document. The release of the Draft NPS-FM and the 

Proposed RMA Resource Management Amendment Bill 2019 signal a stronger will by 

central government to improve historically degrading water quality by strengthening 

the mandate of Te Mana o Te Wai and the health of water above all other uses or values. 

Existing struggles with Freshwater Management Units (FMUs), whereby regional 

authorities are free to choose the catchment size (and therefore monitoring 

distribution and effectiveness) are not addressed within the Draft NPS-FM and may 

provide substandard monitoring outcomes that are disparate between regions.  

2.4. Ecological and chemical indicators of river health 

The assessment of biota in addition to chemical properties of rivers are widely accepted 

as key components for determining river health (Dickens & Graham, 2002; Munyika et 

al., 2014). Typical biological indicators include macroinvertebrates, fish, and plants 

(Norris & Thoms, 1999; O'Brien et al., 2016), while chemical indicators include a range 

of natural and anthropogenically generated elements. Combining multiple parameters 

into a single index tends to provide a more holistic description of ecological condition 

than individual parameters (O'Brien et al., 2016; Blabolil et al., 2017). Table 2 outlines 

the key indicators of river health and the assessments used to infer river health. An 

assessment of these key indicators outlines the prevalence of the use of reference sites 

by which to compare other monitoring sites.  
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Table 2 Ecological indicators of river health 

Indicator Purpose of use Assessment Examples of use Caveats on use 

Macro-
invertebrates 

General river condition, although 
originally focused on organic 
enrichment / water quality. Can 
provide baselines or reference 
conditions for comparison to river 
ecosystem processes in disturbed 
streams  (Bunn et al., 1999). 

Sensitive to short to medium term 
environmental changes (Davies et 
al., 2010). 

Subject to a range of 
environmental influences on 
varying scales that affect 
community composition and 
relative abundances of 
macroinvertebrates. 

Assessment of structure of benthic 
communities, abundance, and 
biodiversity present within a river 
or spatial extent of a river (Bunn et 
al., 1999; O'Brien et al., 2016). 

Macroinvertebrate Community 
Index (MCI), which is widely used 
to evaluate river health in New 
Zealand (Wright-Stow & 
Winterbourn, 2003). Ratified as a 
measure of water quality within the 
National Objectives Framework 
and therefore used for Regional 
Authority state of the environment 
report and monitoring plans.  

MCI covers both quantitative and 
semi quantitative measures to 
assess organic enrichment in 
streams against a known index of 
species sensitivity to pollution in 
order to provide a taxon score for 
the monitoring site (Wright-Stow 
& Winterbourn, 2003). 

Standard protocol applies only to 
wadable rivers – reference 
conditions rarely exist outside of 
wadable rivers (Stark, 2001). 

Application of reference conditions 
between soft and hard bottomed 
streams are not interchangeable.  

Issues with sample collection and 
data interpretation in larger rivers 

Range of drivers influencing 
macroinvertebrates presence and 
abundance.  

  

Fish Good indicators of habitat 
diversity, fluvial dynamics, water 
quality and hydrological 
connectivity (Jungwirth et al., 
2002). 

Can also indicate medium to large 
spatial scale environmental 
changes due to their actual or 
potential longitudinal occupation 
of a river (Davies et al., 2010; 
Blabolil et al., 2017).  

Short to long term (hours to years) 
with the latter owing to their 
proportionately longer lifespan 
than other biotic indicators. 

Assessment of species richness and 
composition, trophic composition 
and fish abundance and condition 
as well as ‘expectedness’ and 
‘nativeness’ as indicators of water 
quality (Norris & Thoms, 1999).  

Also pollution, through assessment 
of fish pollution tolerance, such as 
sensitivity to a lack of oxygen or 
heavy organic loads (Patrick & 
Palavage, 1994). Non-native species 
can reflect biological pollution, as 
generally in New Zealand these 
species are more tolerant of habitat 
and water degradation than native 
species (Joy & Death, 2004).   

Reference condition sites: the 
monitoring of fish at a monitoring 
site and comparing this with 
unimpacted or minimally impacted 
sites to assess the differences. 

New Zealand also has the Index of 
Biotic Integrity (IBI), which is used 
similarly to the MCI; a large 
number of sites selected to 
represent the best stream 
conditions in a region and provide 
an upper bound for biological 
structure (Joy & Death, 2004). 
Monitoring sites are then 
compared to the IBI. 

New Zealand has low fish species 
richness, comprising 36 species 
from 8 families (McDowall, 2001; 
Joy & Death, 2004), many of which 
are diadromous (migrate between 
fresh and salt water). Care is 
required when using fish / IBI as a 
measure of habitat quality as 
differences in fish distribution 
could be linked to factors other 
than habitat quality (Joy & Death, 
2004). For example, Joy and Death 
(2004) found little to no 
association between watershed 
area and maximum species 
richness, with the latter more likely 
a function of elevation and 
distance from the coast.  
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Indicator Purpose of use Assessment Examples of use Caveats on use 

Vegetation  The type and extent of vegetation 
(riparian, bank, and instream) 
within catchments can regulate the 
supply of food resources, affect 
adult (fauna) population dynamics, 
determine habitat structure and 
quality (e.g. water temperature, 
light levels, channel form, stream 
hydrology and fine sediment 
deposition), as well as being able to 
ameliorate some effects of 
catchment disturbances (Death & 
Collier, 2010). Sensitive to short- 
and long-term environmental 
changes as well as small to large 
spatial scales (Davies et al., 2010; 
Gurnell, 2014). 

Good indicator of habitat diversity, 
water quality and provide insights 
into flow-vegetation-sediment 
feedbacks and landform building 
(Gurnell, 2014).  

Vegetation across the channel-
floodplain system has key trophic, 
energetic and geomorphic roles 
and responses (Davies et al., 2010; 
Death & Collier, 2010) and 
ultimately have a fundamental role 
in determining river planform. The 
presence of vegetation in itself is 
not significant; rather, the 
appropriateness of vegetative 
species being located in a specific 
fluvial environment is necessary to 
consider for water quality. In the 
absence of riparian shade, large 
vascular plants  (often exotic) and 
filamentous algae can thrive, 
restricting flow where it shouldn’t 
and trapping sediments to result in 
notable changes to available 
habitat and lowered water quality 
(Bunn et al., 1999).  

A key advantage of using 
vegetation as an ecological 
indicator is the ability to identify 
and sample important vegetation 
remotely (Davies et al., 2010) using 
remote sensing tools such as aerial 
photography and lidar . Methods 
for assessing vegetation as an 
ecological indicator can include 
calculating the percentage of 
canopy cover and using this to 
estimate direct and diffuse 
photosynthetically active photon 
flux densities above and below the 
canopy (Bunn et al., 1999). Bunn et 
al. (1999) go as far as to say that 
measures of canopy cover alone 
could be used to predict stream 
health without the need for 
detailed measures of ecosystem 
processes. 

In isolation, patterns of vegetation 
species distribution and abundance 
do little to contribute to an 
understanding of how a system 
works and should therefore be 
used within a suite of other river 
health attribute assessments (Bunn 
et al., 1999; Bunn & Davies, 2000) 

Chemical Easily quantified and attributed to 
a quality index (McFarlane et al., 
2011). Chemical indicators can 
provide insight into the organisms 
that are able to withstand and 
survive in a given environment 
(McDowell et al., 2013b). The 
benefit of chemical indicators that 
are quantifiable is the ability to 
directly compare river states and 
assess trends over time (McFarlane 
et al., 2011). 

The NPS-FM 2017 requires the 
following chemical and physical 
indicators to be tested for in each 
FMU: 
▪ Nitrogen 
▪ Phosphorus 
▪ Dissolved inorganic nitrogen 
▪ Dissolved Reactive 

Phosphorus 
▪ Nitrate 
▪ Ammonia 
▪ Dissolved Oxygen 
▪ E.coli 
▪ Cyanobacteria  

State of the Environment 
Reporting (Regional Authorities) 
and the NPS-FM 2017. 

 

 

 

 

The often used physical and 
chemical indicators are highly 
specific and offer little integration 
with other indicators, which fail to 
recognise natural geographic 
variation in water chemistry and 
resulting impacts (Norris & Thoms, 
1999), such as natural spikes in 
E.coli associated with large rain 
events or the presence of natural 
heavy metals such as arsenic from 
historic volcanic activity. However, 
the use of appropriate, site-specific 
reference conditions can alleviate 
misrepresentation (McDowell et 
al., 2013b). 
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2.5. Morphological indicators of river health 

Change, rather than stability is an underlying principle for river geomorphology; whilst 

rivers may trend toward equilibrium, they are better characterised as moving along an 

adjustment continuum, which is defined by the response of individual systems to 

disturbance (Fuller et al., 2019) (Figure 3). Analysis of river health must take into 

account both natural and anthropogenic changes on a variety of timescales to interpret 

environmental change and the effect on biological health (Norris & Thoms, 1999). 

Ultimately, the stream biotic composition is strongly influenced by physical habitat, 

which provides the template upon which the ecological organisation and dynamics of 

fluvial ecosystems are observed (Norris & Thoms, 1999; Dollar et al., 2007; Parsons & 

Thoms, 2007; Poole, 2010; Thoms et al., 2017). Accordingly, the physical properties of a 

given habitat within a fluvial ecosystem will influence the type, abundance and 

distribution of biota found within that location (Parsons & Thoms, 2007; Poole, 2010). 

This concept is outlined in Figure 4, whereby the physical characteristics of a river 

interact with ecological conditions, with the output being a functional aquatic 

ecosystem (Baron et al., 2002). Changes to catchment conditions and flow regimes can 

alter the processes within river channels and therefore also alter the habitat available 

for organisms (Norris & Thoms, 1999). It is important to consider indicators of the 

geomorphological condition in their own right, in addition to temporal variations. It 

may be possible to have geomorphologically degraded channels with healthy biota 

present (Norris & Thoms, 1999) depending on the physical requirements of the 

ecological community located within the fluvial environment. There is also a degree of 

redundancy in natural communities (Lake et al., 2007; Elosegi & Sabater, 2013), 

meaning consideration of natural reference conditions and relevant processes are 

critical to a successful monitoring programme.  
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Figure 4 Conceptual model of major driving forces that influence freshwater ecosystems (Baron et al., 2002) 

Physical habitat dynamics are primarily a function of sediment, wood, and water input 

(as described in Table 3 and Figure 5), which influence channel shape and formation of 

habitat features such as pools and riffles (Beechie et al., 2010). Reach-scale processes, 

such as the delivery of wood, bank erosion and, flooding regimes also influence physical 

feedback mechanisms between channels and floodplains (Beechie et al., 2010). This 

section outlines key geomorphological features and processes that can provide insight 

into ecological health of a fluvial system. As with using fish as an indicator, the level of 

‘naturalness’ and ‘expectedness’ must be considered for geomorphological features; for 

example, bank erosion may be a health and natural process in one river, but may be 

indicative of negative anthropogenic influence in another (Florsheim et al., 2008). 
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Table 3 Indicators of river system condition as a function of sediment and water input, as after Norris and Thoms 

(1999) 

Indicator Purpose of use 

Sediment sequence and composition 

▪ Rate of accumulation 
▪ Sediment calibre 
▪ Mineralogy 
▪ Geochemistry 

Soil and sediment erosion 
▪ Rate of erosion  
▪ Source of sediment 
▪ Mode of transport 

Stream flow ▪ Total annual flow 
▪ Variability 

Stream channel morphology 
▪ Slope 
▪ Pattern  
▪ Cross-sectional dimensions 

Stream sediment storage and load ▪ Sediment flux 
▪ Mode of transport 

Surface water quality ▪ Turbidity 
▪ Total suspended solids 

Floodplains / wetlands structure and 

hydrology 

▪ Wetting and drying regimes 
▪ Connectivity with the river 
▪ Area 

 

 

Figure 5 Diagrammatical depiction of the three major regimes (water, sediment, wood) and their interactions to 

form the geomorphological template on which ecological biodiversity can be established (Wohl et al., 2019) 
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2.5.1. Flow Regime 

Flow regime has widely been recognised as an important factor influencing the 

distribution of benthic biota in wetted channels (Clausen & Biggs, 1997; Schwendel et 

al., 2012). Flow regime encompasses the longitudinal connectivity of a catchment and 

drainage network, from headwaters draining small catchments to the creation of larger 

streams that progressively transport greater volumes of water and materials 

downstream to the marine environment (Stanford et al., 2005). The flow regime also 

influences structural attributes such as substrate stability, habitat volume and channel 

morphology (Schwendel et al., 2012; Booker et al., 2015). Flow regime comprises many 

subsets, base flow, annual or frequent floods, rare and extreme floods, seasonality, 

annual variability, and longitudinal and lateral variability (Clausen & Biggs, 1997; Baron 

et al., 2002). Additionally, the flow regime can also include flows originating outside of 

the river channel, such as groundwater recharge to rivers and overland flowpaths from 

hillslopes (Poole, 2010), as shown in Figure 6.  

 

Figure 6 Pathways of water movement that comprise the flow regime. Note that flows can originate externally 

from the river channel, such as through groundwater recharge and overland flowpaths, which can result in 

dynamic habitat and geomorphic relationships occurring at within channel mixing sites (Poole, 2010).  

2.5.1.1. Environmental Flow 

Environmental flow, not just minimum flow, is a main driver of river structure and 

function (Hernández‐Guzmán et al., 2019). It is defined within the Brisbane 

Declaration as the “quantity, timing and quality of water flows, required to sustain 

freshwater…and the human livelihood and well-being that depend on these 
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ecosystems” (Arthington, 2012, p. 11). As such, consideration of the environmental flow 

must include discharge variability, seasonal patterns, and temporal or climatic 

variability which can result in significant biological processes, such as the removal of 

biomass by flood disturbance (Arthington, 2012; Hough et al., 2019), and high flows 

influencing patch and biotic resilience (Booker et al., 2015). Changes to the flow and 

sediment regime can significantly alter the physical nature of a channel and 

consequently the habitats that support instream organisms, often in complex ways 

(Norris & Thoms, 1999; Elosegi & Sabater, 2013). The frequency of events exceeding 

three times the median flow of a wetted channel is considered to be a biologically 

important component of fluvial catchments (Clausen & Biggs, 1997; Booker et al., 2015), 

although gradients in low-flow magnitude and high flow magnitude are also important 

for explaining distribution patterns (Booker et al., 2015).  

Five ecologically relevant characteristics of natural river flow regimes are: magnitude, 

frequency, time, duration, and rate of change of hydrological conditions (Arthington, 

2012). Combinations of these characteristics determine many of the physical and 

biological processes of aquatic ecosystems and plays a critical role in sustaining 

biodiversity and ecosystem integrity. Of particular importance within river 

rehabilitation is matching the observed environmental flow within a river system to 

what natural flow regime could be expected; while it may not be feasible to return flows 

to the natural regime within a modified system, the creation of flow patterns to provide 

desired benefits can significantly improve ecological quality (Hough et al., 2019).  

As a result, hydrological indices are often used as predictors of change (Clausen & 

Biggs, 1997; Booker et al., 2015), although Booker et al. (2015) argues that aquatic biota 

are more likely to show stronger responses to variables such as substrate movement or 

local scale physical habitat. Identification of the quantitative relationship between the 

hydrological regime and ecological responses is complicated by other co-varying 

environmental factors, such as climate, bedform, and position along the river network; 

as a result, the strength of the relationship between the hydrological regime and 

biological characteristics can be overestimated (Booker et al., 2015). Norris and Thoms 

(1999) also outline the importance of scale when considering the effect of flow regime, 

as the scale at which geomorphological change is occurring may be far larger than the 

scale at which flow regime is measured. Nevertheless, the flow regime remains critical 
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for the formation of other geomorphic processes such as sediment entrainment and 

deposition and providing a minimum water depth for biota dependent on submersion.  

2.5.1.2. Spatial heterogeneity  

Heterogeneity can be represented as a function of the frequency, diversity, spatial 

arrangement, and turnover of morphological patches within a riverine landscape 

(Thoms et al., 2017). It can be used to interpret rivers as dynamic and complex systems, 

whereby heterogeneity and geomorphic units are products of geomorphic processes 

such as sediment sorting, erosion, deposition, and hydraulic variability, in addition to 

vegetation interactions with other components of the riverine system (Reid et al., 2008; 

Reid et al., 2010; Belletti et al., 2017). Spatial heterogeneity operates on multiple scales 

and directly and indirectly influences the flow of energy and community structure on 

aquatic ecosystems  (Thoms et al., 2017). Rivers and streams with more heterogenous 

stream beds, such as those containing debris dams, microform bed clusters, and those 

with longitudinal, lateral and vertical connectivity therefore also provide a greater 

spatial diversity for habitat as well as refugia during high flows (Fuller & Death, 2017). 

Spatial heterogeneity is also a key component for the successful recovery of biota to 

disturbance (Reid et al., 2010).  

Biota, their resources, and their habitats can therefore be viewed as being distributed 

within a fluvial channel as a mosaic of patches (Lake, 2000; Reid et al., 2010). In 

simplistic terms, a patch is an area of relative homogeneity that differs from its 

surroundings (Winemiller et al., 2010), with a river network as a unique and patchy 

discontinuum from the headwaters to the mouth (Poole, 2002). Fauna is distributed 

along the river corridor in a complex and often seasonally dynamic pattern, moving 

from one patch to another based on the benefits that can be found within (Stanford et 

al., 2005).  As with ecology, spatial heterogeneity for fluvial geomorphology varies with 

spatial scale and temporal parameters (Wohl, 2016). Patches can be linked with other 

patches longitudinally, laterally, and vertically (Lake, 2000; Reid et al., 2010), while 

individual patches are also able to change position, and dimensions over time (Lake, 

2000). Patch size and shape can vary with time and season and are heavily regulated by 

disturbance (Lake, 2000), although can also change position and boundaries even 

under steady flow. Each patch is not necessarily more related to a neighbouring patch 

compared with any other patches existing within the system (Reid et al., 2010). Newson 

and Newson (2000) refer to this interaction as a channel habitat matrix, outlined in 
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Figure 7, with physical aspects of instream habitat dominating the biotic responses in 

headwater streams and downstream river segments heavily impacted by engineering 

design. Further, it is recognised that large-scale controls of rivers (i.e. flow regime) on 

smaller-scale features (i.e. individual patches) operate, resulting in the development of 

nested hierarchal models of river organisms that may operate to regulate species 

richness (Lake, 2000; Thomson et al., 2001), as shown in Figure 8.  

 

Figure 7 Instream freshwater habitat and its major influences from land use and water management (Newson & 

Newson, 2000). 
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Figure 8 Diversity relationships of fluvial channels, with key processes occurring at both the regional and local 

scale to form the specific patch mosaic pattern that can be found within a wetted channel (Lake, 2000) 
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Diversity and overall habitat heterogeneity is well linked to benthic invertebrate and 

fish biodiversity, with a clear positive relationship between invertebrate richness and 

abundance and the structural complexity of riverine environments (Garcia et al., 2012). 

Indeed, geomorphic units, including riffles, pools, bars, islands etc, in addition to 

hydraulic units such as individual boulders, sediment patches, plants or wood pieces 

constitute distinct habitat for fluvial flora and fauna (Belletti et al., 2017).  Thompson 

and Townsend (2005) studied 18 streams in New Zealand and infer that spatial 

heterogeneity plays a direct and indirect role of the invertebrate distribution through 

influences on algal productivity.  Górski et al. (2013) studied whether fish distributions 

could be reliably predicted based on hydrological and geomorphic variables within the 

Volga-Akhtuba floodplain and conclude that spatial heterogeneity results in a spatial 

gradient in the occurrence of fish. Reid et al. (2010) analysed the role of heterogeneity 

on the colonisation of habitat by macroinvertebrates within the Twin Stream 

Catchment in Auckland, New Zealand and found that habitat mosaic followed a semi-

predictable but interrupted pattern, which supports the view that river systems are a 

patch discontinuum (Benda et al., 2004).  As such, it is established that the greater the 

spatial heterogeneity of a riverine reach or network, the increased likelihood there will 

be an abundance of ecological diversity within the same area (Newson & Newson, 

2000).  

2.5.1.3. Disturbance  

Disturbance is responsible for organising stream ecology and determining the structure 

of benthic communities (Lake, 2000; Death & Collier, 2010; Elosegi et al., 2010). A 

disturbance is considered to occur when potentially damaging forces are applied to 

habitat space that is occupied by a population, community, or ecosystem (Lake, 2000). 

Thompson and Townsend (2005) found that disturbance was an important 

determinant of species richness and is therefore necessary for the long-term 

functioning of a healthy river. Fluvial channels generally have a stable flow for much of 

the time, termed baseflow levels. Disturbances (e.g. floods) can periodically disrupt 

stable conditions, and destroy habitat patches whilst simultaneously creating new ones 

that are then colonised and inhabited by biota upon the return of stable flow conditions 

(Lake, 2000; Barquin & Death, 2006). Disturbance regimes describe how rivers 

constantly adjust their morphology in response to changes to the boundary conditions 

within which they operate; change and disturbance should therefore be viewed as 
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integral to the landscape dynamic (Fryirs, 2003). Some geomorphic systems may be 

better equipped to deal with disturbances than others, which stresses the need to 

recognise the natural state of the riverine system to understand whether the effect of 

the disturbance can be considered within the realms of what could be expected (Fuller 

& Death, 2017).  

Disturbances are generally defined by the nature of their damaging (abiotic) properties, 

along with parameters such as frequency, spatial extent and temporal duration (Lake, 

2000). The effect of a disturbance is, depending on the magnitude of forces present, 

that organisms may be killed, injured, or displaced, consumable resources depleted, 

and habitat structure may be degraded or destroyed (Lake, 2000). Lake (2000) 

describes three types of disturbances as characterised by their temporal patterns; 

pulses, presses, and ramps (Figure 9). 

 

Figure 9 Three types of stream disturbance: A– Pulse, B – press, and C – Ramp. Each are distinguished based on 

the temporal trends of the disturbing force (Lake, 2000). Thus, a flood may be representative of a Pulse, a dam 

or blockage representative of a Press, and a drought representative of a Ramp  
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Floods are generally pulses, particularly in constrained rivers, whether by natural valley 

walls or engineered stopbanks. During flood events, large volumes of rapidly moving 

water creates high shear forces that suspend sediment, redistribute bedform patterns, 

scour and abrade the streambed, removes plants, and can kill, main, and displace biota  

(Lake, 2000; Schwendel et al., 2011). Flooding causes a strong influence on ecosystem 

processes including nitrification and denitrification or litter breakdown (Elosegi & 

Sabater, 2013), while also causing movement of coarse bed substrate which can affect 

the abundance and occurrence of periphyton, invertebrate, bryophyte and macrophyte 

communities (Schwendel et al., 2012). However, the availability of appropriate refugia, 

such as wood or pockets of lower flows will mediate the response and forms a critical 

aspect of resilience of ecosystems and communities (Lake, 2000; Lake et al., 2007). 

Floods can also accentuate downstream and lateral links with damaging consequences, 

whereas droughts fragment longitudinal, lateral, and vertical connectivity (Lake, 2000).  

Even if floods are predictable, they are still considered a disturbance given they 

rearrange the abiotic environment of both the floodplain and the channel (Lake, 2000). 

A pulse enacts a disturbance, but after a time, geomorphic conditions will return to the 

same conditions, even if the spatial patterns have been rearranged. Presses are 

disturbances that may rise sharply and then reach a constant level of new stability, such 

as sedimentation after landslides, or construction of a dam. Ramps occur when the 

strength of a disturbance steadily increases over time, such as droughts or the spread 

of an exotic organism (Lake, 2000).  

2.5.2. Sediment Regime 

2.5.2.1. Grain Size and sediment supply 

Many invertebrate taxa are linked to grain size (Elosegi et al., 2010) and coarse 

sediment, supplied from upstream and stored within the channel as bed material 

makes up substrate that is important for macroinvertebrates (Florsheim et al., 2008). 

Coarse-grained substrate promotes oxygen exchange, provides space for protection 

from predators, serves as attachment sites for filter feeding invertebrates, and provides 

a food source for periphyton (Florsheim et al., 2008). Conversely, sediment oversupply, 

when compared to transport capacity, can bury or damage aquatic habitats (Florsheim 

et al., 2008; Fuller & Death, 2017). Boundary resistance to erosion has a fundamental 

influence on river process and form (Wohl et al., 2019). As such, grain size and sediment 

supply must be viewed in a temporal context and against what may be feasibly expected 
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within a reach given its position within the river system (i.e. headwaters versus 

floodplain). Longitudinal sediment transportation and slope-channel coupling are also 

important controllers of the sediment supply through the allowance or restriction of 

sediment entering the channel and then being transported downstream.  

2.5.2.2. Bank Erosion 

While stream bank erosion is often portrayed as a negative process of rivers, it is 

necessary for sediment transfer, geomorphic evolution, and ecosystem sustainability  

(Florsheim et al., 2008; Hughes, 2016). Bank erosion includes both mass wasting 

processes and fluvial erosion (Florsheim et al., 2008), which are often interrelated. 

Florsheim et al. (2008) argue bank erosion is desirable due to: 

1. providing a sediment source that creates riparian habitat;  

2. maintaining diverse structure and habitat functions within and external to the 

river channel;  

3. riparian vegetation for both promoting bank stability and contributing large 

woody debris to the river; and  

4. modulating changes in channel morphology and pattern. 

Bank erosion from headwater areas can provide a source of coarse material to channels 

to form the physical structures for aquatic habitat (Florsheim et al., 2008). However, in 

New Zealand, anthropogenic catchment disturbance is likely to have resulted in 

increased rates of erosion, deposition and sediment yields as a likely response to 

clearance of natural land cover, channel modification, and unrestricted access to 

streams by livestock (Hughes, 2016). Bank erosion must therefore be framed by 

reference conditions to assess appropriate levels of erosion corresponding to the 

geomorphic conditions of the fluvial system or reach.  

Bank erosion is particularly important for contributing to floodplain – channel 

geomorphic feedback loops / connectivity, including adjacent riparian zones. Channel 

banks form an important ecotone between aquatic and terrestrial ecosystems through 

providing diverse structure and habitat functions, including vegetation succession 

(Florsheim et al., 2008; Choné & Biron, 2016). Whilst riparian zones generally maintain 

bank stability outside of flood events, flow scour around individual pieces of large wood 

can accelerate bank erosion rates locally (Choné & Biron, 2016); in turn this can provide 
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additional wood to the wetted channel for habitat, change the morphodynamics or 

hydrological regime of the channel over time, and open up the tree canopy to increase 

energy flow through the food web, which in turn can lead to greater production of 

invertebrates and fish (Florsheim et al., 2008). On a microscale, bank sediment can 

expose tree roots or undercut and destabilise bank vegetation, forming new refugia for 

fauna to hide from predators and assist with low velocity patches during flood events 

(Florsheim et al., 2008).  

2.5.2.3. Connectivity 

Geomorphic connectivity is four-dimensional: longitudinal (between reaches), lateral 

(between the floodplain and river channel), vertical (to groundwater, as well as to the 

air), and temporal (Lake, 2000; Stanford et al., 2005; Poole, 2010; Corenblit et al., 2015; 

Wohl et al., 2019), as shown in Figure 10. Healthy rivers require a high degree of 

connectivity in order to support the complex lifecycles of many organisms and 

associated ecosystem and geomorphic functioning, such as allowing the flux of water 

and sediment to occur that drives channel-forming processes (Fuller & Death, 2017). 

The water mediated transfer of matter, energy and organisms dominates fluvial 

connectivity due to the hierarchical, unidirectional structure of fluvial systems, 

resulting in sediment and water transfers predominately flowing from headwaters to 

lowlands (Pringle, 2001; Lake et al., 2007). 
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Figure 10 Idealised view of the four dimensions of fluvial connectivity, being longitudinal, lateral, vertical, and 

temporal (Corenblit et al., 2015) 

Longitudinal connectivity controls the flux of water and sediment along a fluvial 

catchment and is responsible for facilitating the processes for shaping channel form 

(Elosegi et al., 2010). Lateral connectivity between the channel floodplain controls 

sediment and materials being deposited on the floodplains, and the return of such 

material through lateral channel migration (Elosegi et al., 2010). Vertical connectivity 

describes the hydraulic connectivity between the stream channel, groundwater, and 

hyporheic zone, although can also influence the exchange of water within the water 

column (Elosegi et al., 2010). Fauna can be highly mobile and can seek refuge in discrete 

patches within high or low flow disturbances, and are able to utilise the connectivity 

to move between these habitats throughout their lifecycle (Death et al., 2015; Fuller & 

Death, 2017). Therefore, for many organisms the patterns and degree of connectivity 

along the patch mosaic is critical, with the loss or change of connectivity, whether 

anthropogenic or otherwise, increasing the degree of fragmentation and subsequent 
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local species extinction, biodiversity loss, and the potential weakening of processes 

such as the movement of nutrients (Lake et al., 2007; Spurgeon et al., 2018). As such, 

fragmentation and disconnectivity of fluvial processes is a leading cause of fish species 

declining globally where they are restricted in their ability to carry out essential 

lifecycle functions (Spurgeon et al., 2018). For example, in New Zealand, a number of 

indigenous fish species are diadromous (migrate between fresh and saltwater) 

(McDowall, 2001; Joy & Death, 2004), such as the New Zealand longfin eel which lives 

as an adult in the upper reaches of rivers prior to swimming out to sea, spawning and 

dying. The larval eels make their way back to New Zealand and slowly move upstream 

as they mature into adults (Fuller & Death, 2017). Severing hydrological connectivity 

through dams, perched culverts, etc can isolate upstream populations and inhibit 

lifecycle completion (Fuller & Death, 2017).  

The degree of connectivity required for the healthy functioning of an ecosystem is 

related to the degree of natural connectivity that could, or should be present in a fluvial 

system, given anthropogenic modifications. The severing of connectivity (or retention 

of disconnectivity already within a channel) can have benefits for threatened and 

endangered species by isolating and protecting them from harmful invasive species 

(Fuller & Death, 2017). Anthropogenic introduction of brown trout to New Zealand has 

severely impacted on native Galaxias species, whereby healthy populations now only 

occur where trout are excluded through the severing of hydrological connectivity (Lake 

et al., 2007; Fuller & Death, 2017). For example, Townsend and Crowl (1991) found a 

strong negative association between the distributions of introduced brown trout on the 

native Galaxis vulgaris. In most cases, they only found G. vulagris above waterfalls that 

were large enough to inhibit trout migration. On the other hand, artificial dams, while 

severing the connection between brown trout and Galaxis species, can restrict the 

movement of diadromous fish either toward the coast or back upstream (Jellyman & 

Harding, 2012). Consideration of the effects of restoring connectivity are necessary 

within the wider catchment context to ensure that the benefits of connectivity are 

realised.  

2.5.3. Wood Regime 

The natural wood regime consists of wood recruitment, transport, and storage in river 

corridors (Wohl et al., 2019) and is rapidly being recognised for its beneficial effects on 

the geomorphology and ecology of rivers. The wood regime has benefits to aquatic 
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biota and for the maintenance of physical and hydraulic habitat (Chin et al., 2008) as 

well as providing for the retention of organic carbon and leaf matter to promote 

nutrient cycling (Vannote et al., 1980). Wood can also create flood hazards through 

instream accumulation, meaning that a natural wood regime may no longer be feasible 

to emulate in many catchments. Instead, a targeted wood regime can be developed for 

specific reaches and catchments, in which wood recruitment, transport and storage is 

considered in terms of both geomorphic, ecological, anthropogenic and landscape 

constraints (Wohl et al., 2019). 

2.5.3.1. Riparian Zone 

The riparian zone and floodplain influence aquatic biota and water quality through 

organic matter inputs, shade, and nutrients to the wetted channel (Norris & Thoms, 

1999). The riparian zone refers to the transition zone between a freshwater and 

terrestrial ecosystem, whereby the unique, dynamic, and complex nature of riparian 

habitat means that it can support high levels of biodiversity (Florsheim et al., 2008; 

Bowler et al., 2012). The main functions of riparian zones with regard to their 

relationship to wetted channels include fluvial hydrology, sediment dynamics, bank 

stabilisation, shading, retention and cycling of nutrients and pollutants, provision of 

wood and leaves into the wetted channel, as well as maintenance of habitat for wildlife 

such as invertebrates, amphibians, reptiles, birds, and mammals (Lake et al., 2007; 

Florsheim et al., 2008).  Riparian zones are able to modulate the patterns of ground and 

surface water, fine sediment, organic matter, and nutrient and diaspore fluxes 

(Corenblit et al., 2015). Further, they can modulate local microclimatic conditions, such 

as air and ground surface temperature and humidity, as well as light (Bowler et al., 2012; 

Corenblit et al., 2015). Riparian zones can also be important for the input of fauna into 

fluvial channels, such as arthropods (Lake et al., 2007).  

Given the influence of riparian zones on fluvial dynamics, it can be considered, then, 

that the destruction or removal of a riparian zone can therefore result in similar drastic 

changes to the fluvial ecosystem and physical setting. Degradation of the riparian zone 

can have flow-on effects such as a loss of bank stability, leading to increased erosion 

and chemical leaching from the surrounding land, in addition to increases in water 

temperature within the channel (Bowler et al., 2012). As temperature is a known 

variable to affect fish and invertebrates, changes to the riparian zone can have a 

significant effect on the density and quality of these populations (Bowler et al., 2012).  
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The width of the riparian zone is an important variable for allowing the effective 

interception of nutrient and sediments (Lake et al., 2007).  Florsheim et al. (2008) 

reports that the density and diversity of macroinvertebrates is higher in streams with a 

wider riparian zone, with the strongest relationship between macroinvertebrate indices 

and forest cover within a 100 m wide riparian zone, which is reiterated by Norris and 

Thoms (1999). Longitudinally, Lake et al. (2007) reports that the length of  the forested 

riparian zone determines the effectiveness of stream structure and function, with 

temperature and oxygen levels able to recover in 300 m, and fauna recovering in 600 

m relative to the upstream position. Fragmentation of riparian zones, even by small 

gaps, runs the risk of impairing these functions (Lake et al., 2007).  

2.5.3.2. Instream wood 

Instream wood has a long association with fluvial processes and affects channel and 

floodplain ecological function (Wohl et al., 2019). Historical descriptions indicate that 

orders of magnitude more wood were present in most forested river systems prior to 

widespread deforestation and wood removal from within streams (Wohl et al., 2019), 

which have both greatly impacted on the New Zealand landscape. Wood is generally 

delivered into river channels from the riparian zone via flood induced channel erosion 

and can stimulate changes to the bed and bank morphology whilst increasing channel 

complexity such as pools (Lake et al., 2007; Florsheim et al., 2008). Table 4 outlines 

methods for recruitment, transportation and storage of wood within river channels.  
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Table 4 Components of wood regime, after Wohl et al. (2019) 

 Recruitment Transport Storage 

Magnitude 

▪ Mass 

▪ Individual 

▪ Hypercongested / 

congested / 

semicongested / 

uncongested 

▪ Abundant 

▪ Minimal 

Frequency 

▪ Frequent 

▪ Infrequent 

▪ Frequent 

▪ Infrequent 

▪ Infrequent 

▪ Infrequent 

Duration 

▪ Short recruitment 

time (episodic) 

▪ Long recruitment 

time (continuous) 

▪ Short transport time 

▪ Long transport time 

▪ Short residence time 

(mobile or quick to 

decay) 

▪ Long residence time 

(immobile or slow to 

decay) 

Timing 

▪ Predictable 

▪ Unpredictable 

▪ Predictable 

▪ Unpredictable 

▪ Predictable 

▪ Unpredictable 

Rate 

▪ Rapid delivery 

▪ Slow delivery 

▪ Rapid transport 

▪ Slow transport 

▪ Rapid change 

▪ Slow change 

Mode 

▪ En masse 

▪ Sliding / rolling 

▪ Falling (snapping, 

leaning) 

▪ Biotic addition 

(beaver, human) 

▪ Floating (limited 

influence from 

obstructions 

▪ Deflecting 

(influenced by 

obstructions) 

▪ Dragging (sliding / 

rolling) 

▪ Dispersed (ramp, 

bridge, parallel, 

oblique) 

▪ Concentrated 

(channel-spanning, 

partial, floodplain, 

raft) 

▪ Buried 

Like sediment, the movement of wood can be intermittent, with long periods of 

locational stability interspersed with episodes of movement that are associated with 

high flows and water velocity (Wohl et al., 2019). Wood is also associated with bank 

erosion through trapping sediment and providing essential habitat both instream and 

on the floodplain (Choné & Biron, 2016). Wood can create physical and ecological 

feedback loops, such as logjams causing greater bed scour and deposition of fine 

sediment when compared to an equivalent volume of dispersed wood (Wohl et al., 

2019).  

The physical complexity and abundance of wood can affect the quantity and diversity 

of fish and macroinvertebrates. Wood provides mechanisms for energy dissipation, 

cover and habitat for fish, as well as enhanced channel stability, aquatic diversity (Chin 

et al., 2008). As such, wood can be a noteworthy morphological indicator of river health 
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since fish and macroinvertebrate taxa use wood directly as habitat, food, refuge and 

cover (Lake et al., 2007; Elosegi et al., 2010). Mobile wood can materially affect the 

floodplain and riparian regime by mechanically damaging or removing living plants, 

thus creating new germination sites (Wohl et al., 2019). In rivers with a fine substrate, 

wood can provide a stable substrate for organisms where there would otherwise be 

none (Florsheim et al., 2008). 

Wood has traditionally been removed from rivers under active management, likely due 

to the perceptions of negative consequences such as flooding, bank erosion, and 

damage to infrastructure (Chin et al., 2008). Removal of wood can have a negative effect 

on the dynamics of nutrients (Elosegi & Sabater, 2013), particulate organic matter 

storage and processing (Wohl et al., 2019), riparian plant community development and 

structure, and aquatic habitat. However, flood hazards associated with wood 

accumulation within a channel comprise an unacceptable risk to humans and 

infrastructure; careful consideration should be given to what would constitute a 

feasible wood regime in a particular river or catchment (Wohl et al., 2019), with due 

regard given to appropriate reference conditions for the reach or catchment.  

2.6. Existing toolbox / morphological assessment approaches 

The classification of rivers has not traditionally been well linked with that of river 

geomorphology (Norris & Thoms, 1999) and often fails to identify controls on river 

health at the catchment scale (Reid et al., 2008). Geomorphologists and ecologists have 

been endeavouring for decades to successfully synthesise fluvial processes into a single 

hypothesis, such as the River Continuum Concept (RCC) and Riverine Ecosystem 

Synthesis (RES), detailed in Table 5. Classification and determining of fluvial 

characteristics using these overarching concepts has been attempted through several 

existing toolbox methodologies, as identified in Table 6. The River Habitat Survey 

(RHS),  River Styles©, Stream Habitat Assessment Protocol (SHAP) and Morphological 

Criteria Index (MCI) are grounded within geomorphic processes and features guiding 

ecological health, while the Stream Ecological Valuation (SEV) is a New Zealand 

(specifically the Auckland Region) based toolbox used to infer ecological health 

through physical, chemical, and biological functions (Neale et al., 2017). Challenges 

arise when considering both scale and the complexity of the fluvial environment; rivers 

behave and adjust in increasingly complex ways depending on the scale being 
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considered, with no single explanation. Neither the RCC with its focus on longitudinal 

gradients, or the RES, with its focus on functional process zones (FPZ) can accurately 

describe the range of rivers and their characteristics and therefore all toolboxes 

grounded in such concepts will be similarly flawed. As such, it is clear that 

consideration of the specific and unique features of a reach or monitoring site need to 

be taken into consideration. 

Table 5 Prominent fluvial process concepts that attempt to classify rivers and provide a framework for assessing 
individual reaches or rivers based on conceptual inferences on normal or common river processes. 

 Methodological Concepts 

River Continuum Concept (RCC) Riverine Ecosystem Synthesis (RES) 

Country of 

Origin 

United States of America  United States of America 

Guiding 

principles 

That the structural and functional 

characteristics of stream communities 

and their distribution within a fluvial 

system are governed by their location 

within the river gradient, which presents 

a continuous gradient of conditions from 

headwaters to downstream, including 

width, depth, velocity, flow volume, 

temperature, and entropy gain (Vannote 

et al., 1980). 

Rivers as downstream arrays of large 

hydrogeomorphic patches formed by 

catchment geomorphology and climate. 

Unique ecological ‘functional process 

zones (FPZ) are formed by individual 

types of hydrogeomorphic patches as a 

result of physiochemical habitat 

differences (Thorp et al., 2006). 

Purpose / 

Use 

Classify and investigate stream 

ecosystems based on location within the 

river gradient and provide a conceptual 

framework for their organisation 

(Winterbourn et al., 1981). 

Provides a framework for understanding 

both broad, often discontinuous patterns 

along longitudinal and lateral dimensions 

of river networks and local ecological 

patterns across various temporal and 

smaller spatial scales (Thorp et al., 2006). 

Description 

of use 

Synthesis of physical variables, including 

riverbed stratum, water temperature and 

stream size, along with biological factors 

such as primary productivity, ecosystem 

respiration, and invertebrate and fish 

communities.   

Placed into a predictive model where the 

longitudinal position in a stream network 

defines the physical and biological 

attributes of a stream (Vannote et al., 

1980; Collins et al., 2018) 

See Figure 11 for a schematic model of 

application of FPZ using a hierarchically 

nested mosaic of patches present in an 

idealised lotic ecosystem.  
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 Methodological Concepts 

River Continuum Concept (RCC) Riverine Ecosystem Synthesis (RES) 

Benefits Emphasis on predictable and quantifiable 

change (Tornwall et al., 2015) 

FPZs are identified using standard 

geomorphic techniques (Thorp et al., 

2006), allowing discrete studies to be 

readily compared to other studies using 

the same techniques  

Costs Application of the RCC outside of North 

American forest-temperate streams has 

been critiqued for not being applicable, 

although modifications of the RCC in 

recent studies have provided relevance to 

other river types (Ellis & Jones, 2013). 

Does not infer, directly or indirectly, 

ecological health. Methodologies 

required to operate within RCC to 

presumably set a baseline based on RCC 

and record deviations from the RCC 

parameters 

Whilst the nature of the river and 

distribution of FPZs are will reflect 

similar conditions to some degree, in 

practice it is almost debilitatingly 

complex to assess the relationship. Above 

the ecoregional scale, it becomes 

increasingly difficult to predict 

distribution of patches along a 

longitudinal dimension of the river 

network (Thorp et al., 2006) 

As per the RCC, the RES does not infer, 

directly or indirectly, ecological health.   

Scope Catchment wide   Catchment wide 
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Figure 11 Schematic model of theoretical RES application using a hierarchical nested mosaic of patches (Thorp et 
al., 2006) 
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Table 6 Notable methodological toolboxes used to infer ecological health of fluvial environments 

 Methodological Toolboxes 

 
River Habitat Survey 

(RHS) 
River Styles© Framework 

Stream Ecological 

Valuation (SEV) 

Morphological Quality 

Index (MQI) 

Stream Habitat 

Assessment Protocol 

(SHAP) 

Country of 

Origin 

United Kingdom Australia New Zealand  Italy New Zealand 

Guiding 

principles 

Compare site with 

appropriate reference 

conditions, use appropriate 

field assessment data to 

blend with other data, to 

infer the state of river 

habitats (Raven et al., 

2010). 

Provide an objective basis 

for determining the 

physical character of rivers 

which can then be used for 

inferring and assessing 

habitat quality (Raven et 

al., 2000). 

Compare like with like, the 

appropriate selection of 

‘natural’ reference 

conditions for differing 

types of rivers, and 

measurement of 

parameters that are 

relevant for each type of 

river (Fryirs, 2003; Brierley 

& Fryirs, 2005). 

Assesses the ecological 

condition of streams based 

on the performance of their 

key ecological functions by 

combining a range of 

physical, chemical, and 

biological functions into a 

single assessment 

framework (Neale et al., 

2017). This is done using 

field assessments against 

reference conditions to 

establish a stream baseline 

by comparing like with like 

(Storey et al., 2011).  

Assesses the stream 

morphological quality 

through a set of 28 

indicators in order to 

understand deviation from 

undisturbed conditions 

specific to the Italian 

context (Rinaldi et al., 

2013). Comprises an overall 

methodology for assessing 

hydromorphology of all 

Italian streams through 

integrated analysis of 

morphological quality as 

well as channel dynamics 

hazards (Rinaldi et al., 

2013). Uses reference 

conditions, although takes 

into account the long term 

occupation of river 

catchments by humans in 

Italy (Rinaldi et al., 2013). 

Standardised protocol that 

is both practical and cost-

effective for assessing 

physical habitat in New 

Zealand waterways.  

Focus on physical habitat 

parameters only, with no 

reference to water quality 

or biological data, while 

assessing the stream 

condition at multiple scales 

(Harding et al., 2009). 

Parameters are to be 

assessed via a desktop 

analysis, stream bank 

evaluation, and 

measurement of in-stream 

conditions (Harding et al., 

2009).  

Purpose / 

Use 

Investigate relationships 

between habitat features 

and associated biota, 

including 

macroinvertebrates, 

Provides a set of 

procedures with which to 

integrate catchment scale 

geomorphic understanding 

of river forms, processes, 

To account for the loss of 

function due to human 

activity or development so 

that an equivalent gain in 

Provide a semi-quantitative 

score for streams based on 

a set of pre-determined 

indicators (comprising 

longitudinal and lateral 

Multiple reasons for use, 

but predominantly to 

categorise streams into 

typologies that aid in 

stream management and it 
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 Methodological Toolboxes 

 
River Habitat Survey 

(RHS) 
River Styles© Framework 

Stream Ecological 

Valuation (SEV) 

Morphological Quality 

Index (MQI) 

Stream Habitat 

Assessment Protocol 

(SHAP) 

avifauna, bats, other river 

and riparian plants and 

animals (Raven et al., 2010). 

 

and linkages through a 

nested hierarchy (Brierley 

& Fryirs, 2005).  

Provides the physical basis 

to describe and explain the 

within -catchment 

distribution of river forms 

and processes, and also 

predict likely future river 

behaviour (Fryirs, 2003; 

Brierley & Fryirs, 2005). 

ecological function can be 

achieved in another place.  

Can also be applied for 

other purposes such as 

catchment planning, state 

of the environment 

reporting (Storey et al., 

2011), identifying streams of 

high natural value, 

determining the effects of 

land-use change, and 

providing a basis for 

regional policy 

development (Neale et al., 

2017). 

continuity, channel 

pattern, cross-section 

configuration, bed 

structure and substrate, 

and vegetation in the 

riparian corridor (Rinaldi et 

al., 2013). This assessment 

is used as a measuring tool 

to help satisfy both the 

European Union Floods 

Directive and the European 

Union Water Framework 

Directive (Rinaldi et al., 

2013). 

provide an assessment of 

the habitat available to 

stream life. However, the 

creators of SHAP 

specifically state the 

purpose and use must be 

decided by the users, 

including decisions about 

what to measure and what 

not to measure (Harding et 

al., 2009). 

Description 

of use 

Relies on systematic 

collection of map and 

observational data (Erba et 

al., 2006)  

Channel features and 

modifications are recorded 

at 10 equally spaced 

locations along a 500m 

length of river, which is 

coupled with an overall 

summary for the whole 

site, including information 

on valley form and land use 

in proximity to the site 

(Raven et al., 2010) 

See Figure 12 for River 

Styles© framework steps 

used to assess and explain 

the geomorphic condition 

of rivers in a catchment 

using guiding principles 

(Fryirs, 2003). 

 

 

Consists of the 14 most 

important ecological 

functions, which are 

measured in situ by 

suitably qualified 

ecologists. These include 

the natural flow regime, 

floodplain effectiveness, 

connectivity, natural 

connectivity to 

groundwater, as well as 

biogeochemical functions, 

and habitat and 

biodiversity functions 

Variables are given a value, 

which are then weighted 

Subdivision of river 

network into homogenous 

reaches based on existing 

information (i.e. current 

state with no allusion to 

reference conditions) with 

basic investigation of 

geology, geomorphology, 

climate and land use. 

Segments are then 

identified for confinement 

and then for their 

morphological typology 

before being further 

divided into reaches 

(Rinaldi et al., 2013).  

Desktop assessment 

followed by the use of one 

of three specified protocol 

depending on the use of 

the assessment.  

 

Protocol 1 is designed to 

be an estimate of 

parameters such as wetted 

channel width, vegetated 

bank width and stability, 

channel shape, bed 

stability, shading, 

anthropogenic influences, 

and abundance of moss, 

wood, leaves and other 
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 Methodological Toolboxes 

 
River Habitat Survey 

(RHS) 
River Styles© Framework 

Stream Ecological 

Valuation (SEV) 

Morphological Quality 

Index (MQI) 

Stream Habitat 

Assessment Protocol 

(SHAP) 

according to each variables 

contribution to the 

ecological health 

Each reach is then assessed 

against indicators of 

geomorphic functionality 

followed by indicators of 

artificiality and channel 

adjustments (Rinaldi et al., 

2013). 

Each reach is then 

provided with a score 

based on expert judgment 

for each of the three sets of 

indicators to provide a total 

combined score for each 

reach.  

vegetation within the 

stream.  

Protocol 2 is designed as a 

semi-quantitative 

assessment of a site, and 

includes both rigorous 

assessment and visual 

estimates (Harding et al., 

2009). Increased 

measurement rigor for each 

of the Protocol 1 factors, as 

well as cross-sections of the 

channel, water depth and 

velocity, substrate size, 

embeddedness, and 

instream and riparian 

vegetative cover. 

Protocol 3 all measured 

factors from Protocol 2 but 

requires additional 

comprehensive metrics for 

each.  

Benefits Simple, cost-effective, 

objective, and practical 

(Raven et al., 2000; Raven 

et al., 2010) 

Alternative to schemes that 

rely heavily on 

quantification and scores, 

without a fundamental 

appreciation for the 

underlying river behaviour, 

capacity of the river for 

Simple, cost effective, 

standardised measure of 

the ecological functions of 

a stream reach (Neale et al., 

2017) 

Detailed and specific for 

each river reach, although 

expected to be able to be 

undertaken by those with a 

reasonable level of 

experience with 

geomorphology rather than 

Adaptable to the objectives 

and outcomes for doing the 

assessment; practitioners 

can select the most 

appropriate protocol for 
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 Methodological Toolboxes 

 
River Habitat Survey 

(RHS) 
River Styles© Framework 

Stream Ecological 

Valuation (SEV) 

Morphological Quality 

Index (MQI) 

Stream Habitat 

Assessment Protocol 

(SHAP) 

adjustment, and a 

geomorphological context 

(Fryirs, 2003). Views rivers 

in the context of what is 

appropriate or natural for 

that particular setting.  

the exclusive domain of 

experts (Rinaldi et al., 

2013).  

Provides a rational 

framework that is useful for 

supporting analyses of 

interventions and impacts 

to prioritise management 

strategies (Rinaldi et al., 

2013) 

their aims (Harding et al., 

2009). 

Can be scaled up and down 

according to the expected 

use of the assessment  

Costs Requires existing reference 

stream database from 

which to compare.  

Variables are based on 

United Kingdom 

geomorphic conditions and 

must be assessed and 

adapted for relevance and 

influence of controlling 

factors prior to being 

implemented elsewhere 

(time and expense) 

Sections of river viewed in 

statistic isolation without 

reference to spatial or 

temporal context (Belletti 

et al., 2017) 

Levels of subjectivity built 

into River Styles, and the 

accuracy of results depends 

on the skills of the person 

applying it (Fryirs, 2003). 

SEV is predominantly an 

ecological toolbox with 

reduced focus on the 

geomorphic functions and 

principles (Storey et al., 

2011) 

Applicability is contestable 

outside of the Auckland 

Region and requires 

additional reference 

conditions (Storey et al., 

2011).   

Also untested in streams 

and rivers of fourth order 

or larger (Storey et al., 

2011).  

Streams and rivers with 

highly mobile gravel or 

cobble beds cannot be 

Some indicators extremely 

simplified based on target 

end users, resulting in 

compromises between 

scientific rigor and 

practical applicability as 

well as a large  number of 

reaches required to be 

assessed in a short time. 

(Rinaldi et al., 2013).  

Indicators are processes 

based on static visual 

assessment (Rinaldi et al., 

2013).  

Large number of indicators 

and long duration for 

undertaking assessment, as 

well as operator bias.  

Applies only to wadable 

stream and do not apply to 

larger rivers  (Harding et 

al., 2009). 

Potential for inconsistent 

use of the different 

Protocols, reducing 

meaningful temporal 

assessment.  

Adaptation to stream type 

is not provided for; all 

variables are within the 

Protocol regardless of 

stream location within a 

catchment, geology, and 

climate.   
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 Methodological Toolboxes 

 
River Habitat Survey 

(RHS) 
River Styles© Framework 

Stream Ecological 

Valuation (SEV) 

Morphological Quality 

Index (MQI) 

Stream Habitat 

Assessment Protocol 

(SHAP) 

 accurately tested (Storey et 

al., 2011) Not suitable for monitoring 

changes in channel 

conditions, particularly if 

such changes are over a 

short time or spatial scale 

(Rinaldi et al., 2013) 

Does not fit comfortably 

within State of the 

Environment Reporting as 

a proforma is the end 

result, rather than scoring 

or summary assessment.  

Scope Small and medium rivers 

(Raven et al., 2000; Raven 

et al., 2010)  

Longitudinal: 500 m length 

of river channel; Lateral: 50 

m either side of banks  

(Erba et al., 2006). 

Catchment wide 

 River Style: “section of 

river along which boundary 

conditions are sufficiently 

uniform (i.e. there is no 

change in the imposed flow 

or sediment load) such that 

the river maintains a near 

consistent structure” 

(Fryirs, 2003, p. 4). 

Reach scale  

Identified reach, 

predominately chosen for 

its proposed impactedness 

or potential adverse effects 

through the resource 

consent process pursuant 

to the RMA (Storey et al., 

2011; Neale et al., 2017). 

Catchment wide  

Individual reaches are 

identified in the same 

context as River Styles  and 

synthesised to provide an 

overview of the river 

network (Rinaldi et al., 

2013). 

Reach scale 

Reach scale is identified as 

far as one can see upstream 

and downstream from one 

location for Protocol 1; the 

reach is identified as 20x 

the wetted channel for 

Protocols 2 and 3 (Harding 

et al., 2009) 
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Figure 12 River Styles© Framework steps used to assess and explain the geomorphic condition of rivers in a 
catchment using guiding principles (Fryirs, 2003) 

2.6.1. Methodological characteristics of the toolboxes 

The five existing toolboxes share common methods and measures of specific features 

to infer ecological health. All methodologies state the necessity for the assessment to 

be undertaken by a suitably qualified and experience practitioner (Fryirs, 2003; Harding 

et al., 2009; Raven et al., 2010; Storey et al., 2011; Rinaldi et al., 2013)  Notably, all of the 

toolboxes incorporate a mixture of field data and desktop derived data to synthesise 

and assess the range of features relevant to the methodology. Unlike RHS, SHAP and 

SEV methodologies, the River Styles© Framework requires the initial desktop data to 

be undertaken prior to any field work (apriori) to frame the reach characteristics in 
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which the degree of variation is then measured (Fryirs, 2003; Brierley & Fryirs, 2005; 

Brierley & Fryirs, 2008). Regardless, similar characteristics for all five methodologies 

are measured, including flow type, vegetation, and connectivity (longitudinal). Given 

the SEV is not truly a geomorphic measuring tool, it has limited relation beyond a basic 

assessment of the range of geomorphic process outlined in Section 2.5. For example, 

the River Styles© Framework, Protocol 2 and 3 of the SHAP, and RHS require an 

appraisal of surrounding land use, whereas SEV does not. Given the importance of land 

use on fluvial processes through geomorphic change (i.e. increased sediment runoff 

through loss of the riparian zone) and water quality, it is necessary to consider lateral 

connectivity and surrounding land use during any geomorphic-led assessment.  

The scale of assessment also varies between the five toolboxes. The RHS specifies 500 

m of reach must be used each survey, whereby channel features and modifications are 

recorded at 10 equally spaced locations, in addition to an overall summary for the site 

(Raven et al., 2010). This contrasts with other survey methods, including both the River 

Styles and the SEV, which specify a typology; for the River Styles Framework and MQI, 

a desktop analysis pre-determines the reach in which to be assessed based on a section 

of river along which boundary conditions are sufficiently uniform (Fryirs, 2003; Rinaldi 

et al., 2013), whilst SEV reaches are usually chosen as the length in which will be 

affected through development during the resource consenting process (Neale et al., 

2017). The reach length for SHAP varies from however far one can see upstream and 

downstream in Protocol 1, and 20 times the wetted channel width for Protocols 2 and 

3, with a minimum of 50 m and a maximum of 500 m (Harding et al., 2009)  There is 

no general consensus on how SEV scale is determined for monitoring or state of the 

environment reporting purposes. Raven et al. (2010) reassessed the requirement for a 

500 m reach in RHS specific studies and found that at least 80% of attributes are 

captured over that distance and hypothesise that a 100 m survey unit would only 

account for around 40% of features. 

2.6.2. Reference conditions 

A common theme within the toolbox assessments are the comparison of rivers to 

reference sites or reference conditions. Reference sites refers to the selection of sites 

that are considered ‘minimally disturbed’ or untouched by human disturbance and 

compare the findings of the assessment against these conditions (Norris & Thoms, 

1999; Stoddard et al., 2006). Reference conditions for SOE reporting are specified as 
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“the chemical, physical or biological conditions that can be expected in streams and 

rivers with minimal or no anthropogenic influence” (McDowell et al., 2013a, p. 6). RHS, 

MQI, and SEV use reference conditions based on an existing compiled database 

through which the monitored reach is assessed against and given a score depending on 

the degree of variation (Raven et al., 2010; Rinaldi et al., 2013; Neale et al., 2017) and are 

considered to be representative of objective analysis (Raven et al., 2010). As a result, the 

application these three toolboxes outside of their original jurisdictions can be difficult 

and time consuming. RHS assessments are dependent on predominantly United 

Kingdom based reference conditions; whilst Raven et al. (2010) found the attributes 

measured in the RHS survey were applicable in other locations, such as mainland 

Europe, they also found that modifications were required to account for local 

characteristics, and that the process would greatly benefit from local benchmarking to 

account for important differences in river character. SEV is specific to the Auckland 

Region, particularly low-gradient wadable streams, and therefore is similarly difficult 

in applying to other regions possessing different geological and geomorphic 

characteristics without existing reference sites (Storey et al., 2011; Neale et al., 2017). 

Notably, the SHAP deviates from the use of reference conditions, considering them to 

be ambiguous and incorporate a degree of subjectivity in site selection. This can be 

problematic in terms of understanding what an ‘ideal’ stream should look like, 

particularly when considering the natural variation in some stream types over time 

(Harding et al., 2009). 

By contrast, the River Styles© Framework undertakes benchmarking of reaches against 

themselves (Fryirs, 2003) and accounts for the ability of the reach to adjust within a 

certain range of responses to given a set of disturbances. Through this framework, a 

‘reference’ reach is one that sits within the natural range of variability and catchment 

boundary conditions for that specific reach and assessed as such through desktop 

analysis prior to fieldwork. In-field observations are then assessed against the natural 

reference conditions to understand the geomorphic condition of the river, which is the 

measure of difference between the physical system and the natural range of variability 

or expected natural state (Fryirs, 2003). As such, the River Styles© Framework can be 

utilised globally, given the emphasis on a flexible, open-ended approach that explicitly 

recognises the continuum of diversity of river forms and processes (Fryirs, 2003). 

However, the Framework requires specific training in the River Styles© methodology. 

Further the subjectivity of River Styles© does not correspond well into the desire for 



45 

quantifiable and measurable results for state of the environment reporting (McFarlane 

et al., 2011) by Regional Councils in New Zealand.  

2.7. Challenges 

Too often, approaches to river assessment and subsequent river management has 

emphasised concerns for water quality and ecological relationships without 

acknowledging the fundamental links to geomorphic attributes of a riverine system 

(Brierley et al., 2010). The assessment of geomorphic indicators for river health is 

inherently complex; what constitutes a healthy process in one river, such as bank 

erosion, may indicate degraded state in another. Assessment of geomorphic indicators 

also gets more complex as the scope is extended, as found by Raven et al. (2010); 

inclusion of river bank and riparian zones to in-stream survey methods compound their 

level of complexity and amplifies uncertainties in underlying presumptions.  This is 

further exacerbated by  conflicting requirements  for rapid, cost effective data 

collection needed for national policy (e.g. requirements under the NPS-FM) and more 

detailed specialist understanding of fluvial morphology to tailor management of 

individual catchments and reaches  to increase the probability of successful 

rehabilitation (Raven et al., 2010). Two major challenges to successful morphological 

monitoring are discerned: 

▪ Scale at which monitoring is undertaken, such as morphological unit, patch, 

reach, or catchment; and 

▪ Variability of river morphology and the resulting processes, and the difficulty 

in quantifying and classifying fluvial systems in a meaningful way.  

2.7.1. Scale 

Given the complexity and range of geomorphic influences on the fluvial system, it is 

difficult to quantify all potential sources of impact on processes and character of a given 

reach, river, or even catchment. Analysis of single sites cannot alone provide insight 

into spatial variability in system processes and connectivity (Brierley et al., 2010; 

McFarlane et al., 2011; Fuller et al., 2019), although most monitoring applications are 

undertaken at the reach scale (Brierley et al., 2010). However, geomorphic condition 

does not scale well (Norris & Thoms, 1999), such that measurements of a reach cannot 

infer catchment health.  The catchment context is important because results from 
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individual sampling sites cannot be considered without reference to channel and 

catchment processes elsewhere in the catchment, such as land use and geology (Raven 

et al., 2000; Tornwall et al., 2015). Instead, the geomorphological factors need to be 

considered at both the local and catchment scale (Fuller et al., 2019), in addition to an 

assessment of the larger scale relationships and influences occurring within the 

catchment, and how they may explain the geomorphic distribution between reaches.  

Geomorphic toolboxes run the risk of being misleading if the geomorphic conditions 

being quantified are not informed by ecological data, such as those collected – fish or 

macroinvertebrate assessment. For example, some non-migratory species may live 

wholly within habitats that occupy only part of one reach of a river, while other species, 

such as indigenous diadromous species require entire river systems and connectivity 

to the ocean for spawning, rearing, and maturation (Joy & Death, 2004; Stanford et al., 

2005). To provide for a more holistic appraisal of the Bega Catchment, Chessman et al. 

(2006), as part of the River Styles© application framework, utilised extensive reach 

mapping of the whole of the Bega Catchment to provide a catchment wide analysis of 

geomorphic condition. However, this approach is extremely labour and data intensive, 

with the risk of data obsolescence, should repeat surveys not be undertaken in a timely 

manner. As such, geomorphic toolboxes must consider the purpose and intended use 

of the results, such as objective monitoring, or to inform reach or catchment wide 

mitigation to target priority areas.  

2.7.2. Variability of river styles and types / representativeness 

Often, monitoring programmes fail to consider the representativeness of reach-scale 

data collected, instead being more preoccupied with collecting information in 

accordance with standardised approaches (Brierley et al., 2010; McFarlane et al., 2011). 

Exclusion of fine and broad scale geomorphic knowledge from assessments can lead to 

poorly informed decisions, such as undertaking inappropriate river rehabilitation 

activities in unsuitable riverscape localities (McFarlane et al., 2011).  

Emphasis is required on measuring the functionality of a reach or river rather than a 

check-list appraisal of river form (Brierley et al., 2010), in addition to appropriate 

temporal considerations that capture the natural range of geomorphological 

adjustment. For example, a measure denoting sediment yield above a certain parameter 

as ‘unhealthy’ is unlikely to account for the variability between river systems. For 
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instance, whilst the Manawatu River yields around 3.8 Mt / year, which is similar to the 

Waiho River in Westland (3.4 Mt / year), the processes resulting in each sediment yield 

are completely different, with the latter glacierised and draining some of the highest 

relief in New Zealand (Tadaki et al., 2014). The River Styles© Framework provides an 

alternative monitoring regime to the standardised checklist by requiring each river 

reach to be considered within the parameters of its propensity for adjustment (Brierley 

& Fryirs, 2005), although results in large quantities of data that are framed subjectively 

and not always directly comparable to other river types. Nevertheless, the use of unique 

reference conditions for each reach rather than against a standardised list of features 

provides for greater representation of the characteristics present.  

2.8. Principles of a Waikato-centric toolbox assessment 

Any toolbox created for the geomorphic assessment of stream health must be based on 

measurable geomorphic processes, whilst considering the limitations of any 

simplification of inherently complex and interlinked environments. It must also be able 

to be replicated by both a range of practitioners and within different catchments in 

order to provide meaningful and consistent results that can inform temporal trends 

and subsequent river management. Meaningful monitoring of river condition is 

inherently place-based (Tadaki et al., 2014), and therefore simply standardising 

biophysical measures will not provide insight into the significance of the variables 

across reaches and catchments. This is further complicated as rivers adjust naturally 

over time, and therefore consideration of geomorphic condition must also be based on 

understanding the natural range of adjustment for that specific reach or catchment 

(Reid et al., 2008). As such, any analysis must be framed in relation to what could be 

feasibly expected for any given river type. Any assessment for habitat needs to be both 

ecologically and geomorphologically meaningful to allow relevant scales and variables 

to be placed within context of the reach and parameters of the overall monitoring 

(Belletti et al., 2017). Finally, consideration of the end use of the monitoring data 

collected and for what purpose (such as policy formulation) is also necessary to frame 

what is assessed (Brierley et al., 2010). 

With regard to these guiding principles as identified in the literature, the following 

considerations and parameters were selected to formulate the geomorphic toolbox 

methodology: 
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1. Use of existing Waikato Regional Council monitoring sites to allow comparison 

of geomorphic indicators versus known ecological and physical indicators 

currently assessed. 

2. Assessment of river reaches compared to an appropriate reference condition; 

apriori work is required to determine the expected geomorphological parameters 

of a reach site  

3. Comparison of ‘like-with-like’ rather than assessing against a check-list of 

required features to constitute ‘good’ river health 

4. Balance of time and cost efficiency whilst accurately representing and recording 

relevant geomorphic features; the geomorphological monitoring is envisaged to 

be incorporated into the existing annual river quality monitoring 

5. Accessible conclusions that can be analysed spatially and temporally, such as 

‘expected / modified but functional / degraded’ geomorphic condition bands 

6. Appropriate scale and nested hierarchy – reach to be assessed in relation to the 

catchment 

7. Standardised approach that can be repeated by future users 

Elements of the River Styles© Framework (Brierley & Fryirs, 2005), RHS (Raven et al., 

2000; Raven et al., 2010), MQI (Rinaldi et al., 2013), SHAP (Harding et al., 2009), and 

SEV methodology (Neale et al., 2017) are utilised to formulate this methodology and 

framed within the geomorphic principles.  

Particular emphasis is placed on discerning reference conditions through a desktop 

analysis (‘apriori conditions’). This process provided the expected parameters within 

which the identified reach should be operating to be considered in ‘good’ health.  The 

following physical features were chosen based on their significance for detecting 

geomorphic health of reaches and their ease of measuring to allow a wide range of 

practitioners to be able to apply the toolbox: 

▪ Riparian Zone; 

▪ Bank Erosion; 

▪ Grain size; 

▪ In-channel wood; 

▪ Connectivity; and 

▪ Spatial heterogeneity.  
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2.9. Conclusion  

Geomorphic processes and features are relevant benchmarks and indicators of other 

ongoing processes within a fluvial system such as biological health and habitat 

distribution. Given geomorphology forms the template upon which other processes 

can occur, an understanding of the normal distribution and disseminating forces 

behind geomorphic processes and features can contribute to a toolbox for 

understanding ecological health. As with ecological and chemical indicators, 

geomorphic indicators represent a proxy of ecological health and are best suited to 

contribute to a suite of measures rather than used exclusively. Caution is also needed 

when applying geomorphic indicators, which are by design a simplification of the 

complex, interlinked natural environment so that what is being measured remains 

relevant and representative of the processes. It is evident that reference conditions are 

utilised through a range of ecological measures as well as for understanding individual 

geomorphic features or processes. It is desirable to assess ecological health on a 

catchment scale with monitoring undertaken at the reach scale. However, there are 

significant constraints with undertaking catchment level monitoring, including a lack 

of funding, political will, and a necessity for a large reference database. Finally, it is 

integral to ensure that the geomorphic toolbox is fit for purpose, such as monitoring 

or restoration. A set of principles were formulated to frame the toolbox methodology 

for geomorphic assessment for the Waikato Region, which draws together the key 

morphological indicators of river health, while entrenching reference conditions as key 

to ensuring the relevant considerations for individual reaches is not lost within a 

blanket quantitative checklist.  
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3. Methodology 

This section outlines the methodological approach adopted for the formulation and 

use of the geomorphic toolbox. At the forefront of the methodology was the 

requirement to configure the monitoring around an understanding of rivers in their 

unique context (Tadaki et al., 2014), with the overarching principle of a flexible 

approach that explicitly recognised the “continuum of diversity of river forms and 

processes” (Fryirs, 2003, p. 19). The selected approach consisted of three phases: 

1. Pre-assessment 

a. Site selection 

b. Apriori assessment to establish reference conditions 

2. Site work 

a. Site visits and field work  

3. Post assessment and analysis 

a. Geomorphic assessment of individual reaches 

b. Assessment of geomorphic analysis versus ecological analysis 

3.1. Pre-assessment 

3.1.1. Site selection 

WRC undertakes annual ecological monitoring of wadeable streams within the 

Waikato Region as part of their State of the Environment Reporting. Monitoring 

includes reference sites (minimal anthropogenic influence) that are monitored every 

year, supplemented by a selection of around 180 other streams of which 50-60 rotate 

on a three-yearly basis. WRC reach lengths are always 150 m as irrespective of location, 

this length accurately describes reach-scale fish species richness with additional species 

beyond this length rare (David et al., 2010). To provide for a direct comparison, sites 

were selected for this study from the 2020 monitoring list. Four reference sites were 

targeted given the potential for providing annual results in the future. The non-

reference (modified) sites were selected to provide contrasts to the reference sites, 

given the expectation of human intervention to the natural geomorphic processes 

arising from their locations. Table 7 and Figures 13-14 outline the location of the 

selected sites.  

  



51 

Table 7 Selected sites for testing the geomorphic toolbox 

WRC Reference Stream Name  Reference Site / 
Non reference 
site 

Downstream 
boundary coordinates 

11726_11 Upper Wainui Stream Reference E 1760523, N 5811768 

1172_6 Wainui Stream (Raglan) Reference E 1762004, N 5813104 

2079_1 3rd Order Stony Stream  Reference E 1815954, N 5956604 

2080_1 2nd Order Stony Stream Reference E 1815800, N 5956700 

1262_18 Waiwhero Stream Non-reference E 1836904, N 5836119 

1307_18 Whangarahi Stream Non-reference E 1822913, N 5929144 

 

 

 

Figure 13 Site locations. a: North Island of New Zealand locating the Waikato Region; b: Identification of the local 
areas with selected sites (map courtesy of topomap.co.nz) 
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Figure 14 Local site locations. a: Raglan – Upper Wainui Stream (11726_11) and Wainui Stream (1172_6); b: Stony 
Bay, Coromandel – 3rd Order Stony Stream (2079_1) and 2nd Order Stony Stream (2080_1); c: Coromandel 
Peninsula – Whangarahi Stream (1307_18); and d:  southern Hauraki Plains – Waiwhero Stream (1262_18); 
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3.1.2. Establishing reference conditions 

Once the sites were selected, reference conditions were established for each reach 

based on the definition provided by McDowell et al. (2013b) for SOE monitoring. The 

reference conditions comprise an expected scenario of geomorphic condition in the 

absence of anthropogenic influence. The creation of reference conditions utilised 

existing information available for each site (including from GNS Science and WRC 

biodiversity and vegetation distribution research), such as location, stream order, site 

geology, soil types, and valley setting. A series of open-ended questions were then 

developed to frame reference conditions for each reach. This approach provided for 

“parameters used to interpret and explain system structure, function, and condition” 

(Brierley & Fryirs, 2005, p. 298), by using a series of qualitative questions that can be 

used to appraise each of the indicators (Table 8), emulating the approach undertaken 

by Reid et al. (2008) when assessing the geomorphic condition of the Twin Streams 

Catchment in Auckland, New Zealand.  

Table 8 Reference framing questions to develop reference conditions for each reach 

Indicator Reference framing questions 

Riparian Zone  

 

▪ What is the proportion of native versus exotic cover within the Riparian 

Zone? Is there an indication of monoculture? 

▪ What type of plants would be expected to make up the riparian zone for this 

reach? 

▪ What density of riparian vegetation could be expected? 

▪ What width of riparian vegetation could be expected for this reach? 

Bank Erosion ▪ Should bank erosion be expected in this reach?  

▪ How much bank erosion should be expected for this reach?  

▪ Should the bank erosion in this reach be consistent along the banks, or in 

discrete locations (such as on the outside of bends)? 

Grain Size ▪ What granularity should be expected for this reach?  

▪ What range of grain sizes should be expected in this reach? 

Wood ▪ How much wood should be expected within the wetted channel of this reach? 

▪ Is the presence of wood rafts or wood jams expected in this reach? 

▪ How much potential for sourcing wood is there from the banks of the reach 

(both dead / fallen wood and live vegetation)? 

Connectivity ▪ Should natural connectivity be expected from the reach to the adjacent 

upstream and downstream reaches?  

▪ Are there any notable disruptions to connectivity along the entire length of 

the catchment, from source to sink? 

Spatial 

Heterogeneity 

▪ How many geomorphic units could feasibly be expected within this reach? 

▪ Are there key geomorphic units that should be present within this reach? 
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3.2. Fieldwork 

While the specific characteristics of a reach determined the best approach for assessing 

the geomorphological features of the area, many of the techniques used were able to 

be deployed at all sites, with some variation to suit as required. Not all techniques were 

deployed at all sites, and adaptation was required at others, such as the measurement 

of clasts. This section details the generic methodology used to assess geomorphology 

at each of the six selected sites (Table 7), as well outlining the methodology variations 

adapted to the sites. The data sheets created for the purpose of this assessment are 

located in Appendix A of this report. Multiple photographs were taken within each 

segment of each reach to document the observed features. Table 9 summarises the 

methodology used at each of the sites. Additionally, a video walkthrough of each 

segment was undertaken to provide a reference during analysis, which is located within 

a Google Drive set up for the purpose of storing these walkthroughs (refer Section 4.1 

for links to individual sites).  

3.2.1. Site identification 

Downstream coordinates and descriptions of all sites were provided by WRC (i.e. 

Figure 15). These coordinates were loaded into a free offline app Topomaps NZ on an 

Android device and the GPS function of the device used to locate the general area of 

the downstream coordinates (i.e. Figure 16). 

 

Figure 15 Information sheet provided by WRC to assist with determining the downstream coordinate location for 
the Wainui Stream reach (reference 1172_6) 
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Figure 16 Use of handheld GPS to locate downstream coordinates for the (a) Wainui Stream reach (reference 
1172_6) and (b) Upper Wainui Road reach (reference 11176_11).  

Two people were used to assess the reaches. Small handheld Markers, numbered 1-13 

were used as visual aids for demarcating the reach into 25 m segments. Marker 4 was 

placed on each side of the stream bank to demarcate the downstream boundary as 

specified by WRC. The tape measure was then used to measure 25 m reaches 

downstream of the downstream boundary along the true right bank, with markers 

placed at each 25 m mark (for a total length of 75 m downstream of the downstream 

boundary). This boundary is referred to as the extreme downstream boundary and is 

referenced as Marker 1. Figure 17 exemplifies a Marker in its true left bank location, 

which is visible to those upstream. The true right Marker faces downstream, so that 

assessors can determine the boundary of the segment being measured from both 

directions. 
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The upstream reach from Marker 4 was then measured along the true right bank, with 

each 25 m reach demarcated by ascending numbers, up to 150 m from Marker 4 

(demarcated as Marker 10). 150 m is the length specified by WRC as the maximum reach 

length for any WRC ecological monitoring and was therefore specified as relevant to 

this study to provide a comparable assessment. An additional 75 m was also measured 

upstream of Marker 10 in 25 m increments. By the end of the measuring phase, a reach 

of 300 m in total was marked out, with the WRC monitored reach sitting between an 

additional 75 m upstream and downstream of the reach boundaries as 

diagrammatically reproduced in Figure 18. 

 

Figure 17 Example of Marker used to demarcate a 25 m segment of the Wainui Stream reach (reference 1172_6). 
Marker 3 is located 25 m downstream of Marker 4 – the specified downstream boundary of the WRC monitored 
reach.  
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Figure 18 Diagrammatic representation of the monitoring reaches. The 150 m monitoring reach is specified by the 
WRC monitoring regime (green, between Markers 4 and 10), with an additional 75 m both upstream and 
downstream of the 150 m reach to create a 300 m monitoring reach as well (red, between Markers 1 and 13).  

3.2.2. Flow 

Flow of the reach was measured using a Valeport Model 801 EM flow meter at four 

locations: Markers 1 (extreme downstream boundary), 4 (downstream boundary), 10 

(upstream boundary), and 13 (extreme upstream boundary). Flow was measured at 60% 
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of the depth for the purposes of comparing reach conditions to those when the 

ecological monitoring was undertaken by WRC.  

3.2.3. Particle size 

Clasts were to be assessed in two locations per segment using a surface sample grid 

count, as described by Bunte and Abt (2001), with 25 clasts to be measured in each 

locations (total of 50 clasts per 25 m segment). The locations were to be randomly 

selected within each segment by one assessor, with clasts measured along their a-, b-, 

and c-axis and their roundness observed and recorded on the field sheets for the reach 

by the second assessor. Power’s roundness was chosen for this assessment as it is a 

rapid and easy method that can be deployed in the field which involves an assessor 

judging the angularity of each clast against a set criteria for roundness (Figure 19). 

 

Figure 19 Power's roundness used to assess the angularity of the clasts in each location (Field Studies Council, 
2016) 

When measuring Monitoring Site 1172_6 Wainui Stream, it was found that this method 

was not feasible due to the significant time required to execute. Monitoring Sites 1176_6 

Wainui Stream and 11726_11 Upper Wainui Stream were therefore subject to a modified 

version of this assessment. Segments 1-2, 5-6, 8-9, and 10-11 were used for the clast 

assessment, with assumptions to be built into the analysis of the results of the 

representativeness of these segments for the reach as a whole. Varying geomorphic 

units were identified for clast assessment, including pools, bars, and a riffle section. 

For Monitoring Sites 2080_1 2nd Order Stony Stream, 2079_1 3rd Order Stony Stream, 

and 1307_18 Whangarahi Stream, a modified assessment was researched and used. A 

pebble count along a transect was used to determine the particle-size characteristics 

by assessing particles in even-spaced increments, following the method outlined by 

Bunte and Abt (2001). The measuring tape was stretched along a 30 m stretch 

predominantly within Segments 1-2, 5-6, 8-9, and 10-11 and particles were selected at 

exactly 1.0 m intervals (Figure 20). Two people were used for the particle count; one 
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person was responsible for selecting a particle from the streambed or bar, measuring 

the b-axis with the callipers, and the other for recording the particle size.  

 

Figure 20 Example of measuring particle size along a transect within the 3rd Order Stony Stream (reference 
2079_1). A tape measure was laid out for 30 m and the particle exactly below each metre mark was measured 
along its b-axis and recorded. 

A qualitative assessment of particle size and type was also undertaken for each 

segment. Starting from the extreme downstream position, each 25 m segment was 

assessed for the predominant particle size, shape, and variety. Consideration was given 

to the range, armour layer, consolidation and sorting, as well as whether a silty or sandy 

layer was overlaying the armour layer.   

Given the lowland location of Monitoring Site 1262_18 Waiwhero Stream, clasts were 

not expected to be found and there was an expectation that fine silts and clays would 

make up the predominant soil and rock types. As such, sediments were obtained from 
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the middle of the channel at Markers 1, 4, 10, and 13 and visually inspected for an 

estimation of particle type and makeup, as shown by Figure 21. During the sweeps of 

the channel for assessing other factors, an inspection was made within each segment 

for any larger clasts, such as pebbles or cobbles within the channel bed or the banks. 

 

Figure 21 surface bed material obtained from the middle of the channel at Marker 4 within the Waiwhero Stream 
and assessed for particle type and size. The same process was used to assess the bed material at additional 
Markers 1, 10, and 13.  

To provide additional comparison to other reaches, a video walkthrough of each of the 

12 segments was undertaken. A post-field qualitative assessment was undertaken from 

these videos, with each segment assessment for the predominant particle size, shape, 

and variety. Consideration was also given to significant deviations from the visually 

observed average, such as large boulders, or sand bars as well as whether a silt or sand 

layer was present over the armour layer. Caution is required for use of these results 

compared to in-field results; the camera is unable to see through water, thus obscuring 

a portion of the clasts that are important to the assessment.  
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3.2.4. Riparian Zone 

Starting from the extreme upstream position (Marker 13), each 25 m segment is 

assessed with regard to the riparian zone. For each segment, the assessor qualitatively 

assessed and recorded the vegetation density and species (indigenous versus non-

indigenous) on both banks of the wetted channel. At the midpoint of each segment, 

the width of the vegetated riparian zone extending perpendicular to the bank was 

measured using a tape measure, with the exception of segments where the riparian 

zone exceeded a visual estimate of 30 m. Where the riparian zone exceeded 30 m, an 

estimate of the width was recorded and then checked against aerial imaging of the site 

at a later date. Gaps or an absence of riparian planting (such as Figure 22) were recorded 

as 0 m, and their length along the stream bank also measured.  

 

Figure 22 Example of a gap within the riparian zone, near Marker 10 for Wainui Stream (reference 1172_6) 

3.2.5. Bank Erosion  

Starting from the extreme upstream position (Marker 13), each 25 m segment down to 

the extreme downstream position (Marker 1) was assessed with regard to bank erosion. 

For each segment, the assessor qualitatively assessed and recorded visual bank erosion 

for both sides of the wetted channel, including the potential for erosion to occur. The 

presence of bank erosion was recorded with reference to type, such as undercutting 
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and slumping and potential immediate causes such as location on the outside of a bend, 

location of wood in the stream, or vegetation variation on the bank.  

3.2.6. Wood Pieces 

Starting from the extreme downstream position (Marker 1), each 25 m segment down 

to the extreme upstream position (Marker 13) was assessed for the quantity and 

position of woody pieces observed. For each segment, the assessor qualitatively 

assessed and recorded the presence of woody pieces within the wetted channel, 

including a gauge on quantity, size, location (such as near the bank, within a pool, or 

fallen branches or trees connected to vegetative material on the banks), and whether 

the woody pieces were discrete or within conglomerates such as wood rafts. 

Additionally, observations of woody pieces that were located on the banks of the 

wetted channel were recorded for their potential as sources of future woody pieces for 

the wetted channel. 

Wood was not expected to be present in any great quantity at Monitoring Site 1262_18 

Waiwhero Stream. This is due to the lowlands location of the reach on the Hauraki 

Plains, in addition to terrestrial vegetation clearance identified on an assessment of 

aerial photographs of both the reach and upstream catchment prior to the site work.  

As with the visual assessment for grain size for this stream, an inspection was made 

within each segment for woody pieces within the channel, along the banks, and further 

within the floodplain for potential future sources of woody pieces. 

3.2.7. Geomorphic Units 

Starting from the extreme upstream position (Marker 13), each 25 m segment down to 

the extreme downstream position (Marker 1) was assessed for the predominant 

geomorphic unit at the Unit and the Sub-Unit scale as specified within the Geomorphic 

Units survey and classification System (GUS), designed by Rinaldi et al. (2015, p. 13):  

▪ Unit: basic spatial unit, and corresponds to a feature with distinctive 

morphological characteristics and significant size located within a macro-unit 

e.g. riffle, bar, island.  

▪ Sub-unit: corresponds to patches of relatively homogeneous characteristics in 

terms of vegetation, sediment and / or flow conditions located within a unit.  
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Visible Units and Sub-units were identified and recorded for each segment within the 

wetted channel and the banks, although no assessment of the floodplain or valley floor 

was recorded. A video recording of each segment focusing on geomorphic units was 

undertaken for referral subsequent to the field. 

3.2.8. Fieldwork summary 

The techniques used at each site are summarised in Table 9.  
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Table 9 Summary of geomorphic assessment techniques used at each of the identified monitoring sites 

 11726_11 Upper 

Wainui Stream 

1172_6 Wainui 

Stream 

2080_1 2nd Order 

Stony Stream 

2079_1 3rd Order 

Stony Stream 

1307_18 

Whangarahi 

Stream 

1262_18 Waiwhero Stream 

Assessment Date 

and weather 

conditions 

15th March 2020 

Fair, with no 

rainfall in the 

preceding days, or 

on the day of 

assessment 

14th March 2020 

Fair, with no 

rainfall in the 

preceding days, or 

on the day of 

assessment 

21st March 2020 

Fair, with no 

rainfall in the 

preceding days, or 

on the day of 

assessment 

21st March 2020 

Fair, with no 

rainfall in the 

preceding days, or 

on the day of 

assessment 

22nd March 2020 

Fair, with no 

rainfall in the 

preceding days, or 

on the day of 

assessment 

20th March 2020 

Fair, with no rainfall in the 

preceding days, or on the day of 

assessment 

Site Identification Downstream Coordinates provided by WRC and loaded into TopoMaps NZ on an Android device. The GPS function of the device was used 

to locate the general area of the downstream coordinates and cross-referenced against photographs provided by WRC for assurance of the 

site location 

Number of 

assessors 

2; one assessor and one field assistant 

Site Demarcation  150 m and 300 m reach, measured in 25 m increments along true right bank, with markers on each bank at each 25 m mark 

After-the-fact 

evidence 

Video walkthrough recording of each segment for each of the Monitoring sites for further referral subsequent to the fieldwork  

Flow Valeport Model 801 EM flow meter at four locations: Marker 1 (extreme downstream boundary), Marker 4 (downstream boundary), Marker 

10 (upstream boundary), and Marker 13 (extreme upstream boundary) 

Particle Size 25 clasts in two locations (for a total of 

50 clasts) within Segments 1-2, 5-6, 8-

9, and 10-11 measured along their a-, b-

, and c- axis and their roundness 

observed and recorded.  

Pebble count along 30 m transect with Segments 1-2, 5-6, 8-

9, and 10-11. Particles are selected at exactly 1m intervals and 

b-axis recorded using callipers. Qualitative assessment of 

particle size undertaken for each segment for predominant 

particle size, shape and variety. Consideration given to the 

range, armour layer, consolidation and sorting, as well as 

whether a silty or sandy layer was overlaying the armour. 

Sediments obtained at Markers 1,4, 

10, and 13 and visually inspected for 

an estimated of particle type and 

makeup. Inspection of each 

segment for any larger clasts such 

as pebbles or cobbles within the 

channel bed or the banks.  

Riparian Zone Starting from the extreme upstream position (Marker 13), each 25 m segment is assessed with regard to the riparian zone. For each segment, 

the assessor qualitatively assessed and recorded the vegetation density and species (indigenous versus non-indigenous) on both banks of the 

wetted channel. At the midpoint of each segment, the width of the vegetated riparian zone extending perpendicular to the bank was measured 

using a tape measure, with the exception of segments where the riparian zone exceeded a visual estimate of 30 m. Where the riparian zone 

exceeded 30 m, an estimate of the width was recorded and then checked against aerial imaging of the site at a later date. Gaps or an absence 

of riparian planting were recorded as 0 m, and their length also measured.  



65 

 11726_11 Upper 

Wainui Stream 

1172_6 Wainui 

Stream 

2080_1 2nd Order 

Stony Stream 

2079_1 3rd Order 

Stony Stream 

1307_18 

Whangarahi 

Stream 

1262_18 Waiwhero Stream 

Bank Erosion  Each 25 m segment assessed qualitatively, and visual bank erosion recorded for each bank for both sides of the wetted channel, including the 

potential for erosion to occur. Type of bank erosion was recorded to type, such as undercutting, slumping and potential immediate causes 

such as location on the outside of a bend, location of wood in the stream, or vegetation variation on the bank 

Wood Each 25 m segment assessed for the quantity and quality of wood observed. Includes gauge on 
quantity, size, location (such as near the bank, within a pool, or fallen branches or trees connected to 
vegetative material on the banks), and whether the woody pieces were discrete or within 
conglomerates such as wood rafts. Additional observations of wood located on the banks of the wetted 
channel assessed for their potential as sources of future woody pieces for the wetted channel.  

Woody pieces not expected in 

large quantities due to 

identification of significant 

clearance of the upstream and 

adjacent catchment through aerial 

photograph observation. Visual 

inspection made within each 

segment for wood within the 

channel, along the banks, and 

further within the floodplain for 

potential future sources of wood.  

Geomorphic Units Each 25 m segment assessed for predominant geomorphic unit at the Unit and Sub-Unit scale as specified within the GUS classification 

system designed by (Belletti et al., 2015). Visible Units and Sub-units identified and recorded for each segment within the wetted channel 

and banks. No assessment of floodplain or valley floor 
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3.3. Post assessment and analysis 

3.3.1. Geomorphic assessment  

The data collected from the data sheets were consolidated and uploaded into a Google 

Drive for storage. Each 150 m and 300 m reach for the six monitoring sites was then 

assessed against the reference conditions formulated as outlined in Section 3.1.2. Using 

the questions posed in Table 8, each reach was considered on their merits against the 

reference conditions using qualitative analysis. Cross reference to exemplified features 

or parts of the segment or reach were used to ratify the written data. The purpose of 

the analysis was to consider whether a reach could be considered to fit within the 

expected range of that that specific reach. A proforma was created for each reach, with 

the intention that these can be used for cross-referencing future years for temporal 

analysis. For each of the variables, the reaches were scored out of five, with the grades 

representing the following: 

1: Extremely Poor – this feature was wholly outside of the reference condition 

parameters and should not occur in this reach 

2: Poor – this feature sat somewhat outside of the reference condition parameters 

and is not representative of the reach 

3: Some of the feature is considered to have sat within the reference condition 

parameters, with obvious or explicit deviation from reference conditions 

4: Represented the reach reference conditions, with a few variations 

5: Wholly represented of the reach reference conditions. 

As such, the maximum score of a reach would be 30 (six features with a maximum of 

five points per feature), and a minimum score of 6. The following bands were created 

to categorise the reaches into ‘excellent’ ‘good’, ‘moderate’ and ‘poor’:  

▪ 6 – 12: Reach is in very poor health  

o This is based on a reach achieving a maximum average of 2 points per 

feature 

▪ 12-17: Reach is in poor health 

o This is based on a reach achieving an average less than 3 points per 

feature which is below the benchmark for sitting within the reference 

conditions 

▪ 18 – 23: Reach is in moderate health  
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o This is based on a reach achieving a minimum average of 3 points per 

feature, which is classified as generally sitting within the parameters of 

the reach.  

▪ 24 – 30: Reach is in good health 

o This is based on a river achieving a minimum average of 4 points per 

feature.  

▪ 27-30: Reach is in excellent health 

o This is based on a river achieving a minimum average of 4.5 points per 

feature  

3.3.2. Cross-reference to ecological monitoring 

To provide a sense check of the geomorphic toolbox, ecological data (fish and chemical 

indicators) were obtained from WRC for each of the Monitoring Sites. The summary 

results from the geomorphic assessment were then compared to the ecological data 

from each site to consider relationships and river health inferences. A high degree of 

caution was taken through this cross-assessment; IBI results were not available at the 

time of writing and MCI results are from previous years as the 2019/2020 monitoring 

has not been analysed. Other controlling factors such as distance to the coast are 

required to be considered. A direct comparison between indicators is not appropriate 

but can be used in conjunction with one another to create a wider understanding of 

river health.  
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4. Results 

This section presents the analysis of the data collected from all six sites, which are 

assessed against reference conditions. For each site, the 150 m reach and 300 m reach 

are assessed independently and provided with a score for each of the identified 

geomorphological attributes. A summary table is provided, with the concluding score 

for each 150 m reach assessed against the corresponding data collected by WRC for fish 

and macroinvertebrate monitoring. A catchment map, based on aerials sourced from 

WRC and open source data from Land Information New Zealand (contours, 8 m Digital 

Elevation Model, and river centrelines) is also provided for each monitoring site. 

Collectively, the information gathered for each reach, excluding the summary scoring, 

is referred to as a proforma. A summary of available ecological data for each 150 m reach 

is provided in Section 4.2.  

Consolidated results are located within this livelink: Stream Results. 

4.1. Geomorphic assessment 

The video walkthroughs, photographs and completed data sheets are provided in 

livelink format, with the appropriate data for each monitoring reach found in the 

following folder links: 

▪ 11726_11 Upper Wainui Stream photographs and segment walkthrough 

▪ 1172_6 Wainui Stream photographs and segment walkthrough 

▪ 2080_1 Stony Stream 2nd Order photographs and segment walkthrough 

▪ 2079_1 Stony Stream 3rd Order photographs and segment walkthrough 

▪ 1307_18 Whangarahi Stream photographs and segment walkthrough 

▪ 1262_18 Waiwhero Stream photographs and segment walkthrough 

  

https://drive.google.com/file/d/1cykQm05AbUZWXE3KnB23obhE8SiMEZin/view?usp=sharing
https://drive.google.com/drive/folders/1WjgLoSaq8XHB8-hrxiaNDPsgf6Ai2UOR?usp=sharing
https://drive.google.com/drive/folders/1xllMK-lOfPpXtToJk2Hg4yTl8y1BHdJJ?usp=sharing
https://drive.google.com/drive/folders/1ReAyUvfFa2nkuVdRv73p-VjbkMr5Eian?usp=sharing
https://drive.google.com/drive/folders/1z4OUgUTO4OYABWdxqZbrqiE-ZfsZMrPs?usp=sharing
https://drive.google.com/drive/folders/1qdjXR5FV01SJDv1N1Guv4VAF4C6bsLT-?usp=sharing
https://drive.google.com/drive/folders/1zl6xuwL3TifaZq_9B0-dMf-qS1Opbj58?usp=sharing
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4.1.1. 11726_11 Upper Wainui Stream 

Downstream 

coordinates 

E1760523 N5811768 

Stream Order 2nd  

Valley setting Partially Unconfined 

Landscape Position  Source – Catchment is very short 

Date of survey  15th March 2020 

Duration of survey 4.5 hrs  

Wainui Stream begins 640 m Above Sea Level (ASL) and is approximately 10.1 km to its 

river mouth located within the Raglan Harbour (Figure 23). It is classified by Waikato 

Regional Council as Natural State and Indigenous Fish Habitat Class. The monitored 

reach is some 5 km from the headwaters and sits around 100 ASL.  

Upstream of the catchment, the Wainui River descends rapidly, dropping from 640 m 

ASL to 240 m ASL over 2 km. This descent is through dense indigenous vegetation 

before entering a valley where vegetation on the eastern side has been mostly cleared 

for pasture. The Wainui Stream continues along the steep valley, with pasture on the 

east making way for residential dwellings (Upper Wainui Road). The monitored 

catchment is located within the Wainui Stream below these houses, although 

vegetation cover remains dense and indigenous to the west.  Wainui Stream runs below 

Wainui Road at 80 m ASL and begins a minor meander through pasture and residential 

dwellings, as well as Wainui Reserve Bush Park, before crossing beneath Riria Kereopa 

Memorial Drive and meandering to Raglan Harbour close to sea level.  
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Figure 23 Wainui Stream catchment and Upper Wainui stream Monitoring Site (11726_11). Sourced from the 
LINZ Data Service and licenced for reuse under the CC BY 4.0 licence. Aerial and elevation data sourced from the 
LINZ Data Service and licenced by Waikato Regional Council, for re-use under the Creative Commons Attribution 
4.0 International Licence. Inset: representative geomorphology of Monitoring Site 11726_11 
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Table 10 Assessment against reference conditions for Monitoring Site 11726_11 

 Reference Conditions 150 m reach 300 m reach 

Riparian Zone 

Extensive indigenous forest – dense coverage 

greater than 100 m from bank edge. 

Predominantly manuka/kanuka forest as well 

as indigenous hardwoods and broadleaves. 

Canopy and dense understory should be 

expected. No gaps within riparian zone and 

should be wholly indigenous.  

Coverage along true left bank greater than 100 

m with indigenous ground coverage and a full 

canopy of hardwoods and broadleaf. The only 

discernible gap in the riparian zone is a gravel 

walking track near the bank. Refer Figure 24 as 

an example of the riparian zone along the true 

left bank.  

Riparian zone varies along the true right bank 

between 10 m and 20 m without interruption. 

Understory not always complete and dense, 

and grassed areas with minimal coverage 

observed toward adjacent residential 

properties in two segments (50 m length) after 

10 m of riparian zone. Gaps in both the canopy 

and understory at different locations. Refer 

Figure 26 as an example of the riparian zone 

along the true right bank.  

Coverage along true left bank greater than 100 

m with indigenous ground coverage and a full 

canopy of hardwoods and broadleaf. The only 

discernible gap in the riparian zone is a gravel 

walking track near the bank. Refer Figure 25 as 

an example of the riparian zone along the true 

left bank.  

Riparian zone intact for greater than 30 m in 

the lower 75 m of reach, before giving way to a 

variable quality riparian zone between 1.0m 

and 20 m in width. Sparse ground cover with 

pasture grass and creeping vine. Canopy is 

open in locations. For 25 m, coverage 

comprises only one plant width (though 

indigenous, including flax and ti kouka) before 

giving way to exotic grass to residential 

properties. Refer Figure 27 as an example of 

the riparian zone along the true right bank.   

Bank Erosion  

Predominant geological unit is basalt, basaltic 

andesite and andesite lava (GNS Science, 

2018).  

Concave erosion should be present along both 

banks but not uniformly – influenced by 

location of other geomorphic features such as 

boulders in stream flow. Bedrock protrusions 

expected in low quantity.  

Erosion expected on the outside of all bends in 

channel course and should be completed by 

Undercutting of both banks, interspersed with 

armouring by way of lateral bars that provide 

protection from further erosion. Lateral bars 

are loosely consolidated and likely easy to 

mobilise during flood events. In some 

locations, erosion is for a significant length 

(such as along the length of Segment 8-9 – 25 

m – on the true right bank (Figure 28). The 

outside bends of the channel are eroded, 

although there is no evidence of rapid channel 

changes or migrations occurring. Visual 

observation of bedrock which is not eroded at 

Undercutting of both banks, interspersed with 

armouring by way of lateral bars that provide 

protection from further erosion. Lateral bars 

are loosely consolidated and likely easy to 

mobilise during flood events. In some 

locations, erosion is for a significant length. 

The outside bends of the channel are eroded as 

exemplified by Figure 29, although there is no 

evidence of rapid channel changes or 

migrations occurring. Visual observation of 

bedrock which is not eroded at a significantly 
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 Reference Conditions 150 m reach 300 m reach 

lateral bars on the inside of bends. Confined 

valley channel meaning erosion should be 

similar on both banks (exempting bends); 

there should be no evidence of river migrating 

significantly in either direction and should be 

evidently a single thread channel.  

a significantly greater rate in any one location 

compared to any others.  

Channel is single thread.  

greater rate in any one location compared to 

any others. 

Channel is single thread.  

Grain Size 

A range of grain size, from large boulders 

through to sand granules. Predominant grain 

size should be pebbles and cobbles; around 50 

mm in size. Sorting not expected. Reasonably 

proportion of angularity can be expected due 

to proximity to headwaters.  

Larger boulders (greater than 1000 mm) can be 

expected, but not common. 

b-axis average of 57 mm.  

Visual observation of cobble sized particles 

dominating bars above the water line, 

interspersed with smaller pebbles. Sorting not 

observed and predominantly rounded, with 

some angularity.  

A few larger boulders (500 mm estimate) 

dispersed within segments and two segments 

sporting boulders greater than 1000 mm 

b-axis average of 56 mm. 

Visual observation of cobble sized particles 

dominating bars above the water line, 

interspersed with smaller pebbles. Sorting not 

observed and predominantly rounded, with 

some angularity.  

A few larger boulders (500 mm estimate) 

dispersed within segments and three segments 

sporting boulders greater than 1000 mm 

Wood 

Ample wood pieces within channel forming 

wood rafts and log jams. Areas of clear water 

without wood as well. Wood of some size 

should be found within every 25 m segment; 

evidence of more than one log jam or wood 

raft. 

Wood raft / log jam expected to be 

predominantly one or two tree trunks with 

other wood pieces backing in around rather 

than large quantities of trunks in one location. 

Abundant leaf litter.  

Fallen trees near channel as future sources of 

in-channel wood as well as numerous standing 

live trees near banks.  

Wood pieces in all segments, including debris 

rafts in multiple locations Figure 30), large 

bushy manuka branches, and wood pieces 

collecting around a fallen tree in multiple 

locations.  

Dead trees falling into the river (Segment 8-9), 

as well as many live trees and branches 

overhanging the channel from the bank 

(Segments 5-6 and 6-7).  

Abundant wood both dead and alive present 

on the both banks in proximity to the channel.  

Wood pieces in all segments, including debris 

rafts in multiple locations, large bushy manuka 

branches, and wood pieces collecting around a 

fallen tree in multiple locations.  

Dead trees falling into the river (Segment 8-9), 

as well as many live trees and branches 

overhanging the channel from the bank 

(Segments 2-3, 5-6, 6-7, 10-11, 11-12, 12-13).  

Abundant wood both dead and alive present 

on the both banks in proximity to the channel. 
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 Reference Conditions 150 m reach 300 m reach 

Connectivity  

Unimpeded connectivity for entire length of 

reach.  

Unimpeded connectivity to upstream and 

downstream reaches.  

Unimpeded connectivity along length of entire 

stream from source to sink. Waterfalls could 

be expected, but unlikely.  

Connectivity unimpeded for entire length of 

reach. Reach is connected to both upstream 

and downstream reaches.  

 Presumed unimpeded connectivity along 

entire length of Wainui Stream, with passage 

under Wainui Road by way of a culvert with 

fish passage provisions  

Connectivity unimpeded for entire length of 

reach. Reach is connected to both upstream 

and downstream reaches.  

 Presumed unimpeded connectivity along 

entire length of Wainui Stream, with passage 

under Wainui Road by way of a culvert with 

fish passage provisions 

Spatial 

Heterogeneity 

Large number of geomorphic units expected 

within each 25 m segment and across reach 

overall. There should be a consistent 

abundance of units, i.e. there should be no 25 

m segment that is uniform with only one or 

two identifiable geomorphic units.  

Expected units to include lateral bars, mid-

channel bars, large individual boulders by 

bank and within wetted channel, pool and 

riffle sequences, steps, bedrock outcrops, 

cobble or pebble patches. Evidence of 

heterogeneity as a result of other factors, such 

as scour holes on bank from erosion 

Diverse and abundance of geomorphic units 

within each segment including pools and riffle 

sequences in every segment. Deeper pools on 

the outside of bends complemented with point 

bars on the inside of bends. Large individual 

boulders within the wetted channel, such as in 

Segment 4. Bedrock evident in discrete 

locations such as Segment 9-10 

Loosely consolidated mid channel bar 

temporarily separating flow into two channels 

in Segment 6-7, for 10 m. Lateral bars present 

in many locations and range in size from thin 

armouring of the bank to larger bars 

influencing flow to opposite bank. Non-

uniform; units are consistently diverse 

between segments with more temporary 

features likely causing influence such as dead 

wood and bank cohesion by way of vegetation.  

Variable bank heights. 

Diverse and abundance of geomorphic units 

within each segment including pools and riffle 

sequences in every segment. Deeper pools on 

the outside of bends complemented with point 

bars on the inside of bends. Large individual 

boulders within the wetted channel, such as in 

Segment 4. Bedrock evident in discrete 

locations such as Segment 9-10 

Loosely consolidated mid channel bar 

temporarily separating flow into two channels 

in Segment 6-7, for 10 m. Lateral bars present 

in many locations and range in size from thin 

armouring of the bank to larger bars 

influencing flow to opposite bank. Non-

uniform; units are consistently diverse 

between segments with more temporary 

features likely causing influence such as dead 

wood and bank cohesion by way of vegetation.  

Variable bank heights – up to 3.5 m incision on 

true left bank within Segment 1-2 on outside of 

bend.  
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Table 11 Results summary for Monitoring Site 11726_11 

 

 

Score 

150 m reach 300 m reach 

Riparian Zone 3 2 
Bank Erosion  5 5 
Grain Size 5 5 
Wood 5 5 
Connectivity 5 5 
Spatial 

Heterogeneity 
5 5 

Total  28 / 30 

Excellent 

27 / 30 

Excellent 

 Deviations from reference conditions:  

▪ Variable Riparian Zone; mostly representative, but with gaps in lateral 

coverage as well as the canopy. Some exotic plants identified but 

predominantly indigenous vegetation.  

 

 

Figure 24 Riparian zone within Segment 4-5 of 
Monitoring Site 11726_11; dense understory and full 
canopy exemplifying riparian zone of the true left 
bank (right hand side of photo). 

 

Figure 25 Riparian zone within Segment 2-3 of 
Monitoring Site 11726_11; dense understory and full 
canopy exemplifying riparian zone of the true left 
bank (right hand side of photo) 
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Figure 26 Incomplete Riparian Zone located in 
Segment 6-7 of Monitoring Site 1126_11; singular 
trees forming incomplete canopy adjacent to 
riverbank, with grass pasture located immediately 
after. 

 

Figure 27 Incomplete Riparian Zone located in 
Segment 12-13 of Monitoring Site 1126_11; singular 
trees forming incomplete canopy adjacent to 
riverbank, with grass pasture located immediately 
after.  

 

Figure 28 Evidential bank erosion within Segment 8-9 
of Monitoring Site 1126_11, which extends uniformly 
along the true right bank for much of this segment. 
Note the lateral bar (armouring on the true left) 

 

Figure 29 Evidential bank erosion within Segment 3-4 
of Monitoring Site 1126_11 on the true right bank. 
Note bedrock present at the water line within the 
channel along the bank.  

 

Figure 30 Wood raft within Segment 4-5 exhibiting a 
range of wood pieces of varying diameters.  

 

Figure 31 Example of diverse and numerous 
geomorphic units present within Segment 7-8 of 
Monitoring Site 1126_11, including pools and riffles, 
larger individual boulders, a lateral bar on the true 
right, and variable bank heights and degrees of 
incision.  
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4.1.2. 1172_6 Wainui Stream 

Downstream 

coordinates 

E1762004 N58113104 

Stream Order 2nd  

Valley setting Unconfined 

Landscape Position  Sink – Catchment is very short 

Date of survey  14th March 2020 

Duration of survey 5.5 hrs  

Wainui Stream begins 640 m Above Sea Level (ASL) and is approximately 10.1 km to its 

river mouth located within the Raglan Harbour (Figure 32). It is classified by Waikato 

Regional Council as Natural State and Indigenous Fish Habitat Class. The monitored 

reach is some 5 km from the headwaters and sits around 100 ASL.  

Upstream of the catchment, the Wainui River descends rapidly, dropping from 640 m 

ASL to 240 m ASL over 2 km. This descent is through dense indigenous vegetation 

before entering a valley where vegetation on the eastern side is mostly cleared for 

pasture. The Wainui Stream continues along the steep valley, with pasture on the east 

making way to residential dwellings (Upper Wainui Road). Vegetation cover remains 

dense and indigenous to the west through this section of the stream.  Wainui Stream 

runs below Wainui Road at 80 m ASL and begins a minor meander through pasture 

and residential dwellings, as well as Wainui Reserve Bush Park where the Wainui 

Stream monitoring reach is located around 11 m ASL. Wainui Stream then crosses 

beneath Riria Kereopa Memorial Drive and meandering to Raglan Harbour close to sea 

level.  
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Figure 32 Wainui Stream catchment and Wainui stream Monitoring Site (1172_6). Sourced from the LINZ Data 
Service and licenced for reuse under the CC BY 4.0 licence. Aerial and elevation data sourced from the LINZ Data 
Service and licenced by Waikato Regional Council, for re-use under the Creative Commons Attribution 4.0 
International Licence. Inset: representative geomorphology of Monitoring Site 1172_6 
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Table 12 Assessment against reference conditions for Monitoring Site 1172_6 

 Reference Conditions 150 m reach 300 m reach  

Riparian Zone Extensive indigenous forest – dense coverage 

greater than 100 m from bank edge. 

Predominantly manuka/kanuka forest as well 

as both indigenous hardwoods and shrubs. 

There should be a mixture of large tall trees 

forming the canopy, as well as a dense shrub 

understory. No gaps within riparian zone and 

should be wholly indigenous.  

Riparian Coverage is variable. Coverage is 

greater than 30 m in width on the true left 

bank and 15 m on the true right bank for 

Segment 6-7, but is inconsistent with the 

reaches on either side; Segment 5-6 has a 

width of 3.0 m and 2.0 m on the true left and 

true right banks respectively, whilst Segment 

7-8 is 1.5 m from each bank. The smallest 

width is within Segment 8-9 at 0.5 m whereby 

the riparian zone comprises a single plant 

depth before as sealed walking path runs 

parallel to the bank Figure 33.  

Vegetation type is also variable, but 

predominantly indigenous, including ti kouka, 

flaxes, manuka and other manuka forest 

species. Gaps in the riparian zone were 

identified such as in Segments 8-9, and 9-10, 

in addition to all locations where walking 

bridges traverse the stream (three locations). 

Large grassed areas observed in close 

proximity to channel, and where vegetation 

exceeds one plant width, the canopy is not 

complete and cover coverage sparse.  

Riparian Coverage is variable. Within 

Segments 1-2, 2-3, and 3-4, the riparian zone is 

greater than 30 m on both banks and 

indigenous, but with sparse ground coverage.  

Coverage is greater than 30 m in width on the 

true left bank and 15 m on the true right bank 

for Segment 6-7, but is inconsistent with the 

reaches on either side; Segment 5-6 has a 

width of 3.0 m and 2.0 m on the true left and 

true right banks respectively, whilst Segment 

7-8 is 1.5 m from each bank. The smallest 

width is within Segment 8-9 at 0.5 m whereby 

the riparian zone comprises a single plant 

depth before as sealed walking path runs 

parallel to the bank. There is no riparian zone 

on the true right bank of Segment 12-13, 

whereby the bank is located immediately 

adjacent to a grassed recreational park. 

Coverage is less than 1.0 on the true right 

bank for Segments 10-11 and 11-12, which are 

adjacent to a sealed walking path and the 

same recreational area as Segment 12-13 Figure 

34.  

Vegetation type is also variable, but 

predominantly indigenous, including ti kouka, 

flaxes, manuka and other manuka forest 

species. Gaps in the riparian zone were 

identified such as in Segments 8-9, and 9-10, 

in addition to all locations where walking 
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 Reference Conditions 150 m reach 300 m reach  

bridges traverse the stream (three locations). 

Large grassed areas observed in close 

proximity to channel, and where vegetation 

exceeds one plant width, the canopy is not 

complete and cover coverage sparse. 

Bank Erosion  Predominant geological unit is Alexandra 

Volcanic Group basaltic rocks and described 

as Olivine basalt lava, scoria and tuff (GNS 

Science, 2018). Overlain with alluvial 

sediments – fine grained.  

Single thread channel. 

Concave erosion should be present along both 

banks but not uniformly – influenced by 

location of other geomorphic features such as 

boulders or vegetation.  

Erosion expected on the outside of all bends 

in channel course and should be 

complemented by lateral bars on the inside of 

bends. 

Pronounced meandering sinuosity expected 

due to low elevation and sink position. 

Possible to see channel course changes but 

not integral. Evidence channel has space to 

migrate within the floodplain toward either 

bank and not inhibited from doing so.  

Erosion identified within all segments for 

both the true right and true left banks.  

Banks were observed as alluvial, generally 

fine-grained silts, although pockets of larger 

clasts suspended in the bank were observed 

(Segment 7-8). 

Undercutting of banks to form a concave bank 

shape observed in all segments, as well as 

slumping (Figure 35). Erosion not uniform, 

with some segments exhibiting larger exposed 

areas of erosion. Erosion on the outside of 

bends accompanied by point bars on the 

inside of the bend (such as Segment 7-8).  

Slumping observed more so on the true left 

bank than the true right. Erosion from scour 

from the build-up of debris near trees or roots 

within bank observed. 

Meandering not significantly pronounced, 

although numerous bends within channel. No 

evidence of recent channel migration within 

or near channel observed, although channel 

not restricted from doing so in areas where 

elevation is conducive i.e. where it is relatively 

flat floodplain extending from channel.  

Erosion identified within all segments for 

both the true right and true left banks.  

Banks were observed as alluvial, generally 

fine-grained silts, although pockets of larger 

clasts suspended in the bank were observed 

(Segment 7-8). 

Undercutting of banks to form a concave bank 

shape observed in all segments, as well as 

slumping. Erosion not uniform, with some 

segments exhibiting larger exposed areas of 

erosion. Erosion on the outside of bends 

accompanied by point bars on the inside of 

the bend (such as Segment 10-11: Figure 36).  

Slumping observed more so on the true left 

bank than the true right. Erosion from scour 

from the build-up of debris near trees or roots 

within bank observed. 

Meandering not significantly pronounced, 

although numerous bends within channel. No 

evidence of recent channel migration within 

or near channel observed, although channel 

not restricted from doing so in areas where 

elevation is conducive i.e. where it is relatively 

flat floodplain extending from channel. 
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 Reference Conditions 150 m reach 300 m reach  

Grain Size A range of grain size, from boulders through 

to sand granules. Predominant grain size 

should be pebbles and cobbles; around 30 mm 

in size. Sorting not expected. Predominantly 

rounded, although angularity also expected 

due to short catchment. 

Larger boulders (greater than 1000 mm) only 

in very small quantities.  

b-axis average 55 mm 

Predominant clast size is pebbles less than 50 

mm and less with larger clasts (cobble size) 

found on bars (Figure 37). Variation between 

some segment, with visual inspections 

showing nothing greater than 300 mm in size 

in some segments (4-5, 5-6), with others 

sporting individual boulders (6-7, 9-10). Clasts 

mostly rounded and a silt layer present in all 

segments. 

b-axis average 57 mm 

Predominant clast size is pebbles less than 50 

mm and less with larger clasts (cobble size) 

found on bars. Variation between some 

segment, with visual inspections showing 

nothing greater than 300 mm in size in some 

segments (1-2, 2-3, 4-5, 5-6), with others 

sporting individual boulders (3-4, 6-7, 9-10, 11-

12, 12-13): refer Figure 38. Clasts mostly 

rounded and a silt layer present in all 

segments. Visual observance of bedrock in 

one location on true left bank in Segment 12-

13.  

Wood Ample wood pieces within channel forming 

wood rafts and log jams. Expect standalone 

wood pieces such as fallen punga. Areas of 

clear water without wood as well; evidence of 

more than two log jam or wood rafts. 

Wood raft / log jam expected to be 

predominantly one or two tree trunks with 

other wood pieces backing in around rather 

than large quantities of trunks in one location. 

Abundant leaf litter.  

Fallen trees near channel as future sources of 

in-channel wood as well as numerous 

standing live trees near banks.  

Small wood pieces were observed in all 

segments, but with little consolidation except 

in a few instances. Two wood raft located in 

Segment 7-8; one on the inside of a bend – at 

least 30 individual pieces in addition to leaf 

litter and other debris – and one located 

directly upstream of a tree outcrop in the true 

right bank; areas of clear wetted channel as 

well (Figure 39) Significant wood loading on 

bar located in Segment 9-10 (Figure 40). 

Only punga trunk (Segment 8-9) observed 

within channel, without debris build up.  

No observed trees fallen in proximity to 

stream, predominantly leaf litter. Some live 

trees but none with a pronounced risk of 

falling directly into the stream channel in the 

short term.  

Small wood pieces were observed in all 

segments, but with little consolidation except 

in a few instances. Two wood raft located in 

Segment 7-8; one on the inside of a bend – at 

least 30 individual pieces in addition to leaf 

litter and other debris – and one located 

directly upstream of a tree outcrop in the true 

right bank; areas of clear wetted channel as 

well (Figure 39) Significant wood loading on 

bar located in Segment 9-10 (Figure 40). 

Only punga trunk (Segment 8-9) observed 

within channel, without debris build up.  

No observed trees fallen in proximity to 

stream, predominantly leaf litter. Some live 

trees but none with a pronounced risk of 

falling directly into the stream channel in the 

short term. 
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 Reference Conditions 150 m reach 300 m reach  

Connectivity  Unimpeded connectivity for entire length of 

reach.  

Unimpeded connectivity to upstream and 

downstream reaches.  

Unimpeded connectivity along length of 

entire stream from source to sink. Waterfalls 

could be expected, but unlikely.  

Connectivity unimpeded for entire length of 

reach. Reach is connected to both upstream 

and downstream reaches.  

 Presumed unimpeded connectivity along 

entire length of Wainui Stream, with passage 

under Wainui Road by way of a culvert with 

fish passage provisions 

Connectivity unimpeded for entire length of 

reach. Reach is connected to both upstream 

and downstream reaches.  

Presumed unimpeded connectivity along 

entire length of Wainui Stream, with passage 

under Wainui Road by way of a culvert with 

fish passage provisions 

Spatial 

Heterogeneity 

Large number of geomorphic units expected 

within each 25 m segment and across reach 

overall. There should be a consistent 

abundance of units, i.e. there should be no 25 

m segment that is uniform with only one or 

two identifiable geomorphic units.  

Expected units to include lateral bars, mid-

channel bars, large individual boulders by 

bank and within wetted channel, pool and 

riffle sequences, steps, cobble or pebble 

patches. Evidence of heterogeneity as a result 

of other factors, such as scour holes on bank 

from erosion 

Diverse and abundance of geomorphic units 

within each segment including pools and riffle 

sequences in every segment (Figure 41). Pools 

are observably more dominant than riffle and 

span a greater width and length within 

segments (i.e. Segment 4-5, 5-6). 

Deeper pools on the outside of bends 

complemented with point bars on the inside 

of bends. 

Lateral bars present in many locations and 

range in size from armouring to large bars 

proportionate to channel size (15 m x 2m 

lateral bar within Segment 6-7) and 

influencing channel flow to opposite bank.  

Lateral bars often alternate on bank side, with 

erosion of the banks following the inverse 

pattern. Variable bank height.  

Some individual boulders located within 

wetted channel. Scour holes and bank erosion 

Diverse and abundance of geomorphic units 

within each segment including pools and riffle 

sequences in every segment (Figures 41 and 

42). Pools are observably more dominant than 

riffle and span a greater width and length 

within segments (i.e. Segment 4-5, 5-6). 

Deeper pools on the outside of bends 

complemented with point bars on the inside 

of bends. 

Lateral bars present in many locations and 

range in size from armouring (Segment 3-4) to 

large bars proportionate to channel size (15 m 

x 2m lateral bar within Segment 6-7) and 

influencing channel flow to opposite bank. 

Lateral bars often alternate on bank side, with 

erosion of the banks following the inverse 

pattern.  

Variable bank height, particularly around 

bends, where the outside bank is higher (i.e. 

Segment 10-11).  
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 Reference Conditions 150 m reach 300 m reach  

from channel flow and materials being caught 

evident (i.e. Segment 7-8).  

Non-uniform; units are consistently diverse 

between segments with more temporary 

features likely causing influence such as dead 

wood and bank cohesion by way of vegetation 

and alluvial composition.  

 

Some individual boulders located within 

wetted channel. Scour holes and bank erosion 

from channel flow and materials being caught 

evident (i.e. Segment 7-8).  

 Non-uniform; units are consistently diverse 

between segments with more temporary 

features likely causing influence such as dead 

wood and bank cohesion by way of vegetation 

and alluvial composition. Variable bank 

heights. 
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Table 13 Results summary for Monitoring Site 1172_6 

 Score 

150 m reach 300 m reach 

Riparian Zone 2 2 
Bank Erosion  5 5 
Grain Size 5 5 
Wood 3 3 
Connectivity 5 5 
Spatial 

Heterogeneity 
5 5 

Total  25 / 30 

GOOD 

25 / 30 

GOOD 

 Deviations from reference conditions: 

▪ Variable Riparian Zone; sparse coverage – non-existent in other locations, 

with gaps. Ground coverage sparse, and open canopy in other locations  

▪ Wood: It is expected to see more wood than present in the stream, with more 

branches and wood rafts. Wood pieces were small and rarely consolidated. 

Little in the way of potential for wood from banks and riparian zone to enter 

the channel due to sparse riparian zone.   
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Figure 33 Example of riparian coverage variability 
located at Segment 8-9 of Monitoring Site 1172_6. 
True left bank had greater vegetation coverage than 
the true right (right hand side of photo). Grassed 
recreational areas were common adjacent to this 
reach.  

 

 

Figure 34 True right bank located at Segment 12-13 
at Monitoring Site 1172_6. Vegetation is sparse and 
gives way immediately to a grassed recreation area 
on the right. No discernible understory and trees are 
widely spaced.  

 

Figure 35 Example of undercutting with Segment 3-4 
of Monitoring Site 1172_6, which was observed in 
numerous locations within the reach. Undercutting 
was interspersed with slumping, and lengths of 
reasonable stability  

 

Figure 36 True right bank within Segment 10-11 of 
Monitoring Site 1172_6 portraying erosion potential 
of the outside bank. There is a sealed walking path 
adjacent to the channel which may exert influence 
on future erosional processes.  
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Figure 37 Typical particle size on a bar within 
segment 7-8 at Monitoring Site 1172_6.   

 Figure 38 Example of particle size variations within 
Segment 11-12 at Monitoring Site 1172_11. 
Individual boulders were rare in this reach, with 
clasts predominantly pebbles and cobbles. 

 

 

Figure 39 Segment 7-8 of Monitoring Site 1172_6 
showing area with minimal wood pieces within 
channel 

 

Figure 40 Wood raft located in Segment 9-10 of 
Monitoring Site 1172_6 comprising a range of wood 
piece sizes and located downstream of a large bend 
in the channel.  
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Figure 41 Representative view of Monitoring Site 
1172_6 (Segment 7-8) showing predominance of 
pool, interspersed with riffle sequences and flow 
interruptions by way of clasts, a minor bar formation 
on the true left and evidence of armouring of the 
bank on the true right. Note some vegetation 
overhanging stream, and bank erosion is evident.  

 

Figure 42 Representative view of Monitoring Site 
1172_6 (Segment 2-3) showing diversity of 
geomorphic units, including pools and riffles, lateral 
bar, and concave erosion on the outside bend of the 
channel. Note evident gap in riparian zone. 
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4.1.3. 2080_1 2nd Order Stony Stream 

Downstream 

coordinates 

E1815800 N5956700 

Stream Order 2nd  

Valley setting Confined 

Landscape Position  Source 

Date of survey  21st March 2020 

Duration of survey 3.5 hrs  

The Stony Stream catchment comprises numerous tributaries beginning at 770 m ASL. 

The monitored Stony Catchments are derived from the northern branch of tributaries 

(Figure 43). Monitoring site 2080_1 is located on a 2nd Order Stream that is just over 1 

km in length upstream of the monitoring site. This tributary reaches an elevation of 

300 m ASL. It is classified by Waikato Regional Council as Natural State and Indigenous 

Fish Habitat Class. The monitored reach is some 1.8 km from the mouth discharging 

into Stony Bay and sits around 80 m ASL. 

Upstream of the monitoring site the Stony Stream tributary descends rapidly, dropping 

from 300 m to 100 m ASL over 1 km. This descent is through very steep and 

mountainous terrain covered by indigenous vegetation that covers the entire 

catchment. Below the monitoring site, the tributary merges with a 3rd Order stream 

tributary and descends further toward Stony Bay, passing through pasture used for 

sheep and finally through a campground before discharging into Stony Bay.  
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Figure 43 Stony Bay catchment and location of 2nd Order Monitoring Site (2080_1). Sourced from the LINZ Data Service and licenced for reuse under the CC BY 4.0 licence. Aerial and 
elevation data sourced from the LINZ Data Service and licenced by Waikato Regional Council, for re-use under the Creative Commons Attribution 4.0 International Licence. Inset: 
representative geomorphology of Monitoring Site 2080_1 
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Table 14 Assessment against reference conditions for Monitoring Site 2080_1 

 Reference Conditions 150 m reach 300 m reach  

Riparian Zone 

Extensive indigenous forest – dense coverage 

greater than 100 m from bank edge. 

Predominantly manuka/kanuka forest as well 

as indigenous hardwoods and broadleaves. 

Canopy and dense understory should be 

expected. No gaps within riparian zone and 

should be wholly indigenous.  

Extensive dense indigenous vegetation cover 

– range of broadleaf and hardwoods forming a 

complete canopy, in addition to a significant 

understory and ground cover diversity. No 

breaks in riparian zone detected, with 

coverage extending extensively in all 

directions as typified in Figure 43 and Figures 

44-45. 

Extensive dense indigenous vegetation cover 

– range of broadleaf and hardwoods forming a 

complete canopy, in addition to a significant 

understory and ground cover diversity. No 

breaks in riparian zone detected, with 

coverage extending extensively in all 

directions as typified in Figure 43 and Figures 

44-45. 

Bank Erosion  

Predominant geological unit is Manaia Hill 

Group and described as Sandstone, siltstone 

and conglomerate (GNS Science, 2018).  

Single thread channel and predominantly 

bedrock channel overlain with some 

sediments and soils.  

Incised channel with evidence of slow erosion 

of bedrock. Examples include pitted bedrock 

and overhangs of bedrock as a result of 

undercutting.  

Where bedrock is overlaid by soils, concave 

erosion of banks is expected on straight 

sections – expect this to be relatively uniform 

due to bedrock being close to the surface and 

the channel being confined.  

Very little meandering and there should be no 

evidence of river migrating significantly in 

either direction due to steep elevation and / 

or confined valley floor.   

Channel reasonably incised into bedrock, 

with low levels of short-term erosion (Figure 

46). In Segment 4-5 it is estimated the near 

vertical true left bank is up to 10 m high) 

 Overhanging bedrock in locations (Segment 

5-6) and bedrock pitted and rough surface. 

Undercutting of an alluvial deposit within 

Segment 7-8 on inside of bend on true right; 

true left bank is bedrock with some erosion of 

topsoil layer and therefore undercutting on 

the inside bend can be expected (pathway of 

least resistance for flow).  

 

Channel reasonably incised into bedrock, 

with low levels of short-term erosion (Figure 

46). In Segment 4-5 it is estimated the near 

vertical true left bank is up to 10 m high) 

 Overhanging bedrock in locations (Segment 

5-6) and bedrock pitted and rough surface. 

Undercutting of an alluvial deposit within 

Segment 7-8 on inside of bend on true right; 

true left bank is bedrock with some erosion of 

topsoil layer and therefore undercutting on 

the inside bend can be expected (pathway of 

least resistance for flow).  

A step change over a bedrock outcrop is 

evident in Segment 1-2 (Figure 47) where the 

flow navigates the short and step elevation 

change.  
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 Reference Conditions 150 m reach 300 m reach  

Grain Size 

Presence of bedrock dominating channel 

form. A range of grain sizes, from boulders 

through to sand granules. Predominant grain 

size should be cobbles; around 20-30 mm in 

size, although necessary for smaller clast sizes 

to also be present.  

Sorting not expected. Angular.  

Larger boulders (greater than 1000 mm) 

expected but not dominant particle size.   

b-axis average of transect lines is 148 mm, 

though bedrock was encountered 3 times in 

Segment 4-5 and four times in Segment 9-10, 

resulting a null value recording for those 

counts.  

Bedrock dominates channel form in banks 

and also channel bed. Bedrock outcrops 

observed in channel. Large range of particle 

sizes, from pebbles and rocks within wetted 

channel between 10mm – 500 mm, and lateral 

bars having clasts closer to 100 m + (Figure 

48). Minimal depth of covering before 

bedrock is reached on channel bed. Where 

pools are the dominant feature in the 

segment, a silty layer is observed. Clasts are 

predominantly angular.  

Some larger clasts found in most segments – 

boulders greater than 500 mm. 

b-axis average of transect lines is 125 mm 

though bedrock was encountered 3 times in 

Segments 1-2, 4-5, four times in Segment 9-10, 

and twice in Segment 12-13 resulting a null 

value recording for those counts. Segment 1-2 

also comprises a elevation step change of 

bedrock which was not possible to measure 

using the transect.  

Bedrock dominates channel form in banks 

and also channel bed. Bedrock outcrops 

observed in channel. Large range of particle 

sizes, from pebbles and rocks within wetted 

channel between 10mm – 500 mm, and lateral 

bars having clasts closer to 100 m + (Figure 

48). Minimal depth of covering before 

bedrock is reached on channel bed. Where 

pools are the dominant feature in the 

segment, a silty layer is observed. Clasts are 

predominantly angular. Some larger clasts 

found in most segments – boulders greater 

than 500 mm. Boulders greater than 1000 mm 

observed in Segment 1-2. 
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 Reference Conditions 150 m reach 300 m reach  

Wood 

Ample wood pieces within channel forming 

wood rafts and log jams. Areas of clear water 

without wood as well. Wood of some size 

should be found within every 25 m segment. 

Wood raft / log jam expected to be 

predominantly one or two tree trunks with 

other wood pieces backing in around rather 

than large quantities of trunks in one 

location. Abundant leaf litter.  

Fallen trees near channel as future sources of 

in-channel wood as well as numerous 

standing live trees near banks. 

Wood found in every Segment of this reach. 

In many segments, accumulation was not 

great and dominated by abundant leaf litter.  

Overhanging dead branches hanging over 

channel  

Wood raft in Segment 9-10 caused by a punga 

tree backing up other branches and trees 

(Figure 49).  

Fallen trees not reaching wetted channel 

observed in four segments. Tree roots also 

observed growing into water, in addition to 

live trees and ferns observed near banks.  

Wood found in every Segment of this reach. 

In many segments, accumulation was not 

great and dominated by abundant leaf litter.  

Overhanging dead branches hanging over 

channel  

Wood raft in Segments 1-2, 2-3, 9-10, 10-11, 11-

12, and a major log jam located in Segment 12-

13 comprising many large tree trunks and 

exerting a considerable influence on flow. 

Most wood rafts caused by a punga tree 

backing up other branches and trees (Figure 

49 and Figure 50).  

Fallen trees not reaching wetted channel 

observed in four segments. Tree roots also 

observed growing into water, in addition to 

live trees and ferns observed near banks. 

Connectivity  

Unimpeded connectivity for entire length of 

reach.  

Unimpeded connectivity to upstream and 

downstream reaches.  

Unimpeded connectivity along length of 

entire stream from source to sink. Waterfalls 

could be expected, but unlikely.  

Connectivity unimpeded for entire length of 

reach. Reach is connected to both upstream 

and downstream reaches.  

 Presumed unimpeded connectivity along 

entire length of Stony Stream. Culverts 

located near mouth of Stony Stream to enable 

a bridge crossing, but are fish friendly and 

flow is not impeded greatly (culverts partially 

buried into channel, short in length, and not 

perched) 

Connectivity unimpeded for entire length of 

reach. Reach is connected to both upstream 

and downstream reaches.  

 Presumed unimpeded connectivity along 

entire length of Stony Stream. Culverts 

located near mouth of Stony Stream to enable 

a bridge crossing, but are fish friendly and 

flow is not impeded greatly (culverts partially 

buried into channel, short in length, and not 

perched) 
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 Reference Conditions 150 m reach 300 m reach  

Spatial 

Heterogeneity 

Large number of geomorphic units expected 

within each 25 m segment and across reach 

overall. There should be a consistent 

abundance of units, i.e. there should be no 25 

m segment that is uniform with only one or 

two identifiable geomorphic units.  

Expected units to include lateral bars, mid-

channel bars, large individual boulders by 

bank and within wetted channel, pool and 

riffle sequences, steps, cobble or pebble 

patches, bedrock slabs pitted by erosion. 

Evidence of heterogeneity as a result of other 

factors, such as scour holes on bank from 

erosion 

Diverse and abundance of geomorphic units, 

including pools and riffles in every segment, 

bank overhangs, predominant bedrock 

channel and banks providing for chutes and 

areas of lower flow velocity varying in depth. 

Lateral bars observed in numerous segments, 

as well as individual large boulders. Within 

Segment 6-7 an ephemeral flowpath enters 

from the true right, in addition to a plateau of 

vegetated soils within the channel confines 

but above waterline. Water turbulence caused 

from large individual clasts within the water.  

Within Segment 7-8 a high soil plateau 

(greater than 1.5 m in height) is evident on 

true right on the inside of a bend – estimated 

to be approximately 12 m long and up to 5 m 

wide and being undercut by the channel flow.  

Diverse and abundance of geomorphic units, 

including pools and riffles in every segment, 

bank overhangs, predominant bedrock 

channel and banks providing for chutes and 

areas of lower flow velocity varying in depth. 

Lateral bars observed in numerous segments, 

as well as individual large boulders. Within 

Segment 6-7 an ephemeral flowpath enters 

from the true right, in addition to a plateau of 

vegetated soils within the channel confines 

but above waterline. Water turbulence caused 

from large individual clasts within the water.  

Within Segment 7-8 a high soil plateau 

(greater than 1.5 m in height) is evident on 

true right on the inside of a bend – estimated 

to be approximately 12 m long and up to 5 m 

wide and being undercut by the channel flow. 

A cascade / step change is observed over a 

bedrock outcrop within Segment 1-2 to 

overcome a steep gradient change (Figure 47). 

Large boulder accumulations were observed 

in Segment 12-13 
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Table 15 Results summary for Monitoring Site 2080_1 

 Score 

150 m reach 300 m reach 

Riparian Zone 5 5 
Bank Erosion  5 5 
Grain Size 5 5 
Wood 5 5 
Connectivity 5 5 
Spatial 

Heterogeneity 
5 5 

Total  30 / 30 

Excellent 

30 / 30 

Excellent 
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Figure 44 Extensive Manuka / Kanuka forest cover 
adjacent to Segment 2-3 at Monitoring Site 2080_1 

 

 

Figure 45 Extensive understory and ground coverage 
adjacent to Segment 3-4 at Monitoring Site 2080_1 

 

Figure 46 Bedrock bank and channel incision within 
Segment 5-6 of Monitoring Site 2080_1. Bed rock is 
pitted and not smooth – erosion occurring at varying 
rates along the length of the channel. Note the 
overhang of bedrock over the channel to the left of 
the photo – both the undercutting and pitting were 
observed throughout the reach.  

 

Figure 47 Steps created through erosion of the 
bedrock where the flow navigates a sharp elevation 
change over a bedrock outcrop within Segment 1-2 
of Monitoring Site 2080_1 
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Figure 48 Typical clast variability within Segment 4-5 
of Monitoring Site 2080_1. Note the larger clasts 
outside of the wetted channel, including boulders 
sticking out above the water. Within the wetted 
channel a range of sizes is also observed, including a 
small pebble patch located on the right hand side of 
the photo.  

 

 

Figure 49 Typical wood loading within the channel - 
Segment 9-10 of Monitoring Site 2080_1. 

 

Figure 50 Significant log jam located in Segment 12-
13 of Monitoring Site 2080_1. The collection of tree 
trunks and backed up debris exerts a noticeable 
influence on flow within the channel. 

 

Figure 51 Abundance of geomorphic unit diversity 
located within Segment 6-7 of Monitoring Site 
2080_1. A small soil plateau is located on the true 
right bank (left hand side of photo) and is vegetated. 
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4.1.4. 2079_1 3rd Order Stony Stream 

Downstream 

coordinates 

E1815954 N5956604 

Stream Order 3rd  

Valley setting Partially Unconfined 

Landscape Position  Source 

Date of survey  21st March 2020 

Duration of survey 3.5 hrs  

The Stony Stream catchment comprises numerous tributaries beginning at 770 m ASL. 

The monitored Stony Catchments are derived from the northern branch of tributaries 

(Figure 52). Monitoring site 2079_1 is located on a 3rd Order Stream that serves the 

tributary consolidating all branches of the northern half of the Stony Stream 

Catchment. The highest feeding tributaries reach 520 m ASL. It is classified by Waikato 

Regional Council as Natural State and Indigenous Fish Habitat Class. The monitored 

reach is some 1.6 km from the mouth discharging into Stony Bay and sits around 50 m 

ASL. 

Upstream of the monitoring site the Stony Stream tributaries descend rapidly, 

dropping from 300 m to 100 m ASL over 2 km from their corresponding reaches. These 

descents are through very steep and mountainous terrain covered by indigenous 

vegetation that covers the entire catchment. Below the monitoring site, the tributary 

merges with a 4th Order stream tributary (Stony Stream proper) and descends further 

toward Stony Bay, passing through pasture used for sheep and finally through a 

campground before discharging into Stony Bay. 
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Figure 52 Stony Bay catchment and location of 3rd Order monitoring Site (2079_1). Sourced from the LINZ Data Service and licenced for reuse under the CC BY 4.0 licence. Aerial and 
elevation data sourced from the LINZ Data Service and licenced by Waikato Regional Council, for re-use under the Creative Commons Attribution 4.0 International Licence. Inset: 
representative geomorphology of Monitoring Site 2079_1.  
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Table 16 Assessment against reference conditions for Monitoring Site 2079_1 

 

 
Reference Conditions 150 m reach 300 m reach  

Riparian Zone 

Extensive indigenous forest – dense coverage 

greater than 100 m from bank edge. 

Predominantly manuka/kanuka forest as well 

as indigenous hardwoods and broadleaves. 

Canopy and dense understory should be 

expected. No gaps within riparian zone and 

should be wholly indigenous.  

Extensive dense indigenous vegetation cover 

– range of broadleaf and hardwoods forming 

a complete canopy, in addition to a 

significant understory and ground cover 

diversity. No breaks in riparian zone detected, 

with coverage extending extensively in all 

directions as typified in Figure 53).  

Extensive dense indigenous vegetation cover – 

range of broadleaf and hardwoods forming a 

complete canopy, in addition to a significant 

understory and ground cover diversity. One 

break detected in Segment 2-3 for 

approximately 10 m on both banks to 

accommodate a walking / biking track (Figure 

54).  

Bank Erosion  

Predominant geological unit is Manaia Hill 

Group and described as Sandstone, silts and 

conglomerate (GNS Science, 2018).  

Predominant single thread channel and 

bedrock channel overlain with some 

sediments and soils.  

Incised channel with evidence of slow erosion 

of bedrock. Examples include pitted bedrock 

and overhangs of bedrock as a result of 

undercutting.  

Where bedrock is overlaid by soils, concave 

erosion of banks is expected on straight 

sections – expect this to be relatively uniform 

due to bedrock being close to the surface and 

the channel being confined.  

On bends, erosion of outside of bend is 

expected, with complementary deposition on 

inside of bend. Some evidence of channel 

Channel somewhat incised into bedrock, with 

low levels of short-term erosion. Bedrock 

overlain with varying amounts of soils. Visible 

bedrock in all segments, overlaid with 

boulders along the bank, such as that in 

Segment 4-5. Erosion of soil banks where flow 

is displaced by large boulders as typified in 

Segment 4-5 (Figure 55). Localised erosion 

around trees in bank (undercutting) in soils 

and also observed on true left bank near the 

island in Segment 7-8.  

Channel single thread and stable. Erosion and 

incision is not pronounced.  

Channel somewhat incised into bedrock, with 

low levels of short-term erosion. Bedrock 

overlain with varying amounts of soils. Visible 

bedrock in all segments, overlaid with 

boulders along the bank, such as that in 

Segment 4-5. Erosion of soil banks where flow 

is displaced by large boulders as typified in 

Segment 4-5 (Figure 55). Localised erosion 

around trees in bank (undercutting) in soils 

and also observed on true left bank near the 

island in Segment 7-8. Undercutting erosion is 

observed in Segments with a pronounced soil 

layer and elevated bank heights, such as from 

Segments 3-4 (primary channel), and 10-11, to 

12-13. Undercutting of bedrock evident 

downstream of the secondary channel within 

Segment 3-4 (Figure 56).   

Channel single thread and stable. Erosion and 

incision is not pronounced. 
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Reference Conditions 150 m reach 300 m reach  

migration within valley flood could be 

expected, but not necessary.  

Grain Size 

Presence of bedrock dominating channel 

form. A range of grain sizes, from boulders 

through to sand granules. Predominant grain 

size should be cobbles; around 20-30 mm in 

size, although necessary for smaller clast sizes 

to also be present. Expect large particles – 

boulders greater than 1000 mm throughout 

entire length, but particularly conglomerating 

in patches.  

Sorting not expected. Angular.  

As 3rd Order tributary draining steep and 

elevated catchment with a noticeably less 

steep elevation compared to upstream, expect 

a reasonable quantity of very large particles 

corresponding to the drop in stream power 

and delivery of materials from multiple 

channels.    

b-axis average of transect lines is 277 mm 

though, bedrock was encountered once in 

Segment 4-5 and seven times in Segment 9-

10, resulting a null value recording for those 

counts. There were five additional instances 

of particle size being >2 mm within Segment 

9-10. 

Bedrock dominates channel form in banks 

and channel bed. Very large boulder 

(estimated 2000 mm in width) exerting large 

influence on flow toward the true right bank. 

Silty layer in pools where water flow is slower. 

Reach is dominated by large boulders (1000 

mm to 2000 mm) and medium sized boulders 

(500 mm to 1000 mm). Smaller cobble and 

pebble sizes found in pools. Very large clasts 

deposited on island within Segment 6-7 and 

7-8.  

b-axis average of transect lines is 214 mm, 

though bedrock was encountered once in 

Segment 4-5, seven times in Segment 9-10, and 

twice in Segment 12-13 resulting a null value 

recording for those counts. There were five 

additional instances of particle size being >2 

mm within Segment 9-10. In Segment 1-2, one 

boulder extends over two measuring points, 

resulting in a null recording for that location.  

Bedrock dominates channel form in banks and 

channel bed. Very large boulder (estimated 

2000 mm in width) exerting large influence on 

flow toward the true right bank in Segment 3-

4.  Silty layer in pools where water flow is 

slower. Reach is dominated by Large boulders 

(1000 mm to 2000 mm) and medium sized 

boulders (500 mm to 1000 mm) throughout 

most segment but particularly downstream of 

Marker 8. Smaller cobble and pebble sizes 

found in pools. Very large clasts deposited on 

island within Segment 6-7 and 7-8.  
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Reference Conditions 150 m reach 300 m reach  

Wood 

Ample wood pieces within channel forming 

wood rafts and log jams. Areas of clear water 

without wood as well. Wood of some size 

should be found within every 25 m segment; 

log jams and rafts may be found, particularly if 

there are sheltered areas of  

evidence of more than one log jam or wood 

raft. 

Wood raft / log jam expected to be 

predominantly one or two tree trunks with 

other wood pieces backing in around rather 

than large quantities of trunks in one location. 

Abundant leaf litter.  

Fallen trees near channel as future sources of 

in-channel wood as well as numerous 

standing live trees near banks. 

Wood pieces found in each segment, but not 

in large quantities (Figure 60). Abundant leaf 

litter and twigs. Fern and other tree branches 

found in a few segments. Large wood 

accumulation with Segment 7-8 with tree 

trunks (including punga) located in parallel 

to the true right bank within the primary 

flow. Heavy loading of wood on the island 

located within Segment 7-8 (Figure 59) as 

well as accumulation of wood within slow 

moving secondary flow between island and 

true left bank.  

Some vegetation and live trees located 

immediately adjacent to bank edge with 

potential as future wood sources, particularly 

in Segment 7-8.  

Channel is notably wide and there is a strong 

expectation that significant and major flows 

flush through reach at stream powers large 

enough to mobilise wood pieces downstream.  

Wood pieces found in each segment, but not 

in large quantities (Figure 60). Abundant leaf 

litter and twigs. Fern and other tree branches 

found in a few segments. Large wood 

accumulation with Segment 7-8 with tree 

trunks (including punga) located in parallel to 

the true right bank within the primary flow. 

Heavy loading of wood on the island located 

within Segment 7-8 (Figure 59) as well as 

accumulation of wood within slow moving 

secondary flow between island and true left 

bank.  

Log pile located on true right bank within 

Segment 1-2. Some vegetation and live trees 

located immediately adjacent to bank edge 

with potential as future wood sources, 

particularly in Segment 7-8.  

Channel is notably wide and there is a strong 

expectation that significant and major flows 

flush through reach at stream powers large 

enough to mobilise wood pieces downstream. 

Connectivity  

Unimpeded connectivity for entire length of 

reach.  

Unimpeded connectivity to upstream and 

downstream reaches.  

Unimpeded connectivity along length of 

entire stream from source to sink. Waterfalls 

could be expected, but unlikely.  

Connectivity unimpeded for entire length of 

reach. Reach is connected to both upstream 

and downstream reaches.  Presumed 

unimpeded connectivity along entire length 

of Stony Stream. Culverts located near mouth 

of Stony Stream to enable a bridge crossing, 

but are fish friendly and flow is not impeded 

greatly (culverts partially buried into channel, 

short in length, and not perched). 

Connectivity unimpeded for entire length of 

reach. Reach is connected to both upstream 

and downstream reaches.  

 Presumed unimpeded connectivity along 

entire length of Stony Stream. Culverts located 

near mouth of Stony Stream to enable a bridge 

crossing, but are fish friendly and flow is not 

impeded greatly (culverts partially buried into 

channel, short in length, and not perched). 
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Reference Conditions 150 m reach 300 m reach  

Spatial 

Heterogeneity 

Large number of geomorphic units expected 

within each 25 m segment and across reach 

overall. There should be a consistent 

abundance of units, i.e. there should be no 25 

m segment that is uniform with only one or 

two identifiable geomorphic units.  

Expected units to include lateral bars, mid-

channel bars, large individual boulders by 

bank and within wetted channel, pool and 

riffle sequences, steps, cobble or pebble 

patches, bedrock slabs pitted by erosion. 

Evidence of heterogeneity as a result of other 

factors, such as scour holes on bank from 

erosion 

Diverse and abundance of geomorphic units, 

including pools and riffles in every segment, 

bank overhangs, predominant bedrock 

channel and banks providing for chutes and 

areas of lower flow velocity varying in depth 

(Figure 61). Lateral bars observed in majority 

of segments, as well as individual large 

boulders. Very large boulders exerting 

influencing on flow and bank erosion. 12-15 m 

length Cascade evident in Section 5-6, with 

deeper pools at each end than other 

segments. Large vegetated island located 

within Segment 7-8 with primary flow 

adjacent to the true right bank, with 

observable bedrock erosion. Secondary flow 

adjacent to true left bank, almost still water.  

 

Diverse and abundance of geomorphic units, 

including pools and riffles in every segment, 

bank overhangs, predominant bedrock 

channel and banks providing for chutes and 

areas of lower flow velocity varying in depth 

(Figure 61 and Figure 62). Lateral bars 

observed in majority of segments, as well as 

individual large boulders. Very large boulders 

exerting influencing on flow and bank erosion. 

12-15 m length Cascade evident in Section 5-6, 

with deeper pools at each end than other 

segments. Large vegetated island extending 

the length of Segment 7-8 with primary flow 

to the true left and secondary flow to the true 

right. Secondary flow almost standing water, 

providing a large pool. Large riffle and shallow 

pool sequences throughout main channel.  

Large vegetated island located within Segment 

7-8 with primary flow adjacent to the true 

right bank, with observable bedrock erosion. 

Secondary flow adjacent to true left bank, 

almost still water.  

A tributary enters Stony Stream within 

Segment 10-11, which is separated from the 

primary flow by a well vegetated island 

sporting mature trees.  
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Table 17 Results summary for Monitoring Site 2079_1 

 

 

Score 

150 m reach 300 m reach 

Riparian Zone 5 4 
Bank Erosion  5 5 
Grain Size 5 5 
Wood 5 5 
Connectivity 5 5 
Spatial 

Heterogeneity 
5 5 

Total  30 / 30 

Excellent 

29 / 30 

Excellent 

Deviations from reference conditions:  

▪ Variable Riparian Zone; wholly representative with the exception of a 10 m 

gap on each bank to provide for a walking / biking track which traverses the 

channel.  

 

 

Figure 53 Extensive forest cover adjacent to Segment 
6-7 of Monitoring Site 2079_1 which is typical of the 
entire reach.  

 

 

 

Figure 54 Single break in forest cover within reach, 
located within Segment 2-3 of Monitoring Site 
2079_1. The break in vegetation is to accommodate 
a walking / biking track and is located on both sides 
of the channel.  
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Figure 55 Erosion within Segment 4-5 of Monitoring 
Site 2079_1. Erosion concentrated around bank where 
flow deflected around large boulder within channel. 
Outside of this discrete location, it is evident the 
banks are relatively stable with little short term 
erosional processes acting upon them.  

 

 

Figure 56 Undercutting of bedrock bank located at 
the convergence of the primary and secondary 
channels around an island for much of Segment 3-4 
of Monitoring Site 2079_1.  

 

Figure 57 Typical clast distribution, exemplified in 
Segment 6-7 of Monitoring Site 2079_1. Looking 
upstream to the island located in Segment 7-8, very 
large boulders deposited on the island surface are 
observed 

 

Figure 58 Typical clast distribution as shown in 
Segment 10-11 of Monitoring Site 2079_1.  
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Figure 59 Multiple wood deposits on island within 
Segment 7-8 of Monitoring Site 2079_1. Likely 
evidence toward the high stream of the reach acting 
as a flush for the wetted channel, pushing larger 
wood pieces further downstream.  

 

 

Figure 60 Low quantities of wood pieces found 
within reach as a whole – this branch and back up 
of woody and vegetative debris is located within 
Segment 3-4 of Monitoring Site 2079_1.  

 

Figure 61 Variable geomorphic units within Segment 
5-6 of Monitoring Site 2079_1, including massive 
individual boulders, lateral bars, pools and riffles 
(obscured by rocks, but evident by step change), and 
water depth changes.  

 

Figure 62 Step change within Segment 1-2 of 
Monitoring Site 2079_1; pools are located either 
side of the step change, which is made up of a range 
of clast sizes. In the distance, the island diverging 
flow into two chutes within Segment 2-3 is 
observed.  
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4.1.5. 1262_18 Waiwhero Stream 

Downstream 

coordinates 

E1836904 N836119 

Stream Order 2nd  

Valley setting Unconfined 

Landscape Position  Source 

Date of survey  20th March 2020 

Duration of survey 2.0 hrs  

The Waiwhero Stream is located to the west of the Waihau township and drains part 

of the Hauraki Plains (Figure 63). The total length of the Waiwhero River is recorded 

by Waikato Regional Council as 6.6 km. However, the uppermost location of the 

Waiwhero River is located at 16 m ASL at the confluence of two unrecorded drains or 

modified streams 85 m upstream of the monitoring site 1262_18.  

The Waiwhero Stream has a confluence with the Waitoa River to the northeast of the 

Waihau township, at 9 m ASL. The Waitoa River continues to flow north, bypassing 

the Kopuatai Peat Dome before joining with the Piako River which discharges into the 

firth of Thames.  

The Waiwhero Stream is highly channelised and located with a floodplain historically 

drained and used for agricultural farming. The Waiwhero Stream predominantly passes 

through dairy farms on all sides. It is classified by Waikato Regional Council as Surface 

Water only (not Natural State or Indigenous Fish Habitat Class).  

The Hauraki Plains in the vicinity of the Waiwhero Stream is flat; over the 6.6 km 

length of the stream, the elevation reduces from 16 m ASL to 10 m ASL at the confluence 

with the Waitoa River.  
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Figure 63 Waiwhero Stream catchment and location of monitoring site (1262_18). Sourced from the LINZ Data 
Service and licenced for reuse under the CC BY 4.0 licence. Aerial and elevation data sourced from the LINZ Data 
Service and licenced by Waikato Regional Council, for re-use under the Creative Commons Attribution 4.0 
International Licence. Inset: representative geomorphology of Monitoring Site 1262_18  
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Table 18 Assessment against reference conditions for Monitoring Site 1262_18 

 Reference Conditions 150 m reach 300 m reach  

Riparian Zone Extensive coverage of Kahikatea and Pukatea 

lowlands forest, with partial wetland species 

closest to river (damp and swampy areas). 

Coverage across immediate floodplain 

approximately 75 m width from each bank.  

Kahikatea dominant canopy with swampy 

areas providing for ‘wet foot’ species, without 

a true understory such as swamp lily and 

maire, and sedges. Ti kouka and pokaka also 

expected, as well as coprosma’s, turepo, repo 

(flaxes). Expectation to see a diverse range of 

plant species.  

No gaps within riparian zone and wholly 

indigenous plants. In swamp areas, an open 

canopy in some locations is acceptable, i.e. 

closed canopy not required.  

No observable riparian zone within 

floodplain (visual change in elevation) of 

channel. Floodplain is pasture for dairy 

farming with post and singular wire fencing 

off channel from surrounds. Area adjacent to 

channel (inaccessible to large stock) 

overgrown with coarse grasses and weeds. 

Observable spreading weeds 

No observable riparian zone within 

floodplain (visual change in elevation) of 

channel. Floodplain is pasture for dairy 

farming with post and singular wire fencing 

off channel from surrounds. Area adjacent to 

channel (inaccessible to large stock) 

overgrown with coarse grasses and weeds. 

Observable spreading weeds 

Bank Erosion  Predominant geological unit is Late 

Quaternary alluvium and colluvium and 

described as unconsolidated to poorly 

consolidated mud, sand, gravel and peat 

(GNS Science, 2018).  

Predominantly single thread channel but not 

greatly incised or with well-defined banks. 

Potential for multiple branches through 

some locations, separated by low lying 

alluvial islands.  Low lying floodplain with 

expectation bankfull and overspill is 

experienced often. Exposed banks readily 

Channel incision into floodplain and 

disconnected from surrounds – estimated to 

be 1.5 m – 2.0 m incision.  

Channel is single thread with well-defined 

banks and straight.  

Banks are stable, although some soils 

exposed, such as on the true left bank in 

Segment 8-9. Exotic vegetation covers the 

banks.  

Channel incision into floodplain and 

disconnected from surrounds – estimated to 

be 1.5 m – 2.0 m incision.  

Channel is single thread with well-defined 

banks and straight.  

Banks are stable, although some soils 

exposed, such as on the true left bank in 

Segment 8-9. Exotic vegetation covers the 

banks.  
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 Reference Conditions 150 m reach 300 m reach  

eroded due to loose unconsolidated 

materials and minimal armouring. 

Reasonable sinuosity in channel; evidence 

meanders being formed or enhanced 

through erosion outside of bend. Evidence of 

cutoff occurring on significant meanders.  

Concave erosion along bank sides where 

exposed, causing undercutting relatively 

evenly on both banks.  

No barriers, outside of vegetation to the 

migration of the channel across the 

floodplain.  

 Little erosion detected.  

Except for incision, there is no barriers to 

restrict the migration of the channel across 

the floodplain.  

 Little erosion detected.  

Except for incision, there is no barriers to 

restrict the migration of the channel across 

the floodplain.  

Grain Size Alluvial and fine-grained material. 

Predominantly alluvium given location 

within the middle of the Hauraki Plains. 

Coarse sand and clays.  

Pebbles and larger materials uncommon but 

could be present in discrete locations in 

small quantities.  Material larger than 100 

mm will be very uncommon.   

Silty sediment representative of alluvial 

materials (Figure 66). No observable 

particles greater than coarse sands (i.e. no 

pebbles).  

Silty sediment representative of alluvial 

materials (Figure 66). No observable 

particles greater than coarse sands (i.e. no 

pebbles).  

Wood Given location is in the middle of the 

Hauraki Plains, wood is not expected to be 

carried from higher elevations in great 

quantities. Wood derived from local wood, 

including some larger trees such as mature 

kahikatea. Mostly smaller understory trees 

i.e. ti kouka. Some smaller wood pieces 

expected on sand / gravel banks or forming 

small wood rafts near bank anomalies, such 

No wood observed. No wood rafts observed 

of smaller pieces.  

No live trees providing potential future wood 

pieces. No leaf litter.  

No wood observed. No wood rafts observed 

of smaller pieces.  

No live trees providing potential future wood 

pieces. No leaf litter. 
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 Reference Conditions 150 m reach 300 m reach  

as trees growing in the bank. Presence of leaf 

litter. 

Connectivity  Unimpeded connectivity for entire length of 

reach. Unimpeded connectivity to upstream 

and downstream reaches. Unimpeded 

connectivity along length of entire stream 

from source to sink. Lateral connectivity to 

the floodplain.   

Connectivity unimpeded for entire length of 

reach. Reach is connected to both upstream 

and downstream reaches.  

Presumed unimpeded connectivity 

downstream to confluence with the Waitoa 

River.  

Connectivity unimpeded for entire length of 

reach. Reach is connected to both upstream 

and downstream reaches.  

Presumed unimpeded connectivity 

downstream to confluence with the Waitoa 

River. 

Spatial 

Heterogeneity 

Presence of macro geomorphic units, such as 

larger lateral bars and point bars on the 

inside of bends. Reasonable level of visual 

homogeneity. Mid channel bars. Pool and 

riffles uncommon but acceptable. Thalweg 

expected in areas of meander and bends. 

Low degree bank slope. 

Single thread channel with high degree of 

homogeneity (Figure 64 and Figure 67). 

Incised with little connection to floodplain. 

low sinuosity.  

Straight channel with sloping banks for 75 m 

along Segments 6-7, 7-8, and 8-9 with no 

meanders, bars, or other features.  

Lateral bars observed in Segment 4-5 

(approx. 15 m length x 3 m at widest point), 

Segment 5-6 (approximately 10 m in length x 

1 m wide) and a minor bar (approximately 2 

m x 2m) within Segment 9-10). All bars are 

vegetated with exotic species and stable.  

An ephemeral flowpath traverses the 

floodplain and joins to Waiwhero Stream on 

the true left within Segment 5-6. 

Single thread channel with high degree of 

homogeneity (Figure 64 and Figure 67). 

Incised with little connection to floodplain. 

low sinuosity.  

Straight channel with sloping banks for 75 m 

along Segments 6-7, 7-8, and 8-9 with no 

meanders, bars, or other features.  

Lateral bars observed in Segment 2-3 

(approximately 50 m in length).  

Segment 4-5 (approx. 15 m length x 3 m at 

widest point), Segment 5-6 (approximately 10 

m in length x 1 m wide) and a minor bar 

(approximately 2 m x 2m) within Segment 9-

10). All bars are vegetated with exotic species 

and stable.  

Ephemeral flowpaths traverses the floodplain 

and joins to Waiwhero Stream on the true 

left within Segment 5-6 and from the true 

right within Segment 3-4 (Figure 65).  
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Table 19 Results summary for Monitoring Site 1262_18 

 Score 

150 m reach 300 m reach 

Riparian Zone 1 1 
Bank Erosion  2 2 
Grain Size 5 5 
Wood 2 2 
Connectivity 3 3 
Spatial 

Heterogeneity 
2 2 

Total  15 / 30 

Poor 

15 / 30 

Poor 

Deviations from reference conditions:  

▪ Lack of Riparian Zone; non-existent and not representative. 

▪ Bank Erosion: channel is incised and disconnected to the floodplain. Minimal 

erosion despite loosely consolidated alluvial material; expectation that erosion 

would readily occur and be present, and evident through channel meanders 

and chute cutoffs 

▪ Wood: No wood pieces detected at any size or quantity, nor any wood 

potential observed on the banks 

▪ Connectivity: minimal connection to surrounding floodplain due to channel 

incision. 

▪ Spatial Heterogeneity: uniform and minimal changes between segments. 
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Figure 64 Typical channel located within Segment 4-5 
at Monitoring Site 1262_18. Disconnected from 
floodplain, with no riparian zone and little 
geomorphic variation.  

 

 

Figure 65 Ephemeral flowpath traversing the 
floodplain to join Waiwhero Stream in Segment 3-4 
at Monitoring Site 1262_18. 

 

 

Figure 66 Example of material from channel, located 
from Segment 4-5 at Monitoring Site 1262_18. 
Sediment is uniform throughout reach. No larger 
particles were observed (i.e. pebbles or individual 
cobbles). 

 

 

Figure 67 Waiwhero Stream looking downstream 
from Marker 13. The edges of the floodplain are 
visible to both the true left and true right. The 
floodplain reference conditions specify a kahikatea 
covering across the whole of the floodplain - 
approximately 150 m wide.  
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4.1.6. 1307_18 Whangarahi Stream 

Downstream 

coordinates 

E1822913 N5929144 

Stream Order 2nd  

Valley setting Unconfined 

Landscape Position  Sink 

Date of survey  22nd March 2020 

Duration of survey 2.5 hrs  

The Whangarahi Stream catchment comprises numerous tributaries and other streams 

flowing into it, with the highest elevation of the catchment being 500 m ASL. The 

monitored reach is located within the southern catchment of the Whangarahi Stream 

at 4 m ASL (Figure 68). Monitoring site 1307_18 is located on a 4th Order Stream and 

fed by a catchment totalling 20.1 km upstream of the monitoring site. The monitoring 

site is located 970 m from the mouth of the Whangarahi Stream where it meets the 

Coromandel Harbour. It is classified by Waikato Regional Council as Surface Water 

only (not Natural State or Indigenous Fish Habitat Class).  

The headwaters upstream of the monitoring site descend rapidly through densely 

forested uplands, before reaching the lowlands surrounding the Coromandel Harbour. 

The densely forested uplands comprises both indigenous vegetation and forestry 

plantations. At the far reach of the southern catchment, an area of forest has been 

evidently clear-felled.   

The monitoring site is situated within the urban township of the Coromandel Town; 

downstream of the site are further urban areas, including a road situated adjacent to 

the true right bank, in addition to pockets of grazing paddocks. A small marina is 

located near the mouth of the Whangarahi River, which is estuarine and tidal within 

the confines of the Coromandel Harbour.  
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Figure 68 Whangarahi Stream catchment and location of monitoring Site (1307_18). Sourced from the LINZ Data 
Service and licenced for reuse under the CC BY 4.0 licence. Aerial and elevation data sourced from the LINZ Data 
Service and licenced by Waikato Regional Council, for re-use under the Creative Commons Attribution 4.0 
International Licence. Inset: representative geomorphology of Monitoring Site 1307_18   
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Table 20 Assessment against reference conditions for Monitoring Site 1307_18 

 Reference Conditions 150 m reach 300 m reach  

Riparian Zone 

Extensive coverage of Kahikatea and Puriri 

lowlands forest, with partial wetland species 

closest to river (damp and swampy areas). 

Coverage greater than 100 m in all directions.  

Kahikatea dominant canopy; in swampy areas 

expect to see ‘wet foot’ species, without a true 

understory such as swamp lily and maire, and 

sedges. Ti kouka and pokaka also expected, as 

well as coprosma’s, turepo, repo (flaxes). 

Expectation to see a diverse range of plant 

species.  

Slightly elevated parts of the floodplain can 

expect a more diverse canopy and a developed 

understory, including totara, matai, rimu.  

No gaps within riparian zone and wholly 

indigenous plants. In swamp areas, an open 

canopy in some locations is acceptable, i.e. 

closed canopy not required.  

No real riparian zone (Figure 71). A maximum 

of 4 m width of planting on true right bank 

(Segment 7-8), with 0 m within Segments 4-5, 

5-6, and 9-10. Segment 6-7 has a width of one 

plant, whilst Segment 8-9 has a riparian zone 

of 2 m. Within all segments, large gaps and 

inconsistent coverage was observed. On the 

true left bank, no riparian zone is detected 

except for within Segment 4-10 at 10m, 

although with significant gaps and 

inconsistency in density.  

Plants are a mixture of exotic and indigenous 

plants including very large mature exotic park 

trees, flaxm manuka, and ti kouka,  

No real riparian zone. Gorse identified on 

both true right and true left banks in 

Segments 1-2 and 2-3.  

A maximum of 4 m width of planting on true 

right bank (Segment 7-8), with 0 m within 

Segments 4-5, 5-6, and 9-10. Segment 6-7 has 

a width of one plant, whilst Segment 8-9 has a 

riparian zone of 2 m. No riparian zone is 

observed in Segments 10-11 and 11-12 for either 

bank, although some plants (gorse, large 

exotic trees, ti kouka, flax and mixed grasses) 

are identified on the bank.  

Within all segments, large gaps and 

inconsistent coverage was observed. On the 

true left bank, no riparian zone is detected 

except for within Segment 4-10 at 10m, 

although with significant gaps and 

inconsistency in density.  

Plants are a mixture of exotic and indigenous 

plants including very large mature exotic park 

trees, flax, manuka, and ti kouka. 

Bank Erosion  

Predominant geological unit is Late 

Quaternary alluvium and colluvium and 

described as unconsolidated to poorly 

consolidated mud, sand, gravel and peat (GNS 

Science, 2018).  

Very minor undercutting observed in Segment 

4-5. Remainder of reach is artificially 

armoured with riprap along the banks of both 

sides, with the exception of some locations in 

Segments 5-6 and 6-7 (Figure 72), and a 

formed pathway to the channel located on the 

true right bank with Segment 9-10.  

Very minor undercutting observed in 

Segments 1-2, 3-4 and 4-5. Remainder of reach 

is artificially armoured with riprap along the 

banks of both sides, with the exception of 

some locations in Segment 6-7, and a formed 

pathway to the channel located on the true 

right bank with Segment 9-10. There is no 
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 Reference Conditions 150 m reach 300 m reach  

Single thread channel – not greatly incised or 

with well-defined banks. Low lying floodplain 

with expectation bankfull and overspill is 

experienced often. Exposed banks readily 

eroded due to loose unconsolidated materials 

and minimal armouring. Reasonable sinuosity 

in channel; evidence meanders being formed 

or enhanced through erosion outside of bend. 

Evidence of cutoff occurring on significant 

meanders.  

Concave erosion along bank sides causing 

undercutting relatively evenly on both banks.  

No barriers, outside of vegetation to the 

migration of the channel across the 

floodplain.  

riprap located on the true left bank in 

Segments 10-11 to 12-13, although there is 

minimal to no erosion, except for discrete and 

isolated spots.  

Grain Size 

Alluvial and fine grained material. Pebbles 

around 50 mm interspersed with sands and 

smaller gravels. Rounded without sorting.  

Larger particles uncommon (greater than 200 

mm) and no boulders.   

b-axis average of transects is 47 mm.  

Thick silt overlaying pebbles, with individual 

cobbles larger but uncommon and not found 

within each segment. Uniform distribution 

across channel. Rounded.  Refer Figure 73. 

b-axis average of transects is 45 mm.  

Thick silt overlaying pebbles, with individual 

cobbles larger but uncommon and not found 

within each segment. Uniform distribution 

across channel. Rounded.  Refer Figure 73. 
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 Reference Conditions 150 m reach 300 m reach  

Wood 

Wood remnants potentially from previous 

flood events bringing large wood pieces into 

the lower catchment, but unlikely and 

certainly not in any great quantity. 

Some smaller wood pieces expected on sand / 

gravel banks or forming small wood rafts near 

bank anomalies, such as trees growing in the 

bank.  

Presence of leaf litter. 

No wood pieces observed in great quantity. 

individual twigs and some leaf litter. No build 

up of wood pieces detected. 

Little wood available from the bank for future 

deposit into the change.  

No wood pieces observed in great quantity. 

individual twigs and some leaf litter. No build 

up of wood pieces detected. 

Little wood available from the bank for future 

deposit into the change. 

In Segment 1-2, a tree in the true right bank 

backing up other debris and clasts 

downstream of a lateral bar, with a deep pool 

forming downstream of the tree.  

Connectivity  

Unimpeded connectivity for entire length of 

reach. Unimpeded connectivity to upstream 

and downstream reaches. Unimpeded 

connectivity along length of entire stream 

from source to sink. Lateral connectivity to 

the floodplain.   

Connectivity unimpeded for entire length of 

reach. Reach is connected to both upstream 

and downstream reaches.  

Presumed unimpeded connectivity along 

entire length of Whangarahi Stream and 

tributaries. Channel crosses underneath roads 

and accessways both upstream and 

downstream of catchment site but aerial 

observation does not denote impediments to 

connectivity. Lateral connectivity to the 

floodplain is impeded by an incised channel 

fossilised into place through bank armouring. 

Connectivity to the floodplain in some 

locations through slumping bank and less 

severe bank angle.  

Connectivity unimpeded for entire length of 

reach. Reach is connected to both upstream 

and downstream reaches.  

 Presumed unimpeded connectivity along 

entire length of Whangarahi Stream and 

tributaries. Channel crosses underneath roads 

and accessways both upstream and 

downstream of catchment site but aerial 

observation does not denote impediments to 

connectivity. Lateral connectivity to the 

floodplain is impeded by an incised channel 

fossilised into place through bank armouring. 

Connectivity to the floodplain in some 

locations through slumping bank and less 

severe bank angle. 

Spatial 

Heterogeneity 

Presence of macro geomorphic units, such as 

larger lateral bars and point bars on the inside 

of bends. Reasonable level of visual 

homogeneity. Mid channel bars. Pool and 

riffles uncommon but acceptable. Thalweg 

Dominated by pools, often the entire width of 

channel (Figure 69). Riffles also observed. 

Channel is artificially confined on both sides 

by riprap for much of its length, although 

small lateral bars observed on true left within 

Dominated by pools (Figure 70), often the 

entire width of channel although a noticeable 

thalweg is detected in Segment 1-2. Riffles also 

observed. Channel is artificially confined on 

both sides by riprap for much of its length, 
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 Reference Conditions 150 m reach 300 m reach  

expected in areas of meander and bends. Low 

degree bank slope. 

Segment 4-5 where there is no artificial 

armouring. A bridge crosses the channel 

between Segment 7-8 and 8-9; a concrete box 

extends for approximately 15-20 m, with 

wingwalls.  

although small lateral bars observed on true 

left within Segment 4-5 where there is no 

artificial armouring. A larger lateral bar (20 m 

in length) located on the true left within 

Segment 2-3 and bank slumping on the true 

right.  

A bridge crosses the channel between 

Segment 7-8 and 8-9; a concrete box extends 

for approximately 15-20 m, with wingwalls. An 

ephemeral tributary enters the channel on 

true right within Segment 11-12.  
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Table 21 Results summary for Monitoring Site 1307_18 

 Score 

150 m reach 300 m reach 

Riparian Zone 1 1 
Bank Erosion  2 2 
Grain Size 5 5 
Wood 3 3 
Connectivity 3 3 
Spatial 

Heterogeneity 
3 3 

Total  17 / 30 

POOR 

17 / 30 

POOR 

 

Deviations from reference conditions:  

▪ Lack of Riparian Zone; non-existent and not representative. 

▪ Bank Erosion: Armouring of banks restricting connection to floodplain and 

ability to erode.  

▪ Wood: No wood pieces detected at any size or quantity; wood potential 

observed on the banks is minimal.  

▪ Connectivity: disassociated from the adjacent floodplain in many locations 

through incised fossilised channel, coupled with bank armouring 

▪ Spatial Heterogeneity: uniform and minimal changes between segments. 

Artificial units detected including bank armouring, pipeline, flood (material) 

control, and bridge box culvert.  
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Figure 69 Typical channel geomorphology within 
Segment 10-11 of Monitoring Site 1307_18. 
Armouring is evident on the true right bank (left 
hand side). A pool dominates this segment, though 
disrupted by (presumed due to location adjacent to 
recreational area) artificial dams perpendicular to 
flow. 

 

Figure 70 Typical channel geomorphology within 
Segment 1-2 of Monitoring Site 1307_18, 
downstream of artificial armouring. Presence of 
lateral bars, pools, individual boulders, with sloping 
banks, and vegetation overhanging in parts over 
channel 

 

Figure 71 Lack of riparian zone evident in Segment 
6-7 of Monitoring Site 1307_18. Gorse and exotic 
grasses are identified, along with flaxes and ti 
kouka. 

 

Figure 72 Bank shape in Segment 5-6 of Monitoring 
Site 1307_18. On the true right (left hand side) a thin 
line of armouring is detected, while on the true left 
bank, minor erosion of the loosely consolidated 
alluvial materials occurs. 

 

Figure 73 Particle size typified in Segment 8-9 of 
Monitoring Site 1307_18. Particles generally around 
50 mm, with small pockets of coarse grained sands 
(> 2mm) and isolated cobbles larger than 50 mm.  

 

Figure 74 Landuse on immediate surrounding 
floodplain near Segment 9-10 of Monitoring Site 
1307_18.  
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4.1.7. Summary of observed sites 

Table 22 provides a summary for each Monitoring Site for both the 150 m and 300 m reach.  

Table 22 Summary of results for observed Monitoring Sites 

  

11726_11 UPPER 
WAINUI STREAM  

1172_6 WAINUI 
STREAM 

2080_1 STONY 
STREAM 2ND 

ORDER 

2079_1 STONY 
STREAM 3RD 

ORDER 

1307_18 
WHANGARAHI 

STREAM 

1262_18 WAIWHERO 
STREAM 

150 m 
reach 

300 m 
reach 

150 m 
reach 

300 m 
reach 

150 m 
reach 

300 m 
reach 

150 m 
reach 

300 m 
reach 

150 m 
reach 

300 m 
reach 

150 m 
reach 

300 m 
reach 

Riparian Zone 3 2 2 2 5 5 5 4 1 1 1 1 

Bank Erosion  5 5 5 5 5 5 5 5 2 2 2 2 

Grain Size 5 5 5 5 5 5 5 5 5 5 5 5 

Wood 5 5 3 3 5 5 5 5 3 3 2 2 

Connectivity 5 5 5 5 5 5 5 5 3 3 3 3 

Spatial 
Heterogeneity 

5 5 5 5 5 5 5 5 3 3 2 2 

Total  28 /30 27 /30 25 / 30 25 / 30 30 / 30 30 / 30 30 / 30 29 / 30 17 / 30 17 / 30 15 / 30 15 / 30 

EXCELLENT EXCELLENT GOOD GOOD EXCELLENT EXCELLENT EXCELLENT EXCELLENT POOR POOR POOR POOR 
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4.2. Cross reference to ecological results gained from WRC  

A comparison of the available ecological results obtained independently by WRC 

against the geomorphic results of the 150 m reach for each Monitoring Site is provided 

in Table 23. Some key chemical and ecological indicators for SOE reporting were not 

undertaken as part of these monitoring cycles, including E.coli, phosphorus, and 

nitrogen. Macroinvertebrate data for the 2020/21 monitoring season was not available 

for analysis at the time of writing and previous years are used (2016/17, 2017/18, and 

2018/19). Additionally, IBI data was not available for this monitoring season; the 

comparison between the ecological and geomorphological results is expected to be 

exercised with a high degree of caution, with consideration of other controlling factors, 

such as proximity to the coast, whereby all diadromous species have a marked bias 

towards coastal rivers and streams, resulting in the presence of higher numbers and 

diversity of fish closer to the coast than further inland locations at higher elevations 

(Leathwick et al., 2008).  
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Table 23 Comparison of WRC ecological data versus geomorphic data for the selected Monitoring Sites. MCI and 
Dissolved Oxygen (DO) are coloured against the relevant NPS-FM 2017 Attribute Tables and accepted National 
Objectives Framework (NOF) bands, with A being the best state, and D the worst. The National Bottom Line for 
attributes sits between C and D. For this table, Band A is represented by a green shade, Band B as blue, Band C is 
orange, and D is red. Geomorphic results are represented using the same colour scheme, with D encompassing 
both ‘Poor’ and ‘Very Poor’ on the assessment scale outlined in Section 3.3.1. Variables without a shade are not 
provided with a band scale due to not being included in either NOF or NPS-FM2017 attribute requirements. 

 
Site Location  

11726_11 1172_6 2080_1 2079_1 1262_18 1307_18 

Upper 
Wainui 
Stream 

Wainui 
Stream 

Stony 
Stream 
2nd 
Order 

Stony 3rd 
Order 

Waiwhe
ro 
Stream 

Whanga
rahi 
Stream 

Reference / Non-reference 
(Ref/ NR) Ref Ref Ref Ref NR NR 

Geomorphic Result Excellent Good Excellent Excellent Poor Poor 

Macroinvertebrate 
Community Index 

139.2593 
(Feb -18) 

103.4483 
(Feb -19) 

131.0345 
(Feb -19) 

124.1026 
(Feb -19)  

75.47368 
(Feb -17) 

95  
(Jan -17) 

Chemical 
Indicator 

 Water 
Visibility Good Good Good Good Average Good 

 Temperature 
(Celsius) 16.9 15.3 16.9 16.0 17.1 21.4 

 DO % 
(dissolved 
oxygen) -  99.5 90.4 92.4 90.4 4.7 105.9 

 DO mg/l  9.6 9.1 8.9 8.9 0.4 9.5 

Fish 

Longfin eel - 
Anguilla 
dieffenbachii 

                                             
33  

                                                    
24  

                                                    
15  

                        
5  

                         
-    

               
14  

Shortfin eel - 
Anguilla 
australis 

                                               
2  

                                                    
24  

                                                      
3  

                        
7  

                           
5  

             
461  

Banded 
kokopu - 
Galaxias 
fasciatus 

                                             
13  

                                                    
12  

                                                    
48  

                      
20  

                         
-    

                 
1  

Redfin bully -
Gobiomorphus 
huttoni 

                                             
52  

                                                  
101  

                                                    
98  

                    
241  

                         
-    

               
17  

Common bully  
Gobiomorphus 
cotidianus 

                                              
-    

                                                     
-    

                                                     
-    

                       
-    

                         
-    

               
71  

Koura - 
Paranephrops 
sp. 

                                             
43  

                                                    
44  

                                                      
3  

                       
-    

                         
-    

                 
5  

Inanga - 
Galaxias 
maculatus 

                                              
-    

                                                     
-    

                                                     
-    

                       
-    

                         
-    

                 
1  

Common smelt 
- Retropinna 
retropinna 

                                               
1  

                                                     
-    

                                                     
-    

                       
-    

                         
-    

               
85  

Torrentfish - 
Cheimarrichth
ys fosteri 

                                              
-    

                                                     
-    

                                                     
-    

                      
10  

                         
-    

               
28  

Cran's bully - 
Gobiomorphus 
basalis 

                                              
-    

                                                     
-    

                                                     
-    

                       
-    

                           
2  

                
-    

Goldfish - 
Carassius 
auratus  

                                              
-    

                                                     
-    

                                                     
-    

                       
-    

                           
2  

                
-    
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5. Discussion 

This section draws on the findings of applying the toolbox in six stream segments and 

provides a critical analysis with regard to the factors at play for the successful use of 

geomorphology to infer river health. This assessment summarises results of the 

geomorphic assessments at six Waikato Monitoring Sites, analyses the variables 

selected as part of the toolbox, and evaluates the applicability of the toolbox for 

achieving the purpose and objectives of this research. 

5.1. Geomorphology of the reaches 

Of the six sites, three were rated as ‘excellent’, one as ‘good’, and two as ‘poor’. 

Unsurprisingly, the four reference sites received significantly better scores than the two 

non-reference sites. Three reaches received the maximum score of 30 / 30 (150 m and 

300 m reaches for Stony Stream 2nd Order – 2080_1 and the 150 m reach for Stony 

Stream 3rd Order – 2079_1) and represent conditions that precisely emulate an 

undisturbed reach; there were no observed deviations from the reference conditions. 

The 300 m reach for the Stony Stream 3rd Order – 2079_1 received a score of 29 / 30 due 

to a 10 m  gap in the riparian zone to accommodate a walking track on both banks; Lake 

et al. (2007) found that even small gaps to the riparian zone can impede the function 

of a riparian zone, meaning even a relatively benign stream crossing such as that across 

Stony Stream 3rd Order can have detrimental effects on river health. Nevertheless, the 

300 m reach still received the highest marks for the remaining geomorphic indicators 

and has a scoring of ‘Excellent’ overall which reflects its state as a reference site.  

As a contrast, both the Waiwhero Stream (Monitoring Site 1262_18) and Whangarahi 

Stream (Monitoring Site 1307) each scored a 1 for riparian zone and a 2 for bank erosion 

indicators. The floodplain in the former is used for dairy grazing, with the surrounding 

landscape predominantly within exotic pasture, while the latter is within the urban 

area of Coromandel Town. The low riparian zone scores reflect the significant deviation 

from what should be a lowland Kahikatea forest in swampy conditions for both sites; 

the changed land use likely also accounts for the low values for bank erosion, wood, 

connectivity, and spatial heterogeneity of the reaches as well, although for differing 

reasons. When compared to reference conditions, both sites depart dramatically and 

exemplify significantly modified reaches along both the 150 m and 300 m lengths. 
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Further, in the Whangarahi Stream, hard infrastructure, including concrete steps to 

the channel side (Figure 75) and a bridge boxed culvert (Figure 73), as well as extensive 

bank armouring (Figure 76) restricts erosional processes of the stream channel, 

essentially fixing the channel in place and disconnecting it from the surrounding 

floodplain.  

 

Figure 75 Hard infrastructure in the form of concrete 
steps within the Whangarahi Stream (Monitoring Site 
1307_18) locking the stream form into one location to 
maintain land use  

 

Figure 76 Hard infrastructure in the form of bank 
armouring within the Whangarahi Stream 
(Monitoring Site 1307_18) 

All six sites contained grain size that was commensurate with the reference conditions 

for each reach. This emphasises the requirement to assess each reach within their 

specific geomorphic setting rather than against a pre-determined checklist of 

geomorphic factors. For example, both Stony Stream Monitoring Sites (2079_1 and 

2080_1) were observed with a range of clast sizes, ranging from small pebbles (10 – 20 

mm) up to boulders greater than 1000 mm in width as upland, partially confined 

reaches, whereas the Waiwhero Stream Monitoring Site (1262_18) was predominantly 

made up of silt and clay materials as a result of its position in the central lowlands of 

the Hauraki Plains. In both contexts, the clast size is representative of reference 

conditions. 

Grain size alone cannot indicate the health of a stream, given the complex 

interrelationship between indicators and the processes causing them to arise (Dollar et 

al., 2007), despite the presence and quality of macroinvertebrates being linked to grain 

size (Elosegi et al., 2010). Grain size in a given reach is influenced by hydrology and 

land use, upstream of the site, which dictates stream power for sediment transport and 

deposition as well as availability of materials. Sediment oversupply or a disconnected 

transportation process are not captured within a grain size variable but are significant 
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factors in determining ideal stream environments for organisms. It is therefore 

expected that streams are considered foremost through the contextualised proforma 

for each reach. Grain size and quantity is linked to boundary resistance (channel bed 

and banks) and erosion (Wohl et al., 2019), which is captured through the erosion 

indicator and indirectly through the riparian zone as well. While scoring adequately 

for grain size, both the Waiwhero Stream (Monitoring Site 1262_18) and Whangarahi 

Stream (Monitoring Site 1307_18) scored ‘poorly’ for erosion and riparian zone 

indicators, signifying that processes that should be occurring within the reach are 

disconnected.  

Both the Whangarahi Stream Monitoring Site (1262_18) and Waiwhero Stream 

Monitoring Site (1307_18) scored poorly for connectivity. Whilst there were no apparent 

barriers upstream and downstream of the reach, as well as longitudinally within the 

catchment, reference conditions for these lowland reaches specify a high degree of 

lateral connectivity with the floodplain, which is integral for the deposition of 

sediment, materials, and water being deposited on the surrounding land, and the 

return of materials through lateral channel migration (Elosegi et al., 2010). A poor 

connection to the floodplain and riparian zone influences grain size, erosional 

processes, and in-channel wood; if erosion of the banks is inhibited, the volume of 

wood delivered to the stream channel can also be reduced, given the riparian zone is 

the greatest (and sometimes exclusive) source of wood material for a stream (Wohl et 

al., 2019). Both reaches were observed as being incised and inset below the floodplain, 

with the Whangarahi Stream banks being armoured against erosion and lateral channel 

movement. Reference conditions for these two sites were generally similar, given their 

position on the north western plains within the Waikato Region; both would be 

expected to be covered by Kahikatea swamp forests, with a high degree of lateral and 

longitudinal connectivity, as well as a similar spatial heterogeneity composition. As 

shown by Figure 77 the resulting geomorphic composition is strikingly dissimilar as a 

result of differing land uses and anthropogenic intervention, which highlights the 

potential sensitivity of rivers as ecosystems, where influence on different variables can 

induce diverse responses (Elosegi & Sabater, 2013).   
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Figure 77 Differing geomorphological settings within the (a) Whangarahi Stream and (b) Waiwhero Stream, 
despite very similar reference conditions. Land use changes within the catchment are considered responsible for 
the stark change, as well as location within the catchment; whilst both are lowland reaches, the Monitoring Site 
for the Whangarahi Stream is near the ocean and with an upstream catchment including both forestry and 
agricultural land, whereas the monitoring site for the Waiwhero Stream is located a considerable distance inland 
from the firth of Thames within a large agricultural setting. 

5.1.1. Comparison to ecological indicators 

Comparisons can be drawn between the diversity and abundance of fish observed as 

well as the chemical variables to the 150 m reaches for each Monitoring Site. Within 

the three sites that scored ‘Excellent’ for geomorphology (Upper Wainui Stream – 

11276_11 and the two Stony Stream sites 2079_1 and 2080_1), longfin eels, shortfin eels, 

banded kokopu, and redfin bully fish were observed, with each of these reaches also 

receiving a ‘good’ score for water visibility and sitting within Band A – the highest band 

– for both minimum Dissolved Oxygen level (DO mg/l) and MCI (Ministry for the 

Environment, 2017a, 2019a). However, the DO mg/l indicator is not strictly comparable 

the NPS-FM 2017 bands given WRC implemented daytime spot measuring for this 

variable rather than the continuous monitoring required for the NPS-FM 2017. No 

major dissimilarities were observed from the ecological indicators of the three 

‘Excellent’ reaches, and the Wainui Stream Monitoring Site (1172_6) which received a 

‘Good’ geomorphic score, likely due to the proximity to the Raglan harbour given 

diadromous fish are more likely to be located in reaches close to the coast (Leathwick 

et al., 2008). The two sites that had ‘Poor’ geomorphic scores also received low MCI 

scores (Waiwhero Stream -1262_18 and Whangarahi Stream – 1307_18). The comparison 

between the geomorphic and MCI scores are not surprising, given the close 
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relationship between macroinvertebrates and geomorphic diversity (Newson & 

Newson, 2000; Reid et al., 2010). 

The coastal proximity likely also accounts for the ecological integrity observed in the 

Whangarahi Stream (Monitoring Site 1307_18). Despite receiving a ‘Poor’ geomorphic 

score, this reach sported a DO reading of 9.5 mg/l as well as the greatest number of fish 

in both diversity and relative abundance; over 460 shortfin eels, 71 common bully, and 

85 common smelt were observed at this site. The quantity of shortfin eels are an order 

of magnitude above what was found in all other reaches. The ecological indicators for 

the Whangarahi Stream are particularly contrasted to the Waiwhero Stream 

Monitoring Site (1262_18), which also received a ‘Poor’ geomorphic score. The 

Waiwhero Stream was observed to have a DO reading of 0.4 mg/l, where the National 

Bottom Line in the NPS-FM 2017 is 5.0, and only five Shortfin eels and two Cran’s bully’s 

were observed throughout the 150 m reach. The Waiwhero Stream was also the only 

site of the six where exotic fish species were present (2 Goldfish) and scored within the 

D-band for the MCI attribute under the National Objectives Framework (NOF) 

monitoring, which is below the National Bottom Line. Proximity to the coast and 

altitude are arguably two of the most key variables for determining fish assemblages 

within rivers (Leathwick et al., 2008). Chessman et al. (2006) found an overwhelmingly 

positive relationship between altitude and fish within the Bega River Basin, Australia; 

this association is also clear through the significantly abundant fish assemblage found 

at the Whangarahi Stream Monitoring Site 1307_18, which is located less than 1000 m 

from the estuarine coastline and yet scored ‘Poor’ for geomorphic condition. This 

stresses the importance of using the geomorphic toolbox as one of a range of indicators 

synthesised to create a holistic understanding of each monitored reach. Local 

geomorphic condition cannot alone determine the likelihood and expectation as to 

whether fish should be present within a stream; the geomorphic reference conditions 

for the Whangarahi and Waiwhero Streams are markedly similar but based on research 

by Poole (2002), Chessman et al. (2006), and Leathwick et al. (2008), it is apparent the 

ecological parameters are not analogous. It is recommended to expand the number of 

reaches subject to the monitoring to better assess the applicability of the toolbox to a 

range of geomorphic settings, including both upland and lowland reaches. 
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5.2. Variables of the toolbox 

5.2.1. Selected indicators  

The six indicators assessed at each reach used to infer geomorphic condition were 

selected based on the findings of the literature review and their relative measurability. 

Both quantitative and qualitative techniques were used across the indicators based on 

the efficiencies of the techniques, such as a visual assessment for geomorphic units and 

measuring the b-axis of particles within the reach. The connection between indicators 

is complex (refer Dollar et al. (2007) and Figure 2), with interrelationships between 

various factors potentially causing redundancy in the assessment through double 

counting. For example, the riparian zone both adjacent to the reach and upstream is 

the largest contributor of wood into the wetted channel; if the riparian zone is in good 

condition, it follows that wood potential and availability within the channel will also 

be in good condition (Lake et al., 2007; Elosegi & Sabater, 2013; Wohl et al., 2019) in 

addition to erosion of banks, contingent on the lack of hard infrastructure inhibiting 

this (Florsheim et al., 2008). Conversely, the interrelationships risk being misconstrued 

in the separation of the indicators into siloed processes. For example, a stream could 

score well for an intact riparian zone, but still be subject to hard infrastructure reducing 

natural or expected bank erosional processes, thus limiting the adjacent and 

downstream riparian function and diminish habitat (Florsheim et al., 2008). This 

entrenches the requirements to synthesise the indicators into a proforma, particularly 

if the objective use of the geomorphic toolbox is to inform rehabilitation or 

management programmes (Brierley et al., 2013). 

The assessment used for this research considers each indicator separately. The removal 

of some indicators, such as wood, would require other indicators, such as the 

geomorphic units, to be considerably more encompassing. Assessments for 

geomorphic units that incorporate both the riparian zone and wood pieces include the 

Geomorphic Unit Tool (GUT; http://gut.riverscapes.xyz/) which maps geomorphic 

units using high resolution topographic data, which can then be converted into a 

metric representing habitat heterogeneity and morphological unit abundance 

(Williams et al., 2020) and the Geomorphic Unit survey and classification System 

(GUS), which creates a spatially-nested hierarchal framework for geomorphic units 

with a river reach through aerial photography supplemented with in situ topographic 

and qualitative surveys (Belletti et al., 2017).  

http://gut.riverscapes.xyz/
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The GUT technique is effective at mapping geomorphic units while removing much of 

the subjective nature of user-interpretative techniques such as those used for this 

toolbox (Williams et al., 2020). The consistency of deploying techniques is significant 

for assessing and understanding temporal changes, although time efficiencies are lost 

through the requirement of high-resolution topographic surveys of the entirety of the 

in-channel and floodplain (Williams et al., 2020). This may be offset by the range of 

uses of topographic data of a reach, such as for restoration and alternative monitoring. 

Whilst the qualitative techniques deployed for this research are an acceptable medium 

between obtaining meaningful data while also being time- and cost-efficient, further 

investigation into the use of GUT as a geomorphic unit indicator to encompass other 

indicators is recommended.  

The GUS technique uses a spatially-nested hierarchical framework to organise 

geomorphic units on three spatial scales and levels of characterisation (Belletti et al., 

2017). It uses both remote (i.e. LiDAR) and in-field techniques (i.e. topographic and 

qualitative survey) to identify the units of a reach. However, identification of the first 

tier of survey (macro-units) is done wholly by way of remote data sources, which limits 

the use of this technique to rivers with a channel width of greater than 30 m (Rinaldi 

et al., 2015); ‘small’ rivers for the GUS technique are considered rivers with a channel 

width of less than 30 m. Additionally, a reliance on aerial or remote sensing data may 

prove inadequate for the Waikato context, given the vegetation coverage present near 

streams, particularly reference sites. Further characterisation is undertaken using in-

field techniques and can be deployed in smaller streams but misses out on the full 

spatial analysis reserved for the larger rivers.  This is also representative of the reach 

scale used for GUS; whilst it can be feasibly deployed for a range of reach sizes, 

generally the areas surveyed are specified as well over 1000 m in length (Rinaldi et al., 

2015) with the technique therefore designed for this level. Aspects of the GUS technique 

may prove instrumental for standardising the geomorphic unit assessment, such as the 

very thorough and detailed guidebook for the identification and classification of 

geomorphic units used for GUS.  As with the other methodologies considered, of most 

importance is the toolbox being carried out by a suitably qualified and experienced 

practitioner in geomorphology as applying these techniques without the necessary 

background and skill can seriously affect the quality of the data collected (Rinaldi et 

al., 2015), particularly when used for temporal analyses.   
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5.2.1.1. What is missing? 

Consideration is given to the inclusion of additional indicators to enhance the toolbox. 

Surrounding land use was identified as providing contrasting outcomes to the stream 

reach, such as that seen between the Whangarahi Stream (Monitoring Site 1307_18) and 

Waiwhero Stream (1262_18). Whilst land use and land use change is not considered a 

geomorphic process, given the strong influence on the other indicators (Allan, 2004), 

it may be appropriate to include this as an indicator, particularly should reference 

conditions be framed as a ‘best attainable outcome’ for non-reference sites, as discussed 

below. Land use is assessed within the RHS, MQI, SHAP and the Twin Streams 

(Auckland, New Zealand) application of River Styles© methodologies to varying 

degrees (Reid et al., 2008; Harding et al., 2009; Raven et al., 2010; Rinaldi et al., 2013), 

reflecting the influence of the process.  The incorporation of the floodplain is also 

included into these assessments for lowland rivers, providing an opportunity to 

describe both floodplain and land use into one indicator. ‘Land use’ for lowland sites 

could be framed as ‘floodplain processes’ and include the range of geomorphic features 

that could be expected to have an influence on stream health outside of the wetted 

channel, such as ephemeral or overland flowpaths as well as anthropogenic influence. 

It is recommended that land use as an indicator be investigated, given the degree of 

influence surrounding land use can have on a reach.  

Another factor worthy of further investigation is that of bed structure. The 

embeddedness or compactness of the channel bed describes the level to which larger 

bed particles are surrounded or held within the silty layer of stream beds. It provides 

an indication of the availability of interstitial space, which can be used as refugia by 

both fish and macroinvertebrates (Lawrence et al., 2013). It can also influence the 

relationship between the river proper and the hyporheic zone. As such, it is considered 

to be variable that would strongly enhance the particle size indicator, which would duly 

expand to incorporate the wider range of factors rather than just grain size. As the 

techniques for measuring embeddedness and bed compaction are relatively simple 

(qualitative observation for embeddedness and a scala penetrometer is used for bed 

compactness) (Clapcott et al., 2011), the incorporation of such variables would fit within 

the objectives of the methodology remaining time-efficient and cost-effective. It is 

recommended that both embeddedness and compactness are investigated for their 

value as variables relating to the particle geomorphic indicator.  
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Environmental flow and disturbance were two factors identified as exerting an 

influence on the geomorphic quality of a river but were not incorporated into the 

toolbox. Environmental flow covers a range of flows a channel can be subject to, 

including low flows, floods, seasonal changes, and discharge variability (Arthington, 

2012). Similarly, disturbances to a stream channel are not always consistent and 

comprise a dramatic deviation from normal circumstances (Lake, 2000; Death & 

Collier, 2010). The geomorphic toolbox captures the river state at a single point in time 

as a snapshot; whilst all geomorphic processes occur temporally, the indicators chosen 

can be represented by the physical state of the channel at the time of the assessment, 

whereas environmental flow and disturbance need to be considered on longer 

timeframes in order to provide a meaningful illustration of the process. To maintain 

the snapshot approach to fit in with other SOE reporting structures, it isn’t considered 

viable to incorporate these variables without longer (and possibly continuous) 

monitoring of streams, which is inconsistent with the principle of the toolbox being 

time- and cost-effective.  

5.2.2. Reach length and location 

The 150 m reach length for geomorphic assessment was chosen to emulate the existing 

WRC reach length for assessing fish distribution in wadable rivers. This length is based 

on work by David et al. (2010), who observed that a greater than 90% confidence of 

detecting fish species present within a stream is found at 150 m, with little to no 

increase in reach scale richness for sampling a greater length than this. A principle of 

this research was to formulate a geomorphic toolbox that could be deployed as part of 

the existing WRC monitoring season, which justifies the use of the 150 m reach length 

and also provides for a direct comparison between ecological and geomorphic findings 

by using the same physical template. While Raven et al. (2010) specified 500 m must be 

used for each survey, there was little difference found between the 150 m reach and 300 

m reaches surveyed. Except for the Upper Wainui Stream (11726_11) and the Stony 

Stream 3rd order (2079_1), the sites received the same scoring for all variables as well as 

the overall score. The two sites that did not achieve the same score were separated by 

one point within the riparian zone and this did not change their banded scoring (i.e. 

both still achieved ‘Excellent’). 

The RHS survey specifies a 500 m reach as fundamental to capturing the range of 

geomorphic variables (Raven et al., 2000), while other geomorphic assessments (River 



132 

Styles©, MQI, SEV and SHAP) determined the length by way of boundary conditions 

(Fryirs, 2003; Rinaldi et al., 2013) or by the area which is expected to be affected by 

development (Harding et al., 2009; Neale et al., 2017). The geomorphic 

representativeness of the 150 m reach identified within the six sites may be a product 

of their stream width; Knighton (2014) describes the regular pool-riffle geometry 

spacing at a distance of 5-7 times the channel width, which would be captured within 

a 150 m reach for streams up to 21 m wide. Geomorphic representativeness can be 

expected to be captured within the pool-riffle geometry spacing. All six sites had a 

wetted channel width less than 20 m wide, with the exception of some locations within 

Stony Stream 3rd Order (Monitoring Site 2079_1). For streams considerably wider than 

the six sites monitored, consideration of the wetted channel width relationship to 

geomorphic variability may be necessary. As the number of wadable streams within in 

the Waikato monitoring regime that have a wetted channel width greater than 20 m is 

not large, the 150 m reach should be retained for geomorphic assessment for ease of 

deployment. The toolbox has not been assessed in non-wadable streams and therefore 

applicability to streams that would not be represented by the 150 m is further reduced. 

Ultimately, the choice of reach length is determined by the objective of the assessment; 

in this case it must be easy to deploy and time-efficient, while also providing 

meaningful and representative data toward the annual SOE monitoring undertaken. 

This representativeness could be considered compromised at a 300 m length, given two 

of the sites had tributaries present at this length (Stony Stream 3rd Order – 2079_1 and 

Whangarahi Stream 2080_1); SOE reporting does not allow reaches to have tributaries 

and confluences present.  

Whilst surveying the 300 m reach instead of the 150 m reach does not double the time 

taken due to economies of scale, there seems to be little gain in undertaking the larger 

survey, particularly if there are other time constraints to factor in. However, the 25 m 

segments specified within each reach are somewhat arbitrary, with the primary use 

being to break the reach into manageable sizes given the quantity of observations 

required as part of the methodology. Adopting a 15 m segment size to match the reach 

division of fish monitoring (David et al., 2010), or increasing the segment size to 30 m 

for efficiencies would both be acceptable for achieving the outcomes of the geomorphic 

toolbox.  

The 150 m reach length is considered appropriate for capturing the geomorphic 

variables for small streams used for SOE reporting, though is not tested for further 
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representativeness of a catchment. It is recommended the desktop apriori assessment 

is expanded to include a catchment-level analysis for observable deviations within the 

catchment, such as changes of land-use or planform. It is also recommended further 

investigation is undertaken through a quasi-River Styles© (Fryirs, 2003) method by 

identifying a range of representative sites within a catchment, including both lowland 

and upland sites, and assessing them using the geomorphic toolbox. This approach is 

also expected to highlight any longitudinal deficiencies in the catchment and provide 

a template through which to target catchment level initiatives such as riparian 

restoration.  

5.2.3. Reference conditions  

Reference conditions for the purpose of this research were defined as sites that were 

‘minimally disturbed’ with little anthropogenic influence in alignment with SOE 

ecological reporting for stream health. Reference conditions were used to assess what 

the geomorphic condition of each site could be expected if there were no change arising 

from human impacts. This reference condition approach is used by River Styles© 

(Fryirs, 2003), which was also applied to the Twin Stream catchment research in 

Auckland, New Zealand (Reid et al., 2008). The use of ‘reference conditions’ to form a 

baseline for river types based on a database of conditions from other sites, such as that 

for the RHS (Raven et al., 2010) was precluded from the toolbox given each stream and 

reach is predicated in their exclusive space and time, meaning reference to a baseline 

of similar streams will not capture the unique variables of each site. More crucially, 

there is no such geomorphic database for wadable streams in the Waikato. The use of 

reference conditions of a reach as ‘minimally disturbed’ can have mixed outcomes, 

depending on the objective of the monitoring. The banded benchmarks set within the 

NPS-FM 2017 for a range of variables are not necessarily reflections of an untouched 

river state; a stream reach can sit within an ‘A’ (highest ranking) band despite not 

reflecting true undisturbed conditions. Instead, the ‘A’ band represents a lack of 

detractors from allowing taxa to flourish in those conditions (Ministry for the 

Environment, 2017b). Given many fluvial systems have been affected by historical and 

ongoing land-use change, such as drainage of lowlands around the Waiwhero Stream 

(Monitoring Site 1262_18) for pasture grazing, and exotic forestry production upstream 

of the Whangarahi Stream (Monitoring Site 1307_18), using pristine and untouched 

reference conditions may not be feasible or worthwhile (Rinaldi et al., 2013; Brierley & 
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Fryirs, 2016), especially as there is no given endpoint for river adjustments (Brierley & 

Fryirs, 2016). ‘Minimally disturbed’ reference conditions for already identified reference 

sites within the Waikato Region has merit however; temporal changes can be clearly 

identified against a set of reference conditions for the reach given these conditions are 

mostly still achieved and observable, such as in the Upper Wainui Stream (Monitoring 

Site 11726_11) and the two Stony Stream reaches (Monitoring Sites 2080_1 and 2079_1).  

Instead of exclusively focusing on ‘minimally disturbed’ templates, reference 

conditions for non-reference sites could pursue a ‘best attainable condition’ (Stoddard 

et al., 2006). This could incorporate present and future conditions and constraints, and 

identify the least degraded and most ecologically dynamic state that could exist within 

that reach given the catchment context (Stoddard et al., 2006; Rinaldi et al., 2013) based 

on the German concept of ‘leitbild’ (Palmer et al., 2005). This would reflect the approach 

of other SOE reporting, whilst also allowing for reference against attainable future 

management and rehabilitation goals that would be significant for river health. ‘Best 

attainable condition’ can still be framed within overall river health and a stream’s 

ability to perform its natural functions, which does not require pristine and untouched 

conditions to be achieved. For example, reference conditions for the Waiwhero Stream 

(Monitoring Site 1262_18) and Whangarahi Stream (Monitoring Site 1307_18) include 

being within a lowland Kahikatea swamp forest in all directions. Drainage and 

persistent land use patterns means a reversion back to ‘minimally disturbed’ conditions 

is unlikely to ever be attainable or desirable (Brierley & Fryirs, 2009). Partial restoration 

of the floodplain to a riparian zone could still provide river health benefits that 

represent the best attainable condition (Palmer et al., 2005; Stoddard et al., 2006; 

Rinaldi et al., 2013). Careful consideration of the parameters of these alternative 

reference conditions is integral to their use; the use of leitbild is mainly for guiding 

restoration rather than assessing natural condition deviation. It is recommended that 

future annual iterations of the geomorphic toolbox consider the objectives of the 

reporting and adjust the reference conditions to suit the outcomes, being monitoring 

against ‘untouched naturalness’ or ‘best attainable condition’ for the reach.  

5.2.4. Scoring System 

A scoring system comprising five bands was incorporated into the geomorphic toolbox 

for ease of comparison. Stream reaches cannot be directly compared given the unique 

set of factors that result in the geomorphic template for its specific location and point 
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in time; scoring of the reaches against their reference conditions allows ranking of 

streams. This could be used for identifying areas of targeted rehabilitation or river 

management, thus increasing the functionality of the geomorphic toolbox for a range 

of uses. The scoring system was modified from an earlier iteration that included three 

bands of reach quality: ‘Poor’, ‘Moderate’, and ‘Good’, which reflected the reach 

assessment for other geomorphic assessment approaches, namely River Styles© 

(Brierley & Fryirs, 2000; Fryirs, 2003; Fryirs & Brierley, 2013). The amendment to five 

bands is considered to better reflect the condition of the reaches and provides 

additional granularity for comparing the reaches. This revision is representative of the 

bands for SOE reporting and the NOF, which uses four band system, with three bands 

sitting above the accepted National Bottom Line, and one below. The geomorphic 

toolbox sits tidily within this framework, with three scorings that would be acceptable 

within the reference conditions, and two that are not (‘Poor’ and ‘Extremely Poor’). The 

two lowest scoring bands could be combined as both would be below a bottom line 

such as those for the NPS-FM reporting. Given a purpose of the geomorphic toolbox is 

to be incorporated into the existing SOE reporting, there is merit in providing a 

quantifiable and standardised measurement of river health.  

The SHAP methodology has a similar primary purpose to this research: to provide a 

practical, standardised, and cost-effective method for assessing physical habitat (as 

opposed to geomorphic condition) in New Zealand waterways (Harding et al., 2009). 

Contrasted to this research, the SHAP deliberately steers away from the use of a scoring 

system due to the variability of stream parameters in New Zealand, such as geology and 

topography. The SHAP does not provide for reference conditions and therefore 

constitutes a baseline of testing all streams against the same set of conditions, which 

would, as correctly observed by Harding et al. (2009), result in difficulties in comparing 

what is expected in one location versus what is a deviation in another. The use of 

reference conditions is therefore considered imperative when implementing a scoring 

system for comparing streams across a region, or even within a catchment. 

A sole focus on the final overall score would be short-sighted. The combination of the 

sub-scores for each indicator and the qualitative assessment (pro-forma) for each reach 

is considered of higher value than then single final score, as these provide a better 

understanding of the stream variables and pressures, as well as providing an avenue to 

assess relationships between the variables, such as the influence of the riparian zone 

on bank erosion and wood. A numeric score can also mask potential major geomorphic 
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deviations that would be readily apparent in a qualitative proforma and result in either 

a misguided attempt toward future rehabilitation or misdirection as to the actual state 

of river health for a reach. Further, given the capacity of rivers to adjust over time, the 

proforma approach is necessary to assess whether the adjustments observed comprise 

an expected change along the evolutionary trajectory of a reach (Brierley & Fryirs, 2005; 

Reid et al., 2008) or if deviations are occurring. Ultimately, the use of any combination 

of the proforma, sub-scores for each indicator, and the overall numeric score for the 

reaches will depend on the context in which the assessment is being used. The 

intention of use for the geomorphic toolbox must be clearly articulated and fit for 

purpose to avoid misrepresentation of the monitored reaches.  

5.3. Application of the toolbox  

A key principle of the geomorphic toolbox was to balance the time and cost-efficiency 

with accurately representing and recording relevant geomorphic features. It is also 

anticipated that the geomorphic toolbox, or subsequent iterations thereof, can be 

deployed and used as part of WRC’s SOE reporting, and therefore must be both 

standardised and measurable. Similar to the MQI methodology, the limitations, 

strengths and weaknesses of this geomorphic toolbox are best appreciated when 

framed in the context of the principles and objectives of the work (Rinaldi et al., 2013). 

A trade-off evident within this toolbox is between the time taken at each site and 

comprehensiveness of the geomorphic assessment. The existing WRC SOE monitoring 

aims to assess each monitoring site in either a half day or a full day for more ecologically 

diverse streams; as the geomorphic toolbox would be expected to be deployed at the 

same time, it also needed to fit within these time constraints. This compromise is found 

within the range of geomorphic methodologies reviewed within this research, and 

often the decision to accommodate the time constraint or provide a more robust 

assessment is based on the objective of the work. For example the RHS focuses on being 

quickly deployed for national stream monitoring (Raven et al., 2010) while River 

Styles© is predominately more research focused and used for river management and 

rehabilitation purposes (Brierley & Fryirs, 2000). The SHAP attempts to overcome the 

necessary trade-off by providing a tiered approach, whereby three protocols of varying 

complexity are available for use, depending on the level of comprehensiveness required 

to inform objectives and outcomes (Harding et al., 2009). However, the tiered approach 
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can form inconsistencies over time, such as comparing a detailed protocol against a 

previous one that is brief and lacks the same detail, which can undermine the 

usefulness for informing monitoring and future rehabilitation or river management. 

The trade-off present within the geomorphic toolbox created for this work is 

considered to align with the principles of the research, although there is scope to 

consider more comprehensive indicators, such as the GUT technique, by adding 

additional human resource to mitigate the time required.  

Two people were necessary for the fieldwork, with some tasks divided for efficiencies 

in order to complete the surveys at each reach within a reasonable timeframe. A 

minimum of two people are also fundamental to achieving a safe working environment 

given the surveys require in-stream work as well as accessing remote, isolated sites. The 

time taken to complete the geomorphic survey ranged from 2.0 hours (Waiwhero 

Stream – Monitoring Site 1262_18) to 4.5 hours (Upper Wainui Stream – Monitoring 

Site 11726_11), excluding the 5.5 hours required for the Wainui Stream (Monitoring Site 

1172_6) which was the first site in which the geomorphic toolbox was deployed. The 

time taken to complete the assessment reflected the geomorphic complexity of each 

site, which impacted on the time to visually assess and record geomorphic features, as 

well as longitudinal access through the site. Both Stony Stream Monitoring Sites 

(2080_1 and 2079_1) were remote, with large clasts and features which were difficult to 

traverse with equipment (flow meter, recording sheets, callipers, tape measure, and 

personal safety equipment), as shown in Figure 78. Changes to the assessment of 

geomorphic units, such as to the GUT methodology would increase both access 

(additional equipment such as surveying equipment) and observation time in order to 

undertake comprehensive topographic survey of the geomorphic features)  

Consideration is required in the trade-offs between maintaining time and cost 

efficiencies, given the GUT approach would also require greater post-field work data 

processing as well, and obtaining high quality representative geomorphic data.  
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Figure 78 Working environment: accessing the Stony Stream 2nd Order Monitoring Site (2080_1) requires walking 
approximately 1.2 km along the Stony Bay walking track from the Stony Bay Campsite, then traversing the Stony 
Stream for 200 m before reaching the downstream end of the monitoring site. Equipment must also be carried for 
the length of the Stony Stream 2nd Order Monitoring Site to assess the full length of the reach.  

A strength of the toolbox is the range of results that can be elucidated through its 

deployment; reaches can be assessed temporally against themselves as well as at an 

indicator granularity using both the scoring system and perhaps more importantly, the 

proforma assessment. This use assists understanding catchment level pressures and 

changes, such as land use change, while also providing baseline data for rehabilitation 

measures for a catchment or reach; changes to the upstream catchment can be more 

important than the area adjacent (Lake et al., 2007; Poole, 2010). This range also allows 

for a quantitative ranking for river reaches and their catchments due to the use of 

reference conditions, which fit within the style required for SOE reporting (McFarlane 

et al., 2011), i.e. a quantitative metric. Practitioners would need to monitor closely the 

use of the scoring system, which is dependent on the qualitative proforma for 

informing the score. Actions, such as targeted rehabilitation based solely on the scoring 

system will inevitably be misguided without direct consideration of the reference 

conditions (whether as ‘minimally disturbed’ or ‘best attainable outcome’ based on the 

objective of rehabilitation).  
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A limitation in the toolbox for this purpose is the discrete location of sites to which it 

is applied within a catchment; the sites selected for this research were based on existing 

WRC monitoring sites which may not necessarily coincide with representative 

geomorphic reaches. Given time and cost constraints, it is not considered feasible to 

undertake mapping of entire catchments across the whole of the Waikato Region such 

as that done for the Bega Catchment in Australia using River Styles© (Brierley & Fryirs, 

2000; Fryirs, 2003). A method to reduce the dependency of single site f0r representation 

could be to identify reaches in the catchment, both upland and lowland, that could be 

used to demonstrate the range of catchment geomorphology (such as River Styles©); 

while this would increase the time required per catchment, it would provide greater 

understanding of specific catchment character and processes, rather than relying on a 

single set of data.  

Many of the indicators rely on subjective qualitative assessment and the identification 

of boundaries, units and features by the assessor. The indicators are also measured at 

a single point in time, with features used to judge the efficacy of the geomorphic 

processes occurring. Bank erosion, for example, is measured through a visual 

assessment of the banks on the day of the reach monitoring. Alternative and more 

sophisticated methods could include charting bank lateral movement over time to 

provide both a spatial change and quantity of sediment displaced. However, the aim of 

the toolbox is to assess geomorphological quality rather than quantify channel 

morphological processes or understand the underlying channel dynamics. A focus on 

more quantifiable and complex methods of assessment may reduce the usability of the 

geomorphic toolbox, which is intended to be deployed efficiently as part of SOE 

monitoring and provide an estimation of the changes undertaken. An exception to this 

would be to enhance the assessment of the geomorphic unit indicator, given its 

prominence as a driver of river health and ecology by encompassing many of the other 

indicators, including wood, bank erosion, the riparian zone, and particle size to some 

degree.  

5.4. Recommendations  

Overall, the proposed toolbox can achieve the objectives and principles of a 

geomorphic toolbox for assisting with assessing river health in wadable streams in the 

Waikato. The following recommendations are made with the intent of improving the 
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efficacy of the geomorphic toolbox while still fitting within the principles of the toolbox 

for SOE monitoring and aligning with existing ecologically focused programmes: 

▪ Deploy the geomorphic toolbox at the 150 m reach rather than the 300 m reach 

length, contingent on an ongoing review of contemporary literature with regard 

to optimum reach length / characteristics and adapt should superior information 

become available; 

▪ Deploy the geomorphic toolbox at WRC monitoring sites to gain temporal data 

for each reach and assess the use of the toolbox for its ability to provide ongoing 

useful data for reporting on river health at a range of geomorphic settings; 

▪ Investigate modifying the existing techniques used to provide more quantifiable 

results, namely the use of GUT for enhancing the geomorphic unit assessment; 

▪ Investigate incorporating channel bed substrate embeddedness and 

compactness as variables relating to the particle geomorphic indicator; 

▪ Consider incorporating land use as an indicator, given the degree of influence 

land use within a catchment can have on a reach; 

▪ Expand the desktop apriori assessment to include a catchment-level analysis for 

observable deviations within the catchment, such as changes of land-use or 

planform; 

▪ Investigate a quasi-River Styles© (Fryirs, 2003) method by identifying a range of 

representative sites within a catchment, including both lowland and upland sites, 

and assessing them using the geomorphic toolbox; 

▪ Source and apply finer-grained catchment-wide LiDAR to provide greater 

analysis of the characteristics of the catchment for each monitoring site, such as 

through Digital Elevation Models; 

▪ Future annual iterations of the geomorphic toolbox should consider the 

objectives of the reporting and adjust the reference conditions to suit the 

outcomes, being monitoring against ‘untouched naturalness’ or ‘best likely 

condition’ for the reach; and 

▪ Incorporate geomorphology into river health monitoring using a toolbox 

approach. 
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6. Conclusion 

The purpose of this research was to develop and assess the efficacy of a geomorphic 

toolbox as a realistic measurement of the ecological health of a river. Critically, the 

toolbox had to be fit for purpose; in this context this meant it had to provide 

meaningful and representative data of study reaches whilst also being both cost- and 

time-efficient. The success of the toolbox has been gauged against the degree to which 

the objectives of the research were achieved. The toolbox was developed based on 

identifying the connections between ecological health and geomorphic within national 

and international literature, as well and identifying existing geomorphic techniques 

and methodologies to determine what could be applicable to a Waikato context. Six 

key geomorphic indicators were identified as relevant: riparian zone, particle size, bank 

erosion, wood, connectivity, and geomorphic units, and were incorporated into a 

geomorphic toolbox to provide time- and cost-efficient techniques for assessment. The 

testing of the toolbox against four reference sites and two non-reference sites in the 

Waikato Region showed the techniques for assessment were easily deployed and can 

provide robust and user-friendly results for use within the SOE context as well as to 

inform potential river rehabilitation programmes.  

Critical to the toolbox was the development of reference conditions for each of the sites 

being monitored in order to be able to compare each reach to their undisturbed nature 

as well as to provide an appropriate scoring compendium that allows the reaches to be 

ranks and compared to one another. A comparison of the geomorphic results to the 

corresponding ecological condition classes collected independently by WRC at the 

same monitoring sites showed the scoring of the geomorphic toolbox were comparable 

to the ecological variables, though proximity to coast was identified as a factor required 

to be considered when making comparisons. Recommendations to refine the toolbox 

include consideration of new techniques, such as GUT for geomorphic units, and 

expanding the testing of the toolbox against a range of Waikato monitoring sites. The 

objectives of the research for assessing the effectiveness of the geomorphic toolbox 

were achieved, with the resulting toolbox well-grounded within existing 

methodologies and assessment techniques. The toolbox, subject to ongoing 

refinement, testing, and framing within the latest literature and investigations for 

fluvial geomorphology, is fit for purpose for contributing to the holistic assessment of 

ecosystem health in rivers and streams of the Waikato Region.  
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Appendix A  

Monitoring Sheets – Example



A-1 

 

Date  

Analyst  

Stream Name  

Coordinates Downstream boundary 
Upstream boundary 

Valley Type Confined Partially Confined Unconfined 

Connectivity Is this reach physically connected to its 
neighbouring reaches?  

Upstream 
Downstream 

Slope  
 

Elevation change over the 150 m of reach AND 300 
m of reach 

150 m [z coordinate]  
300 m [z coordinate] 

Flow regime  
 

m3/s 1-2  
4-5 
9-10 
12-13 

State 
(i.e. low flow, normal conditions, high flow, 
bankfull flood) 

 

Other Photographs taken that are  
▪ representative of the reach 
▪ Specific evidence of each of the above 

points.  
▪ Any other significant feature requiring 

further assessment or consideration 

Note what photographs are taken, where, and why 

Commentary: 
e.g. any distinctive artificial features, things that could have an effect on stream health that are obvious (i.e. infrastructure) 
 
 
 
 
 
 



A-2 

Rock / Clast units 

Segment [downstream 

to upstream] 

Choose 4 sites – one site between 1-4, 2 sites between 4-10, and one site between 10-13. Circle which reach is used in the left hand column and cross out those which were not.  

Measure 30 m along a bar (take a photo) using the tape measure. The tape measure should be along the location of the roughest set of clasts (i.e the biggest clasts). At each 1m 

interval, measure the b-axis of the rock directly below the mark. If  

1-2 [0-24.99] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

2-3 [25-49.00]                               

3-4 [50- 74.99]                        

4-5 [75-99.99] -

downstream boundary of 

reach 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

5-6 [100 – 124.99]                               

6-7 [125-149.99]                        

7-8 [150-174.99] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

8-9 [175-199.99]                               

9-10 [200-224.99] – 

upstream boundary of 

reach 

                       

10-11 [225 – 249.99] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

11-12[250-274.99]                               

12-13 [275-299.99]                        

 

 



A-3 

Rock / Clast units 

Segment 

[downstream to 

upstream] 

Specify the range of rocks / sediment present for each segment. Is there a range? Is the sediment located where it could be 

expected? i.e. within pools. etc. Is there a sand or silt layer overlaying the bed? How thick? are the particles loosely consolidated? 

Is sorting evident? 

1-2 [0-24.99]  

2-3 [25-49.00]  

3-4 [50- 74.99]  

4-5 [75-99.99] -

downstream 

boundary of reach 

 

5-6 [100 – 124.99]  

6-7 [125-149.99]  

7-8 [150-174.99]  

8-9 [175-199.99]  

9-10 [200-224.99] – 

upstream boundary 

of reach 

 

10-11 [225 – 249.99]  

11-12[250-274.99]  

12-13 [275-299.99]  



A-4 

Riparian Zone 

Segment [downstream 

to upstream] 

Width of riparian zone [can state the same for all segments if cover is 

consistent across reach]. Specify if there are any breaks within the vegetation 

of the riparian strip. Is it dense? Is their canopy and ground coverage? 

Vegetation type 

 True Right Bank True Left Bank True Right Bank True Left Bank 

1-2 [0-24.99]     

2-3 [25-49.00]     

3-4 [50- 74.99]     

4-5 [75-99.99] -

downstream 

boundary of reach 

    

5-6 [100 – 124.99]     

6-7 [125-149.99]     

7-8 [150-174.99]     

8-9 [175-199.99]     

9-10 [200-224.99] – 

upstream boundary of 

reach 

    

10-11 [225 – 249.99]     

11-12[250-274.99]     

12-13 [275-299.99]     



A-5 

Bank Erosion 

Segment [downstream 

to upstream] 

Evidence of bank erosion (describe and photos) 

 True Right Bank True Left Bank 

1-2 [0-24.99]   

2-3 [25-49.00]   

3-4 [50- 74.99]   

4-5 [75-99.99] -

downstream boundary 

of reach 

  

5-6 [100 – 124.99]   

6-7 [125-149.99]   

7-8 [150-174.99]   

8-9 [175-199.99]   

9-10 [200-224.99] – 

upstream boundary of 

reach 

  

10-11 [225 – 249.99]   

11-12[250-274.99]   

12-13 [275-299.99]   



A-6 

Woody Debris 

Segment [downstream to 

upstream] 

Woody Debris Observe the woody debris – what is it primarily made up of? Are there rafts or accumulations that 

would aid in habitat formation?  

 Within stream Within Stream bank 

1-2 [0-24.99]   

2-3 [25-49.00]   

3-4 [50- 74.99]   

4-5 [75-99.99] -downstream 

boundary of reach 

  

5-6 [100 – 124.99]   

6-7 [125-149.99]   

7-8 [150-174.99]   

8-9 [175-199.99]   

9-10 [200-224.99] – upstream 

boundary of reach 

  

10-11 [225 – 249.99]   

11-12[250-274.99]   

12-13 [275-299.99]   
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