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ABSTRACT 

This thesis focuses on the detection of quantitative trait loci (QTL) and uti lisation of 

marker-trait associations in tree breeding programs. Theoretical expressions of variance 

components for single-marker ANOVA were derived and were used in deterministic 

simulations to determine the power of two-generation QTL mapping experiments in an 

outbred population containing full-sib or self families. Analysis of one linkage group 

for mapping QTL for wood density is presented. Genetic markers that are linked to the 

QTL can be used for selection purposes. The effect of using genetic markers to assist in 

different selection and deployment schemes was studied. The additional response to 

selection was computed using stochastic simulation. Most of the studies on MAS are 

concentrated on expected genetic progress for a single trait. However, in practice, the 

commercial breeding objective is nearly always composed of several traits. For a 

conventional breeding framework, a method is proposed to reduce the effect of 

sampling errors on the estimates of multivariate genetic parameters and thus increasing 

the efficiency of index selection. The general discussion of this thesis addresses QTL 

analysis methods, various aspects of QTL mapping designs and implementation of 

MAS in the radiata pine breeding program in New Zealand. 
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Chapter 1 

GENERAL INTRODUCTION 
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Conventional breeding methods in radiata pine in New Zealand have been under way 

for almost fifty years and have lead to substantial genetic improvement. Long 

generation intervals typical of forest tree species necessitate efficient approaches to 

improvement programs. Molecular markers arguably have greater potential impact in 

tree improvement and breeding than in short-rotation crops because of their capacity to: 

minimise the general interval, increase the genetic gain per generation, and enable 

improvements to be rapidly deployed (DALE & CHAPARRO, 1996). 

Most applications of genetic markers requires the mapping of quantitative trait loci 

(QTL), i .e., the dissection of genetic variance into components due to individual QTL. 

SAX ( 1923) was the first to show how genetic factors influencing quantitative traits can 

be identified by using molecular markers. In beans, Sax scored morphological traits 

with monogenic inheritance and found the seed weight of certain morphological 

variants to be significantly higher than the seed weight of other variants. He concluded 

that a size factor, which we would now call a QTL, was linked to one of the 

morphological markers studied. As a result of genetic linkage between the marker and 

the QTL, the size factor cosegregated with the genes underlying the morphological 

traits. 

NEIMANN-S0RENSEN & ROBERTSON ( 196 1 ), using blood groups in dairy cattle, showed 

how associations between markers and quantitative traits can be studied in outbred 

populations. They found no significant associations, which they attributed to the fact 

that they had only a few markers available which gave them a Iow chance of having a 

marker close to a QTL. With the advent of molecular technology, many genetic 

markers have become available. The construction of linkage maps with genetic markers 

covering the whole genome allows for systematic screening for genes or chromosomal 

regions influencing important traits (BOTSTEIN et al., 1 980). When marker-QTL 

associations have been identified and located to chromosomal segments, the marked 

QTL can be utilised in breeding schemes by marker assisted selection (MAS). 

Favourable theoretical genetic and economic responses to MAS have been reported 

(KERR et aI. , 1 996). 
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Aim 

The aim of this thesis is to contribute to the efficient utilisation of genetic markers in 

tree breeding. This thesis studies the design of QTL mapping experiments, the issues of 

QTL detection and the use of marker assisted selection in an outbred population. 

Outline of this thesis 

The designs of linkage mapping experiments that involve crosses between inbred lines 

are well documented. For outbred populations, like forest trees, less research has been 

aimed at specifying the appropriate designs. From population genetic studies, it is 

known that wild allogamous species like forest trees are likely to be in linkage 

equilibrium (reviewed in STRAUSS et al. , 1992). Full-sib families are commonly used in 

QTL mapping studies in forest trees. For an outbred full-sib radiata pine pedigree, as 

many as four alleles may be segregating at a marker locus and male and female parents 

might be segregating for different QTL alleles. Therefore, this thesis studies designs for 

finding linkage between a marker locus and a trait locus in outbred populations. 

Chapter 2 of this thesis derives formulae for evaluating the power of linkage detection 

in full-sib families of outbred populations. 

Self-families of outbred trees are also being used for studying the linkage between 

markers and the genes causing inbreeding depression in growth traits (Fu & RrrLAND, 

1994). On the assumption that there will be some individuals without appreciable 

genetic load, the self-families have been used to detect growth-related QTL that would 

be expressed under the normal course of outbreeding (PLOMION et al. , 1996). Chapter 3 

of this thesis provides some theoretical expressions for evaluating the power of QTL 

mapping designs for linkage detection in self-families of outbred populations. 

Forest Research, New Zealand, established a QTL mapping experiment in a full-sib 

family of radiata pine. The objective of the experiment was to identify chromosomal 

regions that affect wood density and growth traits. In Chapter 4, linkage group three 

was analysed for associations between 16  RAPD markers and wood density measured 

at three different ages. Estimates for QTL effects and locations along with their 

bootstrap confidence intervals were obtained. 
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Once genetic markers that explain a significant amount of genetic variance have been 

identified, these markers can be used in breeding programs. Previous simulation studies 

have evaluated either across-family MAS or have applied MAS to an unselected 

population. Assuming that the linkage state of the marker alleles with respect to the 

QTL might vary between families, in Chapter 5 of this thesis, within-family MAS was 

applied to a population where prior selection had been undertaken for one to two 

generations. 

Index selection is commonly applied in tree breeding programs. The efficiency of 

traditional index selection can be improved by selection on the QTL that have positive 

effects on the traits included in the index. However, multitrait MAS does not seem to 

be a practical option in the near future. Chapter 6 of this thesis considers aspects of 

improving the efficiency of index selection within a conventional breeding framework. 

Impacts of sampling errors on estimates of multivariate genetic parameters were 

evaluated and a new method to improve the efficiency of index selection is compared 

with some of the available alternatives for this purpose. 

In the general discussion, firstly, the methods for detecting linkage are discussed. 

Secondly, the setting of critical values is discussed. Further, the different QTL mapping 

design options, which can be used for increasing the power of linkage detection, are 

discussed. Finally some thoughts on the possible applications of MAS in forest tree 

breeding programs in New Zealand are given. 
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ABSTRACT 

Analysis of variance can be used to detect the linkage of segregating quantitative trait 

loci (QTL) to molecular markers in outbred populations. Given a single fully­

informative (FI) marker for independent full-sib families (with marker configuration: 

MJM2 x M3M4) and assuming linkage equilibrium, variance components were derived 

to predict the power of detection of a QTL. These variance components are based on a 

hierarchical analysis of variance assuming a completely random model. Formulae that 

relate power to the recombination frequency (r) between the FI marker and the QTL, 

genetical properties of the quantitative trait controlled by the QTL and the design 

parameters are developed. The predicted powers using the FI marker configuration 

were compared to that obtained using pseudo-backcross (PBC : MJM2 x MJMJ) and 

pseudo-intercross (PlC : MJM2 x MJM2) marker configurations. The effects of 

dominance properties of the QTL on power were also examined. The reliability of the 

theoretical approximation of power was confirmed by computer simulations. The 

results showed that: FI marker design is more efficient than PBC and PlC marker 

designs; few large families are better than many small families. Incomplete linkage and 

dominance of the QTL showed large effects on the power. 

Key words: fully-informative marker, genetic linkage, statistical power, QTL 

INTRODUCTION 

The use of molecular markers as a complementary tool for breeding is based on linkage 

disequilibrium between marker and quantitative trait loci (QTL) involved in the control 

of quantitative characters. In most agricultural crops, inbreeding is followed by crossing 

between inbred lines to create disequilibrium for QTL detection. From population 

genetic studies, it is known that wild allogamous species like forest trees are often in 

linkage equilibrium and, because of the long generation intervals and inbreeding 

depression, it is difficult to obtain inbred lines for QTL mapping experiments. Linkage 

disequilibrium between a marker and a linked QTL, however, can be found within 

families in outcross populations and it is increasingly common to carry out QTL 

detection in a full or half-sib family. 
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In an outbred population different marker alleles will likely be associated with the same 

QTL allele in different families. Therefore, evidence for a linked QTL cannot be 

obtained at a population level from overall mean differences between marker 

genotypes. Using an hierarchical ANOVA, marker effects need to be analysed in each 

family separately and the test for a linked QTL comes from the comparison of the 

between-marker genotypes within-family mean squares with the residual mean squares 

and can be tested as an F-ratio (HILL 1 975, SOLLER & GENIZI 1978). Under the null 

hypothesis (marker is not linked to the QTL i.e. ,  recombination (r) between marker and 

QTL is 0.5), this ratio is distributed as a central F-variable; whereas this ratio will be a 

noncentral F-variable when r is less than 0.5 (JAYAKAR 1 970, Luo 1 993). Hence, given 

the pedigree structure, it is possible to predict the power of detection of a given QTL 

(HILL 1975, SOLLER & GENIZI 1978, Luo 1993, KNOTI 1994). 

The informative full-sib families considered in previous simulation studies of outbred 

populations (HILL 1 975, SOLLER & GENIZI 1978, Luo 1 993, KNOTI 1994) were of two 

types with respect to the marker genotypes of the parents. First, those where one parent 

is homozygous at the marker locus and one is heterozygous (pseudo-backcross or PBC 

families) and second, those where both parents are heterozygous for the same genotype 

at the marker locus (pseudo-intercross or PIe families). Both of these strategies suggest 

that only two alleles are segregating in full-sib progeny. However, for an outbred Pinus 

radiata pedigree, as many as four alleles may be segregating at a locus. With the 

continued development of multi allelic codominant markers (for example, 

microsatellites), the exclusive use of fully-informative markers (i .e., MJM2 x M3M4) is 

becoming possible. This creates an additional family type (fully-informative or FI 

families) with respect to the markers; that is, one where all four marker genotypes can 

be distinguished in the offspring. 

HILL ( 1975) and Luo ( 1989, 1993), assuming a bi-allelic marker and the linked bi­

allelic QTL, derived the expressions for expected variances for ANOV A of PBC and 

PlC marker designs in a segregating population. MURANTY ( 1996) derived the 

expressions for the noncentrality parameter of different mating schemes assuming FI 

marker design. However, these expressions could not relate the power directly to 

different recombination rates and non-additive gene action at QTL. SO far, the 
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theoretical expressions of variance components, to predict the power of using PI marker 

type families using ANOV A, have not been derived. 

The present study was focused on deriving the expressions of expected variances for 

ANOV A of a PI marker design (MJM2 x M3M4) , in two-generation pedigrees of 

outbred populations, and relating the power directly to genetic parameters at the QTL 

and the relevant design parameters. This will allow factors affecting the power to be 

investigated comprehensively. A second objective of this study was to compare the 

power obtained from using PI marker design to that obtained from PBC and PlC type 

marker strategies. 

THEORY 

Basic assumptions and experimental design 

The underlying assumptions of the method are those commonly made by researchers. 

The method involves analysing progeny from controlled mating in a population. Two 

autosomal loci are considered, one of them affects a quantitative trait (QTL) while the 

other is a fully-informative marker. The two loci are linked with a recombination 

frequency of r (s = 1 - r). Let the frequency of allele QJ at the QTL be denoted as p (q = 

1 - p), and the phenotypic distributions of the 3 genotypes at the QTL i.e. ,  QJQJ, QJQ2 

and Q2Q2 are assumed to be N(a, cl), N(d, cl) and N(-a, cl) respectively, where a and d 

represent the additive and dominance effects at the QTL. With just one QTL and no 

other gene effects, cl will be only the environmental variance, whereas in the presence 

of unlinked QTLs, it will also include genetic variance at these loci (i .e. ,  polygenic 

variance). 

Let the parental genotypes at the marker locus be MJM2 and M3M4 and four marker 

genotype classes (M = 4) are distinguishable in the offspring: MJM3, MJM4, M2M3 and 

M2M4 segregating with a 1 : 1 : 1 : 1  ratio. We assume that the QTL and the marker gene 

are in linkage equilibrium in the population. Let nu denote the number of sibs within 

the l marker genotype class within the i th sibship. Also each sibship (Nf) has a constant 

size of No and thus the total experimental size is Nf x No. 
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Statistical Model 

The linear model for the phenotype of the quantitative trait measured on the kth sib (k = 

1 , 2, ... , ni) with thejth marker genotype (j = 1 , 2, . . .  , M=4) within the ith sibship 

(i = 1 , 2, . . . , Nf) can be written as: 

( 1 )  

where f.L is an overall mean, ai' /3;j and eijk are contributions from the sibship, from the 

marker genotype within sibship and from within-marker within-sibship residual, 

respectively. They are assumed to be independently and normally distributed with zero 

means and variances O"�, O"� and O"}, respectively. Similar assumptions have been 

made in several studies (e.g., HILL 1 975, Luo 1 993, LYNCH & W ALSH 1 997). The 

assumption of functional independence of the quantitative trait from the marker locus 

was also made. We have considered only one QTL and all other" background" genetic 

variation is considered as environmental. The ANOV A for this model is given in 

Table 1 .  

Table 1 .  ANOV A for a two-factor completely nested design. 

Source Degrees of MS 
freedom 

Between sibships Nf - l  MSs 

Between marker genotypes within L(Mi - 1) MSm 
sibship 
Within marker genotype within L(nij - 1) MSw 
sibship 

Under the assumption of a constant size of sibship (No) and 

the approximation for no will be : no:::: 0.25 No. 

EMS 

-

2 2 
O"e + noO"p 
0"2 

e 

(2) 

(3) 

The expression for mean squares and the general version of no (Table 1) can be found, 

for example, in HILL ( 1975). All possible marker-QTL genotypes of parents and the 

gametes inherited by the offspring are given in Table 2 with their probabilities. Using 
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these probabilities, the expected values of the quantitative trait value, y, were obtained 

for different marker genotypes within sibship (Appendix 1). Similarly, the variances of 

the trait value within sibship within marker genotypes were derived (Appendix 2). 

Finally, the variance between marker genotype classes within sibship were obtained 

(Appendix 3). 

Table 2. Probabilities of various gametes inherited from parents to progeny. Parental 

marker genotypes are: MJM2 x M3M4. We assumed that the QTL and the marker genes 

are in linkage equilibrium in the population. Recombination rate between the marker 

and the QTL is r. 

From first parent 

Parental Gametes 

genotype MJQ/ MJQ2 M2Q/ M2Q2 

M/Q/IM2QJ 112 0 112 0 

M/QJIM2Q2 (1 - r) 1 2 rl2 rl2 (1 - r)/2 

MJQ21M2QJ rl2 (1 - r)/2 (1 - r)/2 rl2 

M/Q2IM2Q2 0 1/2 0 1/2 

From second parent 

Parental Gametes 

genotype M3QJ M3Q2 M4QJ M4Q2 

M3QJIM4QJ 112 0 112 0 

M3QJIM4Q2 (1 - r) 1 2 rl2 r/2 (1 - r)/2 

M3Q2IM4Q/ r/2 (1  - r)/2 (1 - r)/2 rl2 

M3Q21M4Q2 0 112 0 112 

The variance expressions, given m Appendix 3 ,  were averaged by usmg the 

corresponding probabilities as weights and it gives us the expected variance between 

marker genotypes within sibships (a� ) as: 
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Using Appendix 2, first the average variance within each marker genotype was obtained 

by using the corresponding probabilities as weights. After this, the variances within 

each marker genotype were averaged using equal probabilities (because four marker 

genotypes are assumed to be segregating with a 1:1:1:1 ratio) and it gives us the 

expected variance within marker genotypes within sibships (cre2 ) as: 

cre2 = cr2 + 4pqrs[p2(a - d)2 + q\a + d)2 + 2pqa2 + pqd2(1- 2rs)] + 

2p2q2d\r2 + i)[1-(r2 + i)]. 
(5) 

The rationale used for the derivation of (4) and (5) is similar to that of HILL (1975). 

From equation (4) it can be easily shown that the expected variance between marker 

genotypes within sibship (crJ) will be zero if there is no linkage between the marker 

and the QTL, i .e. ,  r = s = 0.5. Under the null hypothesis (Ho : r = 0.5) the ratio MSm / 

MSw has an expected value of 1 and is distributed as a central F-variable; whereas this 

ratio has an expected value of more than one and will be a noncentral F-variable when r 

is less than 0.5 (JAYAKAR 1970, Luo 1993). Using the standard definition, the power 

function for linkage detection with the design under study (FI families) can be written 

in the following general form: 

Power = Pr [F(vI. v2; 0) > F(a, vi. v2) ] , (6) 

where F(vI. v2; 0) is a noncentral F-variable with degrees of freedom Vj and V2 and 

noncentrality parameter 0, while F(a, vI. v2) is the upper a point of a central F-variable 

with degrees of freedom Vj and V2. The value of noncentrality parameter, 0, was 

calculated as (Luo 1993): 

(7) 

Power calculation 

The power of a test is defined as the probability of rejecting the null hypothesis when its 

alternative is true. The power of a QTL mapping experiment is the probability that the 

null hypothesis (no linked QTL) is rejected when its alternative (presence of a linked 
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QTL) i s  true. The formulae developed for expected variance between marker genotypes 

within sibships (O'� ) and the expected variance within marker genotypes within 

sibships (0'.2) were used in theoretical prediction of the powers of QTL detection for a 

wide range of combinations of parameters (i .e . ,  genetic parameters at the QTL and 

design parameters). In order to derive the parameters, the total genetic variance, VG 

(sum of additive, VA, and dominance, VD, variance), arising from one locus (QTL) can 

be written as (FALCONER 1989): 

VG= VA + VD 

= 2pq[a + d(q _ p)]2 + [2pqd]2 

= 2pq[a2 + (1 - 2pq)d2 + 2(q - p)ad]. (8) 

By assuming the phenotypic variance (Vp) to be unity, the VG (or QTL variance) 

becomes the broad-sense heritability (H2) at the QTL. Also, 0'2 = 1 - VG. To determine 

the value of parameter a and d at the QTL, we take following steps (Luo 1993): 

Assume the dominance ratio if) = d1a, then 

a= 
VG , and 

2pq[1 + (1- 2pq)f2 + 2(q - p)f] 

d=fxa. 

(9) 

( l0) 

Using different combinations of design parameters (Nj and No), genetic parameters at 

the QTL (p,J, and H2) and recombination frequency (r) , the noncentrality parameter can 

be calculated. After that power can be easily calculated using (6). 

Power evaluation from simulations 

Since approximations (2) and (3) were made in deriving the power function, the 

reliability of these approximations was checked by comparing the theoretical 

predictions of the power to the powers calculated from simulation experiments. A 

program was written in SAS (1989) for simulating the inheritance of marker-QTL 

linkage for any combination of experimental design and genetic parameters. The 

simulated data was analysed using SAS PROC GLM and the frequency of significant F­

values in replicated simulation trials was calculated as in CARBONELL et al. (1992) and 

Luo (1993), which gives the empirical power. 
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Comparison of power 

The power, calculated using PI families (MJM2 x M3M4) in this study, were compared to 

those obtained from using the families where parents are MJMJ x MJM2 (PBC families) 

or MJM2 x MJM2 (PlC families). The power for these two designs (pBC and PlC) in a 

segregating population were evaluated by Luo ( 1993). The results for the PBC and PlC 

type marker configurations in our study are solely based on the formulae derived by 

Luo ( 1993). 

RESULTS 

Theoretical powers of linkage detection were calculated for a wide range of genetic 

parameters at the QTL and design parameters. Empirical powers, based on 500 

replications, are presented along with those obtained from theoretical approximation. 

When assuming gene action at the QTL to be purely additive, the power of QTL 

detection for three types of marker loci varies substantially (Table 3). 

Table 3. Theoretical prediction (PR) of powers of 3 marker designs for a QTL that has 

a heterozygosity of 50%, for various number of families (Nj) , various number of 

offspring per family (No). The other assumptions were: broad-sense heritability at the 

QTL (H2) = 0.05, recombination rate (r) = 0. 10, type-I error = 0.01 and dominance ratio 

if) = 0.0. The powers evaluated from simulation experiments (SI) are also given. PBC 

= pseudo-backcross, PlC = pseudo-intercross, PI = fully-informative. 

PBC PlC PI 

Nj No PR SI PR SI PR SI 

5 50 0.04 0.05 0.03 0.04 0.05 0.05 

100 0. 1 1  0. 1 2  0.07 0.08 0. 1 5  0. 1 5  

200 0.29 0.32 0. 1 8  0.24 0.46 0.48 

10 50 0.07 0.07 0.04 0.05 0.09 0.07 

1 00 0.21 0.21 0. 12  0. 1 2  0.30 0.28 

200 0.57 0.55 0.36 0.39 0.79 0.79 

20 50 0. 1 3  0. 1 2  0.07 0.08 0. 17  0. 1 7  

1 00 0.41 0.41 0.22 0.22 0.58 0.57 

200 0.87 0.83 0.66 0.67 0.98 0.98 
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The power is the highest with FI markers (both parents have different heterozygote 

genotypes at marker locus) and is lowest for PlC markers (parents are heterozygous for 

the same genotype at marker locus). The power of linkage detection increases as the 

number of offspring per family increase. Keeping the number of offspring genotyped 

fixed (say, 1000), then having fewer larger families clearly increases power relative to 

many small families. 

The various levels of genetic variance or the broad-sense heritability at the QTL (H2) 
and different recombination rates between marker and the QTL has significant impact 

on power of QTL detection for all three marker configurations (Table 4). As the 

heritability at the QTL increase the power also increases but a decreasing trend in 

power was obtained for an increase in recombination rate. For a larger H2 = 0. 15 ,  the 

theoretical powers of linkage detection when r = 0. 10 were 0.68, 0.86 and 0.98 for PlC, 

PBC and FI marker loci, respectively, for a sample size of 10 families with 100 

offspring each (Table 4). It also shows that once r is greater than 0. 10 the power of 

linkage detection is very low even if the broad-sense heritability at the QTL is 0. 1 5 .  

Powers were also evaluated with varying dominance ratio at the QTL (Table 5). It 

shows that the theoretical power of linkage detection increases, in general, for PlC and 

FI marker designs whereas it remains constant for PBC designs as the dominance 

increases. However, the rate of increase is large when small number of families with 

large number of offspring are used. For example the power increases from 0. 1 8  to 0.24 

and 0.46 to 0.53 for PlC and FI marker designs with a sample size of 5 families each 

having 200 offspring. The effect of different QTL allele frequencies on the power of 

linkage detection is shown in Table 6. For additive gene action at the QTL, power of 

linkage detection is highest when p = 0.50. 



Table 4. Comparison of theoretically predicted (PR) powers of linkage detection of 3 marker designs for varying number of families (Nj) and 

number of offspring per family (No) where H2 and r represent the broad-sense heritability at the QTL and recombination frequency between 

marker and the QTL. The other assumptions were: type-I error = 0.01 ,  dominance ratio if) = 0.0 and p = 0.50. The powers evaluated from 

simulation experiments (SI) are also given. PBC = pseudo-backcross, PlC = pseudo-intercross, FI = fully-informative. 

Nj = 10, No = 1 00 Nj = 25, No = 40 

PBC PlC FI PBC PlC FI 

H2 r PR SI PR SI PR SI PR SI PR SI PR SI 

0 .05 0.0 0.41 0.43 0.24 0.27 0.60 0 .58  0.23 0.27 0. 1 2  0. 1 1  0.32 0.30 

0. 1 0.21 0.2 1  0. 12  0. 1 1  0.30 0.28 0. 1 1  0. 12  0.06 0.06 0. 14  0. 14 

0.3 0.03 0.03 0.02 0.01 0.04 0.03 0.02 0.04 0.02 0.02 0.02 0.02 

0 . 10 0.0 0.87 0.87 0.69 0.67 0.98 0.97 0.68 0.65 0.42 0.46 0.86 0.87 

0. 1 0.59 0.56 0.38 0.39 0 .8 1 0.77 0.36 0.37 0. 1 9  0.1 8 0.5 1 0.5 1 

0.3 0.08 0.08 0.04 0.05 0. 10  0.06 0.04 0.05 0.03 0 .03 0.05 0.04 

0. 1 5  0.0 0.99 0.96 0.94 0.86 0.99 0.99 0.94 0.90 0.76 0.76 0.99 0.99 

0. 1 0.86 0.88 0.68 0.67 0.98 0.96 0.67 0.66 0.41 0.40 0.85 0.84 

0.3 0. 14 0. 1 5  0.08 0.09 0.20 0.2 1  0.08 0. 10  0.04 0.06 0.09 0.09 
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Table 5.  Effect of gene action at the QTL on power of hnkage detection of 3 marker 

designs. The symbols f (= dJa) denotes the dominance ratio at the QTL. The powers 

given here were evaluated from theoretical prediction (PR) and simulation (SI) at H2 = 

0.05, r = 0. 10, p = 0.50 and type-l error = 0.0 1 .  

PBC PlC PI 

Nf(No) f PR SI PR SI PR SI 

5 (200) 0.0 0.29 0.32 0. 1 8  0.24 0.46 0.48 

0.5 0.29 0.35 0.20 0.26 0.49 0.49 

1 .0 0.29 0.36 0.24 0.3 1 0.53 0.60 

10 (100) 0.0 0.21 0.2 1 0. 1 2  0. 12  0.30 0.28 

0.5 0.21 0.23 0. 1 3  0. 1 5  0.32 0.29 

1 .0 0.21 0.24 0. 1 6  0. 1 8  0.36 0.38 

20 (50) 0.0 0. 13  0. 12  0.07 0.08 0. 17  0. 17  

0.5 0. 13  0. 1 5  0.08 0.08 0. 1 8  0. 17  

1 .0 0. 1 3  0. 1 5  0.09 0. 1 1  0.20 0.22 

Table 6. Effect of gene frequency (P) at the QTL on power of linkage detection of 3 

marker designs. The powers given here were evaluated from theoretical prediction at r 

(recombination rate) = 0.00, f (= dJa) = 0 and type- 1 error = 0.0 1 .  Half the difference 

between QTL homozygotes (Le. ,  a) = 0.30 SD. 

Nf(No) P PlC PBC PI 
5 (200) .20 . 1 5  .25 .39 

.40 .29 .44 .67 

.50 .3 1 .46 .70 

.60 .29 .44 .67 

. 80 . 1 5  .25 .39 

10 (lOO) .20 . 10 . 17 .25 

.40 . 19 .33 .49 

.50 .20 .35 .52 

.60 . 19 .33 .49 

.80 . 10 . 1 7  .25 
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DISCUSSION 

Power of QTL detection in two-generation outbred pedigrees with varying dominance 

ratios, size of the QTL, recombination rates between the marker and the QTL and 

design parameters, was predicted in the present study. Three types of marker 

configurations were investigated. Derivations in the present paper have shown that the 

power of detecting linkage between a fully-informative marker and a QTL can be 

expressed as function of design parameters and parameters describing genetic properties 

of the QTL. A very close agreement was found between the powers from theoretical 

evaluation and stochastic simulation under wide range of situations. 

Effect of family- type on power 

Three types of informative marker configurations in full-sib families were considered in 

the present study. First,  those families where one parent is homozygous for marker 

(MJMJ X MJM2, backcross-type or PBC family); second, those where both parents are 

heterozygous, with the same genotype at marker locus (MJM2 x MJM2, intercross-type 

or PlC family); and third, those where both parents have different genotypes at marker 

locus (MJM2 x M3M4, fully-informative or PI family). The power of the third-type of 

maker configuration was clearly the highest compared to the other two designs for all 

parameter combinations considered in this study (Table 3). This is because the use of a 

fully-informative marker allows all four genotypic classes to be distinguished. If any 

classes were confounded, then power would decrease (MURANTY 1996). GoTZ & 

OLLIVIER (1992) and KNOTI' & HALEY (1992) using sib-pairs analysis and maximum 

likelihood analysis, respectively, also showed that the use of fully informative markers 

would greatly increase the power of QTL detection. In general, the power of backcross­

type families was higher than intercross-type families. Similar results were obtained by 

Luo (1993) and SOLLER & GENIZI (1978). 

Effect of sample size 

The full-sib families were assumed to be independent,  which can be thought of as a 

single-pair mating design structure. Increasing the number of offspring per family was 

found to be more efficient than increasing the number of families for a fixed total 
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population size (Table 3). Table 3 shows that for a given experimental size of 1000, the 

5 families with 200 offspring each (5 x 200) gave higher power compared to 10 x 100 

and 20 x 50 combinations. Similar results were obtained by several researchers (HILL 

1 975, SOLLER & GENIZI 1978, WELLER et al. 1990, Luo 1993, VAN DER BEEK et al. 

1995). 

MURANTY ( 1996) found that the power increases when variance explained by QTL 

and/or population size increases, and when these factors determine a low power level, 

the power decreases as the number of parents increases . However, at a high power 

level, the power increases as the number of parents increases. As a result, MURANTY 

( 1996) suggested that the use of only one full-sib family for QTL detection is often less 

powerful, especially when QTL effects to be detected explain more than 10 per cent of 

phenotypic variance. The reason for this is that the total variance in a population 

attributable to QTL is better sampled with more than two parents than with only two 

parents. However, single full-sib families are being used for QTL mapping studies, for 

example, in eucalyptus (GRAITAPAGLIA et al. 1995) and 10bIolly pine (KNOIT et al. 

1 997). 

Effect of gene action and allele frequency 

In our study we evaluated the effect of additive and non-additive QTL effects on the 

power of linkage detection. REBAl & GOFF1NET ( 1993) suggested that at the QTL 

detection step, it is better to neglect dominance if it is not very large. However, a recent 

study by LI et al. ( 1996) reported that the dominance variance contributes significantly 

to variation in tree height and diameter in loblolly pine. At p = 0.5, the power of PlC 

and PI family type designs increases as the dominance ratio increase. However, at p = 
0.5, there was almost no effect of dominance on the power of PBC-type family design 

(Table 5). Similar results were reported by Luo ( 1993) for PlC and PBC-type family 

designs. Table 5 also showed that power of QTL detection using PI markers is greater 

compared to other two marker designs, at different levels of dominance ratio. For an 

additive gene action, we also evaluated the power of linkage detection at different allele 

frequencies (Table 6). It shows that the power is highest when p = 0.50. The effects of 

gene frequency and dominance become important when the number of families is small. 

This is because the probability that the marker contrast in each family be zero is so 
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large that even an infinite number of offspring will not meet the power requirement 

(SOLLER & GENlZI 1978). This effect is generally unimportant except when a dominant 

allele is also the more frequent. However, with the method presented in our paper, it is 

likely that those families with zero contrast wil l  nevertheless contribute to the 

significance of the variance between marker types within families. Thus, the loss in 

power due to probability of sampling families with zero marker contrast can be 

reduced. 

In this study, only bi-allelic QTL was considered. The use of ful ly-informative markers 

permits the assessment of multiple-allele QTL. Evidence of existence of more than two 

QTL alleles has been reported in loblolly pine (GROOVER et al. 1 994). Degree of 

dominance must be estimated separately from the original QTL analysis. Pedigree and 

population level studies are needed to determine the prevalence of multiple-allele QTL 

(WILLIAMS 1 996). However, the levels of power obtained for detection of linkage 

between a PI marker and a QTL, bi-allelic or multi-allelic, are quite similar under the 

given conditions (MURANTY 1996). 

Comparison of the power of three marker designs revealed that FI marker design was 

more powerful than PBC and PlC deigns. It would be quite useful to consider using 

information from the whole population rather than subsets of it (i .e. ,  combining PlC, 

PBC and PI family types). The joint analysis of any informative family types can be 

done following the suggestions of }(NOTI (1994). Many aIleles in a population are 

necessary to obtain a fully-informative marker for crosses among several parents. 

Isoenzymes and restricted fragment length polymorphisms (RFLP) have seldom met 

this criteria, but micro-satellite (SSR) and expressed sequence tag (EST) techniques 

promise to provide enough alleles and are currently being developed in Pinus radiata. 
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Appendix 1 .  Expected values (Eij ) of the quantitative trait value (y) within observed marker genotype (MiM) of offspring within sibship. 

Parental marker genotypes are: MJM2 x M3M4. The cross represents all possible parental genotypes at the QTL along with their probabilities 

(prob.).  It is assumed that QJQJ - N(a, 0-2), QJQ2 - N(d, 0-2), Q2Q2 - N(-a, 0-2) .  The p and q represents QTL alle1es frequencies and r (s = 1 - r) is 

the recombination rate between marker and the QTL. 

Cross Prob. E13 E14 E23 E24 
QJQJ x QJQJ l a a a a 
QJQJ x QJQ2 p3q a - rea-d) d + rea-d) a - rea-d) d + rea-d) 
QJQJ x Q2QJ p

3q d + rea-d) a - rea-d) d + r(a-d) a - rea-d) 
QJQJ x Q2Q2 pLqL d d d d 
QJQ2 X QJQJ p

3q a - rea-d) a - rea-d) d + r(a-d) d +  rea-d) 
QJQ2 X QIQ2 p2l (l - ?)a + 2rsd (l + r2)d (s7 + 7)d ( - s'-)a + 2rsd 
QJQ2 X Q2QJ p2l (l + ?)d (s'- - I)a + 2rsd (I - l)a +2rsd (s'- + I)d 
QJQ2 X Q2Q2 pl d - rea + d) d - rea + d) -a + red + a) -a + r(d + a) 
Q2QJ X QIQI p

3q d + rea - d) d + rea - d) a - rea-d) a - rea-d) 
Q2QJ x QJQ2 pLq'- (s'- + I)d (? - l)a + 2rsd (l - ?)a + 2rsd (sI. + rL)d 
Q2QJ X Q2QJ II (? - l)a + 2rsd (l + ?)d (l + ?)d (s'- - I)a + 2rsd 
Q2QJ X Q2Q2 pl -a + r(d + a) -a + red + a) d - rea + d) d - rea + d) 
Q2Q2 X QIQJ p2l d d d d 
Q2Q2 X QIQ2 pl d - rea + d) -a + r( a + d) d - rea + d) -a + r( a + d) 
Q2Q2 X Q2QJ pl -a + r( a + d) d - rea + d) -a + r( a + d) d - rea + d) 
Q2Q2 X Q2Q2 l -a -a -a -a 



Appendix 2. Variance [Var (i,j)] of the quantitative trait value (y) within observed marker genotype (MiMj) of offspring within sibship. Parental 
marker genotypes are: MJM2 x M3M4. The cross represents all possible parental genotypes at the QTL along with their probabilities (Prob.). It is 
assumed that QJQJ - N(a, 0"2), QJQ2 - N(d, 0"2), Q2Q2 - N( -a, 0"2). The p and q represents QTL alleles frequencies and r (s = 1 - r) is the 
recombination rate between marker and the QTL. 

Cross Prob. Var (1,3) Var (1,4) Var (2,3) Var (2,4) 
QJQJ x QJQJ p

4 
d d d d 

QJQJ x QJQ2 p
3q d + rs (a - d/ d + rs (a - d/ d + rs (a - d/ d + rs (a - d/ 

QJQJ x Q2QJ p
.:fq d + rs (a - d/ d + rs (a - d/ d + rs (a - d/ d + rs (a - d/ 

QJQJ x Q2Q2 p2l d d d d 
QJQ2 X QJQJ p.:fq d + rs (a - d/ d + rs (a - d/ d + rs (a - d/ d + rs (a - d/ 
QJQ2 X QJQ2 pl.l d + 2rs [a2 + er(1 - d + 2 rsa2 + er (?  + d + 2 rsa2 + er(? + d + 2rs [a2 + er(1 -

2rs)-2da(1 -2r )J i)[1 - (? + i)J i)[1 - (l + i)J 2rs)-2da(2r - 1 )J 
QJQ2 X Q2QJ II d + 2 rsa2 + er(? + d + 2rs [a2 + er(1 - d + 2rs [a2 + er(1 - d + 2 rsa2 + er(? + 

i)[1 - (r2 + i)J 2rs)-2da(1 -2r)J 2rs)-2da(2r - 1 )J i)[1 - (? + i)J 
QJQ2 X Q2Q2 pl d + rs (d + a/ d + rs (d + a/ d + rs (a + d/ d + rs (a + d/ 
Q2QJ x QJQJ p.:fq d + rs (a - d/ d + rs (a - d/ d + rs (a - d/ d + rs (a - d/ 
Q2QJ x QJQ2 pl.ql. d + 2 rsa2 + er(? + d + 2rs [a2 + er(1 - d + 2rs [a2 + er(1 - if + 2 rsa2 + er(? + 

i)[1 - (r2 + i)J 2rs)-2da(2r - 1 )J 2rs)-2da(1 -2r )J i)[1 - (l + i)J 
Q2QJ x Q2QJ p2l d + 2rs [a2 + er(1 - d + 2 rsa2 + er (l + d + 2 rsa2 + er(r2 + d + 2rs [a2 + er(1 -

2rs)-2da(2r - 1 )J i)[1 - (? + i)J i)[1 - (? + i)J 2rs)-2da( 1 -2r)J 
Q2QJ x Q2Q2 pq.:f d + rs (a + d/ d + rs (a + d/ d + rs (a + d/ d + rs (a + d/ 
Q2Q2 X QJQJ p2q.t. d d d d 
Q2Q2 X QJQ2 pq.:f d + rs (a + d/ d + rs (a + d/ d + rs (a + d/ d + rs (a + d/ 
Q2Q2 X Q2QJ pq3 

d + rs (a + d/ d + rs (a + d/ d + rs (a + d/ d + rs (a + d/ 
Q2Q2 X Q2Q2 q4 

d d d d 



Chapter 2: Detecting linkage in full-sib families 25 

Appendix 3. Mean and variances between marker genotype classes within sibships. 

Parental marker genotypes are: MJM2 x M3M4. The cross represents all possible 

parental genotypes at the QTL along with their probabilities (Prob.), Eij represents the 

expected value of offspring having marker genotype MiMj. It is assumed that QJQJ -

N(a, oZ), QJQ2 - N(d, oZ), Q2Q2 - N( -a, oZ). The p and q represent QTL alleles 

frequencies and r Cs = 1 - r) is the recombination rate between marker and the QTL. 

Cross Prob. 1/4(E13 +EJ4 + E23 + Variance between En E]4, E23, E24 

E24) 

QJQJ x QJQJ p4 
a 0 

QJQJ x QJQ2 p3q Y2 (a + d) 1/4 (s - r)Z(a - d)Z 

QJQJ X Q2QJ p3q 111 (a + d) 1/4 (s - r)Z(a - d)2 

QJQJ X Q2Q2 iq2 d 0 

QJQ2 X QJQJ lq Y2 (a + d) 1/4 (s - r)Z(a - d)Z 

QJQ2 X QJQ2 il Y2 d 111 [Cs - r)zaz +(r2+i)zdz +4?id2] - 114  � 

QJQ2 X Q2QJ pl.l Y2 d Y2 [Cs - r)za2 +(rl.+l)l.dz +4rl.l�] - 1/4 dZ 

QJQ2 X Q2Q2 pl Y2 (d - a) 114 (a + d)z (s - r)z 

Q2QJ x QJQJ iq Y2 (a + d) 1/4 (s - ri(a - d)Z 

Q2QJ X QJQ2 pLqL Y2 d Y2 [Cs - r)2a2 +Cr+s2)zd2 +4rs2dL] - 1/4 d2 

Q2QJ x Q2QJ p2l Y2 d Y2 [Cs - r)laZ +Cr+l)ldz +4rldL] _ 1/4 dL 

Q2QJ X Q2Q2 pl Y2 Cd - a) 1/4 Ca + d)z Cs - r)z 

Q2Q2 X QJQJ p2q2 d 0 

Q2Q2 X QJQ2 pl Y2 (d - a) 1/4 (a + d)z (s _ r)z 

Q2Q2 X Q2QJ pq3 Y2 (d - a) 1/4 Ca + d)z (s _ r)z 

Q2Q2 X QzQ2 l -a 0 
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ABSTRACT 

In forest trees which are nonnally outcrossing, inbreeding by self-fertilisation (selfing) 

generally has deleterious effects including reduced seed set, poor seed germination, and 

slow seedling growth. Inbreeding depression (ID) is mainly caused by deleterious 

alleles that will be almost never expressed under panmixis. Until the advent of 

molecular markers, there has been no way to track most of the individual genes causing 

ID. In this study, the theory for a single-marker ANOV A method was developed to find 

the linkage between a marker locus and a gene causing ID in growth traits in self­

families of outbred populations. The power of linkage detection, which was at the lower 

limit because of single-marker method, was calculated for a wide range of progeny 

sizes and genetic parameters at the quantitative trait locus (QTL). The magnitude of the 

gene effect was found to have an enonnous effect on the power. The situations where 

the QTL detected in a self-family can be considered as those expressed in nonnal 

course of outbreeding are also discussed. 

Key words: Selfing, inbreeding, molecular marker, QTL, outbred. 

INTRODUCTION 

Inbreeding, which is reduction in heterozygosity across the genome resulting from 

mating among relatives including selfing, usually affects the phenotypic perfonnance of 

inbred offspring. The deleterious effect of inbreeding on the phenotype is tenned as 

inbreeding depression. In outbreeding forest trees, inbreeding by self-fertilisation 

(selfing) generally has highly deleterious effects which include reduced seed set, poor 

seed germination, slow seedling growth and abnonnal morphology (WILLIAMS & 

SAVOLAINEN, 1996). Inbreeding depression (ID) is a complex quantitative phenomena, 

presumably controlled by many deleterious genes of different magnitudes of effects. 

Inbreeding depression is common and severe in many tree species, particularly conifers 

which are believed to have large numbers of recessive embryo lethals and post­

germination lethals. 

There are various genes affecting components of fitness such as viability and 

vigour/growth. Most reports of ID in conifers centre on embryo-stage lethals and other 
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deleterious recessives which affect seedlings. The number of reduced filled seed upon 

selfing is attributed to embryo mortality because they are homozygous for lethals or 

deleterious genes which act at early stages of development. The reduction in viability 

upon inbreeding is well-studied, and number of lethals equivalents have been estimated 

for various species (Wll.l...IAMS & SAVOLAINEN, 1996). Many studies have reported that 

selfed seedlings have higher mortality than outcrossed seedlings (Y ADZANI et al. , 1985; 

PLESSAS & S1RAUSS, 1986; MUONA et al. ,  1987). Selfed progeny also exhibit strong ID 

for growth at early ages (FRANKLIN, 1970 and 1 972; WILCOX, 1 983). 

From the seedling stage onward, many quantitative characters such as growth are 

considered. The effect of ID on growth traits has been studied widely. In this study, we 

will use the term "performance genes" to refer to the genes which are expressed in fully 

viable (but not necessarily very fit) genotypes. Performance genes should play an 

important role in expression of ID since strong ID usually occurs at least in later stage 

of the life cycle of many plants (see CHARLES WORTH & CHARLESWORTH, 1987; 

HUSBAND & SCHEMSKE, 1996). WILCOX ( 1 983) reported no ID for wood density and 

bole straightness in selfed offspring of some parents (measured at 7-8 years) of radiata 

pine (Pin us radiata D. Don). However, other growth traits like height and diameter 

showed severe ID. One study on Norway spruce (Picea abies L.) showed little ID (6%) 

for wood density at age 10 years (SKR0PPA, 1 996). 

Several authors have discussed the possibilities of using selfing as a breeding tool in 

forest trees (BARKER & LIBBY, 1974; LINDGREN, 1975;  WILCOX, 1983; Wll.l...IAMS & 

SAVOLAINEN, 1996). The advent of specialty populations bred specifically for quality 

and for disease resistance has created a great interest in studies on ID in these traits. 

Multi-generation studies of inbreeding are required to study the genetic basis of ID and 

especially to test whether it is possible to eliminate or purge deleterious alleles 

(WILLIAMS & SAVOLAINEN, 1 996). Purging of deleterious alleles will be more effective 

and efficient if the alleles can be associated with molecular markers so that marker­

aided-selection (MAS) may be used to identify and eliminate the deleterious alleles 

(KUANG et al. ,  1998). However, one must use large numbers of offspring per self-fertile 

parent to select strongly and effectively against loss of vigour or other performance 
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indicators. Juvenile traits and markers linked to older-tree traits could be selected in the 

first-stage culling (WnLIAMS & NEALE, 1992). 

DETECTING MARKER-QTL LINKAGE 

Using molecular markers it is now relatively straightforward to create a genetic map of 

the genome to identify loci affecting quantitative traits (QTLs) of interest. Detection of 

QTLs in self-families, however, is not the same as in outbred pedigrees. There can be 

up to four alleles segregating at a locus in an outbred full-sib pedigree. It would result 

in various mating type configurations (e.g. backcross, intercross and non-informative 

types) with respect to a marker locus. Power of QTL detection experiments in full-sib 

pedigrees of outbred forest trees has been studied theoretically (e.g., MURANTY, 1996; 

KUMAR et al. , 2000). An informative selfed pedigree has a two-allele 'intercross' 

mating type configuration at a locus. The other major difference is regarding the 

specific QTLs being detected. Some of the QTLs in self-families will represent genetic 

load; however, there will be some individuals without appreciable load so the QTLs 

detected in these self-pedigrees would be similar to those expressed under the normal 

course of outbreeding (PLO:rvrrON et al. , 1996). 

Molecular markers are increasingly used in self-families of outbred organisms to find 

genes causing inbreeding depression in viability and growth traits (BEDRICK & MUONA, 

1 990; Fu & RITLAND, 1994a,b; PLO:rvrrON et al. ,  1 996; KUANG et al. , 1998). While 

mapping performance loci involves the comparisons of quantitative trait means among 

marker genotypes, mapping viability loci involves analysis of marker genotype 

frequencies. Different analytical methods are required to characterise genes affecting 

various fitness-related components such as viability and growth. 

BEDRICK & MUONA ( 1990) used a single-marker approach to detect and characterise 

viability alleles in Scots pine (Pinus sylvestres L.). Fu & RITLAND ( 1994a) studied the 

statistical properties of mapping recessive viability loci using the single-marker 

approach. Also, they showed that two flanking markers provide vastly superior 

estimation properties and reduced sample sizes compared to those required by a single 

marker. KUANG et al. ( 1998) used a single marker approach to find an allele responsible 

for seedling death in radiata pine. To detect viability genes, segregating families are 
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analysed by chi-square tests for deviations from the Mendelian segregation ratio 1 :2: 1 

at a codominant marker locus. 

Fu & RrrLAND ( 1994b) used a single-marker analysis of variance (ANOVA) approach 

to draw inferences about performance genes (labelled "fecundity" genes by the authors) 

contributing to ID in fitness (growth) traits from an experimental data containing two 

self-families of Mimulus guttatus DC (Scrophulariaceae). PLOMION et al. ( 1996), using 

experimental data from a self-family of a hybrid tree of maritime pine, showed a higher 

efficiency of interval mapping compared to single-marker ANOV A approach for 

detecting QTLs for a growth trait (height). The expected power of interval mapping 

(LANDER & BOTSTEIN, 1 989) or multiple-marker mapping (KNOTT et al., 1 996) will 

certainly exceed that from single-marker approach. Thus, the power of linkage 

detection calculated from single-marker approach will provide the lower limit. Except 

for a few experimental studies, not much theory has been developed to quick-screen 

different types of experimental designs (or specifically, size of mapping populations) 

required for finding linkage between a marker locus and a performance-trait locus in 

self-families of outbred populations. 

The objective of this study was to develop theory for a single-marker ANOVA method 

for finding the linkage between a codominant marker locus and a performance locus in 

self-families of outbred populations. This paper re-examines the utility of selfing, in the 

light of available molecular marker technology, in breeding programmes of outbred 

species. This paper also discusses the situations where the QTLs detected in self­

families can be interpreted as QTLs that are expressed in the normal course of 

outbreeding. 

Basic Assumptions and Statistical Model 

The method involves analysing progeny from self-families in a normally outbreeding 

population. Two autosomal loci are considered; one of them affects a quantitative trait 

(QTL) while the other is a codominant marker. The marker and the QTL are assumed to 

be in linkage equilibrium. The two loci are linked with a recombination frequency of r 

(s = 1 - r). Let the frequency of allele QJ at the QTL be denoted as p (q = 1 - p), and the 

phenotypic distributions of different genotypes at the QTL i .e. ,  QIQI ,  QIQZ and QzQz 
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are assumed to be normally distributed with means :  a, d ,  -a, respectively and common 

variance (j2. The a and d represent the additive and dominance effects at the QTL. With 

just one QTL and no other gene effects, (j2 will be the environmental variance, whereas 

in the presence of unlinked QTLs, it will also include 'background' genetic variance at 

these loci (e.g . ,  polygene variance). 

Parents are assumed to be heterozygous at the marker locus. Since the parent is being 

selfed, the marker-QTL genotypes of male and female parents are identical . Let the 

parental genotype at the marker locus be MIM2 and three marker genotype classes (M = 

3) are distinguishable in the selfed progeny: M1M1 ,  M1M2, and M2M2 segregating with 

a 1 :2 : 1 ratio.  Let nij denote the number of sibs within the jth marker class within the ith 

self-family. Also each family (Nf) has a constant size of No and thus the total 

experimental size is Nf x No. 

In carrying out a simultaneous analysis of several self-families, it is necessary to take 

into account that linkage relationship between a marker and a performance locus will 

differ among different individuals. A hierarchical ANOV A can be applied which allows 

marker effects to change sign over sibships. The linear model for the phenotype of the 

quantitative trait measured on the kth sib (k = 1 , 2 ,  . . .  , nu ) with the jth marker genotype 

(j = 1 , 2, . . . , M) within the ith family ( i = 1 ,  2, . . .  , Nf) can be written as: 

( 1 )  

where f.J i s  an overall mean, ai ' f3;j and eijk are contributions from the family, from the 

marker genotype within family and a random contribution of environment to the 

individual , respectively. They are assumed to be independently and normally distributed 

with zero means and variances O'� , 0'; and O'e
2

, respectively. The ANOVA for this 

model is given in Table 1 .  

Under the assumption of a constant size of sibship (No) and 

ni l  " ni2 " ni3 :::: 1 : 2 : 1 ,  

the approximation for no will be : no :::: (5/16) No. 

(2) 

(3) 



Chapter 3: Detecting linkage in self-families 

Table 1 .  ANOV A for a two-factor completely nested design. 

Source Degrees of MS 
freedom 

Between families Nf - l  MSs 

Between marker genotypes within L(M; - 1) MSrn 
families 
Within marker genotype within L. (nij - 1) MSw 
families 

EMS 

-

2 2 
ae + noap 

a
2 
e 

32 

All possible marker-QTL genotypes of parents and the gametes inherited by the 

offspring are given in Table 2 with their probabilities. Using these probabilities, the 

expected values of the quantitative trait value, y, were obtained for different marker 

genotypes of offspring (Table 3). 

Table 2. Probabilities of various gametes inherited from parents to progeny. 

Recombination rate between marker and QTL is r. 

Parental Gametes 

genotype M\Q\ M\Q2 M2Q\ M2Q2 

MIQI / M2QI  1/2 0 112 0 

MIQ\ I M2Q2 ( 1  - r) 1 2  r/2 r/2 ( 1  - r)/2 

MIQ2 / M2QI r/2 ( 1  - r)/2 ( 1  - r)/2 r12 

MIQ2 / M2Q2 0 112 0 112 

Table 3. Expected values of quantitative trait value (y) within families within marker 

genotypes. Assuming that Q\Q\ - N(a, 02), Q\Q2 - N(d, 02), Q2Q2 - N(-a, 02). The 

cross represents all possible parental genotypes at the QTL along with their 

probabilities (Prob) , �j represents the expected value of offspring having marker 

genotype MiMj. The p and q represent QTL alleles frequencies and r (s = 1 - r) is the 

recombination rate between marker and the QTL. 

Cross Prob El l  E\ 2  E22 

Q IQ l  p2 a a a 

Q IQ2 pq a ( 1  - 2r) + 2rsd ( r2 + s2 )d -a (1 - 2r) + 2rsd 

Q2Q l pq -a ( 1  - 2r) + 2rsd ( r2 + s2 )d a (1 - 2r) + 2rsd 

Q2Q2 q2 -a -a -a 
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Similarly, the variances of the trait value within families within marker genotypes were 

derived (Table 4). Finally, the variances between marker genotype classes within 

families were obtained (Table 5). 

Table 4. Variance of the quantitative trait value (y) within families within marker 

genotypes. Assuming that QIQI - N(a, 0'2), QIQ2 - N(d, 0'2), Q2Q2 - N(-a, 0'2). The 

cross represents all possible parental genotypes at the QTL. The probability of each 

cross is similar to that given in Table 3. Vij represents variance within marker genotype 

MiMj.  The p and q represent QTL alleles frequencies and r (s = 1 - r) is the 

recombination rate between marker and the QTL. 

Cross Vl l  V I2 V22 

Q1Ql  0'2 0'2 0'2 

Q1Q2 0'2 + 2rs[a2+d\ 1 - 0'2 + 2rs[a2 + d2( 1 - 0'2 + 2rs[a2+d2( 1  -

2rs) - 2ad (1  - 2r)] 2rs)] 2rs) + 2ad (1 - 2r)] 

Q2Q1 0'2 + 2rs[a2+d2(1  _ 0'2 + 2rs[a2 + d2( 1 _  0'2 + 2rs[a2+d2( 1  -

2rs) + 2ad ( 1  - 2r)] 2rs)] 2rs) - 2ad ( 1  - 2r)] 

Q2Q2 0'2 0'2 0'2 

Table 5. Mean and variances between marker genotype classes within families. 

Assuming that QIQI - N(a, 0'2), QIQ2 - N(d, 0'2), Q2Q2 - N(-a, 0'\ The cross represents 

all possible parental genotypes at the QTL. The probability of each cross is similar to 

that given in Table3. Eij represents the expected value of offspring having marker 

genotype MiMj- The p and q represent QTL alleles frequencies and r (s = 1 - r) is the 

recombination rate between marker and the QTL. 

Cross Mean = O.25( El l+2EI2+E22) Variance between El l , E1 2, E22 

Q1Q1  a 0 

Q1Q2 Y2 d Y2 ( 1 -2r/a2 + � ( 1 -2rtd2 

Q2Q1 Y2 d Y2 ( 1 -2r}Ga:t + � ( 1-2rtd:t 

Q2Q2 -a 0 
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Using the results from Table 3, 4 and 5, the expected variances: between families ( a� ), 

between marker genotypes within-families ( a� ), within-marker genotype within­

families ( a; ) ,  and total phenotypic variance ( a; ) were derived as: 

a� = 2pq[a2 + 0.25d2 (1 - 2pq) - ad(p - q)] 

a� = 2pq[0.5(1 - 2r)2 a2 + 0.25(1 - 2r)4 d2 ] 

(4) 

(5) 

a; = (72 + 4pqrs[a2 + d2 (1 - 2rs)] (6) 

a;' = a2 + 2pq {a2 ( 1  + F) + d2 (1 - F)[ I - (1 - F)2pq]  - (p - q)2ad(1 - F) } (7) 

Total genetic vanance, VG, arising from one locus (QTL) for given inbreeding 

coefficient (F) can be written as (KEMPTIIORNE, 1973): 

VG = 2pq{a2 (1 + F) + d2 (1 - F)[I - (1 - F)2pq] - (p - q)2ad(1 - F) } (8) 

The value of the inbreeding coefficient (F) after one generation of selfing will be 0.50 

in equations (7) and (8). When F = 0, the expression in equation (8) becomes the 

genetic variance at a locus in random mating populations. From equation (5) it can be 

easily shown that the expected variance between marker genotypes within families ( a� ) 

will be zero if there is no linkage between the marker and the QTL, i .e. , r = s = 0.5. 

Under the null hypothesis (Ho: r = 0.5) the ratio MSm / MSw (Table 1) is distributed as a 

central F-variable; whereas this ratio will be a noncentral F-variable when r is less than 

0.5 (JAYAKAR, 1970; Luo, 1993). Using the standard definition, the power function for 

linkage can be written in the following general form: 

Power = Pr [Fev I , v2; 8) > Fea; v I , v2) ] , (9) 

where F(v ] , v2; 8) is a noncentral F-variable with degrees of freedom VI and V2 and 

noncentrality parameter &, while F(a; vI , v2) is the upper a point of a central F-variable 

with degrees of freedom VI and Vz. The value of noncentrality parameter, 8, was 

calculated as (Luo, 1993): 
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( 10) 

Using different combinations of design parameters (Nf and No), genetic parameters at 

the QTL (p, dominance ratio if = d/a) and recombination frequency (r), the 

noncentrality parameter can be calculated. After that power can be easily calculated 

using (9). 

The variance components derived in equations (4) to (7) are for a multiple self-families 

situation. For the single self-family case, the expected variance ratios for each cross 

type were derived following JAYAKAR, (1970) and given in Table 6. These variance 

ratios have an expected value of 1 in the absence of linkage, and are distributed as F­

variables. Table 6 shows that the excess of expected value of F-variable over 1 is given 

by K(No - 1 )  where K is ratio of between-marker genotype variance to within-marker 

genotype variance. Under the alternative hypothesis of linked QTL, these variance 

ratios will follow noncentral F-distribution with noncentrality parameter K(No - 1) .  

Thus, for a single self-family the power of marker-QTL linkage detection was 

calculated separately for each cross type and then were pooled together using the 

probability of each cross type. 

Table 6. Expected variance ratios in the single self-family with the probabilities of their 

occurrences. 

Cross Probability Expected variance ratio 

Q1Q1  p2 1 

Q 1Q2 pq (No - 1)(0.5(1 - 2r)2 a2 + 0.25(1 - 2r)4 d2 ) 
1 + a2 + 2rs(a2 + d2 (1 - 2rs» 

Q2Q 1 pq (NO - 1)(0.5(1 - 2r)2 a2 + 0.25(1 - 2r)4 d2 ) 
1 +  

a2 + 2rs(a2 + d2 (1 - 2rs» 

Q2Q2 q2 1 

RESULTS AND DISCUSSION 

The variance component expressions were used to calculate the power of marker-QTL 

linkage detection in independent self-families. Different combinations of design 
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parameters (Nr, No) along with parameters at the QTL such as dominance ratio, allele 

frequency, size of gene effect were used in deterministic simulation. The variance 

contributed, as a function of allele frequency and gene action, by a selfing locus to the 

breeding population is shown in Figure 1 .  It shows that when the gene action at the 

QTL is purely additive then the variance explained will be maximum only when p = q = 

0.50. However, for dominant gene action, the maximum variance contributed by QTL 

will be at a lower allele frequency (p) of about 0.35. It can be seen that the variance 

contributed by a locus is higher when gene action is dominant and the frequency (p) is 

less than 0.70 (Figure 1) . It suggests that the power of detecting linkage between a 

marker locus and a dominant gene would be higher compared to that of an additive 

gene unless the dominant gene is close to fixation (p is close to 1 .0, which will tend to 

occur in most cases of genetic load alleles of large effects). 

0. 1 0  

0.08 
c: 0 0.06 :+= ttI 

.;:: ttI 0.04 > 

0.02 

0.00 
0.00 0.20 DAD 0.60 0.80 1 .00 

Gene frequency (p) 

Figure 1 .  Change in the contribution made by a gene to the variation of a breeding 

population according to the frequency and gene action. Half the difference between 

QTL homozygotes (i .e . ,  a) = 0.30 SD. The dominance ratio (f) = 0 and 1 represent 

additive and dominant gene action, respectively. 

Effect of Sample Size 

The effect of different levels of dominance at the QTL, on the power of linkage 

detection is shown in Figure 2. It shows that as the dominance increases the power also 

increases . However, for a single self-family the maximum achievable power is only 0.5. 
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Figure 2. - The power of marker-QTL linkage detection. Different gene actions 
considered are: A: Additive, B :  Partial-dominance, C: Dominant, D: Over-dominance. 
The other assumptions are: p (allele frequency of dominant allele, QI)  = 0.5, 
recombination rate ( r )  = 0.0, Type1 error rate = 0.0 1 ,  half the difference between QTL 
homozygotes (i .e. ,  a) = 0.30 SD and NF = number of self-families. 
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1
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� �:� +--+---��..---.--

1 
0 .8  .... � 0.6 

o 0 . 4  a.. 
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1 00 200 300 400 500 
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1 0 0 200 300 400 5 0 0  
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It also shows that for a large number of families the power of finding marker-trait 

association i s  higher compared to a single self-family. This i s  simply because of the 

high probability of finding segregating (at the QTL) families with a large number of 

families. Nevertheless increasing the number of offspring per family was found to be 

more efficient than increasing the number of families for a fixed total population size 

(Figure 2). Similar results have been reported by several authors (HnL, 197 5 ;  SOLLER & 

GENIZI, 1978;  WELLER et al., 1990). It might, however, be in practice quite difficult to 

meet the sample size requirement in self-families because of empty seeds or high 

seedling mortality. 

Effect of Gene Action and Gene Frequency 

The effect of gene action and gene frequency, on the power of linkage detection, in a 

multi-fami ly situation is shown in Table 7. It shows that for a fixed size of gene effect 

and recombination rate the power of linkage detection is slightly increasing with the 

dominance ratio (f). As the QTL allele frequency departs from the intermediate 

frequency (0. 5), the power decreases. 

Table 7. The effect of gene frequency (p) and gene action (f = d/a) on the power of 

linkage detection in a multiple self-fami lies situation. The half the difference between 

two QTL homozygotes (a) = 0.30 SD, recombination rate (r ) = 0. 10, and type-l error 

rate = 0.0 1 .  

f = O.O f =  0.50 f =  1 .0 f =  1 .5 

p = p = p = p = 
Nr No .25 .50 .75 .25 .50 .75 .25 .50 .75 .25 .50 .75 

5 1 00 . 10 . 1 6 . 10 . 1 1  . 1 8  . 1 1  . 1 6 .25 . 1 5 .25 .38 .23 

300 .53 .73 .53 .59 .78 .57 .73 .89 .7 1 .89 .97 .87 

500 .86 .96 .86 .90 .98 .89 .96 .99 .96 .99 1 .0 .99 

10 100 . 1 9 .3 1 . 1 9 .22 .36 . 2 1  .32 .49 .29 .49 .69 .45 

300 .85 .96 .85 .89 .98 .88  .96 .99 .96 .99 1 .0 .99 

500 .99 .99 .99 .99 1 .0 .99 .99 1 .0 .99 1 .0 1 .0 1 .0 
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The effect of a wide range of parameters on the power of linkage detection in a single 

self-family was also investigated and the results are given in Table 8 .  It shows that as 

the difference between two QTL homozygotes increases the power of linkage detection 

also increases. Recombination rate between marker locus and the QTL has a enormous 

effect on the power. When there is no recombination (r = 0.0, marker and the QTL are 

on the same position on the chromosome) the power of marker-QTL linkage detection 

is quite high compared to when the QTL is about 10 cM (r = . 10) away from the 

marker. A dense map will improve our ability to find close linkage between marker and 

the QTL. Table 8 also shows that if the frequency of the QTL allele is high or low, then 

the power of detecting QTL will be less compared to that for intermediate frequencies. 

Table 8. The effect of gene frequency (p), gene action (f = d/a) and recombination rate 

( r ) on the power of linkage detection in a single self-family. Half the difference 

between two QTL homozygotes (a) were : 0.20 and 0.40 SD, and type- l error rate = 

0.0 1 .  

f =  0 f =  1 .0 

a =  .20 a =  .40 a =  .20 a = .40 

p No r = O  r =  . 10 r =  0 r =  . 10 r = O  r =  . 10 r =  0 r =  . 10 

.25 100 .04 .02 . 19 . 1 1  .06 .03 .30 . 16 

300 . 14 .08 .37 .33 .22 . 1 1  .38 .37 

500 .24 . 15 .38 .37 .32 .20 .38 .38 

.50 100 .05 .03 .27 . 1 5  .07 .04 .39 .22 

300 . 1 8  . 10 .49 .44 .28 . 14 .50 .48 

500 .32 . 1 9  .50 .50 .43 .27 .50 .50 

.75 100 .04 .02 . 1 9  . 1 1  .05 .03 .28 . 15 

300 . 14 .08 .37 .33 .21  . 1 1  .38 .36 

500 .24 . 1 5  .38 .37 .32 .20 .38 .38 

For the dominant gene action at the QTL, the power of linkage detection is slightly 

higher when the QTL allele is less frequent compared to when its frequency is higher in 

the population. Similar results were reported by Luo ( 1993), however, in random 

mating populations. 
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In this study, the power of linkage detection between a codominant marker locus and a 

performance locus in self-families was obtained deterministic ally using the single­

marker approach. KNOTI et al. ( 1996), using stochastic simulations for outbred half-sib 

pedigrees, showed that the single-marker method provides the lower limit of the power 

and it can be increased using multiple-marker methods. They found that the increase in 

power from the use of multiple markers was greatest when markers were close together 

and the power was intermediate. Thus, the expected powers for different scenarios 

shown in this  study should be considered as the lower limit. The methodology 

presented here provides a useful tool to enable quick screening of different scenarios 

(experimental and genetical) deterministic ally before establishing a QTL mapping trial 

in self-families of outbred populations. However, the flanking marker methods or 

multiple-marker methods should be preferred to analyse the experimental data because 

of their higher efficiency. 

Detection of linkage between a codominant marker locus and a performance locus is 

based on the measurements of growth traits on survivors in self-families. A molecular 

marker linked with 'non lethal' ID-affecting locus (performance locus) should not show 

segregation distortion unless it is also linked to a lethal gene affecting viability. Our 

study is aimed at detection of linkage between a codominant marker locus and a 

performance locus and thus, the theory developed here is based on the assumption that 

the three marker genotypes are segregating in the ratio of 1 :2: 1 .  Selection of a locus 

affecting fitness trait (e.g., growth trait) may occur with or without segregation 

distortion. Fu & RITLAND ( 1994b) found performance genes contributing to the ID in 

vigour traits in self-families of M. guttatus. The observed frequencies of marker 

genotypes at about half of the marker loci linked to the performance genes were 

different from the expected frequencies ( 1 :2 : 1 ) .  Generally, the power to test means is 

greatest when sample sizes of each mean are equal (Personal communication with 

Professor KERMIT RrrLAND). We have not studied, in our paper, about the magnitude of 

effect of segregation distortion on the power of detecting linkage between a marker 

locus and a performance locus. In the progeny of non-inbred parents, the power of QTL 

detection was shown to be less when there is a distorted segregation ratio (SCHAFER­

PREGAL et al., 1996). 
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IMPLICATIONS FOR BREEDING 

Selfing in outcrossing forest trees usually results in inbreeding depression, with much 

reduced seed set and vigour. However, the use of selfs for progeny testing in normally­

outcrossing forest tree species can in principle be highly efficient, and has been 

advocated by several researchers (BARKER & LmBY, 1974; LINDGREN, 1975; WRIGHT, 

1980; WILLIAMS & SAVOLAINEN, 1996). Selfing and sib-mating as a breeding tool has 

been revived because of the growing interest in small elite breeding populations. 

Performance of self-families can be a reliable indicator of general combining ability 

(OCA) under outcrossing. WILCOX (1983) noted that some families showed negligible 

load such that for those particular families self-family performance will give a good 

guide to breeding values. In the face of the parental differences in ID, self-family 

information could be used to give reasonable estimates of breeding value by culling the 

data from all but the strongest individuals within families (BARKER & LmBY, 1 974). 

Performance genes contributing to ID can be found more reliably and efficiently by 

conducting parallel studies on self and outcross families of the same parents. The 

simplest option might be to use pair-crosses in conjunction with self-families. Once 

molecular markers linked to performance genes contributing to ID are found, the mode 

of gene action can be studied to help understand the genetic basis of ID (e.g. ,  Fu & 

RmAND, 1 994b). Using these marker-trait associations, self-families can be culled for 

inferior individuals, at a very early stage (depending on the age at which genetic load 

al1eles are expressed) ahead of phenotypic expression, which are thus identified as 

probable homozygotes for deleterious recessive genes. However, one must use a large 

number of offspring per self-fertile parent to select strongly against loss of vigour 

(WILLIAMS & SAVOLAINEN, 1 996). After culling for inferior individuals, the 

performance of self-families would be a reliable indicator of OCA under outcrossing. 

Also, the genetic correlation approach of BURDON & RUSSELL ( 1998) can be used as an 

indication of inherent reliability within a population of self-family information as a 

guide to parental breeding value. In the absence of non-additive genetic variance, we 

can expect a perfect genetic correlation between self-performance and outcrossed 

breeding value (OCA). 
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ID is the reduction in fitness and thus if some fitness trait (e.g., height, diameter etc.) 

shows an association with a marker in selfed progenies, then the linked QTL can be 

called as ID-related. However, PLOMION et al. ( 1996) used a self-family of a hybrid tree 

of maritime pine for mapping QTLs (ID-independent) for early seedling growth because 

there was no evidence of genetic load in this outcrossed tree. The absence of genetic 

load in their study could be considered as a fortuitous, essentially stochastic effect. 

However, parents that show no ill-effects from selfing and also exhibit high 

performance for traits of direct economic value may be used for mapping QTLs that are 

expressed in the normal course of outbreeding. There are other traits not obviously 

associated with fitness (e.g. ,  leaf shape, flower colour etc .) .  The QTL found for these 

traits using selfed progenies would be ID-independent and can be considered as those 

expressed in normal course of outbreeding 
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ABSTRACT 

The objective of this study was to detenrune the genetic location and effects of genomic 

regions controlling wood density at three stages i .e., rings corresponding to ages 1-5 

(WD1_5), rings corresponding to ages 6-10 (WD6_1O) and outer wood density (WDI4) 

in a full-sib pedigree (850.055 x 850.096) of Pinus radiata. The number of offspring 

measured at these three stages were 80, 93 and 93, respectively. Only a single linkage 

group of the parent 850.55 was considered for mapping quantitative trait loci (QTLs). 

A multiple marker least-squares approach was used for mapping QTLs for each of the 

three traits , using a single-QTL model. Logistic regression was used for multiple-trait 

QTL mapping. Critical values for test-statistic were calculated empirically by 

'shuffling' the data. A putative QTL with large effect on WDC5 appears to be 

segregating at 73cM position (experimentwise P < 0.01) .  The width of the 95% 

boots trap confidence interval for this putative QTL was 40 cM (i .e. 56-96 cM). The 

effect of this QTL on the expression of wood density at later stages was diminished. 

From multiple-trait analysis, two marker locations (at 66 cM and 9 1  cM) were found to 

be significantly associated (experimentwise P < 0.05) with the expression of wood 

density at different ages. These results are encouraging for the application of marker 

information to early selection in order to increase juvenile wood density, although the 

putative QTLs detected in this study need to be verified in an independent population. 

Key words: Quantitative trait loci (QTLs), Pinus radiata, wood density, linkage group 

INTRODUCTION 

Many traits of economic importance in plants and animals are of a quantitative nature. 

That is, the observed phenotypes are continuously distributed and reflect the action of 

many quantitative trait loci (QTL) together with environmental effects. The availability 

of genetic markers has allowed experimental studies in a number of species to explore 

the nature and location of some of these QTLs (DE KONING et al. 1 998). These studies 

will provide insight into the control of these economically important traits, and may 

enhance breeding programmes through opportunities for marker-assisted selection. 

QTL mappmg studies in crop plants have been performed using segregating 

populations derived from crosses between inbred lines (e.g., TANKSLEY et al. 1982; 
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EDW ARDS et al. 1987). Such populations are not available in trees and will be difficult 

to obtain for many species owing to high genetic load and long generation times. It is 

common to use full-sib families as mapping populations in QTL studies in outbred 

forest trees (e.g. ,  PLOMION et al. 1996; !(NOTI et al. 1 997; EMEBIRI et al. 1998). 

Linkage analysis in a pedigree formed from crosses between two unrelated highly 

heterozygous trees is complex, as up to four alleles might be segregating at a locus. 

Tracking the inheritance of mUltiple alleles at QTL in an outbred pedigree necessitates 

the use of codominant multi allelic markers. However, for radiata pine there are 

presently insufficient multiallelic markers to construct a dense linkage map. 

GRATIAPAGLlA & SEDEROFF (1994) adopted a 'two-way pseudo-testcross' approach 

with RAPD (random amplified polymorphic DNA) markers to construct linkage maps 

for each parent of a full-sib family of Eucalyptus. RAPD markers, in pseudo-testcross 

mapping configuration, are those which are in a heterozygous state in one parent and 

homozygous in the other, or vice-versa; therefore, separate sets of linkage data are 

obtained for each parent .  As one of the parents of a full-sib pedigree (in pseudo­

testcross mapping strategy) is non-informative at the RAPD marker loci (which means 

no information on QTUmarker linkages can come from non-informative parent), the 

inheritance of the gametes from the heterozygous parent can be analysed assuming a 

half-sib design. The advantage with this approach over the conventional half-sib design 

(where the marker information is usually available only on one parent) is that at each 

marker locus we know unequivocally which parent allele each offspring has inherited. 

It is not uncommon to use the information from one marker at a time to analyse the 

marker-trait data using analysis of variance (ANOVA) techniques (WELLER et al. 1990; 

GROOVER et al. 1994). HALEY et al. ( 1994) showed bias in the estimated position of the 

QTLs can be reduced by including all markers in a linkage group. !(NOTI et al. ( 1996), 

using a simulation study, showed that the multiple-marker technique has a higher 

power of detecting a putative QTL as compared to single-marker ANOV A method. 

The present study demonstrates the use of the mUltiple marker techniques for the 

analysis of data from a pseudo-testcross mapping design, in a two-generation pedigree 

of radiata pine. A stepwise approach for the QTL analysis is presented here. Initially, 

we used exploratory analyses (VISSCHER & HALEY 1 996; !(NOTI et al. 1997; DE 
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KONING et al. 1998), in which trait scores are regressed onto selected marker 

information in an attempt to determine whether the inheritance of the trait (for 

individual linkage group) is compatible with an oligogenic model (several QTLs) or 

whether a small region of the linkage group (compatible with a single QTL) is 

important. This was followed by a more conventional search of the genome using a 

least-squares analysis (KNOTT et al. 1996). CHURCHILL & DOERGE'S ( 1994) empirical 

method was used to obtain significance thresholds. Multiple-trait QTL mapping was 

also undertaken using logistic regression (e.g. ,  HENSHALL & GODDARD 1 999). 

MA TERIALS AND METHODS 

Mapping population 

Full-sib progeny of parent trees 850.055 and 850.096 of Pin us radiata were used to 

detect putative QTLs. This family was chosen because the parents displayed favourable 

general combining abilities, for various economic traits, in different mating designs. 

Tree 850.055 is widely used in seed orchards to produce seed for commercial 

plantations. The QTL detection population consisted of 80-93 trees (for different traits) 

from a large block Genetic Gain Trial planted in 1978 in Kaingaroa Forest in New 

Zealand that had not been subjected to any silvicultural selection. 

Framework Linkage Map construction 

Different dominant and codominant marker systems (RAPD, AFLP and SSR) were 

used to generate 430 polymorphic loci segregating in this pedigree. The linkage map of 

850.055 consisted of 126 framework markers in 2 1  linkage groups, and covered 1540.2 

cM, while the 850.096 map contained 10 1  markers in 26 linkage groups covering 

1 223.0 cM (P. L. WILCOX et al. unpublished). Markers were ordered on the map with a 

1000: 1 support. The genetic distances (cM) were obtained using the Kosambi map 

function. All of these framework markers were genotyped on 93 randomly selected 

individuals of this family. Preliminary analysis (P. L. Wilcox et aI. ,  unpublished) using 

single-marker ANOV A found marker-trait association on linkage group three. Thus, in 

this study, we considered markers only on linkage group three in the framework 

linkage map of the parent 850.055 for mapping the putative QTLs using the multiple 

marker method. The distribution of markers on this linkage group is shown in Table 1 .  
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Table 1 .  Distribution of markers on linkage group threea. 

No. Marker Position on linkage group (cM) 

1 A93_b3 0 

2 A56_A 15  

3 A 1 84_b3 25
· 

4 RAPD_59 48
* 

5 RAPD_38 66
* 

6 A329_c3 83 

7 A I 1 3_al 9( 

8 A297_b2 99 

9 RAPD_270 106 

10 A338_al 1 15* 

1 1  A2 19_b2 123 

12  A 14032 130 

1 3  RAPD_192 140* 

14 A47_c 153 

15  RAPD_209 170* 

16 A72_A 1 87 

denotes the markers selected for exploratory analysis. 

a All markers were in a heterozygous state in parent 850.055 and homozygous null in the other parent 

(850.096). 

Phenotypic data 

Cores were extracted at age 14 and, for each individual tree, outer wood density 

(termed as WD14 in this study) was obtained from two samples of outer 50 mm of 

increment cores taken from opposite sides of the tree. To explore the potential for the 

use of core wood from young trees in QTL detection experiments, one 5 mm bark-to­

pith core was taken from each tree in 1997. The wood density from these cores was 

measured using x-ray densitometry (COWN & CLEMENT 1983). Area weighted wood 

densities were obtained for rings corresponding to ages 1 -5 years and ages 6- 10  years. 

These two area-weighted wood densities were considered as two different traits and the 

symbols for them in rest of the text will be WD l_5 and WD6_10, respectively. Thus, 

there were three traits (WD l_5,  WD6_1O and WD14) measured on each offspring. 
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Statistical methods 

Exploratory analysis on multiple markers 

An exploratory analysis of the linkage group was undertaken to determine whether the 

chromosomal region under study is associated with variation in the recorded traits 

(VISSCHER & HALEY 1996). To undertake the analysis, first, the locations of 

informative and evenly spaced markers are selected from those available in the data set. 

If too many markers are selected the analysis will take up a significant proportion of 

degrees of freedom. Information from closely related markers is highly correlated (DE 

KONING et al. 1998) and theoretical studies (DEKKERS & DENTINE 199 1 ;  VISSCHER 

1 996) indicate that markers spaced every 25 cM or so should explain most of the 

variation on a chromosome. 

For exploratory analysis, data for each trait are regressed on selected marker positions. 

For a given position, the conditional probabilities of the offspring inheriting the first 

gamete of the parent provide an independent variable (as the probabilities of two 

parental alleles sum to unity) on which the trait values can be regressed (KNOTT et al. 

1996). At the position of an informative marker we know which parental allele each 

progeny has inherited, so the probability of inheriting one allele will be unity and 

probability of inheriting the other will be zero. In pseudo-testcross mapping strategy, 

one parent is heterozygous at all marker loci but some faint RAPD bands are difficult to 

classify as presence or absence in some individuals. If a marker was not informative in 

a particular individual, it was replaced by the 'virtual ' marker probability calculated for 

that position based on the nearest markers (e.g., KNOTT et al. 1996; DE KONING et al. 

1998). On the assumption that the parental gamete reconstruction is correct, and for 

each offspring the allele inherited from the parent is known unequivocally, these 

probabilities are exactly the same as for a backcross situation (KNOTT et al. 1996). 

The model for the exploratory analysis is: 

where 

Yj is the phenotypic value of offspringj 

Jl is the overall mean 

( 1 )  
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bk is effect of parental allele for marker k 

m}k is the probability for offspring } of inheriting the parental allele of 

marker k 
e} is the residual effect for offspring} 

Comparison of alternative genetic models 

Oligogenic 

5 1  

Using equation ( 1 ), the presence of genetic variation associated with a linkage group 

was tested by fitting the regression of each progeny phenotype on the conditional 

probabilities at all selected marker locations (n) simultaneously. Under the null 

hypothesis of no genetic variation for the trait associated with the linkage group under 

study only a family mean is fitted. 

Single region 

If an effect of a linkage group or chromosome is significant, further analysis can be 

used to identify whether there is one or more regions within the linkage group affecting 

the trait. The regression on all selected marker locations is compared with the 

regression on every pair of adjacent markers. Where more than one important QTL 

affects the trait, there will be no single pair of adjacent markers that accounts for as 

much variance as do all markers jointly (DE KONING et al. 1998). If the oligogenic 

model is not a significant improvement over fitting the best single region, it can be 

concluded that most of the genetic variance associated with this linkage group is 

explained by this single region. 

Single-trait QTL analysis 

The least-squares multiple-marker method described in KNOTI' et al. ( 1996) was 

employed in this study. Basically, the model used here is same as that given in equation 

( 1 )  except that the summation is now over the number of QTLs included in the model 

(one QTL in this study). At each I -cM position, the values of phenotypes from progeny 

are regressed on the conditional probabilities. 
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Multiple-trait QTL analysis 

The three traits measured (WD 1_5,  WD6_10 and WD 14) on each individual can be 

considered as different states of the same trait. If each trait is analysed separately, it 

cannot be deduced whether these effects are due to one locus with correlated effects on 

these traits, or to several loci each affecting a different trait. The genetic correlations 

(based on an open-pollinated progeny test) among these juvenile and mature wood 

density traits were more than 0.75 (BANNISTER & VINE 1981) .  Multiple-trait QTL 

mapping could help in understanding a QTL's part in the genetic covariance structure 

of economically important traits. In this study, the logistic regression method proposed 

by HENSHALL & GODDARD ( 1999) was applied for the mapping of multiple-trait QTLs 

using each marker in turn. The parental allele (coded as 0 and 1 )  inherited by an 

individual, at a marker location, becomes the dependent variable and the phenotypes for 

three traits are the independent variable. Multiple-trait QTL effects, assuming no 

recombination (r = 0), were obtained as (HENSHALL & GODDARD 1999): 

A = 'L.f3/ (1 + SQRT(f3'Lf3 +1»  (2) 

where A is the vector of half the effect of allele substitution, 'L. is phenotypic 

covariance matrix estimated from the complete experimental data, and f3 is the vector of 

parameter estimates. 'L. was obtained using a phenotypic coefficient of variation of 0.07 

for all three traits (COWN et al. 1992). The estimates of phenotypic correlations among 

these traits were obtained from BANNISTER & VINE ( 198 1 ). 

Significance thresholds 

For single-trait QTL analysis 

For the genome scans a large number of correlated tests with mixture distributions are 

being performed and, hence, the standard F distribution cannot be used to obtain the 

significance thresholds. An empirical distribution is therefore required, in order to test 

for significance. Test-statistic critical values were calculated empirically from the 

permutation method described in CHURCHILL & DOERGE ( 1994). The permutation test 

was undertaken by repeatedly randomly shuffling the phenotypic data. The conditional 

probabilities ( m  jk ' s) that the phenotypes are regressed on were not shuffled. The 

experimentwise critical values, which account for the evaluation of marker-QTL 

association across the genome and also the three traits being analysed, were calculated 

from the distribution of test-statistics (see SPELMAN et al. 1 996). Because only one 
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chromosome is being analysed, the experimentwise critical values were calculated 

using the approximation of standard Bonferroni correction as : 

a == y l n (3) 

where a is the nominal threshold level to ensure ysignificance level over the n (= R*1) 

independent tests. The R (= 1 540.2 I 1 87.0 = 8.24) denotes the ratio of total map length 

to the length of the chromosome under study and T denotes the number of independent 

traits. The number of independent traits were determined by factor analysis (using SAS 

1 988) on a genetic correlation matrix for the three trai ts. It was calculated that two 

factors account for approximately 98% of the variation. Thus, this suggests that there 

are only two independent traits (i .e. ,  T = 2). The Bonferroni correction factor was 

applied to all three traits. The 100(1 - a) percentile of the distribution of test-statistics 

provides the experimentwise significance threshold. 

Following DE KONING et al. ( 1998), for exploratory analysis, a levels of 0.0006 (=0.01 

/ (8 .24*2» and .0030 (= 0.05 / (8.24*2» would be required to obtain 0.01 and 0.05 

genome-wide levels, respectively, and can be obtained from standard tables. The 

suggestive level of significance (LANDER & KRUGLYAK 1995), where one significant 

result is expected by chance in a genome analysis, can be obtained from the binomial 

distribution as: 

P suggestive = 1 / n (4) 

Many suggestive linkages will subsequently prove to be incorrect, but they are 

nevertheless reported so they can be followed up in future studies (KNOT[ et al. 1997). 

For multiple-trait QTL analysis 

The logistic regression was performed at each marker location, in turn. Test-statistic 

critical values were calculated empirically, at each marker location, from the 

permutation method that involved repeated shuffling of three quantitative trai t values 

together. The experimentwise critical value may be obtained by first finding the 

maximum test statistic over selected marker locations (about 25 cM apart) for each of 

the shuffled analyses. These values are then ordered and their 100(1 - a) percentile wil l  

provide the experimentwise significance threshold. 



Chapter 4: QTL analysis for wood density 54 

RESULTS 

Quantitative traits 

The phenotypic distributions of three traits examined are shown in Figure 1 .  The traits 

WD6_1O and WD 14 were approximately normally distributed as tested by the 

Kolmogorov-Smirnov distance statistic (P-value > 0. 1 5) .  Only WD l_5 showed a 

significant departure from normality (P-value < 0.01) .  The data for this trait was log­

transformed to improve normality. However, results from QTL analysis using 

transformed data did not differ from those with untransformed data. Therefore, only 

untransformed data was used similar to some other studies (e.g. ,  PLOMION et al. 1996; 

EMIBIRI et al. 1 998). Phenotypic correlations were estimated among traits within the 

family studied. Significant (P � 0.001)  correlations were observed between WDl_5 and 

WD6_1O (r = 0.66), WDl_5 and WD 14 (r = 0.37) and WD6_1O and WD 14 (r = 0.54). 

Comparison of genetic models 

Seven out of sixteen, approximately equally spaced (about 25 cM apart) markers were 

selected for this exploratory analysis (Table 1 ). The comparison of alternative genetic 

models is shown in Table 2. There is significant evidence, at a genome-wide 0.05 

level, for a genetic component for the traits WD l_5 and WD 14. However, the evidence 

of a genetic effect for the trait WD6_1O is significant only at a suggestive level (Table 

2). The oligogenic model, for the traits WDL5 and WD6_1O, is not a significant 

improvement over the single-region model but, at a suggestive level, is significantly 

better in case of the trait WD 14. 

Table 2. Comparison of alternative genetic models. 

Traits WD l_5 WD6_1O WD14 

N 80 93 93 

# markers 7 7 7 

Oligogenica, 0.0006 0.02 1 1 0.0021 

Oligo vs single intervalo,· 
0.5802 0.3772 0.0476 

N denotes the sample SIze 

a The probability of the F ratio for testing the oligogenic model versus a model with no genetic effect. 

b The probability of the F ratio for testing the oligogenic versus best single-interval model. 

*A probability level of 0.0006 (=0.01 / 8.24*2) and .0030 (= 0.05 / 8.24*2) would be required to obtain 

0.01 and 0.05 genome-wide levels. 
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Figure 1 .  Phenotypic distributions for WDl_5, WD6_1O and WD 14. Mean and 

standard deviation (SD) for each trait are also given. 
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Single-trait QTL analysis 

Permutation test 

The distribution of the test-statistic, by shuffling the trait value and fitting its regression 

on all marker positions in the linkage group, were obtained for each trait (Figure 2). 

These distributions are hardly distinguishable, which is also reflected from the critical 

values given in Table 3. The test-statistic distributions in Figure 2 account for repeated 

testing across the linkage group but do not account for repeated tests on the three 

correlated traits. Experimentwise threshold levels (Table 3) were calculated from the 

distributions in Figure 2 using the standard Bonferroni correction (Equation 3). 

Figure 2. Approximate density function of test statistics for WDC5, WD6_1O and 

WD14 derived from permutation test (50,000 shuffles). 
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Table 3. Experimentwise threshold levels for the three traits (50,000 shuffles). 

Threshold level WDl_5 WD6_1O WD14 

1% 1 8.69 1 8 .53 1 8 .99 

5% 15 .03 15 .27 15 .6 1 

10% 13 .45 13 .61  14.02 

1 5% 1 2.50 12 .74 1 2.98 
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QTL mapping 

For all three traits, the test-statistics calculated for a single-QTL model at each 1 cM are 

shown in Figure 3 .  The analysis revealed a putative QTL for WDL5 positioned at 73 

cM. The test-statistic was significant at the 0.01 genome-wide threshold level . The 

other traits, WD6_1O and WD 14, showed an indication of a possible QTL at 57 cM and 

135 cM, respectively (Figure 3). However, the test-statistic for WD6_1O and WD 14 

were only significant at the 0. 1 8  and 0. 1 5  genome-wide significance level, respectively. 

The estimated effects of allele substitution, at the most likely position of a QTL, were 

23. 17, 1 5 . 1 9  and 14.46 kg/m3 for WD 1_5, WD6_1O and WD14, respectively (Table 4). 

Table 4. Estimated allele substitution effects and standard errors (S.E.), at the putative 

QTL, for different traits. 

Trait Position of the Effect (kg/mj) S .E. 

QTL 

WD l_5 73 cM 23. 17 4.45 

WD6_1O 57 cM 1 5 . 1 9  4.33 

WD 14 135 cM 14.46 4.00 

Multiple-trait QTL mapping 

The approximate density function of the test-statistic, based on 5000 shuffles, is shown 

in Figure 4. Experimentwise threshold levels were calculated from the distribution in 

Figure 4 using the standard Bonferroni 
·correction (equation 3). The test-statistics 

calculated at each marker location, using logistic regression, are shown in Figure 5 .  

Specifical ly, there were two marker locations (RAPD_38 at 66  cM and A 1 13_a1 at 91  

cM) found to have association with putative QTLs at 0.05 genome-wide significance 

level. The effect of allele substitution (using equation 2) at marker RAPD_38 was 

25.58, 23 . 12 and 17 .89 kg/m3 for WD l_5, WD6_1O and WD14 traits, respectively. 

Similarly, the substitution effect was estimated to be 22.56, 17 .93 and 1 8 .27 kg/m3, at 

marker A l 13_a1 ,  for the WD1_5, WD6_1O and WD 14 traits, respectively. 
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Figure 3. Test statistics for different positions (at every lcM) on chromosome three for 

different traits. Experimentwise threshold levels ( 1  % and 1 5%) are also given. 
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Figure 4. Approximate density function of the log-likelihood ratio test statistic (LRTS) 

derived from permutation test (5,000 shuffles). 
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Figure 5 .  Log-likelihood ratio test statistic (LRTS) at marker positions. 

Experimentwise threshold level (5%) is also shown. 
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DISCUSSION 

Comparison of alternate genetic models 

Since the study by SAX ( 1923), and more recently with the development of molecular 

marker technologies, it has been demonstrated in plants and animals that a trait showing 

a continuous distribution could be under oligogenic control. In Pinus taeda, GROOVER 

et al. ( 1994) detected 5 QTLs for wood specific gravity that together explained 23% of 

the total variation. KNOTI et al. ( 1997) tested different genetic models for each linkage 

group in loblolly pine. They found different inheritance patterns for different linkage 



Chapter 4: QTL analysis for wood density 60 

groups. For most of the linkage groups contributing significantly to the genetic 

variation in trait, the single-region or oligogenic models were found to best explain the 

inheritance patterns. The present study revealed that for linkage group three, the 

inheritance patterns for different traits under study seem best explained by a single­

region (one QTL) or small number of QTLs i .e., oligogenic (Table 2). 

Single-trait QTL mapping 

Using a single-QTL model, the highly significant evidence for a putative QTL was 

found only for the trait WD1_S (Figure 3). The test for the presence of genetic variation 

associated with this linkage group, for trait WDLS, was also significant at genome­

wide 0.01 significance level and the oligogenic model fai led acceptance in favour of a 

single-region model . There was little indication for the presence of genetic variation, 

for WD6_10, associated with this linkage group (Table 2) and thus there was no 

segment of this linkage group having an enormous effect on the trait variation. The 

putative QTL found for WD6_1O was significant at genome-wide significance level of 

about 0. 1 8  (Figure 3). The improvement of the oligogenic model over the single-region 

model, for WD14, was only significant at a suggestive level and would have been 

rejected in favour of the single-region model. The QTL analysis revealed a putative 

QTL at O. l S  experimentwise threshold for the trait WD14. 

The results showed that there is no strong statistical evidence of putative QTLs for the 

traits WD6_10  and WD14. The putative QTL found for WD 1_S had a considerable, but 

not significant, effect on the expression of wood density at later stages. As the genetic 

correlations among WD1_S, WD6_1O and WD14 are very high, BANNISTER & VINE 

( 198 1 )  concluded that in each tree the same genes were acting on wood density, and 

acting in much the same way, throughout the IS-year period. The results from the 

present study reflects that the same genes might be acting on wood density but the 

effect of gene substitution does not remain similar at all stages. For example, the effect 

of gene substitution at the putative QTL for WD1_5 (at 73 cM) was 23 . 1 7  kg/m3 and it 

reduced to 1 3 .32 and 12.83 kg/m3 for WD6_1O and WD14 traits, respectively. This 

might be due to the weak environmental correlations among wood densities at different 

ages. As observed by SEARLE ( 196 1 ), a phenotypic correlation less than its genetic 

counterpart, together with a small environmental correlation (as is the case among traits 

in this study), will occur where the genes governing two traits are similar but where the 
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environments pertaining to the expression of these traits have a low correlation. 

Environmental influence was suspected to be one of the causes for the differential 

expression of stem growth QTLs in radiata pine seedlings (EMEBIRI et al. 1 998). These 

authors found that none of the putative QTL detected at any one stage were strongly 

expressed at all four stages of measurement. VERHAEGEN et al. ( 1997) found that no 

chromosomal region was consistently expressed across three ages for wood density in 

two species of Eucalyptus, though the analysis demonstrated the existence of a 

chromosomal segment being involved in the control of the trait across the period 

studied, independent of age. They also found that some QTLs were specific to a single 

stage. 

Multiple-trait QTL mapping 

Multiple-trait QTL mapping was undertaken at each marker location using a logistic 

regression method. Two marker locations (RAPD_38 at 66 cM and A 1 13_al at 9 1  cM) 

were found significantly associated (at 0.05 experimentwise threshold level) with the 

expression of wood density at three stages i .e . ,  WDl_5, WD6_1O and WD14 (Figure 

5). Incidentally, these two markers are flanking the location of the putative QTL (at 73 

cM) found for the trait WD l_5 and that had a considerable, though not significant, 

effect on other two traits as well. Using the bootstrap technique (see VISSCHER et a1. 

1996), we estimated the width of the 95% confidence interval (for the QTL found for 

WDl_5) to be 40 cM (i.e. 56-96cM). 

Marker-Assisted Selection (MAS) 

There is a high level of tree-to-tree genetic variation in Pinus radiata for various 

morphological traits, wood properties, disease resistance and many other traits for 

which actual data have been collected (BURDON 1992). This situation exists even in the 

progenies generated from inter mating parents of high breeding value. Thus, there is an 

opportunity to use marker-trait associations to increase genetic gain, per unit time, by 

selecting within the families that are used to establish production populations, and 

propagating for deployment only those individuals that have favourable marker 

genotypes. The first important step towards MAS is the detection and verification of 

QTL. Forest trees like radiata pine have long generation intervals and undergo various 

changes at morphological, anatomical and physiological levels during their life span. 

Instability of QTL expression over age has been reported in poplar for basal area 
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(BRADSHAW & STEITLER 1995), in maritime pine for juvenile growth (PLOMION et al. 

1996; EMEBIRl et al. 1998) and in Eucalyptus for wood density (VERHAEGEN et al. 

1997). However, the very high genetic correlations among the expression of wood 

density at different ages in radiata pine indicate that much the same genes are 

controlling the trait expression at different stages (BANNISTER & VINE 1981). The 

present study suggests that linkage group three in 850.055 contains such a locus. 

However, the effect of gene substitution would change at different stages. The putative 

QTL found for the trait WDl_5 was not significantly expressed at later stages. The 

putative QTLs for WD6_10 and WD14 were only significant at 1 5-20% genome-wide 

significance level. As the sample sizes used in this study (80-93) are small the power of 

QTL detection would be low (e.g., KUMAR et al. 2000) so that QTLs of low effect can 

not be detected. Also, with such a small sample size, there is a high probability that 

effect of allelic substitution is likely to be overestimated. Therefore, marker-trait 

associations found in this study need to be verified in an independent population. 

Nonetheless, this study indicates that early selection based on desired marker 

haplotypes might help increasing juvenile wood density. 
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ABSTRACT 

Marker assisted selection (MAS) provides an opportunity to increase the efficiency of 

within-family selection in forest tree breeding. Within-family MAS involves selection 

decisions first made on conventional breeding values, and QTL information used for 

within-family selection. In this study genetic response obtained by using MAS was 

compared with conventional methods for three options: 'full-sib family forestry' , 

'clonal forestry' and 'forwards selection for deployment' . This comparison was 

undertaken using stochastic simulation for a locus that explained 20 % of the genetic 

variance. In 'full-sib family forestry' scenario, markers were used to select genotypes 

(among juvenile individuals in a family) for vegetative propagation. Markers were used 

to pre-select genotypes for clonal testing in 'clonal forestry' option. In case of 

'forwards selection for deployment' option, offspring that have favourable marker 

haplotype and a superior phenotype were selected from each family. The comparison 

between the MAS and the conventional strategy was evaluated in genetic terms based 

on comparison of the average genetic merit of the genotypes used for deployment in 

production plantations. The relative genetic gain (%) using MAS were found to be 6-8 

% and 2-3 % higher compared to conventional strategy for 'full-sib family forestry' and 

'clonal forestry' options, respectively. In case of 'forwards selection for deployment' 

option, MAS was generally found to be providing higher genetic gain only when the 

heritability is low. 

INTRODUCTION 

Advances in molecular biology have presented tree breeders with the basis for a 

revolution in future improvement strategies, by providing novel opportunities to greatly 

enhance genetic gains. These gains can be additional to those from the continuation of 

conventional breeding strategies. Quantitative trait loci (QTL) for traits such as growth, 

wood quality and shoot phenology have been identified in conifers (e.g. GROOVER et 

al. ,  1994; PLOMION et al. , 1 996; KNOTI et al. , 1 997; EMIBIRI et al., 1998; KUMAR et al., 

2000). The major objectives of most, if not all, growth and wood-quality QTL studies is 

to identify QTL that can be utilised in marker assisted selection (MAS) breeding 

schemes. In forest trees, MAS can be beneficial in many ways. Selection efficiency can 

be improved from more accurate assessment of QTL genotype, and in time saving 

through early selection on seedling genotype for a trait expressed late in tree 

development. 
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Applying MAS in forest trees is very complex. Forest tree populations are characterised 

by high degrees of linkage equilibrium and, as a result, linkage phase relationship 

between markers and QTL will differ among individuals (STRAUSS et al. , 1992). 

Linkage equilibrium as well as the likelihood of QTL by genetic background 

interaction makes it difficult to use MAS for early selection, one of its most proclaimed 

benefits (TAUER et al., 1992; WILLIAMS & NEALE, 1992). It will be necessary to screen 

for QTL in each full-sib family because of recombination and variation in background. 

Thus, phase relationships would have to be established for each parent tree. Marker 

alleles that are associated with positive QTL alleles in one family may be unassociated 

with QTL or associated with negative QTL alleles, in other families . This precludes the 

use of MAS for family selection, and requires that MAS for within-family selection be 

customised for each family. KERR et al. ( 1996), while evaluating MAS in Eucalyptus 

breeding programs assumed that marker-QTL associations were stable across a variety 

of genetic backgrounds. However, there is still not enough evidence of existence of 

linkage disequilibrium at population level in pine species. Within-family selections 

incorporating marker information is one practical option for implementation of MAS 

for tree breeding schemes in the immediate future. 

Several strategies have been suggested to capture the gain from using within-family 

MAS. Within-family phenotypic selection is an important component of advanced­

generation breeding plans in forest trees despite the poor response compared with 

family selection (e.g. van BUIJTENEN & BURDON, 1990; COTIERILL, 1986). Genetic 

markers can be used to increase the efficiency of phenotypic selection for low­

heritability traits (LANDE & THOMPSON, 1990). O'MALLEY & McKEAND ( 1994) 

suggested that MAS could be practised simultaneously with phenotypic selection in 

elite families to increase the efficiency of selecting individuals for production 

populations or for breeding in the next generation. Marker-trait associations could be 

utilised directly to increase genetic gain in production forests by selecting within the 

families that are used to establish production plantations and propagating only those 

genotypes that have favourable marker haplotypes for deployment. Further, increased 

genetic gain might also be achieved in concert with clonal forestry programs, where 

candidates for clonal testing are selected based upon favourable marker haplotypes. 
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Despite the feasibility and practicality of within-family MAS, there are few available 

reports that quantify likely gains from the alternate methods of applying within-family 

MAS in forest trees. In this study, the genetic gains obtained from utilising MAS for 

three different selection and deployment options available were compared for radiata 

pine. These three options are: 'family forestry' ,  'clonal forestry' , and 'forward selection 

for deployment' . 

SIMULATION MODEL 

Population structure 

A simple scheme for radiata pine improvement was modelled using stochastic 

simulation. A base population of 2000 parent trees was simulated. An open-pollinated 

progeny test, with 1 5  offspring of each base-population parent, was simulated to select 

20 top parents. A seed orchard comprises these 20 backwards-selected parents. Also, 

these 20 parents were mated in a single-pair mating design to create 10 large full-sib 

family blocks (200 or 400 offspring per family). It is also assumed that the parents are 

kept in the seed orchard for supplying seed for commercial plantations for a long time 

(say 10- 1 5  years). 

It was assumed that a QTL and a linked marker had been identified via prior research. 

Marker and QTL genotypes were simulated for all trees in the base population. The 

QTL was assumed to be biallelic with equal allele frequency while the marker locus 

had four alleles with equal frequency. The linkage phase in the base population was 

known in order to simulate transmission of haplotype. For the simplicity, the 

recombination rate between marker and the QTL was assumed to be zero. 

The base-population polygenic effects (Ui) were sampled from a normal distribution 

N(O, Va), where Va is the polygenic variance which is additive genetic variance minus 

the variance due to the QTL (Vq) . Completely additive gene action was assumed and 

thus, the total genetic variance is same as the additive genetic variance. For a biallelic 

QTL with equal allele frequencies, the value of 'a' (which is half the difference 

between the genotypic values of the two QTL homozygotes) was calculated as the 

square root of 2Vq (see FALCONER 1989). The QTL component (Vq) was set to explain 

20 % of the genetic variance. The effects of the QTL genotypes are assumed to be fixed 
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and thus same for all base parents. Residual (i.e. environmental) effects were sampled 

from normal distribution N(O, Ye), where Ve is the residual variance, and added to the 

polygenic and QTL effects to quantify the phenotypic 'observations' . Different trait 

heritabilities (i.e. 0.25 and 0.75) were used. 

Polygenic effects for the open-pollinated progeny of the base parents were generated 

from a normal distribution N('h Uj, % Va), where Uj is the polygenic effect of the female 

parent. The QTL effect and environmental effect were added to complete the phenotype 

of progeny. Base-parents were ranked based on the means of their open-pollinated 

progenies. The 20 top ranked parents were then mated in a single-pair mating design. 

The polygenic effect for the full-sib offspring was sampled from a normal distribution 

N( 'h Uj + 'h Unh 'h Va), where Urn is the polygenic effect of the male parent. The QTL 

effect and environmental effect were added to the polygenic effect to determine the 

phenotype of each full-sib offspring. 

Evaluation of MAS schemes 

It was assumed that a QTL and a linked marker had been identified via prior research. 

Each family must be examined separately to determine whether the QTL and marker 

alleles are segregating, the linkage state of the marker alleles with respect to the QTL, 

and to verify that any measurable QTL effect exists in the particular genetic 

background. The required significance threshold that is used to identify whether the 

parents are segregating for the pre-identified QTL was held at 0.05 . Large full-sib 

family blocks (with 200 or 400 offspring per family) were used to determine whether 

the seed orchard parents were heterozygous for the pre-identified QTL. The following 

are the three selection and deployment options (Figure 1 )  where MAS could be utilised. 

For each option, a MAS strategy was compared with a strategy that ignored any 

knowledge of segregating QTL (termed as control): 

Option 1 - Full-sib family forestry 

In the conventional 'full-sib family forestry' scenario, the control strategy (full-sib 

deployment) involved crossing the 20 top-ranked (seed-orchard) parents for 

deployment in commercial plantations as full-sib families. 
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For the MAS strategy (family MAS), the information about the linkage phase and any 

measurable QTL effect for the pre-identified QTL needed to be examined in each of the 

10 full-sib families. This step was undertaken in the large full-sib family blocks where 

the same 10 full-sib families are grown. Each of the 10 full-sib families were evaluated 

for pre-identified QTL by genotyping their progenies in the regions of interest. 

Offspring are grouped, depending on the marker haplotype they received, and the mean 

phenotype of different haplotype groups are compared to determine whether parents are 

heterozygous for the pre-identified QTL. The time required for adequate expression of 

growth traits is about 8 years in radiata pine. After obtaining the information on the pre­

identified QTL for each family, the same crosses were recreated in seed orchard to 

produce new seeds and MAS was carried out by selecting 10 young seedlings from 

each family and then deploying these 100 genotypes, using vegetative propagation, 

directly in the forest. 

The comparison between the MAS and the control strategy was evaluated in genetic 

terms based on comparison of the average genetic merit of the genotypes used for 

deployment in production plantations. In the control scenario, the average genetic merit 

is equivalent to the average breeding values of the 20 seed orchard parents. In the case 

of the MAS strategy, the genetic values of the 100 selected genotypes were averaged. 

The relative gain (%) using MAS was calculated as : 

mean genetic merit (MAS) - mean genetic merit (control) 
Relative gain (%) = * 1 00 

mean genetic merit (control) 

One hundred simulations were undertaken for each scenario. The average of relative 

gain (%) over the 100 replicates, standard deviation of relative gain and the proportion 

of replicates where MAS exceeded control gain are reported in this study. 
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Figure 1 .  Different options for applying MAS in tree breeding schemes. 

Year 
o 

Initial random selection of 2000 parents (called base 

population). Collect wind pollinated seed, then progeny trial 

+ Progeny test 

8-10 Select 20 top-ranked parents based on progeny means; and 

create 10 full-sib families (using single-pair mating). Also, 

keep these 20 parents in seed orchard. 

1 8- 19  

20-21 

+ Growing full-sib families 

Measure the phenotype; and genotyping the progenies of these 

10  families and get the infonnation on segregation and linkage 

phase in each family for the pre-identified QTL. 

� Use linkage information V 

Recreate these 10 crosses in seed 

orchard and screen new seedlings 

for desired haplotype for: 

OPTION 1 :  Deployment in 

production plantations. 

OPTION 2: Putting them in 

clonal test. 

See text for the 'control strategy' 

of both of these options. 

OPTION 3: Select one offspring 

(from each family) among those 

that have desired haplotype and 

also have the highest phenotypic 

value for using it in seed orchard. 

For the 'control strategy' , the 

selection is based on phenotype 

only. See text for more detail .  
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Option 2- Clonal forestry 

In the control strategy (clonal testing), the top 20 top-ranked (seed orchard) parents are 

crossed and either 30 or 60 young seedlings were selected randomly from each of the 

10 full-sib families and were tested in field trials as clones. It was assumed that there 

are enough ramets to precisely estimate the genetic value of a clone. Ten unrelated 

clones (top ranked in each pair-cross) were selected for deployment in the commercial 

plantations. 

For the MAS strategy (MAS, then clonal testing), the information as to whether the 

QTL and marker alleles were segregating, and the linkage phase of the marker alleles 

with respect to the QTL, was ascertained for the pre-identified QTL as explained in 

'family MAS' scenario for each of the 10 families. After obtaining the information 

(which would take about 8 years) on the pre-identified QTL for each family, the same 

crosses were recreated in seed orchard to produce new seeds and MAS was initially 

carried out for selecting either 30 or 60 genotypes with the most favourable marker 

haplotype from each full-sib family. These selected genotypes (total 300 or 600) were 

field-tested as clones and the 10 best unrelated clones were selected for deployment. 

The MAS breeding scheme and the control were evaluated in genetic terms based on 

comparison of the average genetic merit of the clones selected for deployment in 

production plantations. 

Option 3- Forward selection for deployment 

In the control strategy for this option, within-family phenotypic selection was carried 

out within the 10 full-sib families (obtained by crossing the 20 top-ranked parents) 

grown in large family blocks of either 200 or 400 offspring per family. The one best 

individual from each full-sib family was selected based on the phenotype alone. These 

'forwards' -selected offspring were used in the seed orchard for commercial seed 

production. Selection of individuals to become the parents of the next generation 

breeding population would be done in a different way (say, two individuals from each 

full-sib family in order to maintain a constant census number of selected parents each 

generation). However, the scope of this scenario is limited to the selection of 

individuals for production purposes only. 
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To apply MAS in this scheme (MAS plus phenotypic selection), progenies of each of 

the 10 full-sib families were evaluated for information about linkage phase and QTL 

effect for the pre-identified QTL by genotyping the same trial as utilised in the control 

strategy. When a family is determined to be heterozygous for the QTL, only the 

offspring that has highest phenotypic value among those that received the most 

favourable haplotype is used in the seed orchard for commercial seed production. If any 

family is not segregating for the pre-identified QTL then the within-family selection is 

purely based on phenotype, just as in the control strategy. In this option, the time 

required for the application of MAS would be similar to that incurred in the control 

strategy. The only additional time in case of MAS would be in obtaining the marker 

genotypes of all offspring in each family. The MAS scheme and the control were 

evaluated in genetic terms based on comparison of the average genetic merit of the 

individuals selected for the production population. 

RESULTS 

Stochastic simulation was used to compare the genetic gain from some MAS strategies 

with that from conventional methods for three selection and deployment options. The 

relative gains (%) from MAS using 'full-sib family forestry' are shown in Table 1 .  In 

this scenario, young seedlings are selected based on the desired haplotype from each 

full-sib family and are deployed in forests using vegetative propagation. The results are 

shown for trait heritabilities of 0.25 and 0.75. Two different family sizes were used to 

evaluate each of the 10 full-sib families for the pre-identified QTL to determine the 

linkage phase and any measurable effect in each family. S lightly higher relative gains 

were obtained when larger family sizes were used to determine the linkage phase in 

each family. The magnitude of the relative gain using MAS varied from approximately 

6 to 8 % for different trait heritabilites. Table 1 also shows the fraction of the replicates 

(i.e. number out of 100) where MAS was found to be providing higher genetic gain as 

compared to the control . In a few replicates the MAS strategy was found to have less 

gain compared to conventional full-sib deployment. 

The genetic gains achieved from prior MAS of clones that go into the trial are shown in 

Table 2. The results are shown for different heritabilites (0.25 or 0.75) and the number 

of clones tested (30 or 60) from each of the 10 full-sib families. The relative genetic 

gains (%) captured from MAS were 2-3 % higher than the conventional approach of 
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'clonal testing' .  In 84 to 93 % of replicates, the genetic gain achieved using MAS was 

found to be higher than that from conventional approach (Table 2). 

Table 1. Average relative gain (%) from MAS using 'full-sib family deployment' .  

Figures i n  parenthesis are the corresponding standard deviations (based on 100 

replications) .  'Frequency'  represents the number of times (out of 100) the MAS gave 

higher genetic gain as compared to the control . 

Heritability Family size Relative gain (%) ± (SD) Frequency 

0.25 200 5 .77 (4.53) 90 

400 7.99 (4. 17) 100 

0.75 200 6.41 (3.09) 99 

400 6.81 (2.86) 100 

Table 2. Average relative gain (%) from marker assisted within-family clonal selection. 

Figures in parenthesis are the corresponding standard deviations (based on 100 

replications). 'Frequency' represents the number of times (out of 100) the MAS gave 

higher genetic gain as compared to the control . 

Heritability # clones / family Relative gain (%) ± (SD) Frequency 

0.25 30 2.37 (2.54) 84 

60 2.78 (2. 1 1 ) 9 1  

0.75 30 2.58 ( 1 .97) 9 1  

60 2.65 (2.04) 93 

MAS was also applied for forwards selection of individuals for use in the seed orchard 

(Table 3). From each of the 10 full-sib families that are planted in large family blocks, 

one individual that has the most favourable marker haplotype and a superior phenotype 

(among those that received the favourable haplotype) was selected as the seed-orchard 

parent. The relative gain achieved from using MAS compared to purely phenotypic 

selection is shown in Table 3. It shows that for low trait heritability (0.25), the MAS 

provided relative gain of order 1 . 10- 1 .48 %.  For high heritability (0.75), conventional 

phenotypic selection was found to provide more genetic gain compared to the MAS. 



Chapter 5: Within-family MAS ----------------
75 

Table 3. Average relative gain (%) from 'MAS plus phenotypic selection' .  Figures in 

parenthesis are the corresponding standard deviations (based on 100 replications). 

'Frequency' represents the number of times (out of 100) the MAS gave higher genetic 

gain as compared to the control (phenotypic selection). 

Heri tabili ty Family size Relative gain (%) ± (SD) Frequency 

0.25 200 1 . 10 (4.57) 49 

400 1 .48 (5. 1 1 ) 63 

0.75 200 -0.57 (2.05) 36 

400 -0.41 (2.05) 32 

DISCUSSION 

In this study, genetic gain obtained from using MAS was compared with conventional 

methods of selection and deployment. Three scenarios were considered: 'full-sib family 

forestry' , 'clonal forestry' and 'forwards selection for deployment' .  These three 

scenarios were not compared among each other. The comparison between MAS and the 

conventional method was made in genetic terms based on the comparison of average 

genetic merit of selected genotypes that were used for deployment in production 

plantations. However, in practice it will not be possible to know the genetic value of an 

individual unless it is progeny tested. 

The size of the QTL (20 % of genetic variance or equivalent to 5 and 1 5  % of the 

phenotypic variance for trait heritability of 0.25 and 0.75, respectively) simulated in 

this study may seem intuitively large but QTL of this size have been reported in the 

literature. EMIBIRI et al . ( 1998) reported QTL explaining 6.8 % to 30.0 % of the 

variation in stem volume in radiata pine. PLOMION et al. ( 1996) reported QTL 

explaining 6.0 % to 20.4 % of the phenotypic variation in seedling height in maritime 

pine. M. M. SEWELL et al. (unpublished) reported 3 QTL explaining together 34 % of 

the phenotypic variance in wood specific gravity. 

Full-sib family forestry 

Full-sib deployment is one of the deployment strategies in commercial plantations. It is 

assumed that the seed orchard consists of 20 backwards-selected parents. The expected 
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genetic gain from this strategy would simply be equivalent to the average breeding 

values of the seed orchard parents involved in making 
'
the crosses. However, using 

molecular markers to select a few good seedlings from each cross would increase the 

genetic gain. Results given in Table 1 showed that MAS would provide about 6-8 % 

more genetic gain as compared to conventional way of full-sib family deployment. 

For applying MAS, each family required to be examined separately for testing 

segregation and identification of the linkage phase for the pre-identified QTL. The time 

required for adequate expression of growth traits (like diameter and wood density) is 

about 8 years in radiata pine. This would delay the information on pre-identified QTL 

to be available and thus the increased gains using MAS would have to be evaluated in 

economic terms. Also, seed orchard parents would then have to be kept for longer time 

for supplying seed for commercial plantations. The other important consideration is the 

number of seedlings to be deployed from each family. Deploying 10 genotypes from 

each family would cover most of the risk of sampling error in their performance for the 

other traits not selected by MAS. However, this issue needs further investigation. 

Varying size of the full-sib family (200 or 400) used in the identification of whether 

parents were heterozygous for the pre-identified QTL, showed little effect on the 

increase in genetic level through MAS. Indeed, some studies in dairy cattle 

(MACKINNON & GEORGES, 1998; SPELMAN & GARRICK, 1 998) found no effect of 

numbers of daughters used in the identification of whether a sire of sons was 

heterozygous, on the genetic level. 

Clonal forestry 

There is the possibility of increasing genetic gains by selecting genotypes for clonal 

testing based on molecular markers rather than random selection. Similar to 'family 

MAS' ,  the information on the segregation and the linkage phase, for the pre-identified 

QTL, comes from the larger full-sib family  blocks. Thus, the additional time incurred in 

the application of MAS in this option would be about eight years. The increase in 

genetic gain by using MAS was around 2-3 % (Table 2). The additional genetic gains 

and the time incurred in using MAS need to be evaluated in economic terms. In both 

control and MAS strategies the same number of clones are being tested but the only 

difference is that in case of MAS the clones being tested are selected for the pre­

identified QTL. Thus, the difference in genetic gain in these two options will depend 
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upon the size of the QTL. Varying size of the full-sib family (200 or 400) used in 

determining whether parents were heterozygous for the pre-identified QTL, showed 

almost no effect on the increase in genetic level through MAS (Table 2). 

Forwards selection/or deployment 

In advanced-generations, forwards selection of individuals can be made either for 

selecting parents for next generation or for commercial seed production. Forwards 

selection from large full-sib family blocks is based on phenotypic values. Progeny 

testing candidates for within-family selection could double the generation interval and 

is seldom feasible. The accuracy of forwards selection could be increased by choosing 

offspring that have favourable QTL genotypes and a superior phenotype. The 

comparison of purely phenotypic selection with that using markers and phenotype 

(Table 3) showed that the latter provide higher average gain compared to the former for 

a trait heritability of 0.25. However, for high heritability (0.75) the phenotypic selection 

is more efficient compared to selection based on marker haplotype and phenotypic 

information. The required significance threshold that is used to identify whether the 

parents are segregating for the pre-identified QTL was kept at 0.05 . Lower threshold 

levels (i .e. 0. 10 or 0.20) will increase the chance of selecting a wrong haplotype and 

can reduce selection efficiency. However, increasing the threshold level, in this case, 

did not increase the average genetic level of the selected individuals (results not 

shown). 

A major difference between control and MAS in this option arises in the selection 

intensity. In case of phenotypic selection, one best individual is selected out of the total 

available (say 200 or 400) in the family. However, for MAS the best individual is 

selected out of only those that received the desired haplotype. Also, as the tree gets 

older and the heritability of the trait is very high (like 0.75), phenotypic selection 

should be highly efficient as compared to low heritability (0.25). This might be the 

reason that average relative gain (Table 3) using MAS is higher than phenotypic 

selection only when trait heritability is 0.25. This issue needs to be further investigated. 

It can be noticed from the results that the standard deviation (based on 100 replications) 

of the average relative gain (%) is quite high. Particularly, for 'Option 3' ,  the standard 

deviations are higher than the average relative gain (%). It indicates that MAS could 
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sometime come out worse than the conventional selection unless markers are 

explaining a high proportion of the genetic variance. Also, instead of one QTL 

explaining 20 % of the genetic variation (as assumed in this study) if there are say four 

QTLs each explaining 5 % of the genetic variance, then the relative gains would be less 

than that reported in this study. In this study, it was assumed that marker and QTL are 

closely linked and thus the results presented should be considered upper limits for the 

genetic gains possible with MAS. 
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ABSTRACT 

Selection index gives optimal index weights and maximises expected genetic gain 

when variance-covariance parameters are known exactly. However, in practice this is 

seldom the case; the parameters must be estimated. The present study was conducted to 

overcome the effects of sampling errors on selection efficiency. A method is proposed 

which consists of 'regressing' the estimated (least-squares) selection index coefficients 

( b ) towards the relative economic values (a), which are assumed to be known 

precisely, as: b * = b k + a ( 1 -k), for 0 � k � 1 .  The efficiency of the proposed 

method along with some other index selection procedures (e.g., unmodified index 

selection, base index and "bending") was evaluated for 1 92 parameter and sample 

situations with 1000 replicates each, by Monte Carlo simulation. The highest gain was 

associated with k < 1 .  The mean improvement in % gain obtainable with optimal k 

(over k = 1 )  was 40.4, 17 .7, 6.7 and 2.3 for sample size of 25, 50, 100 and 200 families, 

respectively. The optimum k-value increased with increase in sample size but decreased 

as the number of traits in the index increased. The relative efficiency of the proposed 

method was higher compared to other procedures. When the heritabilities of index-traits 

were low and their relative economic values were in opposite order to heritability, the 

relative efficiency of the proposed method was much higher. 

Key words: sampling error, selection index, economic weights, index weights, 

efficiency. 

INTRODUCTION 

The theoretical basis of index selection was developed by SMITII ( 1936) and HAzEL 

( 1943), and involves the indirect selection of an unobserved variable, H, by truncation 

selection of an observed variable, /, which is jointly distributed with H. The index (I) is 

a linear function of observations, which aims at ranking the population for aggregate 

genotype, i .e . ,  H (KEMPTIIORNE 1957, FALCONER 1989). Index weights can in principle 

be found by using a least-squares solution to minimise prediction error, or equivalently 

maximise the product-moment correlation between index values and aggregate 

genotype. 
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An index I = b 'X , where X is a vector of phenotypic deviates from fixed constants 

(for example, site means) that are assumed to be known, on p traits, is generally used in 

order to maximise the correlation with overall aggregate genotype H = a 'g , where a is 

a vector of known economic weights and g is vector of true breeding values on the 

same p traits. Suppose P = var (X) and G = var (g) are the phenotypic and genetic 

covariance matrices, respectively, the optimum index is given by 

b = JT1Ga ( 1 )  

The expected response per generation to selection is: 

R = i (b 'Pb)1I2, (2) 

where i is the selection intensity. By using estimates of P and G, namely P and G , the 

estimated index weights are: 
,.. " -I ,.. b = P G a, 

and predicted genetic response is 

R = i ( b  ' p b )112. 

(3) 

(4) 

The derivation of the selection index is based on the assumption that the population 

parameters such as heritability (h\ genetic and phenotypic correlations, phenotypic 

standard deviations or alternatively genetic and phenotypic variance-covariance 

matrices, are known exactly. In practice, however, only estimates of these parameters 

are usually available for constructing the index, and such an index is less efficient than 

one computed from the true parameters. The effects of errors in the parameter estimates 

and the loss in efficiency, in relation to size of the sample used for estimation, have 

been considered by WllLIAMS (1962a, b), HARRIs ( 1964), and SALES & HILL ( 1976a, 

b). With multi-trait indices, it appears that rankings on index values will be more 

sensitive to errors in estimating genetic and phenotypic covariance matrices if the traits 

in the index are adversely correlated than if they are favourably correlated (BULMER 

1985). 

HAYES & HILL ( 198 1 )  proposed a technique called 'bending' for modifying parameter 

estimates for multi-trait individual selection. If phenotypic (P) and genetic (G) 

variance- covariance matrices are estimated from between- and within-class covariance 

matrices, B and W respectively, in a one-way multivariate analysis of variance, then 
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according to the method the bent genetic and phenotypic covariance matrices, a'  and 
A .  
P are 

where 

A .  • G = 4(B - W) / n, p '  = {B' + (n- 1 )W} I n  

B
' = ( 1  - y )B + v y  W, where y is the 'bending' factor and v denotes the 

1 " • A. • 
A. 1 A. A * ,.. " *-1 A .  

average root of W B. For y= 0, P -I G = P - G or b = b ;  and for y=  1 ,  P G = 

I or b '  = a .  HAYES & HnL ( 198 1 )  propose two alternative procedures: (i) if any roots 

of P -la are negative, bend until the smallest root is zero; (ii) bend on the basis of the 

sample size alone. 

ARNASON ( 1 982) used 'bending' to predict the breeding values for mUltiple traits in a 

small, non-random-mating (horse) population. MEYER & HILL ( 1983) extended this 

bending procedure to the case when both individual and sib-information are available, 

allowing also for different subsets of traits being represented as characters in the 

selection criteria (in the index) and traits in the (economic) aggregate genotype, 

respectively. MEUWISSEN & KANIs ( 1988) used a bending procedure to make an 

inconsistent set of contrived population parameters (taken from several sources) 

consistent. A 'rounding procedure' was proposed by T AI ( 1989) to improve the 

efficiency of index selection, which involves performing canonical variate analysis on 

phenotypic and genetic variances of a group of traits estimated from a progeny test 

experiment. 

The ridge regression technique (HOERLE & KENNARD 1970) was devised to circumvent 

the problem of an ill-conditioned covariance matrix of independent variables in 

multiple regression analysis, and has been used to develop a ridge selection index 

(SAXTON 1 986, Xv & MUIR 1989, VERRYN 1 994). Using this procedure, the modified 

index weights can also be calculated as 

SAXTON ( 1986) applies "ridge regression" and "bending" to prediction in breeding. 

Bending performed better than the ridge procedures, and ridge procedures performed 

better than least-squares (LS) selection index (SAXTON 1 986). 
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To circumvent the problem of choosing an optimal bending factor for a given sample 

situation, ESSL ( 199 1 )  proposed the use of prior knowledge of the genetic parameters. 

Also, he suggested to use that bending factor which maximises the correlation between 

true and estimated aggregate genotype as 

a 'Gb· 
fm = 

(a 'Ga ) 0 '( i/ Pb' r 
The vector of modified index weights, b *, is obtained by bending B towards W as 

suggested by HAYES and HILL ( 198 1 ). Because the G matrix is unknown, he suggested 

to use its prior estimate. This new bending strategy of ESSL ( 199 1 )  was found to be 

better than those two suggestions of HAYES and HILL ( 198 1 )  while dealing with a given 

sample situation. 

An alternative viewpoint, proposed in this paper is to give more weight to the economic 

information when there is doubt about the accuracy of the estimates of genetic 

parameters. The extreme approach is to use a so called 'base index ' (WllLIAMS 1962a, 

b). An apparently unexplored refinement of this procedure is to regress the computed 

index towards the base index. The present study was aimed at deriving satisfactory 

index weights assuming good economic information. The efficiency of the proposed 

method was compared with the bending approaches of HAYES & HILL ( 198 1 )  through 

Monte Carlo simulation. 

MA TERIALS AND METHODS 

There is assumed to be a one-way classification with f groups or half-sib families each 

of size n, and p traits are recorded on each individual . It is further assumed that the 

observations are multivariate normally distributed with among- and within-group 

effects independent of each other. The multivariate analysis of variance table, in the 

notation of HAYES & HILL ( 198 1 ), is as follows: 

Source df SS MS E(MS) 

Among groups f- l S8 B L + n'l' 

Within groups f(n- l )  Sw W L 
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The matrices of sums of squares and cross-products follow independent central Wishart 

distributions, SB - Wp [if - 1 ), L + n '1'] and Sw - Wp [Itn - 1 ), L] .  An estimate of L is 

W, whereas the estimate of 'I' = 0.25G is (B - W)/ n. The dimension of each matrix is p 

x p and Wp signifies a Wishart distribution with p as number of variables. The matrix L 

is positive definite and 'I' is positive semi-definite. 

It is assumed that 'mass selection' is practised. The expectation of response that is 
A 

actually achieved when b (equation 3) is used subsequently for making selection 

decisions in the population is 

(5) 

As the index coefficients in (3) are vulnerable to sampling errors in P and G ,  the 

expected gain values in (4 and 5) are themselves sensitive to these errors. The estimated 

index coefficients were regressed towards the relative economic values (REVs), 

assuming that the REVs are known precisely, as follows: 
A * A 
b = b k + a ( 1 -k), 0 � k � 1 (6) 

where b * is the vector of modified index weights. Clearly, when k = 1 ,  the selection is 

solely based on estimated LS index weights and when k = 0, the index is 'base index ' .  

These modified index weights were used in place of b in (5) to calculate the expected 

value of genetic response. In this way, some optimum value of k can be sought in order 

to maximise the value of expected gain. This strategy of finding the optimum k value is 

theoretically similar to that of finding optimum y which maximises the correlation 

between true and aggregate genotype, proposed by ESSL ( 199 1 ). The optimum value of 

k was considered to be that which gives the maximum average expected genetic gain 

(5). 

The true achievable genetic response by using the optimum index weights, b (1 ), was 

calculated as 

(7) 

which is the maximum achievable gain from the known genetic and phenotypic 

covariance matrices. 
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Simulation study 

Monte Carlo simulation was used to study the effect of sampling errors on the selection 

index coefficients. In general , the environmental correlation was assumed to be zero but 

a few sets of parameters were considered to study the effect of non-zero environmental 

correlations.  The number of traits simulated in the index were 2, 3 or 4. Different sets 

of economic weights were considered, i .e. equal, in same rank order as heritabilities and 

in opposite rank order to heritabilities. The sampling intensity and the phenotypic 

variance of each trait were assumed to be unity. Different sample sizes considered were 

25, 50, 1 00 and 200 half-sib families. The number of individuals per family was kept 

constant at 1 5 .  The sets of the assumed parameters used for simulation are given in 

Table 1 .  Some of these parameters are as used by ESSL ( 199 1) .  

The parameter sets where non-zero environmental correlations were assumed are also 

given in Table 1 .  The properties of these real (assumed) parameter matrices were 

examined in terms of their eigenvalues and all eigenvalues of these matrices were 

positive. The number of replicate simulation runs for each scenario was 1 ,000. For each 

replicate run, the among- and within-group matrices of sums of squares and cross­

products (for varying sample sizes) were sampled independently from Wishart 

distributions. The genetic and phenotypic variance-covariance matrices were estimated 

from the sampled among- and within-group matrices of sums of squares and cross­

products. Different index selection procedures compared for their efficiency, were: 

1 .  k = 0 : Equivalent to the base index of WILLIAMS (1962a, b), 

2. k = 1 : Index based on unadjusted sample estimates, 

3. kR : Stepwise procedure by progressively regressing the estimated index 

coefficients towards REVs using (6), 

4. yR Stepwise bending procedure by progressively bending B towards W 

(HAYES & HILL 198 1 ). 

5 .  yN : Bending procedure using fixed yvalues (suggestion (ii) of HAYES & 

HILL 1981) .  

6 .  kN : regressing the estimated index coefficients towards REVs using fixed 

k values (based on sample size alone). 
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Table 1. Parameter sets (heritability, h2, and genetic correlations, rg) used in simulation. 

Figure in parenthesis, if any, are the corresponding environmental correlations. 

Set h
2 

h
2 

h
2 

h
2 '8(1.2) '8(1.3) '8( 1.4) '8(2.3) '8(2.4) '8(3.4) Economic 

No. 
1 2 3 4 Weights* 

1 .20 .70 -.30 1 1  12  2 1  

2 . 15 .45 -.70 1 1  12  2 1  

3 .25 .35 .40 1 1  12  2 1  

4 .05 .25 -.50 1 1  12  2 1  

5 .25 .30 .35 . 10 -.30 -.20 1 1 1  1 23 321 

6 . 15 .30 .45 . 30 -.50 -.40 1 1 1 1 23 321 

7 .05 .30 .60 .40 -.70 -.60 1 1 1  123 32 1 

8 .05 . 15 .20 .30 -.50 -.40 1 1 1  1 23 32 1 

9 .20 .30 .30 .40 . 10 0 -.20 0 - . 10  0 1 1 1 1  1233 321 1 

10 . 1 0  .25 .35 .50 .20 . 10 -.50 0 -.40 -.20 1 1 1 1  1233 32 1 1  

1 1  .05 . 1 5  .30 .70 .40 . 10 -.80 0 - .60 - .20 1 1 1 1 1233 321 1  

12  .05 . 1 0  . 15 .20 .20 . 10 -.50 0 -.40 -.20 1 1 1 1  1233 32 1 1  

1 3  .25 .40 .60 . 1 5  .20 -.35 1 1 1  123 321 
(.08) ( . 1 5) (-. 10) 

14 . 15 .30 .45 .50 .30 -.40 1 1 1  123 321 
(.30) (. 10) (-.20) 

15  .38 .3 1  .53 .70 . 1 5  .62 -.29 .28 - . 16  - .20 1 1 1 1 2 1 33 23 1 1  
( . 15) ( .32) (-. 14) (.22) ( -.01 )  (-.0 1 )  

16  .2 1 . 1 4  .26 .33 . 16 .43 . 1 1  . 1 3  .04 -.08 1 1 1 1  2 1 33 23 1 1  
( .29) ( .34) ( . 14) (. 19) ( .01 )  (-.01) 

* The value of economic weights, for example 1 1 , means equal weights are given to two traits 

For the procedure yR the optimum yvalue was chosen which maximises expression (5). 

This is theoretically similar to the proposal of ESSL ( 199 1 )  to use that bending factor 

which maximises correlation between the true and the estimated aggregate genotype. It 

is however different from the first suggestion of Hayes & Hill which states that if any 

roots of a or ( p -Ia ) are negative, bend until the smallest root is zero. The ridge index 

selection procedure was also evaluated but it was found to be consistently inferior and 

thus it will not be discussed further. 
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For each sample run, the procedures, i .e. kR and yR were applied using the full range (0 

to 1 )  of constants k and y with increment values of 0.0 1 .  The expected genetic gain (5) 

was calculated for each sample for different values of k and y. After that, these gain 

values were averaged over all samples (i .e. 1000). All comparisons were applied on the 

average values of (5). For the comparisons, i .e . ,  kR and yR, the best 'fixed' value of k or 

y was considered to be that which maximises average value of expression (5). The 

recommended yvalues of HAYES & HILL ( 198 1 )  apply to the case of 16  individuals per 

family. Although the individuals per family were kept at 1 5  in this study the fixed y 

values from HA YES & HILL ( 198 1 )  were used as such for calculations of procedure yN. 

The efficiency of all procedures investigated was judged by average expected gain (5) 

relative to an index with true index weights (7). A computer program to generate 

Wishart distributions was written in SASIIML (1989) using the algorithm of ODELL & 

FEIVESON ( 1966), as explained in KENNEDY & GENTLE ( 1980). 

RESULTS 

The results include replicates where estimated genetic correlations fel l  outside the 

theoretical range - 1  to 1 and also cases of negative heritability estimates, particularly 

when the number of families were small i.e. f = 25. However, the average estimates of 

these parameters were almost identical to the true parameters even with a sample size of 

25 families with 1 5  individuals each. For a sample of 1 00 families, the parameter 

estimates, i .e .  of heritability and genetic correlations, were found to fal l  consistently 

well within the theoretical bounds i .e . ,  0 � h2 � 1 and - 1  � rg � 1 .  Similar to HAYES & 

HILL ( 198 1 ), the replicates where genetic parameters fell outside the parameter space 

were included in further calculations. 

The plot of results for parameter set 8 (see Table 1) is shown in Figure 1 .  The number 

of families for this case are 50 and REVs of traits were in opposite rank order to the 

heritabilities. The Figure 1 consists of average (over 1000 replications) expected gain 

(equation 5) for two different procedures, i .e . ,  kR and yR, over full range of k and y. It 

can be seen from this figure that maximum average expected gains are 0.30 1 8  (at k = 

0.88) and 0.2947 (at y = 0.56) for kR and yR procedures, respectively. The optimal 

genetic gain (7) for this case was 0.3527. Thus, the efficiencies are 85 .6 and 83.5 % for 
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kR and yR procedures, respectively. For the procedure, rN, the fixed y value for a 

sample of 50 families with 16  individuals and three traits, is 0.3 (HAYES & Hn...L 198 1 ). 

The value of average expected gain corresponding to y= 0.3 is 0.2758 giving efficiency 

of the procedure, rN, as 78.2 %. The efficiencies of other two procedures (k = 0 and k = 

1 )  were also calculated in this way. 

0.3 1 

0.3 

0.29 
c .� 00 0.28 

"0 B 0.27 u 8->< 0.26 Q.l 
Q.l 00 
� 0.25 Q.l > -< 0.24 

0.23 

0.22 
o 

Base index 
0.2 0.4 

k 

0.6 0.8 
LS index 

Figure 1 .  Average (over 1000 replications) expected gain (equation 5)  for two index 

selection procedures kR ( ----i and yR (- - -), f= 50, n = 1 5, set 8, REV = 3,2, 1 .  Y= l-k. 

The simulation results regarding best fixed k values and efficiencies of different index 

selection methods are given in Tables 2 to 6. The values of k that maximised the 

average expected gain for various sample situations, are given in Table 2. These values 

were averaged over all parameter sets given in Table 1 .  Lower k values were required 

for small sample size. The overall best k values were 0.65, 0.75, 0.84 and 0.9 1 for a 

sample of 25, 50, 100 and 200 families, respectively. This indicates that sample 

estimates with small number of families are less reliable. Thus, more weight should be 

given to REVs to overcome the effects of higher sampling bias associated with small 

sample size. As the sample size increases to 200 families, the estimates are less affected 

by sampling errors as is evident from higher k value (0.9 1 )  required for regressing the 

least-square index weights towards the REVs. The extent of sampling errors also 

increased with increase in number of traits included in selection index. For a sample of 
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25 families, the optimum k values ranged from 0.58 to 0.74 depending upon the number 

of traits included in index. Thus sampling errors are more important with more traits in 

an index. However, for a large sample size of 200 families, the number of traits had 

little impact on the best fixed k values. 

Table 2. Average values (which maximise the expectation of genetic gain) of k for 

different sample sizes. Averaged over all parameter sets in Table 1 .  

Number of Number of traits Overall 

families 2 3 4 

25 0.74 0.63 0.58 0.65 

50 0.79 0.76 0.70 0.75 

100 0.87 0.84 0.8 1 0.84 

200 0.93 0.9 1 0.90 0.91 

Overall 0.83 0.78 0.75 

The relative efficiencies of various index procedures for varying sample sizes are given 

in Table 3. The % efficiencies presented in this table are averaged over all parameter 

sets with zero environmental correlations. For the procedure kN, the fixed k values were 

taken from Table 2 and the efficiency corresponding to the fixed k values were 

calculated for this procedure. The relative efficiency of k = 1 varied from 70.9 to 95 .3 

% (Table 3) increasing with number of families whereas the efficiency of k = 0 was 

constant at 82.9 % as sample information contributes nothing in this procedure of index 

selection. The procedure k = 0 is better than k = 1 only with small sample sizes. The yR 

procedure was found to be about 2 to 3 % more efficient than rN across all sample 

sizes. The slightly lower relative efficiency of rN as compared to yR is because yR 

represents the maximum point on the plot of average expected gain (as shown in Figure 

1 ). The efficiency of the kR procedure was higher than for the other procedures. The 

procedure kN was found to be less efficient than kR and yR but its efficiency is higher 

compared to rN. 
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Table 3 .  Average efficiency (%) of different index procedures for different sample 

sizes. Averaged over parameter sets with zero environmental correlations. 

Number of kR yR k = O  k = 1 yN kN 

families (Base index) (LS index) 

25 9 1 .2 89.8 82.9 70.9 86.6 88.6 

50 93.6 93 .2 82.9 82.5 90. 1 9 1 .0 

100 95.6 95.5 82.9 90.5 92.9 93 .5 

200 97.3 97.3 82.9 95.3 95 . 1  96.2 

The results of the effect of number of traits on the efficiency of different procedures are 

given in Table 4. As the number of trait increases, the efficiency of all procedures also 

decreases. The rate of declining efficiency is lowest for k = 0 whereas highest decline 

was observed for k = 1 .  The magnitude of the relati ve efficiency advantage of the 

procedure kR over yR declines as the number of trait increases but its superiority is 

maintained throughout. 

Table 4. Average efficiency (%) of different index procedures for different number of 

traits. Averaged over parameter sets with zero environmental correlations. 

Number of Number of kR yR k = O  k = 1 yN kN 
traits families 

2 25 94. 1  92.2 84. 1 80.3 90.2 9 1 .7 

50 96.2 95.6 84. 1 88.6 93.4 93 .5 

3 25 90.5 88.9 83.5 67.2 85.0 88.2 

50 93. 1 92.7 83.5 8 1 .7 89.4 90.9 

4 25 88.9 88 .3 8 1 .3 65.4 84.4 86.0 

50 9 1 .6 9 1 .2 8 1 .3 77.3 87.4 88.6 

The relative efficiency of various procedures was also evaluated for different economic 

weights and heritability relationships. Average relative efficiencies for this part of 

analysis are given in Table 5 .  The efficiency was higher, for all procedures, when 
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economic weights were in the same rank order as heritabilites. The loss in efficiency, 

when REVs and heritabilites are in opposite order, is least for kR. Also, the magnitude 

of higher relative efficiency of kR is maximum when there is opposite relationship 

between REVs and heritabilites while it is minimum when REVs and heritabilites are in 

the same order. As the procedure kR regressed the estimated index coefficients towards 

REVs, therefore, loss in efficiency is lower as compared to other procedures. 

Table 5. A verage efficiency (%) of different index procedures for different 

relationship between economic weights and heritabilites. Averaged over parameter sets 

with zero environmental correlations. 

Economic Number of kR yR k = O  k = 1 yN kN 

weights families 

heritabilities 

1 25 9 1 .4 90. 1 83.5 69.2 86.2 89.0 

50 93 .8 93.4 83.5 8 1 .3 88.9 9 1 . 1  

100 95.7 95.6 83.5 89.9 9 1 .5 93.6 

200 97.3 97.2 83.5 94.9 93.9 96.3 

2 25 94.5 93.5 86. 1 80.2 90.7 92.3 

50 96.3 96. 1 86. 1 89.6 93.6 94.5 

100 97.5 97.4 86. 1 94.8  95.7 96.4 

200 98.5 98.4 86. 1 97.5  97. 1  98.0 

3 25 87.5 85.9 79.3 63.4 82.8 84.6 

50 90.7 90. 1 79.3 76.6 87.7 87.4 

100 93.7 93.5 79.3 86.7 9 1 .7 9 1 .2 

200 96.2 96. 1 79.3 93.3 94.5 94.3 

Economic weights : heritabilites = 1 :  Economic weights are equal for all traits 

= 2: Economic weights and heritabilites are in same order 
= 3 :  Economic weights and heritabilites are in opposite order 

Prompted by the results in Table 5, it was decided to compare the efficiency of various 

procedures in the situation where all the index traits have low heritabilites. For this 

purpose parameter sets 4, 8 and 12  (see Table 1 )  were chosen. When economic traits 
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and heritabilities are in opposite rank order, the average efficiency of kR was 5 .5 and 

2.3 % higher than yR with a sample size of 25 and 50 families, respectively. 

Table 6. Average efficiency (%) of different index procedures for different number of 

traits. Averaged over parameter sets with non-zero environmental correlations. 

Number of Number of kR yR k = O  k = 1 'rN kN 
traits families 

3 25 97.2 97. 1 96.3 85.9 95.9 97.0 

50 97.9 97.9 96.3 93.9 96.9 97.7 

100 98.5 98.5 96.3 97. 1  98.0 98.4 

4 25 96.7 96.7 95.9 80.5 95.5 96.5 

50 97.2 97. 1  95.9 89.0 95.7 97.0 

100 97.9 97.9 95.9 95 . 1  96.8  97.8  

As mentioned earlier, this study was also designed to examine the impact of non-zero 

environmental correlations on the relative efficiencies of various procedures. The 

parameter sets 1 3  to 16 given in Table 1 were used for this part of analysis.  The results 

for 3 and 4 traits-index are shown in Table 6. It shows that the procedure kR has an 

advantage over all other procedures. One interesting result clearly apparent by 

comparing Table 4 and Table 6 is that the difference in the relative efficiency of 

procedure k = 0 with others has reduced dramatically in Table 6. Interestingly, k = 0 

procedures have shown slightly higher relative efficiency as compared to k = 1 even 

with a sample size of 100 families and 4 traits-index. 

DISCUSSION 

The present study assumes a balanced structure of half-sib families. The effect of 

sampling errors on the efficiency of index selection, was evaluated using ANOV A 

estimates of genetic parameters. Different methods of modifying the parameter 

estimates to increase their reliability, have been proposed in the past. HAYES & HILL 

( 198 1 )  pointed out the possibility of modifying the index weights themselves which has 

some analogies with the technique of ridge regression (HOERL & KENNARD 1 970). The 

proposed method is a form of index which takes into account the REVs which are 
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assumed to be known precisely. This method lowers the chances of reducing the 

efficiency of index selection when the breeder is not confident about the reliability of 

parameter estimates. The proposed method is also an intermediate solution between the 

two extreme situations, i .e. LS index and 'base index' and maximises the expected 

genetic gain. This method is similar, although methodologically different, to that of 

HAYES & H1LL ( 198 1 ). The expectation of response that would be actually achieved, for 

evaluating the efficacy of the different index selection procedures used in this study, 

should be theoretically similar to those from maximising the correlation between true 

and estimated aggregate genotype. The latter criterion has been used in some studies 

(e.g., ESSL 1 99 1 ,  VERRYN 1994). 

Effect of sample size and genetic parameters 

The maximum genetic gain was obtained with k < 1 when sample estimates of variance 

components were used. The optimum value of k was found to depend on number of 

traits, size of experiment and heritabilities. With a two-trait index, the magnitude of 

sampling errors is comparatively less and thus highest expected gain was obtained with 

k values closer to 1 .  With low heritabilities of index traits, the maximum gain was 

obtained at comparatively low k values. These findings parallel those obtained in other 

studies (e.g. HAYES & HlLL 198 1 ,  ESSL 199 1 )  with large y values. The genetic 

parameters were found to have influence on the optimum value of bending factor in 

these studies. The logic behind the rN (i .e., select bending factor on the basis of sample 

size alone) of HAYES & HILL ( 198 1 )  was to operate more generally when all roots are 

positive and genetic parameters are unknown. The relative sub-optimality of procedure 

rN compared to yR in the present study may be because of the effect of genetic 

parameters on optimum y. 

The calculation of expectation of response in (5) requires that the true parameters be 

known. However, the improvement of the efficiency of different index selection 

procedures can only be calculated in Monte Carlo simulation studies (MEYER & HILL 

1983). By substituting P and G in place of P and G in (5), a roughly linear decline 

(results not shown) in R with decreasing k was obtained. It indicates that the pattern of 

predicted gains gives no real guidance about optimum k, unless perhaps one is dealing 
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with large matrices and obviously unstable LS index solution which shows clear 

parallels with multiple regressions. 

Effect of environmental correlations 

The average expected genetic gain for kR procedure was much higher compared to the 

unmodified index selection (i.e. at k = 1) .  The difference in the relative efficiency of kR 

and k = 1 procedures fall drastically when non-zero environmental correlations were 

taken into account (Table 6). One of the probable reasons for this may be that results in 

Table 6 are based on parameters set where heritabilities of traits are marginally higher 

which resulted in the higher relative efficiency of k = 1 .  ESSL ( 199 1 )  also looked briefly 

into the aspect of non-zero environmental correlations. Further investigation is required 

to study the effect of various degrees of environmental correlations on relative 

efficiency of different index selection procedures. 

Effect of different economic weights 

Precise knowledge of REVs was assumed in this study. However, the choice of 

appropriate economic weights can itself be crucial, particularly when adverse genetic 

correlations are involved. The economic end-product value of observed traits is often 

difficult to evaluate, especially in tree breeding programmes that involve long 

generation intervals and uncertain relationships between biological traits and net end­

product values. The proposed method proved to be relatively more efficient, under 

various scenarios, as compared to other procedures considered in this study (Table 4). 

Its efficiency was much higher particularly when the index involves low-heritabilities 

traits with REVs in opposite rank order to heritabilities. The results also shows that the 

proposed method is more efficient than other procedures even when equal REVs have 

been assigned to different traits. The efficiency of yR was, however, almost identical to 

that of kR when sample size was more than 50 families. 

In this study the efficacy of the proposed method was tested for MANOV A estimation 

of genetic parameters in a balanced half-sib family structure. Further investigation is 

required for establishing the efficacy of this method for other genetic parameter 

estimation methods (like REML) and selection methods (different sources of 

information: ancestors, individual and progeny). This study does not rule out the 
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possibility that better methods of modifying the parameter estimates exist. Our results 

offer a simple but very effective procedure which can be further explored. 
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Detection and independent verification of quantitative trait loci are important steps in 

the process of marker assisted selection (MAS). The mapping designs greatly influence 

power to correctly identify QTL for a given size experiment. This chapter discusses 

different methods that have been put forward to calculate critical values for rejecting or 

failing to reject the alternative hypothesis regarding the existence of a QTL; and 

reviews different options for establishing the experimental designs for QTL mapping. 

In addition, the implementation of MAS in radiata pine breeding is discussed. 

Full-sib families are commonly being used as QTL mapping populations in forest trees. 

Being outbred populations, forest trees are highly heterozygous and there might be 

more than two alleles segregating at any locus. Therefore, the methods developed for 

establishing QTL mapping designs in populations derived from inbred lines can not be 

used for considering the designs for QTL detection in forest trees. Statistical methods 

used to detect QTL generally suppose that QTL act on the phenotypic trait mean. In the 

simpler approach (e.g. SOLLER et al. , 1976), marker genotypes are considered as factors 

in a one-way ANOV A, and the test for significance of this factor is the test for the 

presence of a QTL in the vicinity of the marker locus. The theory for single-marker 

ANOV A, when male and female parents are segregating different marker alleles, was 

developed (Chapter 2) to help determine the size of experimental designs for detecting 

QTL. 

In Chapter 2, the results showed that the power of linkage detection was higher for 

fully-informative (FI) marker designs compared to pseudo-backcross (PBC) and 

pseudo-intercross (PlC) marker configurations. This result can be explained in terms of 

the expected number of informative marker contrasts and the number of informative 

offspring in each case. For a given QTL size, the methodology presented in Chapter 2 

and 3 can be used to determine the optimum number of families to achieve maximum 

power of QTL detection. However, the question that how many families (independent 

or in some mating design structure) are required to find all QTL of large effects in the 

population need to be answered. 

The methodology presented in Chapter 2 and Chapter 3 provides a useful tool to enable 

quick screening of different scenarios (experimental and genetical) deterministic ally 

before establishing a QTL mapping trial in outbred populations. LANDER & BOTSTEIN 
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( 1989) suggested that power of detecting marker-QTL linkages could be markedly 

increased by utilising interval mapping with the likelihood ratio test as compared to 

single-marker ANOVA tests. KNOTT et al. ( 1996), using stochastic simulations for 

outbred half-sib pedigrees, showed that the single-marker method provides the lower 

limit of the power and it can be increased using multiple-marker methods. Fu & 

RITLAND (1994) studied the statistical properties of mapping recessive viability loci 

using the single-marker approach. They showed that two flanking markers provide 

vastly superior estimation properties and required smaller sample sizes compared to 

those required for equivalent power utilising a single marker. 

DARVASI et al. ( 1993), similar to HALEy & KNOTT ( 1992), found that the difference in 

power between interval mapping using a likelihood ratio test and single-marker 

ANOV A was small .  When intervals of up to 20 cM are used, they found little 

difference in the results obtained using two methods. They argue that the comparison 

made by LANDER & BOTSTEIN ( 1989) did not take into consideration that when a pair 

of flanking markers is available, both will be individually examined in the 

corresponding single-marker analysis. Statistical significance with respect to either will 

result in marker-QTL linkage identification, hence increasing the power of single­

marker analysis. Also, LANDER & BOTSTEIN ( 1989) only investigated the case where 

the QTL is located at the mid-point with respect to the flanking markers. This is the 

worst case for single-marker QTL linkage determination relative to interval mapping. 

In practice, single-marker analysis can be used for preliminary screening for any 

marker-trait association and then multi-marker methods should be used for determining 

the position and effect of QTL. 

The disadvantage of the single-marker ANOV A approach is that it gives no information 

on the position of the QTL as it cannot separate its quantitative effects from its distance 

from the marker (MURANl'Y, 1996). Methods using flanking markers (LANDER & 

BOTSTEIN, 1 989; HALEY & KNOTT, 1992) allow separate estimation of QTL position 

and effect. HALEY et al., 1994 pointed out that interval mapping may be biased towards 

locating a QTL in the most informative interval rather than the correct one and thus, 

suggested the simultaneous use of all markers in a linkage group (popularly known as 

multiple marker mapping). HALEY et al. ( 1994) and KNOTT et al. ( 1996) extended the 

use of multiple marker mapping to outbred populations. This approach was used in 
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Chapter 4 for analysing the marker-trait information from linkage group three of radiata 

pme. 

Threshold levels 

A number of statistical methods are being used for detecting and locating QTL. A 

common problem associated with all of these methods is the determination of 

appropriate significance thresholds (critical values) against which to compare test 

statistics for determining the presence of a QTL. In Chapter 2 and 3, the power of 

linkage detection was obtained at a type-I error rate of 0.0 1 .  In practice, a number of 

QTLs may be missed (a type-IT error) and at the same time a number of false positives 

may occur (a type-I error). Keeping type-I error rate at, say, 0.05 the power could have 

increased. The actual balance between the cost of false positives and the benefit of 

detected QTL depends on the aim of the experiment. If the objective of the experiment 

is to identify QTL that will be subsequently confirmed in an independent population, a 

type-I error rate of 0. 1 5-0.20 may be used to ensure QTL are not missed. 

The determination of what appropriate significance thresholds should be used is very 

critical. As discussed by CHURCHILL & DOERGE ( 1994), there are two sources of this 

problem. First, there is the problem of determining (or approximating) the distribution 

of the test statistic under an appropriate null hypothesis. The distribution of the null 

hypothesis has been approximated through theoretical methods (LANDER & BOTSTEIN, 

1989; FEINGOLD et al. , 1993 ; REBAI et al., 1994), as well as empirical methods 

(CHURCHILL & DEORGE, 1994). The reliability of the asymptotic (theoretical) 

approximation is doubtful because of problems such as finite sample sizes and 

distributional properties of the trait and thus, empirical approaches should be used 

(CHURCHILL & DEORGE, 1994). The empirical method of CHURCHILL & DOERGE 

( 1994), applied in Chapter 4, also inherently accounts for other characteristics of the 

data set (e.g. missing phenotypic or genotypic data, segregation distortion), whereas the 

theoretical approximations are based upon "perfect" data. 

The second source of difficulty is the multiple hypothesis testing that is implicit in 

genome searches used for locating QTL. A large number of tests (e.g. every cM) may 

be carried out and a number of traits may be considered, many of which are not 

independent. As reviewed by SPELMAN (1998), three methods that address the effect of 



Chapter 7: General discussion 102 

multiple testing have been put forward for calculating critical values. These methods 

are: experimental type I error rate (LANDER & BOTSTEIN, 1 989; LANDER & KRUGLYAK, 

1995), false discovery rate (BENJAMINI & HOCHBERG, 1995 ; WELLER et al., 1998), and 

posterior type I error (SOUTHEY & FERNANDO, 1998). All these methods to set 

significance levels have some drawbacks, but the method of setting experimentwise 

levels (LANDER & BOTSTEIN, 1989; LANDER & KRUGLYAK, 1 995) appears to be most 

applicable to genome scans with interval mapping (SPELMAN, 1998). 

Design of QTL mapping experiments 

Type and structure of mapping population 

A QTL mapping experiment should be carefully designed. Full-sib families are being 

widely used in QTL mapping studies in forest trees (e.g. GROOVER et al., 1994; KNOTT 

et al., 1997; EMIBIRI et al., 1998; KUMAR et al. , 2000). Chapter 2 of this thesis 

considers the power of QTL detection experiments using full-sib families. Use of full­

sib families in conifers is directed at detecting QTL segregating in the normal course of 

outbreeding within a population. PLOMION et al. ( 1996) used a self-family for detecting 

QTL for early growth. Detection of QTL in self-families would not be the same as in 

outbred pedigree� . Some of the QTL in self-families will represent genetic load 

(resulting in loss of both survival and reproduction); however, there would be some 

individuals without appreciable load so QTL detected in these self pedigrees would be 

similar to those expressed under the normal course of outbreeding (PLOMION et al., 

1996). In Chapter 3 of this thesis, the methodology for estimating the power of QTL 

detection in self-families of outbred populations is presented. 

Many factors, including size and structure of the mapping population, influence the 

efficiency of QTL mapping experiments. As shown in Chapter 2 and Chapter 3 and by 

many other authors (e.g. HILL, 1975; SOLLER & GENIZI, 1 978; WELLER et al., 1990; 

V AN DER BEEK et al. , 1 995), increasing the number of offspring per family is more 

efficient with respect to power than increasing the number of families. A question of 

importance is whether the tree breeding population as it exists has a size and structure 

suitable for QTL analysis.  The size of full-sib families in tree breeding programs is not 

large enough « 100) for powerful detection of small to moderate size QTL. However, 

there might be some large families available in commercial plantations that can be used 
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for this purpose but the use of these families introduces the risk of mislabelling of 

offspring. 

Selective genotyping 

Power of QTL detection shown in Chapter 2 and Chapter 3 are based on the assumption 

that all the available offspring in any pedigree are genotyped. The results showed that 

large sample sizes are required for detecting small to moderate size QTL. Many traits 

are less expensive to score than marker genotypes. In such cases, if our interest is a 

single trait (as opposed to experiments where a large number of traits are 

simultaneously considered), it pays to first score a number of individuals for the trait 

and then genotype only a selected subset of these. This strategy is called selective 

genotyping and can result in a large increase in power for a given number of genotypes 

(LEBOWITZ et al., 1987; DARVASI & SOLLER, 1992). The basis of this approach is that 

much of the linkage information resides in individuals with extreme phenotypes. 

As shown in Table 1 and Table 2, family size has an impact on the power of detection, 

as the larger the family size, the greater the power. Complete genotyping certainly 

gives higher power compared to selective genotyping. However, most of the power of 

linkage detection can be achieved by selectively genotyping 5-10 % of the total 

offspring from each tail of the trait distribution. The decision about the optimum 

proportion to be genotyped from each tail is also influenced by the trait heritability 

(Table 1 and Table 2). For low heritability traits, a higher proportion would have to be 

genotyped to get reasonably close to the maximum achievable power from an 

experiment. A smaller proportion selected from the tails of the phenotypic distribution 

of low heritability traits might be quite misleading because of the higher environmental 

contribution towards the phenotype. The best strategy for future QTL detection 

experiments would be to get larger family sizes and selectively genotype offspring from 

the tails of the phenotypic distribution. 

Asexual propagation 

As asexual propagation is not difficult in radiata pine, it offers another QTL mapping 

design strategy for increasing power (LANDER & BOTSTEIN, 1 989; SOLLER & 

BECKMANN, 1990; KNAPP & BRIDGES, 1990). The idea is to reduce the effects of 
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Table 1 Power of QTL detection using selective genotyping for a single full-sib family. 

The QTL explains 5 % of the genetic variance (or 0.27 CTp, this is 'a' in Falconer terms) 

for a trait with heritability 0.75. Recombination between marker and the QTL is 

assumed to be 0. 10. 

Family size 

# selecti vel y genotyped 500 1000 2000 4000 

100 0.32 0 .42 0.49 0.56 

200 0.42 0 .59 0.64 0.70 

300 0.48 0.66 0.69 0.74 

All 0.48 0.70 0.73 0.75 

Table 2 Power of QTL detection using selective genotyping for a single full-sib family. 

The QTL explains 5 % of the genetic variance (or 0. 16 CTp, this is 'a' in Falconer terms) 

for a trait with heritability 0.25. Recombination between marker and the QTL is 

assumed to be 0. 10. 

Family size 

# selecti vel y genotyped 500 1000 2000 4000 

100 0.06 0. 10 0. 1 2  0. 14 

200 0.08 0. 1 5  0.20 0.25 

300 0.09 0. 17 0.24 0.38 

All 0.09 0.23 0.47 0.72 

environmental variation by asexually replicating each genotyped individual, using the 

mean value of these replicated progeny in place of the single individual value. This is 

not an efficient strategy unless the trait heritability is small ,  in which case scoring only 

a few replicated progeny can result in a significant increase in power. SOLLER & 

BECKMANN ( 1990) showed that most of the increase in the power occurs by measuring 

ten or fewer replicated progeny. Besides offering some increase in power, progeny 

replication allows marker-trait associations to be examined across environments, 

allowing QTL-environment interactions to be estimated (LYNCH & W ALSH, 1 997). 
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Marker Assisted Selection (MAS) 

An outbred population is a collection of families and the linkage disequilibrium 

between markers and QTLs differs over families, i .e . ,  the outbred population is 

expected to be in linkage equilibrium. Thus, marker allelic effects have to be estimated 

for each family separately. Genetic gains predicted from MAS in crossbred populations 

are quite high (e.g. LANDE & THOMPSON, 1990). However, the estimated marker allelic 

effects in an outbred population explain less variance and therefore contribute less to 

genetic gain. A single family in an outbred population is usually smaller than an entire 

crossbred population. Therefore, the marker allelic effect estimates are regressed more 

towards zero in an outbred population (V AN DER BEEK, 1 996). It is less likely to find 

large segregating QTLs in an outbred population compared to crossbred population. 

In other plants and animal species, many authors have looked at the implications of 

MAS on breeding programmes through simulation. However, there are not many 

published reports on the application of MAS in forest tree breeding programmes. MAS 

can be applied in two different ways in tree breeding programmes. First, within-family 

MAS, where selection decisions are first made on estimated breeding values and then 

within-family selection decisions are based on QTL information. Second, across-family 

MAS, where selection decisions are made on breeding values that combine the QTL 

and the polygenic components (FERNANDO & GROSSMAN, 1989). However, across­

family MAS does not seems to be a practical option in the near future. 

KERR et al. ( 1996) simulated a multi-generation across-family MAS scheme and 

reported that after 3 generations of selection and breeding the relative genetic gains in 

total aggregate genetic merit using MAS would be 107- 1 1 6  % for breeding population 

and 106- 1 1 3  % for deployment population. Some other unpublished studies (G. R. 

10hnson et al.) simulated MAS and the genetic gains in deployment populations were 

shown to be promising. The results presented in Chapter 5 of this thesis shows that 

genetic gain in conventional selection and deployment schemes can be increased using 

MAS. Genetic gain improvement achieved with MAS is dependent on the genetic 

model considered. In reality, the underlying genetic model is not known i .e. the number 

of alleles, distribution of effects, and interaction between loci .  Because of this, different 

types of genetic models are being simulated in MAS studies: varying number of QTLs, 

sizes of the QTL, ranging from bi-allelic QTL to many alleles at the QTL. In any case, 
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the extra gain achieved through MAS needs to be evaluated in economic terms. A 

formal economic evaluation of MAS would need to take into account the extra costs 

associated with marker typing and the time taken for extra evaluation. Assuming 

different genetic models, some unpublished studies (G. R. 10hnson et al. ; P. L. Wilcox 

et al.) have shown economic benefits of MAS under various deployment options. 

Implementation of MAS in radiata pine breeding in New Zealand 

Marker-QTL information can be found for all parents that are being used in production 

population. This marker-trait information can be used to increase genetic gain by 

selecting within-families that are used to establish production plantations, and 

propagating for deployment only those individuals that have favourable marker 

haplotypes .  Elite populations are also being established for some economically 

important traits. All elite families can be screened for marker-trait associations and 

MAS can be used in these elite families to select individuals for the next generation 

breeding and also to become the parents of the production populations. In radiata pine 

breeding in New Zealand, clonal selection is being practised to capture the non-additive 

genetic component particularly for low heritability traits. Generally, clonal selection is 

carried out in full-sib families of genetically superior parents (determined by their 

progeny test). This is also the potential area in tree breeding where MAS can be applied 

for selecting only those genotypes, at seedling stage, which have the desired haplotype 

for putting them in clonal test. After field testing of MAS clones, superior clones can be 

selected for deployment in the production plantations. 

Index Selection 

Across-family MAS is technically more demanding than within-family MAS, but 

genetically  superior to within-family MAS. This is because the inclusion of QTL 

information in the estimation of breeding values results in more accurate estimation and 

therefore higher selection differentials as differences between families can be exploited 

as well as within (SPELMAN & GARRICK, 1 998). KERR & GODDARD ( 1997) suggested 

that conventional options should be first optimised for increasing genetic gain. These 

conventional options might include numbers of families, family size and some other 

measures to reduce the effect of sampling errors on the estimation of genetic 

parameters. SALES & HILL ( 1976) and RA.YES & HILL ( 1 98 1 )  investigated the effect of 

genetic parameter estimation error on selection response and suggested some measures 
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to improve the efficiency of selection and thus increasing the genetic gain in breeding 

programmes. In Chapter 6 of this thesis, a method is proposed to reduce the effect of 

sampling errors on the selection index coefficients and thus increase the efficiency of 

index selection. The procedure, kN, given in Chapter 6 can be used in practice for 

scaling the estimated index weights towards economic weights. The choice of scaling 

parameter, k, will depend on the sample size and the number of traits being considered 

in the selection index. Most of the MAS studies have dealt with a single trait only. 

However, in practice, the commercial breeding objective is always composed of several 

traits. WELLER et al. ( 1988) found QTL with positive effects on pairs of traits. Selection 

for these loci may be significantly more effective than the traditional selection index 

(e.g. DE KONING & WELLER, 1994). The application of the method given in Chapter 6 

was explored only for the traditional selection index and thus its efficiency in case of 

multi trait MAS remains to be evaluated. 
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This thesis focuses on the detection of quantitative trait loci (QTL) and the use of 

genetic markers linked to QTL in tree breeding schemes. QTL mapping experiments 

need to be optimised to minimise costs of data collection and genotyping. In Chapter 2, 

the expressions for variance components for single-marker ANOV A were derived to 

help determine the size of experimental designs for detecting QTL in full-sib families 

where parents are assumed to heterozygous for different marker alleles. The effects of 

experimental and genetical parameters on the power of linkage detection were 

evaluated. For a given experimental size, fewer larger families were better than many 

small families. Recombination rate, size and dominance properties of the QTL were 

found to have large effects on the power of linkage detection. 

Molecular markers are being increasingly used in self-families of outbred organisms to 

find genes causing inbreeding depression in growth traits. Some of the QTL in self­

families will represent genetic load; however, there would be some individuals without 

appreciable load so QTL detected in these self-families would be similar to those 

expressed under the normal course of outbreeding. In Chapter 3, the methodology for 

estimating the power of QTL detection in self-families of outbred populations is 

presented. The power of linkage detection was calculated for a wide range of progeny 

sizes and genetic parameters at the QTL. The magnitude of the gene effect and the 

recombination rate were found to have enormous effect of the power of linkage 

detection. 

An experiment involving a full-sib pedigree (850.055 x 850.096) was established at 

Forest Research to determine the genetic location and effects of genomic regions 

controlling wood density at three stages (rings corresponding to ages 1 -5 ,  6- 10 and 

outer wood density). In Chapter 3, analysis of only a single linkage group (three) of the 

parent 850.055 was considered for mapping QTL. A multiple marker least-square 

approach was employed for mapping QTL for each of the three traits. Experimentwise 

critical values, which accounted for the evaluation of marker-QTL associations across 

the whole genome and for three correlated traits, were calculated. Logistic regression 

was used for multiple-trait QTL mapping. A putative QTL with large effect on juvenile 

wood density (rings corresponding to ages 1 -5) appears to be segregating at 73 cM 

position (experimentwise P<O.Ol ). The width of the 95 % bootstrap confidence interval 

for the putative QTL was 40 cM (i .e. 56-96 cM). 
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In Chapter 5,  stochastic simulation was undertaken to investigate the genetic response 

from within-family MAS. Genetic . gains obtained using MAS were compared with 

those obtained from conventional strategies for three selection and deployment options: 

'full-sib family forestry' , 'clonal forestry' and 'forwards selection for deployment' .  The 

genetic model contained polygenes and a QTL linked to a marker. Heritability of the 

trait was assumed to be either 0.25 or 0.75 . A QTL that explained 20 % of the genetic 

variance was used. It was assumed that linkage phase and the haplotype in the base 

population was known in order to simulate transmission of haplotype. Relative genetic 

gain due to the use of marker was 6-8 % and 2-3 % for 'full-sib family forestry' and 

'clonal forestry' options, respectively. 

Index selection is a tool commonly employed in tree breeding programs. In Chapter 6, a 

method is proposed to reduce the effect of sampling errors on the estimates of 

multivariate genetic parameters, thus increasing the efficiency of index selection. The 

proposed method consists of 'regressing' the estimated (least-squares) selection index 

coefficients towards the relative economic values. Using Monte Carlo simulations, the 

efficiency of the proposed method was found to be very high when the number of 

families used in the progeny tests are few. When the heritability of index traits was low 

and their relative economic values were in opposite order to heritability, the efficiency 

of the proposed method was much higher. The application of the proposed method was 

explored only for the traditional index selection and its efficiency for multitrait MAS 

remains to be evaluated. 

In the general discussion, different QTL analysis methods i .e . ,  single-marker ANOV A, 

interval mapping and mUltiple marker methods are outlined and discussed. Calculating 

the threshold levels in QTL mapping studies is always crucial. Different approaches to 

calculate critical values are outliIled. Various aspects of designs of QTL mapping 

experiments in forest trees are discussed. Different strategies for increasing the power 

of marker-QTL linkage detection are outlined and discussed. It was shown that most of 

the power of linkage detection could be achieved by selectively genotyping 5-10 % of 

the total offspring from each tail of the trait distribution. Implementation of MAS in 

radiata pine breeding program in New Zealand is also discussed. Different selection 

and deployment scenarios are outlined where MAS can be applied in the near future. 
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