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ABSTRACT 

It is well known that variation in lactation yields tends to increase with average 

production. Failure to account for this scale effect may cause overestimation of genetic 

merit for sires with a majority of daughters in high-variation herds and vice-versa. The 

current system of sire evaluation in New Zealand overcomes this problem by expressing 

daughters performance as a proportion of contemporary average performance. The 

objectives of this study were to quantify the magnitude of scaling (heterogeneous 

variance), and to identify methods to stabilise the variance of milkfat yields for use in the 

genetic evaluation system of dairy cattle through best linear unbiased prediction (BLUP) 

using an animal model across breeds. 

Lactation records of dairy cows calving between 1986 and 1989 were obtained 

from the Livestock Improvement Corporation of the New Zealand Dairy Board. There 

were milkfat yields from 2,004,854 lactations in 83,805 contemporary groups (herd­

year-age; HY A). The data were divided into three equal-sized subsets based on HY A 

mean; these being (kg milkfat ± sd) High (H), 172 ± 28; Medium (M), 152 ± 26; and 

Low (L), 139 ± 25. 

The methods investigated for the accounting of scaling were: adjustment by the 

HY A sd (SD-adjustment); scaling by the HY A mean (MEAN-correction); and natural 

logarithmic transformation (LOG-transformation) of milkfat yield. The overall 

correlation between HY A means and HY A sd's was 0.44. This value was reduced to 

0.31 in SD-adjusted, -0.27 in the MEAN-corrected and -0.24 in the LOG-transformed 

data. Ideally, the transformed data should exhibit independence between the mean and 

standard deviation. 

Breeding values of sires were separately estimated from each data subset using a 

mixed model. Product-moment and rank correlations between breeding values for sires 

estimated from the independent subsets and with variable minimum number of daughters 

were in the overall comparisons (L-M, L-H and M-H) lower than expected correlations, 

reflecting inaccuracies in sire evaluation when scaling is ignored. Product-moment and 

rank correlations were similar for SD-adjustment and MEAN-correction, but LOG­

transformation reduced the calculated correlations in the L-M, L-H and M-H 

comparisons. 
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Estimates of the genetic correlations between production in pairs of environments 

were obtained from the ratio of observed to expected correlations. These estimates 

ranged from 0.82 to 1.01 for the linear yields. Estimates of genetic correlations were 

similar for SD-adjusted and MEAN-corrected data, but for LOG-transformed data these 

were reduced, especially in the L-H comparison which ranged from 0.77 to 0.87. 

Results confirm the problem of scaling on genetic evaluation of New Zealand 

dairy cattle. MEAN-correction and LOG-transformation methods are not appropriate 

because they tend to overcorrect the scaling problem. SD-adjustment is not satisfactory 

but seems to be more appropriate than no adjustment. An alternative method is 

proposed based on a Bayesian approach, which takes into account any relationship 

between variance and mean. 

Keywords: dairy cattle, BLUP, scaling effect. 
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CHAPTER 1 

INTRODUCTION 

1 

In a broad sense, factors determining milkfat yield of a dairy cow are classified 

into two groups. The first group is the inherited ability of the cow to produce milkfat, of 

which one half comes from her sire and the other half comes from her darn. The second 

group is the set of environmental factors which will affect the cow's level of production, 

but which are quite independent of her inherited ability. Generally, this last group of 

factors is comprised in a herd-year-age group called a contemporary group (Van Vleck 

et al. 1987). Thus, cows of the same age daughters of a dairy bull located in different 

environments (herd-years) will have different yields due to the effect of specific factors in 

each of the environments. It is assumed that genetic and residual variances across 

contemporary groups are equal. Several studies, however, have indicated a positive 

relationship between production level and estimates of genetic and residual variances and 

heritability. Failure to account for this scale effect may cause misranking in the genetic 

evaluation of animals. 

The possibility of this scaling problem in dairy production has been studied in 

New Zealand since the progeny testing of bulls was established (see for example, 

Stichbury, 1957). A matter of discussion has been if breeding values of dairy sires will 

rank in the same order based on daughters milked over a wide range of environmental 

conditions. In that time ( 1957), 214 dairy bulls were surveyed in low and high producing 

herds. In both cases it was showed that a bull's daughter average varied according to the 

level of the herd in which it was used, but the difference from expectancy figure, in 

general, remained constant. 

Similarly, Wickham (unpubl.) cited by Holmes and Wilson (1984) presented data 

of the productive performance of the progeny of one dairy sire used in the artificial 

insemination for commercial herds. The differences in milkfat yield between the 

daughters of the bull and their contemporaries at three levels of production increased as 

the level of production increased. However, the rank of the sire in the different 

producing levels was not studied. 

One of the features of the present New Zealand system for sire evaluation is the 

use of ratios of the daughter average to contemporaries average rather than deviations of 

daughter average from contemporaries average. The ratio breaks a possible relationship 

between the mean and the variance and adjusts for unequal error variances (Everett and 
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Jones, 1985). This was the case of the dairy bull above mentioned. The proportion of 

the average milkfat production of the sire's daughters and the average of contemporaries 

remained constant as the level of production increased. 

In the genetic evaluation of dairy cattle, therefore, there are two practical 

situations that merit attention. First, if for a given trait the variance increases as the 

mean increases, animals to be parents of the next generation will be selected in a greater 

proportion from those environments with high levels of production (higher variability) 

than from environments with low levels of production (lower variability). This is more 

important when selecting cows than when selecting bulls because sires are generally 

evaluated in several herds with variable levels of production. Second, if heterogeneity of 

variance across environments is not taken into account for the genetic evaluation of the 

animals, the ranking of animals on the basis of estimated breeding values would change 

across environments. 

In 1991 a technical review of the current sire evaluation procedures was initiated 

and a prototype animal model based on best linear unbiased prediction (BLUP) 

procedures had been developed, which will be adopted in 1995 (Harris, et al. 1993 ). The 

prototype animal model can readily account for heterogenous residual and genetic 

variance if they were found. 

In regard to the above questions, this thesis had the following objectives: 

1. To provide evidence of heterogeneity of variance for milkfat production measured 

through the relationship between the mean and the variance. 

2. To determine the effect of heterogeneity of variance on the ranking of sires on the 

basis of breeding values estimated at different production levels through a single 

repeatability animal model across breeds using BLUP procedures. 

3. To identify the best of three methods to stabilise the variance of milkfat yields. 
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CHAPTER 2 

DAIRY FARMING IN NEW ZEALAND 

New Zealand claims to be the most efficient country in the world in growing and 

converting pasture, through the grazing animal, into meat, milk, fibre and by products for 

human use. The basic elements of this efficiency are temperate climate favouring all-year 

grass growth, a high level of education among farmers, applied research and the rapid 

adoption of advanced technology. 

2.1 Climatic Conditions 

The country is mostly hilly and mountainous with relatively little easily-cultivable 

land. It stretches through more than 12° of latitude from the subtropical north to the 

colder southern regions; within this altitude and latitude range there is very wide 

variation in climate (Coop, 1987). 

Rainfall distribution is controlled mostly by the mountains. The west coast of the 

South Island and the mountain regions of the North Island receives over 2,400 mm 

rainfall/annum. The northern and western regions of the North Island receives 1,000-

2,000 mm, which together with mild winters is very favourable for pasture growth, and it 

is here that dairy farming predominates. The east cost of both islands have a rainfall of 

500-1,000 mm, which is also good for pasture production, but the rainfall is less reliable 

and the winters are colder. These regions are more suitable for sheep farming than dairy 

farming. Mean temperature during January arises to 19° C and the mean temperature in 

July, in some regions, lowers to 2°C (Coop, 1987). 

2.2 Dairy Industry Structure 

The New Zealand Dairy industry is export orientated. Only 10% of the milk 

produced is consumed within the country, the remaining 90% being processed for export 

as butter, cheese, dried milk powders, and other products. Dairy production is a highly 

organised industry owned and controlled by the producers in a largely cooperative 

movement. The factory-supply farmers supply milk to 33 manufacturing cooperative 

dairy companies, the directors of which are elected by the local farmers. The directors of 

the companies elect the directors of the New Zealand Dairy Board, which is the main 
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organisation responsible of marketing and dictating new policies in all aspects of the 

dairy industry (Coop, 1987). 

2.2.1 Milk Production Systems 

Two systems of dairy farming are practiced in New Zealand: 

2.2.1.1 Town Supply Dairy Farms 

Cows calve in spring and in autumn, or throughout the year. For the season 

1990/91 were reported 177,100 cows in 1265 herds (Livestock Improvement, 1991a). 

The farmer is paid per litre of milk supplied (provided that the milk satisfies certain 

minimum composition standards, namely 3.25 percent milkfat, 8.50 percent solids non 

fat). Milk is used for consumption without significant processing. Even in this situation, 

pasture provides most o(the lactating cow's feed requirements (Holmes, 1986). 

2.2.1.2 Seasonal or Factory Supply Dairy Farms 

Cows calve in spring time (July to September), and they are dried off during the 

winter (May to June) (Holmes and Wilson, 1984; Wickham, 1993). For the season 

1990/91 were reported 2,225,045 cows distributed in 13,420 herds. The farmer receives 

payment based on quantity of milkfat and protein with a penalty for milk volume 

(Livestock Improvement, 1991 a). 

2.2.2 Operating Structures 

The main operating structures found on New Zealand dairy farms are owner­

operators, sharemilkers and contract milkers. Owner-operators are considered to be 

farmers who either own and operate their own farms or else employ a manager to 

operate the farm, for a fixed wage. They receive all the farm receipts, although they may 

then have to pay wages. Owner-operators comprise the largest operating group, 

accounting for 68% of the farms in 1990/91 (Livestock Improvement, 1991a). 
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Sharemilking has traditionally been the first step by which a young person can 

eventually accumulate enough capital to buy a farm of his own. Sharemilking involves 

operating a farm on behalf of the farm owner, for an agreed share of the farm receipts (as 

opposed to a set wage). Three types of sharemilking are commonly used: 29%, 39% and 

50% agreements (Livestock Improvement, 1991 a) 

2.2.3 Herd Production Statistics 

In the period of early settlement over 120-150 years ago, dairy cattle formed the 

most important livestock industry, providing subsistence for the local market. The cattle 

were mostly Shorthorns (Coop, 1987). In 1932 were recorded 1,292,873 cows, of 

which two thirds were Jersey or Jersey grades (New Zealand Jersey Cattle Breed 

Association, 1932). This breed was dominant until the 1960's when the Holstein-Friesian 

began to offer serious competition because of its better beef characteristics and higher 

volume of milk (Coop, 1987). 

Nowadays, Holstein-Friesian, Jersey, Ayrshire and Holstein-Friesian/Jersey 

crossbred are the dominant genetic groups. Other breeds of dairy cattle present in 

smaller numbers in New Zealand include Milking Shorthorn, Guernsey and Brown Swiss 

(Livestock Improvement, 1991a). 

An analysis of the trends m the New Zealand dairy industry indicates 

improvement due mainly to genetic gain and improvements in farm management. For the 

season 1980/81 the herd size has 132.7 cows, each producing 144 kg milk:fat at a 

stocking rate of 2.1 cows per hectare, so that milkfat per hectare was 310 kg rnilkfat 

(Livestock Improvement, 1991a). For the season 1990/91 herd size increased to 165.8 

cows and stocking rate increased to 2.4 cows per hectare. However milkfat per cow 

increased to 148 kg and milkfat per hectare also increased to 351 kg (Livestock 

Improvement, 1991a). For the New Zealand dairy farm, an indicator of economic 

efficiency is milkfat produced per hectare instead of rnilkfat produced per cow. 

2.3 Pasture Production 

The climatic conditions and freedraining soils allow a milk production system 

based almost entirely on pastures of perennial ryegrass (Lolium perenne) and white 
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clover (Trifolium repens). Other grass species such as yorkshire fog (Holcus lanatus), 

timothy (Phleum platense), paspalum (Paspalum dilatatum), and kikuyo (Penisetum 

clandestinum) may also be present (Coop, 1987). 

For New Zealand conditions, Cooper (1970) based on the conversion rate of light 

to pasture growth, estimated a potential herbage production of 37 t DM/ha for rye grass­

white clover pastures. Under cutting conditions, pastures provided with nutrients and 

water, herbage yields have been estimated in 24.7 t DM/ha (Brougham, 1959). Under 

grazing conditions, however, pastures top dressed with superphosphate, in about 300-

600 kg/ha and receiving no nitrogenous fertiliser, produce only about 12 to 16 t DM!ha 

in New Zealand (Holmes, 1982; Bryant et al. 1982; Radcliffe and Baars, 1987). 

Radcliffe and Baars (1987) reported the seasonal pattern of perennial ryegrass/clover 

pastures. Of the total pasture growth, 39% occurs in spring (September to November), 

26% in summer (December to February), 21% in autumn (March to May), and 14% in 

winter (June to July). 

Although the climate permits some winter pasture growth, winter feed deficits 

occur and farmers supplement the cows' diet with silage and hay, which are harvested 

during periods of surplus, or deferred pasture. 

2.4 Calving Date 

A seasonally concentrated calving pattern is recognised as a feature of dairy 

farming in New Zealand. According to MacMillan et al. (1984) this pattern is part of a 

system which involves the maximum utilisation of pasture dry matter in situ; with limited 

conservation of pasture as hay or silage; very little cropping, except as part of a 

developed program; and almost no use of high energy or protein supplements. Ideally, 

calving is planned to commence in late winter, with a large proportion of the herd calving 

during the first four weeks, and the remainder over the next 6 to 12 weeks. This means 

that calving should be completed by the time the herd will have reached its peak in 

demand for pasture dry matter, and the seasonal flush in pasture growth will have 

commenced to meet this demand (MacMillan et al. 1984 ). 

Herds which calve earlier than the "optimum" period are likely to be underfed in 

early lactation, but to have longer lactations. Herds which calve later than the 

"optimum" are likely to be well fed in early lactation, but to have shorter lactations 
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(Holmes, 1986). The terms "early" and "late", although described in relation to calendar 

dates, are related to herd requirements and pasture growth rates in spring (Holmes and 

MacMillan, 1982). 

Management practices are used to avoid underfeeding in early lactation when 

calving date is too early. One alternative is increasing pasture growth through the 

strategic application of nitrogen fertiliser. Dairy farms with high stocking rate apply 

between 10 and 50 kg nitrogen/ha during September and October (Bryant, 1983; Roberts 

and Thompson, 1989; Thompson et al. 1991 ). Another practices such as grazing 

management (Bryant, 1990), supplementation (Holmes and MacMillan, 1982) and 

irrigation (Hutton, 1978) would make less severe the period of underfeeding and in this 

way achieving higher milk production. 

2.5 Stocking Rate 

Stocking rate is defined as the number of animals per unit of area of land. It has 

been recognised as one powerful management tool in the grazing system (McMeekan, 

1956) determining milkfat yield per hectare (Holmes and Parker, 1992). Very low and 

very high stocking rates can depress herbage production because of the effects of under 

grazing and overgrazing on rates of photosynthesis and rates of senescence (Hodgson, 

1990). As stocking rate increases, degree of defoliation increases, and a consequence, 

there is low photosynthetic activity caused by a reduction in leaf area. As a result of this, 

there is a reduction in pasture growth (Stockdale and King, 1980). On the contrary, the 

rate of herbage growth increases as stocking rate is reduced, but this effect is eventually 

offset by increasing losses to senescence so that net herbage production reaches a plateau 

and eventually starts to decline again at low stocking rate. 

High stocking rate can also cause changes in pasture composition, such as a 

decreased proportion of dead material (Hodgson, 1990), an increased concentration of 

crude protein (Holmes, 1987), an increased digestibility (Stockdale and King, 1980; 

Hodgson, 1990), and an increased proportion of clover and decreased proportion of 

erect grasses (such as cocksfoot, Dactylis glomerata); these changes generally increase 

the feeding value of the herbage (Holmes and MacMillan, 1982; White, 1987). 

The direct effect of stocking rate on animal production is affecting herbage 

utilisation per hectare. Even though higher stocking rate decreases pasture intake per 
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animal, pastille intake per hectare is increased as well as pasture utilisation, and therefore 

more animal product per hectare is achieved (King and Stockdale, 1980). Hence, 

increased animal production per hectare is achieved through increasing pasture utilisation 

(Bryant, 1980). 

Mathematical models for the relationship between animal output and stocking 

rate have been suggested. Among the more cited in the literature are those proposed by 

Mott (1960); Peterson, Lucas and Mott (1965); Conniffe, Browne and Walshe (1970); 

and Jones and Sandland (197 4 ). A debate arises about the quantitative relationship 

between performance per animal with stocking rate. As a result, it is difficult to define 

biological and economic optima for stocking rate. Nevertheless, in New Zealand, 

linearity has been assumed to study the effect of stocking rate on milk production 

(Holmes, 1980; Holmes and MacMillan, 1982; Ahlborn and Bryant, 1992). 

Data obtained in New Zealand indicate that an increase of one cow per hectare 

(over the range 2 to 5 cows/ha) caused a decrease of 18 kg milkfat produced per cow, 

but an increase of 70 kg milkfat produced per hectare (Holmes and MacMillan, 1982). 

The biological and economic optima stocking rate were estimated at 5.4 cows/ha and 

3.75 cows/ha, respectively (Wright and Pringle, 1983), and these values were higher 

than the actual average of 2.1 cows/ha (Holmes and Parker, 1992). 

2.6 Grazing Management 

Different systems of grazing management can influence both the amount of 

pasture eaten per cow daily, and the way in which the pasture is grazed. These can, in 

turn, influence the subsequent production of the animals and of the pastures (Holmes, 

1980). Grazing management is, therefore, an important factor affecting the productivity 

of a dairy farm. 

The New Zealand dairy farm is managed under a rotational grazing systems. The 

classical experiments with dairy cattle carried out by McMeekan (1956) and McMeekan 

and Walshe (1963) showed that at high stocking rate, milk production per hectare was 

strongly in favour of rotational grazing rather than set stocking grazing. 

One of the reason why rotational grazing system has been used in the New 

Zealand dairy farm is that, through it, the matching of the pasture growth and feed 
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requirement curves has been encouraged. Further, rotational grazing allows that 

available herbage can be utilised more effectively in those periods of short herbage 

growth rate (Campbell, 1966). 

The whole milking herd is shifted to one fresh paddock each day and amount of 

dry matter assigned to each animal depends, among other factors, on the requirement of 

the animal. The herd is rotated round the paddocks available on a 15-20 day rotation in 

spring and early summer, but this lengthens later to 30 days in summer, to 60 days in late 

autumn and 100 days in winter (Coop, 1987; Holmes, 1987; Holmes and Wilson, 1984). 

2.7 Genetic Improvement 

General objective of the New Zealand breeding program is to breed cattle which 

provide the highest economic returns (Wickham, 1993). Therefore, breeding objectives 

need consider both income (like milk, meat, or surplus stock), and expenditure (like feed, 

fertiliser, labour, repairs and interest on capital). The challenge for breeders is to select 

and breed cattle which incur greater profits. Traits of importance to farm profit are: milk 

production and its components, survival and related traits, labour costs, and beef 

characteristics of calves and slaughter cows (Holmes and Wilson, 1984). 

Optimal genetic improvement demands an industry structure and operational 

environment in which breeding decisions are made on the basis of appropriate 

information and are consistent with objectives derived from long-term breeding 

programs. 

2.7.1 Herd testing 

Herd testing in New Zealand began as early as 1909 and its use was fostered by 

the then Department of Agriculture. The practice grew and group herd testing was 

established through the country by the mid 1920s under the name of Dominion Group 

Herd testing Federation Inc. In principle this system of testing was operated by and for 

commercial herd owners. Additional systems of testing, certificate of record, and official 

herd test were administered for pedigree herds by the Department of Agriculture. In 

1936 some 28 cooperative herd testing associations were licensed and in 1939, the then 

27 licensed herd testing associations were amalgamated to form 6 Herd Improvement 
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Associations under the name of New Zealand Dairy Board. In 1988 until nowadays, the 

official organisation responsible for herd recording is the Livestock Improvement 

Corporation, a wholly owned subsidiary of the New Zealand Dairy Board (Macdonald 

Committee Report, 1992). 

The objective of herd testing is to obtain data on milk, milkfat and protein which, 

following suitable analyses, enables objective comparison to be made between individual 

cows, both on a within- and between-herd basis. For the season 1980/81 42.2% of the 

herds and 44.8% of the cows were under the herd testing system. These numbers 

increased to 62.4% of the herds and 68.2% of the cows for the season 1990/91 

(Livestock Improvement, 1991a). 

2.7.2 National Database 

Samples of milk from individual cows are collected regularly by sampling officers 

or by the farmer (self-sampling) and processed through central laboratories providing 

information on milk yield, protein, milkfat, and somatic cell counts. Sampling is based 

on measured yields obtained over a 24 hour period, and samples are collected from 

consecutive evening and morning milking. The frequency of testing may be, either four, 

six or eight weekly (providing up to 12, 8 or 6 test during the season respectively), or 

else either two or three test total for the season (called double and triple testing). 

Additional to the productive performance of the animals, there is recorded on the 

individual file for cows, animal events such as calving dates, mating dates and drying off 

dates. This information has allowed to the New Zealand Dairy Board the formation of a 

National Database, which is used for a various purposes. Some examples include: 

cow: ancestry and performance data, 

herd: management reports, 

sire: progeny test information, 

breed: Industry statistics. 

(Macdonald Committee Report, 1992). 
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2.7.3Artificial Insemination 

Early investigations and experiments concerning artificial insemination in New 

Zealand started about 1939. In the season 1943/44 experimental work of artificially 

inseminating 1000 cows was carried out. The results showed that 80% of the cows were 

pregnant after a mating season of 3 months (Dalton and Rumble, 1985). 

As a consequence of the seasonal spring calving, mating period is also seasonal. 

Therefore, demand of semen is concentrated for a period of 3 months and fresh semen is 

used rather than frozen semen. Using fresh semen has allowed reducing the semen 

concentration in each straw and so the top bulls can be used more intensively. The 

average number of inseminations per bull per year has steadily increased from 34,200 in 

1966 to 65,770 in 1983 (Ahlborn-Breier et al. 1987) and for the season 1990/91, using a 

sperm concentration of 1 million per straw, over 150,000 inseminations per bull were 

achieved (Vishwanath, 1992). 

The Livestock Improvement Corporation offers two main artificial breeding 

services. "Premier Sires" in which most semen used is in liquid form (i.e., fresh) and 

allows greater utilisation of bulls. Farmers have the option of inseminating cows 

themselves or having an artificial breeding technician to do the inseminations. 

"Nominated Service" gives the farmers the opportunity of choosing individual bulls to be 

used. This service uses frozen semen. Many of the bulls in the Premier Sire Service are 

also available through the Nominated Service (Livestock Improvement, 1991 b). 

Deep frozen semen is also supplied by other companies such as Ambreed NZ Ltd, 

Wrightson Breeding Services Ltd, which are also involved in the extensive progeny 

testing. Another other private companies supply small amount of deep frozen semen 

imported from the USA, Canada and Australia under the regulatory conditions 

determined by the Ministry of Agriculture and Fisheries. Nowadays, artificial 

insemination is widely used and most of the dairy farmers breed their cattle through 

artificial insemination. For the season 1990/91, 1,858,966 cows were artificially 

inseminated (Livestock Improvement, 1991 a). 
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2.7.4 Breeding Program 

Rendel and Robertson (1950) indicated that a dairy cattle population can be 

genetically improved along any one or more of four separate pathways, namely: 

(i) Bulls to breed bulls. 

(ii) Bulls to breed cows. 

(iii) Cows to breed bulls. 

(iv) Cows to breed cows. 

In New Zealand, the idea of the breeding plan is to use all four pathways in the 

best possible combination. A Sire Proving Scheme has been developed with two main 

aims, to accurately identify bulls of outstanding genetic merit, and to achieve widespread 

use of chosen sires (Macdonald Committee Report, 1992). 

Approximately 155 bulls are progeny tested annually. Ayrshire, Holstein-Friesian 

and Jersey bulls calves from contract mating, along with others selected from outside the 

contract mating scheme but which meet the stringent selection criteria, are purchased to 

become part of each year's intake for the Livestock Improvement Sire Proving Scheme 

(Livestock Improvement, 1991b). Semen from the yearling Sire Proving Scheme bulls is 

used in about 70,000 cows in approximately 450 Sire Proving Scheme herds throughout 

New Zealand. The inseminations generate about 85 daughters for each of the Holstein­

Friesian, 60 for each of the Jersey and 50 for each of the Ayrshire bull. Each bull's 

daughters are spread through 30 to 40 Sire Proving Scheme herds (Macdonald 

Committee Report, 1992). 

Once the required inseminations have taken place, bulls are not used again until 

progeny test results for production and traits other than production are available. This 

information is used for selecting the best bulls for extensive use in the Premier Sires team 

and Nominated Semen Services of the Livestock Improvement Corporation. The best 5-

10% of the bulls which entered the Sire Proving Scheme are finally selected for extensive 

use as bulls to breed cows. The best 50% of these young sires are used in contract 

mating as bulls to breed bulls. 

From the cows under the herd testing system, only a small proportion satisfy the 

requirement to become dams to breed sires (active cows). The main requirement is that 
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those cows must have three generations of identified artificial breeding proven sires to 

one breed (at least seven-eighths purebred). The active cow population size has been 

small but is now increasing rapidly. For the season 1990/91 only 89,000 active cows 

were recorded and they are expected to increase to 217,000 for the season 1992/93 

(Macdonald Committee Report, 1992). 

2.8 Sire evaluation 

The exceptionally high dilution rate of fresh semen as practised in New Zealand 

has allowed a very high selection differential on the bulls to breed bulls selection pathway 

(Cunningham, 1983). Due to this, major efforts have been put in developing 

mathematical procedures to estimate the genetic merit of dairy sires. 

The main method for sire evaluation in dairy cattle is progeny testing. The value 

of a sire in a breeding program, is judged by the mean value of its progeny. If a sire is 

mated to a number of cows taken at random from the population then its breeding value 

is twice the mean deviation of the progeny from the population mean (Falconer, 1960). 

Therefore, the daughter average should usually enable the estimation of the breeding 

value with a high reliability. Unfortunately, in reality there are many fixed and random 

effects which influence the performance of the daughters and thus mask the breeding 

value of a sire (Dempfle, 1984 ). Some of the factors which influence the daughter 

performance are: 

- breeding value of the daughter, which is made up of half of the breeding 

value of the sire and half of the breeding value of the dam, 

-herd management, 

- nutrition level during lactation, 

- age at calving, 

-days open, 

-number of times milked per day, 

- length of lactation. 

In the derivation of a computing formulae for sire evaluation ·two steps are 

involved (Garrick, 1991). First, definition of the model to describe the processes that 

influence the phenotype. The model includes a model equation, relevant means and 

variance parameters and perhaps distributional assumptions. Second, definition of the 
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criterion for identifying a "good" predictor. For example, defining the prediction error as 

the difference between true genetic merit and the predict genetic merit, then the best 

predictor (BP) is that which min!mises the variance of these errors. 

2.8.1 Sire Evaluation up to 1969 

A system of sire evaluation had been developed in New Zealand in the 1960s 

(Wickham, 1984), in which the result of a bull proof was defined as the genetic 

superiority expressed in pounds milkfat of the bull daughters over those of an "average" 

bull, if both bulls were mated to cows of a similar genetic level. Later refinements of this 

system were correction for number of daughters and lactations, refinements in age 

corrections, and number of herds in which the bull had been surveyed (Shannon, 1974). 

This system was based on the following statistical model: 

where 

Yijk = the age corrected record of the kLh daughter of the jLh sire in the iLh 
year, 

ai = genetic value of the stud in the ilh year, 

Sij = the effect of the jLh sire, 

eijk = the random error unique to Yijk. 

Thus, the breeding value of the bull by definition was ai + Sjj which is a similar 

approach to the concept of genetic groups considered in sire evaluation through best 

linear unbiased prediction methods (Thompson, 1979; Quaas and Pollak, 1981; Pollak 

and Quaas, 1983). 

A detailed description of the method was given by Searle ( 1964) when comparing 

the New Zealand method of sire evaluation with those of Great Britain and New York 

State. The procedure to estimate the breeding value of an artificial insemination sire was 

on the basis of the difference from expectancy. The genetic merit of an artificial 



insemination: sire was estimated using the following procedure: 

where 

Estimated sire merit = 2 rating + breed average 

Rating= F[X- (B +0.9(S- B)] 

Rating= F[X -0.9S -0.1B] 

and where 

B = the breed average of all cows in the particular region, 

X = the average production of the daughters of the sire being evaluated, 

-s = the overall mean of the herdmate averages to which the daughters of 
the sire were compared, 

0.9 = the regression of daughter average on true herd average (effectively 
intra-sire regression of daughter average production on herdmate 
average), 

F = the regression of the sire's future daughter production on his 
estimated true daughter average. 

15 

Anderson (1974) discussed this method of genetic evaluation in regard to the 

biases in the estimation. Age corrections offered an opportunity for increasing the 

accuracy of sire evaluation but also biases were found. The intra-sire regression of 

daughter production on herdmate production was an adjustment for the non-random 

usage of the sires being evaluated amongst herds of differing production levels. For New 

Zealand conditions, the value was estimated in 0.9. It implied that, on average, 20% of 

the between-herd difference in production was genetic in origin (Rae, 1971 as cited by 

Anderson, 1974). Thus, a possible source of bias in sire evaluation resulting from 

genetic differences between herds was overcame by the use of an intra-sire regression of 

daughter average on herdmate average. Subsequent studies (Brumby, 1961) suggested 

that the regression should be unity since in the case of milkfat yield, genetic differences 

between herds were not-existent. 
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The formula for obtaining the regression of a sire's future daughter production on 

his estimated true daughter average was 

F = 

where 

h2 =heritability for milk fat 

n =number of daughters of the sire 

It was assumed a value of heritability for milkfat of 0.25, so that a simplified formula was 

F = 
n 

n + 15 

Because the above formula is valid only if first lactations of the sire's daughters 

are used, possible biases existed. 

2.8.2 Current Sire Evaluation 

The New Zealand Dairy Board continued to use the method of sire evaluation as 

above outlined for a number of years before introducing major changes in 1970 (N. Z. 

Dairy Board, 1970) and some modifications have been occurring during the intervening 

years (Garrick et al. 1993). Currently, the measure of the genetic quality of an animal is 

the breeding index. The final estimate of the breeding index of a bull is calculated from 

information about the breeding indexes of its parent and the results of its progeny test. 

Breeding indices are calculated for milk, milkfat, milk protein and traits other than 

production. A total index has been developed to display, in one figure, the economic 

merit of a sire for farm income. This total index takes into account all traits; production, 

efficiency, management and conformation, weighted by economic values (Livestock 

Improvement, 1991 b). 

Breeding indices are expressed on a percentage scale with a base of 100 which 

was the average breeding index of the cows in 1960 (Holmes and Wilson, 1984 ). The 

average breeding index of the Holstein Premier Sires team used in the season 1991/92 

averaged 151, 140 and 144 units for milkfat, protein and total, respective! y (Livestock 
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Improvement, 1991 b). These data reflect a significant increase in the genetic 

improvement obtained in New Zealand dairy cattle population. In Holmes and Wilson 

(1984) an outline of the method is given. In general terms, the estimation of a breeding 

index for a bull (BIB) is 

BIB= BIA + R[(2 x CC)- 100- BIA] 

where BIA is the breeding index from ancestry data which is the initial estimate of a 

young bull's breeding index. BIA is calculated from the breeding indexes of his parents 

as 

BIA= t BI of the sire + t BI of the dam 

with reliability (p) equal t reliability of sire's BI + t reliability of dam's BI. 

R is the regression coefficient for the regression of the breeding value of the 

average future offspring of a bull on the average production of his daughters. It is 

derived from theory of selection index and assumes a heritability value of 0.25 for milkfat 

yield and a environmental correlation of zero. Thus, the resulting regression coefficient 

1S 

R= (1-p)I,w 
(1-p)I, w +15 

where the weights (w) are calculated as 

nln2 w=-o........=.-
nl +n2 

and where, for each herd-year, n1 is the number of daughters and n2 is the number of 

con temporaries. 

CC is the contemporary comparison, which is not calculated as difference but a 

proportion of averages. A computational expression is 

D -
CC = L [ w C (50+tBIC)] 
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where D is the average yield of daughters, C is the average yield of contemporaries and 

BIC is the average breeding index of sires of contemporaries. 

The above mathematical procedure is based on the theory of selection index using 

the following statistical model 

where 

Y · "kl = H · + G · + s ·k + e · "kl IJ I J J IJ 

Yijkl is the production record of a cow; 

Hi is the effect of a particular herd and year in which the record was made; 

G j is the effect of the group of sires in the artificial breeding scheme of 
which the cow's was member; 

s jk is the effe~t of the sire, taken as deviation from the average of the 
group he was in; and 

eijkl is the deviation of the particular production record that expected on the 
basis of the other listed effects. 

The method is, therefore, a contemporary comparison modified to combine prior 

knowledge of the breeding indexes of individuals and contemporaries with new 

phenotypic information (Shannon, 1974; Wickham and Stichbury, 1980). The ratio 

between daughters average and contemporaries average breaks a possible relationship 

between the mean and the variance and adjusts for unequal error variances and should 

yield similar results to the log transformation used in some other evaluations systems 

(Everett et al. 1982). 

The advantages of the New Zealand contemporary comparison system are based 

on the well-designed progeny testing program, which removes biases for preferential 

mating (Garrick et al. 1993), and it appears to be cost-effective (Everett and Jones, 

1985). Weakness in the system include selection biases from the use of all records and 

the possible improper handling of new bulls with little pedigree information (Everett and 

Jones, 1985). The system, also, ignores son's evaluations (Garrick et al. 1993). 
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2.8.3 A Prototype Sire Evaluation 

Methodology of mixed liner models, with the properties of best linear unbiased 

prediction (BLUP) developed by Dr. Henderson (1950, 1963, 1973), was proposed as 

applicable to dairy sire evaluation in New Zealand by Anderson (1974). In 1991 a 

technical review of the current sire evaluation procedures was initiated and a prototype 

animal model based on BLUP procedures had been developed, which will be adopted in 

1995 (Garrick et al. 1993; Harris et al. 1993 ). The proposed system is based on a 

repeatability model across breeds and it has the following features: 

(i) The practical problems of biases for genetic trend are solved. 

(ii) The breeding value of all animals are concurrently estimated. 

(iii) The use of information of relatives is maximised. 

(iv) Genetic merit of the herdmates of the daughters of a sires are taken into 

account in the estimation of the breeding value. 

(v) Information on crossbred progeny is utilised. 
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CHAPTER3 

BEST LINEAR UNBIASED PREDICTION 

Genetic evaluation through BLUP procedures as developed by Henderson since 

1949 (Van Vleck, 1992), was the consequence of an attempt to combine the power of 

generalised least-squares with the appealing features of selection index, applied by Hazel 

(1943) in animal breeding. Fixed effects are estimated and random effects are predicted 

simultaneously by solving a set of equations. Genetic evaluations obtained using BLUP 

have many desirable features. These include, the method can account for factors such as, 

sires coming from different populations using genetic groups (Quaas and Pollak, 1981; 

Pollak and Quaas, 1983; Quaas 1988; Westell et al. 1988), cow culling, association 

between sire and herd values, differential treatment, and assortative mating with and 

without selection (Henderson, 1984; 1990b). BLUP by mixed model methods is now the 

standard method for evaluation in dairy cattle, beef cattle, and swine in most nations 

(Henderson, 1990a). 

3.1 Linear Model 

Different statistical models can be used in the genetic evaluation of dairy cattle. 

A model equation which may be used for the computation of breeding values of dairy 

animals for a single trait may be: 

where 

Yijk IS the kth observation from the jth animal in the ith subclass, 

hi is the mean level of performance for the ith subclass, 

(3.1) 

u j is the additive genetic component relating to the performance record, 

eijk is the residual effect, including random environmental and non-additive 

genetic effects, corresponding to the Yijk record. 
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Effects of the subclasses are commonly considered as fixed effects while additive 

genetic effects are considered as random effects. Models containing fixed and random 

effects are called mixed models (Searle, 1971) and were formally described by Eisenhart 

(1947). The above model equation (3.1) can be rewritten in matrix notation (denoted by 

bold letters) as: 

where 

y= X~+Zu+e 

y is a vector of all observations, 

~ is a vector that contains subclass effects, 

X is the incidence matrix associating effects in ~ to y, 

u is a vector containing genetic effects, 

Z is the known matrix associating genetic effects in g to y, and 

(3.2) 

e is a vector of residual effects, one effect corresponding to each 

observation· in y. 

The model is not completely specified until the distributional properties of the 

effects in the model equation are defined. The usual definitions for the model equation 

(3.2) involve the following expectations and variances. 

The expectation of y, u and e are assumed to be 

with variance-covariances matrices 

and var(y) = V = ZGZ' +R (3.3) 
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where covariances among the y's, ZGZ', are introduced by having random effects in 

common. In a common animal breeding application for a single trait analysis G = a; A, 

whereas R = cr;I, therefore 

where 

A is the numerator relationship matrix between individuals in g, 

a~ is the additive genetic variance for the trait, 

I is an identity matrix, 

a~ is the residual variance. 

The above assumptions have the following implications: 

(i) Genetic values are all from the same distribution and have common 
genetic variance, in the absence of inbreeding. 

(ii) Each residual effect has the same variance, and residual effects are 
mutually uncorrelated. 

(iii) random effects u and e are assumed to have zero covariance, equivalent 
to assuming no genotype-environment interaction. 

A particular case of the model equation (3.1) is that model including the fixed 

effect of herd-year group (h) and the random effect of sire (s): 

y .. k = h. + s . + e .. k 
IJ I J IJ 

(3.4) 

or in matrix notation 

y = Xh+Zs+e 



where 

y is the vector of the records, 

h is the vector of fixed herd-year effects, 

X is the incidence matrix relating herd-year to records, 

s is the vector of random sires effects, 

Z is the incidence matrix relating sires to daughters' records, and 

e is a vector of random residual effects. 
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This model has been referred to as a sire model and was the common model used 

in the genetic evaluation in several countries. An assumption of the model is that all 

dams are unrelated and that sires are mated at random cows. It may be clear that those 

assumptions are often not true. Dams may have more than one progeny, and animals 

may have more genetic covariances than only through their sires. Furthermore, it is clear 

that not all dams are average dams. Expectations of different dams are often not equal, 

particularly when we have practised selection, or when we have dams of different genetic 

merit. 

To avoid those assumptions, it is necessary to include equations for dams as well. 

A more general analysis is obtained when each observation is written as a function of the 

breeding value of the animal that made that record (rather than a function of the breeding 

value of the sire) as considered in Model Equation (3.1). A model with an equation for 

each animal that made an observation is called an animal model. In this model it is 

essential to include the genetic relationships between the various animals, so that in this 

way, genetic evaluation accounts for covariances between related animals. 

An animal model, hence, requires usually many equations (one per animal, at 

least), and solving such a model requires a lot of computing effort (time and costs). 

Since 1980 (Quaas and Pollak, 1980), it has become feasible to construct and solve an 

animal model with the computer. Currently, animal models are being considered and 

implemented for dairy populations with up to several millions animals on minicomputers 

(Wiggans et al. 1988a, 1988b). Many earlier animal models used supercomputers. 



24 

3.2 Mixed Model Equations 

Consider the model equation (3.2). Henderson (1963; 1973; 197 4; 197 5b) 

described various criteria that are desirable in predicting breeding values of animals. The 

most desirable of these, is minimisation of squared errors of prediction. It is possible, 

provided G and R, of equation (3.3), are known, to derive a method to predict u, that 

has the following desirable properties: 

(i) Is unbiased in the sense that the predictor ii has the same expectation as 

the expectation of the unknown variable u, i.e., 

E(ii) = E(u). 

(ii) Minimises the variance of the error of prediction in the class of linear 

unbiased predictors, i.e., 

Predictor error variance= var( ii - u) =min. 

(iii) Maximises the correlation between the predictor and the predictand in 

the class of linear unbiased predictors, i.e., 

fuu =max 

(iv) When the distribution is multivariate normal, 

a. Yields the maximum likelihood and the best linear unbiased 

estimator of the conditional mean of the predictand. 

b. In the class of linear, unbiased predictor, maximises the 

probability of a correct pairwise ranking. 

Henderson (1963) applied selection index theory combined with least squares 

method to find the best linear unbiased estimators (BLUE) of 13 and to use these 

estimators, 13° in predicting u satisfying the above desirable criteria. Hence, the method 

seeks a predictor a'y of m'g, such that 

E(m'g-a'y)2 =min, 

and 
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E(a'y) =a·~x 

Applying these restrictions to the model (3.2), the BLUE of ~ can be obtained 

from the generalised least squares equations 

where X'V-1X generally is not of full rank. A solution, denoted by ~0 instead of p to 

indicate that ~ has many solutions, can be obtained from 

(3.5) 

(X'V- 1Xf being a generalised inverse of (X'V- 1X). 

The best linear unbiased predictors of u can be obtained from (y- X~0 ) as: 

(3.6) 

this expression is essentially the regression of u on y after adjustment of y for fixed 

effects (y-X~0 ). The difficulty in applying this method is that Vis, in practice, often 

large and non-diagonal, therefore difficult to invert. An alternative method was 

suggested by Henderson (1973) to simultaneously solve for ~0 and fi without the need 

of computing v-1
. The same BLUE of~ in (3.5) and the same BLUP in (3.6) can be 

obtained by maximising for variation in ~ and u the joint density function of y and u. 

Differentiating with respect to ~ and g and equating to zero gives the following 

equations: 

(3.7) 

which are called Henderson's Mixed Model Equations (MME). Henderson et al. (1959) 

proved that ~0 of (3.7) are BLUE as from generalised least squares and Henderson 

(1963) proved the fi are BLUP. The advantage to these equations lies in the fact that for 

many applications R -1 and G -1 are feasible to compute because of simple structure, as 

above pointed out, frequently R is cr;I, and G is a; A. 
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Equations (3.7) corresponds to a very general model and u can comprise several 

random factors. Given the assumptions described in the definition of the model (3.2), the 

Mixed Model Equations reduce to 

[
X' X X'Z ] [J3o] = 
Z'X Z'Z +aA -1 u [X'y] 

Z'y 
(3.8) 

with 

3.3 Variance of BLUE and BLUP 

Variance of prediction errors is the variance of differences between estimated 

breeding value (u) and the true breeding value (u). They can be computed directly from 

the elements of the inverse matrix of the mixed model equations (Henderson, 1974; 

Henderson, 1975a; Henderson, 1984 ). Using the simple equations (3.8), the variance of 

a linear function of the BLUEs and BLUPs are 

[
X'X X'Z ]- [k] 

var{k'J3° + m'(u -u)} = [k' m'] Z'X Z'Z +aA _1 m <>~ 

In denoting the above matrix of coefficients as 

[
X'X X'Z ] [C~~ C~u] 
Z'X Z'Z +aA -I = Cu~ Cuu 

a generalised inverse of the above matrix may, therefore, be represented as 

[
X'X X'Z ]-
Z'X Z'Z +aA -1 



where 

Henderson (1975a) showed the following useful results 

var(k'f3°) = k'C1313ka;, 

var( u ) = (G- cuu )a;, 

var( u- u) = cuua;' 

cov( u,u') = var(u) = (G -cuu )a; 

c 1313 = cx·v-1xr 
cuu = rz·z +aA- 1 - z·xcx·xrx·zr1. 
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(3.9) 

Thus, prediction error variances (PEV) of genetic evaluations can be obtained 
from the diagonal elements of a generalised inverse of the coefficient matrix as 

The reliability (REL) of predicted breeding values is often expressed as the 

squared correlation between estimated and true breeding values Cruu)2 . As in the case 

of the prediction errors variances, reliability of the estimated breeding values can also be 

derived from the generalised inverse of the coefficient matrix of the Mixed Model 

Equations. Let cii represent the ith diagonal element of cuu, and using result of (3.9) the 

reliability of predicted breeding values can be expressed as 

REL = (ruu )2 = 
[cov(u,u')P 

var(u) var(u) 

In most applications, diagonal elements of cuu are usually not estimated. To 

date, no completely satisfactory procedures to obtain diagonal elements of cuu exist. 

Alternative methods, based on iterative procedures, have been presented by VanRaden 

and Freeman (1985), Greenhalgh et al. (1986), Robinson and Jones (1987), Misztal and 

Wiggans (1988), Meyer (1989) and VanRaden and Wiggans (1991). 
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3.4 The Numerator Relationship Matrix 

Wright (1922) defined the coefficient of relationship as the correlation between 

additive genetic values, which was derived by path analysis. For use in a mixed model 

analysis it is the covariance structure that is needed, not the correlation structure. 

Henderson (1976) presented a recursive method to create the numerator relationship 

matrix, A, required in the prediction of breeding values through the Mixed Model 

Equations in (3. 7). 

Let ui and u j represent the additive genetic values of the ilh and jlh animals. The 

covariance between these animals is 

where aij is the coefficient of genetic additive relationship between the ilh and jth 

animals. Then, representing A as 

the aii elements can be recursively computed from 

a·· =.l(a· ··+a· · .. ) IJ 2 l,J I,J for j :;t i 

where j' is the sire and j" is the dam of j respectively. The diagonal elements of A can be 

computed from 

a·· = 1 +..!.a., ... = 1 + F 
11 2 1 I I 

where i' is the sire and i" is the dam of i, respectively and Fi is the inbreeding coefficient 

of i. A feature of this method is that the animals need be sorted in chronological order 

(i.e., parents precede progeny). 

What is needed, however, is not A but its inverse. The amazing fact is that A -l 

can be structured from a list of sires and dams without ever setting up A. Henderson 
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(1975c, 1976) discovered how to do this from a list of animals and their parents, and 

described the relationships between the inbreeding coefficients of the parents and the 

contributions made by each animal to A -1
. 

Quaas (1976) arrived at the same results through another recursive method for 

the derivation of A -1 and pointed out that this method may have some computational 

advantages. To construct A -1 = {a ij} , the contributions from the ith animal with parents 

j and k are 

d··- 1 to an n 

where the dii are the diagonal elements of a matrix D, which is recursively computed 

according to the following rules: 

Number of parents identified Value of dii in the matrix D 

Both parents 1 - t ajj - t akk = ± -t Fj - t Fk 

One parent 1 - l. a··= .l - l. F-
4 11 4 4 J 

Neither parent (base animal) 1 

Therefore, diagonals elements in A -l are the sum of own contribution of the 

animal and those of its progeny. Offdiagonal elements in A -1 arise between mates and 

between parents and offspring. 

The use of A -1 increases the accuracy of breeding value estimation, because its 

inclusion in the Mixed Model Equations reduces the variance of prediction error, 

(Henderson, 197 5c) particular I y of young animals with few records. For example· in sire 

evaluation, when two sires are related, progeny of one sire provide additional clues to the 

estimate of breeding value of the other sire and vice versa. 
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3.5 Genetic Groups 

In the obtention of BLUPs for breeding values, a basic assumption is that E[u]=O, 

i.e., all animals are distributed about a mean of zero. Quaas et al. (1984) pointed out 

two situations in which this assumption is not valid. First, animals might came from two 

or more genetically distinct populations, say, sires from different countries. And second, 

when analysing records accumulated for several years, the breeding values of animals 

might have changed. To account for these problems in the genetic evaluation, different 

grouping strategies have been proposed. There are, however, no generally accepted 

criteria for defining groups in a particular application. Arbitrary definitions have been 

used, for example, bulls from a particular stud entering service in the same year, birth 

date, pedigree information, or geographic region. 

Thompson ( 1979) defined genetic group effect for an animal as a combination of 

group effects for its ancestors. The Model Equation (3.1) means that breeding value of 

an individual ( u j) is the average of its parents' breeding values (0.5u 5 + 0.5uct) plus a 

random deviation ( <1> j) caused by Mendelian sampling of the parental genotypes during 

gametogenesis (Quaas, 1988). This can be formulated as: 

Thus, the vector of breeding values, u, in Model Equation (3.2) can be 

represented as: 

(3.10) 

where the matrix [Pb PJ relates progeny to parents; each row contains two 

nonzero elements (0.5) in the columns pertaining to sire and dam. If, for example, the 

sire is known there is a corresponding 0.5 in P, otherwise it is unknown and, thus, it is in 

Pb. Sires and dams located in the Pb matrix are assigned a "phantom" identification and 

are called base animals. 
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Manipulation of (3.10) gives: 

this means that the vector of breeding values, u, is can be written as a function of the 

relationship between the animals to evaluate and their known and unknown parents. 

Quaas (1988) derived the mean and variance of u when it is a function of u b and cj>, 

these being: 

=Qg, and 

where 

D = diag{0.25mi +0.5} for mi = 1, 2 =the number of base parents of the ith 

individual. 

Q = (1- Pr 1 PbQb, Qb being an incidence matrix relating base animals to their 

respective base populations means, and 

g = a vector of genetic groups. 

Consequently, E(uj) = I,qijgj, i.e., the breeding value of an animal is a function 
J 

of its ancestors. 

Once having derived the mean and variance of u, an equivalent model to (3.2) 

would be employed (Quaas and Pollak, 1981; Pollak and Quaas, 1983; Quaas, 1988) 

such as: 

* y = Xj3+ZQg+Zu +e 
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with 

As pointed out by Quaas (1988), in this model, groups are just another set of 

fixed effects; ZQ and g could be included in X and ~' respectively. The mixed model 

equations can be formed as follows: 

X'R- 1Z 

Z'R-1Z +G-1 

Q'Z'R- 1Z 

and solved for ~0 , u*, and g and then u = BLUP(u) = Qg + u*. However, this can be 

costly in forming the equations and in solving them iteratively. Quaas and Pollak (1981) 

proposed a transformation to solve directly for additive genetic merit. Such a 

modification is called the QP transformation and lead to the following transformed mixed 

model equations (Quaas, 1988): 

X'R -lz 
Z'R- 1Z +G- 1 

-Q'G-1 

This approach to grouping was made computationally feasible by Quaas (1988) 

who discovered simple rules for constructing group equations and group contributions to 

animal equations. Westell and Van Vleck (1987) and Westell et al. (1988), also provided 

an alternative derivation of these rules and applied this to the genetic evaluation of large 

dairy cattle populations. Arnold et al. ( 1992) applied this grouping strategy to genetic 

evaluation of beef cattle across breeds. 

Theoretically the use of the relationship matrix can be thought of as alternative to 

grouping sires according to time of entry into the stud (Thompson, 1979). The use of 

the relationship matrix should reduce the need for grouping animals. 
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3.6 Computing Strategies to Solve the Mixed Model Equations 

Different mathematical procedures may be used in the solution to the mixed 

model equations in (3.8). Attempts to compare and improve upon various computational 

strategies are found readily in the literature (Ufford et al. 1979; Quaas and Pollak, 1981; 

Blair and Pollak, 1984; Hudson, 1984; Van Vleck and Dwyer, 1985; Schaeffer and 

Kennedy, 1986a, 1986b; Misztal and Gianola, 1987; Garrick, 1988). In this section a 

brief description of the mathematical bases are given. In practice, a simple compute 

implementation may involve more than one of the following techniques. 

3.6.1 Absorption 

A numerical method to reduce the number of equations may be to absorb one or 

more equations into the remaining equations. The mixed model equations of (3.8) can be 

rewritten in a full equation system as follows 

+ X'Zii = X'y 

+ (Z'R- 1Z +G- 1)ii = Z'y 

(a) 

(b) 
(3.11) 

equations (a) of (3.11) are called fixed effects equations, and similarly, equations (b) of 

(3.11) are called random effects equations. With the aim of reducing the number of 

equations, the vector of fixed effects can be computed as 

f3° = cx·xr ex· y- x·z ii) 

which once substituted in (b), the vector of random effects, ii, can be computed as 

(3.12) 

where P =(I- X(X' Xf X') is known as the absorption matrix. Hence, the fixed effects 

equations have been absorbed into those of random effects equations. This procedure 

has been well illustrated by Searle ( 1971) in the solution to general linear models. In the 

case of genetic evaluation, however, the size of the matrix to be inverted in (3.12) is still 

too large, its order is equal to the number of animals, so that, it is not always possible to 

directly invert such matrix because direct inversion of large matrices requires large 
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computing t:lme and is sensitive to the accumulation of rounding errors that the computer 

makes (Searle, 1982). To avoid this problem, other alternative computational strategies 

exist. 

3.6.2. Gauss Elimination 

Mixed model equations of (3.8) can be represented as Cb = r, where b = {bi} is 

the vector of unknowns breeding values, r = {ri} is a vector of known values after 

absorption of the right hand side, and C = { Cij} is the matrix of coefficients. Providing 

that the system is consistent and C being of full rank, Gauss elimination method allows 

computing a solution for b without directly inverting the matrix C. This method, with 

suitable modifications, forms the basis for reliable and efficient computer programs for 

solving system of equations in practice (Ortega, 1987). 

The matrix C, through the LU decomposition, can be represented as C = LU, 

where L is unit lower triangular matrix (all diagonal elements are unity) and U is a upper 

triangular matrix. Derivation of L and U is illustrated in several matrix algebra books, 

see for example, Ortega (1987) and Schawarz et al. (1973). Therefore, the system 

Cb = r can now be represented as 

LUb=r 

setting Ub = y, 

then the original equation system become into two equations as follows 

Ly = r for y with r given, and 

Ub = y for b with the auxiliary vector y given. 

Thus, taking advantage of the triangular structures of L and U, these two system 

of equations are equivalent to the problem of solving two simple equations in succession, 

namely to find the auxiliary vector y and from it the solution vector b. Because of the 

sequence in which the equations are used and the respective unknowns solved for, the 

method is termed forward and backward substitution. Another characteristic of the 
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matrix C, further of full rank, implicated in the feasibility of the Gaussian elimination 

method is that C is not necessarily a symmetric matrix but positive definitive (see Searle 

(1982) for the concept of positive definitive). 

3.6.3 Cholesky Decomposition 

In a similar way to the Gaussian elimination, the mixed model equations (3.8) can 

be represented as Cb = r. Because of in genetic evaluation, the matrix C is generally a 

symmetric positive definitive matrix, the Gauss elimination, doing use of the LU 

decomposition, may be simplified through the Cholesky decomposition, in which the 

matrix Cis decomposed into two symmetric triangular matrices, namely, 

C=TT' 

where T = { tij} is a lower triangular matrix obtained by using the following rules given 

by Quaas et al. (1984): 

for i=l, 2, ... , n andj=l, 2, ... , n. 

Proceeding in the same way as the Gaussian elimination, the equation system 

Cb = r, can be now represented as TT'b = r. Setting T'b = y then the original equation 

system become into two set of equations, 

Ty=r 

and 

T'b=y 

The solution for y in the first set of equations is obtained in a forward 

substitution and with y computed, the solution for b, in the second set of equations, is 

obtained in a backward substitution. As above showed, hence, Cholesky's method for 

solution of symmetric definitive system of mixed model equations is just a symmetric 
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modification of the Gauss algorithm, in which the elimination was carried out without 

maintaining symmetry. 

3.6.4 Iterative Methods 

Solution to the mixed model equations in (3.7) through the LU and Cholesky 

decomposition, computationally require large memory in the computer, so that, the 

solution for a large equation system may not always be feasible. However, iterative 

methods have been alternatively used in the solution of large equation systems involved 

in genetic evaluation through BLUP procedures. One of the most known are the Gauss­

Seidel iteration (Van Vleck and Dwyer, 1985; Schaeffer and Kennedy, 1986a, 1986b) 

and Jacobi iteration (Misztal and Gianola, 1987; Garrick, 1988). 

Taking the representation of the mixed model equations of (3.7) denoted as 

Cb = r, as already defined in the Gauss elimination, C can be decomposed as the sum of 

three matrices, namely C = L + D + L', where L is the strictly lower triangular matrix of 

the subdiagonal elements, D the diagonal elements and L' the matrix of the elements to 

the right of the diagonals. Thus, another way of describing the mixed model equation 

system is 

(L+D+L')b=r 

equivalently, 

(L+D)b=r-L'b. (3.13) 

Equation (3.13) giVes place to represent the general Gauss-Seidel iteration 

scheme to find a solution forb through iterative steps, in which, the previous step is used 

to find a subsequent step. This can be written as 

(3.14) 

where b~ represents the value of the ilh solution after the klh round of iteration, Cii is the 

ith diagonal of C, ri is the ith right-side in r, and b~k+I) is the ith solution of b in the 
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(k+1)th round of iteration (Quaas et al. 1984; VanderWerf et al. 1991). Gauss-Seidel 

iteration is guaranteed to converge if C is real, symmetric and positive definitive. If 

instead of converging, the solutions 'blow up" the cause is most likely that C was set up 

incorrectly and is not non-negative definitive (Quaas et al. 1984). 

Equation (3.13) can also be rewritten as 

Db=r-L'b-Lb 

so that, a solution for the vector b can be obtained by solving 

b = D- 1 (r - L' b - Lb) 

equivalently 

(3.15) 

Equation (3.15) gives place to represent Jacobi iteration (Berger et al. 1989) 

scheme to find a solution for b through iterative steps. This can be written as 

or, in scalar form 

Jacobi iteration, at difference to Gauss-Seidel iteration, does not use the most 

recently information to obtain b~k+I), that is, the entire vector b is updated simultaneously 

at the end of one round of iteration. This method is not guaranteed to converge 

(Garrick, 1988; Misztal and Gianola, 1987). 

There exist several approaches of iteration, which differ in efficiency (number of 

rounds before solutions are reached) and numerical stability (chance of never reaching 

solutions). Modifications of the Gauss-Seidel method of iteration are known as 
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successive tinder relaxation (SUR) and successive over relaxation (SOR) (Van Vleck 

and Dwyer, 1985). These modifications are used to accelerate the convergence process. 

The iterative method of SUR or SOR can be described (Van Vleck and Dwyer, 1985) as: 

b~k+l) 
I 

n k 
I,cijb. } I cii 
. 1 J 
J= 

where S is the over-relaxation parameter. It can be shown the method is convergent 

only for 0 < S < 2. If S < 1, the method is known as under-relaxation (Garrick, 1988). 

A difficulty with these methods is determining when to stop and accept solutions. 

Some criteria are (i) maximum absolute change in any solution, (ii) sum of squares of 

changes in solutions and (iii) standardised stopping point. The first two are not scale free 

so that a value to compare them to can only be arrived at by experience. The third 

criterion was defined by Van Vleck an Dwyer (1985) and it is computed as 

p = 
I 

(e'e)2 
I 

(r' r)2 

where e = r- Cbn, n being the number of iterations. 

The stopping point, p, may be some constant. A constant value accepted by 

some experienced research workers has been p = 1 x 1 o-4 . For ranking animals a less 

precise stopping point may be required than when genetic evaluations are used to predict 

genetic trend (Blair and Pollak, 1984; Van Vleck and Dwyer, 1985). 

3.6.5 Block Iteration 

Block iteration is another approach to the Gauss-Seidel iteration obtaining more 

rapid convergence (Quaas et al. 1984) and can be quite useful if there is a "natural" way 

of blocking which tends to put the larger elements into the diagonal blocks. An example 

of this natural blocking is the multiple traits analysis. Consider the genetic evaluation of 

dairy sires for two traits, say milkfat and milk protein. Ordering the data by traits within 

sires, the mixed model equations can still be written as in (3.6) with the following 



modifications: 

R =I *R n s 

G=A*G5 

and where 

R s is the variance-covariance matrix of residual effects for 

multiple traits for animals having the same sire. It is obtained 

as R s = P- G s (P being the phenotypic variance-covariance 

matrix for the two traits); 

A is the numerator relationship matrix between the sires; 

G s is the variance-covariance matrix of sire effects for multiple 

traits. It is obtained as G5 = tG (G being the additive genetic 

variance-covariance matrix for the two traits); 

15 is an identity matrix of order equal to the number of animals. 
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Now the mixed model equations have a symmetric form and the submatrix 

Z' R -lz + G -l has ~ blocks of matrices of order 2x2. Before solving for g, fixed effects 

equation can be absorbed into sire equations leaving symmetric equations of the form as 

illustrated 

= 

Analogous to the formulation of the general scheme of the Gauss-Seidel iteration, 

the solution for the bi block in the (k+ I )th iteration can be represented as 

b~k+l) 
1 

n k r cijb. 1. 
. I J 
J= 
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The ·above expression is similar to (3.11) but instead of estimating individual 

elements of vectors, blocks of the vector solution are estimated. The inverse of each 

submatrix Cii need only be computed once. When the order of each block is small, an 

inverse procedure may be as efficient as an indirect procedure such as a forward and 

backward procedure based on a Cholesky decomposition of Cii and the inverse is 

computed only once and not for each round. 

3.7 Example of the use of the BLUP procedure 

The best way to illustrate the flexibility of the BLUP procedure may be to give a 

numerical example. Consider the case where milkfat yield records of cows with variable 

number of lactations in different year-herd groups (Table 3.1) are used to obtain the 

estimated breeding value (EB V) for all animals and the estimated producing ability 

(EPA) for the cows with records. 

Table 3.1. Milkfat yield of cows in different lactations for the example of genetic 

evaluation through BLUP procedure. 

Lactation Herd-year Milkfat 

Cow no. Sire no. Dam no. no. grou2 ~ield (kg) 

4 1 2 1 1 98 

2 2 132 

5 1 ? 1 100 

6 ? 2 1 124 

7 1 4 1 69 

2 2 75 

8 ? ? 1 88 

2 1 138 

9 3 7 1 2 116 

Parameters values for heritability and repeatability for milkfat yield are assumed to be 

0.25 and 0.50, respectively. As can be seen, nine animals are involved in the analysis, 
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two sires and seven cows. A repeatability model (Henderson, 1975d) appears 

appropriate to be used for these data. This might be 

Y · ·k - h · + u · + p · + e · ·k IJ - 1 J J IJ 

where y .. k is the kth record of the jth animal in the ith herd-year group; h. is the effect of 
IJ I 

the ith herd-year group; u. is the additive genetic value of the jth animal; p. is the 
J J 

permanent environmental effect associated with all records of the jth animal; and e .. k is 
IJ 

the temporary environmental effect associated with the y .. k record. Herd-year effects 
IJ 

are considered as fixed effects and the others effect are considered as random effects. 

In matrix notation the above model can be rewritten as 

y=Xf3+Zu+Wp+e (3.16) 

where now, y is the vector of observations; h is the unknown vector of herd-year effects, 

u is the vector of unobservable genetic effects; p is the vector of unobservable permanent 

environmental effects; e is the vector of residual errors corresponding to the vector of 

observations; and X, W and Z are matrices describing the structure of the data. The 

distributional properties of this model are 

y 

u 
E 

p 

e 

and 

= 

Xh 

0 

0 

0 

0 

0 

where a~ is the additive variance for milkfat yield; a~ is the variance of permanent 
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effects; and cr~ is the variance of environmental effects. 

The BLUPs of u and p, as well as the BLUE of estimable functions of h, can 

simultaneously be obtained by solving the mixed model equations derived by Henderson 

(1975d). These are 

where 

and 

[

X'X 

Z'X 

W'X 

X'Z 
Z'Z +aA -l 

W'Z 

X'W ] [f3°] Z'W ~ = 
W'W +ld-I ~ 

(3.17) [
X'y] 
Z'y 

W'y 

The sum of the solutions G j + p j predicts the producing ability for the jth animal, 

qj, (Van Vleck, 1979). Lush (1945) defined heritability and repeatability as 

where 

2 
2 <>a h =-

2 
,and 

() 
y 

()2 + ()2 

r = a P , respectively, 
()2 

y 
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Thus 

and 

cr2 = cr2 (1- r) e Y , 

so that 

and 

Given the assumed values of heritability and repeatability, a= 2 and K = 2. 

The numerical representation of the model (3.16) using the data of Table 3.1., 

with records ordered so that parents precede progeny is 

98 1 0 0 0 0 0 0 0 0 0 UJ 0 0 0 0 0 el41 

132 0 1 0 0 0 1 0 0 0 0 0 u2 1 0 0 0 0 0 e242 

100 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 P4 
u3 e151 

124 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 Ps 
el61 

[~~]+ 
u4 

69 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 P6 + el71 = us + 
75 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 P7 

u6 e272 

88 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 P8 
U7 e181 

l138 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 P9 

e282 Ug 

116 0 0 0 0 0 0 0 0 0 u9 0 0 0 0 0 e291 

The numerator relationship matrix, A, is created by using the recursive method 
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given by Quaas et al. (1984) (see section 3.4.). This matrix is 

16 0 8 8 8 0 12 0 10 

0 16 0 8 0 8 4 0 2 

8 0 16 4 4 0 6 0 11 

8 8 4 16 4 4 12 0 8 

A 
1 

8 0 4 4 16 0 6 0 5 = -16 
0 8 0 4 0 16 2 0 1 

12 4 6 12 6 2 20 0 13 

0 0 0 0 0 0 0 16 0 

10 2 11 8 5 1 13 0 19 

for example, a54 = y (a51 + a52) 

= t (y + 0) 

= 1~ because 1 and 2 are parents of 4. 

A diagonal matrix, D, is required to construct the inverse of the numerator 

relationship matrix, A -l. Applying the rules given in section (3.4) 

16 0 0 0 0 0 0 0 0 

0 16 0 0 0 0 0 0 () 

0 0 12 0 0 0 0 0 () 

0 () () 8 0 () 0 () 0 

D = 
I 

0 0 0 0 12 0 0 0 0 -
16 

0 0 0 0 () 12 0 0 0 

0 0 0 0 0 0 8 0 0 

0 0 0 0 0 0 0 16 0 

0 0 0 0 0 0 0 0 7 
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for example the diagonal element 9 is 

d99 = t- t F7 

= t -t (0) - t ( t) 
= t- I~ 

= ?6 because 7 and 3 are parents of 1. 

The inverse of D is 

1 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 

0 0 1. 0 0 0 0 0 0 
3 

0 0 0 2 0 0 0 0 0 

n·I = 0 0 0 0 ± 0 0 0 0 
3 

0 0 0 0 0 ± 0 0 0 
3 

0 0 0 0 0 0 2 0 0 

0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 .!Q 
7 

hence, the inverse of the numerator relationship matrix is 

2.67 0.50 -0.67 -0.50 -0.67 0.00 -1.00 0.00 0.00 

0.50 1.83 0 -1.00 0.00 -0.67 0.00 0.00 0.00 

-0.67 1.00 1.90 0.00 0.00 0.00 0.57 0.00 -1.14 

-0.50 0.00 0.00 2.50 0.00 0.00 -1.00 0.00 0.00 

A-1 = -0.67 -0.67 0.00 0.00 1.33 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 1.33 0.00 0.00 0.00 

-1.00 0.00 0.57 -1.00 0.00 0.00 2.57 0.00 -1.14 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 0.00 

0.00 0.00 -1.14 0.00 0.00 0.00 -1.14 0.00 2.29 
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for example~ the contributions to A -I from animal 7 with parents 1 and 4 are 

2 to a77 , 

-t(2)=-1 to a17, a47, a7I and a74, 

tC2)=0.5 to a 11 , ai4, a4I and a44. 

Taking the above results, the mixed model equations (3.17) are 

5 0 ! 0 0 0 1 1 0 l 1 1 1 1 1 0 h~ 479 

~--~j_ ___ f.?. _____ c:_ _____ Q ____ L ____ ~ _____ Q _____ } _____ l ______ ~L1 __ Q __ ~ __ l __ ~ __ ! ho 461 
.. .'?. o o[ 5.33 1 -1.33 -1 -1.33 o -2 o o:o o o o o o u. 1 o 

0 0 l 1 3.67 0 -2 0 -1.33 0 0 0: 0 0 0 0 0 0 uz 0 

0 0: -1.33 0 3.81 0 0 0 1.14 0 -2.29 : 0 0 0 0 0 0 t13 0 

1 1 ~ -1 -2 0 7.00 0 0 -2 0 0: 2 0 0 0 0 0 u4 230 

1 o! -1.33 o o o 3.67 o o o o! o 1 o o o o us 100 

1 o: o -1.33 o o o 3.67 o o o: o o 1 o o o u6 124 

1 1 \ -2 0 1.14 -2 0 0 7.14 0 -2.29 \ 0 0 0 2 0 0 u7 = 144 

1 1 1. 0 0 0 . 0 0 0 0 4.00 0 '· 0 0 0 0 2 0 226 U.g 

~ ... JL ....... ~ ............ ?. .... -::~:?? .......... ~ ........... ~ ............ ~ .... =-.2.·.~?. .......... ~ ...... ~:~!..( .. ~ .... ~ .... ~ .... ~ .... ~ ..... ~ u.9 116 
1 1 1 o o o 2 o o o o o : 4 o o o o o p4 230 

1 o ~ o o o o 1 o o o o ! o 3 o o o o p5 100 

o : o o o o o 1 o o o ! o o 3 o o o p6 124 

1 1 o o o o o o 2 o o \ o o o 4 o o p7 144 

1 1 ! 0 0 0 o o o o 2 o ! o 0 o 0 4 0 p8 226 

0 1 .1 0 0 0 0 0 0 0 0 1 :. 0 0 0 0 0 3 116 P9 

Let represent the above equations as Cb=r, where C is of full rank and, in turn, 

can be represented as 

[

X'X X'Z 

Z'X Z'Z +aA -1 

W'X W'Z 
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The vector solution, b, is obtained as b = C 1r, i.e., 

cPP] l X'yl Cup Z'y 

cPP W'y 

The vector solution is 

ho 
1 

98.09 

ho 122.83 
2 ............ 

U] -7.02 
A 2.08 u2 

u3 -3.42 

u4 -3.70 
A -2.42 

b =[r]= 
us 

u6 6.02 

u7 = -11.94 

us 0.84 

u9 -7.58 
·-·-········ 

P4 4.11 

Ps 1.45 
A 6.63 P6 

P7 -13.27 
A 0.84 P8 

P9 0.24 

Diagonal elements of the submatrix cuu are required to estimate the prediction 

error variance and reliability of breeding values (section 3.3). These values are 

Diag{Cuu }={0.43 0.46 0.46 0.40 0.41 0.41 0.47 0.38 0.47}. 

The estimated breeding values and their prediction error variances and reliabilities 

are summarised in Table 3.2. 



For example, the diagonal element of cuu for animal 9 is 0.47, therefore, 

PEVEBVg = 0.47 0"~ 

RELEBVg = 1-(0.47)2 = 0.06 
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Table 3.2. Estimates of breeding values (EBV) for lactation milkfat yield and their 

prediction error variances (PEVEBV) and reliabilities (RELEBV) for animals in the example 

of genetic evaluation through BLUP procedure. 

Animal no. EBV PEVmw* RELEBV 

1 -7.02 0.43 0.14 

2 2.08 0.46 0.08 

3 -3.42 0.46 0.08 

4 -3.70 0.40 0.20 

5 -2.42 0.41 0.18 

6 6.02 0.41 0.18 

7 -11.94 0.47 0.06 

8 0.84 0.38 0.24 

9 -7.58 0.47 0.06 

* these values need to be multiplied by cr~. 

The sum of ii + p = q are the EPA of the cows with milkfat yield records. 

Applying the general theory of estimability (see Searle, 1971) ii + p is an estimable 

function. Defining 

0 0 0 0 0 1 0 () () 0 0 1 () 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 () 1 () 0 0 0 

0 0 0 0 0 0 0 1 () 0 () 0 0 1 () 0 0 
a'= 

0 0 0 0 0 0 0 () 1 0 0 () 0 () 1 0 0 

0 () 0 0 () 0 () 0 () 1 0 () 0 0 0 1 0 

0 0 0 0 0 () () () () () 0 () 0 0 () 1 
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the vector of EPAs, q, is obtained as a 'b, i.e., 

3.70+ 4.11 0.41 

-2.42 + 1.45 -0.97 

6.02 + 6.63 12.65 
q= = 

-11.94- 13.27 -25.21 

0.84+ 0.84 1.68 

-7.58+ 0.24 -7.34 

The prediction error variances of these estimates are calculated as 

Var(q)=Var(a'b )=a'C- 1 acr~, 

where a'C- 1a is a matrix of order 6 x 6 and its diagonal elements, required to calculate 

the PEV of EPA (PEVEPA), are 

Diag{a'C- 1a}={0.55 0.64 0.63 0.58 0.50 0.72}. 

The reliabilities of estimated producing abilities for the six cow with records are 

calculated using the methods already explained in section (3.3). 

RELEPA 2 = (rq,q) = 
[cov(q,q)p 

var(q) var(q) 

where q are the true producing abilities estimated by q. Using selection theory, it can be 

shown that the above expression can be simplified to 

RELEPA 2 = (rq,q) 
1-r 

= 1- -Diag{a'Ca} 
r 

Results of cows with records are summarised in Table 3.3. 
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Table 3.3. Estimates of producing abilities (EPA) for lactation milkfat yield and their 

prediction error variances (PEYEPA) and reliabilities (RELEPA) for the cows with records 

in the example of genetic evaluation through BLUP procedure. 

Cow no. EPA PEVEPA* RELEPA 

4 0.41 0.55 0.45 

5 -0.97 0.64 0.36 

6 12.65 0.63 0.37 

7 -25.21 0.58 0.42 

8 1.68 0.50 0.50 

9 -7.34 0.72 0.28 

* these values need to be multiplied by a~. 

An estimable function of interest is the difference between the two herd-year 

groups, h1 - h2 . Let k'=[l -1], then 

=[1 -1][98.09] 
122.83 

= -24.74. 

This means that cows which made a lactation in herd-year 2 averaged 24.74 kg 

milkfat more than cows which made a lactation in herd-year 1. 

Using the general results explained in section (3.3), the variance of k '13° is 

calculated as 

where the submatrix Cl313 for this example is 



so that 

[
0.4590 0.2467] 
0.2467 0.5702 ' 

3.8 Heterogeneous Variance 
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In animal breeding practice, selection decisions often have to be made among 

animals in separate environmental groups, which may differ both in mean and in the 

variability within them. Homogeneity of variance is assumed in most currently applied 

models of genetic evaluation. However, numerous studies (Van Vleck, 1963; Everett et 

al. 1982; Powell et al. 1983; Hill et al. 1983; Mirande and Van Vleck, 1985; 

Brotherstone and Hill, 1986; De Veer and Vleck, 1987; Meinert et al. 1988; Dong and 

Mao, 1990; Boldman and Freeman, 1990; Wiggans and VanRaden, 1991; Visscher et al. 

1991) have reported heterogeneous genetic, residual, permanent environmental, and 

phenotypic variances for production traits with respect to geographical region, 

production level, herd, and other factors. Several possibilities can be found about 

heterogeneity of variances across environments (e.g. herds). Garrick and Van Vleck 

(1987) based on Henderson (1984) identified the followings: 

(1) Unit genetic correlation between genetic merit in each environment 

(i) Equal additive genetic and residual variances in all environments. 

General assumption in BLUP procedures for genetic evaluation. 

(ii) Equal additive genetic variances but residual variances with magnitudes 

dependent on the environment. Consequently, heritability will vary 

between environments. 

(iii) Additive genetic variances differing according to the environment and 

residual variances constant. Heritability will vary with environment. 

(iv) Additive genetic and residual variances changing proportionally such 

that heritability remains constant across environments. 

(iv) Additive genetic and residual variances changing such that heritability is 

variable. 

(2) Genetic correlation of less than one between performance in different environments. 
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3.8.1 Effects of Heterogeneous Variance 

3.8.1.1 Accuracy of Selection 

Failure to take account of the heterogeneity of variance may lead to inaccurate 

and biased predictions. If variances increase with mean yield but are assumed to be 

homogeneous, superior cows in herds with large variances or sires with a large 

percentage of their daughters in herds with large variances would tend to be 

overevaluated (Visscher and Hill, 1992). An apparent excess of elite cows has been 

reported for high mean herds (Powell et al. 1983) and for high variance herds (Everett et 

al. 1982) from analysis that assume equal genetic and residual variances for all records. 

3.8.1.2 Mass Selection 

When selection is made on individual performance, as in the case of selection of 

cows to breed bulls, expected genetic superiority of cows in herd i (L1Gi) is 

where ii is the standardised selection differential in herd i, hi is the square root of the 

heritability for the trait in the herd i and C>a is the additive genetic standard deviation. For 

example, if the proportion of selected cows is 0.1 0, then i i = 1. 7 5 and 

One potential problem ansmg from heterogeneity of vanance is that the 

proportions of animals selected from herds with different variances is a function of herd 

variation for the criterion of selection. Hill (1984 ), showed that if the phenotypic 

standard deviation, e>Pi, of a herd i is 1.5 times greater than another herd, and the overall 

proportion selected is 0.10, 72% of the cows selected will come from the more variable 

herd. This yields proportion selected of 0.144 (i1 = 1.57) and 0.052 (i2 =2.03) in the more 

and less variable herds, respectively. However, the effect on response to selection from 

choosing greater proportions of individuals from the more variable herds depends on the 

extend to which the greater variability is due to genetic as opposed to environmental 
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factors. Van Vleck (1987) and Vinson (1987) gave examples of losses in response to 

selection when heterogeneity of variance is not taken into account. For example, under 

the same situation as above given, if the additive genetic standard deviation is likewise 

50% larger in the more variable herds such that heritabilities are equal in the two herds, 

weighting expected genetic superiority of selected cows (measured relative to some 

standard environment with additive genetic standard deviation, O'a) in the two herds 

according to the proportion of cows selected from each, yields: 

~G =[0.72(1.57) +0.28(2.03)] hcra = 1.69hcra 

This value compared to 1.75 hicra shows a reduction in genetic superiority of 

selected cows due to heterogeneity of variance of 3.4%. 

A further problem is that the proportion of individuals selected from the more 

variable herd increases with the intensity of selection (Hill, 1984 ). Altering this example 

to an overall proportion selected of 0.05 rather than 0.1 0, 82% of the cows selected will 

come from the more variable herd (Table 1 in Hill, 1984 ). This new proportions will 

reduce the expected genetic superiority of selected cows in 5.3% (Vinson, 1987). 

3.8.1.3 Sire Selection 

Consider the simple genetic model in Equation (3 .4), y .. k = h. + s. + e .. k, where 
IJ I J IJ 

y .. k is the observation in the kth daughter of the jth sire in the ith herd, hi is the fixed 
IJ 

herd effect and s j and eijk are random sire and residual effects respectively. If genetic 

and residual variances are known in each herd, the appropriate predictions would be 

obtained using selection index theory. Ignoring relationships between sires, in herd i, an 

estimate of the sire effect is 

~ b­Sj = ijYij· 

where Yij· is the average of records of nij daughters of sire j in herd i adjusted for fixed 

non-genetic effects and bij is a weighting factor. 
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For selection of bulls from bulls proofs based on mixture of daughters from two 

herds, a weighted estimate of the breeding value of sire j (I j) was derived by Van Vleck 

(1987) as follows: 

I._ b(nljYlj + n2jY2j) 

J- (nlj+n2j) ' 

then, the expected genetic superiority of the selected bulls when used in environment i is: 

~Gi = Cov(uj,I) 

<JI 

where ui is the true breeding value of the bulls in environment i, 0 1 is the standard 

deviation of the weighted index and i is the selection intensity factor. After some 

algebra, it can shown that 

where 0
2
a. is the additive genetic variance in herd i, <Ja a is the additive genetic 

I I, 2 

covariance for the two herds. The variance of the average of records of cows in herd i, 

daughters of sire j is 

and where <J~i is the phenotypic variance of the trait in environment i, and h~ is the 



55 

heritability for the trait in herd i. The covariance between the average of observations of 

daughters of sire j in herd 1 and herd 2 is 

() 

C (- - ) a I ,az 
ov Ylj,Y2j = 

4 

Van Vleck (1987) estimated the expected genetic superiority of selected bulls 

based on evaluation in two environments when selection was based on various numbers 

of daughters from two environments having different heritabilities and different residual 

standard deviations for different values of genetic correlations between expressions of 

genotypes in two environments. 

Evaluation of bulls exclusively in herds with larger heritability gave greatest 

genetic superiority in both environments if the genetic correlation was unity. If the 

genetic correlation was less than 1, then the expected genetic superiority of the selected 

bulls in the environment with larger heritability was still maximum when all daughters 

were in that environment but expected genetic superiority in the environment with 

smaller heritability also could be greater when all daughters were in the environment with 

larger heritability. If the genetic correlation was substantially less than unity, 

inappropriate allocation of daughters to test environment could reduce expected generic 

superiority. 

If heterogeneity of variance is ignored, therefore, the performance of daughters 

of a sire in effect will be weighted in proportion to the phenotypic standard deviations of 

the herds in which the daughters perform. The results is that performance of daughters 

in more variable herds will influence the eventual evaluation to a greater extend than 

does performance of daughters in less variable herds. To the extent that daughters of 

sires are distributed equally with respect to herd variation, no bias in evaluation should 

result (Vinson, 1987). However, if heritability also differs across herds, accuracy of 

evaluation will be reduced by failure to account for such differences when evaluations of 

sires are computed. 

3.8.1.4BLUP 

For most genetic evaluations in practice using BLUP with a sire model or an 

animal model, different types of relatives contribute to the prediction of breeding values 
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so it is not obvious how to predict losses in accuracy and therefore in genetic gain if 

heterogeneity of variance is ignored. 

In a simulation study, Garrick and Van Vleck (1987) investigated losses in 

response due to heterogeneous variances between three environments corresponding to 

herd mean production groups by deterministic simulation using two set of parameters. 

Responses were compared to the response using a multitrait model which was assumed 

to be correct model. For one parameter set phenotypic variances and heritabilities 

increased from the low to the high mean production group, and ignoring heterogeneity of 

variance led to a negligible reduction in asymptotic rate of response to selection. For a 

second parameter set, genetic (sire) variances were constant across environments and 

residual variances decreased with increased herd mean production levels, so that 

heritabilities decreased with increased phenotypic variances. This led to a reduction in 

the rate of response of approximately 3% when heterogeneous variances were ignored in 

the genetic evaluation. The authors thus concluded that, in practice, progeny testing 

schemes were robust to violations of assumptions regarding homogeneity of variances 

between environments. 

Meuwissen and Van der Werf (1993) simulated data for a dairy population 

undergoing selection and investigated losses in response to selection when heterogenous 

variances between herds were ignored in the genetic evaluation. Data were simulated 

either with or without heterogeneous variances and heritabilities were constant across 

herds. Breeding values were predicted using an animal model and response to selection 

was computed assuming there was homogeneity of variance. For both progeny testing 

and open nucleus schemes there were not significant losses in response when variances 

heterogeneous rather than homogeneous. 

3.8.1.5 Correlations Between Breeding Values Estimated at Different 

Environments 

There are two important questions about the genetic evaluation of dairy sires. 

First question is if estimated breeding values for a production trait of sires will rank in the 

same order over a wide range of environmental conditions. And second question is if the 

difference between the estimated breeding values for the production trait is the same at 

all levels of production. The first question is answered by the correlation between 

breeding values estimated at different environments and the second question is solved for 



57 

a statistical proof of significantly deviating breeding values. 

Manson and Robertson (1956) used data of Red Danish herds in Denmark. 

Herds were classified into three equal groups on the basis of their average production. 

The ranking of bulls for breeding values, which were estimated using the contemporary 

comparison method, was apparently the same at all levels of milk production. 

Robertson et al. ( 1960) used milk records of the progeny of Friesian and Ayrshire 

bulls in Great Britain. Contemporary groups (herd-year) were ranked in order of the 

average heifer yield and were split into three groups, low-yielding, medium-yielding and 

high-yielding contemporary groups. For each bull three independent contemporary 

comparisons were calculated, each based upon the same amount of information (the 

same number of "effective daughters"). The three set of contemporary comparisons 

provided three independent measures of the breeding value of each bull. Correlations 

between estimated breeding values at each pair of levels were obtained. The results 

showed that the correlation between breeding values of bulls at different production 

levels was very high indicating that irrespective of level of production, breeding values 

remain the same. 

Lytton and Legates ( 1966) used first records of artificially sired daughters of 46 

Holstein sires used in the northern and southern regions of the United States. 

Correlations between the average breeding values of the sires (estimated by comparison 

contemporary method) in the two regions for milk production and milkfat production 

approached unity, indicating that the ranking of sires was essentially the same in both 

regions. 

Progeny of American Holstein bulls were classified into one of four groups, based 

on milk yield level of herdmates (McDaniel and Corley, 1967). Daughter average rose 

with increases in herdmate level, while the magnitude of the breeding value (Predicted 

difference) of the sires decreased. Correlations among predicted differences estimated at 

different herdmate levels were high (>0.88). The magnitude of the correlations 

suggested that the breeding values of the bulls was almost the same from level to level. 

In Canada, Burnside and Rennie (1968) determined the correlations among the 

contemporary comparison proofs of 19 Holstein sires, each evaluated on the production 

of 20 or more daughters at four levels of herd production. The correlations ranged from 

0.73 to 1.01. The authors concluded that there were little change in ranking of sires 
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across herd level of production. 

Danell (1982) analysed first lactation records of Swedish Red and White cows. 

The data were divided into three groups according to average level of production in the 

herd. Breeding values were estimated for each sire on each production level by best 

linear unbiased predictor (BLUP) method. Product-moment and rank correlations 

between breeding values estimated at the three production levels were high and were not 

significantly different to the expected correlations. Therefore, she concluded that 

ranking of sires on the estimated breeding values for milk yield was essentially the same 

across production levels. 

Estimated correlations between breeding values for sires in different countries 

have turned out, in some reports, to approximate the expected correlations, thus 

indicating that the genetic correlation is unity. Petersen (1975) reported genetic 

correlations of 0.91 for milk yield, 0.97 for fat percentage, and 0.79 for fat yield between 

progeny tests of 93 bulls in Denmark with test in Bulgaria and Czechoslovakia. Powell 

and Dickinson ( 1977) estimated the predicted differences by the Modified Contemporary 

Comparison method of bulls in the US and in Mexico. This situation provided a unique 

opportunity to study the relationship between progeny tests of the same bulls in different 

countries without the confusion of differing methods of evaluation. The correlation 

between Mexican and US Modified Contemporary Deviation (MCD) was 0.66, and the 

expected value was 0.65. In a subsequent study, Powell and Wiggans (1991) using an 

animal model through BLUP procedures, estimated that the correlations between 

Mexican and US probable transmission abilities (PTA) were 0.91 compared with an 

expected correlation of 0.90. Thus, these results suggest no evidence of a difference in 

ranking (genotype-country interaction) exists. 

Other studies, in contrast, have reported low correlations between breeding 

values estimates in different countries. The breeding value of a small group of US sires 

which had progeny in the US, Mexico and Colombia, were estimated through BLUP 

procedures. Rank correlation for sire value in Mexico and Colombia was low (0.26) and 

not significant, indicating considerable changes in rank due to a possible sire-environment 

interaction (Abubakar et al. 1987). 

In New Zealand, an experiment was initiated in 1984 to study the differences 

between the offspring of Canadian and New Zealand sires under New Zealand conditions 

(Canadian/New Zealand Genotype-Environmental Interaction Trial; Peterson, 1988). 
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Breeding values of sires in the trial were calculated using BLUP methodology from the 

experimental data. Home proofs for Canadian sires were from Agriculture Canada and 

Holstein Association of Canada. New Zealand proofs were supplied by the New Zealand 

Dairy Board. Correlations between the trial and home proofs were calculated and tested 

against a theoretically expected value. For the New Zealand sires these correlations were 

not different from the expected value and were all greater than zero. The correlation 

between the trial and home proofs of the Canadian sires was significantly different from 

expectation and not different from zero. This means that sire proofs made under 

Canadian feeding and management conditions are not good predictors of a bull's relative 

merit in the New Zealand environment. 

3.8.1.6 Genetic Correlations 

Lush (1945) suggested that selection for a trait should occur in the same 

environment in which the selected animals would eventually perform. Hammond (1947) 

indicated that selection for a trait in the environment which will allow its maximum 

expression will result in the most rapid genetic improvement. Sires to be used in low 

producing dairy herds should initially be progeny tested in herds with low production if 

the thesis of Lush is correct, whereas if the thesis of Hammond is correct, sires to be 

used in low producing herds should be selected on the basis of their progeny test in high 

producing herds. The importance of the interaction between genotypes and 

environments, or more precisely, between sires and environments, is the major 

determining factor in considering these opposing theses. 

A first approach to the problem was made by Falconer (1952). He proposed that 

the genetic correlation between the expression of the same genotype in two different 

environments could be used as a measure of the genotype-environment interaction. The 

estimation problem was later discussed by Robertson (1959) and Dickerson (1962), who 

pointed out that the interaction component has to be adjusted for the differences in 

genetic variation among environments used. Otherwise the non-additive genetic effects 

will cause a pseudo-interaction even if the actual genetic correlation were equal to one. 

First and second lactation records of New York Holstein daughters sired 

artificially were used by Van Vleck (1963 ). The data were divided into four group 

depending on the level of the adjusted herd-mate averages relative to the season average. 

Genetic correlations between the genotypes in different environments were high (near to 
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unity) indicating that the genetic evaluation of the sires would be nearly the same in all 

herd levels. 

In the study carried out by Danell ( 1982), the ratio between expected and 

calculated correlations of breeding values estimated at different levels of production was 

considered as an estimator of the genetic correlation between the expression of the same 

genotype in two environments. Such estimator of genetic correlation fluctuated between 

0.90 and 0.98 indicating that estimated breeding values of dairy sires were not affected 

by an interaction between sire-herd. 

Hill et al. (1983) estimated genetic correlations of sire performances for milk 

production traits in herd groups split according to mean, phenotypic variance, or 

coefficient of variation, using ANOV A type estimation methods. For all criteria of 

grouping herds and for all traits, genetic correlations did not differ significantly from 

unity. 

De Veer and Vari Vleck (1987) used a multivariate linear model to estimate the 

genetic correlation between true breeding of dairy sires at three levels of production 

defined by mean yield of all cows freshing in the same-year-season. Estimated 

correlations among sire value at three levels were large in all cases (all 0.85 or greater). 

The authors concluded that these results indicate that ranking of sires is not greatly 

affected by production level where daughters make their records. 

In Cuba, Menendez-Buxadera et al. (1989) analysed a total of 16,622 first 

lactations of Holstein cows. The sample was divided into three production levels of milk 

yield. No changes in the order of merit of sires in the three levels were evidenced by the 

estimates of genetic correlations higher than 0.83. 

Dong and Mao ( 1990) estimated genetic correlations between sire performances 

in three herd groups (low, medium, high) split according to mean herd milk production 

level or herd standard deviation, for three separate 4-year time periods. All estimates 

were larger than 0.95, and for the most recent period (1984 to 1987) estimates of genetic 

correlations across herd groups were essentially unity. 

Estimates of genetic correlations for milk yield, milkfat yield and fat content 

between pairs of states in the USA were reported by Carabano et al. (1990). The lowest 

correlation was 0.93 (for milkfat yield between California and Wisconsin), and estimates 
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for fat content exceeded 0.98. 

Hence, although there are several studies that report heterogeneity of variance, 

the above results indicate that the prediction of breeding value for milk and milkfat yield 

of sires is not largely affected. 

3.8.2 Methods to Account for Heterogeneous Variance 

BLUP method can account for heterogenous variance if heritability and 

phenotypic variance were known in each environment (herd-year groups for example) 

(Henderson, 1984), but without such knowledge alternative methods have been proposed 

to account for heterogeneous variances. A brief discussion of these methods is given in 

this section. 

3.8.2.1 Logarithm Tran!:Jformation 

When standard deviation is a simple linear function of the mean, that is, the 

correlation between them is a unity, logarithmic transformation is the appropriate 

transformation to correct for heterogenous variance (Bartlett, 1947; Everett and Keown, 

1984; Garrick and Van Vleck, 1987; Visscher and Hill, 1992). However, the relationship 

between the mean and standard deviation is often far from the ideal and some times, 

logarithm transformation can "overadjust" the data for heterogeneity of variance making 

that the correlation between the mean and phenotypic variance change from a positive 

value to a negative value (Visscher et al. 1991; Kachman and Everett, 1993 ). In addition, 

a linear model in the transformed scale is not linear in the original scale (Kachman and 

Everett, 1993). 

Everett and Keown (1984) reported a positive relationship between mean and 

variance for milk yield of 0.24 in Holstein herds in the United States. It was suggested 

that a log transformation of the data could remove a large part of the relationship 

between the mean and the variance. When log transformation was done, the results 

showed that the relationship between mean and variance was reduced. 

Visscher et al. (1991) estimated genetic and environmental variances for fat yield 

for large Holstein Friesian pedigree herds in the UK, using an Animal Model. The 
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correlation between herd means and the estimated herd phenotypic standard deviation 

was 0.71, the correlation on the log scale changed to -0.28. The authors concluded that 

the log transformation slightly "overadjusted" the data for heterogeneity of variance. 

A consequence of overadjusting by the log transformation would then be that 

more animals (e.g. bull dams) would be selected from the herds of low means reducing 

the efficiency of selection as shown in section (3.8.1.2). Hence, as pointed out by others 

(Garrick and Van Vleck, 1987; Boldman and Freeman, 1990), one should therefore be 

careful in applying a log transformation for genetic evaluation purposes in dairy cattle. 

3.8.2.2 Scaling 

When heritabilities are the same in all environments, scaling observations by the 

estimated phenotypic standard deviation is an appropriate method of handling 

heterogeneous variance (Hill, 1984 ). Hill (1984) suggested the following transformation 

(y··--y·) z .. = IJ I 
IJ ~ 

cryi 
(3.18) 

where Yij is the record made by the animal j in the herd-year group i; Yi is the average of 

the herd-year group i; cryi is the phenotypic standard deviation in the herd-year group i; 

and Zij is the transformed record. This method has the advantage that no information 

outside the actual data is required and that the expected accuracy, that is the correlation 

between Zij and the true breeding value, does not depend on variation in cry. 

The efficiency of this method to reduce the heterogeneity of variance can, 

presumably, be increased by using prior information on the standard deviations of the 

individual groups or on the variability amongst these standard deviations (Hill, 1984 ). 

Thus if prior values, cr* , of each cry. are available, phenotypic deviations can be 
Yi I 

expressed as 
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(y"--y·) z .. = IJ I 
lj * 

() 
Yi 

without estimating the standard deviation. 

Alternatively, Hill (1984) suggested that records would be standardised by a 

posterior standard deviation, cryi' which is basically a weighting between the "within-

herd" and "population" standard deviation. This is estimated as: 

where 

Ciy + C>Yi 
_ var(cryi) var(&yi) 
Ciyi = 1 1 

----+ ~ 
var(cryi) var(cryi) 

crY = mean population standard deviation, 

var(cryi) = thevarianceofcryi about cry, 

~ 

cr yi = the estimated standard deviation for the herd i, 

var( &yi) = the variance of &yi about C>yi. 

(3.19) 

Once obtained these posterior standard deviations, the records would be 

standardised as 

(y··- -y·) z .. = IJ I 
IJ -

Ciyi 
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3.8.2.3 Weighting 

Brotherstone and Hill (1986) showed that within-herd variances are often 

heterogeneous across years, so that, they suggested that heterogeneous variance can be 

accounted for by a weighted average of the estimated within herd-year phenotypic 

standard deviation and the estimated population standard deviation. Visscher et al. 

(1991) applied this correction in the following form 

c A 

y .. =yi1·(0y /cry.) 
lj p 1 

where Yij is the record made by the animal j in the herd-year group i, &yi is the 

estimated phenotypic standard deviation in the herd-year group i; GyP is the estimated 

population phenotypic standard deviation, and yij is the adjusted record. 

These authors analysed data of 26 large Holstein Friesian pedigree herds in the 

UK using an animal model which included the fixed effect of herd-year-season (HYS). 

They found a correlation between the HYS means and estimated HYS phenotypic 

standard deviation of 0.71 and that estimates of heritability are relatively constant across 

the HYS groups. They also found that the correction for the heterogeneity of 

phenotypic variance, by adjusting data for the above transformation, reduced the 

heterogeneity substantially. 

Wiggans and VanRaden (1991) proposed a method where lactation records are 

standardised for differing genetic and error variances across herds and over time based 

on phenotypic variance for each herd-year-parity group. Each herd-year-parity 

phenotypic variance estimate was combined with those of adjacent years and regressed 

toward a region-year-parity phenotypic variance in the following form. 

For observations in region (R) i, herd (H) j within region i, year (Y) k, and parity 

(P) 1, 



where 

~z Yij(k-1)1 ~z Yij(k+l)l ~z ~z 
_

2 
20crikl + 2 crij(k-1)1 + 2 crij(k+l)l + Yijklcrijkl 

criJ.kl = 
20 

Vij(k-1)1 Vij(k+l)l 
+ + +V··kl 2 2 u 

crijkl = posterior estimate of the within-RHYP variance, 

~z 

crikl = estimated (across-herd) variance m the region-year-parity 

~z = 
crij(k-1)1 

~z = 
crij(k+l)I 

Yjj(k-1)1 = 

Yij(k+l)l = 

Yijkl = 

(RYP) (i, k, 1), 

estimated variance within RHYP (i, j, k-1, 1), 

estimated variance within RHYP (i, j, k+ 1, 1), 

estimated variance within RHYP (i, j, k, 1), 

degrees of freedom for RHYP (i, j, k-1, 1), 

degrees of freedom for RHYP (i, j, k+ 1, 1), 

degrees of freedom for RHYP (i, j, k, 1). 
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From the relationship between heritability and phenotypic variance, estimates of 

genetic variance were obtained. Lactations records were deviated from management 

group mean, and the deviation was multiplied by the ration of a estimate of population 

standard deviation to RHYP genetic standard deviation. 

This method of adjusting by heterogeneity of variance was implemented in July 

1991 for the national USDA animal model genetic evaluation (Wiggans and VanRaden, 

1991). Estimated genetic trend for milk increased by nearly 5 kg/yr for Holstein with 

this adjustment, which caused predicted breeding values of oldest animals to be lower by 

about 100 kg. Cows in high variance herds were most likely to have large reductions in 

their evaluations. 
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3.8.2.4 Multiple Trait Analysis 

In general, homogeneity of variance is not a requirement in a best linear unbiased 

prediction analysis. Treatment of random effects as separate traits in different 

environments allows handing heterogeneous variances as a multiple trait analysis 

(Henderson, 1984; Gianola, 1986; Garrick and Van Vleck, 1987). However, obtaining 

separate estimates of sufficient accuracy for variance and covariance components in each 

environment may be difficult because large data set are required. 

To account for sampling errors of parameter estimates, Hill ( 1984 ), Brotherstone 

and Hill (1986) and Visscher and Hill (1992) proposed a Bayesian procedure in which 

individual herd parameters are regressed to an overall a priori estimate. The regression 

coefficient depends on the sampling variances of individuals herd estimates and the 

variance of the parameters, assumed to be known a priori. The regression may be 

written (Visscher and Hill, 1992) as 

(3.20) 

where ei is parameter estimate and ei its regressed estimate for herd i, and eo is the 

overall (prior) estimate. The regression coefficient is 

with 

var(S·IS·) 
'Y

. _ I I 
1-

var(Sj) 

being the ratio of the sampling variance to the variance of the parameter, or less formally, 

the ratio of variance "within" and "between" parameters e. 

Gianola et al. (1992) and Weigel and Gianola (1993) gave a formal empirical 

Bayesian method for estimation of heterogeneous variance. Essentially, they proposed 

that individual herd (genetic, environmental and phenotypic) variances can be estimated 

by 
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A 2 2 
_2 dicr. +d0 cr 2 d· A 2 2 cr.= 1 o=cr + 1 (cr. -cr) 

I d· +d 0 d· +d I 0 
I 0 I 0 

where 

-2 cr i = the posterior estimate of variance in herd i, 

af = the estimated variance in herd i, 

cr~ = the average population value, 

d0 = the "degrees of believe" of the average population value, 

di = degrees of freedom for herd i. 

3.8.2.5 Multiplicative Model 

A multiplicative mixed model that incorporates scaling factors was presented by 

Kachman and Everett (1993). This model differs from the usual mixed models in that the 

fixed and random effects are scaled by the scaling factor of each environment. 

3.8.3 Example of the Brotherstone and Hill Method 

In section (3.8.2.2) the method of scaling as suggested by Hill (1984) was 

explained (Equation 3.18). Alternatively Hill (1984) suggested that records would be 

standardised by a posterior standard deviation (Equation 3.19). In this example, the 

method to obtain a posterior standard deviation is illustrated following the principles 

derived by Brotherstone and Hill ( 1986). 

Consider milkfat yields of first calving cows in nine herds (Table 3.4). A suitable 

model for these data may be 

Y .. -h· +e·· lj - 1 lj 
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where Yijis the milkfat yield of the j animal in the herd i, hi is the fixed effect of the herd 

i and eij is the residual error corresponding to Yij. 

Table 3.4. Milkfat yield of first calving cows in nine herds for the example of the 

Brotherstone and Hill method to correct for heterogeneity of variance. 

Herd number 

1 2 3 4 5 6 7 8 9 

135 141 155 138 153 171 143 157 177 

130 145 149 141 163 168 142 158 181 

133 137 161 145 159 173 145 161 194 

128 147 159 142 163 175 149 167 175 

135 168 155 169 164 189 

153 165 193 

173 

The within-herd mean(yi), variance ( &~) and standard deviation ( cri) for each 

herd are calculated using the following formulas: 

n; 

LYi 
- i=l Yi =--, (3.21) 

ni 

(3.22) 

~ f{2 O"y. = () . 
I Yi 

(3.23) 

Numerical values for of Equations (3.21)-(3.23) for each herd are shown in Table 



69 

3.5. The teims involved to obtain the posterior standard deviation (Equation 3.19) are 

obtained as follows. 

An estimator of the population standard deviation, cry, is approximated by the 

unweighted mean of within-herd standard deviations 

k 

I&Yi 
cr = & = .,_i =-"1'--_ 

Y Yi k 

=-;:: = 3.11 +4.43+ ... +8.26 = 4 52 
cry crYi 9 . ' 

(3.24) 

with estimated variance 

k - {;2 
" [ ~ ~ 2 Yi ] L (cry--cry.)--
. I I 2n· 

vfu-( cr . ) = 1=l ' 
yl k -1 

(3.25) 

The term &~i being the unweighted average of within-herd variances, i.e., 

{;2 = 9.70+19.67+ ... +68.17 =23.36 
Yi 9 

so that, 

(3.11-4.52?- 23·36 + (4.43-4.52)2
-

2
3.

36 + ... + (8.26-4.52)2
-

23
·
36 

2(5) 2(4) 2(6) 
Var(cryi)=k-----------~~~-------9----1--~~--~----------~~ 

A 

= 5.27. 

And the variance of each within-herd estimated standard deviation is obtained as: 
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(j'2 &2 
~ y y 

var(cr ·) ~-~-. 
Yl 2n· 2n· I I 

(3.26) 

Table 3.5. Estimates of phenotypic standard deviations for herds considered in the 

example of the Brotherstone and Hill method to correct for heterogeneity of variance. 

Number of Herd number 

Statistic Equation* 1 2 3 4 5 6 7 8 9 

Yi (3.21) 132.2 142.5 157.5 141.5 158.6 170.6 144.8 161.4 184.8 

n· I 5 4 6 4 5 7 4 5 6 

A2 (3.22) 9.70 19.67 44.70 8.33 20.80 11.95 9.58 17.30 68.17 
cr Yi 

A (3.23) 3.11 4.43 6.69 2.89 4.56 3.46 3.10 4.16 8.26 
cr Yi 

var(cryi) (3.26) 2.04 2.55 1.70 2.55 2.04 1.46 2.55 2.04 1.70 

cryi (3.19) 3.50 4.46 6.16 3.42 4.55 3.69 3.56 4.26 7.34 

* Number of equation in the text. 

Thus, calculated values of posterior standard deviations, a Yi , would be used to 

standardise deviations of individual records, Yij, from within-herd means, Yi, as 

suggested by Hill (1984) in Equation (3.18). 
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Lactation records of dairy cows calving between 1986 and 1989 inclusive, were 

obtained from the Livestock Improvement Corporation files of the New Zealand Dairy 

Board. In total there were 2,004,854 lactation milkfat yields in the file, which had 

originally been set up for the purpose of sire evaluation. A pedigree file was available 

containing information of ancestors as well as number of register and breed. Cows were 

herd located in different areas of the country and all lactations were considered. Year 

and month of calving, as well as age of the cow at calving were available for each 

production record. Additional information such as if the calving was induced, was also 

available. 

4.2 Methods 

4.2.1 Estimation of Breeding Values 

An increasing proportion of the dairy cattle population in New Zealand has been 

crossbred since 1960, mainly with the aim of changing from straightbred Jerseys to 

Holstein-Friesian. Thus, some farmers are choosing sires across breeds, on the basis of 

breeding index irrespective of the breed. Further, some studies (Nejati-Javaremi, 1991) 

have given evidence that genetic evaluation of sires may be across breeds. 

Breeding values of sires were estimated through BLUP procedure (Henderson, 

1973) by using a single trait repeatability animal model across breeds, which is currently 

being developed for the future genetic evaluation of dairy cattle in New Zealand (Garrick 

et al. 1993; Harris et al. 1993). The statistical model for analysis of a cow with milkfat 

yield was as follows (Harris et al. 1993): 



where 

gg 

Yijklmn =HYAj +Mj +Dk +am+ I.qmrgr +pm 
r=l 

bg 

+wmlhl + I.smtbt +eijklmn 
t=l 
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(4.1) 

Yijklmn is the nth milkfat production record made by the mth cow in the ilh 

herd-year-age contemporary group of the lth heterosis class calving 

in the jlh calendar month and in the kLh induced lactation class, 

HY Ai IS the fixed effect of the ith herd-year-age contemporary group, 

M . is the fixed effect of the jlh calendar month of calving, 
J 

Dk is the fixed effect for the kth induced lactation class, 

am 

qmr 

gr 

Pm 

WmJ 

hi 

Smt 

bt 

is 

IS 

IS 

is 

is 

is 

is 

IS 

the random additive genetic effect for the mth animal; 

the fractional contribution of the r1h genetic group to the genetic 

merit of the mth animal, 

the fixed effect for the rth genetic group with gg classes; 

the random non-additive genetic and permanent environment effect 

associated with records of the mth animal; and 

the contribution of the llh heterosis class of the mth cow, 

the fixed effect of the lth heterosis class, 

the contribution of the t1h maternal breed class of the mth cow, 

the fixed effect for the tlh maternal breed with bg classes, 

eijklmn IS the random residual. 

Contemporary groups were defined as cows of the same age calving in the same 

herd-year. An effective contemporary group (HY A) was defined as that with more than 

5 animals. 

Fixed effect of month of calving was included in the model because it is known 

that, for the new Zealand milk production system, month of calving has an important 

effect on milk yield. Cows calving earlier than the average calving date are likely to have 
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longer lactations than cows calving later than the average calving date. However, the 

later are likely to be well fed in early lactation and can overcome the shorter lactations 

(Holmes, 1986). 

Dairy farmers use calving induction with the objective of maintammg a 

concentrated calving interval. Cows with induced calving are likely to be vulnerable to 

the effects of stress due to weather and infections. They are also likely to produce less 

milk and to have low fertility. Owing to these reasons, the fixed effect of induced 

lactation was considered in the model. 

Genetic groups were considered as developed by Robinson (1986), Westell and 

Van Vleck (1987), Quaas (1988) and Westell et a!. (1988). For each animal with 

unknown ancestors, phantom parents without records were created and were considered 

unrelated. An animal was assigned up to four genetic groups depending on the number 

of breeds present in the animal (two parents unknown) or the number of breeds present 

in the unknown parent. 

The expected coefficients for heterosis were computed for specific crossbreeding 

designs (Dickerson, 1973; Ahlborn-Breier and Hohenboken, 1991). 

Breed group effects were considered as defined by Arnold et a!. (1992). Each 

animal could have up to four breed codes and the proportions of the genes from each of 

the four breed stored on database. Eight breeds have been assigned to the New Zealand 

population: 

1. Holstein-Friesian 

2. Jersey 

3. Ayrshire 

4. Guernsey 

5. Milking Shorthorn 

6. European Red breeds 

7. Brown Swiss 

8. Other breeds including beef breeds. 

Each animal could have up to four maternal breed classes with the coefficient for 

each class being the percentage of genes belonging to that breed class for the dam of the 

animal. 
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In matrix notation, model equation (4.1) can be rewritten as follows: 

y = Xb + Za + ZQg + Zp + ZWh + ZSm + e (4.2) 

y IS the vector of records; 

b is the vector of herd-season-age, month of calving and 

induced lactation class fixed effects; 

a is the vector of random additive genetic effects including 

animals without records; 

g IS the vector of genetic group effects; 

p IS the vector of random non-additive genetic and permanent 

environment effects; 

h is the vector of heterosis fixed effects; 

m is the vector of maternal breed fixed effects; 

X, Z, Q W and S are incidence matrices associating records with the elements of 

b, a, g, h, and m, respectively; and 

e is the vector of random residuals. 

The rows of Z associated with animals with no records contains all zero elements 

but are incorporated in the inverse of relationship matrix. The ith row elements of Q 

contain the contribution of each genetic group to the genetic merit of animal m. The ith 

row elements of W contain the proportion of heterosis expected for animal m for the 

appropriate breed combination. And, the ith row elements of S contain the proportions 

of each breed of the dam of animal m. 

The expectations and variances are: 

y Xb +ZWh+ZSm +ZQg 

a 0 
E = 

p 

e 

0 

0 
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and 

ZAZ I cr2 + ZZ I cr 2 + Rcr2 
a p e 

ZAcr2 
a 

Zcr2 
p Rcr 2 

e 

y 
ZAZicr2 0 0 

a a 
Var = 

p symmetric ZZ lcr 2 
p 

0 

e 

Rcr 2 
e 

where cr~ is the additive genetic variance, cr~ is the non-additive genetic plus permanent 

environment variance, cr~ is the residual variance, A is the numerator relationship matrix 

and R is a diagonal matrix. 

The mixed model equations for the equation model (4.2) are: 

X'R"1X X'R"1Z X'R"1ZQ X'R-1Z X'R" 1ZW X'R"1ZS X'R"1y 

Z'R"1X Z'R"1Z+A3 A-1 Z'R "1ZQ Z'R"1Z Z'R ·!zw Z'R ·!zs 
b 

Z'R"1y 
a 

Q'Z'R"1X Q'Z'R "1Z Q'Z'R-1ZQ Q'Z'R ·tz Q'Z'R-1ZW Q'Z'R"1ZS g Q'Z'R "1y 
= 

Z'R"1X Z'R"1Z Z'R "1ZQ Z'R"1Z+Apl z·R-1ZW z·R-1ZS p 
Z'R"1y 

W'Z'R"1X W'Z'R"1Z W'Z'R"1ZQ W'Z'R"1Z W'Z'R"1ZW W'Z'R-1ZS 
h 
m 

W'Z'R"1y 

S'Z'R"1X S'Z'R"1Z S'Z'R "1ZQ S'Z'R"1Z S'Z'R-1ZW S'Z'R "1ZS S'Z'R "1y 

(4.3) 

The mixed model equations augmented to include the phantom parents without 

records (Westall et al. 1988) are: 
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X'R-1X X'R-1Z 0 X'R-1ZQ X'R-1Z x·R-1ZW X'R-1ZS X'R-1y 

Z'R-1X Z'R-1Z+A.aA 11 "-a A 10 Z'R-1ZQ Z'R-1Z Z'R-1ZW Z'R- 1ZS 6 
iil 

Z'R-1y 

0 "-a A 01 1 •• A oo 0 0 0 0 0 
iio 

Q'Z'R-1X Q'Z'R- 1Z 0 Q'Z'R- 1ZQ Q'Z'R- 1Z Q'Z'R-1ZW Q'Z'R-1ZS g Q'Z'R-1y 

Z'R-1X Z'R-1Z 0 Z'R- 1ZQ Z'R- 1Z+A.pl z·R-1ZW Z'R- 1ZS 
p Z'R-1y 

6 W'Z'R-1y 
W'Z'R-1X W'Z'R-1Z 0 W'Z'R- 1ZQ W'Z'R- 1Z W'Z'R-1ZW W'Z'R- 1ZS m 
S'Z'R-1X S'Z'R-1Z 0 S'Z'R-1ZQ S'Z'R-1Z S'Z'R-1ZW S'Z'R-1ZS S'Z'R-1y 

(4.4) 

where A 11 
' 

AlO 
' 

A 01 and A 00 are submatrices of the mverse of the numerator 

relationship matrix including the phantom parents, i.e., 

Solving the mixed model equations (4.4), the vector of estimates of breeding 

values, fi, would be derived as indicated by Quaas (1988) 

fi = BLUP(u) = Qg +a. 

A solution for a in this form, however, would be computationally difficult. 

Further, inclusion of phantom parents in the equations increases the number of equations 

to solve. The solution vector of estimates of breeding values would be obtained directly 

by using the QP transformation (Quaas and Pollak, 1981; Pollak and Quaas, 1983; 

Quaas, 1988) and because the solutions for the phantom parents are not needed, these 

would be absorbed into the QP transformed equations. This yields the following set of 

equations (Westall et al. 1988): 
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X'R" 1X X'R" 1Z 0 X'R" 1Z X'R" 1ZW X'R" 1ZS X'R" 1y 

Z'R"1X Z'R ·lz + A.aK 11 A.aKI2 Z'R"1Z Z'R" 1ZW 
6 

Z'R ·!zs Z'R"1y (J 

0 A.aKI2' A.aK22 0 0 0 g 0 

Z'R" 1X Z'R" 1Z 0 Z'R"1Z+A.pl Z'R. 1ZW Z'R ·lzs p Z'R"1y 

W'Z'R"1X W'Z'R"1Z 0 W'Z'R"1ZQ W'Z'R" 1ZW W'Z'R" 1ZS 
h W'Z'R"1y 
m 

S'Z'R"1X S'Z'R"1Z 0 S'Z'R" 1ZQ S'Z'R"1ZW S'Z'R"1ZS S'Z'R"1y 

(4.5) 

where 

The blocks of the partitioned matrix K, i.e., 

are defined as a function of the blocks of the partitioned matrix A -1
, the numerator 

relationship matrix inverse for phantom parents and animals. The rules for determining 

the individuals elements of K are given by Westell et al. (1988) and follow the rules for 

computing A -I with both parents known as presented by Henderson (1976); except the 

magnitude of the coefficients depends on the number of phantom parents. The 

coefficient in K 11 are equivalent to A -1
• 

Mixed model equations (4.5) were constructed and solved by Jacobi iteration for 

the fixed effects, b, and by Gauss-Seidel block iteration for the random effects. 
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The vector of estimates of producing ability, q, are estimated as the sum of the 

vector of estimated breeding values and the vector of estimated permanent effects (Van 

Vleck, 1979), i.e., 

q = BLUE(q) = fi +p. 

4.2.2 Definition of Levels of Production 

After editing, there were 83,805 effective contemporary groups. For each 

contemporary group (HY A), the mean CYi), the within-HY A variance ( o-;i) and the 

within-HY A standard deviation (cry) for milkfat yield were calculated. Because no 

other information about management factors, the HY A mean was used as a grouping 

factor. Contemporary groups were sorted by the mean milkfat production and 

subsequently, they were divided into three equal sized groups which were identified as 

low, medium and high production levels. 

For each producing level, breeding values of sires were estimated by the using the 

model equation ( 4.1 ). Thus, three independent estimates of breeding values of sires were 

obtained. 

4.2.3 Methods to Reduce Heterogeneity of Variance 

Methods to reduce heterogeneity of variance were investigated by using three 

different methods. 

4.2.3.1 Mean Correction 

Assuming that the relationship between the within-herd-year-age standard 

deviation and herd-year-age mean is directly proportional, the records were scaled by the 

corresponding herd-year-age mean as follows 

mu Yijklmn 
YiJ.klmn = -

Yi 
(4.6) 
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where Yijklmn is a record of milkfat production as defined in equation (4.1), yijk~mn the 

scaled record, and Yi is the mean milkfat production for the ith herd-year-age group. 

4.2.3.2 Standard Deviation Adjustment 

Milkfat yields were adjusted using a weighted combination of an estimate of the 

population standard deviation (a y) and a posterior herd-year-age standard deviation 

( crYi) as follows 

sd <iy 
Yijklmn = Yijklmn (-_-) 

cry. 
I 

(4.8) 

where Yijklmn is a milkfat yield record as defined in the model equation (4.1) and 

yfjtlmn is the adjusted record. 

The population standard deviation was taken as the unweighted average of 

within-herd-year-age standard deviations 

and cry. was obtained by using a Bayesian regression approach (see section 3.8.2.4 and 
I 

example in section 3.8.3) (Hill, 1984; Brotherstone and Hill, 1986; Weigel and Gianola, 

1993) as follows 
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cry + 2v/>yi 

var( cry. ) cr2 
I y 

1 2vi&y. 
----+ I 

var (cry. ) cr2 
I y 

where vi are the degree of freedom to estimate the within-HY A standard deviation, and 

var(cryi) is the variance of crYi about cry. Var(cryi) define the extent of variability in 

within-herd variance. An estimate of this parameter was calculated as 

where i =F- j means that the contemporary group i is not included, so that, 6-Yi is the 

unweighted average excluding the ith contemporary group. 

An adjustment for herd-year-age standard deviation rather than for herd standard 

deviation was made because it is known that within-herd variances are often 

heterogeneous across years (Brotherstone and Hill, 1986 ), and because herd-year-age 

rather than herds were fitted as fixed effects in the genetic evaluation. 

4.2.3.3 Logarithmic Transformation 

The natural logarithm (In) transformation of the observations were made 

(4.9) 

where y!~kl is the data after logarithmic transformation. IJ mn 
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Estimated breeding values of sires were estimated after transformations (4.7), 

(4.8) and (4.9) by solving mixed model equations (4.5) for the entire data and for each 

independent subset based on level of production. 

4.2.4 Measurement of the Effect of Heterogeneous Variance 

4.2.4.1 Relationship Between Mean and Standard Deviation 

Genetic evaluation is simplified when residual and genetic variances across 

environments are constant. This means a correlation of zero between standard deviation 

and mean. A significant correlation would indicate departure from this assumption 

(Everett and Keown, 1984) and as a result, estimation of breeding values may be biased. 

Correlation coefficients (SAS, 1985) between within-contemporary group means and 

standard deviations were investigated as evidence for heterogeneity of variance. 

4.2.4.2 Correlations Between Breeding Values 

Suppose a sire contributes genes affecting records m each of two distinct 

environments. Now, this sire could be evaluated separately in each environment from the 

records obtained in that environment. Bereskin and Lush (1965), Hickman et al. (1969), 

Garrick (1988) and Notter and Diaz (1993) have discussed the expected value of the 

correlation between the breeding values estimated in different environments for the same 

srre. 

As discussed in section (3.8.1.2), but consider now the simple genetic in Equation 

(3.1), Yijk =hi + u j + eijk, where, Yijk is the milkfat yield of the kth daughter of the jlh 

sire in the ith environment, hi is the fixed environmental effect and u j and eijk are 

random genetic and residual effects respectively. Define u1j as an estimate of the sire 

effect obtained from records on n1j daughters in environment 1 and u2j as an estimate 

of the sire effect from records on n2j daughters in environment 2. If genetic and residual 

variances are known in each environment, the appropriate predictions would be obtained 

using selection index theory. Ignoring relationships between sires, uij = bijYij for some 
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appropriate bij and where Yij is the average of records of nij daughters of sire j in herd i 

adjusted for fixed non-genetic effects, so that, Yij = uij + eijk 0 

Now as shown by Garrick (1988) and Garrick et al. (1989), the correlation 

between two estimates of breeding values for the sire j is 

var( u Ij) 0 var( u2j) 

var(y1j) 0 var(Y2j) 
(4010) 

Now consider the correlation between a true genetic effect and an estimate of the same 

effect based on the corresponding observation: 

ru··u·· = ru··(b··-y··) IJ IJ IJ IJ IJ 

cov( uij, bijuij + bijeijk) 

= ~var(uij)ovar(bijYij) 
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using this iri ( 4.10) results in expression 

( 4.11) 

The identity in ( 4.11) means that the expected correlation between breeding 

values of sires estimated in different environments (ru
1
ju

2
j) depends on the true genetic 

correlation (ru
1
julj) and the accuracy of breeding value prediction in those environments 

(alJ. = ru ·u . and a2J· = ru
2

.i}
2

. ). This identity is true under certain conditions. These 
lj lj J J 

include (Taylor, 1983 as cited by Notter and Diaz, 1993): 

1. No environmental correlation between performance m the different 

environments. 

2. No relationships among parents of measured animals. 

3. No other covariances among predicted breeding values within either 

environment. 

4. Sires are chosen at random. 

For sire evaluation, with these assumptions, 

2 nij a .. =---=:.-
IJ n·· +A· 

lj I 

a··= IJ 

n .. 
IJ 

n .. +A· lj I 

(4.12) 

where Aj is the ratio of residual to sire variance for environment i. . Under BLUP, 

accuracies of estimated breeding values for non-inbred animals are obtained as: 
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where ciiis the ith diagonal element of cuu, the prediction error covariance matrix of u 
(see section 3.3). If the model is complete and properly parameterised, accuracies are 

expected to equal correlations between actual and predicted breeding values. 

Assuming that the true genetic correlation between breeding values is the unity 

(i.e., the genes for both environments are the same) then the correlation between 

estimated breeding values for a sire is 

If heritability of the trait is 0.25 and is constant through the environments, then 

A.i =a~ I a;= 15. This means that residual and sire variance are constant or vary 

proportionally through environments. Using these results, the expected correlation 

between estimated breeding values of sample of m sires evaluated in different 

environments (Hickman et al. 1969) is: 

[I( nlj J ( n2j Jl 
j=l nlj + 15 n2j + 15 

P , - r - -?==========:::::::=== U]jUzj - e - I( nlj J I( n2j J 
j=l nlj + 15 j=l n2j + 15 
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Observed correlations (r0 ) between breeding values estimated m two 

environment, would be compared to their expected correlations. Expected confidence 

limits for observed correlations would be used to evaluate if significant departures exist 

from their expectations and this would be used a measure of the effect of heterogeneous 

vanance. 

For correlation analysis, the statistic of Fisher (Snedecor and Cochran, 1980) 

Z=.lln[~] 
2 1-r 

has variance of "" ( m- 3r 1, where r is the observed correlation and m is the number of 

sires in the sample. By converting the observed correlation coefficient to Z using this 

transformation, a confidence interval for J.L 2 is given by 

1 
L = Z - Za/2 · r---;; and 

-vm-3 

1 
U = Z + Za/2 · r---;; 

-vm-3 

as the lower and upper limits. The value Za/2 is obtained from the standard normal table. 

The limits on J.L 2 , L and U, may then be converted to limits on the parameter by using 

tables provided in Pfaffenberger and Patterson (1977). 

Product-moment and rank correlations between the estimated breeding values at 

the three different levels of production for untransformed and transformed data for sires 

having 10, 20, 30, etc. up to 100 daughters at each level of production were calculated. · 

Pearson's correlation coefficient (rp) for product-moment correlation and Spearman's 

correlation coefficient (r5 ) for rank correlation were obtained by using SAS (1985) and 

confidence intervals were calculated for these coefficients. 

4.2.4.3 Significant Deviations 

Estimates of breeding values in each level of production will never give exactly 
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the same results, unless the information for each sire is large enough and assumptions in 

the model are satisfied (homogeneity of variance). The appearance of significantly 

different results between estimates of breeding values for sire j (u1j- ii2j) calculated on 

two different levels of production would in that case be an indication of heterogeneous 

variance effect. The standard deviation ( sd u . -u
2

.) of the differences between estimates 
lj J 

of breeding values for the same sire can be calculated (Danell, 1982) as: 

where cr; is the genetic additive variance and a1j and a2jis the accuracy of breeding 

value prediction in the two levels of production as defined in Equation ( 4.12). This 

expression assumes that the errors in the two estimates are uncorrelated. 

It was assumed that heritability was the same across production levels but 

estimated of the genetic additive variance were obtained as cr; = h 2cr~ by using 

estimated of phenotypic variances. The number of significant differences between the 

estimated breeding values for the same sires outside a 95% confidence interval were 

counted and compared to the expected number. The same procedure was made for each 

set of data (corrected by the mean, adjusted by the standard deviation and logarithmic 

transformation). 

4.2.5 Genetic Correlation 

An estimate Cfo) of the correlation between true breeding values (ru
1
iu

2
i) may be 

obtained from the ratio of the observed and the expected correlations between the 

expression of the same genotype in two environments (Mason and Robertson, 1956; 

Danell, 1982; Notter and Diaz, 1993 ). 



CHAPTER 5 

RESULTS 

5.1 Means and Standard Deviations and their Correlation 
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There were 83,805 contemporary groups (cows of the same age calving in the 

same herd-year) which were split into three equal sized groups (27 ,935) according to the 

mean contemporary rnilkfat yield, namely low, medium, and high producing levels. The 

grouping of records produced differences in lactation milkfat yield as shown in Table 5.1. 

The differences in milkfat yield between medium-low, high-low and high-medium 

production levels were 12.79, 32.97 and 20.18 kg, respectively. The corresponding 

differences in averages of standard deviations were: 1.02, 3.33, and 2.31. Thus, standard 

deviation increased with milkfat production. However, the change in the standard 

deviation was less than the change in mean production, such that the coefficient of 

variation decreased. This relationship was more clearly shown by the correlation 

coefficient between HY A means and standard deviations estimated as 0.44 (Table 5.2). 

Table 5.1. Contemporary group numbers, averages of HY A means and within-BY A 

standard deviations and coefficient of variation for milkfat yield overall and at three 

levels of production. 

Variable 
Number of contemporary groups 
Average of HY A means 
Average of within-HY A standard deviations 
Coefficient of variation 

All 
83,805 

154.29 
26.49 
17.17 

Production level 
Low Medium 

27,935 27,935 
139.32 152.11 
24.99 26.01 
17.94 17.10 

High 
27,935 

172.29 
28.32 
16.44 

Correction of the data by the herd-year-age mean, as indicated in Equation (4.6), 

reduced the average of within-HY A standard deviations, from 26.49 to 17.56 (Table 

5.1). This correction notably reduced the correlation between the HY A means and 

within-HY A standard deviations with a change from a positive to negative value (0.44 to 

-0.27; Table 5.2). 
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Adjusting the data for herd-year-age standard deviation, as indicated in Equation 

(4.7), slightly reduced the averages of within-HY A standard deviations (from 26.49 to 

25.82; Table 5.1) and, as a result, this adjustment reduced the correlation between HY A 

mean and within-HY A standard deviation from 0.44 to 0.31 (Table 5.2). 

Effect on average within-HY A standard deviations of log transformation was 

similar to the effect of the mean correction. Log transformation reduced the average of 

standard deviations from 26.49 to 18.87 kg milkfat (Table 5.1) but also tended to 

overadjust the correlation between the mean and standard deviation changing it from 

0.44 to -0.24 (Table 5.2). 

Table 5.2. Averages and standard deviation of herd-year-age (HY A) means and within­

BY A standard deviations and correlations between them for milkfat production using 

untransformed and transformed data. 

Transformation 

Variable None MEAN I SD2 LOG3 

Average of HY A means 154.29 100.00 157.11 147.07 

Average of within-HY A standard deviations 26.49 17.56 25.82 18.87 

Correlation between HY A mean and within- 0.44 -0.27 0.31 -0.24 

HY A standard deviation 
I Milkfat yield scaled by the corresponding HY A mean. 

2 Milkfat yield adjusted by the corresponding estimate of HY A standard deviation. 

3 Natural logarithm of milkfat yield. 

5.2 Averages and Standard Deviations of Estimates of Breeding Values 

The averages and standard deviations of breeding values for milkfat yield of sires 

evaluated at three levels of production and with different minimum number of daughters 

are shown in Table 5.3. The number of sires with more than I 0 daughters in each 

production level, was 1151. The average of estimated breeding values for these sires 

was -0.3±10.5 kg milkfat when evaluated at all levels. Small departures from this 

average was observed when the sires were evaluated at three different levels of 
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production.· As the number of minimum number of daughters increased, the average 

breeding of sires also increased. Sires having more than 100 daughters in each 

production level averaged 3.0±8.7 kg milkfat for the whole data and when evaluated at 

the three levels of production were similar, 3.1 (low), 3.0 (medium) and 3.0 (high). The 

standard deviation of estimated breeding values increased as the level of production 

increased ±7 .6, ±8.5 and ±9.8 kg milkfat, respectively. 

The averages and standard deviations of breeding values for lactation rnilkfat 

yield corrected by the herd-year-age mean are showed in Table 5.4. The averages of 

estimated breeding values of sires using the whole data were similar to the averages at 

each of the production levels. Compared with the averages using the data without 

transformation, this method to account for heterogeneous variance reduced the 

variability of estimated breeding values. For instance, the standard deviation of 

estimated breeding value for sires with more than 100 daughters at each production level 

when evaluated without considering level of production was 8.7 (see Table 5.3) 

compared with 5.4 kg milkfat (see Table 5.4). 

The averages and standard deviations of estimated breeding values for lactation 

rnilkfat yield adjusted by the estimate of the herd-year-age standard deviation are shown 

in Table 5.5. Similar trends to the data without correction were observed. The averages 

of estimated breeding values increased as the number of daughters increased. The 

averages at each production level were similar between them but higher standard 

deviations of breeding values estimated at the high level of production were observed. 

Effect of logarithmic transformation on averages and standard deviation of 

estimated breeding values at different producing levels are shown in Table 5.6. 

Compared with the averages using the data without transformation, this method reduced 

the standard deviation of estimates of breeding values. 
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Table 5.3. Averages and standard deviations of breeding values for milkfat yield of sires 

evaluated at three levels of production and with different minimum number of daughters. 

Untransforrned data. 

Minimum number 
of daughters at each Number Level of 2roduction 
2roduction level of sires All Low Medium High 

10 1151 -0.3±10.5 -0.6± 9.6 -0.3± 9.9 0.1±10.4 
20 486 0.5± 9.9 0.2± 9.3 0.4± 9.6 0.7±10.4 
30 351 0.9± 9.6 0.8± 8.5 0.8± 9.4 1.2±10.3 
40 306 1.2± 9.6 1.2± 8.4 1.2± 9.5 1.5±10.2 
50 272 1.5± 9.3 1.6± 8.2 1.5± 9.1 1.7±10.2 
60 248 2.2± 9.0 2.2± 8.0 2.1± 8.9 2.4±10.0 
70 230 2.3± 9.1 2.4± 8.0 2.2± 9.0 2.3±10.0 
80 216 2.6± 8.9 2.7± 7.8 2.5± 8.7 2.7± 9.9 
90 209 2.9± 8.7 2.9± 7.7 2.9± 8.4 3.0± 9.7 

100 198 3.0± 8.7 3.1± 7.6 3.0± 8.5 3.0± 9.8 

Table 5.4. Averages and standard deviations of breeding values for milkfat yield of sires 

evaluated at three levels of production and with different minimum number of daughters. 

Data corrected by the HY A mean. 

Minimum number 
of daughters at each Number Level of 2roduction 
2roduction level of sires All Low Medium High 

10 1151 -0.3±6.6 -0.5±6.4 -0.2±6.3 -0.0±6.0 
20 486 0.2±6.2 0.1±6.1 0.2±6.1 0.4±6.0 
30 351 0.5±6.0 0.5±5.8 0.5±5.9 0.7±5.9 
40 306 0.7±5.9 0.8±5.7 0.7±6.0 0.8±6.0 
50 272 0.9±5.8 1.2±5.6 0.9±5.8 1.0±6.0 
60 248 1.4±5.6 1.5±5.3 1.3±5.6 1.4±5.9 
70 230 1.4±5.6 1.7±5.3 1.4±5.6 1.3±5.8 
80 216 1.7±5.5 1.9±5.2 1.6±5.5 1.6±5.8 
90 209 1.9±5.4 2.0±5.1 1.8±5.4 1.8±5.6 

100 198 1.9±5.4 2.1±5.1 1.9±5.4 1.8±5.7 
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Table 5.5. Averages and standard deviations of breeding values for rnilkfat yield of sires 

evaluated at three levels of production and with different minimum number of daughters. 

Data adjusted by the HY A sd. 

Minimum number 
of daughters at each Number Level of _Qroduction 
_Qroduction level of sires All Low Medium High 

10 1151 -0.5±9.5 -0.7±8.8 -0.5±9.1 -0.0±9.2 
20 486 0.2±9.0 0.0±8.6 0.2±8.9 0.4±9.3 
30 351 0.5±8.8 0.5±8.2 0.5±8.8 0.9±9.2 
40 306 0.8±8.8 0.9±8.1 0.9±8.9 1.2±9.3 
50 272 1.2±8.6 1.4±8.0 1.2±8.6 1.4±9.4 
60 248 1.8±8.4 2.0±7.7 1.7±8.5 2.0±9.2 
70 230 1.9±8.5 2.2±7.7 1.8±8.5 1.9±9.2 
80 216 2.2±8.4 2.4±7.6 2.2±8.3 2.3±9.1 
90 209 2.5±8.2 2.6±7.5 2.6±8.1 2.6±8.9 

100 198 2.6±8.2 2.8±7.5 2.6±8.1 2.6±9.0 

Table 5.6. Averages and standard deviations of breeding values for rnilkfat yield of sires 

evaluated at three levels of production and with different minimum number of daughters. 

Data after logarithmic transformation. 

Minimum number 
of daughters at each Number Level of _Qroduction 

_Qroduction level of sires All Low Medium High 
10 1151 -0.2±6.9 -0.5±6.8 -0.2±6.7 0.1±6.3 
20 486 0.4±6.4 0.2±6.5 0.2±6.3 0.5±6.2 
30 351 0.6±6.2 0.6±6.2 0.5±6.1 0.8±6.2 
40 306 0.8±6.2 0.9±6.1 0.8±6.2 0.9±6.2 
50 272 1.1±6.0 1.3±5.8 1.0±5.9 1.1±6.2 
60 248 1.5±5.7 1.7±5.6 1.4±5.7 1.5±6.0 
70 230 1.6±5.8 1.9±5.5 1.5±5.7 1.5±6.0 
80 216 1.8±5.7 2.0±5.4 1.7±5.6 1.7±6.0 
90 209 2.1±5.5 2.1±5.3 2.0±5.4 2.0±5.8 

100 198 2. 1±5.6 2.3±5.3 2.0±5.5 2.0±5.8 
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5.3 Correlation Between Estimated Breeding Values 

5.3.1 Product-Moment Correlations 

Expected and product-moment correlation (Pearson's coefficients) between 

breeding values of sires for milkfat production estimated at the three level of production 

and with different minimum number of daughters at each production level have been 

summarised in Tables 5.7, 5.8, 5.9 and 5.10 for raw data and for the three methods to 

reduce heterogeneity of variance (mean correction, standard deviation adjustment and 

log transformation, respectively). 

Confidence intervals for a probability of 95% were constructed for observed 

correlations. If the expected correlation was outside of the confidence limits, then it was 

concluded that the observed correlation was significantly different to the expected 

correlation. 

For raw data (Table 5.7) the product-moment correlations between breeding 

values for the comparison low-high producing levels were lower than the product­

moment correlations between breeding values for the comparisons low-high and 

medium-high producing levels. 

For all the comparisons, observed correlations were significantly different to the 

expected correlations except for the comparison low-medium production levels with sires 

having at least 10 daughters at each level of production. As shown in the table, the 

product-moment and expected correlations increased as the number of daughters in the 

estimation of breeding values increased. The lowest observed correlation (0.67) 

corresponds to the comparison low-high producing levels with sires having at least 10 

daughters in each production level and the highest observed correlation (0.93) 

corresponds to the comparison medium-high producing levels with sires having at least 

80 to 100 daughters in each producing level. 

Product-moment correlations between breeding values for mean-corrected data 

estimated from each independent subset are shown in Table 5.8. All the observed 

correlations were significantly different to the expected correlations except for sires 

having at least 10 daughters in each level of production in the low-medium and medium­

high comparisons. Observed correlations in the low-high producing level comparison 
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were lower than those of the low-medium and medium-high comparisons. The lowest 

observed correlation (0.67) corresponds to the comparison low-high producing levels 

with sires having at least 10 daughters in each production level and the highest observed 

correlation (0.93) corresponds to the comparison medium-high producing levels with 

sires having at least 100 daughters in each producing level. These lowest and highest 

observed correlations were the same to those observed for untransformed data. 

Standard deviation adjustment slightly increased the product-moment correlations 

between estimates of breeding values obtained from the three independent subsets 

(compare Tables 5.7 and 5.9). Observed correlations were significantly different to the 

expected correlations except for sires with at least 10 daughters in each producing levels. 

The lowest observed correlation (0.69) corresponds to the comparison low-high 

producing levels and was not significantly different to the expected correlation (0.71). 

The highest observed correlation (0.94) corresponds to the comparison medium-high for 

sires having at least 100 daughters in each level of production. Between comparisons, 

lower correlations were observed in the low-high comparison. 

Log transformation (Table 5.10) caused similar effects on product moment­

correlations to those of the mean correction. All observed correlations were significantly 

different to expected correlations except for the comparison low-medium producing 

levels for sires having at least 10 daughters in each subset. Observed correlations 

increased as the minimum number of daughters in each production level increased. 
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Table 5.7. Expected (re) and product-moment (rp) correlations between breeding 

values for rnilkfat yield of sires evaluated at different levels of production and with 

different minimum number of daughters. Untransformed data. 

Minimum number Level of _Qroduction com_Qared 
of daughters at each Number Low-Medium Low-High Medium-High 
production level of sires re rp re rp re rp 

10 1151 0.71 0.72 0.71 0.67* 0.73 0.72* 
20 486 0.85 0.76* 0.85 0.73* 0.87 0.78* 
30 351 0.90 0.78* 0.91 0.74* 0.91 0.82* 
40 306 0.92 0.81* 0.92 0.77* 0.93 0.86* 
50 272 0.94 0.83* 0.94 0.80* 0.94 0.88* 
60 248 0.95 0.85* 0.95 0.82* 0.95 0.89* 
70 230 0.95 0.86* 0.95 0.85* 0.96 0.92* 
80 216 0.96 0.88* 0.96 0.87* 0.96 0.93* 
90 209 0.96 0.90* 0.96 0.88* 0.97 0.93* 

100 198 0.97 0.92* 0.97 0.91 * 0.97 0.93* 
* P<.05 

Table 5.8. Expected (re) and product-moment (rp) correlations between breeding 

values for rnilkfat yield of sires evaluated at different levels of production and with 

different minimum number of daughters. Data corrected by the HY A mean. 

Minimum number Level of ~roduction com_Qared 
of daughters at each Number Low-Medium Low-High Medium-High 
production level of sires re rp re rp re rp 

10 1151 0.71 0.72 0.71 0.67* 0.73 0.71 
20 486 0.85 0.78* 0.85 0.74* 0.87 0.78* 
30 351 0.90 0.79* 0.91 0.75* 0.91 0.83* 
40 306 0.92 0.82* 0.92 0.78* 0.93 0.86* 
50 272 0.94 0.83* 0.94 0.80* 0.94 0.88* 
60 248 0.95 0.84* 0.95 0.81 * 0.95 0.89* 
70 230 0.95 0.86* 0.95 0.84* 0.96 0.92* 
80 216 0.96 0.87* 0.96 0.86* 0.96 0.92* 
90 209 0.96 0.88* 0.96 0.88* 0.9T 0.92* 

100 198 0.97 0.91 * 0.97 0.90* 0.97 0.93* 
* P<.05 
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Table 5.9. Expected Cre) and product-moment (rp) correlations between breeding 

values for milkfat yield of sires evaluated at different levels of production and with 

different minimum number of daughters. Data adjusted by the HY A sd. 

Minimum number Level of 2roduction com2ared 
of daughters at each Number Low-Medium Low-High Medium-High 
production level of sires re rp re rp re rp 

10 1151 0.71 0.73 0.71 0.69 0.73 0.73 
20 486 0.85 0.78* 0.85 0.75* 0.87 0.80* 
30 351 0.90 0.80* 0.91 0.77* 0.91 0.84* 
40 306 0.92 0.82* 0.92 0.79* 0.93 0.87* 
50 272 0.94 0.84* 0.94 0.82* 0.94 0.89* 
60 248 0.95 0.85* 0.95 0.84* 0.95 0.90* 
70 230 0.95 0.86* 0.95 0.86* 0.96 0.92* 
80 216 0.96 0.88* 0.96 0.88* 0.96 0.93* 
90 209 0.96 0.90* 0.96 0.90* 0.97 0.93* 

100 198 0.97 0.92* 0.97 0.92* 0.97 0.94* 

* P<.05 

Table 5.10. Expected Cre) and product-moment (rp) correlations between breeding 

values for rnilkfat yield of sires evaluated at different levels of production and with 

different minimum number of daughters. Data after log transformation. 

Minimum number Level of 12roduction com12ared 
of daughters at each Number Low-Medium Low-High Medium-High 
production level of sires re rp re rp re rp 

10 1151 0.71 0.68 0.71 0.62* 0.73 0.70* 
20 486 0.85 0.73* 0.85 0.69* 0.87 0.75* 
30 351 0.90 0.74* 0.91 0.70* 0.91 0.79* 
40 306 0.92 0.77* 0.92 0.72* 0.93 0.84* 
50 272 0.94 0.79* 0.94 0.76* 0.94 0.87* 
60 248 0.95 0.81 * 0.95 0.78* 0.95 0.87* 
70 230 0.95 0.83* 0.95 0.81 * 0.96 0.90* 
80 216 0.96 0.84* 0.96 0.83* 0.96 0.90* 
90 209 0.96 0.87* 0.96 0.85* 0.97 0.91* 

100 198 0.97 0.89* 0.97 0.89* 0.97 0.92* 

* P<.05 
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5.3.2 Rank Correlations 

Spearman's correlation coefficient was used as measure of rank correlation 

between estimates of breeding values. Significant departures of observed from expected 

rank correlations means that sires ranked on breeding values in one environment are not 

ranked in same order in another environment. Rank correlations of estimates of breeding 

values for lactation milkfat yield of sires used in three producing levels are shown in 

Tables 5.11 (raw data), 5.12 (data corrected by the HYA mean), 5.13 (data adjusted by 

the HY A standard deviation), and 5.14 (data after log transformation). 

Expected correlations were the same to those derived for the product-moment 

correlations and were a function of the number of daughter in each production level and 

assumed parameters of heritability. Confidence intervals for a probability of 95% were 

constructed for observed rank correlation coefficients transformed to the Fisher's Z. 

Expected correlation outside of the confidence lower and upper limits meant that the 

observed correlation was significantly different to the expected correlation. 

Rank correlations were slightly lower than product-moment correlations, but 

both product-moment and rank correlations exhibited the same trend for raw data and 

for the data transformed by the three methods of reducing heterogeneity of variance. 

For raw, mean-corrected and log-transformed data all rank correlations were 

significantly different to the expected correlation except for sires having at least 10 

daughters in each level of production in the comparison low-medium producing levels. 

For standard deviation-adjusted data all observed rank correlations were significantly 

different to the expected correlations except for sires having at least 10 of daughters at 

each level of production in the three comparisons. Rank correlations were lower in the 

comparison low-high producing levels than those of the other comparisons (low-medium 

and medium-high). 
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Table S.lL Expected (re) and rank (r5 ) correlations between breeding values for 

rnilkfat yield of sires evaluated estimated at different levels of production and with 

different minimum number of daughters. Untransformed data. 

Minimum number Level of 2roduction com2ared 
of daughters at each Number Low-Medium Low-High Medium-High 
production level of sires re rs re rs re r 

10 1151 0.71 0.70 0.71 0.65* 0.73 0.69* 
20 486 0.85 0.76* 0.85 0.72* 0.87 0.77* 
30 351 0.90 0.77* 0.91 0.74* 0.91 0.82* 
40 306 0.92 0.80* 0.92 0.77* 0.93 0.86* 
50 272 0.94 0.83* 0.94 0.80* 0.94 0.87* 
60 248 0.95 0.83* 0.95 0.80* 0.95 0.88* 
70 230 0.95 0.85* 0.95 0.84* 0.96 0.91 * 
80 216 0.96 0.87* 0.96 0.85* 0.96 0.91* 
90 209 0.96 0.90* 0.96 0.87* 0.97 0.91* 

100 198 0.97 0.91* 0.97 0.90* 0.97 0.92* 

* P<.05 

Table 5.12. Expected (re) and rank (r8) correlations between breeding values for 

rnilkfat yield of sires evaluated estimated at different levels of production and with 

different minimum number of daughters. Data corrected by the HY A mean. 

Minimum number Level of 2roduction com2ared 
of daughters at each Number Low-Medium Low-High Medium-High 
production level of sires re rs re rs re r 

10 1151 0.71 0.70 0.71 0.65* 0.73 0.68* 
20 486 0.85 0.76* 0.85 0.73* 0.87 0.77* 
30 351 0.90 0.78* 0.91 0.76* 0.91 0.82* 
40 306 0.92 0.81 * 0.92 0.77* 0.93 0.86* 
50 272 0.94 0.82* 0.94 0.81 * 0.94 0.87* 
60 248 0.95 0.83* 0.95 0.81 * 0.95 0.88* 
70 230 0.95 0.84* 0.95 0.83* 0.96 0.90* 
80 216 0.96 0.87* 0.96 0.85* 0.96 0.90* 
90 209 0.96 0.89* 0.96 0.87* 0.97 0.91* 

100 198 0.97 0.90* 0.97 0.89* 0.97. 0.91* 

* P<.05 
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Table 5.13~ Expected (re) and rank Crs) correlations between breeding values for 

rnilkfat yield of sires evaluated estimated at different levels of production and with 

different minimum number of daughters. Data adjusted by the HY A sd. 

Minimum number Level of 2roduction com2ared 
of daughters at each Number Low-Medium Low-High Medium-High 
production level of sires re rs re rs re rs 

10 1151 0.71 0.71 0.71 0.70 0.73 0.71 
20 486 0.85 0.76* 0.85 0.74* 0.87 0.78* 
30 351 0.90 0.78* 0.91 0.77* 0.91 0.82* 
40 306 0.92 0.81* 0.92 0.78* 0.93 0.86* 
50 272 0.94 0.84* 0.94 0.82* 0.94 0.88* 
60 248 0.95 0.84* 0.95 0.82* 0.95 0.88* 
70 230 0.95 0.86* 0.95 0.85* 0.96 0.91* 
80 216 0.96 0.88* 0.96 0.87* 0.96 0.91 * 
90 209 0.96 0.90* 0.96 0.89* 0.97 0.92* 

100 198 0.97 0.91* 0.97 0.91 * 0.97 0.92* 

* P<.05 

Table 5.14. Expected Cre) and rank (rs) correlations between breeding values for 

rnilkfat yield of sires evaluated estimated at different levels of production and with 

different minimum number of daughters. Data after log transformation. 

Minimum number Level of 2roduction com2ared 
of daughters at each Number Low-Medium Low-High Medium-High 
production level of sires re rs re rs re rs 

10 1151 0.71 0.66 0.71 0.60* 0.73 0.66* 
20 486 0.85 0.73* 0.85 0.69* 0.87 0.73* 
30 351 0.90 0.74* 0.91 0.72* 0.91 0.78* 
40 306 0.92 0.77* 0.92 0.73* 0.93 0.83* 
50 272 0.94 0.80* 0.94 0.78* 0.94 0.86* 
60 248 0.95 0.80* 0.95 0.78* 0.95 0.86* 
70 230 0.95 0.82* 0.95 0.82* 0.96 0.89* 
80 216 0.96 0.84* 0.96 0.83* 0.96 0.88* 
90 209 0.96 0.87* 0.96 0.85* 0.97 0.89* 

100 198 0.97 0.88* 0.97 0.88* 0.97 0.90* 

* P<.05 
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5.3.3 Product-moment versus Rank Correlations 

Comparisons between product-moment and rank correlations of breeding values 

for lactation milkfat yield of sires evaluated at different levels of production and with 

variable number of daughters are summarised in Appendix I. Table I. I contains the 

comparison between correlation coefficients for untransformed data, Table !.2 for HY A 

mean-corrected data, Table 1.3 for HY A standard deviation-corrected data and Table 1.4 

for log transformed data. 

Using the Fisher's Z statistic, confidence intervals for a probability of 95% were 

constructed for both product-moment and rank correlations. It was found no significant 

differences between them but rank correlations were lower than product-moment 

correlations. 

5.4 Genetic Correlations 

The ratio between the observed and the expected correlation was considered as 

an estimator of the genetic correlation of production in two environments (Mason and 

Robertson, 1956; Danell, 1982; Notter and Diaz, 1993). For raw data (Table 5.15), the 

estimates of the genetic correlation of the same genotype expressed in the low and 

medium producing levels fluctuated between 0.87 and 1.0. When the low and high levels 

were compared, the estimates of genetic correlations were reduced varying between 0.82 

and 0.95. In the comparison medium-high producing levels, estimates of genetic 

correlations varied between 0.90 and 0.99. 

When data were corrected by the herd-year-age mean (Table 5.16), the pattern of 

estimates of genetic correlations was the same to that of raw data. The lowest estimates 

were obtained in the comparison low-high producing levels varying between 0.83 and 

0.95. 

Adjustment by the HY A standard deviation slightly increased the estimates of 

genetic correlations (Table 5.17). In the comparison low-medium producing levels, 

estimates varied from 0.88 to 1.02, in the low-high comparison estimates varied from 

0.88 to 0.97 and in the medium-high comparison estimates were the highest varying from 

0.92 to 1.00. 
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Log· transformation reduced the estimates of genetic correlations between the 

expression of the same genotype in two environment (Table 5.18). The lowest estimates 

correspond to the comparison low-high producing levels varying between 0.77 and 0.92. 

In the other two comparisons, estimates varied from 0.82 to 0.95 and were lower than 

those obtained by using raw data. 

5.5 Significantly Deviating Breeding Values 

Breeding values for lactation milkfat yield of sires evaluated at different 

producing levels and with different minimum number of daughters were compared. 

Differences outside a 95% confidence interval for the difference between two sire proofs 

were counted. Comparisons between observed and expected number of sires with 

significantly deviating breeding values are shown in Tables 5.19 (raw data), 5.20 (data 

corrected by the herd-year-age mean), 5.21 (data adjusted by the HYA standard 

deviations) and 5.22 (data after logarithmic transformation). 

For raw data (Table 5.19) observed numbers of sires with significantly deviating 

breeding values were greater than expected numbers, except for sires having at least 10 

daughters in each producing level in the comparison low-medium-producing level. The 

greatest number sires with significant deviation of breeding values was observed in the 

comparison low-high comparison. 

Correction by the herd-year-age mean slightly reduced the number of sires with 

significantly deviating breeding values (Table 5.20) but still observed numbers were 

greater than those expected, except for sires having at least I 0 and 20 daughters in each 

level of production in the comparison low-medium producing levels and for sires having 

at lest 10 daughters in the comparison medium-high producing levels. 
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Table 5.15: Estimates of correlations between true breeding values expressed in 

different production levels and with variable minimum number of daughters. 

Untransformed data. 

Minimum number 
of daughters at each Number Level of production compared 
production level of sires Low-Medium Low-High Medium-High 

10 1151 1.01 .95 .99 
20 486 .89 .86 .90 
30 351 .87 .82 .90 
40 306 .88 .84 .93 
50 272 .89 .85 .93 
60 248 .89 .87 .93 
70 230 .90 .89 .96 
80 216 .92 .90 .96 
90 209 .94 .92 .96 

100 198 .95 .95 .96 

Table 5.16. Estimates of correlations between true breeding values expressed in 

different production levels and with variable minimum number of daughters. Data 

corrected by the HY A mean. 

Minimum number 
of daughters at each 
production level 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100 

Number 
of sires 

1151 
486 
351 
306 
272 
248 
230 
216 
209 
198 

Level of production compared 
Low-Medium Low-High Medium-High 

1.01 .95 .98 
.92 .87 .90 
.88 .83 .90 
.88 .84 .93 
.89 .86 .94 
.89 .86 .93 
.90 .88 .96 
.90 .89 .95 
.92 .91 .96 
.94 .93 .96 
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Table 5.17: Estimates of correlations between true breeding values expressed in 

different production levels and with variable minimum number of daughters. Data 

adjusted by the HY A sd. 

Minimum number 
of daughters at each Number Level of Qroduction com2ared 
Qroduction level of sires Low-Medium Low-High Medium-High 

10 1151 1.02 .97 1.00 
20 486 .91 .88 .92 
30 351 .88 .85 .92 
40 306 .89 .86 .94 
50 272 .90 .87 .94 
60 248 .90 .88 .94 
70 230 .91 .90 .96 
80 216 .92 .92 .96 
90 209 .94 .93 .96 

100 198 .95 .95 .97 

Table 5.18. Estimates of correlations between true breeding values expressed in 

different production levels and with variable minimum number of daughters. Data after 

log transformation. 

Minimum number 
of daughters at each Number Level of 2roduction com2ared 
QfOduction level of sires Low-Medium Low-High Medium-High 

10 1151 .95 .87 .92 
20 486 .86 .81 .86 
30 351 .82 .77 .86 
40 306 .83 .77 .91 
50 272 .85 .81 .92 
60 248 .86 .82 .91 
70 230 .87 .85 .94 
80 216 .88 .86 .94 
90 209 .90 .89 .94 

100 198 .92 .92 .95 
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Standard deviation adjustment reduced the number of sires with significantly 

deviating breeding values (Table 5.21). The effect was similar to that of the mean 

correction in such a way that still observed values were significantly greater than those 

expected except for sires having at least 10 and 20 daughters in each level of production 

in the comparison low-medium producing levels and for sires having at lest 10 daughters 

in the comparison medium-high producing levels. The number of sires with significant 

deviations were higher in the low-high comparison than in the low-medium and medium­

high comparisons. 

Log transformation also reduced the number of sires with significantly deviating 

breeding values (Table 5.22) but at less extension than mean correction and standard 

deviation adjustment. Observed values were greater than expected values except for 

sires having at least 10 daughters in each level of production in the low-medium and 

medium-high comparison where the observed values were equal to the expected values. 

Averages and standard deviations of breeding values of sires which were found 

with significantly deviating breeding values when evaluated at three levels of production 

are given in Appendix II. Table II.l shows statistics for raw data and Tables 11.2, 11.3, 

and II.3 hold statistics for the three methods of reducing heterogeneity of variance. 
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Table 5.19. Expected 1 and observed number of sires with significantly deviating 

breeding values for milkfat yield estimated at three levels of production and with variable 

minimum number of daughters. Untransformed data. 

Minimum number Expected Level of ~roduction com12ared 
of daughters at each Number number of Low- Low-
~roduction level of sires sires Medium High 

10 1151 58 50 90* 
20 486 24 33* 61* 
30 351 18 29* 56* 
40 306 15 27* 51* 
50 272 14 22* 49* 
60 248 I2 19* 46* 
70 230 12 I9* 44* 
80 216 II 17* 42* 
90 209 10 15* 4I * 

100 I98 10 I4* 39* 

1 5% of the sires are expected to have significantly deviating breeding values. 

* significantly different (P<.05) 

Medium-
High 

77* 
51* 
43* 
38* 
36* 
35* 
32* 
31* 
30* 
30* 

Table 5.20. Expected 1 and observed number of sires with significantly deviating 

breeding values for milkfat yield estimated at three levels of production and with variable 

minimum number of daughters. Data corrected by the HY A mean. 

Minimum number Expected Level of 2roduction com2ared 
of daughters at each Number number of Low- Low-
12roduction level of sires sires Medium High 

10 1151 58 39 60* 
20 486 24 22 39* 
30 35I 18 2I * 36* 
40 306 15 19* 31 * 
50 272 I4 I8* 29* 
60 248 12 16* 27* 
70 230 12 16* 25* 
80 216 11 15* 23* 
90 209 10 13* 22* 

100 198 10 12* 21 * 

1 5% of the sires are expected to have significantly deviating breeding values. 

*significantly different (P<.05) 

Medium-
High 

51 
33* 
26* 
22* 
20* 
20* 
17* 
17* 
16* 
16* 
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Table 5.21. Expected 1 and observed number of sires with significantly deviating 

breeding values for milkfat yield estimated at three levels of production and with variable 

minimum number of daughters. Data adjusted by the HY A sd. 

Minimum number Expected Level of production compared 
of daughters at each Number number of Low- Low-
production level of sires s1res Medium High 

10 1151 58 32 58 
20 486 24 24 42* 
30 351 18 21 * 40* 
40 306 15 18* 36* 
50 272 14 17* 35* 
60 248 12 17* 32* 
70 230 12 17* 30* 
80 216 11 15* 28* 
90 209 10 13* 27* 

100 198 10 12* 26* 

1 5% of the sires are expe~ted to have significantly deviating breeding values. 

*significantly different (P<.05) 

Medium-
High 

49 
38* 
33* 
30* 
28* 
28* 
25* 
25* 
24* 
24* 

Table 5.22. Expected 1 and observed number of sires with significantly deviating 

breeding values for milkfat yield estimated at three levels of production and with variable 

minimum number of daughters. Data after log transformation. 

Minimum number Expected Level of Qroduction com12ared 
of daughters at each Number number of Low- Low-
production level of sires sires Medium High 

10 1151 58 58 73* 
20 486 24 29* 45* 
30 351 18 26* 42* 
40 306 15 23* 37* 
50 272 14 22* 32* 
60 248 12 18* 28* 
70 230 12 17* 26* 
80 216 11 16* 24* 
90 209 10 14* 23* 

100 198 10 13* 22* 

I 5% of the sires are expected to have significantly deviating breeding values. 

*significantly different (P<.05) 

Medium-
High 

58 
33* 
27* 
21* 
19* 
18* 
15* 
15* 
14* 
14* 
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DISCUSSION 

6.1 Correlation Between Mean and Standard Deviation 
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Existing literature estimates of heterogeneity of variance are often contradictory. 

While some studies have found a positive relationship between herd mean and herd 

(phenotypic) variance for milk yield (Hill et al. 1983; Mirande and Van Vleck, 1985; 

Brotherstone and Hill, 1986; Dong and Mao, 1990), others have found no evidence of 

such relation (Lofgren et al. 1985; Winkelman and Schaeffer, 1988). Even for the 

studies that did find a (positive) correlation, the relationship was not strong. A typical 

value would be 0.4-0.5. 

Visscher et al. (1991) found a correlation between herd means and estimated herd 

phenotypic standard deviation for lactation milkfat yield of 0. 71. This value was higher 

than the value of 0.44 for the correlation between the herd-year-age mean and herd-year­

age phenotypic standard deviation for milkfat yield found in this study. This study does 

confirm the presence of heterogeneity of variance for milkfat yield in New Zealand dairy 

cattle, i.e., herds with high levels of production tends to exhibit more variability than 

those with low levels of production. However, heterogeneity of variance can only be 

partially explained by the scale effect because the correlation was 0.44 rather than unity. 

6.2 Correlation Between Estimated Breeding Values from Independent Datasets 

An important question is if breeding values of dairy sires will rank in the same 

order over a wide range of environmental conditions. The solution to such a question is 

given by the correlation between breeding values estimated at different environments. If 

the observed correlations approximate to the expected correlations, sires can be selected 

in one environment and used in another environment. On the contrary, if the observed 

correlations are significantly different to the expected correlations, daughters must be 

milked in that environment where their sires' genetic evaluation was made. 

Several studies carried out on within-country basis have calculated high values of 

correlations between estimated breeding values at different producing levels (Manson 

and Robertson, 1956; Robertson et al. 1960; Lytton and Legates, 1966; McDaniel and 
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Corley, 1967; Burnside and Rennie, 1968; Danell, 1982; Winkelman and Schaeffer, 

1988; Dong and Mao, 1990) indicating that progeny groups tend to rank similarly under 

different environments. 

Estimated correlations between breeding values for sires in different countries 

have been contradictory. Some studies have found that observed correlations have 

approximated to the expected correlations (Petersen, 1975; Powell and Dickinson, 1977; 

Powell and Wiggans, 1991). Thus, the rank of sires on estimates of breeding values in 

one country tends to stay the same when the same sires are evaluated in another country. 

Other studies, in contrast, have estimated low correlations between breeding values 

estimated in different countries (Abubakar et al. 1987; Peterson, 1988) 

In the present study three independent estimates of breeding values were 

calculated, each based upon the performance of daughters assessed in each production 

level. The three sets of estimates of breeding values provided, in effect, three 

independent measures of the breeding worth of each sire. The product-moment and rank 

correlations between breeding values for milkfat yield of sires evaluated at different 

production levels were high but still significantly different to the expected correlations 

(see Tables 5.7 and 5.11). Thus, sires tended to rank differently across levels of 

production. 

There are, however, some implications that restrict the validity of the 

comparisons between expected and observed correlations. First, expected correlations 

were derived as a function of the true number of daughters in each producing level. 

Ideally, expected correlations would be obtained using accuracies of estimated breeding 

values computed from elements of the inverse matrix of the mixed model equations by 

using iterative procedures (YanRaden and Freeman, 1985; Greenhalgh et al. 1986; 

Robinson and Jones, 1987; Misztal and Wiggans, 1988; Meyer, 1989; V anRaden and 

Wiggans, 1991 ). Accuracy of estimated breeding values from the elements of the inverse 

matrix takes into account all available infom1ation of the animal being evaluated and 

therefore accuracy would be increased. 

Second, expected correlations were derived under the assumptions given by 

Taylor (1983) (as cited by Notter and Diaz, 1993) which are: no environmental 

correlation between performance in the different environments, no relationships among 

parents of measured animals, no other covariances among predicted breeding values 

within either environment, and sires are chosen at random. This may be not the case 
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since genetiC evaluations of sires in this study were made by using an animal model which 

considered relationships between animals. 

And last, values of heritability in calculating expected correlations were assumed 

constant across production levels. This may be true under two conditions (Henderson, 

1984; Garrick and Van Vleck, 1987; Visscher and Hill, 1992): (i) equal additive genetic 

and residual variances in all environments (homogeneity of variance) or (ii) when the 

additive genetic and residual variances are changing proportionally such that heritability 

remains constant across environments (heterogeneity of variance). In this study, 

contemporary groups were defined as herd-year-age. Obtaining estimates of genetic and 

residual variance for each of them would be inaccurate because of the small number of 

animals in each group. 

Differences between product-moment and rank correlations may indicate 

deviations from normality in the distribution of breeding values (Danell, 1982). Both 

rank and product-moment correlations were calculated between breeding values for 

milkfat yield of sires evaluated at different producing levels and with different minimum 

number of daughters. The results are presented in Table I.1 of Appendix I. The figures 

for both type of correlation were very similar and there were no significant differences. 

There was a trend for rank correlations to be slightly lower than the product-moment 

correlations. Thus, the ranking of the sires seemed to change more than the averages 

and the variation at the different levels of production. Similar results were reported by 

Danell (1982) for Swedish Red and White dairy cattle. 

6.3 Genetic Correlations 

A matter for consideration is whether dairy sires should be selected on the basis 

of daughter records made in the same environment where the sires are going to be used 

(Lush, 1945) or whether a particular type of environment may be more favourable for 

discriminating between sires to be used in another environment (Hammond, 1947). A 

solution to this question was given by Falconer (1952) who introduced the concept of a 

genetic correlation between performance in different environments and used the ratio of 

indirect to direct response to selection to determine the optimum environment for 

selection. 

The formula given by Falconer (1952) refers to mass selection. In that case the 
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response in environment 1 when selecting in environment 1 is 

and when selection is based on environment 2, the magnitude of the correlated response 

is 

The ratio of the correlated to the direct response assuming no change in selection 

intensity or generation interval becomes 

correlated reponse 6cG1 h2 
=--=-·rG. 

direct response 6G 1 h 1 
(6.1) 

Thus it is possible to evaluate the correlated response relative to the direct 

response simply in terms of the two heritabilities and the genetic correlation. The 

important point to note in Equation (6.1) is that when the genetic correlation of the same 

trait expressed in two environments is the unity and the heritability across environments 

is the same, the correlated response will be equal to the direct response. In the case of 

genetic correlation less than the unity but still equal heritabilities, the proportion of 

correlated response to the direct response will be less than one. 

The correlation between the true breeding values for milk yield (Robertson et al. 

1960; Lytton and Legates, 1966; Danell, 1982; Hill et al. 1983; De Veer and Van Vleck, 

1987; Menendez-Buxadera, et al. 1989; Boldman and Freeman, 1990; Carabafio et al. 

1990) and milkfat yield (Lytton and Legates, 1966; Carabafio et al. 1990) of bulls 

evaluated at different levels of production has been reported very close to one, which 

seems to indicate little evidence of any important genotype by production level 

interactions for production traits, because if the genetic correlation is high, then 

performance in two different production levels represents very nearly the same 

characters, determined by very nearly the same genes. 

In this analysis, the estimates of breeding values were obtained from a BLUP 

procedure using animal model. An estimate of the genetic correlation was obtained from 

the ratio between the observed and the expected correlation of estimated breeding values 

at the three levels of production as suggested by Mason and Robertson (1956), Calo et 
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al. (1973), Danell (1982) and Notter and Diaz (1993). Approximate genetic correlations 

between milkfat yield at the three production levels fluctuated from 0.87 to 1.01, from 

0.85 to 0.95, and from 0.90 to 0.96, for the comparisons low-medium, low-high and 

medium-high, respectively (see Table 5.15). Estimates of genetic correlations were able 

to be greater than one because of the method used to generate approximate genetic 

correlations can yield estimates outside the parameter space. 

Lack of knowledge concerning the distribution of the obtained estimates of 

genetic correlations allows neither accurate calculation of standard errors nor an 

objective statistical model to test whether or not the genetic correlations are significantly 

different from one. However, the standard errors associated with the estimates of 

genetic correlations would be small, given that the average number of daughter per sire 

were relatively large. This would suggest that in fact the correlation between the true 

breeding values is slightly lower than the unity indicating that if sires are genetically 

evaluated on the basis of daughters located in only one level of production, responses to 

selection may be lower than the expected. 

6.4 Significantly Deviating Breeding Values 

Averages of breeding values for milkfat yield of sires estimated at different levels 

of production were similar and they increased as the number of daughters increased 

(Table 5.3). The increase in the average as the number of daughters increased was a 

result of allowing the best sires to produce more daughters because they were selected as 

bulls to breed cows. However, this is not the point where attention must be focussed but 

in the number of sires with significantly deviating estimated breeding values (Table 5.19). 

Greater number of sires with significantly deviating breeding values were 

observed in the comparison low-high producing levels (Table 5.19). This indicates that 

the estimates of breeding values of sires obtained from extreme production levels are 

affected in larger magnitude than when the sires are evaluated in low-medium or 

medium-high. This corresponds to the lower product-moment and rank correlations and 

genetic correlations observed in this comparison. 

If a sire has large enough information and there is homogeneity of variance the 

estimated breeding values must be the same. For sires with more than 100 daughters in 

each production level the expected number of sires with significantly deviating breeding 
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values was 10. In the comparison low-high there were 39 sires observed, which is 

greater than the 5% expected. This indicates a clear effect of the heterogeneity of 

variance found in the data. Danell (1982) found in Swedish Red and White dairy cattle 

that, sires evaluated in different levels of production, the observed number of sires with 

significantly deviating were similar to the expected value. 

6.5 Effect of Methods to Reduce Heterogeneity of Variance 

6.5.1 Mean Correction 

Scaling by the mean is used to reduce heterogeneity of variance when the 

relationship between the mean and standard deviation is directly proportional, thus, this 

method is equivalent to the logarithmic transformation. The present system of dairy sire 

genetic evaluation in New Zealand uses this method by expressing the contemporary 

comparison of a sire as the proportion of the performance of his daughters to the 

performance of the contemporaries. 

The change from a positive to a negative correlation between mean and standard 

deviation caused by the herd-year-age mean correction indicates that the heterogeneity of 

variance of these data was overadjusted (Table 5.2). These results indicate that if this 

correction is applied in a BLUP analysis, assuming a constant variance among herds, the 

breeding values of superior cows from high yielding herds would be underpredicted 

relative to the breeding values of superior cows from low yielding herds. This would be 

very important when selection is on cows to breed bulls because more cows would be 

selected from the herds of low level of production. 

The effect of this correction on sire evaluation can be assessed by the reduction 

of the correlation of estimated breeding values in different environments. The ratios 

between calculated and expected correlations were reduced, although, not significantly 

when compared to the untransformed data. 
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6.5.2 Standard Deviation Adjustment 

Visscher et al. (1991) corrected first lactation milkfat yields for a ratio between 

the estimated population standard deviation and the estimated herd-year-season 

phenotypic standard deviation. They suggested the adjustment for herd-year-season 

standard deviation rather than for herd standard deviation because it is known that 

within-herd variances are often heterogeneous across years (Brotherstone and Hill, 

1986), and because contemporary groups of herd-year-season rather than herds are 

usually fitted as fixed effects in the breeding value prediction. They found that this 

adjustment reduced the heterogeneity of variance substantially. 

In this study, a similar adjustment was made considering a contemporary group 

as cows of the same age calving in the same herd and same year. But instead of using 

the within-herd-year-age standard deviation, an estimate for each herd-year-age standard 

deviation was used. This adjustment reduced the correlation between mean and standard 

deviations from 0.44 to 0.31 (see Table 5.2), i.e., the variances tended to be more 

stabilised than in the raw data. 

The effects of this adjustment on the genetic evaluation of the sires with the 

animal model using BLUP is reflected in the correlation between breeding values 

estimated at different levels of production. Product-moment and rank correlations 

between estimated breeding values were slightly increased with respect to those obtained 

using raw data but observed correlations were still significantly lower than expected 

correlations (see Tables 5.9 and 5.13). 

On the other hand, this method of correcting the scale effect increased the 

estimated genetic correlation between the expression of the same genotype in two 

environments. In the comparison between estimated breeding values at low and high 

levels the genetic correlation fluctuated between 0.87 to 1.01 for raw data (Table 5.15) 

and between 0.88 to 1.02 after this adjustment (Table 5.17) 

6.5.3 Log Transformation 

When the standard deviation is a simple linear function of the mean, that is, the 

correlation between them is a unity, logarithmic transformation is the appropriate 

transformation to correct for heterogenous variance (Everett and Keown, 1984; Garrick 
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and Van Vleck, 1987; Visscher and Hill, 1992). The logarithmic transformation is 

justified if the heterogeneity is just a scale effect (Visscher et al. 1991) resulting in the 

standard deviation being linearly related to the mean. If the mean-variance correlation 

has no genetic component, a logarithmic transformation will have the additional 

advantage of increasing the heritability. If the relationship is partly genetic, the 

heritability may be different on a logarithmic scale, depending on what proportion of the 

mean-variance correlation is genetically determined. Hill et al. (1983) used decimal 

logarithm transformation of milk, milkfat and protein yields and found that the 

phenotypic variances tended to be stabilised. That is, the correlation between the mean 

and phenotypic standard deviation was reduced. 

The relationship between the mean and standard deviation is, however, often far 

from the ideal (correlation equal to zero) and sometimes, logarithm transformation can 

overadjust the data for heterogeneity of variance making that the correlation between the 

mean and phenotypic standard deviation changes from a positive value to a negative 

value. In the present study, logarithmic transformation changed the correlation between 

the herd-year-age means and the herd-year-age standard deviations from a positive value 

of 0.44 to a value of -0.24 (see Table 5.2). Similar effects of logarithmic transformation 

were found by Everett and Keown (1984) Mirande and Van Vleck (1985) and Visscher 

and Hill (1992). Superior cows in low producing herds would therefore be over­

evaluated on the log scale. 

The estimated genetic correlation of production in two environments using log­

transformed data varied from 0.77 to 0.95 (Table 5.18) which was lower than that of 

untransformed data (Table 5.15). These results were similar to those reported by De 

Veer and Van Vleck (1987) who found that estimates of genetic correlations were large 

in all cases (>0.85) but were slightly smaller for logarithms than for their untransformed 

counterparts. 

This latter result is consistent with the change of the sign in the correlation 

between mean and standard deviation caused by the logarithmic transformation (Table 

5.2). The reduction in the estimated genetic correlation after logarithmic transformation 

indicates that the rank of the sires used across different environments would change as a 

consequence of overadjusting for this transformation. This was confirmed with the 

reduction in the product-moment and rank correlations of estimated breeding values after 

this transformation (Table 5.10 and Table 5.14). 
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Besides reranking bulls, log transformation produced significantly greater 

differences among estimated breeding values (Table 5.22) than occurred with 

untransformed data (Table 5.19). 

6.6 Practical implications 

If variances increase with mean yield but are assumed homogeneous, some 

animals will be misranked. Superior cows in herds with large variances will tend to be 

overevaluated (Vinson, 1987; Boldman and Freeman, 1990). An apparent excess of elite 

cows has been reported for herds with high means (Powell et a!. 1983) and high 

variances (Everett et al. 1982) from analyses that assumed equal genetic and residual 

variances. 

The effect on response to selection in choosing a !,'Teater proportion of cows 

from the more variable herds depends on the extend to which the greater variability is 

due to genetic as opposed to environmental factors. This study, however, does not 

clarify if differences between contemporary groups in the average milkfat production per 

cow are genetic or environmental in origin. 

Similarly, the consequences of the scaling problem on srre selection was 

illustrated by Van Vleck (1987) who concluded that it has large effect on response to 

selection if there is an inappropriate allocation of the sire's daughters under the progeny 

test. Sires with a large percentage of their daughters in herds with large variances would 

tend to be overevaluated. However, simulation studies (Garrick and Van Vleck, 1987; 

Meuwissen and VanderWerf, 1993) support the contention that the genetic evaluation 

of sires through BLUP procedures are robust to the violations of assumptions regarding 

homogeneity of variance only to the extent that sires have daughters spread in several 

environments. 

Results from field data (Winkelman and Schaeffer, 1988) have indicated that the 

modification of the mixed model equations to account for heterogeneous variances has 

little effect on the overall ranking of sires. The most important evaluations, however, are 

for sires and cows ranking in the top percentage of the population. These top sires are 

selected for extensive use throughout the cow population, and elite cows are candidates 

for producing young bulls for progeny testing. If the subsequent progeny test is random 

across production levels, sires out of overevaluated cows should be identified as inferior 
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and culled (Boldman and Freeman, 1990). Hence, compared with sire evaluation, cow 

evaluation is more likely to be adversely affected by heterogeneous variances (Van 

Vleck, 1987; Vinson, 1987). 

Because the results give an indication of the scaling problem, it must be 

considered in the genetic evaluation of sires and dams in the national herd. The question 

therefore is what strategy should be used to deal with the problem of heterogeneity of 

variance between environments. Quaas et al. (1989) indicated that when there are 

heterogeneous residual and (or) genetic variances but the genetic correlation between 

genetic effects expressed in different classes is unity, a simple scaling procedure can be 

used to stabilise the heterogeneity of variance. Attempts to correct this problem were 

made in this study but the results were still not satisfactory. The mean correction as used 

in the present system of genetic evaluation tends to overadjust rather than equalise the 

standard deviations at different levels of production. A similar problem is found by 

applying log transformation. This overadjustment was reflected in reducing, instead of 

increasing, the correlations between breeding values estimated at the three levels of 

production. The standard deviation adjustment reduced the relationship between the 

standard deviation and mean but not completely (from 0.44 to 0.31; see Table 5.2) 

slightly improving the correlations between estimated breeding values. 

These results suggest that heterogeneity of variances is not simply the result of a 

relationship between mean and variance. For a normally distributed variable y with mean 

lly and variance a2
, the log of y has approximate variance a2 11.1. 2 (Van Vleck, 1988). y y y 

Therefore logarithmic transformation and correction by the HY A mean will stabilise 

variances only if the standard deviation on the original scale varies directly with the mean 

(Bartlett, 1947); i.e., if coefficient of variation are equal. For these data, coefficients of 

variation of untransformed milkfat yield for low, medium and high production levels 

were 17.94, 17.10, and 16.44 (Table 5.1). 

Under the assumption that the standard deviation adjustment is best, the use of 

linear yields is recommended over the use of log transformation if homogeneous 

variances are assumed. These results argue for continued investigation of what is an 

appropriate transformation. This is in agreement with Falconer (1952), who cautioned 

that scaling procedures should be chosen carefully and only when there is enough 

justification. 
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6.7 Alternative Methods 

This investigation indicates that there is heterogeneity of variance for rnilkfat 

yield in New Zealand dairy cattle population and that the methods used in this work to 

stabilise the phenotypic variance are unsatisfactory. A multiple-trait approach, 

considering the breeding value in each environment as independent trait, seems 

theoretically best (Schaeffer et al. 1978; Henderson, 1984; Gianola, 1986; Garrick and 

Van Vleck, 1987). However, this requires that in each contemporary group, the residual 

and genetic variance must be known. This latter requirement represents a difficult task 

due to the contemporary group having few records resulting in sampling problems. 

Given the literature findings and the results from the present study, it seems most 

practical to pre-adjust data for some estimate of the herd or herd-year-age phenotypic 

standard deviation as indicated by Visscher and Hill (1992). Posterior estimates of herd 

parameters (heritability, phenotypic, genetic and residual variances, for example) can be 

obtained by Equation (3.20), which is ei = e0 + ~i (ei-e0 ) where ei is a parameter 
- ~ 

estimate and ei its regressed estimate for herd i, and 80 is the overall (prior) estimate. 

The regression coefficient is ~i = 1/1 + 'Yi with 'Yi = Var(Si lSi) I Var(Si) being the ratio 

of the sampling variance to the variance of the parameter. 

Garrick (pers. comm.) suggests a method that encompasses the desirable 

properties of the Bayesian approach (Hill, 1984; Brotherstone and Hill, 1986; Visscher 

and Hill, 1992; Gianola et al. 1992; Weigel and Gianola, 1993) and accounts for any 

relationship between the mean and standard deviation. First it is necessary define the 

following notation already used in section (3.8) Equation (3.19): 

C>y 

0
Yi 

var( aYi) 

0
Yi 

is 

is 

is 

is 

the parameter value for the phenotypic standard deviation in the 

population. In practice, it will be estimated from the data. 

the parameter value for the phenotypic standard deviation in herd i. 

the parameter that defines the extent of heterogeneous variance. 

This parameter is zero if variance is homogeneous across herds. 

a statistic, a strictly within-herd estimate of standard deviation in 

herd i. 
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a Yi IS a statistic, a posterior or pooled estimate of the standard deviation 

in herd i. This estimate will be used to standardise phenotypic 

observations prior to formation and solution of mixed model 

equations. 

A sensible compromise is to pool "estimates" of the population "parameter" and 

the within-herd estimated standard deviation, weighted according to their respective 

"reliabilities", so that the sum of the weights equals unity (Brotherstone and Hill, 1986). 

Recalling the definition of crYi as the pooled (and therefore best) estimate of the within­

herd standard deviation, the relevant formula is: 

(6.2) 

for 

var(cry.) 
w= I 

[var(crYi )+var(crYi )]' 

Manipulation of Equation (6.2) gives Equation (3.19). Implementation of this 

approach requires specification of the parameter values <J y and var( <J Yi ) , the statistic 

a Yi and its sampling variance, var( a Yi). Following Brotherstone and Hill (1986), 

(6.3) 

where ni is the number of observations for herd i, and ·~? is the unweighted average of y 

within-herd variances similar to Equation (3.26). Now, a practical estimate 

(Brotherstone and Hill, 1986) of the variance of the within herd parameter values, i.e., 

the measure of the extent of heterogeneity of variance in k herds is: 

k - Q-2 
I[<&y· -cry. )2 -_L[_] 
. I I 2n· 

VM(<Jyi·)=I=] I 
k -1 

(6.4) 
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similar to Equation (3.25). That is, an estimate of the parameter value can be obtained 

by calculating the variance of the estimates and by reducing this quantity by an amount to 

account for the sampling variation in the estimated standard deviations. 

Two other points are worth noting. Brotherstone and Hill recognise that (6.4) 

weights each within-herd estimate equally. Weighting within-herd estimates by their 

degrees of freedom might be statistically "better", but does not allow for biological 

increases in variance that may result from increasing herd size and therefore cow 

competition. They also suggest (p 302) that heterogeneous variations are "induced" by 

management and preferential treatment (rather than being a biological phenomenon, due 

to "inappropriate" choice of measurement scale, or inaccurate model specification). 

Once defined the above notation, the method follows: 

1. Calculate the within-herd standard deviation and mean. 

2. Accumulate the sums of squares and cross-products to enable calculation of 

the regression coefficient (and intercept) for estimated standard deviation on estimated 

herd mean. 

3. Accumulate the error sums of squares for regression at the same time. 

4. Pass through the data again and adjust the error sums of squares as in (6.4) by 

subtracting a term for the sampling error of the estimated standard deviation. However, 

instead of using the term based on the average subclass variance, use the standard 

deviation predicted from the regression equation for the herd subclass mean. 

5. Divide the adjusted error sum of squares by its degrees of freedom (i.e. k-2) to 

get an estimate of var ( <J y i ) . 

6. Estimation of crYi then proceeds as in Equation (6.2) except that var(<Jyi) is 

calculated as described in the previous paragraph and & Yi is calculated separately for 

each herd, conditional on the herd mean, using the regression equation for regressing 

estimated subclass standard on estimated subclass mean. 

In the suggested approach, the relationship between herd mean and standard 
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deviation is used. Philosophically, the method regresses the within-herd estimate of 

standard deviation to a population value, as before. However, the assumed population 

value is the population value appropriate for the given herd mean as calculated using the 

data-derived regression of standard deviation on herd mean. In some cases this 

regression might have an estimated coefficient near unity, therefore the standardisation 

will be not unlike the current use of ratios. This approach seems desirable to assuming, a 

priori, that the standard deviation and mean are directly proportional with a correlation 

coefficient of unity. Some evidence suggests that although the standard deviation 

increases with the mean, it does not double when the mean doubles. Accordingly, 

standardisation using the mean (or log) overadjusts the data. 

In principle, regressing within-herd estimates to a population value that is 

conditional on the herd mean seems a minor modification of Brotherstone and Hill's 

(1986) approach. However, there are two minor complications. First, note that the 

estimated standard deviations are regressed on estimated herd mean, rather than the true 

herd mean. In theory we should account for variation in the dependent variable as it will 

not be measured without error, as required in the usual regression situation. The second 

problem is what do we use as a "parameter" value for the variance of the population 

standard deviation (i.e., var( a Yi ) )? This value should now reflect the variance about the 

regression line relating standard deviation to herd mean. 

It is not appropriate to use the variance of a predicted value based on a 

regression equation as this variance would increase for herd means that deviated from the 

overall average herd mean. That is, the "weight" in (6.2) placed on the subclass standard 

deviation would be greatest in herds with very low or very high means. 

If the population variance was used, the value would be identical for all points 

along the regression line. This seems reasonable at first, however, it is more likely that 

the variation in within-herd standard deviation is greater in high mean herds than in low 

mean herds. Some further (data analysis) work should be carried out to check this 

relationship. Perhaps the coefficient of variation of herd standard deviation is relatively 

constant. 
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SUMMARY AND CONCLUSIONS 

The correlation of 0.44 between mean and standard deviation confirms the 

presence of heterogeneity of variance for milkfat yield in New Zealand dairy cattle. 

The effect of ignoring heterogenous variance was reflected on the genetic 

evaluation of sires. Product-moment and rank correlations between breeding values 

estimated from the three production levels were significantly lower than the expected 

correlations and the number of sires with significantly deviating breeding values were 

greater than the expected values. This indicates that sires with a large percentage of their 

daughters in contemporary groups with large variances would tend to be overevaluated. 

Estimates of genetic correlations lower than one suggest that if sires are 

genetically evaluated on the basis of daughters located in only one level of production, 

responses to selection may be lower than the expected. 

The methods investigated for the accounting of scaling were not appropriate. 

The mean correction and log transformation tended to overadjust rather than stabilise the 

standard deviations. This overadjustment was reflected in reducing, instead of 

increasing, the correlations between estimated and true breeding values at the three 

production levels. The adjustment by the standard deviation reduced the relationship 

between the standard deviation and mean but not completely (from 0.44 to 0.31) 

improving slightly the correlations between estimated and true breeding values. 

Alternative methods, therefore, are required. A multiple-trait approach, 

considering the breeding value in each environment as an independent trait, seems 

theoretically best but it may require large amount of data and computer capacity. It 

seems most practical to pre-adjust data for some estimate of the herd or herd-year-age 

phenotypic standard deviation. Another alternative method is suggested in this study, 

which is derived the Bayesian approach and take into account any relationship between 

herd mean and standard deviation. 



121 

REFERENCES 

Abubak:ar, B. Y., R. E. McDowell, and L. D. Van Vleck. 1987. Interaction of genotype 

and environment for breeding efficiency and milk production of Holstein in Mexico 

and Colombia. Trop. Agric., Trinidad 64:17-22. 

Ahlborn, G., and A. M. Bryant. 1992. Milk production and stocking rates: Production, 

economic performance and optimum stocking rates of Holstein-Friesian and Jersey 

cows. Proc. N. Z. Soc. Anim. Prod. 52:7-9. 

Ahlborn-Breier, G., and W. D. Hohenboken. 1991. Additive and nonadditive genetic 

effects on milk production in dairy cattle: evidence for major individual heterosis. 

J. Dairy Sci. 74:592-602. 

Ahlborn-Breier, G., B. W. Wickham, and J. W. Stich bury. 1987. Genetic progress in 

New Zealand Ayrshire, Friesian, and Jersey populations. Proc. 4th. Anim. Sci. 

Congr. Asian-Australasian Assoc. Anim. Prod. Soc., pp 153. 

Anderson, R. D. 1974. A study of biases in dairy sire evaluation. M. Agr. Sc. thesis, 

Massey University. 

Arnold, J. W., J. K. Bertrand, and L. L. Benyshek. 1992. Animal model for genetic 

evaluation of multi breed data. J. Anim. Sci. 70:3322-3332. 

Bartlett, M.S. 1947. The use of transformations. Biometrics 3:39-52. 

Berger, P. 1., G. R. Luecke, and J. A. Hoekstra. 1989. Iterative algorithms for solving 

mixed model equations. J. Dairy Sci. 72:514-522. 

Bereskin, B., and J. L. Lush. 1965. Genetic and environmental factors in dairy sire 

evaluation. III. Influence of environmental and other extraneous correlations 

among the daughters. J. Dairy Sci. 48:356-360. 

Blair, H. T., and E. J. Pollak. 1984. Comparison of an animal model and an equivalent 

reduced animal model for computational efficiency using mixed model 

methodology. J. Anim. Sci. 58:1090-1096. 



122 

Boldman, K. G., and A. E. Freeman. 1990. Adjustment for heterogeneity of variances by 

herd production level in dairy cow and sire evaluation. J. Dairy Sci. 73:503-512. 

Brotherstone, S., and W. G. Hill. 1986. Heterogeneity of variance amongst herds for 

milk production. Anim. Prod. 42:297-303. 

Brougham, R. W. 1959. The effects of season and weather on the growth rate of a 

ryegrass and clover pasture. N. Z. J. Agric. Res. 2:283-296. 

Brumby, P. J. 1961. The causes of differences in production between dairy herds. Anim. 

Prod. 3:2777-294. 

Bryant, A. M. 1980. Maximizing milk production from pasture. Proc. N. Z. Grassland 

Assoc. 42:82-91. 

Bryant, A. M. 1983. Does nitrogen fertilizer have a place in Dairying. Proc. Ruakura 

Farmer's Conference, pp 121-124. 

Bryant, A. M. 1990. Optimum stocking and feed management practices. Proc. Ruakura 

Farmer's Conference, pp 55-59. 

Bryant, A. M., R. A. MacDonald, and D. G. Clayton. 1982. Effects of nitrogen fertilizer 

on production of milk solids from grazed pastures. Proc. N. Z. Grassland Assoc. 

43:58-63. 

Burnside, E. B., and J. C. Rennie. 1968. Sire evalaution and herd level of milk 

production. Can. J. Anim. Sci. 48:97-102. 

Campbell, A. G. 1966. Grazed pasture parameters III. Relationships of pasture and 

animal parameters in, and general discussion of, a stocking rate and grazing 

management experiment with dairy cows. J. Agric. Sci., Cambridge 67:217-222. 

Calo, L. L., R. E. McDowell, L. D. Van Vleck and P. D. Miller. 1973. Genetic aspects 

of beef production among Holstein-Friesian pedigree selected for milk production. 

J. Anim. Sci. 37:676-682. 



123 

Carabafio, M. J., K. M. Wade, and L. D. Van Vleck. 1990. Genotype by environment 

interaction for milk and fat production across regions of the United States. J. Dairy 

Sci. 73: 173-180. 

Coop, I. 1987. Livestock in New Zealand. N. Z. Soc. Anim. Prod. Christchurch. 

Cooper, J.P. 1970. Potential production and energy conversion in temperate and tropical 

grasses. Herbage Abstracts 40:1-15. 

Conniffe, D., D. Browne, and M. J. Walshe. 1970. Experimental design for grazing trials. 

J. Agric. Sci., Cambridge 74:339-342. 

Cunningham, E. P. 1983. Structure of dairy cattle breeding in Western Europe and 

Comparisons with North America . .1. Dairy Sci. 66:1579-1587. 

Dalton, C., and C. Rumble. 1985. 50 years of art(ficial insemination and herd 

improvement in New Zealand. Auckland Livestock Improvement Association, 

Hamilton. 

Danell, B. 1982. Interaction between genotype and environment in sire evaluation for 

milk production. Acta Agric. Scand. 32:33-46. 

De Veer, J. C., and L. D. Van Vleck. 1987. Genetic parameters for first lactation milk 

yields at three levels of herd production . .1. Dairy Sci. 70:1434-1441. 

Dempfle, L. 1984. Principles of estimation of breeding values. Bulletin of International 

Dairy Federation (183):24-32. 

Dickerson, G. E. 1962. Implications of genetic-environmental interaction in animal 

breeding. Anim. Prod. 4:47-63. 

Dickerson, G. E. 1973. Inbreeding and heterosis in animals. In: Proceedings of the 

AnimaL Breeding and Genetics Symposium heLd in BLacksburg, Virginia, pp 54-

71. American Society of Animal Sciences, Champaign, Illinois. 



124 

Dong, M. C., and I. L. Mao. 1990. Heterogeneity of (co)variance and heritability in 

different levels of intraherd milk-production variance and of average. J. Dairy Sci. 

73:843-851. 

Eisenhart, C. 1947. The assumptions underlying the analysis of variance. Biometrics 3:1-

21. 

Everett, R. W., and L. P. Jones. 1985. Breeding values - their calculation and potential 

use. In T. I. Phillips (Ed.) Proc. of the conference on " The Challenge: Efficient 

Dairy Production", pp 406-419. Australian and New Zealand Soc. Anim. Prod. 

Albury-Wodonga. 

Everett, R. W., and J. F. Keown. 1984. Mixed model sire evaluation with dairy cattle­

Experience and genetic gain . .!. Anim. Sci. 59:529-541. 

Everett, R. W., J. F. Keown, and J. F. Taylor. 1982. The problem of heterogeneous 

within herd error variances when identifying elite cows. J. Dairy Sci. (Suppl. 1) 

65:100 (Abstr.) 

Falconer, D. S. 1952. The problem of environment and selection. Amer. Nat. 86:293-

298. 

Falconer, D. S. 1960. Introduction to Quantitative Genetics. Oliver and Boyd. 

Edinburgh. 

Garrick, D. J. 1988. Restricted maximum likelihood estimation of variance components 

for multiple traits with missing observations and an application to beef cattle. Ph. 

D. dissertation, Cornell University, Ithaca, New York. 

Garrick, D. J. 1991. Best linear unbiased prediction for across-flock/year breeding 

values. Proc. N. Z. Soc. Anim. Prod. 51:417-422. 

Garrick, D. J., B. L. Harris, P. Shannon, and C. Sosa-Ferreyra. 1993. A prototype sire 

evaluation for New Zealand dairy cattle. Proc. N. Z. Soc. Anim. Prod. 53:91-94. 



125 

Garrick, D. J., E. J. Pollak, R. L. Quaas, and L. D. Van Vleck. 1989. Variance 

heterogeneity in direct and maternal weight traits by sex and percent purebred for 

Simmental-sired calves. J. Anim. Sci. 67:2515-2528. 

Garrick, D. J., and D. L. Van Vleck. 1987. Aspects of selection for performance in 

several environments with heterogenous variances. 1. Anim. Sci. 65:409-421. 

Gianola, D. 1986. On selection criteria and estimation of parameters when the variance is 

heterogeneous. Theor. Appl. Genet. 72:671-677. 

Gianola, D., J. L. Foulley, R. L. Fernando, C. R. Henderson, and K. A. Weigel. 1992. 

Estimation of heterogeneous variances using empirical Bayes methods: theoretical 

considerations. J. Dairy Sci. 75:2805-2823. 

Greenhalgh, S. A., R. L. Quaas, and L. D. Van Vleck. 1986. Approximating prediction 

error variances for multiple trait sire evaluations . ./. Dairy Sci. 69:2877-2883. 

Hammond, J. 1947. Animal breeding in relation to nutrition and environmental 

conditions. Bioi. Rev. 22:195-213. 

Harris, B. L., R. G.Jackson, and D.J. Garrick. 1993. Animal Evaluation System for New 

Zealand Dairy Cattle. Livestock Improvement, Hamilton. 

Hazel, L. N. 1943. The genetic basis for constructing selection indexes. Genetics. 

28:476-490. 

Henderson, C. R. 1950. Estimation of genetic parameters. Ann. Math. Stat. 21:309. 

(Abstr.) 

Henderson, C. R. 1963. Selection index and expected genetic advance. In W. D. Hanson 

and H. F. Robinson (Ed.) Statistical Genetics and Plant Breeding. Pub. 982, pp 

141-163. National Academy of Sciences-National Research Council, Washington, 

D.C. 

Henderson, C. R. 1973. Sire evaluation and genetic trends. In: Proceedings of the 

Animal Breeding and Genetics Symposium held in Blacksburg, Virginia, pp 10-

41. American Society of Animal Sciences, Champaign, Illinois. 



126 

Henderson, C. R. 1974. General flexibility of linear model techniques for sire evaluation. 

J. Dairy Sci. 57:963-972. 

Henderson, C. R. 1975a. Best linear unbiased estimation and prediction under a selection 

model. Biometrics 31:423-447. 

Henderson, 1975b. Comparison of alternative sire evaluation methods. J. Anim. Sci. 

41:760-770. 

Henderson, C. R. 1975c. Rapid method for computing the inverse of a relationship 

matrix. J. Dairy Sci. 58: 1727-1730. 

Henderson, 1975d. Use of all relatives in intraherd prediction of breeding values and 

producing abilities. J. Dairy Sci. 58:1910-1916. 

Henderson, C. R. 1976. A simple method for computing the inverse of a numerator 

relationship matrix used in prediction of breeding values. Biometrics 32:69-83. 

Henderson, C. R. 1984. Applications of linear models in animal breeding. Univ. Guelph 

Press, Guelph, Ont., Canada. 

Henderson, C. R. 1990a. Statistical methods in animal improvement: historical review. In 

D. Gianola and K. Hammond (Eds) Advances in Statistical Methods for Genetic 

Improvement of Livestock. Advanced Series In Agricultural Sciences 18:2-14. 

Springer-Verlag, New York. 

Henderson, C. R. 1990b. Accounting for selection and mating biases in genetic 

evaluations. In D. Gianola and K. Hammond (Eds) Advances in Statistical 

Methods for Genetic Improvement of Livestock. Advanced Series In Agricultural 

Sciences 18:413-436. Springer-Verlag, New York. 

Henderson, C. R., 0. Kempthome, S. R. Searle, and C. M. Yon Krosigk. 1959. The 

estimation of environmental and genetic trends from records subjected to culling. 

Biometrics 15: 192-218. 

Hickman, C. G., A. J. Lee and K. Gravir. 1969. Genotype x season x method interaction 

in evaluating dairy sires from progeny records. Can . .1. Anim. Sci. 49:151-155. 



127 

Hill, W. G. 1984. On selection among groups with heterogeneous variance. Anim. Prod. 

39:473-477. 

Hill, W. G., M. R. Edwards, M. -K. A. Ahmed, and R. Thompson. 1983. Heritability of 

milk yield and composition at different levels and variability of production. Anim. 

Prod. 36:59:68. 

Hodgson, J. 1990. Grazing Management, Science into Practice. Longman Scientific and 

Technical, Essex. 

Holmes, C. W. 1982. The effect of fertilizer nitrogen on the production of pasture and 

milk on dairy fam1lets: 1971-1974. Proc. N. Z. Grassland Assoc. 43:53-57. 

Holmes, C. W. 1986. Calving dates and their importance to the dairy farmer. 

Dairyfarming Annual, Massey University, pp 55-67. 

Holmes, C. W. 1987. Milk production from managed grasslands. In R. W. Snaydon (Ed.) 

Managed Grasslands, B. Analytical Studies, pp 101-112. Elsevier, Amsterdam. 

Holmes, C. W., and K. L. MacMillan. 1982. Nutritional management of the dairy herd 

grazing on pasture. In K. Mcmillan and V. Taufa. (Eds.) Dairy Production from 

Pastures, pp 244-274. N. Z. Soc. Anim. Prod., Hamilton. 

Holmes, C. W., and W. Parker. 1992. Stocking rate and its effects on dairy farm 

productivity. Dairyfarming Annual, Massey University, pp 4-15. 

Holmes, C. W., and G. F. Wilson. 1984. Milk production from pasture. Butterworth 

Agricultural books, Wellington. 

Holmes, W. 1980. Grazing management. In W. Holmes (Ed.) Grass; Its production and 

utilization, pp 125-173. Blackwell, London. 

Hudson, G. F. S. 1984. Extension of a reduced animal model to recursive prediction of 

breeding values. J. Anim. Sci. 59:1164-1175. 

Hutton, J. B. 1978. Dairy cattle management, irrigation potential in South Auckland. 

Ministry of Agriculture, N. Z. Ag Link No. FPP 167. 



128 

Jones, R. L.; and R. L. Sandland. 197 4. The relation between animal gain and stocking 

rate: Derivation of the relation from results of !,'Tazing trials. J. Agric. Sci., 

Cambridge 83:335-342. 

Kachman, S. D., and R. W. Everett. 1993. A multiplicative mixed model when the 

variances are heterogenous. J. Dairy Sci. 76:859-867. 

King, K. R., and C. R. Stockdale. 1980. The effects of stocking rate and nitrogen 

fertilizer on the productivity of irrigated perennial pasture grazed by dairy cows. 2. 

Animal production. Aust. J. Exp. Agric. Anim. Husb. 20:537-542. 

Livestock Improvement. 1991a. Dairy Statistics 1990!91. 

Livestock Improvement. 1991 b. Services and Sires 1991. 

Lofgren, D. L., W. E. Vinson, R. E. Pearson, and R. Thompson. 1985. Heritability of 

milk yield at different herd means and variance for production. J. Dairy Sci. 

68:2737-2739. 

Lush, J. L. 1945. Animal Breeding Plans. Iowa State College Press, Ames. 

Lytton, V. H., and J. E. Legates. 1966. Sire by region interaction for production traits in 

dairy cattle. J. Dairy Sci. 49:874-878. 

Macdonald Committee Report. 1992. Herd Testing and Related Services. New Zealand 

Dairy Board. 

MacMillan, K. L., V. K. Taufa, and M. C. Pearce. 1984. Calving patterns and their 

effects on herd production. Proc. Ruakura Farmer's Conference, pp 25-28. 

Mason, I. L., and A. Robertson. 1956. The progeny testing of dairy bulls at different 

levels of production. J. agric. Sci. 47:367-375. 

McDaniel, B. T., and E. L. Corley. 1967. Relationships between sire evaluations at 

different herdmate levels. J. Dairy Sci. 50:735-741. 



129 

McMeekan, ·C. P. 1956. Grazing management and animal production. Proc. 7th Int. 

Grassl. Congr., pp 146-156. 

McMeekan, C. P., and M. J. Walshe. 1963. The inter-relationships of grazing method 

and stocking rate in efficiency of pasture utilization by dairy cattle. J. Agric. Sci., 

Cambridge 61:147-166. 

Meinert, T. R., R. E. Pearson, W. E. Vinson, and B. G. Case!!. 1988. Prediction of 

daughter's performance from dam's cow index adjusted for within herd variance. J. 

Dairy Sci. 71:2220-2231. 

Menendez-Buxadera, A., A. de los Reyes, D. Guerra, and J. Cordovi. 1989. Genetic 

variability of milk production from Holstein cows according to the level of milk 

yield of the herd. Cuban J. Agric. Sci. 23:9-15. 

Meuwissen, T. H. E., and J. H. J. VanderWerf. 1993. Impact of heterogeneous within 

herd variance on dairy cattle breeding schemes: a simulation study. Livest. Prod. 

Sci. 33:31-41. 

Meyer, K. 1989. Approximate accuracy of genetic eva! uation under an animal model. 

Livest. Prod. Sci. 21:87-100. 

Mirande, S. L., and L. D. Van Vleck. 1985. Trends in genetic and phenotypic variances 

for milk production. J. Dairy Sci. 68:2278-2286. 

Misztal, I., and D. Gianola. 1987. Indirect solution of mixed model equations. J. Dairy 

Sci. 70:716-723. 

Misztal, I., and G. R. Wiggans. 1988. Approximation of prediction error variance in 

large-scale animal models. J. Dairy Sci. 71 (Suppl. 2):27-32. 

Mirande, S. L., and L. D. Van Vleck. 1985. Trends in genetic and phenotypic variances 

for milk production. J. Dairy Sci. 68:2278-2286. 

Mott, G. 0. 1960. Grazing pressure and the measurement of pasture production. Proc. 

8th Int. Grassl. Congr., pp 606-611. 



130 

Nejati-Javaiemi, A. 1991. Genetic evaluation of Holstein-Friesian and Jersey sires using 

records from pure- and cross-bred progeny in New Zealand. M. Agr. Sc. thesis, 

Massey University. 

New Zealand Jersey Cattle Breed Association. 1932. The Jersey In New Zealand. 

New Zealand Dairy Board. 1970. 46th Farm Production Report, 1969-70 season. 

Notter, D. R., and C. Diaz. 1993. Use of covariances between predicted breeding values 

to assess the genetic correlation between expressions of a trait in 2 environments. 

Genet. Sel. Evol. 25:353-372. 

Ortega, J. M. 1987. Matrix Theory: A Second Course. Plenum Press, New York and 

London. 

Petersen, P. H. 1975. Genotype-environment interaction in milk production under Danish 

and Bulgarian-Czechoslovakian conditions. Anim. Prod. 21:101-108. 

Peterson, R. 1988. Comparison of Canadian and New Zealand sires in New Zealand for 

production, weight and c01~{ormation traits. Res. Bull. No. 5. Livestock 

Improvement Corporation Ltd. New Zealand Dairy Board, Hamilton. 

Peterson, R. G., H. L. Lucas, and G. 0. Mott. 1965. Relationship between rate of 

stocking and per animal and per acre performance on pasture. Agronomy Journal 

57:27-30. 

Pfaffenberger, R. C., and J. H. Patterson. 1977. Statistical methods for business and 

economics. Richard D. Irwin, Inc. Homewood, Illinois. 

Pollak, E. J ., and R. L. Quaas. 1983. Definition of groups in sire evaluation models J. 

Dairy Sci. 66:1503-1503. 

Powell, R. L., and F. N. Dickinson. 1977. Progeny tests of sires in the United States and 

in Mexico. J. Dairy Sci. 60:1768-1772. 

Powell, R. L., H. D. Norman, and B. T. Weinland. 1983. Cow evaluation at different 

milk yields of herds. J. Dairy Sci. 66:148-154. 



131 

Powell, R. L., and G. R. Wiggans. 1991. Animal model evaluations for Mexican 

Holsteins. J. Dairy Sci. 74:1420-1427. 

Quaas, R. L. 1976. Computing the diagonal elements and inverse of a large numerator 

relationship matrix. Biometrics 32:949-953. 

Quass, R. L. 1988. Additive genetic model with groups and relationships J. Dairy Sci. 

71:1338-1345. 

Quaas, R. L., R. D. Anderson, and A. R. Gilmour. 1984. BLUP School Handbook: Use 

of Mixed Model for Prediction and for Estimation of (Co)Variance Components. 

Animal Genetics and Breeding Unit, University of Armidale, Australia. 

Quaas, R. L., D. J. Garrick, and W. H. McElhenney. 1989. Multiple trait prediction for a 

type of model with heterogeneous genetic and residual covariance structures. J. 

Anim. Sci. 67:2529-2535. 

Quaas, R. L., and E. J. Pollak. 1980. Mixed model methodology for farm and ranch beef 

cattle testing programs. J. Anim. Sci. 51:1277-1287. 

Quaas. R. L., and E. J. Pollak. 1981. Modified equations for sire models with groups. J. 

Dairy Sci. 64:1868-1872. 

Radcliffe J. E., and J. A. Baars. 1987. The productivity of temperate grasslands. In R. 

W. Snaydon (Ed.) Managed Grasslands, B. Analytical studies, pp 7-17. Elsevier, 

Amsterdam. 

Rende!, J. M., and A. Robertson. 1950. Estimation of genetic gain in milk by selection in 

a closed herd of dairy cattle . .!. Genetics 50:1-8. 

Roberts, A. H. C., and N. Thompson. 1989. Use of nitrogen fertilizer for intensive dairy 

production. Proc. of workshop on Nitrogen in New Zealand, pp 42-56. Agric. and 

Hort. Fert. and Lime Res. Centre, Massey University. 

Robertson, A. 1959. The sampling variance of the genetic correlation coefficient. 

Biometrics 15:469-485. 



132 

Robertson, A., L. K. O'Connor, and J. Edwards. 1960. Progeny testing dairy bulls at 

different management levels. Anim. Prod. 2:141-152. 

Robinson, G. K. 1986. Groups effects and computing strategies for models for 

estimating breeding values . .!. Dairy Sci. 69:3106-3111. 

Robinson, G. K., and L. P. Jones. 1987. Approximations for prediction error variances. 

J. Dairy Sci. 70:1623-1632. 

SAS. 1985. SAS User's Guide: Statistics. SAS Institute Inc, Cary, NC. 

Schaeffer, L. M., and B. W. Kennedy. 1986a. Computing solutions to mixed model 

equations. Proc. Jrd World Congress on Genetics Applied to Livestock 

Production. XII:382-393. Lincoln, Nebraska. 

Schaeffer, L. M., and B. W. Kennedy. 1986b. Computing strategies for solving mixed 

model equations . .!. Dairy Sci. 69:575-579. 

Schaeffer, L. R., J. W. Wilton, and R. Thompson. 1978. Simultaneous estimation of 

variance and covariance components from multitrait mixed model equation. 

Biometrics 34:199-208. 

Schwarz, H. R., H. Rutishauser, and E. Stiefel. 1973. Numerical Analysis of Symmetric 

Matrices. Prentice-Hall, Inc. Eaglewood Cliffs, N.J. 

Searle, S. R. 1964. Review of sire-proving methods in New Zealand, Great Britain, and 

New York State. J. Dairy Sci. 47:402-413. 

Searle, S. R. 1971. Linear Models. John Wiley and Sons, New York. 

Searle, S. R. 1982. Matrix Algebra Useful for Statistics. John Wiley and Sons. New 

York. 

Shannon, P. 1974. The evaluation of dairy sire progeny tests in New Zealand. Proc. of 

1st World Congress on Genetics Applied to Livestock Production 2:105:110. 



133 

Snedecor, G. W., and W. G. Cochran. 1980. Statistical Methods. The Iowa State 

University Press, Ames, IA. 

Stichbury, J. M. 1957. New developments m herd improvement. Proc. Ruakura 

Farmer's Conference, pp 196-205. 

Stockdale, C. R., and K. R. King. 1980. The effects of stocking rate and nitrogen 

fertilizer on the productivity of irrigated perennial pasture grazed by dairy cows. 1. 

Pasture production, utilization and composition. Aust. J. Exp. Agric. Anim. Husb. 

20:529-536. 

Thompson, N. A., A. H. C. Roberts, T. A. Judd, and J. S. Clough. 1991. Maximising 

dairy production by using nitrogen fertilizer and calving early. Proc. N. Z. 

Grassland Assoc. 53:85-90. 

Thompson, R. 1979. Sire evaluation. Biometrics 35:339-353. 

Ufford, G. R., C. R. Henderson, and L. D. Van Vleck. 1979. Computing algorithms for 

sire evaluation with all lactation records and natural service sires. J. Dairy Sci. 

62:511-519. 

VanderWerf, J., L. Schaeffer, J. Van Arendonk, and A. Groen. 1991. Breeding Value 

Estimation: Lecture Notes. Department of Animal Breeding, Wageningen 

Agricultural University, Wageningen. 

VanRaden, P. M., and A. E. Freeman. 1985. Rapid method to obtain bounds on 

accuracies and prediction error variances in mixed models. J. Dairy Sci. 68:2123-

2133. 

VanRaden, P.M., and G. R. Wiggans. 1991. Derivation, calculation, and use of animal 

model information. J. Dairy Sci. 74:2737-2746. 

Van Vleck, L. D. 1963. Genotype and environment in sire evaluation. J. Dairy Sci. 

46:983-987. 

Van Vleck, L. D. 1979. Notes on the theory and application of selection principles for 

the genetic improvement of animals. Cornell University Ithaca. N. Y. 



134 

Van Vleck, L. D. 1987. Selection when traits have different genetic and phenotypic 

variances in different environments. J. Dairy Sci. 70:337-344. 

Van Vleck, L. D. 1988. Alternatives for evaluations with heterogenous genetic and 

environmental variances. J. Dairy Sci. (Suppl. 2) 71:83. 

Van Vleck, L. D. 1992. The revolution in statistical computing: from Least Squares to 

DFREML. Proc. 41th Annual National Breeders Roundtable, pp 1-35. St. Louis, 

Missouri. 

Van Vleck, L. D., and D. J. Dwyer. 1985. Comparison of iterative procedures for 

solving equations for sire evaluation. J. Dairy Sci. 68:1006-1014. 

Van Vleck, L. D., E. J. Pollak, and E. A. B. Oltenacu. 1987. Genetics for Animal 

Science. W. H. Freeman and Company, New York. 

Vinson, W. E. 1987. Potential bias in genetic evaluations from differences in variation 

within herds. J. Dairy Sci. 70:2450-2455. 

Visscher, P. M., and W. G. Hill. 1992. Heterogeneity of variance and dairy cattle 

breeding. Anim. Prod. 55:321-329. 

Visscher, P. M., R. Thompson, and W. G. Hill. 1991. Estimation of genetic and 

environmental variances for fat yield in individual herds and an investigation into 

heterogeneity of variance between herds. Livest. Prod. Sci. 28:273-290. 

Vishwanath, R. 1992. Recent developments in semen technology. Dairyfarming Annual, 

Massey University, pp 155. 

Weigel, K. A., and D. Gianola. 1993. Computationally simple Bayesian method for 

estimation of heterogenous within-herd phenotypic variances. J. Dairy Sci. 

76:1455-1465. 

Westell, R. A., R. L. Quaas, and L. D. Van Vleck. 1988. Genetic groups in an animal 

model. J. Dairy Sci. 71:1310-1318. 



135 

Westell, R. A., and L. D. Van Vleck. 1987. Simultaneous genetic evaluation of sires and 

cows for a large population of dairy cattle . .!. Dairy Sci. 70:1006-1017. 

White, D. H. 1987. Stocking rate. In R. W. Snaydon (Ed.) Managed Grasslands, pp 

227-238. Elsevier, Amsterdam. 

Wickham, B. W. 1984. Progeny testing of dairy bulls m New Zealand. Bulletin of 

International Dairy Federation (183):133-138. 

Wickham, B. W. 1993. Size and efficiency in Holstein-Friesian animals. N. Z. Holstein­

Friesian Journal. February, pp 68-71. 

Wickham, B. W., and J. W. Stichbury. 1980. Cow and sire evaluation in New Zealand. 

Proceedings of the symposium on Dairy Cattle Sire Evaluation. Warsaw, Poland. 

Wiggans, G. R., I. Misztal, and L. D. Van Vleck. 1988a. Animal model evaluation of 

Ayrshire milk yield with all lactations, herd-sire interaction, and groups based on 

unknown parents. J. Dairy Sci. 71:1319-1329. 

Wiggans, G. R., I. Misztal, and L. D. Van Vleck. 1988b. Implementation of an animal 

model for genetic evaluation of dairy cattle in the United States. J. Dairy Sci. 71 

(Suppl. 2):54-69. 

Wiggans, G. R., and P. M. VanRaden. 1991. Method and effect of adjustment for 

heterogeneous variance. J. Dairy Sci. 74:4350-4357. 

Winkelman, A., and L. R. Schaeffer. 1988. Effect of heterogeneity of variance on dairy 

sire evaluation. J. Dairy Sci. 71:3033-3039. 

Wright, S. 1922. Coefficients of inbreeding and relationship. Am. Nat. 56:330-338. 

Wright, D. F., and R. M. Pringle. 1983. Stocking rate effects in dairying. Proc. N. Z. 

Soc. Anim. Prod. 43:97-100. 



136 

APPENDIX I 

This Appendix I contains the comparison between product-moment and rank 

correlations of breeding values for lactation milkfat yield of sires evaluated at different 

levels of production and with variable number of daughters. Table I.l contains the 

comparison between correlation coefficients for raw data. Table I.2 shows the 

comparison . between correlation coefficient for data corrected by the herd-year-age 

mean. Table I.3 contains the comparison between correlation coefficients for data 

adjusted by the weighted combination of the population standard deviation and the 

posterior estimate of herd-year-age standard deviation. And, Table 1.4 shows the 

comparison between correlation coefficients for data after logarithmic transformation. 
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Table 1.1. Product-moment (rp) and rank (r5 ) correlations between breeding values for 

milk:fat yield of sires evaluated at different levels of production and with variable 

minimum number of daughters. Untransformed data. 

Minimum number Levels of 2roduction com2ared 
of daughters at each Number Low-Medium Low-High Medium-High 
production level of sires 

rp rs rp rs rp rs 

10 1151 0.72 0.70 0.67 0.65 0.72 0.69 
20 486 0.76 0.76 0.73 0.72 0.78 0.77 
30 351 0.78 0.77 0.74 0.74 0.82 0.82 
40 306 0.81 0.80 0.77 0.77 0.86 0.86 
50 272 0.83 0.83 0.80 0.80 0.88 0.87 
60 248 0.85 0.83 0.82 0.80 0.89 0.88 
70 230 0.86 0.85 0.85 0.84 0.92 0.91 
80 216 0.88 0.87 0.87 0.85 0.93 0.91 
90 209 0.90 0.90 0.88 0.87 0.93 0.91 

100 198 0.92 0.91 0.91 0.90 0.93 0.92 

* P<.05 

Table 1.2. Product-moment (rp) and rank (r5 ) correlations between breeding values for 

milkfat yield of sires evaluated at different levels of production and with variable 

minimum number of daughters. Data corrected by the HY A mean. 

Minimum number Levels of 2roduction com2ared 
of daughters at each Number Low-Medium Low-High Medium-High 
production level of sires 

rp rs rp rs rp fs 

10 1151 0.72 0.70 0.67 0.65 0.71 0.68 
20 486 0.78 0.76 0.74 0.73 0.78 0.77 
30 351 0.79 0.78 0.75 0.76 0.83 0.82 
40 306 0.82 0.81 0.78 0.77 0.86 0.86 
50 272 0.83 0.82 0.80 0.81 0.88 0.87 
60 248 0.84 0.83 0.81 0.81 0.89 0.88 
70 230 0.86 0.84 0.84 0.83 0.92 0.90 
80 216 0.87 0.87 0.86 0.85 0.92 0.90 
90 209 0.88 0.89 0.88 0.87 0.92 0.91 

100 198 0.91 0.90 0.90 0.89 0.93 0.91 

* P<.05 
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Table I.3. Product-moment (rp) and rank (r5 ) correlations between breeding values for 

milkfat yield of sires evaluated at different levels of production and with variable 

minimum number of daughters. Data adjusted by the HY A sd. 

Minimum number Levels of 12roduction com12ared 
of daughters at each Number Low-Medium Low-High Medium-High 
production level of sires 

rp rs rp rs rp rs 

10 1151 0.73 0.71 0.69 0.70 0.73 0.71 
20 486 0.78 0.76 0.75 0.74 0.80 0.78 
30 351 0.80 0.78 0.77 0.77 0.84 0.82 
40 306 0.82 0.81 0.79 0.78 0.87 0.86 
50 272 0.84 0.84 0.82 0.82 0.89 0.88 
60 248 0.85 0.84 0.84 0.82 0.90 0.88 
70 230 0.86 0.86 0.86 0.85 0.92 0.91 
80 216 0.88 0.88 0.88 0.87 0.93 0.91 
90 209 0.90 0.90 0.90 0.89 0.93 0.92 

100 198 0.92 0.91 0.92 0.91 0.94 0.92 

* P<.05 

Table 1.4. Product-moment (rp) and rank (r5 ) correlations between breeding values for 

milkfat yield of sires evaluated at different levels of production and with variable 

minimum number of daughters. Data after log transformation. 

Minimum number Levels of 12roduction com.12ared 
of daughters at each Number Low-Medium Low-High Medium-High 
production level of sires 

fp rs fp rs rp rs 

10 1151 0.68 0.66 0.62 0.60 0.70 0.66 
20 486 0.73 0.73 0.69 0.69 0.75 0.73 
30 351 0.74 0.74 0.70 0.72 0.79 0.78 
40 306 0.77 0.77 0.72 0.73 0.84 0.83 
50 272 0.79 0.80 0.76 0.78 0.87 0.86 
60 248 0.81 0.80 0.78 0.78 0.87 0.86 
70 230 0.83 0.82 0.81 0.82 0.90 0.89 
80 216 0.84 0.84 0.83 0.83 0.90 0.88 
90 209 0.87 0.87 0.85 0.85 0.91 0.89 

100 198 0.89 0.88 0.89 0.88 0.92 0.90 

* P<.05 
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APPENDIX II 

This Appendix II contains the number of sires and averages and standard 

deviations of breeding values for lactation milkfat yield of sires evaluated at different 

levels of production and with different minimum number of daughters at each production 

level for sires with significantly deviating breeding values. Table II. I holds statistics for 

raw data and Tables 11.2, II.3, and 11.3 hold statistics for the three methods of reducing 

heterogeneity of variance, namely, herd-year-age mean correction, herd-year-age 

standard deviation adjustment, and log transformation, respectively. 



Table 11.1. Number of sires (m0 ) and averages (ii) and standard deviations (sdu) of breeding values for rnilkfat yield estimated 

at different levels of production and with different minimum number of daughters for sires with significantly deviating* breeding 

values. Untransformed data. 

Minimum number Levels of J2roduction com12ared 

of daughters at each Number Low- Medium Low- High Medium - High 

production level of sires mo mo - mo fi M ± sd A Q H + sd A 
A + d GM ±sdu.M iiL ±sduL A + d llL _s uL UH _s uH UM - UH 

10 1151 50 -3.2±13.3 -2.7± 13.1 90 -2.4±12.4 0.3±15.5 77 -2.6±13.0 1.8±16.2 

20 486 33 -2.5±12.6 -0.3±12.5 61 -0.4±10.7 1.6±14.9 51 -0.9±12.7 4.5±15.5 

30 351 29 -0.7±11.1 -0.3± 13.0 56 0.4±10.0 1.3±14.7 43 -0.4±13.2 3.2±15.9 

40 306 27 -0.5±11.2 -0.3±13.2 51 1.0± 9.5 1.7±14.3 38 0.5±13.3 4.2±15.0 

50 272 22 -0.2±11.4 -1.0±11.6 49 1.4± 9.4 1.2±14.4 36 1.5±12.6 4.3±15.3 

60 248 19 1.7±10.0 0.2± 11.9 46 2.1± 8.8 2.5±13.6 35 2.1±12.3 5.4±14.0 

70 230 19 1.7±10.0 0.2±11.9 44 2.2± 9.0 1.6±13.1 32 2.6±12.6 4.5±14.0 

80 216 17 2.0±10.1 0.2±12.3 42 2.4± 8.8 1.9±13.4 31 3.5±11.8 4.8±13.8 

90 209 15 1.1±10.5 1.6±12.5 41 2.3± 8.9 2.3±13.2 30 4.0±11.7 4.9±14.1 

100 198 14 2.4+ 9.5 1.6+13.0 39 2.9+ 8.4 2.1 +13.5 30 4.0+11.7 4.9+14.1 

* P<.05 



Table II.2. Number of sires (m0 ) and averages (u) and standard deviations (sdn) of breeding values for rnilkfat yield estimated 

at different levels of production and with different minimum number of daughters for sires with significantly deviating* breeding 

values. Data corrected by the HY A mean. 

Minimum number Levels of 2roduction com2ared 

of daughters at each Number Low- Medium Low- High Medium- High 

production level of sires mo GM ±sdaM mo - mo ~ + d ~ + d ~ + d UM ±sduM h + d UL- S ilL UL- s uL UH _s llH UH _s uH 

10 1151 39 -1.3±9.4 -1.4±8.0 60 -3.7±9.3 0.3±8.2 51 -2.4±8.7 2.7±8.0 

20 486 22 1.0±8.1 0.0±6.6 39 -0.8±8.1 -0.4±6.8 33 -0.4±7.9 4.0±7.1 

30 351 21 2.0±7.0 0.0±6.8 36 -0.6±7.1 0.6±8.3 26 -0.6±8.1 3.6±7.0 

40 306 19 2.1±6.7 -0.2±7.1 31 0.5±7.4 -0.1±7.0 22 -0.0±8.2 4.1±7.2 

50 272 18 2.3±6.9 -0.7±6.9 29 1.0±7.4 0.4±8.3 20 1.1±7.4 4.3±7.3 

60 248 16 3.3±6.1 -0.1±7.1 27 1.8±6.6 1.2±7.9 20 1.1±7.4 4.3±7.3 

70 230 16 3.3±6.1 -0.1±7.1 25 2.0±6.8 0.6±6.8 17 1.8±7.7 3.4±7.3 

80 216 15 3.1±6.3 0.2±7.2 23 2.3±6.7 1.1±6.9 17 1.8±7.7 3.4±7.3 

90 209 13 2.7±6.6 1.3±7.2 22 2.2±6.8 1.2±7.3 16 2.3±7.6 3.5±7.6 

100 198 12 3.8±5.5 1.3±7.5 21 2.8±6.3 1.1±7.4 16 2.3±7.6 3.5±7.6 

* P<.05 



Table 11.3. Number of sires ( m0 ) and averages ( ii) and standard deviations ( sd o) of breeding values for rnilkfat yield estimated 

at different levels of production and with different minimum number of daughters for sires with significantly deviating* breeding 

values. Data adjusted by the HY A sd. 

Minimum number Levels of ~roduction comQared 

of daughters at each Number Low- Medium Low- High Medium - High 

production level of sires mo mo - mo -
uL ± sduL A + d A + d A + d GM ±sduM GH ±sduH UM _s uM UL- s uL UH _s uH 

10 1151 32 -3.7±11.9 -0.7± 11.5 58 -2.3± 11.8 0.4±14.1 49 -0.0±11.5 4.5±13.0 

20 486 24 -1.6±11.0 0.5±10.5 42 -0.0±10.9 1.4±13.7 38 1.3±11.6 5.4±12.0 

30 351 21 0.8± 9.3 0.4±11.1 40 0.2±11.1 0.6±13.5 33 1.2±11.8 5.2±12.2 

40 306 18 1.4± 9.4 -0.1±11.0 36 1.0±10.5 1.3±13.4 30 1.3±12.2 5.5±12.4 

50 272 17 2.2± 9.1 -0.5±11.2 35 1.4±10.3 0.2±10.6 28 2.5±11.6 5.7±12.6 

60 248 17 2.2± 9.1 -0.5±11.2 32 2.4± 9.7 2.5±12.8 28 2.5±11.6 5.7±12.6 

70 230 17 2.2± 9.1 -0.5±11.2 30 2.6± 9.9 1.3±10.7 25 3.4±11.9 4.7±12.8 

80 216 15 2.5± 9.2 -0.4± 11.7 28 1.9±10.9 1.9±12.8 25 3.4±11.9 4.7±12.8 

90 209 13 1.7± 9.7 1.3±11.7 27 2.9± 9.9 2.6±12.4 24 4.0± 11.7 4.7±13.1 

100 198 12 3.1± 8.6 1.4±12.2 26 3.6± 9.4 2.7±12.7 24 4.0±11.7 4.7±13.1 

* P<.05 



Table 11.4. Number of sires (m0 ) and averages (u) and standard deviations (sdu) of breeding values for rnilkfat yield estimated 

at different levels of production and with different minimum number of daughters for sires with significantly deviating* breeding 

values. Data after log transformation. 

Minimum number Levels of Qroduction comQared 

of daughters at each Number Low- Medium Low- High Medium - High 

production level of sires mo ~ + d llL- S uL fiM +sd- mo - UM ~ + d UL- S uL ' + d UH- S uH mo fiM ±sduM h + d UH- S uH 

10 1151 58 -4.8± 10.4 -2.9±8.3 73 -5.0±11.1 -2.3±7.3 58 -4.6±9.3 -0.1 ± 10.1 

20 486 29 -2.5± 9.4 -2.1±6.7 45 -1.1± 9.4 -0.5±8.7 33 -1.9±7.9 3.1± 8.5 

30 351 26 -1.6± 8.3 -2.1±7.0 42 -0.7± 8.9 -0.8±7.0 27 -2.5±7.5 2.6± 8.6 

40 306 23 -1.1± 8.1 -2.3±7.3 37 0.1± 8.5 -0.3±8.6 21 -1.7±7.7 3.6± 8.1 

50 272 22 -0.9± 8.2 -2.9±6.9 32 0.5± 8.0 -0.8±8.9 19 -0.7±7.1 3.8± 8.3 

60 248 18 1.2± 6.3 -1.7±6.7 28 1.9± 6.5 0.3±8.8 18 -0.2±7.0 4.0± 8.5 

70 230 17 1.6± 6.2 -2.0±6.8 26 2.0± 6.7 -0.8±8.2 15 0.2±7.3 2.7± 8.4 

80 216 16 1.4± 6.3 -1.9±7.0 24 1.7± 6.9 -0.4±8.4 15 0.2±7.3 2.7± 8.4 

90 209 14 0.6± 6.3 -1.1±7.1 23 1.5± 7.0 0.2±7.9 14 0.8±7.3 2.7± 8.8 

100 198 13 1.6± 5.1 -1.3±7.4 22 2.2± 6.3 0.1±8.1 14 0.8±7.3 2.7± 8.8 

* P<.05 


