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Abstract

Acceptance sampling plays a crucial role in food quality assurance. However, safety inspection

represents a substantial economic burden due to the testing costs and the number of quality

characteristics involved. This thesis presents six pieces of work on the design of attribute and

variables sampling inspection plans for food safety and quality. Several sampling plans are

introduced with the aims of providing a better protection for the consumers and reducing the

sample sizes. The effect of factors such as the spatial distribution of microorganisms and the

analytical unit amount is discussed. The quality in accepted batches has also been studied,

which is relevant for assessing the impact of the product in the public health system. Optimum

design of sampling plans for bulk materials is considered and different scenarios in terms of

mixing efficiency are evaluated. Single and two-stage sampling plans based on compressed

limits are introduced. Other issues such as the effect of imperfect testing and the robustness

of the plan have been also discussed. The use of the techniques is illustrated with practical

examples. We considered numerous probability models for fitting aerobic plate counts and

presence-absence data from milk powder samples. The suggested techniques have been found to

provide a substantial sampling economy, reducing the sample size by a factor between 20 and 80%

(when compared to plans recommended by the International Commission on Microbiological

Specification for Food (ICMSF) and the CODEX Alimentarius). Free software and apps have

been published, allowing practitioners to design more stringent sampling plans.

Keywords:

Bulk material, Composite samples, Compressed limit, Consumer Protection, Double sampling

plan, Food safety, Measurement errors, Microbiological testing, Sampling inspection plan.
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Chapter 1

Introduction

1.1 Food safety and assurance

The food industry comprises the activities of farming, manufacturing, preserving and distribution

of foods and beverages. According to the World Bank, there are more people involved in

agricultural and food production than in any other primary activity and this sector accounts for

4% of the global GDP.

The major challenge is not only to produce enough food to feed more than seven billion

people, but also to ensure that food is essentially safe. From the food microbiology perspective,

the term ‘safe’ refers to the near absence of harmful microorganisms or toxins. As stated by

European Commission (2005), “foodstuffs should not contain microorganisms or their toxins or

metabolites in quantities that present an unacceptable risk for human health”.

The consumption of contaminated food with bacteria or viruses causes foodborne illness,

burdening the public health and individuals. Food Safety as a discipline refers to the activities

carried out during the food production chain to prevent foodborne diseases (Motarjemi et al.,

2014)

Disease-causing microorganisms are generally referred to as pathogens. Some of the most

concerning pathogens in food are Salmonella, Cronobacter spp. (formerly Enterobacter sakaza-

kii), Listeria monocytogenes and E.coli. These are generally known as safety quality char-

acteristics and they cause outright rejection of the product when detected in food samples.

Microbiological methods for pathogens aim to determine their presence or absence status rather

than enumeration. Traditional pathogen identification techniques are generally known as cultur-

ing tests, which normally involve enrichment, allowing the multiplication of cells so that colonies

becomes visible and identifiable. These tests are time-consuming; requiring from several hours

to a few days for a result.

Another important group of microorganisms is the sanitary/hygiene ‘indicators’. Indicator

organisms generally refer to non-pathogenic bacteria whose excessive presence might indicate

pathogens contamination. They are primarily used to reflect the sanitary and hygienic conditions

of the food production plants. Generally, tests for indicator organisms are aimed at a group

or family of microorganisms e.g. aerobic plate counts (APC) and Enterobacteriaceae. These
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microorganisms do not cause harm when they are present in small concentrations and therefore

the acceptability of a batch is based on a non-zero microbiological specification limit. Tests

for safety quality characteristics are based on the enumeration or count of colony forming units

(CFUs).

The occurrence of pathogens in foodstuffs is considered stochastic and it may happen at any

stage of the food production chain. The risk is expressed by the probability of occurrence and

it cannot be completely eliminated but can be minimized with Good Manufacturing Practices

(GMP) and the Hazard Analysis and Critical Control Point system (HACCP). These systems

involve programs and principles designed to reduce risks and prevent hazards.

International bodies such as the Codex Alimentarius, the Food and Agriculture Organization

of the United Nations (FAO), the International Commission on Microbiological Specification

for Foods (ICMSF) provide standards, recommendations and good practices in relation to food

safety and consumer protection. The New Zealand Food Safety Authority (NZFSA) within the

Ministry for Primary Industries (MPI) is the body responsible for issues related to food safety in

New Zealand (Lee and Hathaway, 2000).

1.2 Acceptance sampling

Acceptance sampling is one of the main areas of statistical quality control. Sampling inspection

plans are used to assess the “fitness for use” of batches of products. This technique provides

protection to the consumers and motivates producers to keep processes free of special causes.

The most commonly used single sampling plan consists of a sample of size (n) and an acceptance

criterion. The decision of acceptance or rejection is made based on the information obtained

from the sample. Sampling plans are used when 100% inspection is impossible due to technical

limitations, the destructive nature of some testing methods, the costs associated with the measur-

ing, workload, etc. The weak point of acceptance sampling is the risk that batches of acceptable

quality may be rejected and lots of bad quality may be accepted. Hence, sampling plans are

designed in such a way that batches with poor (good) quality will have a low (high) probability

of being accepted.

By increasing the sample size, the risk of accepting or rejecting a batch erroneously is

reduced, but at the same time, it raises the costs. Consequently, acceptance sampling is a

trade-off between risks and costs. Inspection plans allow producers to assess whether batches

satisfy the specifications and to verify that only common causes of variation are acting in the

manufacturing process. For a theoretical justification of acceptance sampling, see Wiel and

Vardeman (1994).

The formal development of sampling inspection plans can be traced back to the creation of

the inspection department at Bell Telephone Laboratories in the 1920s. This department was

integrated among others by Walter A. Shewhart and Harold F. Dodge. The publication of the

inspection tables for single and double plans by attributes (Dodge and Romig, 1941) marked a

milestone in acceptance sampling. Other significant contributions were the publication of the
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principles of the sequential sampling (Wald, 1945), the introduction of the approach of variables

plan for the normal distribution given two points in the OC curve by Wallis (1947) and the design

of the variables plan for the proportion nonconforming by Lieberman and Resnikoff (1955).

Since then, a considerable amount of literature has been published in this field.

Classifications of acceptance sampling techniques are diverse. Fig 1.1 shows a grouping of

various acceptance sampling methods commonly used. The first branch summarizes the plans

based on the quality characteristic measured:

• attribute plan: the characteristic is classified on a go/no go or pass/fail basis using a

specification or a regulatory limit. See for instance Dodge and Romig (1941); Hald

(1967b).

• variables plan: the characteristic is measured on a continuous scale (Duncan, 1958;

Govindaraju and Balamurali, 1998; Lieberman and Resnikoff, 1955; Pearn and Wu, 2006;

Wallis, 1947; Wu and Pearn, 2008).

• mixed or combined plan: is the result of the combination of attributes and variables plans

(Govindaraju and Kissling, 2015; Schilling and Neubauer, 2010; Wilrich, 2015).

Acceptance

Sampling

Quality / char-

acteristic
Stages Unit classification Lot submission

Attributes

Variables

Mixed

Single

Double

Multiple

Sequential

Two-class

Three-class

Individual

Lot (Type A)

Stream of

lots (Type B)

Fig. 1.1 Types of acceptance sampling schemes

The advantages of using the attributes plan is that (1) it does not require the knowledge of

the statistical model, (2) easier to administer and that (3) classifying items as go/no go requires

less specialization and workload. However, plans for variables require lower sample sizes since

the whole information is used in the decision making process.

The second branch in Fig 1.1 is according to the number of stages (that might be) required to

sentence a batch:

• single: a sample is drawn from the batch and the decision is made according to the

information obtained from the individual sample. This is the most common sampling

inspection procedure.
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• double: after taking the first sample, the batch might be disposed (accepted or rejected) or

a second sample is taken and combined with the initial one to make the final decision.

• multiple: more than two samples may be drawn from the batch.

• sequential: the units are drawn one-by-one until the decision is made.

Moreover, primary units can be classified into two or more categories:

• two-class plan: when using attributes plans each sample is classified as pass/fail (two

categories), while in variables plan only one upper (lower) specification limit is used e.g.

U = 100 CFU/g.

• three-class plan: for the attributes plan each sample is classified as good, marginal or

bad (three categories), using two limits (Bray et al., 1973b). For a plan of inspection

by variables two limits are required and the decision criterion involves two restrictions,

(Newcombe and Allen, 1988).

The application of the plans may be by lot-by-lot (isolated lot) or focused on controlling the

risks in the stream of batches. Skip-lot and chain sampling schemes are cost-effective inspection

procedures that are applied to the stream of batches (Dodge, 1955a,b; Perry, 1973).

Several alternatives arise from combining characteristics from the branches of Fig 1.1. The

options substantially increase when different statistical distributions are considered e.g. binomial,

lognormal, exponential distribution. Lot-by-lot, single, two-class attributes and variables plan

are the most widely used inspection procedures. The other procedures are known as ‘special

purpose’ plans (Dodge, 1969), which are intended for specific applications. This thesis focuses

on special purpose plans for food control. Most of the categories from Fig 1.1 apart from mixed,

multiple and sequential sampling plans are studied in this thesis. Several statistical distributions

that have been used to describe the frequencies of microorganisms will be considered in the

design of sampling plans, e.g.: binomial, Poisson, normal, lognormal, Weibull, gamma, negative

binomial, Poisson-lognormal, Poisson-gamma, Dirichlet and multivariate hypergeometric.

Hamaker (1960) summarized the most important objectives when designing sampling plans /

schemes. However, he pointed out that it is not possible to accomplish all of them.

1. ‘To strike a proper balance between the consumer’s requirements, the producer’s capabili-

ties and the inspector’s capacity.’

2. ‘To separate bad lots from good.’

3. ‘Simplicity of procedures and administration.’

4. ‘Economy in number of observations.’

5. ‘To reduce the risk of wrong decisions with increasing lot size.’

6. ‘To use accumulated sample data as a valuable source of information.’
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7. ‘To exert pressure on the producer or supplier when the quality of the lots received is

unreliable or not up to standard.’

8. ‘To reduce sampling when the quality is reliable and satisfactory.’

1.3 Microbiological sampling plans

In food safety and food microbiology, acceptance sampling techniques are commonly used for

quality assurance purposes. Some of the first sampling plans for microbiological applications

were suggested by Kilsby and Baird-Parker (1983); Kilsby et al. (1979). Kilsby et al. (1979)

seminal paper suggested the use of variables plans for bacterial log counts. The design in this

plan is basically obtained from fixing the consumer’s risk point and the sample size. Malcolm

(1984) showed later that Kilsby et al. (1979) approximate method gives an imprecise batch

probability of acceptance and suggested the computation of the risk based on the non-central

t-distribution. Later on, Smelt and Quadt (1990) studied variables plans for the cases in which

the standard deviation is calculated using historical data.

Since 1980s the International Commission on Microbiological Specifications for Foods

(ICMSF) has been publishing regularly recommendations and guidelines on microbiological

sampling plan. Some of the most relevant are ICMSF (1986, 2002, 2011). Simultaneously,

guidelines, policies, recommendations and standards on food safety and particularly on the use

of inspection plans for food trade have been given by the Codex Alimentarius. See for instance

CAC (1997, 2004).

The Food and Agriculture Organization of the United Nations (FAO) and the World Health

Organization (WHO) regularly promote joint experts meeting and publish recommendations

on sampling plans for different microorganisms of interest e.g. FAO/WHO (2006, 2007, 2012,

2014).

Several special purpose sampling plans have been suggested for safety problems. A crucial

advance was the development of the three-class attributes plan theory, firstly proposed by Bray

et al. (1973b). Other important contributions to the applications of these plans to food safety

issues were made by Dahms and Hildebrandt (1998); Hildebrandt et al. (1995); Wilrich and

Weiss (2009). Today three-class attributes plan are widely-used for the inspection of different

commodities and especially for sanitary quality characteristics. See for instance European

Commission (2005); Food Standards Australia New Zealand (2001); ICMSF (2002).

Legan et al. (2001) suggested the use of plans in which the batch probability of acceptance is

based on the concentration of microorganisms rather than the traditional proportion nonconform-

ing. This approach was later on enhanced by Van Schothorst et al. (2009). They suggested the

use of the Poisson-lognormal distribution to describe the frequencies of microorganisms.

More recently numerous authors have studied a range of statistical models to describe the

frequencies of microorganisms. Several methods that allow a better characterization of the risk

for the consumers have been suggested and several recommendations on the design of sampling
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plans have been given. See for instance Gonzales-Barron and Butler (2011a,b); Gonzales-Barron

et al. (2010a, 2013); Hoelzer and Pouillot (2013); Jarvis (2007, 2008); Jongenburger (2012a,b);

Jongenburger et al. (2012a,b, 2011a,b, 2012c); Kiermeier et al. (2011); Mussida et al. (2013a,b);

Powell (2014); Whiting et al. (2006); Zwietering (2009).

Composite sampling

For bulk materials, testing composite or pooled samples is possible but not for discrete items.

Composite sampling is employed in a wide range of disciplines e.g.: mining, food microbiology.

Compositing is defined as “the physical mix of individual sample units or a batch of unblended

individual sample units that are tested as a group”(Patil, 2006). This technique is basically a

physical averaging process, which allows the use of more representative samples for testing and

hence achieves sampling economy.

Silliker and Gabis (1973) and Gabis and Silliker (1974) are among the first authors that

showed the potential of composite sampling in food microbiology. They found that a smaller

number of samples was equally effective to detect pathogens if they contained a larger analytical

amount. Jarvis (2007) discussed the effectiveness and demerits of several pooling alternatives

for pathogen detection. Ross et al. (2011) examined several factors which need to be considered

when compositing, such as the number of increments, the limit of detection and the growing rate.

A fundamental limitation of pooling is the risk of dilution. This has motivated authors like

Jongenburger (2012b) to recommend testing primary units instead of composite samples. So far,

the use of pooled samples in food safety remains contradictory.

1.4 Scientific problem and research objectives

The use of inspection techniques in food safety is restricted by the nature and characteristics of

microbiological testing. Food safety testing is:

1. destructive: the portion of material cannot be reused. Often the whole item or product has

to be sent to the laboratory.

2. costly: the test requires several operations and time in the laboratory, which result in a

substantial expense. For example, a test for parasite identification might cost 180 USD

(7 CFR, 2000) in the United States and 30 analytical tests might be required for every

pathogen in order to sentence a batch.

3. mandatory: testing to determine the acceptability of the batch is compulsory.

4. several quality characteristics are simultaneously measured.

5. focused totally on consumer’s protection.

6. batch is rejected when at least one pathogen cell is found in the sample(s).
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7. often the frequencies of microorganisms does not often fit traditional statistical models e.g.

normal.

8. heterogeneity and localized contamination.

9. the concentration of bacteria generally increase over the time.

10. time-consuming test (mainly for culture-based test), but also time-constrained (the decision

need to be made in few days). These makes continuous and sequential plans inappropriate.

11. pathogens appear in small concentrations, yet this might cause serious outbreaks.

12. the target microorganisms might be present but below the limit of detection (LOD).

13. numerous sources of errors including imperfect sensitivity and specificity.

14. simplicity in the sampling procedure is required since inspection is mostly carried out by

food safety professionals and microbiologists.

One of the main challenges in food safety is that the actual inspection procedures cannot

produce the desired and the required levels of protection. For example, 1% of the analytical

units containing target pathogens would have massive consequences in the public heath system.

Detecting this level of bacterial contamination using a single attributes plan under homogeneity

will require a sample size of 230 units, which is far higher than any of the sampling plans used

in the industry. Fortunately, a 1% contamination is a rarity in manufactured food products, and

hence small sample sizes are considered adequate.

This research aims to design special purpose sampling plans for microbiological applications

with better performance in terms of sampling economy, consumer’s protection and robustness.

The specific objectives are:

1. To investigate plans that provide better consumer’s protection and require smaller sample

sizes.

2. To propose optimum plans for bulk materials using composite samples under different

sampling alternatives.

3. To design plans with a robust performance when the underlying statistical distribution

departs from the assumed model.

4. To provide a better characterization of the risk for the consumers using frequentist and

Bayesian methods, considering measurement errors.

The study investigates the use of more effective sampling plan techniques in food microbi-

ology allowing food producers, regulatory agencies, food importers and consumers to reduce

the inspection costs, increase the effectiveness of the sampling procedures and provide higher

protection and assurance. The research will produce online applications to design sampling

inspection plans and to estimate the risks.
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Chapter 2

Quantity-Based Microbiological Sampling
Plans and Quality after Inspection

Edgar Santos-Fernández, K. Govindaraju, Geoff Jones

Food Control, 2016, 63:83–92

http://www.sciencedirect.com/science/article/pii/S0956713515303005

2.1 Abstract

Sampling inspection plans are principally used to determine whether a batch of food is contam-

inated or not. In this theoretical research, we study the effect of increasing the analytical unit

amount on the performance of microbiological sampling plans, and on the resulting quality after

inspection. We discuss several scenarios of homogeneous and inhomogeneous contamination for

assessing the consumer’s risk. Several statistical approaches to describe the effect of an increase

in analytical amount are studied. We provided a procedure for designing of the sampling plan

for a given consumer’s risk and according to different dispersion parameters and contamination

levels.

Keywords

analytical unit amount; composite samples; heterogeneity; Poisson-lognormal; quality after

inspection; safety sampling plan

2.2 Introduction

Sampling inspection plans for microbiological characteristics seldom allow the acceptance of a

batch when test samples fail on a safety parameter. Even for sanitary characteristics, only one

or two test samples are allowed to fail. The performance of microbiological inspection plans
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largely depends on the number of test samples (n). The adequacy of n can be assessed using

the Operating Characteristic (OC) curve of the plan to ensure that batches of unsafe or limiting

concentration levels are mostly rejected. In addition to ensuring the rejection of unsafe/poor

quality batches, focus must also be placed on the (outgoing) concentration levels in accepted

batches. The amount of material to be tested, called the analytical unit amount (w) in FAO/WHO

(2014) and expressed in weight/volume/area, is an important factor that affects the operating

characteristics of the plan and hence the concentration levels in a series of accepted batches.

When sampling plans are used by regulatory authorities, they deal with many suppliers

whose submitted quality can vary from batch to batch. Regulatory risk assessment cannot ignore

possible batch to batch variation in microbiological concentration levels. Because of sampling

inspection, the overall quality in the accepted batches is expected to be improved because poor

quality batches are mostly rejected. Moderate quality batches may still be accepted and hence

the concentration levels in a series of accepted batches are of interest, for example for evaluating

the expected number of individuals contracting food poisoning.

The analytical unit amount w is an important leverage factor when a higher level of protection

is desired without increasing the number of tests. Even though the size of w is restricted by the

capacity of the analytical method, a small w may lead to a misleading conclusion regarding the

distribution of cells, see the warning given by Jarvis (2008, pp.63). It is reasonable to assume

that the sampled material w is sufficient to capture the local distribution of cells. That is, the size

of the cluster of microorganisms is generally smaller than w.

In this paper, we mainly study the effect of increasing w on the probability of detection and

batch acceptance under a sampling plan. Protection against a poor quality individual batch as

well as the overall concentration level in a series of batches are important. An individual or

isolated batch needs not necessarily be homogeneous which will also affect the protection to the

consumer. Hence we discuss the following four cases:

• Case 1: Contamination within a batch is homogenous (i.e. case of an individual but

homogeneous batch).

• Case 2: Contamination within a batch is inhomogeneous (i.e. case of an individual but

inhomogeneous batch).

• Case 3: Contamination in a series of batches which are homogenous within the batch but

the concentration level fluctuates from batch to batch.

• Case 4: Contamination in a series of batches which are inhomogeneous within as well as

the concentration level fluctuates from batch to batch.

Throughout this paper, C is the observed concentration of microorganisms per gram. The

random variable X represents the number of microorganisms in w. The notations E [X ], Var [X ]

and S [X ] are used to refer to the within batch mean concentration (or expected value), the

variance and standard deviation of the concentration respectively. Notations of μ and σ are



2.3 Concentration-based sampling plan 11

specifically used for the parameters of the lognormal distribution on the base 10 logarithmic

(log10) scale. The log notation without a subscript refers to the natural logarithm (loge or ln). A

summary of the symbols used is presented in the Appendix.

The paper is structured in the following way. We start the discussion with concentration-based

sampling plans in section 2.3. Cases 1 and 2 are studied in subsection 2.3.1 focusing on the

quality assurance of on every batch intended for individual buyers and importers (who in turn

represent the ultimate consumers). The sampling plan design issues are discussed in subsection

2.3.1. In subsection 2.3.2, we consider Cases 3 and 4 which are important for regulatory purposes

wherein the focus is on a broader population dealing with issues such as the rate of cases of

food-borne disease. Finally, a variables version of the inspection plan is studied in section 2.4.

2.3 Concentration-based sampling plan

2.3.1 Single batch microbial risk assessment.

In this section we focus the analysis on presence-absence tests and particularly for safety

characteristics. Safety inspection is carried out when microorganisms pose a significant risk

for human health even when these are unknowingly consumed in minute quantity. Ideally all

accepted batches must be free of pathogens. Safety inspection results are often qualitative

because the batch disposition is based on whether the target microorganism is present in any of

analytical samples or not.

Inspection of a homogeneous batch (Case 1)

In a homogeneous batch , the concentration of pathogen will not differ within it. In other words,

if the batch is split into sublots, no sublot is expected to contain either high or low concentration

when compared to any other sublot. Homogeneity is often assumed in well-mixed bulk materials.

The Poisson distribution is commonly used to model the count (X) of pathogens found in random

samples drawn from a homogeneous batch. For the Poisson distribution, E [X ] and Var [X ] are

equal to λ , the underlying concentration rate in a fixed amount (mass) such as w = 5g of material.

The Poisson function

P(x|λ ) = λ xe−λ

x!
(2.1)

gives the probability of obtaining x cells for a given λ . While the concentration C gives the

actual contamination level, λ is a measure of the risk of contamination. The parameter λ must

be defined for a fixed constant mass or amount, and without loss of generality λ can be assumed

to be associated with smallest amount that can be tested (such as 5g). Suppose that the analytical

method is also capable of analysing an amount larger than the unit amount of material, say

wy = 25g. Let m = wy/w. Let the random variable Y represents the number of microorganisms

in wy. The rate parameter λy for the larger amount wy will then be λy = λwy/w = λm. In
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presence-absence tests, an analytical sample is declared as positive when at least one target

microorganism is found. Hence the probability of detection Pd(λ |w) in a single analytical sample

is given by P(x > 0) = 1−P(x = 0) = 1− e−λ for the size w. The probability of detection is

greater for the analytical sample of size wy because P(y > 0) = 1− e−λy = 1− e−λwy/w. This

means that an increase in the analytical amount will always lead to a higher the probability of

detection. We assume that the analytical test has perfect sensitivity and specificity and thereby

avoid the complications of false positives and/or false negatives.

Let n be the number of analytical samples tested. For the inspection of a homogeneous

batch, FAO/WHO (2014) provided sets of amount w and n fixing the total T = nw. For a zero

acceptance number (c = 0) plan, the OC function giving the batch probability of acceptance

is Pa(λ |n,w) = (1−Pd)
n =

(
e−λ

)n
which is the probability of n analytical samples failing to

detect any pathogen. For a homogeneous batch, Pa = e−T λ depends on the underlying rate

parameter λ , and the total amount tested T (because T = nw), see FAO/WHO (2014). For

example, for a fixed total amount of material of 50g, testing 10 samples of 5g is similar to testing

2 samples of 25g each. In this case, the second alternative is preferable since it would involve

less testing.

Inspection of an inhomogeneous batch (Case 2)

Microorganisms grow in colonies, clusters or clumps resulting in batch inhomogeneity for the

cell counts. It is well established in food control literature that the Poisson law fails to apply

when pathogen counts are over dispersed (Var [X ] > E [X ]). The family of Poisson mixture

distributions , which combines the Poisson distribution with another continuous distribution to

account for varying λ , is adopted for modelling over-dispersed cell counts. Consider-

P(λ ,x) =
∫ ∞

0

λ xe−λ

x!
f (λ )dλ (2.2)

where f (λ ) is the mixing distribution. Popular Poisson mixture distributions are the Poisson-

gamma (Anscombe, 1950) and the Poisson-lognormal (Bulmer, 1974a). Both models have been

used extensively in the food safety literature, e.g. Toft et al. (2006), Teunis et al. (2008), Jarvis

(2008), Van Schothorst et al. (2009), Zwietering (2009), Gonzales-Barron and Butler (2011b),

Gonzales-Barron and Butler (2011a), Jongenburger et al. (2012b), Jongenburger et al. (2012c),

Williams and Ebel (2012), Gonzales-Barron et al. (2013), Mussida et al. (2013a) and Haas et al.

(2014).

We particularly focus on the Poisson-lognormal (PLN) distribution because it is common to

study the effect of the amount w using this mixture distribution. The PLN arises as a Poisson

process in which the rate parameter λ is lognormally distributed (with parameters μ and σ ) with

probability density function:

P(x|μ̇, σ̇) =
∫ ∞

0

λ xe−λ

x!

1

λσ̇
√

2π
e

(
− (ln(λ )−μ̇)2

2σ̇2

)
dλ (2.3)
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The above integral has no analytical solution. Hence the probability of detection is also evaluated

numerically. Notice that the notations μ̇ and σ̇ in Eq. 2.3 are specifically used to assert that

these are on the natural logarithmic scale (loge) and obtained from the log10 base parameters as

μ̇ = ln(10)μ and σ̇ = ln(10)σ .

Consider the zero acceptance number plans with n = 10 and 30 for the underlying PLN

distribution with unknown parameters μ and σ and a unit amount w. Ideally, the performance of

these plans must be assessed using the OC or Pa contours for given (μ,σ ) pairs. The traditional

two dimensional OC curve of Pa vs λ is suitable for the Poisson case but not for the PLN case

because it involves two parameters for a fixed amount w. The PLN distribution approaches the

Poisson distribution for σ < 0.10, and only in such cases can the two-dimensional OC curve

plotting Pa against μ be useful. Fig. 2.1 gives the OC contour plot of the plans (n = 10 and

30, c = 0) which shows the Pa contours against μ and σ (both in log10 scale). This plot clearly

shows that the higher the inhomogeneity within a batch, the smaller the batch probability of

acceptance will be.

In order to compare the sampling plans based on the Poisson and PLN models, Pa can be

plotted against the respective expectations E [X ] for a fixed σ (Fig. 2.2). E [X ] is referred to as

the arithmetic mean of the discrete cell counts in food control literature, but it should be noted

that E [X ] = λ = 10μ+log(10)σ2/2 is not computed using sample data but rather is an unknown

population value. Under a heterogeneous spatial distribution of cells, the probability of detecting

contamination is smaller. The higher the dispersion of cells, the smaller the chances of detecting

contamination.

Using composite samples

Composite sampling aims to provide more representative samples with a reduced variability in

the test results. Therefore, this technique might lower the risk while keeping the analytical costs.

See e.g. ICMSF (2002). Compositing is a natural averaging process in which nI primary units

or increments of size w are physically combined forming n composite or pooled samples. The

composite samples are then well mixed and a subsample of size w is obtained from each one for

testing purposes. In this section, we show how composite sampling is another important strategy

to take into account in the design of microbiological sampling plans.

There are several recommendations on how compositing should be used. For example, Jarvis

(2007) discussed three methods of compositing. For the purpose of this paper we only analyse

the composite that was formed before the laboratory test so that compositing does not conflict

with the test procedure. The case in which the samples are firstly incubated as in Jarvis (2007)

third alternative, would yield better probability of detection. We need to mention that the number

of increments to be used depends on the specific test protocol. For the purpose of this discussion

we use nI = 4 increments. Moreover, the efficiency of this technique depends on the quality

of the mixing of the primary units. Perfect composite means that every individual sample will

equally contribute to the final subsample. However, this is rarely achievable in practice. For

the development of the theory, we assume perfect mixing and our results are expected to hold
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n = 10

Probability of acceptance contour levels

μ

σ

0.5

1.0

1.5

−3.0 −2.5 −2.0 −1.5
0.0

0.2

0.4

0.6

0.8

1.0

n = 30

Probability of acceptance contour levels

μ

σ

0.5

1.0

1.5

−3.0 −2.5 −2.0 −1.5
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 2.1 OC contour plots of two-class concentration-based sampling plans with n = 10 and 30.

The batch probability of acceptance is obtained from the Poisson-lognormal distribution.
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Fig. 2.2 Effect of batch inhomogeneity on the OC curve (n = 10, c = 0). Cases 1 and 2 refer to

homogenous and inhomogeneous contamination respectively.

as long as the mixing is not too imperfect. Various scenarios of imperfect mixing have been

discussed by Nauta (2005) and Santos-Fernández et al. (2015).

In Fig. 2.3 we compare sampling plans using composite samples and using the primary

samples directly (without pooling primary samples). Compositing has little effect when mi-

croorganisms are homogenously distributed, which is given by the difference between the black

and grey solid lines (Case 1 vs. Case 1, nI = 4). However, for heterogeneous contamination

the use of composite samples provides higher stringency and lower consumer’s risk. Notice

the difference between the dashed black and dashed grey lines (Case 2 vs. Case 2, nI = 4).

Since the spatial distribution of cells is commonly unknown, it seems to be convenient to test

pooled samples. Compositing can reduce the risk difference associated with both homogenous

and inhomogeneous distributions of microorganisms. In subsequent sections we are not using

composite samples.

Effect of increasing the analytical amount

In this section we examine the risk when the analytical amount is increased m-fold using

three methods (designated as a, b and c), corresponding to three different spatial levels of

inhomogeneity.

In the first approach (a), the effect of wy is incorporated via the parameters of the population

of the bigger unit (μy and σy). The distribution parameters are obtained using the arithmetic

moments E (Y ) = mE (X) and V (Y ) = mV (X). The expected number of microorganisms in the

bigger unit is m times the expected number in the small unit. The same is true for the arithmetic
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Fig. 2.3 Effect of using composite samples with nI = 4 increments using the plan (n = 10, c = 0)

for the cases of homogeneity and inhomogeneity.

variance. These relationships are based on the assumption that there is no spatial correlation

in the (contamination) rate. Using this method, Mussida et al. (2013b) recently demonstrated

how an increase in w leads to a reduction in the risks. This approach, known as convolution, is

briefed in 2.B.

The second method (b) is obtained using the probability mass function given by Haas et al.

(2014, pp.193) for a given m value.

P(x|μ̇, σ̇ ,m) =
∫ ∞

0

(λm)x e−λm

x!

1

λσ̇
√

2π
e

(
− (ln(λ )−μ̇)2

2σ̇2

)
dλ (2.4)

This method assumes that λ is locally constant, equivalently that there is a high spatial

correlation locally. That is, adjacent small units in the batch are assumed to have similar

numbers of cells. Since Eq.2.4 depends on m, this form of the distribution is different from the

usual two-parameter PLN distribution based on a fixed w. This equation clearly shows that m
affects the probability of detection Pd = P(0|μ,σ ,m) and hence batch probability of acceptance

Pa(μ,σ |m) = (1−Pd)
n for the c = 0 plan. For fixed μ and σ , an increase in w will decrease Pa.

The degree of spatial correlation in the contamination is commonly unknown. Our third

method (c) represents the scenario in which the contamination is most likely to be present in one

cluster. The Pd in this alternative is obtained via Monte Carlo simulations using the following

algorithm:

• Step 0. Define the parameters μx, σx in the small analytical unit X of size wx.
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• Step 1. Set the increased analytical unit wy and obtain m.

• Step 2. Set the number of iterations I. Using I = 50,000 gives a good estimate.

• Step 3. Generate the number of microorganisms in wx using random numbers from the

PLN(μ , σ ), creating a two dimensional grid Ni j with I rows and m columns.

• Step 4. Sort (ascending) Ni j so that the contaminated small units form a unique cluster in

one extreme of the grid.

• Step 5. Sum by rows (∑m
j=1 Ni j) to obtain the number of microorganisms in the bigger unit

Y .

• Step 6. Obtain the Pd as the proportion of Y units with one or more microorganisms.

This contamination is likely to occur when a highly contaminated external source enters to

the stream of product. ICMSF (2002, pp.193) describes this type of contamination as “comet

like”. Other examples of this type contamination can be found in the literature. See for example

the study of the contamination of beef with E. coli O157 by Kiermeier et al. (2011). This case is

also described by Jongenburger et al. (2011b) as localized contamination .

In Table 2.1 we compare the detection probabilities for Case 2 using the three types of

clustering described above. The scale parameter is fixed (σ = 0.8) and different values of μ and

w are considered.

Table 2.1 Detection probability according to different methods for σ = 0.8.

E (X) V (X) μ m Case 2a Case 2b Case 2c

0.055 0.37 -2 2 0.08 0.07 0.04

0.055 0.37 -2 5 0.18 0.14 0.04

0.055 0.37 -2 10 0.32 0.21 0.04

0.546 3.01 -1 2 0.35 0.31 0.22

0.546 3.01 -1 5 0.62 0.47 0.22

0.546 3.01 -1 10 0.83 0.59 0.22

Case 2a of no clustering gives the highest probability of detection being therefore the most

optimistic scenario. The most conservative approach is Case 2c because it gives the lowest Pd .

This is the worst case scenario increasing the consumer’s risk because there is a high correlation

between the contaminated units, and hence the contaminated units form a large cluster with the

rest of the batch cluster free of pathogens. Hence, it may be appropriate to design microbial

sampling plans based on this conservative supposition for some product types relying on the

empirical knowledge on the frequency of large contaminated clusters to improve consumer

protection. This, however, will undoubtedly require higher sample effort involving additional

testing costs.
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Sampling plan design

In this section we provide the required sample size for a given μ , σ , Pd and w for Cases 2a and

2b. We consider that the typical unit amount tested is lognormally distributed with σ = 0.8.

From Table 2.2, it should be noted that for small μ , say -3 log10 cfu/g, using a small unit amount

of 5g is simply not viable since it requires an enormous sample size. Testing 107 samples of 10g

provides the same level of protection as 43 samples of 25g each for Case 2a. Case 2b requires

higher sample sizes because this alternative lowers the probability of detection.

Table 2.2 Number of analytical samples (n) to be tested when the contamination is modelled

by the Poisson-lognormal distribution for a desired probability of detection given μ , σ and

analytical portion (in g).

Case 2a Case 2b Case 2c
σ = 0.8 σ = 0.8 σ = 0.8

m w Pd μ=-3 μ=-2 μ=-1 μ=-3 μ=-2 μ=-1 μ=-3 μ=-2 μ=-1

1 5 0.67 213 27 5 213 27 5 213 27 5

1 5 0.90 446 55 10 446 55 10 446 55 10

1 5 0.95 580 72 13 580 72 13 580 72 13

1 5 0.99 891 110 20 891 110 20 891 110 20

σ = 0.5 σ = 0.5 σ = 0.5
μ=-1.56 μ=-0.56 μ=0.44 μ=-1.56 μ=-0.56 μ=0.44 μ=-1.56 μ=-0.56 μ=0.44

2 10 0.67 107 14 3 111 15 3 213 27 5

2 10 0.90 224 29 6 231 32 7 446 55 10

2 10 0.95 291 37 7 301 41 9 580 72 13

2 10 0.99 447 57 11 462 63 13 891 110 20

σ = 0.38 σ = 0.38 σ = 0.38

μ=-1.03 μ=-0.03 μ=0.97 μ=-1.03 μ=-0.03 μ=0.97 μ=-1.03 μ=-0.03 μ=0.97

5 25 0.67 43 6 2 48 8 2 213 27 5

5 25 0.90 90 12 3 101 16 4 446 55 10

5 25 0.95 117 16 4 131 21 5 580 72 13

5 25 0.99 180 24 5 201 31 8 891 110 20

2.3.2 Average quality in accepted batches

Highly contaminated batches are most likely rejected by the inspection process. Similarly good

quality batches are likely to be accepted and cleared to the consumers. As a result, the overall

quality in the population (or series) of accepted batches is expected to be superior when compared

to the quality in the submitted or uninspected batches. This property is clearly established in the

literature for physically discrete units, mainly when screening for defective units and correcting

them are possible. In bulk materials, the quality after inspection is more complex to derive

compared to the traditional inspection of units in parts manufacturing. In the microbial risk

assessment context, several authors have shown the need for models accounting for variability

from batch-to-batch. See e.g. Paoli and Hartnett (2006), Zwietering (2009), Gonzales-Barron

et al. (2013), Mussida et al. (2013b).
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The impact of pathogenic microorganisms in public health is often assessed for a single batch.

Given that the probability of illness is a function of the intake dose (number of microorganisms),

the computation of metrics like the expected annual number of illnesses is a function of the

quality of the accepted batches. For example, FAO/WHO (2007) provides a web-based tool

for risk assessment for Enterobacter sakazakii in powdered infant formula. This tool gives the

quality after inspection for a given log concentration. It considers within batch heterogeneity as

well as between batch variability. The main limitation of this tool is that it requires knowledge of

the incoming log concentration, which is generally unknown. Moreover, the computation of the

risk for increasing the analytical amount is obtained from Eq.2.4 (Haas et al., 2014). Mussida

et al. (2013b) instead used the convolution approach that gives the most optimistic scenario.

However, both methods underestimate the risk when the contamination is localized in a specific

part of a batch (Case 4c).

In the next subsection, we discuss the measurement of a limit for the average quality after

inspection . This limit gives the peak average level of contamination in accepted batches and

portrays realistic picture of the quality received by the consumer. We also discuss the scenario of

a series of homogenous batches with variation in the contamination rate from batch to batch.

Simulation algorithm

We opted for Monte Carlo simulation in this section since the analytical solution is intractable

when batch to batch variability is additionally involved. The following algorithm allows the

computation of the outgoing concentration levels in accepted batches for Cases 3 and 4:

• Step 0. Set a sample size (n) and an analytical unit amount (w), e.g. n = 10 and w = 5.

• Step 1. Homogeneity within the batch is modelled with the Poisson distribution with

rate λ . We first assumed that the batch is homogenous, but allow the contamination

rate to vary from batch to batch. The inhomogeneous case is then modelled with the

Poisson-lognormal distribution with parameters μ and within batch standard deviation σw.

Similarly, μ changes from batch to batch.

For a given contamination level, the parameters under batch homogeneity and inhomogene-

ity are matched using the mean of the original counts E [X ] = λ = 10μ+log(10)σ2/2. Notice

that if we use the mean log concentration, the risk is underestimated. Define the within

and between batch standard deviations, say σw = 0.8 (Legan et al., 2001) and σb = 0.8

(Mussida et al., 2013b).

• Step 2. Set the number of batches N to be simulated. For instance, N = 50,000 gives a

good estimate.

• Step 3. Suppose that μi changes from batch to batch and that the normal distribution with

standard deviation (σb) is suitable to describe it. Generate N values μi with mean μ and

standard deviation σb. Compute the corresponding λi = 10μi+log(10)σ2/2.
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• Step 4. For each μi (inhomogeneous case) and the matching λi (homogenous case), obtain

the probability of detecting contamination and batch probability of acceptance Pa.

• Step 5. Determine the concentration of microorganisms after inspection as the weighted

arithmetic mean of λi using the batch Pa as weights.

• Step 6. For the incoming and accepted batches, estimate the population prevalence (p) for

the homogeneous and inhomogeneous scenarios. The prevalence p is the proportion of

analytical units in the population with at least one microorganism. The prevalence before

inspection is p = ∑N
i=1 Pdi/N. For accepted batches, it becomes p = ∑N

i=1 Pdi ×Pai/∑N
i=1 Pai .

• Step 7. Compute the proportion of accepted batches out of N.

• Step 8. Repeat Steps 1-7 for various μ in the interval −7 � μ � 0. The bigger the μ value,

the lower the proportion of accepted batches would be.

We considered that every batch is inspected only once and no resampling is carried out when

a nonconforming batch is found. The concentration of microorganisms and the associated

prevalence are treated as measures of quality for the incoming and accepted batches and calculated

in the above steps.

Results

Fig. 2.4 compares several metrics for the submitted as well as the accepted batches using

the sampling plan n = 10, c = 0, w = 5g, σw = σb = 0.8. In Fig. 2.4(a), we compare the

contamination levels of the incoming batches with those in accepted batches. The average

concentration is substantially lower in the accepted batches when compared to the concentration

before inspection. The concentration in Case 4 is higher when compared with Case 3, since

batches with high and localized contamination are more difficult to detect.

Fig. 2.4(b) shows the prevalence before and after inspection. Notice that Case 2 presents

a lower prevalence than Case 1 for the same concentration rate. However, the prevalence is

similar in accepted batches irrespective of whether the submitted batches are homogeneous or

not. For the range of μ we studied, the prevalence was found to be monotonically increasing

with μ . The prevalence after inspection does not decrease (see the right-hand part of this graph)

because a contaminated batch cannot be replaced with a batch guaranteed to be completely free

of contamination (which can occur in screening a batch of discrete units with non-destructive

testing). A newly produced batch is subjected to inspection and upon acceptance; it can take the

place of a rejected batch to form part of the series of batches released to the consumers. Fig. 2.4

(a) represents the contamination for hygiene characteristics, where the conformance depends

on the level of the contamination. While (b) is more relevant for safety characteristics, where

non-conformance as well as noncompliance is caused by the presence of a single cell or more in

the sample.
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In Fig. 2.4(c) we show the proportion of accepted batches in our simulation for Cases 3 and

4 along with the batch probability of acceptance for Cases 1 and 2. An increase in μ means a

higher contamination and higher probability of detection in the incoming batches. Notice that the

risk is higher when considering between batch variation because the OC curve for Cases 3 and 4

is less steeper when compared with Cases 1 and 2. Consider the sampling plan (n = 10,c = 0)

with more than 50% free of contamination in the submitted batches. The mean contamination in

the batches received by the consumers is 0.07 cfu/5g. An increase in n is needed to lower down

the mean contamination in the accepted batches.
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Fig. 2.4 (a) Incoming concentration (λ ) is represented by the solid line. The mean concentration

after the inspection for Cases 3 and 4 are shown as dashed and dotdashed lines. (b) Estimates of

prevalence in the incoming and in the accepted batches. (c) Probability of acceptance for the

homogeneous and inhomogeneous batches, before and after inspection.
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Effect of increasing the analytical amount

Assume that the analytical amount w is increased five-fold (from 5 to 25 g). The probability of

detection for the heterogeneous case in Step 4 is obtained using the three methods described in

the last section. The simulation results shown in Fig. 2.5 reveal the following:

1. the concentration after inspection in the bigger analytical unit is more than the concentra-

tion in the smaller unit (E [Y ]> E [X ]). However, the relative concentration (at the same

w) is smaller for the bigger analytical unit because E [Y ]< E [X ]×w. Consequently, the

overall contamination is reduced in the accepted batches when using a bigger w.

2. the prevalence in the bigger analytical unit increases, since the probability of observing

at least one cell is increased. However, the relative prevalence (at the same w) is smaller

since py < px ×w.

3. the proportion of accepted batches is reduced because of the increased probability of

detection for the analytical sample.

4. as expected the Case 4 becomes closer to Case 3 with increased analytical unit amount.
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Fig. 2.5 Increased analytical unit amount w = 25g. (a) Incoming concentration (λ ) is represented

by the solid line. The mean concentrations after inspection for Cases 3 and 4 are shown as dashed

and dotdashed lines. (b) Estimate of the prevalence of the contamination in the incoming and in

the accepted batches. (c) Probability of acceptance for the homogeneous and inhomogeneous

batches, before and after inspection.
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2.4 Variables sampling plan

Variables plan are mainly employed for hygienic indicators where the background concentra-

tion level is low but not necessarily absent, e.g. Enterobacteriaceae in meat. The lognormal

distribution is the de facto model for estimating the risk in this case. This distribution is easily

transformed to normal after applying log10 and the traditional variables plan is then used. Let

V = log10(X) and mv = log10 (m). The batch is accepted if v̄+ kσv � mv, otherwise rejected,

where v̄ = ∑n
i=1 vi/n is the mean of the log10-transformed count, σv is the known standard devi-

ation of V and k is the critical distance. If the left part in the acceptance criterion (v̄+ kσv) is

large, the prevalence is higher than expected and hence the batch should be rejected.

Effect of increasing the analytical amount

In this plan, increasing the analytical amount also increases the chances of finding contamination

and therefore it also increases the probability of rejecting poor quality. The effect of w on the

performance of the variables plan is not reported in the literature. Consider the following example.

Suppose that the contamination in the small analytical unit X of 5g is lognormally distributed

with σw = 0.8, X ∼ LN (μ,σw = 0.8). Consider a microbiological limit m = 2.5 log10 cfu/5g.

Consider that the analytical method is also capable of analysing a greater amount, wy = 25g. In

order to obtain the parameters of the bigger unit (μy and σy), we used the convolution approach

previously described. In Fig. 2.6 we show the OC curve of the plan n = 10 for w = 5 & 25. We

notice the substantial reduction in the limiting quality level when increasing w.

2.4.1 Sampling plan design

In Table 2.3 we show the required sample size for given values of w, μ , σw for the case of an

individual batch. From this table, it can be noted that the sample size is significantly reduced

with a higher analytical amount. For example, using 30 samples of 5g each is equivalent in terms

of consumers protection to using 11 samples of 25g each.

Table 2.3 Number of analytical samples to be tested n and the critical distance k given μ , σw and

w values. T = w×n represents the total amount to be tested.

m w n T μ σw LQL k
1 5 10 50 0.00 0.80 1.6 1.89

2 10 6 60 0.44 0.72 1.6 1.47

5 25 3 75 1.02 0.60 1.6 0.84

1 5 20 100 0.00 0.80 1.2 2.19

2 10 15 150 0.44 0.72 1.2 1.85

5 25 6 150 1.02 0.60 1.2 1.20

1 5 30 150 0.00 0.80 1.0 2.31

2 10 24 240 0.44 0.72 1.0 2.02

5 25 11 275 1.02 0.60 1.0 1.46
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Fig. 2.6 OC curve of the variables plan with n = 10 and σw = 0.8 for w = 5 and 25g. This figure

shows that an increased analytical unit amount reduces the consumer’s risk.

2.4.2 Average quality in accepted batches using variables plan

In this section, we explore the microbiological quality in accepted batches when the inspection is

based on a variables plan. In the population of accepted batches, the distributional parameters

of the contamination cannot be obtained analytically. We resorted to the simulation procedure

previously discussed to obtain the probability of acceptance.

In Fig. 2.7 (a), we compare the concentration in the submitted as well as in the accepted

batches for the sampling plan n = 10, w = 5g when σw = σb = 0.8. A substantial reduction in

the concentration is achieved after sampling inspection. In Fig. 2.7 (b), we show the probability

of acceptance for a single batch and for a series of batches allowing for batch to batch variation.

The OC curve becomes less stringent after allowing for variability between the batches. For

example, at a limiting concentration level μ = 1.5, the consumer’s risk of accepting a single

poor quality batch is only half of the risk when batch to batch variation of the order σb = 0.8 is

present even though the average concentration level for these batches is also at μ = 1.5.

2.5 Discussion and conclusions

Microbiological sampling plans under a wide range of scenarios including concentration-based

and variables plans are discussed in earlier sections. We provided a broad range of factors which

can affect quality including the spatial distribution of microorganisms, the use of composite
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Fig. 2.7 (a) Incoming concentration of the contamination (represented by the solid line) in

relation to μ . The concentration after the inspection is given by the dashed line. (b) It compares

the batch probability of acceptance for a single batch and for the series of batches.

samples, the amount of material used for testing purposes and then assessed quality after

inspection in a series of batches. We listed the merits and limitations of methods found in the

bibliography (e.g. FAO/WHO, 2007; Mussida et al., 2013b) which incorporate the analytical

unit amount in the computation of the consumer’s risk. In both, concentration-based and

variables inspection plans, the contamination in the accepted batches is considerably smaller

when compared with the contamination in the batches submitted for inspection. This means a

reduction of the risk of contamination is achieved by sampling inspection, and therefore assures

quality received by the consumers.

In the convolution approach, the analytical test units are considered to be uncorrelated. There-

fore, the aggregated unit is assumed to be the sum of independent and identically distributed

random variables. Increasing the unit analytical amount, allows undoubtedly a higher proba-
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bility of detection. However, this strategy should be employed with caution. It brings further

complications because correct parameter estimation for the bigger unit is difficult. The size of

the contamination is often bigger than the size of the analytical unit resulting in non-ignorable

spatial correlation. In this scenario, the current methods may fail to provide a good estimate of

the probability of detection. However, the convolution theory used by Mussida et al. (2013b)

has proven to be satisfactory under certain conditions, for example, when considering a small

increase in w and for a limited range of standard deviations. The results of this study indicate

that highly localized contamination (Case 4c) warrants further increased sampling in the absence

of empirical knowledge on the spatial nature of potential contamination.

We should mention that the main limitation of compositing is the risk of dilution. For

example, suppose that one of the increments contains the pathogen. If we mix this increment

with other non-contaminated samples, then the concentration will be reduced. This would yield a

negative result for concentration values below the limit of detection. Hence, the sensitivity might

be affected; see the comments of Jarvis (2007). Also, the extra laboratory manipulation while

preparing and mixing the composite might increase the risk of cross-contamination. Therefore,

the risk of false positives might be increased, affecting the test specificity. However, this is factor

is often considered as less relevant and is assumed to be negligible.

Finally, statistical models accounting for spatial distribution, such as Log-Gaussian Cox

Process model, should be investigated in order to provide a better characterization of the risk in

the food safety area.
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Appendix 2.A Table of symbols

n sample size or the number of analytical samples tested

w analytical unit amount

C concentration of microorganisms

λ rate parameter in the Poisson distribution

Pa probability of acceptance

Pd probability of detection

p prevalence

nI number of primary samples or increments that are combined to form a composite sample

LN lognormal distribution

PLN Poisson-lognormal distribution

μ location parameter (mean log) of the LN and PLN distributions on the log10 scale

σw within-batch scale (standard deviation) of the LN and PLN distributions on the log10 scale

σb between batches scale (standard deviation) on the log10 scale

LQL Limiting Quality Level

β consumer’s risk

X number of microorganisms in the small unit

Y = ∑X number of microorganisms in the bigger unit

E [X ] expected value

Var [X ] variance in the arithmetic scale

S [X ] standard deviation in the arithmetic scale

Case 1 individual but homogeneous batch

Case 2 individual but heterogeneous batch

Case 3 series of homogenous batches

Case 4 series of heterogeneous batches

a convolution method

b Haas et al. (2014) Eq.2.4 method

c simulation method for the case of one cluster

Appendix 2.B The convolution theory

If the cell cluster size is expected to be small compared to analytical unit amount for low

contamination levels, the spatial correlation between the analytical units can be considered

negligible. In other words, the analytical amounts can be treated as independent. Suppose

that the analytical method is also capable of analysing a greater amount of material. For the

bigger amount, the process of aggregation of the small analytical samples can be treated as the

convolution or sum operation done on random variables. The sum of independent log-normally

distributed random variables does not have a closed-form solution, but it can be approximated

by another lognormal distribution under certain conditions, (Johnson et al., 1994, pp. 217).

That is, if Y be the sum of independent and identically distributed (i.i.d.) lognormal random

variables X , then the approximate distribution of Y is LN(μy,σy) where E (Y ) = mE (X) and

V (Y ) = mV (X). The mean and variance for the larger amount is obviously bigger when several

small amounts are aggregated. This approach of approximating the sum of lognormals is known

as the Fenton-Wilkinson (Fenton, 1960) method. In the log10 scale, the parameters μy and σy of

the population using a bigger unit Y become



30 Quantity-Based Microbiological Sampling Plans and Quality after Inspection

μy = log10 (E [Y ])− log(10)σ2
y /2 (2.5)

σy =

√√√√log10

(
1+

Var [Y ]−E [Y ]

(E [Y ])2

)
/log(10) (2.6)
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3.1 Abstract

The design of attribute sampling inspection plans based on compressed or narrow limits for food

safety applications is covered. Artificially compressed limits allow a significant reduction in the

number of analytical tests to be done while maintaining the risks at predefined levels. The design

of optimal sampling plans is discussed for two given points on the Operating Characteristic

curve and especially for the zero acceptance number case. Compressed limit plans matching

the attribute plans of the International Commission on Microbiological Specifications for Foods

are also given. The case of unknown batch standard deviation is also discussed. Three-class

attribute plans with optimal positions for given microbiological limit M and Good Manufacturing

Practices limit m are derived. The proposed plans are illustrated through examples. R software

codes to obtain sampling plans are also given.
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3.2 Introduction

Microbiological assurance of food quality is commonly carried out using sampling inspection

plans. The sampling procedure comprises the number of samples (n) to be drawn and the lot

acceptance criterion includes the upper microbiological limits. Section 3.A lists further symbols

and definitions employed in the paper.

Microbiological attribute plans are divided into two groups FAO/WHO (2014):

1. plans for presence-absence response, intended for microorganisms that in small quantities

represent a serious risk for the human health;

2. plans for concentration response, which are mainly used for hygiene characteristics. In

this case, every analytical sample is classified as conforming if the concentration is below

the set microbiological limit.

This paper deals with compressed limit plans for concentration and/or hygiene characteristic

type responses such as the Aerobic Plate Count (APC). Compressed specification limits cannot

be set to safety characteristics because the specification limit is generally equal to zero and

this limit cannot be compressed. Microbiological risk assessment is commonly based on a

one-sided specification such as an upper regulatory limit or food safety criterion e.g. m = 100

colony forming units per gram (CFU/g) of Listeria monocytogenes in “ready-to-eat foods other

than those intended for infants and for special medical purposes” European Commission (2005).

Microbiological limits included in the microbiological criteria could be either established by

food safety authorities, defined by food operators or are the result of best practices.

The performance of a sampling plan is revealed by its Operating Characteristic (OC) curve .

The OC curve gives the batch probability of acceptance for a given proportion nonconforming.

The vertical axis of the OC curve gives the consumer’s risk (β ) for a given Limiting Quality

Level (LQL). The OC curve also shows the probability of acceptance at a given Acceptance

Quality Limit (AQL) from which the producer’s risk (α) of rejecting AQL quality batches can be

found. High analytical testing costs may force the use of smaller sample sizes, which can lead to

lower protection for the consumer. The aim of this paper is to discuss the use of compressed

specification limits in order to provide better consumer protection even with smaller sample

sizes.

The paper is organized in the following way. An overview of the Good Manufacturing

Practices (GMP) limits is given in Section 3.3. Section 3.4 discusses the use of two-class

compressed limit plans when the standard deviation is known as well as unknown. Section

3.5 introduces a new compressed limit (CL) approach for three-class plans and Section 3.6

presents some numerical results including a discussion on the optimum two-class plans of the

International Commission on Microbiological Specifications for Foods (ICMSF), ICMSF (2002,

2011). Finally, the last part discusses the case in which the underlying concentration distribution

is other than lognormal.
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All the calculations and figures were obtained using the R programming language R Core

Team (2015). For some computations we borrowed functions from the R-packages Acceptance-
Sampling (Kiermeier, 2008) and MFSAS (Childs and Chen, 2011).

3.3 Good Manufacturing Practices (GMP) limits

It is common that food producers use an additional (self-imposed) limit or a compressed or

warning limit during process control. The use of GMP limits in variables plans as described

by Kilsby et al. (1979) allows producers to correct the production process immediately after

exceeding the GMP warning limit, avoiding significant deviations from the process target. GMP

limits when employed for lot-by-lot disposition can also lower the consumer’s risk. GMP limits

are used in three-class attribute plans (Bray et al., 1973b; Dahms and Hildebrandt, 1998) as well

as in variables inspection plans as a warning limit (Kilsby et al., 1979).

Three-class plans by attributes involve two safety specifications namely the regulatory limit

(M) and the GMP limit (m). Here m is defined as the maximum allowable frequency of pathogens

under GMP conditions (Dahms and Hildebrandt, 1998) and this limit is set conservatively

well below M. While the use of M results in the proportion nonconforming (pM), m defines a

proportion marginally acceptable (pm) , see Figure 3.1.
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Fig. 3.1 Illustration of the GMP limit (m) in relation to the regulatory limit (M) for the normal

distribution.

The traditional “known sigma” variables plan based on the normal distribution involves the

decision (lot acceptance) criterion:

X̄ + k1σ � M (3.1)
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where X̄ and σ are the sample mean and the batch standard deviation respectively and k1 is

the critical distance. If a compressed GMP limit is employed, the lot acceptance becomes

X̄ + k2σ � m. The new critical distance k2 (< k1) is obtained for the original sample size, the

desired reduced LQL and β risk under GMP conditions. See Kilsby et al. (1979) or Malcolm

(1984) for more details.

Having X̄ + k2σ � m but X̄ + k1σ < M means that the batch is acceptable but corrective

actions must be taken to lower the mean level of the process. A very small m will lead to an

increase in the producer’s risk. Hence the choice of m requires risk evaluation. The relationship

between GMP limits and compressed limits has not been explicitly studied in the literature.

3.4 Two-class compressed limit attribute plans for known σ

The term compressed limit is synonymous with terms such as pseudo-specification, tightened

limit, and narrow limit. A compressed limit is an artificial limit which is fixed well below the

regulatory or specification limit. Sampling plans based on compressed limits have been studied

by Ott and Mundel (1954), Beja and Ladany (1974), Schilling and Sommers (1981) and Evans

and Thyregod (1985) and others.

The traditional compressed limit sampling plans are based on the normal distribution and the

standard deviation is assumed to be known and stable. Log transformed microbial counts are

generally assumed to be normally distributed with a known standard deviation on the log10 scale

σ = 0.8 (Dahms, 2004; Legan et al., 2001). This assumed batch standard deviation is larger

than usually expected and therefore the consumers risk is not adversely affected. Compressed

limit plans use the same decision criterion as the two-class attribute plans namely d � c; where

d is the observed number of nonconforming analytical results beyond the tightened limit and

c is the acceptance number. Compressed limit plans partly take advantage of the underlying

continuous probability distribution of the variable of interest and hence require smaller sample

sizes. Compressed limit plans may achieve a reduction in the sample size of about 80% when

compared to using uncompressed specification limit (Schilling and Neubauer, 2010).

The procedure of setting a compressed limit for the normal distribution is described below.

Let Zp be the quantile in the normal distribution associated with a proportion nonconforming

p. See Figure 3.2. By compressing the specification by t standard deviations (σ ), an artificial

proportion nonconforming g results. The normal distribution quantile corresponding to this

artificial proportion nonconforming Zg yields the compressed limit. Therefore,

Zg = Zp −σt (3.2)

In the literature t is known as the compression constant , and the value t = 1 is often employed for

the sake of simplicity. However, t = 1 compressed limit plans may not be optimal for controlling

the producer’s and consumer’s risks at desired levels.
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Fig. 3.2 Illustration of the compressed limit approach in the normal distribution.

For determination of the optimum t value, Ladany (1976) proposed an iterative graphical

method based on the nomograph of the cumulative binomial distribution given by Larson (1966).

An approximate heuristic approach was later proposed by Schilling and Sommers (1981) who

provided the following formulae for the compressed limit plan parameters:

nt = 1.5nv

t = k

ct = 0.75nv −0.67

(3.3)

where nv is the sample size of the variables plan and k the critical distance obtained for the tradi-

tional variables plan, see Duncan (1986); Schilling and Neubauer (2010). Another approximate

optimal solution was suggested by Evans and Thyregod (1985). This method is based on the

normal approximation to the binomial distribution and yields better results. The formulae for the

design of compressed limit plans are

nt =
π
2

(
Zα +Zβ

ZAQL −ZLQL

)2

t = k =
ZαZLQL +Zβ ZAQL

Zα +Zβ

ct = (nt −1)/2

(3.4)
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Sampling plans published in Schilling and Sommers (1981) are not exact since the risks were

relaxed by allowing tolerances α +0.005 and β +0.005 which leads to smaller sample sizes.

Other approaches obtained by approximation to the binomial model lead to slightly different

results. Hence we provide below a new algorithm to obtain the exact optimal compressed limit

plans.

1. Given two points (AQL,α) and (LQL,β ), compute the corresponding standard normal

quantiles ZAQL and ZLQL.

2. For the sequence of t = 0(0.01)4, calculate the normal quantiles Zg1
= ZAQL − t and

Zg2
= ZLQL − t.

3. Obtain the artificial proportions nonconforming pg1
and pg2

as the right tail areas of the

standard normal distribution corresponding to Zg1
and Zg2

.

4. For given pair of points (pg1
,α) and (pg2

,β )of the OC curve, obtain nt and ct by solving

the binomial inequalities:

1−α
′
=

c

∑
d=0

(
n
d

)
pd

g1

(
1− pg1

)n−d � 1−α

β
′
=

c

∑
d=0

(
n
d

)
pd

g2

(
1− pg2

)n−d � β
(3.5)

where
(n

d

)
= n!/(d!(n−d) !) is the binomial coefficient, ! is the factorial and n, c and

d are nonnegative integers. α and β are the predefined producer’s and consumer’s risks

and α ′
and β ′

are the achieved producer’s and consumer’s risks. Note that Eq.3.5 implies

α ′ � α and β ′ � β . Guenther (1969), for instance, provides an algorithm to solve these

inequalities.

5. Select the t value that minimizes the sample size.

6. When more than one sampling plan exists, a second optimality criterion has to be em-

ployed. We propose the criterion 1 of the maximum absolute risk difference (MARD)

max
[∣∣∣α −α ′

∣∣∣+ ∣∣∣β −β ′
∣∣∣]. The MARD criterion provides a slightly tighter OC curve than

desired when α > α ′
and β > β ′

, and hence the designed plan is more stringent .

Other alternatives to the MARD criterion are available in the literature, for instance, the

minimum absolute risk difference (MIRD) min
[∣∣∣α −α ′

∣∣∣+ ∣∣∣β −β ′
∣∣∣] Schilling and Sommers

(1981). The method proposed in Schilling and Sommers (1981) does not impose the conditions

α > α ′
and β > β ′

and hence it gives the closest OC curve to the points (AQL,α) and (LQL,β ).

Evans and Thyregod (1985) suggested the use of the midpoint between all the possible t values.

Appendix 3.C gives the compressed limit plans based on two points on the OC curve. The

sampling design is also given for the MIRD criterion. The LQL values correspond to the selected

1If the MARD solution is not found to be unique, the plan with the smaller t can be chosen.
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operating ratios R = LQL/AQL equal to 20 and 40. For very small AQL values, t tends to be

large which may cause a conflict with the specification limit. 3.B contains the R codes to obtain

the optimal sampling design for other combinations of risks. We have also built an easy-to-use

web application (app) using the R package shiny (Chang et al., 2015) for those practitioners

unfamiliar with R. This tool is available at https://edgarsantosfdez.shinyapps.io/compress. As

seen in Appendix 3.C, when both AQL and LQL are very low, the usual uncompressed attribute

plans require large sample sizes such as n = 313. We show that a substantial reduction in the

sample size can be achieved using the optimum compressed limit.

The following step-by-step guide illustrates the design and operation of the compressed limit

attribute plan:

1. Assess the fit to a normal distribution and the stability of the variance using control charts.

2. Using two points (AQL,α) and (LQL,β ), obtain the number of samples to be drawn (nt),

the acceptance number (ct) and the quantile (qt) from 3.C. For other quality levels and/or

risks, use the R codes given in 3.B.

3. Obtain the artificial limit CL as the qt quantile of the normal distribution.

4. Inspect the nt items and determine the number of artificially nonconforming items (dt) for

the CL limit.

5. If dt � ct , accept the batch; otherwise reject.

Zero acceptance number sampling plans

Zero acceptance number (c = 0) inspection plans are desired in several industrial applications.

In food safety, the plans are generally designed using one point in the OC curve (LQL, β )

plus the restriction c = 0. Here, the producer’s point (AQL, α) is not relevant because for

food safety assurance the batch is expected to be free of pathogens. In the inspection of

pathogenic microorganisms, it is not possible to release a lot when one of the samples fails the

microbiological limit. Therefore the compressed limit plans introduced earlier should be limited

to ct = 0. The algorithm to find the compressed limit zero acceptance number plan for the known

σ case is described below.

1. Given the point (LQL,β ) and ct = 0 compute the standard normal quantile ZLQL.

2. Select a reasonable value for t, say t = 1 and obtain the normal quantile Zg2
= ZLQL − t.

3. Obtain the artificial proportion nonconforming pg2
corresponding to Zg2

(right tail area of

the standard normal distribution).

4. Use pg2
and β obtain nt

nt =
log(β )

log
(
1− pg2

) . (3.6)
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Two-class compressed limit for unknown σ

For the traditional variables inspection plans, the sample size for the unknown σ case is approx-

imately
(
1+ k2/2

)
times the sample size of the known σ plan, see Wallis (1947) or Schilling

and Neubauer (2010). The compressed limit attribute plan is also expected to be sensitive to

the uncertainty of the population variance. However, the design of compressed limit attribute

plans when the condition of known σ is not satisfied needs to be considered. We developed the

following Monte Carlo simulation procedure to obtain the optimal compressed attribute plans for

unknown σ .

1. For the normal distribution, there exists a one-to-one relationship between AQL and m.

That is, for given producer’s point (AQL,α), obtain the specification limit as the (1−AQL)-

quantile of the standard normal distribution.

2. Generate a random sample of size n from the standard normal distribution (μ = 0,σ = 1).

3. Obtain the compressed limit CL as m− t.

4. Obtain the number of artificial nonconforming items (d) as the number of observations of

the sample greater than CL.

5. Obtain empirically the probability of acceptance as the proportion of cases in which d � c
using at least 5000 iterations.

6. Consider select μ > 0 values. Obtain the probability of acceptance Pa for a range of μ
values.

7. To determine whether a given combination of n, c and t produces an OC curve restricted to

the given two points, the following conditions need to be satisfied: Pa � 1−α and Pa � β
at AQL and LQL respectively.

8. The optimum plan is the one that minimizes the sample size and satisfies the two point

restrictions.

9. When more than one sampling design exists obtain the plan applying MARD or MIRD

criterion.

The sampling plans designed for common combinations of quality levels are also shown

in Appendix 3.C (matched with other sampling plans). The operation of this sampling plan is

similar to the two-class compressed limit plan for known σ discussed earlier.

3.5 Three-class compressed limit attribute plan

For food hygiene variables, analytical test results can be classified in more than two classes

such as good, marginal and bad. The three-class attribute plan of Bray et al. (1973b) is the most
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commonly used multi-class plan. Three class variables plans were introduced by Newcombe

and Allen (1988). Three-class plans are convenient compared to two-class alternatives since

they provide a greater protection when the assumptions are violated, for example, when the

underlying distribution departs from the assumed model or the standard deviation is higher than

expected (Wilrich and Weiss, 2009). In three-class attribute plans, both GMP and regulatory

limits (m and M) are used simultaneously for classifying the inspected item as “acceptable”,

“marginally acceptable” or “unacceptable” instead of classifying them as just “conforming” or

“non-conforming” for the two-class attribute plans. The population proportion nonconforming,

pM, is based on the M limit while the proportion marginally acceptable, pm, is the population

fraction of items between the m and M limits. Let dM be the number of nonconforming items

found in the sample. Also let dm be the number of marginally acceptable sample units. Denote

cm and cM as the acceptance numbers for marginally acceptable and nonconforming items found

in the sample. The three-class compressed limit plan accepts the lot when both dm ≤ cm and

dM ≤ cM. If dm > cm and/or dM > cM, the lot is rejected.

Since every trial now has three possible outcomes, the probabilities are obtained from the

trinomial distribution . This model is a particular case of the multinomial distribution (Jarvis,

2008; Johnson et al., 1997). The trinomial distribution is relevant when the batch is considered

sufficiently large. For isolated and small batches, the trivariate hypergeometric distribution

should be employed to obtain the risks. The performance of the three class plan is revealed by a

three-dimensional OC surface or by OC contours.

Three-class microbiological plans are widely used in practice. For instance, it is recom-

mended in ICMSF (2002, pp. 163) as cases 1-9, and regulated by European Commission (2005)

for sampling in food categories such as meats, fishery products, milk and dairy products, vegeta-

bles and fruits. These plans use cM = 0. Dahms and Hildebrandt (1998) and Wilrich and Weiss

(2009) showed that the performance of three-class plans depends on the distance between m and

M. Dahms and Hildebrandt (1998) derived this difference between both limits as:

M−m = Z1−AQLσ (3.7)

This condition cannot be ignored since the performance of three-class plans is significantly

affected when using arbitrary m and M values. If the difference between m and M is very large

or very small, the performance of the three-class plan will clearly approach to a two-class plan.

See Wilrich and Weiss (2009) for more details.

The use of artificial or compressed limits in three-class plans can reduce the sample size

while keeping the risks at the same level. However, the use of artificial limits in multi-class

attribute plans has not been considered in the literature. In this section we discuss the three-class

compressed limit approach for the normal distribution with known σ achieving the maximum

absolute risk difference. This method requires the underlying (or log-transformed) distribution

to be normal with stable and known σ , and the batch size to be sufficiently large.

This approach is not easily extended to the case of unknown σ due to various complex issues

involved. Three-class compressed plans can also be designed for a fixed cM = 0, which is an
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extension of the zero acceptance number compressed plan discussed above. This alternative,

however, is not discussed in this research.

Consider the proportion nonconforming pM and the proportion marginally acceptable pm

determined by the limits M and m. Setting two compression constants tM and tm creates an

artificial nonconforming proportion gM and an artificial marginally acceptable proportion gm as

illustrated in Figure 3.3.

ZgM = ZpM − tM

Zgm = Zpm − tm
(3.8)
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Fig. 3.3 Illustration of the three-class compressed limit approach for the normal distribution.

For the nonconforming classification, let AQLM and LQLM (with AQLM < LQLM) be the

given AQL and LQL values. Also let the corresponding quality levels for the marginally ac-

ceptable cases be AQLm and LQLm (with AQLm < LQLm, AQLm > AQLM and LQLm > LQLM).

Here AQLM and AQLm are the fractions of nonconforming and marginally acceptable items

respectively that will be accepted with high probability (1−α) while LQLM and LQLm are

the fraction nonconforming and fraction marginally acceptable that will be accepted with low

probability β . The three class plan can be designed using the following procedure which is an

extension of the design procedure discussed in Section 3.4.

1. Given two points in the OC surface (AQLM,AQLm,α) and (LQLM,LQLm,β ), obtain the

quantiles of the standard normal distribution ZAQLM ,ZAQLm ,ZLQLM and ZLQLm .
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2. Calculate the quantiles associated with the compressed limits as:

Zg1M = ZAQLM − tM

Zg1m = ZAQLm − tm

Zg2M = ZLQLM − tM

Zg2m = ZLQLm − tm

(3.9)

3. Obtain the artificial proportions nonconforming (pg1M and pg2M ) and proportions marginally

acceptable (pg1m and pg2m) as the right tail areas corresponding to Zg1M , Zg1m , Zg2M and

Zg2m of the normal distribution.

4. Using the pairs (pg1M , pg1m ,α) and (pg2M , pg2m ,β ) obtain nt , cM and cm by solving the

trinomial distribution inequalities:

cM

∑
dM=0

cm

∑
dm=0

nt

dM!dm!do!
pdM

g1M
pdm

g1m
pdo

g1o
� 1−α

cM

∑
dM=0

cm

∑
dm=0

nt

dM!dm!do!
pdM

g2M
pdm

g2m
pdo

g2o
� β

(3.10)

where dM, dm, cM and cm are nonnegative integers and do = nt −(dM +dm). The algorithm

described in Guenther (1969) helps to solve these inequalities.

5. The optimum tM and tm are found as a pair in order to minimize nt . If there is more than

one pair for the same sample size, the optimum pair is chosen corresponding to maximize

absolute risk difference. Alternatively, the MIRD criterion can be used instead. However,

for simplicity we only used the MARD criterion.

Optimum sampling plans found for various combinations of risks are shown in 3.D. It can be

noted that a considerable reduction in the sample size can be achieved with optimum artificial

limits.

The design and operation of the compressed three-class plans are given below:

1. Given two points in the OC surface (AQLM,AQLm,α) and (LQLM,LQLm,β ) obtain from

3.D the number of samples to be drawn nt , the acceptance numbers ctM and ctm , and the

quantiles qtM and qtm .

2. Compute the artificial limits CLM and CLm as the qtM and qtm normal quantiles.

3. Obtain the number of artificially nonconforming items dtM and the number of artificially

and marginally conforming items dtm .

4. Accept the batch if dtM ≤ ctM and dtm ≤ ctm; otherwise reject.
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The three-class approach is illustrated briefly in following example. Let AQLM = 0.005,

AQLm = 0.01, LQLM = 0.10 and LQLm = 0.20 and the producer’s and consumer’s risks are

α = 0.05 and β = 0.10. To achieve the desired level of protection, 14 items must be drawn.

The maximum allowed number of nonconforming items (cM) is one and the maximum allowed

marginally acceptable items cm is one. From 3.D the optimum design is obtained for the

compression constants tM = 1.0 and tm = 0.8, the sample size nt = 4 and the acceptance constants

cM = 1 and cm = 1. Figure 3.4 shows the OC contour plot for the three-class compressed plan

that satisfied the restrictions given by the two points.
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Fig. 3.4 OC contour plot of the three-class compressed limit approach.

3.6 Numerical results

The international body ICMSF ICMSF (2002, pp. 163) and ICMSF (2011, pp. 68) recommend

15 cases of two or three-class attribute plan for food quality inspection. The two-class alternatives

(Cases 10-15) involve acceptance constants equal to zero and therefore these plans have very

stringent OC curves. In this section, we provide the matching plans to Cases 10-15 using optimum

compressed limits for σ known and unknown, matched at two points in the OC curve (AQL,α
and LQL,β ) or matched at (LQL,β ) with c = 0. For a given plan, say Case 12, (n = 20,c = 0),

the producer’s and consumer’s points in the OC curve can be found fixing the commonly used

producer’s and consumer’s risks of α = 0.05 and β = 0.10 respectively. The optimum t-value

minimizing nt was obtained using the procedure discussed in Section 3.4. Table 3.1 gives the

optimum compressed limit plans matching the AQL,α , LQL and β values of the ICMSF plans.

Table 3.2 contains the zero acceptance number plans matching with the ICMSF plans using
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compression constant t = 0.5 and 1. These plans are relevant for compliance related applications

where c = 0 is often mandatory. As a result, the control of the producer’s risk α becomes less

critical for these c = 0 plans.

Table 3.1 Compressed limit alternatives for σ known and unknown matching AQL and LQL of

two-class ICMSF plans.

matched compressed plans

ICMSF plan Quality levels and risks σ known σ unknown

na ca AQL LQL α β t nt ct t nt ct
Case 10 5 0 0.0102 0.3690 0.05 0.10 1.20 3 1 – – –

Case 11 10 0 0.0051 0.2057 0.05 0.10 1.68 5 2 1.91 9 5

Case 12 20 0 0.0026 0.1087 0.05 0.10 2.18 6 3 1.76 13 5

Case 13 15 0 0.0034 0.1423 0.05 0.10 1.82 5 2 2.55 11 8

Case 14 30 0 0.0017 0.0739 0.05 0.10 2.32 6 3 2.64 15 10

Case 15 60 0 0.0009 0.0376 0.05 0.10 2.56 8 4 2.34 22 10

Table 3.2 Zero acceptance number compressed limit alternatives to the two-class ICMSF plans

for the known σ case.

ICMSF plan matched plans

na ca LQL β t nt ct t nt ct
Case 10 5 0 0.3690 0.10 0.50 3 0 1.00 2 0

Case 11 10 0 0.2057 0.10 0.50 5 0 1.00 3 0

Case 12 20 0 0.1087 0.10 0.50 9 0 1.00 5 0

Case 13 15 0 0.1423 0.10 0.50 7 0 1.00 4 0

Case 14 30 0 0.0739 0.10 0.50 13 0 1.00 6 0

Case 15 60 0 0.0376 0.10 0.50 22 0 1.00 10 0

It can be appreciated from Table 3.1 that the number of analytical tests will be reduced

significantly, by a factor of between 40 and 87% for the known σ case. Similarly, the compressed

approach for unknown σ should be used for Cases 12-15 where the sample size is reduced by

27-63%. In the zero acceptance number plans of Table 3.2 the sample size is reduced by 40-83%.

Figure 3.5 shows the OC curve of Case 12 attribute plan of the ICMSF and matching the

optimum compressed limit plan when σ is known and unknown. Notice that the known σ
compressed limit plan also reduces the consumer’s risk (lower part of the OC curve) due to

the MARD criterion employed for the design. Figure 3.5 also shows the OC curve of the zero

acceptance number plan is given. This plan does not satisfy the producer’s point restriction and

hence the producer’s risk is increased.
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Fig. 3.5 Compressed limit OC curves for Case 12 plan of the ICMSF. The dark solid OC curve

represents attribute plan with n = 20,c = 0.

3.7 Economic evaluation

From an economic point of view, the decision to apply a plan by variables or attributes is a

trade-off between the sample sizes and costs.

nvCv < naCa (3.11)

where nv and na are the required sample size associated with the variables and the attribute

plan respectively. Cv and Ca are the cost of obtaining a measurement in a continues scale and

classifying as pass or not pass respectively. Commonly Cv >Ca since measurements such as cell

enumeration in food testing requires more time, resources and specialization than just assessing

whether the contamination is below the microbial limit. The same argument applies to the

compressed limit plans. According to Schilling and Sommers (1981) the known σ compressed

plan is preferable when Cv/Ct < 1.5 since nt = 1.5nv while Evans and Thyregod (1985) set this

condition as Cv/Ct < π/2. The MARD criterion requires Cv/Ct < 1.65. This condition is similar

to the one set in Schilling and Sommers (1981).

A full economic design of a sampling inspection plan requires the costs of incorrect decisions

to be considered in addition to the inspection and testing costs. The cost of rejecting a good

quality batch is usually known. However the cost of accepting an unsafe batch is not only very

large for food products but also unknown. For instance, the brand image of a product may be

tarnished due to a single catastrophic incident involving food safety. Due to the difficulty in

estimating the costs of accepted unsafe batches, economical designed microbiological sampling
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plans are rarely used in practice. International bodies such as ICMSF, FAO and Codex do not

advocate any cost driven sampling inspection plans. A small LQL specification indirectly controls

the cost of unsafe batches reaching the customers. Various preferred small LQL values are set on

empirical grounds by the international bodies depending on the severity of the microbiological

characteristics involved. The compressed limit plans proposed in this paper are matched to the

traditional plans and hence the decision related costs are equal. The main saving achieved is only

in the testing costs.

3.8 Robustness and nonnormal-based compressed limit plans

Compressed limit plans require the knowledge of the underlying probability distribution. De-

parture from this assumption will result in biased estimation of the proportion nonconforming.

Schilling and Sommers (1981) pointed out that this bias increases proportionally to t. It has

been well documented that multiplicative processes such as cell aggregation lead to right-skewed

distributions and particularly lognormal. Empirical evidence suggests that the lognormal dis-

tribution fits satisfactorily the frequencies of microorganisms in foodstuff, see ICMSF (2002);

Jarvis (2008); Kilsby and Baird-Parker (1983). This model is advantageous because the log

transformation leads to a normal distribution.

The robustness of the compressed limit plan for the distributional assumption is discussed

using the following example. Suppose that the CFU per gram of a certain pathogen is assumed

to follow a lognormal distribution with mean μ = 0 and standard deviation σ = 1 (both on the

natural logarithmic scale). The resulting expected value is 1.64 CFU/g and the dispersion is 2.16

CFU/g. The lognormal density and the cumulative distribution function are shown in Figures 3.6

(a) and (b).

The standard procedure is to apply log transformation to the sample measurements. Suppose

that the Case 12 ICMSF attribute plan with n = 20 and c = 0 is used. Form Table 3.1, the

equivalent compressed limit plans are t = 2.18, nt = 6 and ct = 3 for known σ and t = 1.76,

nt = 13 and ct = 5 unknown σ . At α = 0.05 and β = 0.10, the quality levels are AQL = 0.0026

and LQL = 0.1087. Figure 3.7 shows the corresponding OC curves for both cases.

Other right skewed distributions like gamma and Weibull have also been considered to

describe the distribution of pathogens in food e.g. Chen et al. (2003); Corradini et al. (2001);

Jarvis (2008); Jongenburger et al. (2012b,c). The identification of probability distribution such

as lognormal, gamma and Weibull requires large sample sizes (Marshall et al., 2012). However,

microbiological risk assessment is usually done with small sample sizes. To investigate the

robustness of the plans, consider that the true distribution follows a gamma or Weibull model

instead of lognormal. The parameters of the gamma and Weibull distributions matching the

LN (0,1) distribution are obtained so that the modes and their density values are equivalent. The

gamma distribution with shape d = 1.5 and scale b = 0.75; and the Weibull distribution with

shape κ = 1.3 and scale λ = 1.14 match the LN (0,1). Both densities and cumulative distribution

functions are also presented in Figure 3.6. Applying the same plan based on the lognormal
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Fig. 3.6 Lognormal, gamma and Weibull (a) probability density functions and (b) cumulative

distribution functions matched by the mode and the density.
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Fig. 3.7 Compressed limit OC curves equivalent to the ICMSF (2002) Case 12 (n = 20,c = 0) for

known σ (a) and unknown (b). The assumed distribution is lognormal when the true underlying

model is lognormal, gamma and Weibull.
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assumption yields the OC curves shown in Figure 3.7. It can be appreciated that the quality levels

at the producer’s and consumer’s risks differ considerably when the true distribution is gamma or

Weibull. This example illustrates that compressed limit plans are not robust to departures from

normality.

When the base-line distribution is known the compressed limit can be recomputed. The

specific compressed limit design for known parameters is obtained by replacing the quantile and

the distribution function of the normal for the true distribution in Steps 1 and 3 of the procedure

given in Section 3.4. The R codes of 3.B also deal with design of the plans for gamma and

Weibull distributions.

3.9 Summary and conclusions

A standard practice in food trade is to use ICMSF attribute sampling plans. By using variables

plans, the number of analytical units tested can be reduced considerably. Nonetheless, the

cost associated with taking a measurement in a continuous scale is generally higher than just

classifying a sample on a go/no-go basis. For lognormally distributed quality characteristics,

variables plans pose problems in administration because the test outcome can be a zero value.

For example, a batch of food product may not be totally free of microorganisms but the observed

number of microorganisms in the samples can be below the limit of detection. This results in

zero counts.

Compressed limit plans combine the features of attribute and variables plans. Therefore,

this approach can achieve the benefits of both alternatives: a reduced sample size and simpler

classification of the tested items as conforming/non-conforming. However, compressed limit

plans also inherit the lack of robustness of variables plans. Previous publications such as Ladany

(1976), Schilling and Sommers (1981) and Evans and Thyregod (1985) are limited to the normal

distribution with known standard deviation. However, in most practical cases the process sigma

is unknown and commonly a conservative (large) standard deviation value is used to protect the

consumer’s interest. For food safety applications, a value of σ = 0.8 is used in the ICMSF plans.

This paper introduces an approach for the normal distribution when σ is unknown and it discusses

compressed limit plans for other right-skewed models such as gamma and Weibull. Three-class

compressed limits are introduced as alternatives to the ICMSF plans. This research as well as

Govindaraju and Kissling (2015) accomplish a reduced sample size, but by different means. The

former uses a compressed limit and assumes knowledge of the underlying distribution, while

the latter consists of a variables plan with an additional restriction. Compressed limit plans are

suitable for pre-shipment inspection by producers, since this method requires the knowledge

of the underlying distribution. From the consumer perspective, compressed limit plans should

be used when the batches come from food suppliers with proven reputation. In this case, the

analytical tests carried out from previous batches must show lognormality for frequencies of

microorganisms. If a departure from the assumed model is suspected, say the lognormality

assumption is not satisfied, a smaller compression constant such as t = 1 may be used. This
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approach will increase the required sample size, but can provide increased consumer protection.

In the case of the zero acceptance number compressed plans, using values of t > 1 might

compromise the accuracy of this technique even when the assumptions are marginally violated.

Further research might explore other sampling plan alternatives based on the compressed limits

theory.
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Appendix 3.A Glossary of symbols and definitions.

f (x|σ ,μ) = 1

σ
√

2π
exp

(
− (x−μ)2

2σ2

)
normal density function

f (d|n, p) =
(n

d

)
pd (1− p)n−d binomial probability function

f (d1,d2,d3|n; p1, p2, p3) =
n

d1!d2!d3! pd1
1 pd2

2 pd3
3 trinomial probability function

m microbiological limit in two-class plans or

GMP limit in three-class plans

M second microbiological limit

CL = m− tσ compressed limit

X̄ sample mean

S =

√
∑(Xi − X̄)

2
/(n−1) standard deviation

p proportion nonconforming

g artificial proportion nonconforming

α producer’s risk

β consumer’s risk

AQL Acceptance Quality Limit

LQL Limiting Quality Level

na sample size of attribute plan

nv sample size of variables plan

nt sample size of compressed limit plan

k critical distance

d number of observed nonconforming items

c attribute acceptance number

ct acceptance number for compressed limit

t compression constant

MARD = max
[∣∣∣α −α ′

∣∣∣+ ∣∣∣β −β ′
∣∣∣] maximum absolute risk difference

MIRD = min
[∣∣∣α −α ′

∣∣∣+ ∣∣∣β −β ′
∣∣∣] minimum absolute risk difference

Appendix 3.B R Software code

The R function given below obtains the optimum compressed limit plans for given two-points

on the OC curve using normal, gamma and Weibull distributions. The function depends on the

R-package AcceptanceSampling Kiermeier (2008) to solve Eq.3.5 by trial and error.

A straightforward shiny app is also developed and made available at

https://internal.shinyapps.io/edgarsantosfdez/compress/ for the practitioners. A reference sam-

pling plan such as (n = 5, c = 0) needs to be input. The app will then return the optimum

matching compressed sampling plan for the specified underlying distribution.
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� �
### The R code computes the optimum compressed limit plan.
### Edgar Santos Fernandez, K. Govindaraju, Geoff Jones
### July/29,2014
# AQL # Acceptance Quality Limit
# alpha # producer s risk
# LQL # Limiting Quality Level
# beta # consumer s risk
# t # compression constant
# dist # statistical distribution (normal, gamma or Weibull)

compress function(AQL = 0.02, LQL = 0.08, alpha = 0.05, beta = 0.10, distr = "normal", ... ){
library ("AcceptanceSampling")
t = seq(0, 4, 0.01)
plan matrix(NA, nrow = length(t), ncol = 3)
condition function(code) {tryCatch(code, error = function(c) NA, # Exception handling

warning = function(c) NA, message = function(c) NA)}

if ( distr == "normal"){
Zaql qnorm(AQL,lower.tail = 0)
Zlql qnorm(LQL,lower.tail = 0)
for ( i in 1:length( t )){
Zgaql Zaql t [ i ]
Zglql Zlql t [ i ]
p.gaql pnorm(Zgaql, lower.tail = 0)
p. glql pnorm(Zglql, lower. tail = 0)
plan[ i ,1] condition(find.plan(PRP=c(p.gaql,1 alpha),CRP=c(p.glql,beta),type="binomial")$n)
plan[ i ,2] condition(find.plan(PRP=c(p.gaql,1 alpha),CRP=c(p.glql,beta),type="binomial")$c)
plan[ i ,3] 1 p.gaql }}

if ( distr == "gamma"){
Zaql qgamma(AQL, shape = shape, scale = scale, lower.tail = 0)
Zlql qgamma(LQL, shape = shape, scale = scale, lower.tail = 0)
for ( i in 1:length( t )){
Zgaql Zaql t [ i ]
Zglql Zlql t [ i ]
p.gaql pgamma(Zgaql, shape = shape, scale = scale, lower.tail = 0)
p. glql pgamma(Zglql, shape = shape, scale = scale, lower.tail = 0)
plan[ i ,1] condition(find.plan(PRP=c(p.gaql,1 alpha),CRP=c(p.glql,beta),type="binomial")$n)
plan[ i ,2] condition(find.plan(PRP=c(p.gaql,1 alpha),CRP=c(p.glql,beta),type="binomial")$c)
plan[ i ,3] 1 p.gaql }}

if ( distr == "Weibull" ){
Zaql qweibull(AQL, shape = shape, scale = scale, lower. tail = 0)
Zlql qweibull(LQL, shape = shape, scale = scale, lower. tail = 0)
for ( i in 1:length( t )){
Zgaql Zaql t [ i ]
Zglql Zlql t [ i ]
p.gaql pweibull(Zgaql,shape=shape,scale=scale,lower.tail = 0)
p. glql pweibull(Zglql ,shape=shape,scale=scale,lower.tail = 0)
plan[ i ,1] condition(find.plan(PRP=c(p.gaql,1 alpha),CRP=c(p.glql,beta),type="binomial")$n)
plan[ i ,2] condition(find.plan(PRP=c(p.gaql,1 alpha),CRP=c(p.glql,beta),type="binomial")$c)
plan[ i ,3] 1 p.gaql }}

plan cbind(t,plan); colnames(plan) NULL
a plan[which(plan[,2] == min(plan [,2][plan [,2] != 1], na.rm = TRUE)),]
fd seq(0, 0.995, 0.0001)
madr rep(NA, nrow(a))

for ( j in 1 : nrow(a)){
t = a[ j ,1]; n a[j ,2]; c a[j ,3]
if ( distr == "normal"){ zp qnorm(fd,lower.tail = 0)
zg zp t ; pr pnorm(zg, lower.tail = 0)}
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if ( distr == "gamma"){
zp qgamma(fd, shape = shape, scale = scale, lower.tail = 0)
zg zp t ; pr pgamma(zg, shape = shape, scale = scale, lower.tail = 0)}

if ( distr == "Weibull" ){
zp qweibull(fd , shape = shape, scale = scale, lower. tail = 0)
zg zp t ; pr pweibull(zg, shape = shape, scale = scale, lower. tail = 0)}

Op cbind(fd, pbinom(q = c, size = n, prob = pr ))
madr[j] abs(Op[which(abs((Op[,1] AQL)) == min(abs((Op[,1] AQL)))),2] (1 alpha))+
abs(Op[ which(abs((Op[,1] LQL)) == min(abs((Op[,1] LQL)))) ,2] beta)}

opt a[which(madr == max(madr)),]
return( list ( t = opt [1], n = opt [2], c = opt [3], q_t = round(opt[4],3) ))

}

# Example 1 normal distribution
compress(AQL=0.01, LQL=0.2, alpha=0.05, beta=0.10, distr="normal")
# Example 2 gamma distribution, Case 11 ICMSF
shape = 1.50; scale = 0.75
compress(AQL=0.0051, LQL=0.2057, alpha=0.05, beta=0.10, distr="gamma",
shape=shape, scale=scale)

# Example 3 Weibull distribution
shape = 1.30; scale = 1.14
compress(AQL=0.02, LQL=0.08, alpha=0.05, beta=0.10, distr="Weibull",
shape=shape, scale=scale)

�� �
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Chapter 4

New two-stage sampling inspection plans
for bacterial cell counts
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4.1 Abstract

The inspection of a batch of food generally relies on testing a small number of samples. Yet,

this low rate of testing still results in a significant expenditure for the producer as well as a

substantial laboratory workload due to the large number of safety and sanitary characteristics

involved. A new double sampling methodology employing a compressed limit in the first stage

of inspection is introduced. The proposed double sampling plan provides the same or better

consumer protection with substantially smaller average sample size and hence it reduces the

testing cost and the laboratory workload. This plan is intended for sanitary characteristics where

the bacterial count generally fits a Poisson or a mixed-Poisson distribution, resulting in a high

proportion of zero values. Optimum determination of the compressed limit, which is set well

below the regulatory or specification limit, is addressed. The application of the new plan is

validated using a large empirical dataset of aerobic plate counts observed in milk powder samples.

For this dataset the Poisson-gamma was found to be the best fitting distribution. An interactive

web-based tool (shiny app) that allows the design of the new sampling plan is also provided for

practitioners and food safety professionals.

1An abridged version of this Chapter has been published in Food Control.
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4.2 Introduction

Sampling inspection plans are generally used to assess the acceptability of a batch of foodstuffs

and to determine whether the food safety systems are working free of special causes of variation.

Guidance and regulations on microbiological sampling plans are given by European Commission

(2005); FAO/WHO (2014); Food Standards Australia New Zealand (2001); ICMSF (2002) and

by other country-specific regulatory agencies. The inspection of a batch generally relies on

small sample sizes, typically n = 5 or 10 (Hoelzer and Pouillot, 2013; ICMSF, 2002). Yet, these

testing levels lead to a significant expenditure and a substantial laboratory workload. Several

recent publications have focused on quantitative risk assessment of food products using statistical

models. Their focus is mainly on reducing the consumer’s risk, increasing the sampling plan

stringency and robustness, as well as reducing the testing costs (e.g. Dahms and Hildebrandt,

1998; ICMSF, 2002; Powell, 2014).

Both attribute and variables type inspection plans are recommended in the safety literature e.g.

FAO/WHO (2014). Concentration-based attribute sampling plans are generally used for sanitary

characteristics, where the batch probability of acceptance is expressed as a function of sanitary

quality parameter(s) rather than the proportion nonconforming to specifications; see for instance

FAO/WHO (2014). In the first two alternative plans of FAO/WHO (2014), the test statistic is the

number of individual samples that fail to satisfy the microbiological or the specification limit m.

However, in variables plans the test statistic is obtained from the mean and standard deviation

of the log transformed bacterial count. Variables plans provide similar protection with smaller

sample sizes compared to attribute type concentration-based plans. However, the application of

variables plans is generally limited to the case of high cell counts only because the discontinuity

in large cell counts is not critical. A reduction in sample size can also be achieved using a

compressed limit plan. This technique inherits the benefits of both variables and attribute plans:

a reduced sample size and individual cell counts being classified as pass or fail. However, the

theory of compressed limit plans is limited in the literature, mainly employing this technique to

single inspection plans; see Schilling and Neubauer (2010).

A double sampling plan allows for a second stage of inspection and achieves sampling

economy when compared to taking a single large sample; see Alonzo and Pepe (2003) for an

application of the double sampling approach to inspection. For food product inspection, a two

stage procedure might be convenient because the microorganism indicators are often low (well

below the regulatory limit). The sampling plans as recommended by ICMSF (2002) mostly

involve zero acceptance numbers (c = 0). Under this restriction, a sample size reduction cannot

be achieved by the traditional double sampling plan where the same regulatory limit is employed
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for the assessment of conformance in the two stages of inspection. However, a double sampling

plan with compressed limit in the first stage of inspection will be able to match the performance

of a c = 0 plan. In this research we introduce a new two-stage compressed plan based on

the discrete distributions generally used to describe microbial counts. The proposed plans are

intended for sanitary characteristics with nonzero microbiological limit m > 0 such as an Aerobic

Plate Count (APC). A compressed limit CL < m is used for the first stage, while the regular

specification m is applied in the second stage of sampling. In the common cause situations

(good quality batches), the proposed plans will operate mostly as a single sampling plan but with

lower average sample size. The second stage of sampling will only be reached in special cause

situations. Hence the proposed plan is not expected to cause operational management issues

(such as delaying the batch disposition) under normal circumstances. The plan is not applicable

to safety characteristics because no pathogens can be tolerated for samples in accepted batches:

this regulatory limit of m = 0 cfu obviously cannot be compressed further.

In this paper, the following concepts and abbreviations are used. The parameters μ and σ in

the Poisson-lognormal (PLN) distribution are expressed in the log10 scale. The Poisson-gamma

is abbreviated as PG. The symbols α and β refer to the producer’s and consumer’s risks. The

terms AQL and LQL stand for Acceptance Quality Limit and Limiting Quality Level respectively.

The term Indifference Quality (p0) refers to the point in the x-axis of the Operating Characteristic

(OC) curve corresponding to a probability of acceptance (Pa) of 50%. The indifference quality

zone is the region of the OC curve around this point. By the term ‘matching sampling plans’,

we mean plans having very similar OC curves. Since the OC curves of two plans are seldom

exactly identical, the matching sampling plans are required to satisfy two restrictions such as the

OC curves coinciding well at two points (LQL,β and AQL, α) while differing elsewhere. The

point (AQL, α) is not commonly used in microbial risk assessment but can be used for matching

purposes to compare the performance of sampling plans. An alternative approach to matching

sampling plans is to ensure that the two plans achieve the same indifference quality point p0

and same slope value h0 of the OC at this point. We consider both alternatives in our discussion.

Finally, most of the computations and figures were developed using R (R Core Team, 2015).

4.3 Materials and methods

4.3.1 Statistical models

Consider a random variable X representing the observed number of microorganisms or cfu in a

sample of size w subjected to a limit m. Suppose that the contamination (in cfu/g) is homogenous

in the batch and let λ be the rate of the contamination. Then X follows a Poisson distribution

with probability mass function:

P(X = x|λ ) = λ xe−λ

x!
, x = 0,1,2, · · · (4.1)
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Microorganisms tend to form clusters or colonies in certain commodities, in which case

the homogeneity assumption cannot be satisfied. Several models for overdispersed counts

(E [X ] << Var [X ]) have been used for modelling microorganisms in food. For low bacterial

count, compounded Poisson-lognormal (Bulmer, 1974b) and Poisson-gamma (Anscombe, 1950)

models are generally employed. See for example, Van Schothorst et al. (2009), Gonzales-

Barron and Butler (2011b), Gonzales-Barron and Butler (2011a), Jongenburger et al. (2012b),

Jongenburger et al. (2012c), Williams and Ebel (2012), Gonzales-Barron et al. (2013), Mussida

et al. (2013a).

The mixed Poisson-lognormal model is a Poisson process with parameter λ lognormally

distributed with location μ and scale σ (i.e. λ ∼ L N (μ,σ)). The probability mass function

for the PLN case is

P(X = x|μ,σ) =
∫ ∞

0

λ xe−λ

x!

1

λσ
√

2π
e

(
− (ln(λ )−μ)2

2σ2

)
dλ , x = 0,1,2, · · · (4.2)

where μ and σ are on the natural logarithmic scale (ln or loge), hence obtained from the log10

parameters as μ = ln(10)μ10 and σ = ln(10)σ10.

Poisson-gamma is another popular mixture distribution. The mass function for this case is

parameterized via the mean concentration m = E [X ] and the dispersion parameter K.

P(X = x|K,m) =
Γ(K + x)
Γ(K)x!

(
K

K +m

)K (
m

K +m

)x

(4.3)

where Γ is the gamma function.

4.3.2 Compressed limit plans

A compressed or narrow limit is a limit that is set well below the regulatory specification.

Compressed limits are often regarded as good manufacturing practice (GMP) limits. Sampling

plans based on compressed limits are used to achieve a reduction in sample size; see Ott and

Mundel (1954), Beja and Ladany (1974), Schilling and Sommers (1981) and Evans and Thyregod

(1985). Traditional compressed plans are based on a continuous distribution, generally the normal

distribution. The general procedure to obtain a compressed plan is as follows. Let CL = m− t be

the compressed limit where t is the compression constant. Given the points AQL,α and LQL,β ,

obtain the standard normal quantiles ZAQL and ZLQL and then compute the compressed normal

quantiles Zg1
= ZAQL − t and Zg2

= ZLQL − t for a given t. Obtain right tail areas of the standard

normal distribution pg1
and pg2

associated with Zg1
and Zg2

respectively. Using the pairs pg1
,α

and pg2
,β obtain the required sample size n and the acceptance constant c using the traditional

algorithm suggested by Guenther (1969). For other non-normal models, the assumed non-normal

distribution quantiles are used. Compressed limit plans require knowledge of the underlying

distribution, and the batch proportion nonconforming is incorrectly estimated when the actual
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distribution departs from the assumed model. Schilling and Sommers (1981) demonstrated that

small compression constants are preferred in this case.

4.3.3 Double sampling plans

The double sampling plan (Dodge and Romig, 1959) allows for a second sample to be taken

when the evidence for acceptance or rejection is not conclusive with the inspection of the first

sample. Double sampling plans are in general more complex to administer because they cause

larger decision times and operational costs when compared with a single attribute plan. However

the double sampling approach is advantageous because the average sample number (ASN) is

reduced while maintaining the same producer’s and consumer’s risks. Double sampling plans

are generally chosen to match a given single plan at two designated points on the curve; see

Schilling and Neubauer (2010) for further exposition. The efficiency of double sampling plans

was discussed by Hamaker and Strik (1955) comparing two different plans having the same

indifference point. Hamaker and Strik (1955) further imposed a second constraint involving the

slope of the OC curve measured at the indifference point p0. The quantity h0, defined as the

‘relative’ slope of the OC curve at p0 by Hamaker and Strik (1955), is given by:

h0 =−2p
dPa

d p

∣∣∣
p=p0

(4.4)

where Pa is the OC function whose first derivative (slope) is evaluated at p = p0. A strong

theoretical argument for using the pair (p0,h0) is given in Wetherill and Kollerstrom (1979).

While a single plan is defined by the pair (n, c), a double plan requires five parameters (n1, n2,

a1, r1, a2 = r2), where n1 and n2 are the sample sizes for the first and second stages of inspection

respectively. The constants a1 and a2 stand for the acceptance numbers while r1 and r2 stand for

the rejection numbers for first and second stages respectively. Let d1 be the observed number of

nonconforming test results in the first stage. The batch is accepted in the first stage when d1 � a1.

Similarly the batch is rejected if d1 � r1. If instead a1 < d1 < r1, a second sample of size n2 is

drawn and d2, the number of nonconforming test results for the second sample, is observed. Let

D = d1 +d2 be the combined or total number of nonconforming test results in both samples (n1

+n2). If D � a2, the batch is accepted; otherwise (D � r2), the batch is rejected.

4.3.4 Two-stage sampling plan based on compressed limit.

The zero acceptance number plan used in the safety area is the most stringent sampling alternative

for a fixed sample size n. The OC of this c = 0 plan drops rapidly close to the vertical axis,

allowing the use of very small values of rejectable or limiting quality level. Using the traditional

matching theory, plans such as double or multiple plans cannot be matched to the c = 0 single

sampling plan: see the tables given in Schilling and Johnson (1980). However, we have

discovered that by using a compressed limit under a two-stage (also multistage) inspection

procedure, the double plan can be matched to the c = 0 plan. In this research, we present two



62 New two-stage sampling inspection plans for bacterial cell counts

variants of this two-stage sampling inspection plan where a compressed limit is used for decision

making in the first stage.

First approach

Our first alternative is a double sampling procedure that uses only the CL in place of m in stage 1.

In this plan we obtain d1 as the artificial number of nonconforming test results in n1 for given CL.

That is, the number of test samples in the first stage of inspection that fail to conform with the

CL. In the second stage, the regular specification limit m will be applied to obtain d2, the number

of test results that exceed m in the second stage of inspection of n2 samples. The operation of the

plan is illustrated in Fig 4.1.

The batch probability of acceptance is equal to the combined probability of acceptance in

stages 1 and 2,

Pa = Pa1
+Pa2

(4.5)

where

Pa1
= P(d1 � a1) (4.6)

Pa2
= P(a1 < d1 < r1 ∩D � a2) . (4.7)

The probabilities Pa1
and Pa2

are obtained from the binomial probability function

f (d|n, p) =
(

n
d

)
pd (1− p)n−d (4.8)

where p is the fraction nonconforming or prevalence, which depends on the set limit.

The average sample number (ASN) depends on the probability of proceeding to the second

stage of inspection. The ASN function is obtained as follows:

ASN = n1 +n2 [P(d1 < r1)−P(d1 � a1)] (4.9)

Second approach

We also propose a second alternative that does not allow any test result to be over m in the first

stage of inspection, as shown in Fig 4.2. This alternative uses not only CL but also m in the first

stage. We obtain d1 as the number of samples with count between CL and m. Therefore it gives

the number of marginally acceptable samples, which is different from the first proposed plan.

Also, we obtain d1m as the number of samples with microbiological count over m or the number

of nonconforming samples. The second stage is reached only when none of the sample counts is
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d1 a1 d1 r1

a1 < d1 < r1

d1+d2 a2

Given n1,
CL

Given n2,
m

RejectAccept

Stage 1

Stage 2
d1+d2 r2

Fig. 4.1 Operation of the proposed two-stage sampling plan: first approach

over m (d1m = 0) and a1 < d1 < r1. The batch sentencing in the second stage is similar to the

first approach.

The probability of acceptance Pa2
is obtained from the binomial probability distribution. How-

ever, the Pa1
is computed using two binomial distributions or by using the trinomial probability

function (Jarvis, 2008; Johnson et al., 1997).

f (d1,d1m,d0|n1; p1, p1m, p0) =
n1

d1!d1m!d0!
pd1

1 pd1m
1m pd0

0 (4.10)

where d0 = n1 −d1 −d1m and p0 = 1− p1 − p1m.

d1 a1 d1m = 0 d1 r1 d1m > 0

a1 < d1 < r1 d1m = 0

d1+d2 a2

Given n1,
CL, m

Given n2,
m

RejectAccept

Stage 1

Stage 2
d1+d2 r2

Fig. 4.2 Operation of the proposed two-stage sampling plan: approach two.

The traditional compressed-limit plans are based on the assumption of normality and the

compression constant is obtained using the standard normal distribution. Since the assumed

distribution is symmetric, the compression constant t (along with n and c) is enough to define

the compressed limit plan. However, for discrete right-skewed distributions used in food control

inspection, the optimum compression constant depends not only on the parameters of the assumed

distribution but on the set specification limit m. Its calculation is considered in the next section.
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4.4 Evaluation of double sampling plan with compressed limit
in the first stage

4.4.1 The homogeneous case

Consider for example the zero acceptance number reference plan n = 5, c = 0. For the purpose

of this discussion, let us assume a regulatory limit m = 50 cfu. Fig.4.3 shows the OC curves of

this and the two newly introduced double plans when the count distribution of microorganisms

in a homogenous batch is Poisson.

We now illustrate the use of the compressed limit in the first stage. This plan will require

six parameters: five from the double sampling plan, plus CL. Suppose that we decide n1 = 2

samples are to be taken in the first stage and then employ the set compressed limit of CL = 41

cfu (say). Let us define that a batch is accepted in the first stage when no nonconforming samples

are obtained (a1 = 0), which is a justifiable assumption for food quality problems. Further, that

the batch is going to be rejected when two or more nonconforming samples are observed in stage

one (r1 = 2). We obtain d1 the number of samples failing the compressed limit CL in n1. Notice

that d1 is the number of artificial nonconforming samples since we use CL rather than m. A

second sample of size n2 = 3 will be drawn if d1 = 1. The batch will be rejected in the second

stage when the total number of nonconforming samples (d1 +d2) equals or exceeds two (r2 = 2).

The OC curve of this double compressed plan (Approach 1) is shown in Fig.4.3.

It is also justifiable on grounds of caution to use a plan that does not allow any sample over

m in the first stage (r1m = 1), which is Approach 2. Consider the plan n1 = 2, n2 = 3, a1 = 0,

r1 = 2 , r1m = 1 , r2 = 2 and CL = 42. The OC curve for this plan is also shown in Fig.4.3.

Notice how similar the OC curves of these three sampling plans are. The double plans match

at two points of the OC curve based on α = 0.05 and β = 0.10. Also, both double plans have

slightly higher relative OC slope h0 as well as smaller IQ value p0 when compared with the

reference single sampling plan. This means that the double sampling plans are discriminating

between good and bad quality batches in a slightly better way when compared to the single plan.

In Fig.4.4 we compare the ASN of the single and double plans. It is clear that the two

double plan alternatives will lower the sample sizes on the average for a series of lots. The

metric max(ASN) gives the worst case scenario in terms of the ASN. As a general rule, the

second method tends to provide smaller max(ASN). For larger sample sizes as considered by

the ICMSF, say n = 10 to 60, we found that the reduction in ASN for the double plans is in the

range 22 to 72%.

It is expected that the microbiological quality in some food products may decrease over time.

Therefore, a factor to be considered in food quality assessment is the time frame between the

collection of the samples and the test result being obtained. Our two-stage procedure involves

additional time for testing the second sample and batch disposition. Consider the following

example. Suppose that we are dealing with a quality characteristic for which enumeration

requires the use of the traditional culture method. Let the inspection time of the traditional
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Fig. 4.3 Operating Characteristic (OC) curve of the reference single plan n = 5, c = 0 (solid line).

The dashed and dotdash line gives the double plan with compressed limit in Stage 1.
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Fig. 4.4 Average sample number (ASN) of the plans n = 5, c = 0, n1 = 3, n2 = 2, a1 = 0, r1 = 2,

r2 = 2 and n1 = 2, n2 = 5, a1 = 0, r1 = 2, r1m = 1, r2 = 2.
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sampling plan be 1 (certain known unit length of time). We can then compute the Average

Inspection Time (AIT ) for the two-stage plans as

AIT = 1+[P(d1 < r1)−P(d1 � a1)] (4.11)

In Fig.4.5 we compare the plans’ AIT s. In the worst case scenario, the the first and second

approaches of double sampling will require 1.5 and 1.39 more decision time when compared to

the single plan.
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Fig. 4.5 Average Inspection Time (AIT) of the plans n = 5, c = 0, n1 = 3, n2 = 2, a1 = 0, r1 = 2,

r2 = 2 and n1 = 2, n2 = 5, a1 = 0, r1 = 2, r1m = 1, r2 = 2.

4.4.2 The heterogeneous case modelled with the PLN distribution

It is well established in the food safety literature that the probability of detection is smaller in

the presence of a heterogeneous spatial distribution of microorganisms in the batch for a given

average level of contamination. Hence, the consumer’s risk increases when batches are not

completely homogeneous. In this section we match double plans with compressed limits based

on the Poisson-lognormal distribution with σ = 0.8. This value for σ has been found appropriate

in several empirical studies; see for instance Legan et al. (2001). In the presence of heterogeneity,

bigger sample sizes and a tightened CL will be required to match the single sampling plan. We

compare the plans in Fig.4.6. In this graph the probability of acceptance is given as a function of

log10 of the mean concentration and as a function of the parameter μ . The parameters λ and μ
are connected through the first moment λ = 10μ+log(10)σ2/2.
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Fig. 4.6 Operating Characteristic (OC) curve of the reference single plan n = 5, c = 0 (solid line)

assuming heterogeneity, with σ = 0.8. The dashed and dotdash lines give double plans with

compressed limit in Stage 1.

4.4.3 The heterogeneous case modelled with the PG distribution

In this section we match the OC curves of the concentration based single and the double

sampling plans using the Poisson-gamma distribution. Gonzales-Barron and Butler (2011b)

found dispersion parameters K between 0.044 and 0.401 while fitting the Poisson-gamma

distribution to the plate counts in different datasets. For discussion purposes in this work, we use

K = 0.25. The OC curves of two matching plans are shown in Fig.4.7.

4.4.4 Iterative algorithm to obtain the optimum sampling plan

The two-stage sampling plan studied here involves several parameters. Hence, just two points of

the OC curve are not sufficient to design and fix a unique sampling plan so further optimization

condition involving the ASN is required. In this section we provide an iterative algorithm to

obtain the optimum matching plan to a two-class single plan achieving minimum ASN values.

The proposed procedure slightly differs from the Guenther (1970) method, since the compressed

plan has an extra parameter.

1. Given the single plan (n,c) and the limit m, obtain the points (AQL,1−α) and (LQL,β ),

generally setting α = 0.05 and β = 0.10.

2. Set a1 = 0 since this is a requirement in food safety inspection in particular, and also this

setting involves the minimum sample size. Start with the minimum rejection numbers

r1 = 2 and r2 = 2.
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Fig. 4.7 Operating Characteristic (OC) curve of the reference single plan n = 5, c = 0 (solid

line) assuming heterogeneity, modelled with the Poisson-gamma distribution with dispersion

parameter K = 0.25. The dashed and dotdash lines give double plans with compressed limit in

Stage 1.

3. For the sequence of t = 0(1)m, obtain the compressed limits CL = m− t. Notice that t is a

non-negative integer because the underlying distribution is discrete.

4. Start with n2 = 1. Obtain the largest n1 namely n1L that satisfies Pa (AQL,n1,n2)� 1−α .

5. Check all the combinations 2 � n1 � n1S , 2 � n2 � n−n1 that satisfy the two OC curve

point restrictions.

6. If a plan is not found satisfying the stipulated conditions, then let r1 = r1+1 and r2 = r2+1

and go to Step 4.

7. Repeat Steps 4-7 for every t value.

8. When more than one plan exists at the end of the exhaustive searches, use either of

the following optimality criteria: (i) smaller max(ASN) or (ii) min
∫

λ=0 ASN dλ . For

simplicity, we used the first (minimax) optimality criterion throughout the paper. The

second criterion computes the area under the ASN curve which produced very similar

results in the cases we examined.

The above design procedure can be easily modified when the pair (p0,h0) is used for matching

plans.



4.4 Evaluation of double sampling plan with compressed limit in the first stage 69

4.4.5 Comparison with the single compressed limit plan

A compressed limit single plan based on a continuous distribution offers flexibility when finding

a matching plan with a smaller sample size. This is because the compression constant could

theoretically take any positive value. Many combinations of t and c can result in closely matching

OC curves to the single sampling plan. In contrast, when the underlying distribution is discrete,

only a finite and limited number t values can be used. This might limit the ability of the

compressed limit single plan to exactly satisfy the two OC curve point restrictions. On the other

hand, the double plan has more parameters and hence slightly more discriminating plans can be

found. We illustrate this finer matching with an example. In Fig.4.8, the single plan (n = 5,c = 0)

is treated as the reference plan for matching assuming a regulatory limit of m = 50. We found
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n1 = 4 , c = 1 , m = 50 , CL = 44

Fig. 4.8 Operating Characteristic (OC) curve of the reference single plan (n = 5, c = 0 , m = 50)

(in solid line). The dashed line gives the double plan with compressed limit in Stage 1 while the

dotdash line represents the single compressed limit plan (n = 4, c = 1, m = 50, t = 44).

that the single compressed limit plan (n = 4, c = 1, CL = 44) equally satisfies the producer’s

and consumer’s points. However, it can be noticed from Fig.4.9 how the double compressed

plan provides a lower ASN. Another advantage of the double compressed limit plan is that the

decision in not solely made based on the compressed limit as in the single alternative. However,

for bigger sample sizes it would be possible to find an approximate single compressed plan, with

lower ASN, relaxing the producer’s point.

4.4.6 Assessing the robustness of the plans

Compressed plans are in general non-robust to departures from the assumed model; see the

warning given in Schilling and Neubauer (2010). In this section we assess the consumers’ risk

when the distribution changes from Poisson to Poisson-lognormal with σ = 0.8. We compare
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Fig. 4.9 Average sample number (ASN) of the plans n = 5, c = 0; n1 = 2, n2 = 3, a1 = 0, r1 = 2,

r2 = 2, CL = 41 and n = 4, c = 1, CL = 44.

in Table 4.1 the regular single sampling plan (n = 5, c = 0), the single compressed limit plan

(n = 4, c = 1, CL = 44) and the compressed limit double plans discussed earlier. For the Poisson

assumption, we show the LQLP at β = 0.10, expressed in log10 (λ ). Notice that these plans

have similar LQLs as seen in Fig.4.8. We then compute the corresponding values under the

Poisson-lognormal assumption and show the achieved limiting quality levels as LQLPLN . The

single plan gives the lowest LQLPLN , which suggest that the single plan provides slightly better

consumer protection when batches are less homogeneous.

Table 4.1 Comparison in terms of LQL between the proposed plans, the regular single sampling

plan and the single compressed limit plan. The quality is expressed in terms of log10 (λ )

Plan LQLP LQLPLN
Single plan 1.69 2.14

Approach 1 1.69 2.74

Approach 2 1.68 2.74

Single compressed plan 1.68 2.74
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4.5 Practical results

We validated the application of the proposed double sampling procedures using a large amount of

real cfu data of Aerobic Plate Counts in milk powder. The dataset consists of 2470 observations

from 494 batches with 5 test results per batch. A considerable proportion (47%) of the APC

values were zero. The arithmetic mean of the counts is 1.41 cfu and the standard deviation is 3.89

cfu which suggest over-dispersion (Var [X ]> E [X ]). The total variation can be partitioned into

‘within batch’ and ‘between batch’ variation. The single plan (n = 5,c = 0) was employed in

practice and most of the observed counts were well below the specification limit of 50 cfu/0.1g.

A well managed process such as this allows a wide range compressed limit CL to be trialled.

The test samples were prepared according to the ISO standard 6887 (ISO 6887-1, 1999),

where every analytical sample of 10g of milk powder was diluted up to 100mL. Subsequently

1mL inoculum was plated onto plate count agar previously poured according to the ISO standard

4833 (ISO 4833-1, 2003). The dish was incubated aerobically for 72 h at 30◦C. It was assumed

that every cell forms a visible cfu after incubation and the cells are locally homogeneous in the

small plated amount of 1mL. The practice is to multiply the observed cell counts in 1mL by

100 to obtain the approximate number of cells in the original 10g unit amount for which the

specification is 5,000 cfu/10g. We opted to analyze the original observed count in 1mL unit

directly because the direct use of raw data is more appropriate for statistical modelling.

We first assessed how well the three statistical models previously described fitted the empirical

data. The models were fitted by Markov chain Monte Carlo (MCMC) using the OpenBUGS
package (Lunn et al., 2000). Details of the simulations and the codes are given as 4.A and 4.B.

We assessed the fit in terms of Deviance Information Criterion (DIC), see Spiegelhalter et al.

(2002). The smaller the DIC, the better the fit of the statistical model. In Table 4.2, we show a

summary of the estimated posterior parameters and the DIC. The medians (point estimates) and

95 % intervals are also given. The parameters of the lognormal distribution are in natural log

scale (ln). It can be noted that the Poisson-gamma distribution with R = 0.4599 (or alternatively

K = 2.1744) was the model that produced the best fit the APC data. As expected the Poisson

model does not fit well this data since it has no model parameter to allow for over dispersion.

Table 4.2 Estimated parameters and fitting metrics for the Poisson, PLN and PG distributions.

Distribution DIC Parameters Mean SD MC error 2.5% Median 97.5%

Poisson 7384 μ0 -0.2255* 0.0528 7.30E-04 -0.3313 -0.2256 -0.1214

σb 0.9927 0.0432 7.43E-04 0.9131 0.9910 1.0810

PLN 6462 μ0 -0.3892 0.0528 8.40E-04 -0.4942 -0.3884 -0.2869

σw 0.6622 0.0308 8.04E-04 0.6039 0.6616 0.7245

σb 0.9240 0.0438 8.40E-04 0.8411 0.9228 1.0140

PG 6430 R(1/K) 0.4599 0.0427 0.0021 0.3807 0.4584 0.5467

μ0 -0.1807 0.0531 0.0016 -0.2870 -0.1790 -0.0785

σb 0.9481 0.0453 0.0017 0.8635 0.9464 1.0410
* Note: The parameters of the lognormal distribution are in natural log scale (ln). The MC error refers to the Monte

Carlo standard error of the mean.
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Using the web-based tool described in Section 4.6, the double plan n1 = 3, n2 = 3, a1 = 0,

r1 = 2, r2 = 2, m = 50, CL = 28 can be found as the Approach 1 plan matching (n = 5,c = 0)

single plan. The matching Approach 2 double plan is with n1 = 3, n2 = 3, a1 = 0, r1 = 2, r1m = 0,

r2 = 2, m = 50, t = 33. This plan also better satisfies the restrictions involving both two points

in the OC curve and the IQ value p0 with relative slope h0.
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Fig. 4.10 Operating Characteristic (OC) curve of the reference single sampling plan n = 5,

c = 0, m = 50 modelled with the negative binomial distribution with K = 2.17. The dashed line

represents the double plan n1 = 3, n2 = 3, a1 = 0, r1 = 2, r2 = 2, m = 50, CL = 28. The dotdash

line represents the plan n1 = 3, n2 = 3, a1 = 0, r1 = 2, r1m = 0, r2 = 2, m = 50, CL = 33.

Three batches out of 494 were rejected under the traditional sampling plan (n = 5, c = 0),

because at least one observation was over the specification limit m = 50 cfu. In Table 4.3 we

summarize the batch sentencing results for the MCMC simulation of a large series of batches

using the APC dataset we studied. Since the double plans require n1 = 3 in the first stage, three

observations out of five are randomly selected without replacement. By considering all possible

selections we obtain a probability of rejection by the double plans.

A particular batch with sample counts (33, 20, 35, 44, 13) was accepted under the single plan

but this lot will be rejected under Approach 1 with a probability of at least 0.7 mainly because

three of the values are over the CL = 28. Using Approach 2 where CL = 33 the same batch

will be rejected with probability of at least 0.4. This particular batch exhibits marginal sanitary

quality. From Table 4.3 we notice that the total saving when using the double plans is around

40%. In general we found that the second approach performs better than the first one in terms

of the expected number of rejected nonconforming batches. For example, the following three

batches were rejected under the traditional plan: (1) 2, 4, 4, 69, 58, (2) 11, 85, 15, 23, 2 and (3)

0, 0, 1, 0, 56. They will have probabilities of at least 0.9, 0.6 and 0.6 of being rejected by the
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second approach. By contrast, the probability of rejection of these batches under Approach 1 is

much lower.

Table 4.3 Results of applying the double sampling plans to the APC dataset. The comparison is

done in relation to the decision using the reference single sampling plan with (n = 5, c = 0).

Decision Approach 1 Approach 2

Batches correctly accepted 99.25% 99.33%

Batches correctly rejected 0.18% 0.43%

Batches incorrectly rejected 0.14% 0.08%

Batches incorrectly accepted or non detected 0.43% 0.16%

Batches reaching 2nd stage 0.43% 0.24%

Saving in inspection 39.74% 39.85%

4.6 A web-based application

In order to provide flexible solutions for practical problems, we provide an interactive web-based

tool made with (Chang et al., 2015). This free tool is hosted at

https://edgarsantosfdez.shinyapps.io/Double, which is multiplatform and therefore can be ac-

cessed from PCs, smartphones or any other device via a web browser. In Fig.4.11 we show a

screenshot. The three statistical models previously described are included. The tool allows the

user to interactively see the effect of each parameter on the batch probability of acceptance and

the ASN. It also allows the user to find the optimum matching plan following the steps given in

Section 4.4.4. The app source codes are available from the first author upon request.

4.7 Discussion and conclusions

In this paper we introduce two new double sampling procedures for bacterial cell counts. The

efficiency of double sampling is achieved by compressing the specification limit in the first stage,

while keeping the regular specification limit for the second stage.

The purpose of the study was to assess the performance of double plans using several

statistical models accounting for homogeneity and for clumping in foodstuffs. The proposed

double plans were found to provide similar protection to the consumers when compared to the

single sampling plan, while reducing the sample size on an average for a series of batches. The

double plans will reduce the laboratory workload and testing cost. Our second approach to

double sampling is slightly more complex to administer but it achieves a lower ASN. Moreover,

it ensures that no batch will be accepted with an observation over the regulatory limit.

We opted for the smaller ASN design criterion as a strategy to reduce the testing cost.

Double plans can also be found so that for indifference quality batches ASN > n, but still

min
∫

λ=0 ASN dλ < n×λmax. This means that a part of the ASN curve will be over n, but the
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Fig. 4.11 Screenshot of the online app for matching single concentration-based sampling plan

and double sampling plans based on compressed limit in stage 1.

Online at: https://edgarsantosfdez.shinyapps.io/Double
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area underneath this curve will be smaller than the area below n. The double plan can also

provide consumer protection against over-dispersed contamination and marginal quality batches

as described in Section 4.5.

Any two-stage sampling plan must be predefined before the actual inspection is carried out.

The proposed plan should not be used as a way of giving another chance to a rejected batch using

a single plan; see the warning given by ICMSF (2002).

Quoting Earl Wiener’s 29th law: “Whenever you solve a problem, you usually create one.
You can only hope that the one you created is less critical than the one you eliminated.” The

trade-off in our procedure is the delayed decision time whenever the second stage is reached.

This, however, will not affect the normal operation as long as the process is well maintained

and is kept in a state of statistical control. Under the proposed plan, most poor quality batches

will be sentenced in the first stage of sampling itself. A second stage is mostly required around

the indifference quality levels, which often corresponds to marginal quality batches. The batch

probability of acceptance is more complex to derive for the proposed double plans. However,

this difficulty is overcome using the online app that allows visual matching of sampling plans.

Finally, this technique might be extended to three-class sanitary characteristics based on two

stages, but with obvious detriment to the simplicity of the inspection protocols.

Appendix 4.A Markov chain Monte Carlo (MCMC) method

The fitting of the statistical models was done in OpenBUGS package using MCMC. We simu-

lated three chains each with 10,000 iterations, checked convergence and discarded a ‘burn-in’ of

500 samples. In the Poisson-lognormal case, the within and between standard deviations (σw

and σb) were considered as constant across batches, while μ is a random effect that varies from

batch to batch. Therefore,

λ ∼ L N (μ,σw) (4.12)

where is normally distributed with μ0 and σb.

μ ∼ N (μ0,σb) (4.13)

For priors we used μ0 ∼ N (0,0.01), σw ∼ U (0,10) and σb ∼ U (0,50), which are all

largely uninformative. In the negative binomial (or Poisson-gamma) case, we assumed the

mean concentration m as a random batch effect, while the dispersion parameter or shape K was

considered as constant. For convenience, we used R = 1/K, with prior R ∼ Exp
(
10−7

)
to allow

for the possibility of no over-dispersion (R = 0). For m we used the prior m ∼ L N (μ0,σb).

Finally, in the Poisson distribution case, we assumed that the rate λ changes from batch-to-batch,

lognormally distributed λ ∼ L N (μ0,σb) since it can take only positive values.

The posterior densities of every parameter for the negative binomial distribution case are

shown in Fig.4.12.
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Fig. 4.12 Posterior densities of the fit to the negative binomial distribution. The parameter R is

the reciprocal of the dispersion parameter K (R = 1/K.)

Appendix 4.B codes used for the simulations

4.B.1 Negative binomial
� �

model{
for ( i in 1:2470) {

Count[i] ~ dpois(lambda[i])
lambda[i] ~ dgamma(r, b[Batch[i]])

}

for ( j in 1 : 494) {
mu[j] ~ dlnorm(mu0,tau0)
b[ j ] r / mu[j]

}

tau0 1 / (sig0 * sig0)
r 1 / R

#Priors distributions :
mu0 ~ dnorm(0,0.01)
R ~ dexp(0.0000001)
sig0 ~ dunif(0,50)

}

#chain inits :
list (mu0 = 0, R = 2, sig0 = 0.01)
list (mu0 = 0.2, R = 1, sig0 = 0.05)
list (mu0 = 0.2, R = 0.5, sig0 = 0.1)

�� �

4.B.2 Poisson-lognormal
� �

model{
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for ( i in 1 : 2470) {
Count[i] ~ dpois(lambda[i])
lambda[i] ~ dlnorm(mu[Batch[i]], tau)

}

for ( j in 1 : 494) {
mu[j] ~ dnorm(mu0,tau0)

}

tau 1 / (sig * sig)
tau0 1 / (sig0 * sig0)

#Priors:
mu0 ~ dnorm(0,0.01)
sig ~ dunif(0,10)
sig0 ~ dunif(0,50)

}

#chain inits :
list (mu0 = 0, sig = 2, sig0 = 0.1)
list (mu0 = 1, sig = 0.1, sig0 = 0.5)
list (mu0 = 1, sig = 0.5, sig0 = 2)

�� �

4.B.3 Poisson
� �

model{
for ( i in 1 : 2470) {

Count[i] ~ dpois(mu[Batch[i ]])
}

for ( j in 1 : 494) {
mu[j] ~ dlnorm(mu0,tau0)

}

tau0 1 / (sig0 * sig0)

#Priors:
mu0 ~ dnorm(1,0.01)
sig0 ~ dunif(0,50)

}

#chain inits :
list (mu0 = 0, sig0 = 0.1)
list (mu0 = 0.5, sig0 = 0.5)
list (mu0 = 1, sig0 = 2)

�� �
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Effects of imperfect testing on
presence-absence sampling plans
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5.1 Abstract

Test performance measures such as sensitivity and specificity are generally ignored in microbi-

ological risk assessment. In this research we examine the impact of imperfect analytical tests

on sampling inspection plans for presence-absence characteristics. We discuss several plausible

scenarios and assess the risk for the consumers. The method is illustrated using collected data

over two years for Cronobacter spp. (formerly Enterobacter sakazakii) in skimmed milk powder.

The probability of contamination and the test sensitivity and specificity, are estimated using

Bayesian inference. We examine the sampling plans proposed by the Codex Alimentarius and by

New Zealand’s Ministry of Primary Industries for this pathogen. A cost analysis is carried out to

show the economic loss due to measurement errors. We describe the strengths and limitations of

these plans under different conditions and propose a plan that could provide better protection to

the consumers as well as to the producers.

Keywords

presence-absence tests; sensitivity; specificity; sampling inspection plan; Bayesian inference;

measurement errors; Cronobacter spp.

1An abridged version of this paper was presented at the European Network for Business and Industrial Statistics

(ENBIS) 2016 Annual Conference in Sheffield, UK. http://www.enbis.org/activities/events/current/424_
ENBIS_16_in_Sheffield/programmeitem/2164_Effects_of_Imperfect_Testing_on_Presence_
Absence_Sampling_Plans
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5.2 Introduction

Binary or presence/absence tests aim to classify items, samples or individuals into two classes,

e.g. positive or negative, pass or fail. The efficacy of these tests is expressed by metrics like

sensitivity (se) and specificity (sp). Sensitivity refers to the test’s ability to detect the true

positives (TP). The sensitivity is computed as the number of true positives divided by the total

number of positives (P). P = TP + FN, where FN is the number of false negatives. By contrast,

the specificity expresses the ability of the test to detect true negatives (TN). It is obtained as the

number of true negatives divided by the number of negatives, where N = TN + FP.

The test sensitivity and specificity are assumed to be independent of the prevalence in

the population. Perfect sensitivity and specificity are desirable but not achievable in practice.

Generally, se and sp over 95% are considered appropriate. See for instance Eijkelkamp et al.

(2009). Commonly, there is a trade-off between sensitivity and specificity, which can be

illustrated in the receiver operating characteristic (ROC) curve. The symbols used in this paper

are listed in 5.A.

In the food safety area

FAO/WHO (2014) defines the probability of detecting a target microorganism for a supposedly

perfect specificity and sensitivity. The ICMSF (2002, pp.9) has pointed out that microbial

testing “often lacks sensitivity and specificity” and that usually the sensitivity is sacrificed to

reduce the laboratory time. In practice, tests are usually assumed to be perfectly sensitive and

specific (Pouillot et al., 2013) and microbial sampling plans are based on that assumption. In

this regard ICMSF (2002, pp.120) suggest that when sensitivity and specificity are known for

a particular microbiological method the computation of the risk should be adjusted. This is

partially possible thanks to the FAO/WHO (2012) tool that incorporates into the model the test

sensitivity. Hoelzer and Pouillot (2013) also studied the impact of imperfect test sensitivity in

microbial risk assessment using low sample sizes.

In the traditional culture methods the specificity is generally high and commonly assumed

100% (Gardner, 2004; Hoelzer and Pouillot, 2013; Powell, 2014).

Empirical studies suggest that perfect specificity is seldom attained, independent of the

detection methods. For instance, the cross-contamination risk cannot be completely eliminated.

5.B shows the reported performance indicators of several detection methods (culture, PCR,

immunological, etc.) for different commodities and type of microorganisms. Iversen et al. (2008)

using the FDA (2002) method for Cronobacter spp. detection in powdered infant formula showed

as low as 52.2% sensitivity and 73.5% specificity. In this research we discuss the effect of

imperfect classifiers on the performance of microbiological presence-absence sampling plans.

Our purpose is to reduce the risks and the costs due to sampling and measurement errors. The

remainder of the paper is summarized in Fig. 5.1.
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Fig. 5.1 Mindmap of the structure of the article (clockwise)
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5.3 Materials and methods

5.3.1 Discretization and the analytical unit

Bulk materials are generally studied by splitting into supposedly ‘discrete units’ for analysis.

These analytical units can be conceptualized by supposing that an imaginary two or three-

dimensional square grid is unfolded over the batch. The size of the grid defines the analytical

unit amount.

Let p be the analytical unit probability of contamination for a perfect classifier. That is, p is

the probability of finding one or more microorganisms in the analytical unit. We should mention

that generally in the inspection of discrete items, p denotes a population parameter, which does

not dependent on sampling. However, in bulk materials p is subject to the grid size used to

discretize the lot and hence it will be conditioned by the sampling method.

Discretization is a complex issue and it is known in some disciplines as the Modifiable

Areal Unit Problem (MAUP). See e.g. Wong (2009). To illustrate how the use of different grid

structures leads to different probability of detection, consider the following hypothetical example.

Fig. 5.2 depicts a section of a batch under two different grids. Suppose that the smaller grid in

(a) splits the material into 1 g units, while the larger into 4 g units. The mean concentration is

independent of the grid, being equal to 1 colony-forming unit per gram (cfu/g). However, the

standard deviations are 1.21 cfu/g and 0 respectively. Also the proportion nonconforming is 0.5

in the first case and 1 in the second one.
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Fig. 5.2 Effect of the grid size in the standard deviations and the proportion nonconforming. The

grids split the batch into 1 g (a) units and 4 g (b) units respectively.



5.3 Materials and methods 83

5.3.2 The sampling distribution

The probability of accepting a batch (Pa) based on n samples is obtained from the binomial mass

function

f (d; p,n) =
(

n
d

)
pd (1− p)n−d (5.1)

where d represents the possible number of samples with the characteristic. For pathogens the

acceptance number is generally zero (c = 0), so the probability of acceptance becomes

Pa = (1− p)n (5.2)

The value p in Eq.5.2 assumes that the classifier or test is perfect. The apparent probability of

contamination pe is the proportion of units that are classified as contaminated using an imperfect

test. See for instance Vose (2008).

pe = se× p+(1− sp)× (1− p) (5.3)

Lavin (1946) and Johnson et al. (1991) give a similar expression for the apparent probability of

contamination but as a function of the misclassification errors e1 = 1− sp and e2 = 1− se.

Substituting Eq.5.3 in Eq.5.2 we obtain the batch probability of acceptance as a function the

proportion nonconforming, the sample size, the test sensitivity and the specificity.

Pa = P(d = 0|p,se,sp,n) = [(1− se) p+ sp(1− p)]n (5.4)

5.3.3 Statistical sample size (n)

By rearranging Eq.5.4 we obtain the required sample size for a given probability of acceptance

when using an imperfect classifier as

n =
log(β )

log [(1− se) p+ sp(1− p)]
(5.5)

Notice that Pa has been replaced by the consumer’s risk (β ), which is the most relevant point

in the OC curve in food safety assurance and represents the probability of accepting rejectable

quality.

The following hypothetical example shows the impact of an imperfect microbial test on

the required sample size. Suppose that we want to accept a batch with p = 0.2056 with low

probability β = 0.10, and let c = 0. Using a perfectly specific and sensitive microbiological test

the required sample size is n = log(β )/log(1− p) = 10. Consider now that the test is imperfect

with se = sp = 0.95. In this case from Eq.5.5 the required sample size is nine, which might seem

contradictory at first. In Fig. 5.3 we show both Operating Characteristic (OC) curves, which

match at the point p,β . Notice the massive impact of sp on the producers’ risk when the batch is

non-contaminated (p = 0).
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Fig. 5.3 Operating Characteristic (OC) curves of the plans n = 10, c = 0 and n = 9, c = 0,

se = sp = 0.95.

For a fixed β value the apparent probability of contamination is smaller than the true

probability of contamination when p > (1− sp)/[(1− sp)+(1− se)].

5.3.4 The population of microorganisms

Often, microorganisms are considered to be distributed homogeneously within a batch when

the concentration is low, and the risk is generally obtained from the Poisson distribution. The

Poisson probability mass function (Eq.5.6) gives the probability of obtaining x microorganisms

in a sample given a contamination rate λ .

P(x|λ ) = λ xe−λ

x!
(5.6)

By contrast, when the contamination is high the microorganisms tend to form clusters and

groups. The risk in this case is assessed using right-skewed models like lognormal, gamma,

Poisson-lognormal (PLN), Poisson-gamma (PG) (e.g. Gonzales-Barron and Butler, 2011b;

Jongenburger et al., 2012a; Van Schothorst et al., 2009). The PLN model is the result of a

Poisson distribution in which the rate λ is lognormally distributed with parameters μ and σ , and

the density function is

P(x|μ,σ) =
∫ ∞

0

λ xe−λ

x!

1

λσ
√

2π
e

(
− (ln(λ )−μ)2

2σ2

)
dλ (5.7)
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Poisson-gamma instead arises when the rate (λ ) follows a gamma distribution. The density

as a function of mean concentration m = E [X ] and the dispersion parameter K is:

P(X = x|K,m) =
Γ(K + x)
Γ(K)x!

(
K

K +m

)K (
m

K +m

)x

(5.8)

where Γ is the gamma function.

Another useful mixed distribution is the Conway-Maxwell-Poisson (CMP) distribution

(Shmueli et al., 2005). This model allows both underdispersion and overdispersion by including

an extra parameter (ν).

P(x) =
λ x

(x!)ν
1

Z (λ ,ν)
(5.9)

where λ > 0, ν � 0 and the normalizing constant Z (λ ,ν) is

Z (λ ,ν) =
∞

∑
j=0

λ j

( j!)ν (5.10)

Other models such as zero-inflated Poisson (ZIP) or zero-inflated negative binomial (ZINB)

can be used as well when the frequency of zero values is very high. See e.g. Lambert (1992) and

Hall (2000). Both models were considered by Gonzales-Barron et al. (2010a) to model E. coli
and coliforms counts in beef carcasses.

In Eq.5.7 λ is lognormal distributed and therefore it does not allows for complete absence

of the pathogen in the batch (λ = 0). To solve this issue we propose the use of a zero inflated

Poisson-lognormal distribution. This model comprises two parts. The first one is a binary process

governed by a Bernoulli law defining the proportion of zero values or the inflation probability

(θ ). The second part will contain the realization being Poisson-lognormally distributed. Hence

λ is a semi-continuous variable. The probability mass function is:

Pr(yi = 0) = θ +(1−θ)g(0) ;xi = 0

Pr(yi = xi) = (1−θ)g(xi) ;xi � 1
(5.11)

where g is a discrete probability mass function, PLN in this case.

5.3.5 The sampling method

The spatial distribution of the contamination needs to be considered when deciding the sampling

method to be used. Random or systematic sampling will not make any difference in the

probability of detection for a perfectly homogenous contamination. However, under heterogeneity

(specifically under localized contamination) systematic sampling has been found more suitable

to detect pathogens in food. See e.g. Jongenburger et al. (2011b).
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5.3.6 Testing pooled or composite units

Microbiological testing generally deals with bulk materials, which allows the use of composite

samples. Compositing might increase the informative level and the stringency without increasing

the number of analytical tests.

There are various ways of making composite samples. In this research we consider the

following case. Several primary units or increments are aggregated forming a composite that is

subsequently subsampled for testing. See Fig. 5.4

I

Y1

X1nX12 …X11

J1

Fig. 5.4 Process of forming a composite sample (Y1) by subsampling a big composite (J1)

composed by several primary units (X1.).

In particular the use of composite samples in Salmonella testing has proved to be more

cost-effective without a significant sacrifice of the sensitivity of the analytical test. Silliker and

Gabis (1973) and Gabis and Silliker (1974) for instance studied the detection probability using

composite samples of different sizes in commodities with high contamination levels. However,

ICMSF (2002, pp.188) recommends validation of the methods when compositing due to the

dilution effect and the risk of false negatives. Overall, assessing the sensitivity and specificity

of the analytical method is of paramount importance if it is desired to test a higher analytical

amount (Jarvis, 2007).

Let us consider independence between the primary units and that if at least one cell is present

in the composite sample it will be detected. The probability of contamination in the composite

sample pc is then

pc = 1− (1− p)nI (5.12)

Eq.5.12 is appropriate when pre-enrichment or incubation is applied before subsampling the

composite sample. Here, it is assumed that if at least one cell is present it will multiply making

the probability of detection very close to one.

Substituting Eq.5.12 in 5.4 we obtain

Pa = P(X = 0|p,se,sp,nI,n) = [(1− se)(1− (1− p)nI)+ sp(1− p)nI ]n (5.13)
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Imperfect composite samples

Often the contribution of the primary units towards composite Y1 is random. For instance, an

automatic sampler collects a big composite during the production process, aggregating units of

10g each at systematic intervals of 10 minutes. The whole composite is sent to the laboratory,

where a 300g subsample is drawn after thoroughly mixing the material. In this case, it is very

unlikely that every unit will contribute equally towards the 300g subsample. Hence, the unit

contribution can be assumed as random and it can be described with a statistical model e.g.

Dirichlet.

5.4 Single (isolated) batch risk assessment

5.4.1 Building a hierarchical model based on p

Bayesian design of sampling inspection plans has been studied by Chiu (1974); Guenther (1971);

Hald (1967a, 1968) and others. Brush (1986) and Graves et al. (1996) provided a discussion on

Bayesian producer’s and consumer’s risks.

In recent years, there has been an increased interest in Bayesian analysis in Quantitative

Microbial Risk Assessment (QMRA). See for instance Gonzales-Barron et al. (2010b) and Ranta

et al. (2015). The Bayesian approach for the risk assessment is described as follows. Let us

assume that the batch probability of contamination in Eq.5.1 is a random variable. Specifically,

consider that p ∼ Beta(a,b) with density function

f (x) =
1

B(a,b)
xa−1 (1− x)b−1 (5.14)

where B is the beta function, which is

B(a,b) =
Γ(a)Γ(b)
Γ(a+b)

(5.15)

and Γ is the gamma function, Γ(a) = (a−1) !. Generally, the beta shapes are denoted as α
and β rather than a and b. We opted for a and b to avoid confusion with the producer’s and

consumer’s risks.

In Bayesian inference, the distribution of p is known as the prior distribution. The knowledge

that we have about p will define the type of distribution to be used. For example, nonin-
formative priors are used when there is vague or insufficient knowledge. The most popular

noninformative beta prior is the Bayes-Laplace’s Beta(a = 1,b = 1), which is equivalent to the

uniform distribution on the interval (0,1). Other so-called noninformative priors are the Jeffrey’s

Beta(a = 0.5,b = 0.5) (Jeffreys, 1946) and the Haldane’s Beta(a → 0,b → 0) (Haldane, 1932).

For more details see the discussion in Tuyl et al. (2009) and also in Zhu and Lu (2004). The

Haldane’s Beta(a → 0,b → 0) is chosen to express total ignorance and its density is completely

concentrated at 0 and 1.
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In the Bayesian inference, today’s posterior is tomorrow’s prior. Usually, some relevant

knowledge is available from previous analysis and research. We might consider a priori that

pathogens are rarely present in foodstuffs and that the probability of contamination is very low.

Then we could opt for an informative prior, say a beta distribution with small a and large b. For

example, a = 1, b = 199 yields mean and standard deviation equal to 0.005.

Substituting the prior (Eq.5.14) in the sampling distribution (5.1) we obtain the beta-binomial

distribution

f (d|n,a,b) =
(

n
d

)
B(d +a,n−d +b)

B(a,b)
(5.16)

The test’s sensitivity and specificity are generally unknown and they can also be considered

as random variables. In this case, we could describe them with beta distributions as well. Let

us denote the shape parameters for the distribution of the sensitivity as ase and bse. Equally,

we will denote the shapes for the distribution of the specificity as asp and bsp. As seen from

5.B both metrics are generally close to one. Therefore, it seems reasonable to use informative

beta distributions with mass concentrated around one and therefore with values a >> b. If se
and sp are included in the model, the probability distribution of Pa is obtained from the triple

integral of Eq.5.13 with respect to p, se and sp. This function has no closed form. See for

instance Rahme et al. (2000). Therefore, we resort to numerical integration to obtain the batch

probability of acceptance. We have developed a shiny application (app), which is available at:

https://edgarsantosfdez.shinyapps.io/PreAbs to obtain the Pa given different priors. In 5.D we

present a screenshot. In 5.C.1 we show the model codes we used.

Let us consider the following four scenarios in order to show how the parameters affect the

probability of acceptance and the risk for the consumers.

• Scenario 1: Beta prior (a = 1, b = 99), high the test sensitivity and specificity (ase = asp =

99,bse = bsp = 1).

• Scenario 2: Beta prior (a = 1, b = 99) , moderate sensitivity and specificity (ase = asp =

19,bse = bsp = 1).

• Scenario 3: Prior distribution of p is Haldane-type (a = b = 0.005), high test sensitivity

(ase = 99,bse = 1) and specificity (asp = 99,bsp = 1).

• Scenario 4: Haldane-type (a = b = 0.001) prior distribution for p, moderate sensitivity

and specificity (ase = asp = 19,bse = bsp = 1).

In Table 5.1 we show the mean of the proportion nonconforming (p), the apparent proportion

nonconforming (pe) and the batch probability of acceptance (Pa), for different sample sizes and

parameters for the prior distributions. This table gives the four scenarios previously described.

We notice that the sp has a major effect on Pa. It can be noticed that the selection of the prior

distribution for p has a critical impact on the risk as well. The se seems much less important that

the other two factors even with a small sample size.
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Table 5.1 Batch probability of acceptance (Pa), proportion nonconforming (p) and apparent

proportion nonconforming (pe).

a b ase bse asp bsp p pe Pa(n=1) Pa(n=5) Pa(n=30)

1 99 19 1 19 1 0.010 0.059 0.941 0.756 0.302

1 99 19 1 99 1 0.010 0.019 0.981 0.908 0.596

1 99 99 1 19 1 0.010 0.059 0.941 0.754 0.298

1 99 99 1 99 1 0.010 0.020 0.980 0.907 0.590

1 199 19 1 19 1 0.005 0.054 0.946 0.773 0.339

1 199 19 1 99 1 0.005 0.015 0.985 0.930 0.671

1 199 99 1 19 1 0.005 0.055 0.945 0.772 0.337

1 199 99 1 99 1 0.005 0.015 0.985 0.929 0.668

0.001 0.001 19 1 19 1 0.500 0.499 0.501 0.396 0.193

0.001 0.001 19 1 99 1 0.500 0.480 0.520 0.475 0.382

0.001 0.001 99 1 19 1 0.500 0.519 0.481 0.395 0.193

0.001 0.001 99 1 99 1 0.500 0.500 0.500 0.475 0.382

0.001 0.01 19 1 19 1 0.091 0.132 0.868 0.718 0.351

0.001 0.01 19 1 99 1 0.091 0.095 0.905 0.864 0.695

0.001 0.01 99 1 19 1 0.091 0.135 0.865 0.718 0.351

0.001 0.01 99 1 99 1 0.091 0.099 0.901 0.863 0.695

We might consider that the testing is done using composite samples. These samples are

obtained by aggregating several primary units. Let us assume that the primary unit probability

of detection is p. Consider that a positive result will be produced when at least one of the

primary units is contaminated according to Eq.5.12. The model to obtain the batch probability of

acceptance is given in 5.C.2.

Often in food safety it is convenient to estimate the quality of the accepted batches. The

concentration level of the contamination after inspection is relevant to estimate the number of

people contracting food poisoning. Also the batch probability of acceptance and the apparent

probability of contamination in the accepted batches might be of interest. These metrics are also

given in the shiny app.

5.4.2 Hierarchical model based on the rate λ

In the above Bayesian inference it was assumed that p ∼ Beta(a,b). However, for some charac-

teristics the batch acceptance is conveniently expressed as a function of the concentration of the

contamination rather than for the proportion nonconforming. This is because the concentration

is often more relevant for the risk assessment. Eq.5.6 gives the probability of obtaining x mi-

croorganisms under the Poisson law given the contamination rate λ . The probability of detecting

one or more cells in one sample reduces to 1− exp(−λ ). We might assume that λ ∼ LN (μ,σ).

A Bayesian model can be built to obtain the batch probability of acceptance given μ , σ , se and

sp. See 5.C.4. In Table 5.2 we illustrate several scenarios for the distribution of λ and show the

effect on the probability of acceptance.
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Table 5.2 Means of the batch probability of acceptance (Pa), proportion nonconforming (p),

apparent proportion nonconforming (pe) and rate (λ ) as a function of μ and σ .

μ σ ase bse asp bsp λ p pe Pa(n=1) Pa(n=5) Pa(n=30)

-2 0.5 99 1 99 1 0.153 0.139 0.147 0.853 0.477 0.033

-3 0.5 99 1 99 1 0.056 0.054 0.063 0.937 0.727 0.189

-4 0.5 99 1 99 1 0.021 0.020 0.030 0.970 0.860 0.434

5.4.3 Hierarchical model for semi-continuous data based on the zero in-
flated lognormal (ZILN) distribution

The JAGS (Plummer, 2016; Plummer et al., 2003) model considering Eq.5.11 is shown in 5.C.5.

We computed the risk under different scenarios using the zero inflated model and considering

several sample sizes. See Table 5.3.

Table 5.3 Means of the batch probability of acceptance (Pa), proportion nonconforming (p),

apparent proportion nonconforming (pe) and rate (λ ) as a function of θ , μ and σ .

θ μ σ ase bse asp bsp λ p pe Pa(n=1) Pa(n=5) Pa(n=30)

0.5 -2 0.5 99 1 99 1 0.077 0.070 0.078 0.922 0.715 0.400

0.5 -3 0.5 99 1 99 1 0.028 0.027 0.037 0.963 0.840 0.478

0.5 -4 0.5 99 1 99 1 0.010 0.010 0.020 0.980 0.906 0.600

5.5 Bayesian data analysis

In this section, we illustrate the risk assessment methods using a presence-absence dataset from

Cronobacter spp. (formerly Enterobacter sakazakii) in skimmed milk powder. This pathogenic

bacterium has been associated with cases of meningitis, especially in infants. Contamination

with Cronobacter spp. is rare, but represents a serious risk due to the high mortality rate. Hence,

a batch will be rejected if any cell is found in the analytical sample.

We will use a dataset detect/non-detect binary data from 270 batches. For each batch, a

detection test was done using a single test sample, and two samples tested positive. These two

batches with positives results were not released to consumers.

The test samples were prepared according to ISO 22964 (2006) standard. The microbiological

criterion for this product in New Zealand is regulated by the Ministry for Primary Industries

(formerly Ministry of Agriculture and Forestry). See the criteria in Ministry of Agriculture

and Forestry (2011). It establishes the test to be done using a 300g composite sample resulting

from mixing several increments or primary sample units. Hence, the composite sample is

representative of the quality in the batch. It is relevant to mention that this composite is basically

the result of aggregation of several primary units until 300g are accumulated and no subsample
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is done or indicated. We should also point out that the Codex (CAC, 2008), instead, establishes

for powdered infant formula the following criteria: n = 30, c = 0, w = 10g.

We assume that every cell will be recovered and will form a visible colony-forming unit after

incubation. Let us also assume that the competitive micro flora will not affect the growth of

Cronobacter spp.

We used the following Bayesian hierarchical model to describe the contamination. Since the

sample size n = 1, the sampling distribution is Bernoulli, Bern(pe,1− pe). The artificial propor-

tion nonconforming and the proportion nonconforming are related by the following expression

pe = se× p+(1− sp)× (1− p). Let us consider the test sensitivity and specificity as random

variables. The priors for the test sensitivity and specificity are se ∼ Beta(ase = 199,bse = 1) and

sp ∼ Beta(asp = 199,bsp = 1).

The proportion nonconforming p = 1− exp(−mλ ), where λ is the rate of the contamination

in 10g and m = 30. Therefore p is the probability of contamination in 300g. We considered λ as

zero inflated according to Eq.5.11 with θ ∼ Beta(a = 2,b = 20). The positive realization of λ is

lognormally distributed with μ and σw, where σw is the within-batch standard deviation. The

mean μ changes from batch to batch being normally distributed with μ0 and σb. We considered

two scenarios for the within and between-batch standard deviation and for the mean of the

lognormal distribution of contaminated batches:

• Scenario 1: μ0 =−4, σw = 0.8 and σb = 0.8.

• Scenario 2: μ0 =−2, σw = 1 and σb = 1.

The values for σ in the first scenario have been considered among others by FAO/WHO (2006).

The codes of the model for the MCMC simulations (Scenario 1) are shown in 5.C.6. We

obtained the posterior distributions using the package rjags. For plotting densities we adapted

the function diagMCMC from Kruschke (2015). We simulated three chains each with 30,000

iterations and discarded a burn-in of 5,000 samples.

Results of the MCMC simulations for Scenario 1

Based on our prior beliefs about contaminated batches in Scenario 1, the probability that a

batch that tested negative was truly free of the pathogen is estimated as 0.987. Conversely, the

probability that a batch that tested positive was really contaminated is estimated as 0.715. The

mean of the posterior density for the rate in the batches that tested positive is λ = 0.0626. Finally,

the mean of the marginal posterior sensitivity and specificity are 98.9% and 99.6% respectively.

In Fig. 5.5-5.6 we show the posterior densities for the proportion nonconforming in the

batches that tested negative (p0) and positive (p1), and also the posterior densities for se and sp.

We also did MCMC convergence diagnostics. The posterior densities show the highest density

intervals (HDI) in line with our prior beliefs and the values reported in the literature.
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Fig. 5.5 Marginal posterior densities of the proportion nonconforming for the batches where the

pathogen was not detected (p0) and detected (p1).
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Fig. 5.6 (a) Marginal posterior density of every chain of the sensitivity (se). The red solid line

represents the density of the prior beta distribution, Beta(a = 99,b = 1). (b) Marginal posterior

density of every chain of the specificity (sp). The red solid line represents the density of the prior

beta distribution, Beta(a = 99,b = 1).

Results of the MCMC simulations for Scenario 2

In the second scenario, we obtained that on average 99.78% of the batches that tested negative

were free of contamination. Our posterior belief is that 72.8% of the batches that tested positive

were truly contaminated. We obtained similar marginal posterior probabilities for the sensitivity

and specificity.

5.5.1 One sample of 300g vs. 30 samples of 10g each

We mentioned before that the microbiological criterion established in New Zealand for Cronobac-
ter spp. is n = 1, c = 0 and w = 300g. It was also noted that the Codex recommends n = 30,

c = 0 and w = 10g. Under the assumption of homogeneity and perfect sensitivity and specificity,

both alternatives will provide the same protection for the consumers. However, when the micro-
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biological test is imperfect the sampling plans might have different performance. Suppose that

the batch is split into 10g units and the probability of contamination is a function of this unit.

The 300g sample for the first plan is formed by aggregating 30 random samples of 10g. Fig. 5.7

show the OC curves of both plans under the assumption of heterogeneity. We assumed that the

small unit of 10g is Poisson-lognormally distributed with σ = 0.8. We use the means of the se
and sp obtained from the MCMC simulations.
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Fig. 5.7 Operating Characteristic (OC) curves of the plans n = 1, c = 0, w = 300g and n = 30,

c = 0, w = 10g. The OC curve of the proposed plans n = 3, c = 0 with w = 100g and w = 300g

are also shown. The contamination is assumed heterogeneous and it is described using the

Poisson-lognormal distribution.

The Codex’s plan (dotted line) will have a substantial proportion of rejection when the

bacterium is absent in the batch (p = 0) due to the large n and the imperfect sp. The batch

probability of acceptance Pa(p = 0) = 0.825 and hence, the performance in the left hand of

the OC is not very satisfactory. The plan n = 1, c = 0, w = 300 represented by the solid line,

would have a poor performance for other lower sensitivity values when the concentration of the

contamination is high, due to the false negatives and the minimum sample size n = 1.

A compromise between both inspection plans could be a good alternative in order to provide

better protection for consumers and producers. The dot dashed line in Fig. 5.7 represents the

plan n = 3, c = 0, w = 300g. This plan requires a larger amount (3×300 = 900g). The proposed

plan will protect the producer during the food safety situation (p = 0) and at the same time will

substantially reduce the consumer’s risk for other values of p > 0. We also show the plan n = 3,

c = 0, w = 100g. Notice that this plan is not substantially different from n = 1, c = 0, w = 300g.

This example shows that: (1) increasing the sample size n does not necessarily translate

into a better sampling plan performance and protection to the consumers; (2) the plan n = 1
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even under the assumption of perfect composite sampling might not be effective when the test is

subject to false negatives.

Suppose that we use an automatic sampler, which collects a large composite, by combining

hundreds or even thousands of individual units. After thoroughly mixing the composite sample

we take a 300g-subsample for testing. In theory, this alternative might provide higher probability

of detection than taking 300g directly from the batch. The efficiency of compositing increases

proportionally to the quality of the mixing. This alternative also allows for retesting in case a

false positive is suspected.

5.6 Cost analysis

Most of food safety sampling optimization studies fail to consider the effect of the cost constraints

(Powell, 2014; Whiting et al., 2006). Generally, the sampling plan stringency is chosen based on

the severity of the hazard for the consumers rather than optimization of the overall cost function.

Powell (2014), for example, studied the impact of economic constraints in microbiological

sampling plan. In this approach, however, the misclassification errors are considered negligible.

Research in quality control dealing with costs and misclassification errors is diverse. For

instance, Hald (1964, 1968) considered the economical aspect of numerous sampling plans using

prior distributions for p. Ferrell and Chhoker (2002) discussed several alternatives (from 100%

inspection to sampling with/without errors) for continuous quality characteristic. Avinadav and

Perlman (2013) proposed a cost effective plan for stream of batches based on total cost function.

In this section the discussion centers on the producers’ economic burden due to measurement

errors and sampling. The economic loss due to sampling is the result of the sampling cost plus

the loss derived from wrong decisions (Wetherill and Chiu, 1975). The sampling cost is the

analytical test cost (C) times the sample size (n). The sample testing cost is generally high and

is specific to the type of microorganisms, the analytical method, the laboratory, etc. See, for

instance, 7 CFR (2000, 91.37) for detailed list of laboratory fees from the U.S. Code of Federal

Regulations; and New Zealand Parliamentary Counsel Office (2008) for food safety fees and

charges by New Zealand Food Safety Authority.

The loss from making a wrong decision depends on the following probabilities and costs:

• Pr1 [one or more false positives | all samples are free of microorganisms ]

• Pr2 [the test(s) produces false negative and no false positives | one or more samples are

contaminated]

• Cc: the costs associated with a poor quality batch sentenced as acceptable. This includes

the cost of recalling a product from the market, costs associated with food-borne diseases

and compensations, damage to the company’s image, etc. This cost is generally very high.

• Cp: the costs per lot incurred by the producer reprocessing, downgrading, destroying, etc.

a non-contaminated batch due to false positives.
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The total sampling cost function is

T = n×C+Pr1 ×Cp +Pr2 ×Cc (5.17)

where

Pr1 = {1− [(1− p)(1− sp)]n}(1− p)n (5.18)

Pr2 =
n

∑
d=1

(
n
d

)
(1− se)d pd (1− p)n−d spn−d (5.19)

and d is the observed number of nonconforming samples out of n.

Let us illustrate the impact of imperfect classifiers and sample sizes on the costs using

the following hypothetical example. Consider that the testing cost C = $20/test, that Cp =

20,000$/batch and Cc = 1,000,000$/batch. We consider the se and sp values obtained from the

MCMC simulations. In Fig. 5.8 we show the total cost as a function of p for different sampling

plans. When p → 1 the cost function converges to the testing cost. The larger n, the faster the

convergence. Under the food safety situation where p is very small, opting for high sample sizes

will have a higher overall cost for the producer.
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Fig. 5.8 Sampling cost function of the plans n = 1, n = 3 and n = 30 assuming se = 0.995 and

sp = 0.996.

Fig. 5.9 illustrates the sampling cost as a function of the log10 concentration of the contami-

nation, log10 (λ ). The proportion nonconforming p is related to concentration λ via the Poisson

distribution. We compare the sampling plans n = 1, c = 0, w = 300, n = 30, c = 0, w = 10 and

n = 3, c = 0, w = 300. Notice that the worst case scenario when using the plan n = 3, c = 0,
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w = 300 is when log10 (λ ) =−1.9 which yields $2338. The maximum cost for the other two

plans is much higher.
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Fig. 5.9 Sampling cost function vs the log10 concentration of the contamination in 10mL

assuming se = 0.995 and sp = 0.996. The black solid line represents the plan n = 1, c = 0,

w = 300 and the dashed line gives the n = 30, c = 0, w = 10. The proposed plan n = 3, c = 0,

w = 300 is also shown.

5.7 Discussion and conclusions

Test performance measures are often reported in the literature. However, in reviewing the food

safety literature, we found that sampling plans are sometimes designed without taking into

consideration the test efficiency. At most only the test sensitivity is considered. Economically

designed microbiological sampling plan are rare in practice. This is in part due to the difficulty

in estimating the producer’s cost of releasing a contaminated batch.

The results of this study indicate that the specificity of the test is relevant in the risk assessment

even when it is close to one and it should be considered when developing microbiological criteria.

The relevance of this factor is exponentially proportional to the sample size. This might have a

substantial impact on plans e.g. n = 60, c = 0 for Salmonella in powdered infant formula (CAC,

2008). Higher protection for the consumers is generally associated with larger sample sizes.

Often the microbiological tests are capable of analyzing higher analytical amounts. Both factors

n and w should be balanced when a higher stringency is desired. This obviously needs validation

that for example the sp remains stable independently of w.

Moreover, in the validation of procedures for pathogenic microorganisms, methods with high

specificity are generally preferable when n > 1. Despite the difficulties to estimate some of the
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relevant costs, optimization based on costs as discussed here might help food producers and

safety authorities to select nearly optimum inspection plans.

When the inspection is done by producers and historical data is available, an informative

prior for p is recommended. Conversely, a noninformative prior should be selected when the

inspection is done from the consumer’s perspective and the batches come from different sources.

One should keep in mind that some ‘noninformative priors’ can be very informative in zero

inflated problems.

A common assumption in the imperfect classifiers theory is that se and sp are independent

of the prevalence in the population under study. However, this hypothesis has been refuted in

several studies, which have shown variations in se and sp. See for instance Brenner et al. (1997);

Leeflang et al. (2013). This is presumably more complex in food safety due to the nature of the

material under study and the analytical methods. To the best of our knowledge this issue has not

been properly addressed before in microbiological risk assessment.

The resampling dilemma

The dilemma of having false positive and negative samples might lead us to seek for potential

solutions. One of the first things come to mind is to resample those batches where the pathogen

was detected. See the discussion about resampling in ICMSF (2002); Lund (1986). It can

be argued that by sampling and testing again the negative impact of imperfect specificity can

be reduced. A common preference is to opt for larger sample size. Let us consider that we

decide to resample a batch using n = 10 samples, under the same conditions (same analytical

amount, sampling, test, laboratory, etc). If the batch is truly contaminated with low probability

of contamination say p = 0.01 and let se = 0.997 and sp = 0.987, the probability of detecting

contamination in the batch with 10 samples is only 0.12. If we resample this batch after a positive

result is obtained, the conditional probability of detection is just 0.014. This clearly shows that

resampling (under the conditions previously described) could yield the release of a contaminated

batch. The argument that reinspecting will certainly discern between good and poor quality

might be fallacious. Clearly other strategies such as more accurate analytical test can be explored

as well.

Further research might investigate the correlation between the contamination with Cronobac-
ter spp. and the level of Enterobacteriaceae in the batch. This last one is a hygienic characteristic

commonly monitored in diary products, which is presumably related to Cronobacter spp.
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Appendix 5.A Glossary of symbols and definitions

se sensitivity: probability of obtaining a positive result given that the sample is contaminated

sp specificity: probability of obtaining a negative result given that the sample is noncontaminated

p probability of contamination

pe apparent probability of contamination

Pa probability of acceptance

n sample size

c acceptance number

d observed number of nonconforming samples

nI number of increments when using composite samples

w analytical unit amount (g or mL)

β consumer’s risk

a first shape parameter of the beta distribution for p
b second shape parameter of the beta distribution for p
ase first shape parameter of the beta distribution for se
bse second shape parameter of the beta distribution for se
asp first shape parameter of the beta distribution for sp
bsp second shape parameter of the beta distribution for sp
C analytical testing cost

Cc costs associated with a poor quality batch due to false negatives

Cp costs incurred by the producer due to false positives

λ concentration of the contamination
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Appendix 5.C Models in JAGS for the numerical integration

5.C.1 R codes to obtain the Pa using numerical integration
� �

model {
pe p * se + (1 p) * (1 sp)
p ~ dbeta(a,b)
se ~ dbeta(a.se, b.se)
sp ~ dbeta(a.sp, b.sp)
Pa = (1 pe) ^ n

}
�� �

5.C.2 R codes to obtain the Pa using numerical integration using ni com-
posite samples

� �

model {
pe pc * se + (1 pc) * (1 sp)
pc 1 (1 p) ^ ni
p ~ dbeta(a,b)

se ~ dbeta(a.se, b.se)
sp ~ dbeta(a.sp, b.sp)
Pa = (1 pe) ^ n

}
�� �

5.C.3 R codes to obtain the Pa, p and pe in the accepted batches using
MCMC

� �

model {
x ~ dbin(p,n)
p ~ dbeta(a,b)
se ~ dbeta(a.se, b.se)
sp ~ dbeta(a.sp, b.sp)
pe p * se + (1 p) * (1 sp)
Pa = (1 pe) ^ n

}
�� �

5.C.4 R codes to obtain the Pa using numerical integration based on μ
and σ

� �

model {
pe p * se + (1 p) * (1 sp)
p = 1 exp( lambda)
lambda ~ dlnorm(mu , 1 / (sigma ^ 2) )
se ~ dbeta(a.se, b.se)
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sp ~ dbeta(a.sp, b.sp)
Pa 1 pe

}
�� �

5.C.5 R codes to obtain the Pa using numerical integration based on the
zero inflated Poisson-lognormal distribution with μ and σ

� �

model {
pa p * se + (1 p) * (1 sp)

p = 1 exp( lambda)
lambda = h * x
x ~ dlnorm(mu, 1 / (sigma ^ 2) )
h ~ dbern(PI)
se ~ dbeta(a.se, b.se)
sp ~ dbeta(a.sp, b.sp)
Pa = (1 pa) ^ n

}
�� �

5.C.6 R codes used for the MCMC simulation (Scenario 1)
� �

model {
for ( i in 1:Ntotal ) {

y[ i ] ~ dbern(pe[i ])
pe[ i ] p[i ] * se + (1 p[ i ]) * (1 sp) # apparent prevalence
p[ i ] = 1 exp( 30 * lambda[i]) # prev using 30 comp samples
lambda[i] = h[ i ] * x[ i ] # the zero inflated lambda
h[ i ] ~ dbern(theta) # prop of non zeroes in the rate
x[ i ] ~ dlnorm(mu[i], 1 / (0.8 ^ 2)) # rate is lognormally distributed
mu[i] ~ dnorm( 4, 1 / (0.8 ^ 2))} # mu changes from batch to batch

se ~ dbeta(99, 1)
sp ~ dbeta(99, 1)
lambda0 lambda[1]
lambda1 lambda[234]
theta ~ dbeta(2,20)}

�� �

Appendix 5.D Shiny app to estimate the risk for presence-
absence tests

This interactive shiny tool allows the computation of the batch probability of acceptance given

various beta prior distributions for the proportion nonconforming and the test sensitivity and

specificity. It uses MCMC simulations and considers that no positives results has been found in

a sample of size n. This interactive tool is available at:

https://edgarsantosfdez.shinyapps.io/PreAbs.
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Chapter 6

A New Variables Acceptance Sampling
Plan for Food Safety

Edgar Santos-Fernández, K. Govindaraju, Geoff Jones

Food Control, 2014, 44:249–257 1

http://www.sciencedirect.com/science/article/pii/S0956713514001765

6.1 Abstract

The variables sampling plans for microbial safety are based on the log transformation of the

observed counts. We propose a new variables plan for lognormal data using the angular transfor-

mation. In a comparison with the classic approach, this new method shows more stringency and

allows the use of a smaller sample size to obtain the same level of consumer protection. This

transformation is robust when the underlying distribution departs from the lognormal distribution

as well as in the presence of contamination. A description of the new plan and the software

codes are provided.

Keywords

food safety; acceptance sampling; lognormal distribution; robust plan; sinh-arcsinh transforma-

tion

6.2 Introduction

Sampling inspection plans are used to assess the “fitness for use” of batches of products providing

protection to the consumers. Sampling inspection cannot be avoided due to the high cost

1Cited in Jarvis, B. (2016). Statistical Aspects of the Microbiological Examination of Foods. Academic Press.

Elsevier/Academic Press
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associated with laboratory testing and the destructive nature of the microbiological tests makes

100% inspection impossible. A single sample of size n is usually inspected or tested for the

specified microbiological criteria for conformance. The conformance criteria are often regulated

for potentially dangerous pathogens e.g. Regulation (EC) No 2073/2005, (European Commission,

2005). In addition to variables plans, attribute plans are also used for food safety inspection.

In a two-class attribute plans , items are classified as conforming or not while the variables

plans deal with parameters such as the mean concentration. The International Commission on

Microbiological Specification for Foods in ICMSF (2002) as well as the Codex Alimentarius

Commission (CAC) in CAC (2004) recommend both attribute and variables plans for food quality

assessment. The performance of simple attributes plans in the food safety context is widely

studied, see for instance, Hildebrandt et al. (1995), Legan et al. (2001), Dahms (2004), Wilrich

and Weiss (2009). However, the variables plans are preferred because the whole information

from the sample is taken into account in the decision making process so that the same level of

protection can be obtained with small sample sizes. Nonetheless, the application of variables

plans requires the knowledge of the underlying probability distribution of the characteristic of

interest. When the distribution of microorganism departs from the assumed model, the proportion

of the population that does not satisfy the microbiological limit (or the fraction nonconforming)

will be erroneously estimated.

The lognormal model arises as a result of a multiplicative process, particularly in the prolifer-

ation of microbes in the form of clusters or agglomeration. The lognormal distribution is also the

maximum entropy distribution when the mean and standard deviation are fixed. The maximum

entropy property captures the most variation on the positive real line and hence the lognormal

model becomes the conservative model for common cause or baseline situation. Safety plans for

variables as recommended by ICMSF (2002) and CAC (2004) rely on the lognormality. This

distribution has been found suitable empirically to describe frequencies of pathogens in food

(Jongenburger et al., 2012b; Kilsby and Baird-Parker, 1983). The probability density function of

the lognormal distribution is given in Table 6.5 of the Appendix. Since microbial enumeration

is commonly expressed on a logarithmic scale (base 10), the traditional theory of acceptance

sampling for variables based on the normal distribution can be applied.

The common cause or baseline variation pertains to the scenario in which only the usual

sources of variation are acting in the food production chain, e.g. the level of microorganism is

in the acceptable range. By contrast, special causes of variation are the result of a poor food

handling and its identification is vital to avoid foodborne diseases. Often only few units of each

lot are tested because of the budget constraints on laboratory analysis. A small sample size may

fail to detect high levels of fraction nonconforming compromising protection to the consumer.

The paper presents a new decision criterion with a better performance than the classic approach

as well as robust to distributional uncertainties. The proposed variables plan provides the same

level of protection to the producer with fewer units of the batch to be tested, but with a stringent

level of protection to the consumer.
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6.3 Material and methods

6.3.1 The Operating Characteristic (OC) curve

The performance of a sampling plan is revealed by its Operating Characteristic (OC) curve, which

is a plot of the probability of acceptance against the process level or the fraction nonconforming

(p). This curve shows how well a sampling inspection plan discriminates between good and

bad quality. If two OC curves are matched to give the same level protection to the producer,

we would then prefer the OC curve which is steeper or more stringent. The ideal OC curve has

probability of acceptance equal to one until the critical fraction nonconforming after which it

drops to zero. See e.g. Montgomery (2005). OC curves are often assessed at given two points

(AQL,α) and (LQL,β ) where AQL and LQL are the acceptance and limiting quality limits

(levels), and α and β the producer’s and consumer’s risk respectively. The AQL is the maximum

fraction nonconforming that is considered acceptable as a process level for the consumer, while

the LQL is the proportion nonconforming that is expected to be accepted with a low probability

for an isolated batch. CAC (2004) recommends for characteristics associated with sanitary risks

to employ low acceptable levels such as 0.1%. On the other hand, the limiting levels are often

fixed lower than the traditional 10% for food safety.

6.3.2 Variables plans for food safety

Suppose that a characteristic of interest (X) such as the cell count follows a lognormal distribution.

The log-concentration (Y ) is then normally distributed with mean μ and standard deviation σ .

At a given microbiological limit (m), the decision criterion results in: Ȳ + kSy < my where k
is the acceptability constant for the operation of the variables plan where Ȳ = ∑Yi/n is the

sample mean, Sy =

√
∑(Yi − Ȳ )2

/(n−1) is the sample standard deviation and my = log(m)

is the transformed Upper Specification/Safety Limit. This plan will be referred as classical

approach from now on. The following test statistic is obtained by rearranging the last equation.

Z1 =
my − Ȳ

Sy
(6.1)

The regulatory (specification) limit m is often fixed using base-line or “common-cause”

samples which are free from known food safety issues. The test statistic Z1 expresses the distance

between the specification limit and the sample mean Ȳ in sample standard deviation units. When

this distance is below a critical value k, the resulting proportion nonconforming (p) is greater

than expected. In other words, the lot is accepted whenever Z1 � k, otherwise the lot is rejected.

When the true standard deviation of the process is unknown, the acceptance criterion is then

obtained using the noncentral t-distribution using the consumer’s point (LQL,β ), ICMSF (2002).

Another alternative is when producers use Good Manufacturing Practice (GMP) limits which are

set well below the regulatory limit. In this case, the critical distance can be obtained from Kilsby

et al. (1979).
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6.3.3 New plans based on the sinh-arcsinh transformation

Suppose that instead of applying logarithm to the cell count the sinh-arcsinh transformation

(Jones and Pewsey, 2009) is used. Hyperbolic functional transformations are commonly applied

to improve the degree of normality of a quality characteristic.

H = sinh
[
δ sinh−1 (x)− ε

]
(6.2)

where sinh = (ex − e−x)/2 and sinh−1 = log
(

x+
√

x2 +1
)

are the hyperbolic sine and its

inverse. The hyperbolic functions are the counterpart in the hyperbola of the classic trigonometric

functions. This transformation allows to control the skewness and kurtosis with the parameters

δ and ε . The skewness and kurtosis are measures of the asymmetry and the peakedness of the

distribution respectively. We used a particular combination of parameters, δ = 0.1 and ε = 0.

Let V = H (x) and mv = H (m), then an analogous test statistic to Eq. 6.1 for the new approach

can be defined.

Z2 =
mv −V̄

Sv
(6.3)

This plan will be referred as the new method from now on.

6.3.4 Simulation algorithm

The critical values for Z1 and Z2 as well as the probability of acceptance values are obtained by

Monte Carlo simulation since the analytical solution is intractable for the new approach. The

computation and simulations were carried out using R open source software (R Core Team,

2013) using the following algorithm:

• Step 0. Set the point (AQL,α) on the OC curve to protect the producer. This point

represents the aim of the producer that batches with fraction nonconforming AQL should

be accepted with probability 1−α . Let the microbiological common cause situation be

described by the lognormal distribution with log-scale parameter, μ = 0 and shape, σ = 1

taking advantage of the invariance property of the standard normal distribution.

• Step 1. Generate a random sample of data from the lognormal distribution for a given

sample size.

• Step 2. Compute the Z statistic and replicate this random sample generation process (such

as 100,000 simulations) to obtain the vector A.

• Step 3. Obtain the critical distance by dividing the frequency distribution of A in a

proportion of size α , i.e. as the α-quantile; ki = qα (A).

• Step 4. The presence of special causes, leading to food safety concerns, is modelled by a

shift in μ , say from μ0 to μ0 +	, where 0 <	≤ 2.
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• Step 5. Pa values can be computed numerically as the proportion of samples for which the

test statistic is over the critical values given above. The bigger the shift in μ , the lower

Pa = P{Ai (μ0 +	)≥ ki} would be.

The code for the steps 0–3 is presented in the Appendix section. Notice the difference with the

ICMSF (2002) variables plans in which the acceptance criterion is obtained from the consumer’s

perspective and the producer’s risks are not controlled.

6.4 Results

Critical values for an AQL = 0.1%, different sample sizes and producer’s risk probabilities (α)

are shown in Table 6.1. The k-values for the Z1 statistic given in Table 6.1 are the same as can be

found in the variables sampling plan literature. See the Appendix section for critical distances

for other set of AQL values.

Table 6.1 Calculated estimates of the critical distance factor (k) for two values of producer’s risk,

an AQL = 0.001 and σ = 1.

α = 0.01 α = 0.05

n k1 k2 k1 k2

2 0.97 1.03 1.41 1.63

3 1.22 1.34 1.63 1.90

4 1.39 1.54 1.77 2.08

5 1.51 1.71 1.87 2.22

10 1.85 2.16 2.15 2.61

15 2.02 2.41 2.29 2.82

20 2.14 2.57 2.38 2.95

30 2.28 2.79 2.49 3.13

40 2.37 2.93 2.56 3.23

50 2.43 3.02 2.61 3.31

60 2.48 3.10 2.64 3.37

An evaluation of the performance of the new method in comparison to the traditional approach

is shown in Figure 6.1. A reasonable sample size of size (n = 10) and two producer’s risk levels

(α = 0.01, 0.05) were considered. Following the approach of Wilrich and Weiss (2009), this figure

shows two X-axes: one for the proportion nonconforming (p) and the other for the associated

process level in log10 (CFU/g). It can be seen from these figures that the new approach reduces

at a consumer’s risk of 10% the rejectable fraction nonconforming in about 3% while maintaining

the producer’s risk at 1%. Alternatively the new approach will reduce the number of test to be

done. For instance, the same or more protection is obtained with nine and eight units at α = 0.01

and 0.05 respectively in comparison with that of obtained with 10 units using by the classic

approach. Figures 6.5 and 6.6 in the Appendix section show OC curves for various sample sizes

recommended in ICMSF (2002) and other popular combinations of AQL and α .



108 A New Variables Acceptance Sampling Plan for Food Safety

0.00 0.05 0.10 0.15 0.20 0.25

0.0

0.2

0.4

0.6

0.8

1.0

Pa
−0.22 0.52 0.67 0.78 0.86 0.93

β

Z1 Z2

Proportion nonconforming 

Process level (log10(cfu g))
(a) n = 10 , Producer's risk  (α) = 0.01

0.00 0.05 0.10 0.15 0.20 0.25

0.0

0.2

0.4

0.6

0.8

1.0

Pa

−0.22 0.52 0.67 0.78 0.86 0.93

β

Proportion nonconforming 

Process level (log10(cfu g))
(b) n = 10 , Producer's risk  (α) = 0.05

Fig. 6.1 Comparison of Operating Characteristic (OC) curves for n = 10, AQL = 0.1% and

different values of producer’s risk. The OC curves of the log and sinh-arcsinh transformations

are shown in solid and dashed lines respectively. The new approach offers better consumer

protection by lowering the consumer’s risk at poor quality levels.
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6.5 The misclassification error

For a given m, the Type I or false positive misclassification error (say, e1) is always involved,

see Lavin (1946) and Govindaraju (2007). This error is very small for regulatory limits, but

necessary for the GMP warning limits which are fixed well below the regulatory limits. The

false negative or Type II misclassification error is not relevant for fixing the m because it arises

only in the presence of special causes having food safety implications. The observed proportion

nonconforming
(

p
′)

is in fact equivalent to e1 (1− p). For lognormal quality characteristics,

Albin (1990) introduced a variables plan in which the OC curve is constructed for a given ratio of

the means of unacceptable and acceptable quality limits. This procedure also takes into account

the probability of false positive misclassification error. After allowing for the possibility of

a baseline sample showing a false positive result, the probability of acceptance cannot be 1

for p = 0. Consequently, the true probability of acceptance starts at 1− e1 when p = 0; see

Govindaraju (2007) for a discussion on this issue. Zero microbial count in samples tested may

be due to the measurement error. Non-detection is not the same as absence when in fact could be

associated with factors such as the instruments, the measurer or the material preparation. For

this reason, in tests like Aerobic Plate Count (APC) the event of no colonies found is reported as

less than 25 CFU. Consider an e1 value of 1%, the apparent proportion nonconforming result in:

0.99% for an apparent AQL = 0.1%. This affects the performance of the OC curve considerably

as can be seen in Figure 6.2.

6.6 Example

The new approach for lot disposition is illustrated in this section. Table 6.2 gives the aerobic

colony count data obtained in poultry from ICMSF (2002).

Table 6.2 Result of five samples in aerobic colony count in poultry from ICMSF (2002). The

second and third row express the count using log10 and sinh-arcsinh transformations respectively.

APC 40000 69000 81000 200000 350000

log10 (APC) 4.602 4.839 4.908 5.301 5.544

H (APC) 1.385 1.480 1.509 1.679 1.791

For a given microbiological limit equal to 107CFU the test statistics are: Z1 = 5.187 and

Z2 = 6.270. If, for example, a k value related to α = 5% and AQL = 0.1% is used, the following

critical values are obtained: k1 = 1.87 and k2 = 2.22. At this high regulatory limit the batch

is accepted by both methods. Now, consider a lower m value, say 6×105 CFU; the resulting

statistics result in: Z1 = 1.955 and Z2 = 2.053. Thus the batch is rejected at this level by the

new approach, while the traditional method sentences it as acceptable. As the proposed method

tends to have OC curves dropping more steeply, this method provides better consumer protection

against an increase in p or μ . This practical example illustrates how the difference in the OC

curves can lead to different outcomes.
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Fig. 6.2 Comparison of Operating Characteristic (OC) curves at a false positive misclassification

error of 1% for n = 10, AQL = 0.1% and different values of producer’s risk. The OC curves of

the log and sinh-arcsinh transformations are shown in heavy solid and dashed lines respectively.
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6.7 Assessment of robustness

It is well known that the performance of classical variables plans is sensitive to departures from

the assumed model used to describe the cell count, which causes the fraction nonconforming to

be incorrectly estimated. In practice, we would prefer a robust sampling plan whose OC curve

remain stable when the underlying distribution changes and in presence of extreme values. For

instance, the number of pathogens in a baseline study may fit a lognormal model as well as a few

other related distributions such as gamma. Even though the lognormal distribution is justifiable

as a standard distribution for microbial characteristics, it is important to ensure that the plan

based on the lognormal assumption also works satisfactorily when the unknown true model is

gamma. If the OC curve of the plan is forced closer to the vertical axis the protection to the

consumer is improved.

The performance of new and classical procedures is evaluated in three common scenarios:

assuming lognormality when the true distribution is gamma , Weibull and contaminated log-

normal. All these three alternatives also produce right-skewed data. Let us first consider the

gamma, G(c,b) and Weibull, W (κ,λ ) alternatives. The initial parameters of the gamma and

Weibull distributions for the common cause situation can be fixed giving equal values for the

mode, density and overall goodness of fit in relation to LN (0,1). For the gamma distribution, the

following combination of parameters guarantees a match in terms of mode and density: b = 0.75

and c = 1.5. See Figure 6.7 in Appendix. The shape parameter was fixed at this level and a

shift in the scale parameter, equivalent to the modification in the μ parameter of the lognormal,

was introduced to model the special cause situation. This guarantees that for each point the

gamma and the lognormal will have the same mode. The proportion nonconforming was used to

construct the OC curve since the parameters in the lognormal and gamma distributions are not

equivalent. The results obtained are shown in Figure 6.3. When the true distribution is gamma,

the resulting plan is less stringent for both methods but the OC curve for the new method is

rather robust.

Finally, the Weibull distribution is used as the true model, for comparison with the lognormal

OC curve. The starting shape and scale parameters associated with the same mode are κ = 1.3

and λ = 1.14. This combination of parameters also produces a similar shape as can be seen in

Figure 6.7. Fixing the shape and increasing the corresponding scale parameter over 1.14 gives

very similar results as those obtained with the gamma distribution.

The basic idea behind a contaminated or mixture distribution is that the majority of data

comes from a specific distribution f (x), but includes a certain level of contamination with

observations from a different distribution g(x), often the same statistical model but with a greater

mean/variance. If the contamination level is given by p, then the resulting probability density

function is given by: h(x) = (1− p) f (x)+ pg(x). See, for instance Fowlkes (1979). This

technique is often employed to evaluate the robustness of a statistical test procedure. Suppose

that previous experience shows that a microbial count is right skewed justifying the lognormal

assumption. Therefore, a sample will be judged by this hypothesis using the critical distance k
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Fig. 6.3 Effect in the OC curves when the true distribution is gamma (displayed in thicker line

width). The difference in the LQL at a β risk for the Z2 statistic is much smaller than that of Z1.
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corresponding to the given sample size, the producer’s risk and the AQL. Let the mixed model

be composed of two lognormal distributions with μ = 0 and standard deviations one and two

respectively, and let the degree of contamination be 20%. This leads to a mixed distribution that

is more right-skewed than assumed. The performance of the classic and the new approach is

shown in Figure 6.4. Notice that both approaches tend to reject at lower LQL but the classical

alternative seems to be more affected. The method based on the sinh-arcsinh transformation is

found to be more robust for both α levels. This means that the new approach better preserves its

integrity when the true distribution is contaminated.

6.8 Discussion

As noted in Jongenburger et al. (2012b) and by others, the lognormal distribution is widely

used to describe the number of pathogens in a sample, despite the fact that it is a continuous

distribution. This density is criticized because of the fact that it does not allow zero counts,

whereas discrete distributions such as the negative binomial allow a positive probability for

zero counts. The absence of microorganisms in the sample has a zero probability of occurrence

according to the lognormal density and this can be a drawback when the model is characterized by

an over-dispersion of pathogens. Nevertheless, this issue could be addressed by adequate material

preparation, using composite sampling (which allows a better homogenization) or using the

three-parameter lognormal distribution. In recent years, other distributions have been proposed

as an alternative to lognormal. For instance, Gonzales-Barron et al. (2010a) suggested the use

of heterogeneous Poisson distributions. More recently Gonzales-Barron and Butler (2011b)

and Mussida et al. (2013a) recommended compound distributions such as Poisson-gamma and

Poisson-lognormal. These distributions were found suitable to characterize the colony count

in powdered food products by Jongenburger et al. (2012c). However, we need to recognize

that there is always an inherent distributional uncertainty with small samples. It is, therefore,

important to use a standard distribution but achieve robustness in lot disposition.

OC curves usually start at proportion nonconforming (p) equal to zero. Unavoidable Type I

misclassification error (false positives) results in a non-zero apparent proportion nonconforming(
p
′)

. This leads to p
′
= e1 (1− p), a fact not well recognized in the food safety literature. The

proposed procedure incorporates this measurement error for lot disposition and controls the risks

as suggested in Albin (1990) and others. Moreover, a higher degree of consumer protection can

be achieved when compared to the traditional method with the same sample size because the

proposed method achieves a steeper OC curve while maintaining the same producer’s risk.

6.9 Conclusions

The performance of variables sampling plans using log-transformed data was compared with that

obtained using the sinh-arcsinh transformation, for right skewed distributions used for modelling

microbiological counts. This transformation was found to lower the consumer’s risk in all the
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Fig. 6.4 Effect in the OC curves when the true distribution is contaminated lognormal (displayed

in thicker line width). The Z2 statistic shows a much smaller reduction in LQL than Z1.
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scenarios explored. Another important advantage is the greater robustness of the proposed

method. A real life example was given to show how the proposal can offer better consumer

protection than the traditional method.

Appendix 6.A Effect of the parameters in the sampling per-
formance

The use of the sinh-arcsinh transformation is beneficial even for small sample sizes under certain

conditions, say n = 2, 3 or 5. Figures 6.5 and 6.6 compare the OC curves of both methods for

different combinations of α , AQL and n. For higher sample sizes, the OC curves drop more

vertically and the reduction in consumer’s risks for the new method is evident. It can also be

noted that small AQL values also achieve similar reduction in consumer’s risks.
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Fig. 6.5 Comparison of OC curves at a producer’s risk (α) of 0.01 for different combinations of

sample size and AQL. The common cause situation is assumed to be the lognormal distribution

with μ = 0 and σ = 1, both in log scale.
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Fig. 6.6 Comparison of OC curves at a producer’s risk (α) of 0.05 for different combinations of

sample size and AQL. The common cause situation was modelled in the lognormal distribution

using μ = 0 and σ = 1, both in log scale.
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Appendix 6.B Tabulated critical distances

Table 6.3 and 6.4 show the estimated acceptability constants k1 and k2 for a larger range of AQL
and sample sizes used in practice (included in the ICMSF (2002) plans).

Table 6.3 Monte Carlo estimates of the critical distance factor (k) for three values of producer’s

risk and AQL = 0.01.

α = 0.01 α = 0.02 α = 0.05

n k1 k2 k1 k2 k1 k2

2 0.56 0.54 0.71 0.71 0.95 1.02

3 0.78 0.78 0.91 0.94 1.13 1.22

4 0.92 0.95 1.04 1.10 1.25 1.37

5 1.03 1.08 1.14 1.22 1.33 1.48

10 1.31 1.44 1.41 1.57 1.56 1.79

15 1.46 1.63 1.54 1.75 1.68 1.95

20 1.55 1.76 1.63 1.87 1.75 2.05

30 1.67 1.93 1.73 2.02 1.84 2.18

40 1.74 2.03 1.80 2.12 1.90 2.27

50 1.79 2.11 1.85 2.19 1.94 2.33

60 1.83 2.17 1.89 2.25 1.97 2.38

Table 6.4 Calculated estimates of the critical distance factor (k) for three values of producer’s

risk and AQL = 0.0001.

α = 0.01 α = 0.02 α = 0.05

n k1 k2 k1 k2 k1 k2

2 1.26 1.41 1.43 1.66 1.76 2.13

3 1.56 1.78 1.72 2.02 2.02 2.46

4 1.75 2.03 1.90 2.27 2.18 2.68

5 1.89 2.22 2.04 2.44 2.30 2.85

10 2.28 2.77 2.41 2.97 2.63 3.31

15 2.48 3.06 2.60 3.25 2.79 3.56

20 2.61 3.26 2.72 3.43 2.89 3.71

30 2.77 3.51 2.87 3.67 3.02 3.92

40 2.88 3.68 2.96 3.82 3.10 4.05

50 2.95 3.80 3.03 3.93 3.16 4.14

60 3.01 3.89 3.08 4.01 3.20 4.21

Appendix 6.C Software code

The R code shown below computes the acceptability constants k1 and k2 for a given combination

of α , AQL and n.
� �

stats function(n = n, mu = mu, s = s, m = m){
sample rlnorm(n = n, meanlog = mu, sdlog = s)
# Z1 using log transformation
Z1 (log(m) mean(log(sample))) / sd(log(sample))
# Z2 using sinh.arcs transformation
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sinh.arcs function(x, epsilon = 0, delta = 0.1) {sinh(delta *
asinh(x) epsilon)}
Z2 (sinh.arcs (m) mean(sinh.arcs(sample))) / sd(sinh.arcs(sample))
cbind(Z1, Z2)}

# Computation of the acceptance constant (k)
n 20 # Sample size
mu 0 # Mean of the lognormal distribution in log scale
s 1 # Standard deviation of the lognormal distribution in log scale
alpha 0.01 # Producer s risk
AQL 0.001 # Acceptable Quality Limit
trials 1e5 # Number of simulations

m qlnorm(AQL, lower.tail = 0, sdlog = s) # Microbiological limit (m)
A mapply(FUN = stats, n = rep(n, trials ), mu = mu, s = s, m = m)
k apply(A, 1, f function(x) quantile(x, probs = alpha))

�� �

Appendix 6.D Step-by-step guide

The sampling design for the new approach can be developed by using the following guide:

• Define the producer’s risk (α) and the number of samples to be drawn (n).

• For a given regulatory limit (m), compute the associated AQL as the right tail area in the

lognormal distribution. If m is not established, define an AQL and obtain m as the quantile

of the lognormal distribution.

• Compute the statistic Z2.

• For a given n, AQL and α , obtain k from Table 6.1, 6.3 or 6.4. For other combinations,

obtain k using the R snippet.

• Apply the decision criterion. If Z2 ≥ k accept the lot; otherwise reject.
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Distribution Matching

Figure 6.7 shows the three distributions matched through their mode and density. The lognormal

distribution is more skewed that the gamma and Weibull models.
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Fig. 6.7 Lognormal probability density function with μ = 0 and σ = 1 in solid line matched

with the gamma (c = 1.5,b = 0.75) and Weibull (κ = 1.3,λ = 1.14) distributions through the

mode and the density. The gamma and Weibull distribution are in dashed and dotdashed line.
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Appendix 6.E Symbols and definitions.

Table 6.5 Glossary of symbols and definitions.

LN (μ,σ) lognormal distribution with

f (x/σ ,μ) = 1

xσ
√

2π
exp

(
− (ln(x)−μ)2

2σ2

)
probability density function

μ logscale

σ shape parameter

Z1 =
my−Ȳ

Sy
test statistic for the normal distribution

Z2 =
mv−V̄

Sv
statistic of the sinh-arcsinh transformation

H = sinh
[
δ sinh−1 (x)− ε

]
sinh-arcsinh transformation

m microbiological limit

Ȳ = ∑Yi/n sample mean

Sy =

√
∑(Yi − Ȳ )2

/(n−1) sample standard deviation

e1 Type I measurement error

n number of samples

q quantile function

k critical distance

AQL Acceptable Quality Limit

LQL Limiting Quality Level

α producer’s risk

β consumer’s risk

Appendix 6.F Justification of chosen constant for sinh-arcsinh
transformation.

Let us assume other possible values for δ and ε , namely δ = 0.1,0.5,1 and 2; and ε =

0,0.25,0.50,0.75 and 1. Consider n = 10, AQL = 0.001 and α = 0.01. The efficiency of the

new sampling plan can be given in terms of limiting quality reduction compared to a reference

the traditional plan based on the log transformation.

ΔLQ = (1−LQL2/LQL1)×100 (6.4)

where LQL2 and LQL1 are the Limiting Quality Levels obtained using the sinh-arcsinh and

employing the regular log transformation respectively. The larger the LQL reduction, the better

the discriminatory power of the new approach. Figure 6.8 shows a level plot of the LQL reduction

(in %) as a function of δ and ε . While ε has a minor effect in the OC curve, the parameter δ has

a significant impact. Smaller δ values will yield smaller LQL values. The suggested method

achieves up to 30% of LQL reduction when compared to the traditional sampling plan for the

fixed sample size.
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Fig. 6.8 LQL reduction level plot based on δ and ε . The blue zone is where the plan based on

sinh-arcsinh reduces the LQL.
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7.1 Abstract

Testing composite samples is a useful strategy to achieve sampling economy. Several studies

have shown the effectiveness of this technique under the assumption of perfect mixing of primary

samples. This paper investigates the effect of imperfect composite sample preparation on the

performance of two and three-class variables sampling inspection plans, and identifies scenarios

in which testing composite samples is not advantageous. The design of sampling plans using

composite samples is discussed and an implementation guide based on two points of the OC

curve for perfect and imperfect mixing is provided.

Keywords

Food safety; Composite samples; Imperfect mixing; Sampling plan

7.2 Introduction

Acceptance sampling methodology is used for disposition of lots of commodities as suitable to

be consumed. Lots are assessed as acceptable or otherwise based on a sample of n test results or

measurements. Sampling inspection plans therefore provide assurance to the consumers on the

quality and safety of accepted lots. Attribute inspection plans are used when an item or a test

sample is classified as conforming or not. Variables inspection plans are used when measurements
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are made on a continuous scale. Variables plans are convenient since they require smaller sample

sizes when compared to the attribute plan alternatives. Smaller sample sizes generally mean

lower inspection costs. When attribute plans are employed for food safety, each tested sample

is commonly classified as conforming when the microbial count is under a regulatory limit

e.g. less than 1 CFU 100 kg−1 of salmonella in dried milk. The International Commission

on Microbiological Specifications for Foods, in ICMSF (2002) and the Codex Alimentarius

Commission (CAC) in CAC (2004) provide guidelines on using sampling inspection plans for

food quality/safety assurance. Both protocols recommend inspection plans by attribute and for

variables.

Sampling inspection plans for food safety commonly assume the concentration of microor-

ganisms to be lognormally distributed. Numerous studies reflect that this statistical model is

satisfactory to describe the frequencies of pathogens, see for instance Kilsby and Baird-Parker

(1983). The lognormal model is the maximum entropy distribution when the mean and the

variance are fixed and therefore it is the most conservative statistical model used to describe the

variation due to common or chance causes. The advantage of using the lognormal model is that,

by expressing the cell counts on a logarithmic scale, the variables inspection plans for the normal

distribution can be applied. This methodology is used in the sampling plans discussed by Kilsby

et al. (1979) and Smelt and Quadt (1990).

The performance of a sampling plan is assessed using its Operating Characteristic (OC)

curve. The OC curve gives the probability of acceptance (Pa) for various batch quality levels;

see Fig. 7.1. The batch quality is commonly expressed in proportion nonconforming (fraction of

the population that does not comply to the microbiological limit). The fraction nonconforming

product can be estimated using the sample mean and the standard deviation. The consumer’s point

of interest on the OC curve is typified using the Limiting Quality Level (LQL) and the consumer’s

risk (β ). The producer’s point of interest on the OC curve is typified using the Acceptance Quality

Limit (AQL) and the producer’s risk (α). The AQL is the maximum proportion nonconforming

that is considered acceptable for the consumer, while the LQL is the proportion nonconforming,

that is expected to be rejected with a high probability.

A single sampling plan is designed by either: (1) two points in the OC curve (AQL,α and

LQL,β ) or (2) the sample size (n) plus a restriction. The restriction may be: one point in the

OC curve, the acceptance constant (attribute plans) or the critical distance (variables plans).

The standard practice in quality control is to use the first approach, while the second method is

popular in food quality assurance. For food safety, the focus is on the LQL rather than the AQL
because the primary objective of inspection is to provide consumer protection. However, the

consumer’s point of interest on the OC curve alone does not uniquely define a sampling plan.

Therefore, the AQL point is additionally used to match the OC curves and for design purposes.

Variables plans for the proportion nonconforming based on two points of the OC curve were

originally introduced by Wallis (1947). For the unknown standard deviation case, approximate

solutions were proposed by Lieberman and Resnikoff (1955) and Owen (1967). Kilsby et al.

(1979) extended the variables inspection plan to include the good manufacturing practice (GMP)
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Fig. 7.1 Illustration of the Operating Characteristic (OC) curve.

limits. This design is based on the point on the OC curve representing the consumer’s interest

along with a limited range of sample sizes to obtain the critical distances under the noncentral

t distribution. This design approach was adopted by ICMSF (2002), and Smelt and Quadt

(1990) then extended it for cases in which the standard deviation is calculated using historical

data. In two-class variables plans, the batch quality is assessed in terms of the fraction of the

product nonconforming (or alternatively conforming) to the specification or regulatory limit(s).

In three-class variables plans, the batch quality is assessed in terms of fraction of the product

nonconforming to the regulatory limits as well as the fraction of the product failing to meet

the tighter GMP-type limits. In other words, the three-class plans consider the possibility of

marginal batch quality in addition to poor and good quality.

Despite the fact that many authors studied variables sampling plans for food microbiology,

the additional risk due to the mixing of primary samples have not been incorporated in the

sampling plan design. In this paper we assess the sampling economy when the test material

preparation involves composite samples. However, this research excludes the case in which only

a single composite sample is tested but focusses on testing several composite samples.

The paper is organized in the following way. It begins in Section 7.3 by examining the

use of composite samples for food quality assurance. In section 7.4 we discuss the theoretical

aspects of imperfect mixing. The performance of sampling plans based on composites and

based on individual units are compared in Section 7.5, while in Section 7.6 we provide the

design of a variables plan for composite samples. In section 7.7 we analyze the performance of

three-class variables plans. The Appendix includes the symbols and important definitions and

the implementation guide. All simulations and graphs were carried out with R software (R Core
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Team, 2015). Dirichlet and multivariate hypergeometric random numbers were generated using

the R-packages gtools (Warnes et al., 2013) and BiasedUrn (Fog, 2013), respectively.

7.3 Food safety and composite samples

The use of composite samples becomes a very attractive alternative when the cost of collecting

large number of primary samples is low in relation to the analytical testing costs. A composite

sample can be defined as “the physical mix of individual sample units or a batch of unblended

individual sample units that are tested as a group”(Patil, 2006). Compositing is a physical averag-

ing process. A highly representative composite sample is useful to estimate the population mean

levels. In recent years, there is a growing interest in composite sampling for food safety, (Jarvis,

2007; Ross et al., 2011). However, the use of composite samples remains controversial. As

stated in ICMSF (2002), an “increase in the stringency of examination, without correspondingly

increasing laboratory effort” can be obtained by compositing. On the other hand, CAC (2004)

recommends composite sampling only for economic reasons “given the loss of information on

sample-to-sample variation due to the combination of primary samples”. Jongenburger (2012b)

also favours the use of the individual units instead of composite units due to the dilution effect

independently of the higher workload.

In food microbiology, composite testing is used with the aim of lowering the analytical cost

and reducing the variability in the test result, (Jarvis, 2007; Ross et al., 2011). A composite

sample Yj ( j = 1,2, · · · ,nc) is formed by mixing/blending Xi (i = 1,2, · · · ,nI) individual or

primary units. This process of compositing is often assumed to be perfect for all Yj , e.g.

Van Belle et al. (2001), El-Baz and Nayak (2004), Jonkman et al. (2009), etc. In other words, it

is assumed that

Yj = X̄ j =
nI

∑
i=1

Xi j/nI (7.1)

implying that each primary sample contributes equally or perfectly to every final composite. The

variance of the composite measurement is then given by σ2
y = σ2

x /nI . Fig. 7.2 shows the process

in which nc composite samples are formed each one by mixing nI individual samples. Laboratory

tests are done using the composite samples (Yj’s). Testing a single composite multiple times is

carried out in some situations but this alternative is not considered in this paper. This is because

multiple testing of a single composite only captures the measurement error related variability

and not the variability in the lot or production process. When nI = 1 means that the primary

sample units are tested individually without preparing composites.

In studies involving parameter estimation e.g. El-Baz and Nayak (2004), the number of

primary samples mixed together to form a composite is commonly fixed in the range of two

to 10 (i.e. nI = 2 to 10). Higher values of nI are not considered due to the risk of dilution.

Presence-absence type of attribute testing normally requires higher nI values such as 30, see e.g.

(Jarvis, 2007). This because presence-absence tests involve incubation. If the composite sample

contains one or more cells, the test is likely to yield a positive result. The approach discussed
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Fig. 7.2 Formation of nc composite samples each one by mixing nI primary samples.

in this paper cannot be applied to pathogens that requires enrichment during the test material

preparation e.g. salmonella.

A special case of compositing is the use of automatic samplers in industrial processes

associated with bulk materials in which the final composite is a result of combining of hundreds

and sometimes thousands of primary samples of very small quantity. This approach allows good

representation of the temporal distribution of microorganisms during the production, but can also

dilute large bacterial spikes when the sampled quantity is very small. This case is not considered

in this research.

The use of composite samples is recommended in the literature for estimating the mean of

right-skewed populations such as lognormal and gamma. Van Belle et al. (2001) and El-Baz

and Nayak (2004) showed that the effectiveness of this type of sampling depends on the number

of composite samples and the population variance. However, these studies do not consider the

effect of unequal contributions of primary samples in the mixing process.

7.4 Imperfect mixing

If the composite preparation technique is imperfect or alternatively if the physical averaging of

primary samples is less satisfactory, the final composite becomes less representative. Physical

characteristics involved may also render mixing less than perfect. The process of mixing/blending

represents an important source of variability which cannot be ignored in the sampling plan design.

This fact is recognized in environmental studies, see for instance Patil et al. (2010) and Edland

and Van Belle (1994). Similarly, Corry et al. (2007) identified the homogenization process as an

important source of sampling error.

Heterogeneity is also tackled using the Gy’s Theory of Sampling (ToS) (Gy, 1979) which

covers several components of errors associated with the heterogeneity of materials such as

fundamental error and grouping/segregation error. The effect of an imperfect mixing/blending is

not fully established in the food safety literature. The effectiveness of composites is addressed

in presence-absence type of testing (Jarvis, 2007), but not for variables sampling plans used

for lot disposition. In the presence of heterogeneity, the composite measurement is nothing

but a weighted average (Brown and Fisher, 1972; Elder et al., 1980; Rohde, 1976). If the

proportions of the contributions made by the primary samples are well controlled, the weights

become fixed and it can be described by a discrete uninform probability distribution. Imperfect
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mixing leads to unequal contributions of primary samples towards the composite sample and

hence the weights of such contributions become random and can be described by a non-uniform

probability distribution (Patil et al., 2010). In other words, when the composite is subsampled,

the contribution of each individual unit is different in terms of volume or mass. This means that

the weights will be proportional to the corresponding contribution. Since each contribution is

unknown, the weights are then randomly distributed.

That is, we treat the jth composite sample measurement as

Yj = w1X1 +w2X2 + · · ·+wnI XnI =
nI

∑
i=1

wiXi (7.2)

where wi are the stochastic weights subject to ∑nI
i=1 wi = 1. A matrix algebraic treatment to

describe the composite samples and weights can be found in Lancaster and Keller-McNulty

(1998).

The quality of the mixing of the primary samples during the test material preparation is

specific for every category of food. Since liquids can be easily homogenized, they are often

mixed by manual shaking. However, manual mixing often cannot break the clumps in solid

materials and therefore mechanical mixing is required. Mechanical mixing is commonly carried

out using mixers or stomachers. Some of the sample preparation methods recommended by

Greenfield and Southgate (2003) result in imperfect composite. For instance, the mixing of

solids such as grains, flours and dried milk is carried out in solid state by hand, using spatula and

subsampling after quartering. In solids, the use of diluent significantly improves the degree of

homogenization.

Since the structure of the composite is unknown due to lack of population data, theoretical

models are used in the literature to study various scenarios of sampling variabilities, mixing

strategies and their effect on composite samples. We now consider three non-uniform probability

distributions to describe the weights. Two of them have been used previously, the Dirichlet

distribution (D) in Rohde (1976) and the multivariate hypergeometric distribution (MH) (Brown

and Fisher, 1972; Elder et al., 1980). Each distribution is used to represent different mixing

scenarios. We are not matching the parameters of these distributions so that a wider range of

situations can be covered.

The Dirichlet density function is given by:

f (w1, · · · ,wnI ;a1, · · · ,anI) =
Γ
(
∑nI

i=0 ai
)

∏1
i=0 Γ(ai)

nI

∏
i=1

wai−1
i (7.3)

where a = (a1,a2, · · · ,anI) is the vector of concentration parameters and as usual ∑wi = 1. The

concentration parameters determine the contribution of the individual samples. The concentration

parameters are specific to the bulk material and the mixing/blending technique employed. No

empirical information is usually available because their determination requires the full knowledge

of the population variability. Hence we carried out a what-if analysis to assess the impact of a

change in the concentration parameters on the sampling plan. We considered three scenarios of
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imperfect mixing with a = 0.1 (poor mixing), 1 (moderate mixing) and 5 (good mixing). Here

a = 0.1 means ai = 0.1 for all i, (i = 1,2, · · · ,nI). The first two concentration parameters were

also used in Nauta (2005). For large ai values, the weights tend to be nearly constant. For a

mechanistic justification of the Dirichlet model, see e.g. Patil et al. (2010); Rohde (1976).

The multivariate hypergeometric distribution is also used for modelling bulk materials

composed of discrete units and solid materials such as grains and coal. This distribution is

defined as an urn model. Suppose that the physical elements of each primary sample are

associated with balls of a certain colour. If m1,m2,· · ·, mnI balls of different colours are placed in

an urn and a sample of n balls is drawn without replacement, then the probability of obtaining an

specific number of balls of each colour (x1,x2, · · · ,xnI ) in the sample is given by

P(X1 = x1,X2 = x2, ...,XnI = xnI) =

(m1
x1

)(m2
x2

) · · ·(mnI
xnI

)
(m

n

) (7.4)

where
(mi

xi

)
is the binomial coefficient and the weights are computed as wi = xi/∑nI

j=1 x j. When

each individual unit has the same probability to contribute to the final composite the “odds” are

equal and the central hypergeometric distribution is relevant. However, for unequal odds, some

of the units contribute to the composite more heavily than others. This case leads to the non-

central hypergeometric distributions which can be modelled by using the Wallenius’ noncentral

hypergeometric distribution or with the Fisher’s noncentral hypergeometric distribution (Fog,

2008).

Three different scenarios of composite formation are considered. The first one assumes

that the contribution of each individual primary sample is unbiased (central hypergeometric

distribution) while the last two scenarios assume that some of the primary samples contribute

more than others to the composite sample (noncentral hypergeometric distribution). In the second

scenario, it is assumed that half of the primary samples are 10 times more likely to contribute to

the composite sample, while in the third scenario only one of the primary samples is 10 times

more likely to be represented in the composite sample.

7.5 Variables plan for composite samples

Let the characteristic X of interest representing the number of microorganisms be lognormally

distributed and subjected to an upper microbiological limit (m). This microbiological (regulatory)

limit is usually set after fitting an in-control or baseline distribution. The AQL is then proportion

of the product with microbial count in excess of m for the common cause or baseline state. Let

V = log(X) and mv = log(m). The lot acceptance criterion is of the form v̄+ kSv � mv, where

v̄ = ∑n
i=1 vi/n, k is the critical distance or acceptability constant and Sv is the sample standard

deviation of V . Alternatively, the test statistic

Zm = (mv − v̄)/Sv (7.5)
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expresses the allowable distance in standard deviation units between the mean and the specifica-

tion. When the value of Zm is lower than k, the fraction of nonconforming product in the lot is

higher than the AQL and hence the lot is rejected. Under the assumption of normal distribution

for V , the acceptability constant k and the required sample size n can be obtained using formulae,

see Duncan (1986) or Montgomery (2007). The traditional plan design assumes the use of

primary samples.

It is established in the literature that the sum of independent lognormal random variables can

be approximated by a single lognormal distribution (Johnson et al., 1994, pp. 217). Therefore,

the enumeration of cells in the composite samples (Yj) is also assumed to be lognormal. The

analytical test size of Yj is equal to the analytical size in the individual units Xi j for the purpose of

this research. Let U = log(Y ) be the log-count of microorganisms obtained from the composite

samples. The acceptance criterion for the composite samples is then ū+ kSu � mv, where

ū = ∑n
i=1 ui/n, k is the critical distance and Su is the sample standard deviation of U .

Derivation of an analytical expression for the OC function of the variables plan based on the

composite samples is too complex and hence we need to resort to Monte-Carlo simulation to

obtain OC curves. The simulation algorithm for the sampling based on primary units is described

below. The common cause situation is modelled with the lognormal with μ = 0 and σ = 1 both

in log scale. The Zm test statistic is obtained from a vector X generated from the lognormal

distribution. For the purpose of the simulations, the AQL value is used to compute m since there

is a one-to-one relationship between proportion nonconforming and the distribution quantile.

The critical distance k is obtained as the α-quantile of Zm replicated (at least 50,000 times).

Batches under the common cause situation will be accepted with probability 1−α . The special

causes of variation mean a non-random change in the process and they are due to factors such as

temperature misuse, environmental factors and poor handling. Special causes are modelled by

increasing the μ until μ +2 at intervals of 0.05. The probability of acceptance is given for the

proportion of Zm values greater than or equal to the critical distance.

The simulation algorithm for composite samples is slightly different. The Zm test statistic

is obtained from a vector Y resulting from the average (perfect mixing) or weighted average

(imperfect mixing) of the individual sample units (Xi j). The weights for imperfect mixing are

modelled using the three distributions discussed in last section. The OC curves are forced to

match at the producers’ point (AQL,1−α) and then examined whether the consumer’s risk at

other rejectable levels is as small as possible.

To compare the sampling plan performance, let us start with the sampling plan using indi-

vidual units. Let AQL = 0.01, α = 0.01 and consider a reasonable sample size nc = 20. In this

case the analytical tests are done using the individual units. The resulting OC curve is shown in

Fig. 7.3 in thin solid line. Consider than that the 20 tests are carried out over composite samples

each one formed by nI = 4 and 8 individual units. Therefore each alternative require 4 × 20

= 80 and 8 × 20 = 160 primary samples respectively. The OC curves when the mixing of the

individual units is considered as perfect are given in heavy solid line. The thin and the heavy

solid lines give the worst and best case scenarios respectively in terms of consumer’s risk but
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they remain the same in Fig. 7.3–7.5. Suppose that the mixing process is less satisfactory and can

be described using the Dirichlet distribution. Consider the concentration parameters introduced

in the last section to describe three different mixing scenarios. The resulting OC curves are given

in dotted (a = 0.1), dashed (a = 1) and dotdashed (a = 5).

From Fig. 7.3, we note that the use of composite samples achieves a significant reduction in

the LQL at the same β risk (say β = 0.10). The benefit of using composite samples is due to the

natural averaging process as result of the physical mix. However, the composite sample formed

with four primary samples (nI = 4) achieves only a little reduction in the consumer’s risks when

the concentration parameter is small (a = 0.1). The effect of dilution is not compensated by the

improvement in the performance of detecting large fraction nonconforming product levels. As

one would expect, the more evenly the primary samples contribute towards the composite sample,

the steeper the OC curve becomes. In case of uneven contributions, the OC curve becomes less

steeper thereby increasing the consumer’s risks. In other words, the discriminatory power of the

sampling plan (capacity to discriminate between good and poor quality) depends on the standard

deviation of the weights in addition to the number of primary samples used for composite sample

formation.

Now consider the case in which the composite sample formation is modelled by employing

the multivariate hypergeometric distribution. The OC curves obtained using Monte-Carlo

simulation for these scenarios are presented in Fig. 7.4.

Consider the case in which the contributions are derived from the negative binomial distri-

bution , NB(d,b). The resulting OC curves are shown in Fig. 7.5. We particularly note that

compositing does not reduce the consumer’s risk when d = 1 and nI = 4 when compared to

testing nc primary samples.

When mixing is imperfect, the stochastic nature of mixing can be studied only using theoret-

ical models. By employing various probability models, we can examine how the consumer’s

risks are affected and how much efficiency is lost or gained by the use of composite samples.

Figures 7.3 to 7.5 show that testing nc composite samples is a better strategy than testing nc

primary samples, and the consumer’s risks are not affected adversely because of compositing.

The performance of the sampling based on composites requires good mixing for controlling the

risks. We also note that perfectly mixed samples achieve the lowest consumer’s risks in general

for a given nc and nI . In the next section, we use just the Dirichlet distribution for generating

weights since it allows modelling a variety of mixing scenarios with a single parameter.

7.6 Design of the variables sampling plan based on composite
samples.

In this section we examine the number of samples to be tested in order to control the producer’s

and consumer’s risks at desired levels for selected combinations of AQL and LQL values for

nI = 1,4 and 8. Tables 7.1 and 7.2 in the Appendix show the number of samples to be tested
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Fig. 7.3 Comparison of the OC curves for nc = 20, α = 0.01, AQL = 0.01 with nI = 1, 4 and 8.

The thin solid line gives the OC curve when the units are tested individually (nI = 1) and the

heavy solid line shows the case in which the composite samples are formed under perfect mixing.

The other OC curves are associated with imperfect composites described using a Dirichlet

distribution with a = 0.1 (dotted), a = 1 (dashed), and a = 10 (dotdash). Pa is the probability of

acceptance.
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Fig. 7.4 Comparison of the OC curves for nc = 20, α = 0.01, AQL = 0.01 with nI = 1, 4 and 8.

The thin solid line gives the OC curve when the units are tested individually (nI = 1) and the

heavy solid line shows the case in which the composite samples are formed under perfect mixing.

The other OC curves refer to imperfect mixing with weights described using multivariate central

(dashed) and noncentral hypergeometric distribution (dotted and dotdashed).
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Fig. 7.5 Comparison of the OC curves for nc = 20, α = 0.01, AQL = 0.01 with nI = 1, 4 and 8.

The thin solid line gives the OC curve when the units are tested individually (nI = 1) and the

heavy solid line shows the case in which the composite samples are formed under perfect mixing.

The other OC curves are associated with imperfect mixing described by negative binomial

distribution with shape (d) and scale (b).
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for various scenarios (testing using individual units and testing composite samples with perfect

and different imperfect mixing conditions). The associated acceptability constants k are given

in brackets. The number of samples to be tested n when the units are tested individually follow

from the traditional variables plans discussed in textbooks such as Duncan (1986). The reduction

in the number of samples that are tested is between 30% to 50% for the variables plans based

on composite samples when mixing is assumed to be perfect. However poor mixing does not

reduce the sample sizes nc greatly.

It is well known in the acceptance sampling literature that the closer the quality levels (AQL
and LQL) are, higher the required sample size will be. For example, the sample size requirement

for AQL = 0.01, α = 0.01, LQL = 0.10 and β = 0.10 is less than the sample size required for

AQL = 0.05, α = 0.01, LQL = 0.10 and β = 0.10. For safety characteristics, the AQL and LQL
values cannot be high. But care should be taken to set them apart so that a higher rate of rejection

of poor lots can be achieved using small sample sizes. A step-by-step guide for determining the

sample size and the acceptability constant is presented in the Appendix.

Table 7.1 Estimates of the required sample size and the critical distance for the lognormal

distribution using individual units and composite samples with nI = 4. The contribution for an

imperfect mixing is modelled using the Dirichlet distribution.

AQL LQL α β nc1(k) nc2(k) nc3(k) nc4(k) nc5(k)
0.001 0.10 0.01 0.10 13(1.965) 9(2.864) 12(2.092) 10(2.521) 9(2.751)

0.001 0.10 0.05 0.10 10(2.155) 7(3.223) 9(2.298) 8(2.858) 7(3.096)

0.001 0.15 0.01 0.10 9(1.811) 6(2.575) 9(1.950) 7(2.318) 7(2.584)

0.001 0.15 0.05 0.10 7(2.013) 5(3.022) 7(2.199) 6(2.714) 5(2.903)

0.01 0.10 0.01 0.10 30(1.666) 18(2.330) 27(1.760) 22(2.124) 20(2.301)

0.01 0.10 0.05 0.10 21(1.761) 13(2.532) 19(1.876) 16(2.287) 14(2.478)

0.01 0.15 0.01 0.10 18(1.515) 10(2.052) 16(1.593) 13(1.894) 11(2.028)

0.01 0.15 0.05 0.10 13(1.639) 8(2.330) 12(1.745) 9(2.067) 8(2.241)

Note: c1 denotes testing of individual sample units (nI = 1) and c2 denotes testing using composite

samples under perfect mixing conditions (nI = 4). c3, c4 and c5 correspond to the imperfect mixing

(nI = 4) modelled by the Dirichlet distribution with a = 0.1,1 and 5 respectively.

Other statistical models such as the negative binomial (NB) can also be used to describe the

weights. However, this case has not been addressed in the literature before. Let X1, X2,...,XnI be

i.i.d. random variables from the NB distribution with density given by:

f (x) =
(

k+ x−1

k

)
(1− p)x pk (7.6)

where k and x are the number of successes and failures respectively. As before, define wi =

xi/∑nI
j=1 x j. The NB model arises as a mixed Poisson-gamma distribution where the Poisson

parameter (λ ) is distributed as gamma with shape parameter (d) and scale parameter b =

(1− p)/p. Three possible scenarios of weights (from good to poor mixing) being generated by

NB(d = 10,b = 1), NB(d = 2,b = 2) and NB(d = 1,b = 2) were examined.



136 Variables Sampling Plans using Composite Samples for Food Quality Assurance

7.7 Three-class variables plan

The three-class variables plans (Newcombe and Allen, 1988) are an extension of the three-class

attribute plans originally introduced by Bray et al. (1973a). In three-class plans for attributes test

results are classified as acceptable, marginally acceptable and unacceptable. The ICMSF (2002)

considers three-class attributes plans in Cases 1–9. In the three-class variables plans, the lot is

sentenced as acceptable if the observed proportion nonconforming and proportion of marginal

items are lower than some predefined limits. The advantage of the three-class plan for variables

is that it requires a smaller sample size when compared with the three-class plans for attributes

(Newcombe and Allen, 1988). Wilrich and Weiss (2009) proposed the three-class sampling by

variables for safety characteristics and studied the performance when the density departs form

the lognormal model.

Three-class plan for variables involves two microbiological limits m < M (see Fig. 7.6), two

critical distances k2 < k1 and two acceptable quality limits AQL1 < AQL2. Let p1 and p2 be the
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Fig. 7.6 Illustration of the three-class plan using a lognormal distribution with two microbiological

limits.

proportion of items exceeding M and m respectively, i.e. the proportion of nonconforming and

marginally acceptable items in the lot respectively. The probability of acceptance is given by

the joint probability function Pr (v̄+ k1Sv � Mv ∩ v̄+ k2Sv � mv). The sampling performance is

revealed by the OC surface which is the plot of the proportion nonconforming and marginally
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acceptable versus the probability of acceptance of the lot. In a three-class situation after taking

logs of the cell count, the joint probability distribution of v̄+k1Sv and v̄+k2Sv follows a bivariate

normal distribution V ∼ N (μ,Σ).
In this section we again use the same Monte-Carlo simulations to estimate the critical

distances and compute the probability of acceptance. The algorithm to obtain the OC surface is

similar to the algorithm that was introduced in Section 7.5. The main differences are:

• The limits M and m are obtained from AQL1 and AQL2 respectively.

• The critical distances k1 and k2 are computed as the α-quantile of the ZM and Zm statistics

replicated at least 50,000 times. The ZM statistic is similar to Zm (Eq.7.5), but replacing

mv by Mv = log(M).

• The probability of acceptance results from the proportion of cases in which both ZM � k1

and Zm � k2.

Consider the following example. Let the frequencies of pathogens be lognormally distributed,

let nI = 1 (individual units), nc = 10, AQL1 = 0.001, AQL2 = 0.01 and α = 0.01. The OC

contour and surface plot is shown in Fig. 7.7.

To investigate the effectiveness of the use of composite samples with a perfect mixing process,

we fixed nI = 4. The resulting OC contour is shown in Fig. 7.8.

For p1 = 0.05 and p2 = 0.10, the consumer’s risk is found to be 0.20 for the tests using

individual units while the compositing reduces the consumer’s risk to about 0.09. Similar

reduction was found at other combinations of p1 and p2. Let the imperfect mixing of individual

units be described using a Dirichlet distribution with a = 0.1,1 and 5. Fig. 7.9, 7.10 and

7.11 show the OC contour plots under these conditions. The use of composite samples does

not improve the performance of the plan significantly in comparison with the testing of units

individually when a = 0.1 (Fig. 7.9). However, when the mixing quality improves (modelled

with a = 1 and 5), the absolute consumer’s risk is reduced by about 5 and 10% respectively.

Similar reductions were again found at other combinations of p1 and p2.

7.8 Conclusions

In this article we have studied the effect of using composite samples on two and three-class plans

for variables when the mixing process is perfect and imperfect. Testing composite samples is a

very effective way to reduce the workload when the mixing is perfect; however in some cases

the potential saving may not justify the risk of dilution, particularly if the mixing is poor. The

decision to opt for composite or individual samples depends on the effectiveness of the physical

mixing and the levels of consumer’s risks.
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Fig. 7.7 (a) OC contour plot and (b) OC surface of the three-class variables plans using nc = 10

primary samples, AQL1 = 0.001, AQL2 = 0.01 and α = 0.01.
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Fig. 7.8 OC contour plot of the three-class variables plans using composite samples assuming a

perfect mixing with nI = 4, nc = 10, AQL1 = 0.001, AQL2 = 0.01 and α = 0.01.
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Fig. 7.9 OC contour plot of the three-class variables plans using composite samples assuming the

mixing as imperfect with a = 0.1, nI = 4, nc = 10, AQL1 = 0.001, AQL2 = 0.01 and α = 0.01.
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Fig. 7.10 OC contour plot of the three-class variables plans using composite samples assuming

the mixing as imperfect with a = 1, nI = 4, nc = 10, AQL1 = 0.001, AQL2 = 0.01 and α = 0.01.
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Fig. 7.11 OC contour plot of the three-class variables plans using composite samples assuming

the mixing as imperfect with a = 5, nI = 4, nc = 10, AQL1 = 0.001, AQL2 = 0.01 and α = 0.01.
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Appendix 7.A Glossary of symbols and definitions

D(a) Dirichlet distribution

f (w1, · · · ,wnI ;a1, · · · ,anI) =
Γ(∑

nI
i=0 ai)

∏1
i=0 Γ(ai)

∏nI
i=1 wai−1

i probability density function

a concentration parameter

MH multivariate hypergeometric distribution

P(X1 = x1,X2 = x2, ...,XnI = xnI) =
(m1

x1
)(m2

x2
)···(mnIxnI

)

(m
n)

probability density function

NB(x, p) negative binomial distribution

f (x) =
(k+x−1

k

)
(1− p)x pk probability mass function

G(d,b) gamma distribution

f (x/d,b) = 1
Γ(d)bd xd−1 exp

(− x
b

)
probability density function

d shape parameter

b scale parameter

LN (μ,σ) lognormal distribution

f (x/σ ,μ) = 1

xσ
√

2π
exp

(
− (ln(x)−μ)2

2σ2

)
probability density function

μ logscale

σ shape parameter

m upper specification limit or regulatory limit

M second upper specification limit

X̄ = ∑Xi/n sample mean

S =

√
∑(Xi − X̄)

2
/(n−1) sample standard deviation

α producer’s risk

β consumer’s risk

AQL Acceptance Quality Limit

LQL Limiting Quality Level

k acceptability constant (critical distance)

nI no. of primary samples (individual units)

nc no. of composite samples (each consists of nI)

p1 proportion of product exceeding M
p2 proportion of product exceeding m
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Appendix 7.B Sampling plan design

Table 7.2 Estimates of the required sample size and the critical distance for the lognormal

distribution using individual units and composite samples with nI = 8. The contribution for an

imperfect mixing is modelled using the Dirichlet distribution.

AQL LQL α β nc1(k) nc2(k) nc3(k) nc4(k) nc5(k)
0.001 0.10 0.01 0.10 13(1.965) 8(3.698) 12(2.282) 10(3.134) 8(3.461)

0.001 0.10 0.05 0.10 10(2.155) 6(4.143) 9(2.534) 7(3.484) 7(4.043)

0.001 0.15 0.01 0.10 9(1.811) 5(3.235) 8(2.064) 7(2.836) 6(3.209)

0.001 0.15 0.05 0.10 7(2.013) 4(3.801) 6(2.332) 5(3.268) 5(3.796)

0.01 0.10 0.01 0.10 30(1.666) 15(2.969) 26(1.914) 20(2.555) 17(2.851)

0.01 0.10 0.05 0.10 21(1.761) 11(3.242) 18(2.033) 14(2.763) 12(3.107)

0.01 0.15 0.01 0.10 18(1.515) 9(2.650) 15(1.715) 11(2.232) 9(2.468)

0.01 0.15 0.05 0.10 13(1.639) 7(2.997) 11(1.872) 8(2.509) 7(2.826)

Note: c1 denotes testing of individual sample units (nI = 1) and c2 denotes testing using composite

samples under perfect mixing conditions (nI = 8). c3, c4 and c5 correspond to the imperfect mixing

(nI = 8) modelled by the Dirichlet distribution with a = 0.1,1 and 5 respectively.

Appendix 7.C Sampling plan guide

The procedure for the two-class composite sampling design for variables design of the two-class

variables plan based on composite samples is described in the following guide:

1. Fix the consumer’s (LQL,β ) and producer’s (AQL,α) points.

2. From previous experience or according to the mixing process and type of commodity set

the expected concentration parameter (a) in the Dirichlet distribution.

3. Define the number of individual units (nI = 4 or 8). For other nI values, the sampling plan

parameters can be obtained approximately by interpolation.

4. Obtain from Table 7.1 or 7.2 the number of composites to be formed (nc) and the critical

distance (k).

5. Compute the statistic Zm.

6. Accept the lot if Zm ≥ k; otherwise reject it.



Chapter 8

General conclusions and future
perspectives.

This thesis was driven by the needs in the food industry for more efficient sampling plans for

batch inspection. Several sampling plans with application to food microbiological inspection

have been introduced. Issues such as the use of composite samples, compressed limits and

analytical unit amounts have been discussed. The techniques developed in this research allow

producers, food safety authorities and regulatory agencies to (1) reduce the risk for the consumers

(2) utilize smaller sample sizes (3) attain smaller costs and (4) employ easy-to-use free software.

The design of several inspection plans has been discussed and step-by-step guidance has been

given. Both frequentist and Bayesian approaches have been used. Moreover, the computational

codes have been published and several apps have been developed. Some of the chapters contain

data analysis mostly for parameters estimation needed for assessing risks.

More specifically, Chapter 2 studied the risk as a function of the analytical unit amount for

isolated and streams of lots. The effects of heterogeneity are also examined in attributes and

variables plans. Chapter 3 aimed at the application and extension of the compressed limit theory

to food safety problems. This chapter introduced a novel three-class compressed limit plan

and discussed the zero acceptance number sampling plans, both with potential use in the food

industry. A double sampling plan by attributes intended for bacterial counts was introduced in

Chapter 4. This plan that is based on the compressed limit theory is the first double plan (to the

best of our knowledge) that matches the zero acceptance number plan. Measurement error is one

of the main issues in microbial testing. The effects of imperfect testing are studied in Chapter

5. Bayesian inference was used to estimate prevalence jointly with the test’s sensitivity and

specificity. The design of more suitable sampling plans in terms of risk and cost is addressed. A

novel variables sampling plan for lognormally distributed variables was introduced in Chapter 6.

The properties, benefits and demerits of this plan are discussed. Finally, Chapter 7 was dedicated

to studying the use of composite samples in plans by variables. The sampling design is given for

different composite scenarios. It showed the benefits of compositing rather than testing primary

units under certain conditions.
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8.1 Future plan of work

Assurance of safety primarily warrants compliance to multiple food safety regulations and con-

sumers specific characteristics. Some bacteria pertain to common families and often association

or correlation can be established. Some microorganism indicators have been linked to high

chances of pathogen contamination. Future studies should explore: (1) these connections and

associations, (2) statistical models to better characterize the risk, (3) the design of more efficient

sampling plans including multivariate alternatives.

Testing for pathogens usually comprises a pre-enrichment stage, which allows the recovery

or resuscitation of the cells. For instance, ISO 22964 (2006) is the standard for the detection of

Enterobacter sakazakii. Decimal dilutions are usually prepared using test portions or analytical

amounts of 10g or 300g for the pre-enrichment stage. Theoretically increasing the analytical

amounts in this stage will yield a higher probability of detecting the target cell if the pathogen is

present in the batch. However, the trade-off is that a higher volume might need higher incubation

time to allow the cell multiply over the limit of detection. See the comments in this regards given

by Ross et al. (2011). This and other issues need further theoretical work and validation.

Much of the risk assessment relies on the correctness of the statistical model. In pathogen

detection, the tests are generally presence/absence, where the positives results are reported as

‘detected’. In the absence of numerical results, it becomes difficult to find suitable statistical

models and appropriate parameters for fitting the frequencies of cells. Moreover, the actual

testing regime does not allow a proper spatial characterization of the occurrence of contamination.

There is a need for studies revealing the spatial contamination in nonconforming and recalled

batches. More effort should be put into making microbiological datasets publicly available. The

sampling inspection plans discussed in this research may have to be tailored differently in future

work for other food industries and processes.

Summing up, the uncountable sources of variation found from sample collection to laboratory

testing and emerging issues in food safety make microbiological acceptance sampling a fertile

territory for future research and development.
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Index

λ , 11

acceptance quality limit (AQL), 105

acceptance sampling, 2

analytical unit amount, 10, 15

arithmetic mean, 13

arithmetic moments, 15

average quality, 18

common cause situation, 104

composite sample, 126

imperfect, 127

perfect, 126

composite sampling, 13, 126

compressed limit, 34

compression constant, 34

concentration-based sampling plan, 11

convolution method, 16, 29

Dirichlet distribution, 128

double sampling plan, 4

food safety, 1

gamma distribution, 45, 111

Good Manufacturing Practices (GMP), 33

homogeneous batch, 11

indicator microorganism, 1

individual sample, 126

inhomogeneous batch, 12

limiting quality level (LQL), 105

localized contamination, 17

lognormal distribution, 104, 124, 129

maximum absolute risk difference (MARD), 36

microbiological attribute plans, 32

minimum absolute risk difference (MIRD), 36

misclassification error, 109

mixing, 126, 128

multivariate hypergeometric distribution, 129

negative binomial distribution, 131

normal distribution, 34

OC contour plot, 14, 138–140

OC surface plot, 138

Operating Characteristic (OC) curve, 32, 105

operating ratio, 37

overdispersion, 12

pathogens, 1

Poisson distribution, 11

Poisson mixture distribution, 12

Poisson-gamma (PG), 12

Poisson-lognormal (PLN), 12

primary samples, 15

proportion marginally acceptable, 33

quality after inspection, 19, 26

R software code, 50, 118

risk, 2

robustness, 111

safety quality characteristic, 1

sampling plan by attributes, 3

sampling plan by variables, 3

sampling plan design, 18, 25, 107, 119, 124

for composite samples, 131, 142

shiny App, 37, 50
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single sampling plan, 3

sinh-arcsinh transformation, 106

spatial correlation, 16

special causes, 104

three-class attribute plan, 38

three-class compressed limit attribute plan, 38

design and operation, 41

example, 42

three-class plan, 4

three-class variables plan, 39

using composite samples, 136

imperfect mixing, 137

perfect mixing, 137

trinomial distribution, 39

two-class attribute plans, 104

two-class compressed limit attribute plan, 34

c = 0 plan operation, 37

economic evaluation, 44

example, 42

known σ , 34

robustness, 45

unknown σ , 38

operation, 37

two-class plan, 4

variables sampling plan, 25, 104, 105

for composite samples, 129

for the proportion nonconforming, 124

Weibull distribution, 45, 111




