
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

Ontological Lockdown Assessment

A thesis presented in partial fulfilment of the requirements for the degree of

Master of Science

in

Information Technology

at Massey University, Palmerston North, New Zealand

Aaron Steele

2008

Abstract

I

Abstract

In order to keep shared access computers secure and stable system administrators resort

to locking down the computing environment in order to prevent intentional and

unintentional damage by users. Skilled attackers are often able to break out of locked

down computing environments and intentionally misuse shared access computers. This

misuse has resulted in cases of mass identity theft and fraud, some of which have had an

estimated cost ranging in millions.

In order to determine if it is possible to break out of locked down computing

environments an assessment method is required. Although a number of vulnerability

assessment techniques exist, none of the existing techniques are sufficient for assessing

locked down shared access computers. This is due to the existing techniques focusing

on traditional, application specific, software vulnerabilities. Break out path

vulnerabilities (which are exploited by attackers in order to break out of locked down

environments) differ substantially from traditional vulnerabilities, and as a consequence

are not easily discovered using existing techniques.

Ontologies can be thought of as a modelling technique that can be used to capture

expert knowledge about a domain of interest. The method for discovering break out

paths in locked down computers can be considered expert knowledge in the domain of

shared access computer security. This research proposes an ontology based assessment

process for discovering break out path vulnerabilities in locked down shared access

computers. The proposed approach is called the ontological lockdown assessment

process. The ontological lockdown assessment process is implemented against a real

world system and successfully identifies numerous break out path vulnerabilities.

Acknowledgements

II

Acknowledgements

Firstly, I thank Jesus. Also, my lovely wife Sina, my supervisors: Sven Hartmann and

Sebastian Link. Thanks also go to Stephen Marsland, Elizabeth Kemp, and Patrick

Rhyhart, my Church and all the people therein.

Last of all I thank everyone else who helped me during the course of this project.

This thesis is dedicated to one of the finest graduates of Ngaumu University, my

granddad, Bob Coulson.

Publications

III

Publications

A publication related to this research is:

Steele, A. (2008). Ontological Vulnerability Assessment. Proceedings of the

International Workshop on Web Information Systems Engineering for Electronic

Businesses and Governments (E-BAG 2008). S. Hartmann et al. (Eds): WISE 2008,

LNCS 5176, pp. 24-35, 2008. © Springer-Verlag Berlin Heidelberg 2008

Table of Contents

IV

Table of Contents

Abstract ..I

Acknowledgements.. II

Publications... III

Table of Contents ..IV

List of Figures ... VII

List of Tables ... VIII

1 Introduction... 1

1.1 Research Objectives.. 1

1.2 Thesis Structure... 2

2 The Lockdown Problem.. 4

2.1 Shared Access Computers... 4

2.2 Unique Security Issues.. 5

2.2.1 Perceived Value .. 5

2.2.2 Usability, Security and Cost Trade Off... 7

2.2.3 Insider Threat .. 8

2.2.4 User Information... 9

2.2.5 Dormant Technology .. 9

2.3 Potential Attacks ... 10

2.3.1 History... 11

2.3.2 Key Logging ... 11

2.3.3 Shares .. 13

2.3.4 Sniffing ... 13

2.3.5 Scanning.. 14

2.3.6 Denial of Service and Vandalism.. 15

2.4 Problem Summary... 15

2.4.1 Locking down ... 16

2.4.2 Tools and Techniques ... 19

2.4.3 Problem Statement .. 19

3 Existing Vulnerability Assessment Techniques.. 21

3.1 Vulnerability Scanners.. 21

Table of Contents

V

3.1.1 Nessus ...21

3.1.2 GFI LANguard..23

3.1.3 Other Vulnerability Scanners..24

3.2 Vulnerability Assessment Procedures...25

3.2.1 NIST Risk Management Guide...25

3.2.2 FRAP...28

3.2.3 VAM ...30

3.2.4 Pfleeger & Pfleeger ...32

3.3 Summary of Existing Techniques ...34

4 An Ontological Solution ...36

4.1 Ontologies ...36

4.1.1 Definition ..36

4.1.2 Features ...38

4.2 Ontologies in Security...39

4.2.1 NRL Security Ontology ..40

4.2.2 An Ontology for Network Security Attacks..40

4.2.3 Security Ontology as a Methodical Tool ..41

4.2.4 Ontologies for Security Planning..42

4.2.5 Ontologies for Security Critical Software Development42

4.2.6 Ontologies for Security Management ...43

4.2.7 Summary of Ontologies in Security..46

4.3 Proposed Ontological Solution ...47

5 Lockdown Assessment Ontology..48

5.1 Breaking Out ...48

5.1.1 Example One...48

5.1.2 Example Two ..49

5.1.3 Example Three ..50

5.1.4 Example Four ..51

5.2 The Underlying Principles ..52

5.2.1 Inputs...53

5.2.2 Processes and Outputs...54

5.3 The Ontology ..55

5.4 Ontological Lockdown Assessment..57

5.4.1 Phase 1: Define the Broken State..58

Table of Contents

VI

5.4.2 Phase 2: Identify the Initial Assets.. 59

5.4.3 Phase 3: Build Access Paths ... 60

5.4.4 Phase 4: Compilation and Analysis .. 61

6 Case Study .. 63

6.1 System Characteristics .. 63

6.2 Ontological Lockdown Assessment.. 64

6.2.1 Phase 1: Define the Broken State.. 64

6.2.2 Phase 2: Identify the Initial Assets.. 64

6.2.3 Phase 3: Build Access Paths ... 65

6.2.4 Phase 4: Compilation and Analysis .. 73

6.3 Comparative Results ... 80

6.3.1 Vulnerability Scanner ... 80

6.3.2 Online Vulnerability Databases .. 86

6.4 Case Study Summary .. 88

7 Conclusion .. 89

7.1 Review .. 89

7.2 Future .. 90

7.3 Limitations .. 91

7.4 Discussion ... 92

References... 94

List of Figures

VII

List of Figures

Figure 1. Usability, security and cost trade off triangle for computer security7

Figure 2. Function sets of a perfectly locked down shared access computer17

Figure 3. Function sets of an imperfectly locked down shared access computer18

Figure 4. FRAP Brainstorming Guide [55] (p. 78) ...29

Figure 5. The VAM Vulnerability Matrix [20] (p. 27) ...31

Figure 6. Assets and Security Properties [57] (p. 529) ...33

Figure 7. Asset, threat, countermeasure ontology model..45

Figure 8. Generic Microsoft Narrator dialog box ...50

Figure 9. The basic IPO model ...52

Figure 10. Ontology of the break out process ...55

Figure 11. Ontological Asset to Access Point path...57

Figure 12. Screen Control Panel access paths in graph format.......................................74

Figure 13. Interconnect access path graph ..75

Figure 14. Keyboard port and Mouse port access paths in graph format76

List of Tables

VIII

List of Tables

Table 1. Asset to security attribute relationship table [65] ... 44

Table 2. Improved asset to security attribute relationship table 45

Table 3. Screen Control Panel vulnerability impact ratings ... 77

Table 4. Keyboard and Mouse port vulnerability impact ratings 77

Table 5. Interconnected break out path vulnerability impact ratings.............................. 79

Table 6. Comparative Nessus vulnerability scan results... 86

Introduction

1

1 Introduction

From libraries to hotels shared access computers can be found almost everywhere. A

shared access computer is exactly that, a computer that has its access shared between

users. In order to keep shared access computers stable and secure system administrators

resort to locking down the computing environment in order to prevent the user from

intentionally or unintentionally damaging the system.

Often attackers are able to break out of locked down computing environments. This

occurs when an attacker is able to discover a break out path (or break out path

vulnerability). A break out path consists of a series of actions performed by an attacker

that results in the attacker gaining access to unintended functions of the system. Once

an attacker has broken out of a locked down computing environment the attacker is free

to misuse and abuse the shared access computer. This has led to cases of identify theft

and fraud involving millions of dollars and hundreds of different people.

Although numerous methods exist for locking down shared access computers, there

does not currently exist an effective method for assessing shared access computers for

break out path vulnerabilities. It is this problem of assessing shared access computers

for break out path vulnerabilities that forms the focus of this research.

1.1 Research Objectives

This research has four main objectives. They are:

1. Highlight the unique security issues that are encountered when dealing with shared

access computers, in particular the lockdown problem.

2. Reveal that existing vulnerability assessment tools are insufficient to assess whether

shared access computers are adequately locked down.

3. Show that by developing an ontology for lockdown assessment a systematic

approach for assessing shared access computers can be achieved.

4. Prove the usefulness of the developed approach with a case study.

Introduction

2

1.2 Thesis Structure

This thesis is divided into seven distinct chapters. Each chapter is summarised below

and tied back to a corresponding research objective where applicable.

Chapter 1 has introduced the context of the research and has also clearly stated the

research objectives of this project.

Chapter 2 aims to meet the first research objective. This is achieved by first looking at

what shared access computers are and why they exist. Secondly given the unique

characteristics of shared access computers, the unique security issues are then detailed.

Thirdly the potential attacks that inadequately locked down shared access computers are

susceptible to are then explained. Finally, the unique security issues and potential

attacks are tied back to the lockdown problem, and a summary of the problem is given.

Chapter 3 includes a review of current vulnerability assessment tools and techniques.

This review aims to show that the existing vulnerability assessment tools and techniques

were not designed for assessing shared access computers for breakout path

vulnerabilities. As a consequence, it is shown that these existing tools and techniques

are not suitable for assessing whether shared access computers are adequately locked

down. The content of this chapter works toward satisfying the second research

objective.

Chapter 4 proposes that the development of an ontology for lockdown assessment

would provide a systematic approach for assessing shared access computers for

breakout path vulnerabilities. The chapter examines information systems ontologies

and highlights aspects that could be useful for lockdown assessment. The chapter also

reviews the use of ontologies in information systems security. This is to add support for

their use in solving the lockdown assessment problem. The content of this chapter

works toward satisfying the third research objective.

Chapter 5 details the development of the lockdown assessment ontology. This is

achieved by examining the breakout process and identifying the underlying principles.

Introduction

3

The underlying principles are then converted into a lockdown assessment ontology.

Finally details are given as to how the lockdown assessment ontology can be used to

discover breakout path vulnerabilities on shared access computers. This chapter,

together with the previous chapter, aims to meet the third research objective.

Chapter 6 consists of a case study where the lockdown assessment ontology is applied

to a supposedly locked down shared access library catalogue computer. The case study

shows the systematic application of the ontology to the target system and includes a

discussion on the results of the assessment. This segment aims to meet the fourth

research objective. Following from this, comparative results of other vulnerability

sources, as applied to the same system as the case study are given in order to further

emphasise their unsuitableness. This segment, together with the third chapter, aims to

meet the second research objective.

Chapter 7 concludes the research by providing a summary of the positive and negative

aspects of the developed solution to the lockdown assessment problem, as well as the

limitations of the research. Following from this, suggestions are made concerning the

practical application of the ontological lockdown assessment process and the future

direction of this research.

The Lockdown Problem

4

2 The Lockdown Problem

In order to fully appreciate the need for locking down shared access computers and the

problems that this process entails, this chapter will start by looking at what shared

access computer are and why they exist. Next the unique security challenges of shared

access computers will be explored, followed by an examination of some potential

attacks. Building on this foundation, the chapter will conclude by summarising the

lockdown problem.

2.1 Shared Access Computers

A shared access computer can be defined as: A computer which intentionally exists to

be physically accessed and used by multiple, independent users. As this is a rather

broad category, it is worth pointing out that this chapter speaks in generalities about

shared access computers, in order to highlight the underlying themes and issues that are

encountered.

Shared access computers exist in various forms, including: library computers, university

lab computers, school lab computers, hotel guest computers, business centre computers,

and internet café computers. Although these computers exist in different organisations

for different reasons, they all have at least one commonality; their primary function is to

provide a service for multiple independent users.

As stated these computers exist in different forms for differing purposes. Some of the

common services provided by these computers include: internet access, library

catalogue access, printing services, word processing tools, and even software

development environments:

Depending on the organisation and purpose of the computer, the level of anonymity

with relation to user access can also vary. In some situations, user access is not only

shared but is also anonymous. An example of this situation can be found in library

The Lockdown Problem

5

catalogue computers that exist in a permanently logged on state in order to provide

immediate access to the library’s catalogue. Other situations may provide semi-

anonymous access. An example of this would be an internet café that issues temporary

login credentials to paying users. Finally, other situations may require the use of

predefined login credentials that eliminate anonymity, for example university lab

computers, that require a username and password. This research focuses on those

shared access computers that provide anonymous or semi-anonymous access.

Regardless of the computers actual purpose, maintenance of shared access computers

usually revolves around a common goal, which is to provide a stable and consistent

computing environment from user to user. This goal is usually approached by the use

of lockdown and disk protection software.

Shared access computers are also usually connected to a larger local area network

(LAN). This connection typically exists for remote maintenance, shared internet access,

and shared access to other resources (e.g. printers, file servers, etc).

Given these unique characteristics, shared access computers also provide some equally

unique security issues which will be explored in the next section.

2.2 Unique Security Issues

Computer security is usually portrayed within two popular areas. The first revolves

around the threat of hackers breaking into computer systems from remote locations.

The second revolves around the spread of computer viruses and worms. However, the

main security issues that affect shared access computers tend not to belong to either of

these categories. As a result, these issues are not often given adequate attention.

2.2.1 Perceived Value

The first issue worth highlighting concerns the perceived value of shared access

computers within organisations. When securing the information infrastructure of an

The Lockdown Problem

6

organisation, a common process that is employed is called risk analysis (this process is

also referred to as risk management, or risk assessment, however to some these three

terms can hold very different definitions). The risk analysis process can be presented a

number of different ways [55, 57], but essentially it consists of five main steps [55].

 Asset Assessment

 Vulnerability & Threat Assessment

 Risk Assessment

 Implementation of Countermeasures

 Monitor Effectiveness

To provide a quick summary, in the first step the organisation’s assets are listed and

valued. Second, vulnerabilities of those assets and threats to those assets are identified.

Third, risk is calculated by evaluating the value of each asset against the identified

vulnerabilities and threats. Fourth, countermeasures are implemented in order to

remove or reduce risk in order of priority. In the last step, the countermeasures are

monitored to assess their effectiveness, and then revisions can then be made if

necessary. Although much could be said about this process, at this stage only a brief

examination of the first step is needed to highlight the first security issue concerning

shared access computers. When compared to other components of an organisation’s

information systems infrastructure, shared access computers can appear to be of

relatively little value. For example, a catalogue computer in a university library that

only needs to provide users access to a single application (i.e. the catalogue) would

typically have very basic system requirements, so far as hardware and software are

concerned. Secondly, the machine itself would not need to store any sensitive

information, as its function is simply as a terminal into the catalogue. Given these

specifications, this shared access catalogue computer would generally be considered of

a lesser value than other more mission critical components of the university network,

such as: web servers, file servers, print servers, routers, or even simply, staff computers.

This perceived low value is the first security issue for shared access computers because

of its consequent effect on the risk analysis process. In effect, low value results in a low

risk classification and a low risk classification results in a low level of security concern.

This ultimately leads to a low level of security countermeasures.

The Lockdown Problem

7

2.2.2 Usability, Security and Cost Trade Off

The second issue encountered with shared access computers revolves around the

usability, security and cost trade off, and also ties in with the previous issue of

perceived value. Security practitioners have long been aware of this trade off between

usability, security and cost, with entire books being devoted to the subject [26]. This

trade off can be seen presented in a trade off triangle where only two of the three sides

can exist simultaneously (see Figure 1) [37]. The trade off generally gives rise to three

distinct outcomes. The first results in cheap, usable systems with poor security; the

second results in cheap, secure systems that are difficult to use; and the third results in,

expensive systems that are both usable and secure.

Figure 1. Usability, security and cost trade off triangle for computer security

Unfortunately, due to the characteristics of shared access computers, the outcome of this

trade off usually leans toward cheap, usable computers with poor security. Building on

the previous issue of a low perceived value, the trade off is reduced to one of the two

cheaper options (i.e. shared access computers are not very valuable, therefore invest in

other areas that are more valuable). Again, as a consequence of the low perceived value

which ultimately results in a low risk classification, it makes sense that a cheap, usable

system with minimal security countermeasures would usually be selected.

SECURE USABLE

CHEAP

The Lockdown Problem

8

2.2.3 Insider Threat

The third issue facing shared access computers centres on a threat to network security

which has been gaining more attention recently, the insider threat. Traditionally, threats

to network security have originated from outside of the network by unknown attackers

in remote locations. The insider threat is a threat to network security which originates

from within the network by authorised users [29]. Some estimates indicate that as much

as 60% of security breaches originate from insiders [58].

Research has indicated that attacks originating from insiders have a much higher

success rate than those originating from external sources, and that these attacks can also

go undetected [21]. Insiders benefit from many advantages that their external

counterparts are forced to work without [21]. For example the often difficult task of

overcoming perimeter defences such as firewalls do not need to be performed [39].

Furthermore, due to the fact that access has been granted to the insider, this conveys

some level of trust [24], and with trust comes privilege to perform some level of action

on the network which will not raise suspicions.

The insider threat problem is a significant issue with regards to shared access

computers. This is due to the fact that freely available shared access computers (library

catalogue computers for example) potentially allow any user to become an internal

threat to network security. Furthermore, if the shared access computers in question

share the same network as other, more significant network components (e.g. staff

computers or servers), the level of concern should increase even more. This is due to

the fact that with the advent of protocol analysis, or sniffer software, every station on a

local area network can potentially be used as a network analysis tool or even as a

surreptitious eavesdropper [40]. In addition, depending on the degree of anonymity

provided by the shared access computers, this threat can become even more alarming.

In a worse case scenario, organisations with shared access computers can potentially be

providing attackers with anonymous access to a workstation inside their network. From

this workstation attackers could launch attacks on the rest of the network, with all the

The Lockdown Problem

9

advantages of a network insider and without any of the disadvantages (i.e. due to the

anonymous access, there is no way to trace the attacks back to a particular user).

2.2.4 User Information

The fourth issue to explore, regarding shared access computer security involves user

information. Shared access computers can be seen as having very little value from an

organisations point of view. Interestingly, the most valuable aspect of a shared access

computer is not even the computer itself, but is often actually the information assets

provided by the users of the machine. A good example is that of internet banking login

credentials. Although a shared access computer may do nothing more than provide

internet access to users, they can in effect, be used as a channel by which users access

their bank accounts online. Aside from internet banking credentials, shared access

computers often function as a channel for considerable amounts of sensitive

information. Coupled with the number of different users passing this sensitive

information through these shared access computers, the machines become a virtual

thoroughfare of valuable user information.

Unfortunately for users of shared access computers, the risk analysis process comes

back into play. The risk analysis process as referred to in the first issue of perceived

value, begins by listing assets of value to the organisation. To start with, user

information is not usually an asset of an organisation that provides shared access

computers. Also, a compromise of the confidentiality of this valuable user information

has little, if any, impact of the organisation itself. Sadly, although valuable in the sight

of users, this valuable information still does not increase the value of shared access

computers from an organisation’s point of view, according to the risk analysis process.

2.2.5 Dormant Technology

The final security issue facing shared access computer is concerned with dormant

technology. Probably due to number of factors including Microsoft’s market share,

compatibility, and familiarity, most shared access computers are locked down windows

The Lockdown Problem

10

based machines. However, underneath the surface of these windows based shared

access computers is a fully functioning Windows operating system. The standard

installation of the Windows operating system (whether 2000, XP, or Vista) includes a

number of powerful tools that have very useful and legitimate uses. At the same time,

these built in tools can be misused by attackers to gather information, and launch attacks

on other network components. Accordingly, these tools usually would not need to exist

on shared access computers. For example, a shared access library catalogue computer

would typically not need to have command line tools like: ipconfig, netstat, nslookup,

tracert, ftp, arp or telnet tools installed on the system. Beyond this, even a simple text

editor like notepad or the command line edit tool is all that is required to write

malicious scripts or batch files.

This issue of dormant technology forms the final unique security issue for shared access

computers. In the case of an attacker getting access to this dormant technology,

substantial damage can occur, even without the introduction of external software.

The next section will examine some potential attacks on shared access computers.

These attacks take advantage of one or more of the aforementioned unique security

issues.

2.3 Potential Attacks

Shared access computers, due to their unique characteristics, are susceptible to a number

of different attacks. These attacks can be divided into two distinct categories, according

to the targets of the attacks. The first group of attacks target the users of the shared

access computers and their valuable user information. The second group of attacks

target the host network, resources and the information therein. This section will

examine some of the potential attacks that can occur when an attacker can breakout of a

locked down shared access computer. Each attack is explained with an example

scenario that illustrates the impact of the attack. Additional information supporting the

attack is also provided.

The Lockdown Problem

11

2.3.1 History

The first attack that will be examined is concerned with the actions of previous users of

a shared access computer. This attack targets shared access computer users and their

information. Consider a shared access computer that is set up only to allow users to surf

the internet via a locked down web browser. The rest of the operating system has also

been locked down so only the web browser window is available. An attacker who is

able to breakout of the locked down environment could browse the file system to the

web browser cache, and violate previous user privacy by viewing browser history and

potentially even extract sensitive information.

The need to delete browser history when using shared access computers has been

documented and is often found as a safety tip for using shared access computers [45,

51]. Unfortunately, in some situations particular shared access computers may be

locked down to such an extent that deleting browser history is restricted [61].

2.3.2 Key Logging

Again, this attack also targets users of shared access computers and their information.

Consider a shared access computer that allows users to surf the internet, use the MSN

messenger chat program, and perform desktop publishing tasks with Microsoft Office.

The rest of the operating system is locked down. An attacker who is able to break out

of the locked down environment could install a key logger that would record the key

strokes of subsequent users. This information would include login credentials for

visited website, MSN messenger login credentials, personal chat transcripts, and all

other text entered via the keyboard. The key logged information is then retrieved at a

later date by the attacker, the log file cleared, and the key logger restarted. Due to the

low value and low risk characteristics of the shared access computer it is months before

the key logger is discovered, by which time the privacy of hundreds of users has been

compromised.

Key loggers can exist in both hardware and software forms. Hardware key loggers can

be installed in a matter of seconds, are impossible to detect with virus scanning software

The Lockdown Problem

12

and can only be discovered by examining the connection between the keyboard and the

machine [25]. Software key loggers can be freely downloaded, with installation being

as simple as a double click on an exe.

Although the above scenario was hypothetical, there have been a number of

documented cases of this exact scenario occurring. To add weight to the significance of

this particular attack, a number of these documented cases will be given.

In 2003, Douglas Bodreau was charged with installing key logger software on over 100

computers at Boston College [9]. From this software, Bodreau was able to create a

database of sensitive user information of over 4,800 people, that included 685 credit

card and social security numbers, passwords and access codes to college buildings [9,

44]. With the access codes, Bodreau was also able to gain access to restricted areas of

the university, where he further installed the key logger software [9].

In 2005, Juju Jiang was sentenced to 27 months in prison and ordered to pay $201,620

in restitution [34]. Jiang had installed key logger software on computer terminals

located at Kinko’s stores throughout Manhattan [34] (Kinko’s is a chain of copy centre

stores that also provide shared access computers to paying users). Jiang admitted to

using the key logged information to access online bank accounts, and also to open new

online bank accounts with stolen identities [34]. Jiang was able to collect over 450

internet banking login credentials from the Kinko’s terminals [59]. Interestingly, Jiangs

crime succeeded, despite Kinko’s policy of re-imaging the computer terminals every

week [59].

In January of 2006, key logger software was found installed on lab computers at

Virginia Commonwealth University [8]. Upon investigation, it was determined the

software was installed by an unknown user who had access to the lab computers [8].

The software had been installed several months earlier [8]. A month later, the same

software was also found installed on lab computers in another part of the university [8].

The last case that will be documented is the most recent and also one of the most

significant examples of shared access computer abuse that has occurred. In April of

2008, Mario Simbaqueba Bonilla was sentenced to nine years in prison [4]. Bonilla had

The Lockdown Problem

13

illegally installed key logger software on shared access computers located in hotel

business centers around the world [4]. Bonilla used this logged information to commit

identity theft and fraud, victimising over 600 different people [4]. The estimated impact

of the scheme was gauged at $1.4 million [4].

Each of these cases involved, to a greater or lesser extent, attackers taking advantage of

shared access computers by installing key logger software, in order to compromise other

users sensitive information.

2.3.3 Shares

Again, this attack also targets the host network of the shared access computer. Consider

a shared access library catalogue computer that shares a network with a number of

library staff computers. The catalogue computer is locked down to only allow catalogue

access via a web browser. The network also provides staff with access to a shared

folder that contains information relative to the organisation (e.g. staff phonebook,

financial reports, etc). An attacker who is able break out of the locked down catalogue

computer environment could gain access to, and potential even modify, the shared

folder and its contents.

This attack again highlights the unique security issue of the insider threat. Without the

presence of the shared access computer, having a globally accessible shared folder for

staff is generally not an issue. However, introducing a shared access computer onto the

same network brings that information within the reach of skilled attackers.

2.3.4 Sniffing

This attack targets the host network of the shared access computer. Consider a shared

access lab computer at a high school that is connected to the same local area network as

the high school’s staff computers. An attacker breaks out of the locked down lab

environment and then installs and runs a network sniffer. The network sniffer then

The Lockdown Problem

14

intercepts staff POP3 email credentials in plain text. The attacker then uses these

credentials to access and send malicious emails from staff email accounts.

Network of packet sniffing software is the electronic equivalent to eavesdropping [57].

Information sent from one node to another node on a network is sent in the form of

packets [57]. Sniffer software simply examines or intercepts these packets as they

travel along the network medium [57, 64]. There currently exist a number of free and

extremely powerful network sniffing software packages [48].

The network packet sniffing attack is a particular problem for an organisation with

shared access computers, as it can potentially allow anonymous attackers access to

sensitive, internal organisation information.

2.3.5 Scanning

This attack also targets the host network of the shared access computer. Consider a

shared access computer in a university lab. An attacker breaks out of the locked down

computing environment and then installs a port scanner from a USB drive and then runs

a series of port scans on the host network. With this information, the attacker then

researches the identified services for known vulnerabilities. Having discovered an old

version of MySQL server running on the network, the attacker exploits the vulnerability

and hijacks the server [22].

While network sniffing tools aim to exploit information in transit on a target network,

network port scanners aim to identify open ports and vulnerable services running on

various network nodes [57]. This information can be obtained from the network quietly

and anonymously, and without identification or authentication [57]. Like network

packet sniffing tools, network port scanners are also freely available for anyone to

download and use, the most well known being Nmap [46]. Although traditional port

scanners like Nmap are only designed for network reconnaissance (i.e. identifying

names and versions of services and operating systems), a closely related category of

tool, referred to as vulnerability scanners, go one step further and automatically identify

known vulnerabilities [47].

The Lockdown Problem

15

A shared access computer that is not correctly locked down can potentially provide an

attacker a doorway into the host network, where network scanning can be performed.

The resulting information can then be used to internally attack certain network

components.

2.3.6 Denial of Service and Vandalism

The final potential attack that will be examined, of which shared access computers are

uniquely susceptible, is that of computer vandalism and denial of service. This attack,

in effect targets the users of shared access computers. Consider a shared access

computer in a library that has been set up for catalogue browsing, and some other

limited web browsing. An attacker breaks out of the locked down browsing

environment, opens notepad and creates two batch files that echo ‘hello’, then call each

other. The attacker then resizes the screen from the monitor controls, hits left + shift,

left + alt, PrintScrn to switch to high contrast mode (inverting every colour on the

screen), then executes the batch files, creating a pointless, never ending cycle of

flashing ‘hello’ messages. Finally, the attacker slightly unplugs the keyboard and

mouse from the back of the machine and walks away.

This type of attack inhibits the shared access computer from performing its intended

function and consumes the time of maintenance staff. Interestingly, this attack includes

the simple abuse and misuse of the dormant technology that exists within most shared

access computers.

2.4 Problem Summary

This section will summarise the lockdown problem, by first describing the locking

down of computers and how, in an ideal situation, this can secure shared access

computers. A brief summary of the tools and techniques used to lockdown computers

will also be given. Finally, the section will end with a clear problem statement.

The Lockdown Problem

16

2.4.1 Locking down

All of the potential attacks that have been listed in this chapter can be individually

combated from a technical point of view. However, from a practical point of view, this

is not the reality with most shared access computers. Due to the low security priority

commonly associated with shared access computers, combating these potential threats is

usually reduced to cheap and non time consuming methods.

The de facto standard for securing shared access computers can be seen to consist of a

combination of locking down the computing environment and implementing disk

protection [36]. Lockdown can be seen as the first line of defence, with disk protection

existing as the second line of defence. The idea of locking down a computer is to

prevent the user from being able to intentionally or unintentionally damage or misuse

the computer, so it remains stable from user to user. The idea of disk protection is to

take an image of a clear system and constantly revert back to this image on each restart.

This is to insure that if a user was somehow able to damage or alter the system, these

alterations will be removed by the reversion back to the original clean image. This

process thus aims to provide a consistent and stable computing environment from user

to user. However, it is worth pointing out that the second line of defence, that is, disk

protection, is only effective in situations where the computer is restarted from user to

user. A situation where this does not occur (e.g. library catalogue computers that

remain logged in all day) will reduce the effectiveness of this protection. For example,

a key logger could be installed at the start of the day and the log file recovered at the

end of the day before the computer is restored to the clean image. Secondly, disk

protection does aim to restrict what the user is able to do while they are using the

computer (e.g. sniffing, scanning, browsing shares, misuse of dormant technology, and

some denial of service could all still easily occur on a disk protected shared access

computer). Therefore, it can be seen that it is the first line of defence, that is, the

locking down of the shared access computers, which aims to combat each of the

potential attacks.

Hypothetically, a perfectly locked down shared access computer would prevent users

from being able to perform anything other than the intended function of the computer.

The Lockdown Problem

17

However, ensuring that a locked down shared access computer only allows users the

ability to perform the intended functions of the system is a difficult task.

To understand the problem more precisely, it is helpful to consider the situation in terms

of functionality. When locking down a shared access computer, three sets of functions

are present: intended functions (I), possible functions (P), and restricted functions (R).

Collectively, these three sets combine as the set of all possible functions (A).

Figure 2 provides a graphical representation of a perfectly locked down computer (note:

no functions exist in A other than those found in I, P and R. Figure 3 provides a

graphical representation of a shared access computer that is not perfectly locked down

(again, no functions exist in A other those found in I, P and R).

Figure 2. Function sets of a perfectly locked down shared access computer

A

I and P

★ ★

 ★ ★

 ★★

 ★ ★ ★

 ★ ★ ★

 ★ ★

R

★ ★ ★

 ★ ★★

 ★ ★

★ ★ ★

 ★ ★★

★ ★

Key:

★ = Function

The Lockdown Problem

18

Figure 3. Function sets of an imperfectly locked down shared access computer

The set of intended functions represents those functions that the shared access computer

should provide for the user. The set of possible functions encompasses the set of

intended functions, but also includes all other possible functions that have not been

restricted. These other possible functions can potentially be used by attackers to break

out of locked down environments. The set of restricted functions are those functions

that the shared access computer has been restricted from allowing. The union of the

possible functions and restricted functions sets represents all possible functions (A) (this

is due to the fact that the set of intended functions is a subset of the possible functions

set). Also note that the intersection of the set of possible functions with the set of

restricted functions is the empty set. If a shared access computer is perfectly locked

Key:

★ = Function

A

P

★ ★

★

★

R

★ ★ ★

 ★ ★★

 ★ ★

★ ★ ★

 ★ ★★

 ★ ★★

★

I

★ ★

 ★★

The Lockdown Problem

19

down, that is, it only allows users to perform the intended functions, then the set of

intended function equals the set of possible functions.

It is worth noting that in reality, concession can likely be made to allow some possible

functions to exist that do not belong to the set of intended functions, so long as these

functions do not enable the user to adversely affect the system.

2.4.2 Tools and Techniques

There are a number of different ways to lockdown shared access computers. Due to the

market dominance of the Microsoft Windows operating system, the majority of

lockdown software tools and techniques are developed for Windows based machines.

Microsoft has itself produced a series of tools for locking down shared access

computers. Initially, Microsoft produced the Public Access Computer Security Toolkit

(although technically speaking this was created by the Bill & Melinda Gates Foundation

[56]). Building on the inspiration of the Public Access Computer Security Toolkit,

Microsoft then produced the Shared Computer Toolkit [56] (which also included a disk

protection component). More recently Microsoft released Windows SteadyState, which

is, in effect, version two of the Shared Access Toolkit [56]. A number of commercially

available user restriction systems are also available including: Fortres 101 [5],

WINSelect [3], WinLock and WinLock Professional [18, 19], Public PC Desktop [13],

Executable Lockdown [1], Desktop Security Rx [1], and SiteKiosk [17]. Locking down

shared access computers can also be achieved manually by editing the registry, using

the group policy editor [61], and setting user permissions.

2.4.3 Problem Statement

Regardless of the tool or technique used to lock down shared access computers the goal

remains the same, that is, to restrict the user functionality in order to provide a secure

computing environment. Nevertheless, this research is not focused on the different

ways shared access computers can be locked down. This research is focused on the

following question: How can a locked down shared access computer be assessed to

The Lockdown Problem

20

determine if the set of possible functions equal the set of intended functions, or that that

the set of possible functions does not include any functions that could be abused by an

attacker to break out of the locked down environment? Or more simply put:

How can a locked down shared access computer be assessed

to determine that no vulnerable break out paths exist?

Existing Vulnerability Assessment

21

3 Existing Vulnerability Assessment Techniques

In the previous chapter, the need for assessing locked down shared access computers for

vulnerable break out paths was identified. This chapter examines the intentions and

capabilities of existing vulnerability assessment methods, beginning with popular

vulnerability assessment software tools and ending with the more general vulnerability

assessment procedures. Ultimately, this chapter will reveal that these existing methods

for vulnerability assessment are not suited for identifying break out path vulnerabilities

in shared access computers, and that a more tailored solution is required.

3.1 Vulnerability Scanners

Vulnerability scanners are automated software tools that are designed to scan either a

specific computer or network of computers for vulnerabilities. The following will

provide an examination of these tools, with regards to break out path vulnerabilities.

3.1.1 Nessus

The Nessus vulnerability scanner claims to be the world-leader in active scanning [12,

47]. Nessus effectively works by executing NASL (Nessus Attack Scripting Language)

scripts. The scripts are referred to as plugins. Each plugin is written to check for a

specific known vulnerability or security flaw [11]. When a vulnerability is discovered

in a particular software version (e.g. a programming error in MySQL 3.22 allowed

remote attackers to bypass password authentication and access a database via short

check string [22]), a script or plugin is written that checks for that version of the

software on the host network. If the corresponding version is found, Nessus reports the

finding as a vulnerability on the network. As of August 2008, Nessus boasted 23,267

different plugins, divided into 45 different categories [11]. The system is designed to be

run by network administrators, who use Nessus to remotely check for each of the known

vulnerabilities across their host networks. The system can also be run locally to check

for the same vulnerabilities on the local machine.

Existing Vulnerability Assessment

22

Due to the intended function, and method of vulnerability discovery, Nessus is not

suited for discovering break out path vulnerabilities in shared access computers.

The first reason to support this claim is the fact that Nessus is aimed at discovering

vulnerabilities that are exploitable from across the network (i.e. what ports are open,

what services are running on the open ports, and are there any known vulnerabilities).

Break out path vulnerabilities are not exploited by an attacker from across the network,

they are exploited by an attacker standing in front of the shared access computer who is

interacting with the desktop environment.

The second reason that supports the unsuitableness of Nessus for discovering break out

path vulnerabilities, is the way that Nessus plugins typically detect vulnerabilities. As

already mentioned, Nessus typically discovers vulnerabilities by identifying and

comparing version numbers of specific software packages. Break out path

vulnerabilities are not caused by programming errors in specific software packages, nor

are they restrained to individual software packages or versions. Therefore, break out

point vulnerabilities are not able to be detected by the typical Nessus method. Break

out path vulnerabilities involve a series of state changing actions, often utilising

legitimate functions of numerous applications, in order to achieve a broken state.

The third reason supporting the unsuitableness of Nessus for break out path

vulnerability assessment is the complexity and varying nature of break out path

vulnerabilities. A break out path vulnerability on one shared access computer may be a

completely acceptable action on another shared access computer. For example, being

able to open documents from a USB drive and print these documents from a shared

access university lab computer that students pay for, may be completely acceptable. At

the same time being able to open files from a USB drive and print documents from a

free anonymous access library catalogue computer may not be acceptable at all. If a

script or plugin could be written to check for break out path vulnerabilities, it would

need to be tailored depending of the intended function of the shared access computer on

which it was being executed. The Nessus plugin scripts are centrally maintained by

Tenable networks security, so the tailoring of scripts for low value shared access

computers seems infeasible.

Existing Vulnerability Assessment

23

The final reason to support the unsuitableness of Nessus for break out path vulnerability

assessment involves the order of creation of Nessus plugins. A Nessus plugin is created

after a vulnerability has been identified and documented in a particular software

package. Due to their uniqueness to any given shared access computer and its intended

function, break out path vulnerabilities have not been identified or documented in this

manner. Therefore, there is no explicitly known vulnerability that could be checked for

by a Nessus plugin.

The above reasons highlight a paradigm mismatch. Attempting to use Nessus to

discover break out path vulnerabilities in shared access computers is contrary to its

intended use and capabilities.

3.1.2 GFI LANguard

GFI LANguard Network Security Scanner (N.S.S.) claims to be the number one

Windows commercial security scanner [6, 47]. GFI LANguard N.S.S. promotes the

following three features: vulnerability scanning, patch management, and network

auditing [7]. The vulnerability scanning feature scans a host network by IP address and

performs over 15,000 checks for known vulnerabilities. The vulnerability checks are

based on a database that ships with GFI LANguard N.S.S., which is regularly

automatically updated, and is based on information from online vulnerability databases

[7]. Based on the results of the vulnerability scan, the tool then provides

recommendations for the download and installation of necessary patches [7]. Finally,

the tool is able to provide the user with a current view of the network status (i.e. what’s

connected, installed, open shares, etc).

Being commercially in direct competition with Nessus, GFI LANguard is also

unsuitable for identifying break out path vulnerabilities in shared access computers, for

many of the same reasons as Nessus.

Again, the first reason to support this claim is the fact that GFI LANguard, like Nessus,

is aimed at discovering vulnerabilities that are exploitable by attackers from across the

Existing Vulnerability Assessment

24

network. Break out path vulnerabilities, as described in the Nessus section, are not

exploited by attackers from across the network, but by attackers standing in front of

shared access computers.

The second reason that supports the unsuitableness of GFI LANguard is similar to the

issues found with Nessus, concerning the method used for discovering vulnerabilities.

In a similar fashion to Nessus, GFI LANguard scans a host network looking for

vulnerabilities. The vulnerabilities that are checked for, are based on previously

identified and documented vulnerabilities that have been reported to online vulnerability

databases such as CVE, OVAL, and BugTraq [7]. Again, online databases document

vulnerabilities that are specific to software packages and versions. As stated in the

Nessus section, break out path vulnerabilities do not fit with this paradigm.

The third reason involves the GFI LANguard solution to identified vulnerabilities. The

patch management feature of the tool aims to remedy any identified vulnerabilities by

recommending the download and installation of patches. Break out path vulnerabilities,

due to their complex nature, cannot be remedied by patch installation, but usually

require the refinement of system settings and user restrictions.

As with Nessus, the above reasons highlight a paradigm mismatch. GFI LANguard has

been designed for network vulnerability assessment and using it to identify break out

path vulnerabilities would be diverging from its intended purpose.

3.1.3 Other Vulnerability Scanners

Although there are a number of other free and commercially available vulnerability

scanning software packages, they all suffer from the same paradigm mismatch as

Nessus and GFI LANguard. These tools include but are not limited to: Retina [14],

Core Impact Pro [2], Sara [16], SAINT [15], and MBSA [10].

The essential problem can be traced back to the location of the attacker. Each of these

vulnerability assessment tools work on the premise that an attacker will be looking to

exploit vulnerabilities from a remote location across a network medium. The

Existing Vulnerability Assessment

25

fundamental difference between break out path vulnerabilities and the vulnerabilities

identified by these tools, is that break out path vulnerabilities are only exploitable by

attackers physically accessing the shared access computer.

3.2 Vulnerability Assessment Procedures

Vulnerability assessment is a procedure or process which is commonly found within the

larger process of risk analysis [42, 55, 57]. While vulnerability scanners can be thought

of as low level technical tools, the vulnerability assessment process can be thought of as

a high level non-technical procedure, performed and managed by security professionals.

This process involves multiple sources including: vulnerability databases, organisational

policy, user interviews, and system requirements. What follows is an examination of

existing vulnerability assessment procedures, with relation to break out path

vulnerabilities of shared access computers. The name of the risk analysis process that

each vulnerability assessment process is a part of will be used to distinguish between

the different vulnerability assessment processes.

3.2.1 NIST Risk Management Guide

The Nation Institute of Standards and Technology in Special Publication 800-30

documents a Risk Management Guide for Information Technology Systems [63]. The

guide defines risk assessment as the first process in the risk management methodology

[63]. The risk assessment process is outlined as having the following nine steps [63]:

 Step 1 – System Characterization

 Step 2 – Threat Identification

 Step 3 – Vulnerability Identification

 Step 4 – Control Analysis

 Step 5 – Likelihood Determination

 Step 6 – Impact Analysis

 Step 7 – Risk Determination

 Step 8 – Control Recommendations

 Step 9 – Results Documentation

Existing Vulnerability Assessment

26

Step 3, Vulnerability Identification will form the focus of this examination, although the

guide indicates that after the first step has been completed steps, 2, 3, 4 and 6 can be

conducted in parallel [63].

The stated goal of the Vulnerability Identification step is to develop a list of system

vulnerabilities that could be exploited by potential threat-sources (e.g. attackers). The

guide also defines vulnerability as “A flaw or weakness in system security procedures,

design, implementation, or internal controls that could be exercised (accidentally

triggered or intentionally exploited) and result in a security breach or a violation of the

system’s security policy” [63] (p. 14). The guide recommends three methods for

identifying system vulnerabilities: examining vulnerability sources, performing system

security testing, and the development and use of a security requirements checklist [63].

Each of these methods will now be examined individually.

The vulnerability sources that are recommended include: questionnaire results, on-site

interview feedback, policy documents, system documentation, security related

documentation, and results from automated scanning tools [63]. The questionnaire and

on-site interviews are performed during the first step of system characterization and are

aimed at obtaining security related information from the users of the system[63]. The

questionnaire and interview results could potentially reveal break out path

vulnerabilities. This would occur only if a questionnaire or interview respondent had

become aware of such a break out path during the course of their use of a shared access

computer. Policy, system, and security related documentation covers what is already

known from a security standpoint, concerning the system components. Due to the

uniqueness, complexity and varying nature of break out path vulnerabilities from

system to system, these vulnerabilities are not easily documented and would be unlikely

found in the given documentation. The automated scanning tools refer to those tools

examined in the previous section, and are thus not suitable for discovering break out

path vulnerabilities.

The system security testing methods that are suggested include: security testing and

evaluation, penetration testing, and in an overlap between methods, automated

vulnerability scanning tools are again also included [63]. Security testing and

Existing Vulnerability Assessment

27

evaluation aims to test the security controls or countermeasures, to determine if they are

performing as required by the organisation. It is suggested to employ test scripts and

test procedures, with a list of expected results. A test procedure for assessing the shared

access computers of an organisation to see if they are locked down, could fit into this

category. However, the guide provides no further details on how to create these test

procedures, possibly for the unstated reason that each test procedure would need to be

tailored for each given system. Penetration testing aims to complement the security

testing and evaluation method by testing a systems ability to withstand intentional

attempts to circumvent the system security [63]. Penetration testing takes the view-

point of the attacker, in an attempt to identify potential failures in the system. This

method could possibly also identify break out path vulnerabilities in shared access

computers. However, the successfulness of this approach would depend entirely on the

tester’s understanding of break out path vulnerabilities and their ability to identify them

in a given shared access system.

The purpose of the security requirements checklist is to determine if the overall system

is doing what it should be doing, in regards to security requirements. The checklist

covers three categories: management, (this involves: assignment of responsibilities,

background checks, separation of duties, etc [63]), operational (this includes: control of

air-borne contaminants, humidity control, temperature control, etc [63]), and technical

(this includes: cryptography, object reuse, system audit, etc [63]). The guide refers to

the check list as containing basic security standards that can be presented in a table

format, listing each security requirement and an explanation of how the system does or

does not satisfy the requirement [63]. It is suggested that the checklist be built from

sources like government regulatory and security directives [63]. This checklist appears

to be a tool for gauging the overall compliance of an organisation information

infrastructure to a given set of standards. Consequently, this checklist is not a tool that

could be used for discovering break out path vulnerabilities in shared access computers.

To summarise, the approach to vulnerability assessment found in the NIST Risk

Management Guide for Information Technology Systems seems to cover a very broad

spectrum of vulnerability issues from high-level non-technical compliance problems

through to application specific vulnerability scanning. Although most of the techniques

are unsuitable for the discovery of break out path vulnerabilities in shared access

Existing Vulnerability Assessment

28

computers, there did appear to be a couple of techniques that were focused in a useful

direction. These techniques were: the employment of user questionnaires and

interviews, system test procedures, and penetration testing. The common thread with

each of these techniques is the presence of a tester or user, interacting with a given

system in order to identify vulnerabilities. In the case of questionnaires and interviews,

this interaction is retrospective, and the value is found in what a user may have already

discovered during their use of the system with regards to break out path vulnerabilities.

System test procedures and penetration testing appear useful, as they imply a proactive

approach by a tester to perform system specific testing. This testing however, would

need to be tailored to the given requirements of a given shared access computer in order

to be useful. Secondly, the tester would also need a reasonably good understanding of

how to discover break out path vulnerabilities in order to produce satisfactory results.

Although each technique is focused in a useful direction, they each require a certain

degree of improvement and refinement in order to become useful for the discovering of

break out path vulnerabilities.

3.2.2 FRAP

Facilitated Risk Analysis Process (FRAP) was created by Thomas Peltier and is detailed

in his book ‘Information Security Risk Analysis’ [55]. The initial motivation behind the

FRAP was to create a risk assessment process that could be conducted by businesses

themselves, a process that took weeks, as opposed to months, and utilised in-house

expertise [55]. The idea of the FRAP is to assemble a FRAP team that consists of

representatives from both the business side, and the technical systems side of the

organisation [55]. This team is then led through the risk assessment process by the

facilitator. The process itself has four phases: a pre-FRAP meeting, the FRAP session,

FRAP analysis and report generation, and a post-FRAP meeting. The second phase, the

FRAP session, is the phase where vulnerability assessment occurs, being performed by

the FRAP team. The other three phases do not involve the FRAP team, nor the

identification of vulnerabilities.

As mentioned, vulnerability assessment occurs in the second stage of the FRAP session.

The way in which this occurs is through an ordered brainstorming session. The

Existing Vulnerability Assessment

29

brainstorming session takes each security attribute (confidentiality, integrity, and

availability) and aims to identify ‘risks, threats, concerns, and issues for each’ [55]. As

a guide, each member of the FRAP team is given a definition of each security attribute

(confidentiality, integrity, and availability), along with some samples threats [55].

Figure 4 provides an example of a FRAP brainstorming guide [55]. These concerns are

then given a vulnerability rating (the suggested values are high, medium or low) [55].

Brainstorming Definition and Sample Risks

Examples of Risks (Not a complete list)

Threats to Confidentiality

 Access without authorization

 Disclose without authorization

 Observe or monitor transactions

 Copy without authorization

 Packet sniffing on network

 Contractor accessing confidential information

Definition:

Confidentiality: information has not undergone unauthorized or undesirable disclosure.

Figure 4. FRAP Brainstorming Guide [55] (p. 78)

In the overview of the FRAP, the author states that the “(FRAP) team relies on its

general knowledge of threats and vulnerabilities obtained from national incident

response centres, professional associations, and literature, and their own experience”

[55] (p. 70). The aim is to utilise the background knowledge of those involved with the

system being assessed, in order to identify vulnerabilities. The obvious down side to

this approach, with regards to break out path vulnerability identification, is the total

dependence the assessment technique has on the knowledge and expertise of the FRAP

team. Further to this point, the FRAP requires that this background knowledge of

vulnerabilities be exercised retrospectively during the brainstorming session, in which

the FRAP team is given only three minutes per security attribute (confidentiality,

integrity, and availability) to list relevant concerns [55]. Although this approach utilises

numerous users of the system, it appears that a degree of thoroughness has been

Existing Vulnerability Assessment

30

sacrificed in order to save time. Furthermore, the general nature of the example risks

(see Figure 4) may not stimulate the identification of break out bath vulnerabilities

beyond statements like ‘unauthorised printing from catalogue computers’), although this

is simply conjecture, and each case would be unique, depending on the system being

assessed and the characteristics of the FRAP team.

The Facilitated Risk Assessment Process communicates a quick solution to

vulnerability assessment that aims to utilise the collective knowledge of the system

users. It is interesting to note, that with typical shared access computers, the primary

users of the systems are usually not employees of the host organisation, but are more

commonly public or anonymous users with perhaps little vested interest in the host

organisation. Involving adequate users from this group may prove difficult. Secondly,

as a consequence of the FRAP team environment, users who do not belong to the

organisation (if included), could potentially learn of ways to exploit the system.

For the FRAP to be more useful for identifying break out path vulnerabilities, the

brainstorming guidelines could be tailored to the organisations shared access computers

and their unique environment. However, again this tailoring would require someone

with adequate understanding of break out path vulnerabilities and how to identify them

on shared access computers.

3.2.3 VAM

The vulnerability assessment & mitigation methodology, or VAM was the result of

research conducted by the RAND National Defense Research Institute [20]. Although

the name may suggest a methodology focused solely on vulnerabilities, a closer

inspection shows that it is actually a complete risk assessment methodology. The

authors explain that the motivation for the research that resulted in the VAM

methodology, was that most existing approaches took a bottom-up historical approach

in identifying vulnerabilities that were already known, and did not offer the ability to

discover new vulnerabilities [20]. By contrast, the authors state that the VAM

methodology takes a top-down approach, that not only seeks to uncover known

vulnerabilities, but also vulnerabilities that, as yet, have not been exploited or exercised

Existing Vulnerability Assessment

31

in operation, by asking questions outside the range of known vulnerabilities [20]. The

approach attempts to achieve this top-down approach by the use of a vulnerability

matrix (Figure 5), which maps security attributes to system assets (or objects) [20].

 Object of Vulnerability

 Physical Cyber Human/Social Enabling
Infrastructure

 Attributes:

Hardware (Data
Storage,

Input/Output,
Clients, Servers),

Network and
Communications,

Lottery

Software, Data,
Information,
Knowledge

Staff, Command,
Management,

Policies,
Procedure,
Training,

Authentication.

Ship, Building,
Power, Water,

Air, Environment

Singularity
 Uniqueness
 Centrality
 Homogeneity
Separability
Logic/
implementation
errors; fallibility

Design sensitivity/
fragility/limits/
finiteness

D
es

ig
n/

A
rc

hi
te

ct
ur

e

Unrecoverability
Behavioural
sensitivity/fragility

Malevolence
Rigidity
Malleability
Gullibility/
deceivability/naiveté

Complacency

B
eh

av
io

ur

Corruptibility/
controllability

Accessible/
detectable/
identifiable/
transparent/
interceptable

Hard to manage or
control

Self unawareness
and unpredictability

G
en

er
al

Predictability

Figure 5. The VAM Vulnerability Matrix [20] (p. 27)

To perform the vulnerability assessment, an assessor is required to complete the

vulnerability matrix by thoroughly considering each asset (or object) relative to each

security attribute [20]. It is also recommended that each security attribute be considered

Existing Vulnerability Assessment

32

at different levels of abstraction [20]. The authors point out very clearly that

“successful vulnerability assessment requires the insights and experience of system

users and developers” [20] (p. 12). This creates a similar predicament as that found in

the FRAP, where the expertise and knowledge of the users becomes a primary

information source for vulnerabilities. Again, the ability to discover break out path

vulnerabilities in shared access computers will depend entirely on the ability of those

people completing the vulnerability matrix.

The VAM methodology, like the FRAP, covers a very broad spectrum of vulnerabilities

that it aims to identify. Due to the complexity and varying nature of break out path

vulnerabilities from system to system, the use of the VAM vulnerability matrix (Figure

5) to discover break out path vulnerabilities would prove difficult. This is due to the

VAM vulnerability matrix being tailored to discover a wide range of vulnerabilities, as

opposed to those unique to shared access computers.

3.2.4 Pfleeger & Pfleeger

The last approach to vulnerability assessment to be considered is found in the book

Security in Computing by Pfleeger and Pfleeger [57]. The approach outlined in the risk

analysis section of the book is a summarised collection of popular and common

vulnerability assessment techniques and is therefore a fitting place to end this review.

The authors explain that risk analysis can be performed in many different contexts, but

that risk analysis for security places special emphasis on the kinds of problem that arise

from security issues [57]. Although the authors acknowledge that different

organisations take slightly different approaches to risk analysis, they claim the basic

activities are the same, listing the following as the six basic steps for risk analysis [57]:

1. Identify Assets

2. Determine Vulnerabilities

3. Estimate likelihood of exploitation

4. Compute expected annual loss

5. Survey applicable controls and their costs.

6. Project annual savings of control.

Existing Vulnerability Assessment

33

The second step of determining vulnerabilities (vulnerability assessment) will form the

focus of this review. As an introduction into vulnerability assessment, the authors begin

by saying that imagination is required in order to determine the potential damage that

might occur to system assets if attacked [57]. In order to aide in the determination of

vulnerabilities, the authors suggest that developing a clear understanding of the nature

of vulnerabilities is required [57]. It is suggested that this nature itself is derived from

the need to ensure the three basic goals of computer security: confidentiality, integrity,

and availability [57]. Thus, the authors conclude that a vulnerability is any situation

where either of these three security goals is can be compromised [57].

The use of a matrix (Figure 6) for organisation and to stimulate thinking about

vulnerabilities is recommended by the authors. When considering each matrix entry,

the authors suggest considering a number of questions which include[57]:

 What are the effects of unintentional errors?

 What are the effects of wilfully malicious insiders?

 What are the effects of outsiders?

 What are the effects of natural and physical disasters?

Asset Confidentiality Integrity Availability

Hardware

Software

Data

People

Documentation

Supplies

Figure 6. Assets and Security Properties [57] (p. 529)

The authors show that when filled in, the matrix can show certain general problems that

can affect the assets of a computer system [57].

A number of other vulnerability assessment tools and techniques are also referenced by

the authors, including hazard analysis techniques, integrated vulnerability assessments

Existing Vulnerability Assessment

34

which is a process used by the U.S. Navy [57], CARVER (The Criticality,

Accessibility, Recuperability, Vulnerability, Effect, and Recongnizability method), a

method that assigns numerical ratings to each vulnerability, and even the VAM

vulnerability matrix [20, 57]. However, the authors concede that there is no simple

checklist or easy procedure for listing all possible vulnerabilities in a given system, and

that tools like vulnerability matrices are only able to help by providing a structured way

to think about a given problem [57]. The authors also note that by viewing examples of

actual vulnerabilities, one can be trained to think of harm that can occur [57].

The view on vulnerability assessment provided by Pfleeger and Pfleeger appears to be

focused at a more general system wide level, as opposed to vulnerabilities as specific as

break out path vulnerabilities in shared access computers. It is interesting to note that

the authors claim no value in using matrices other than for helping structure thoughts on

vulnerabilities. As has been the case with the other vulnerability assessment procedures

that have been reviewed, the Pfleeger and Pfleeger approach covers the areas where

break out path vulnerabilities could be found, however does not provide a specific

process for actively and systematically identifying break out path vulnerabilities in

shared access computers.

3.3 Summary of Existing Techniques

The review of existing vulnerability assessment techniques given in this section has

explored both vulnerability scanners, and more general vulnerability assessment

procedures.

The vulnerability scanners, although automated and systematic in their approach to

identifying vulnerabilities, were limited by their reliance on vulnerability repositories.

This restricted the vulnerability scanners from identifying not only unique system

dependant break out path vulnerabilities but also any other system vulnerabilities that

were not documented in their repositories.

The vulnerability assessment procedures that were reviewed had a general advantage

over the vulnerability scanners in that they were not directly dependant on any

Existing Vulnerability Assessment

35

vulnerability repositories. Further too their advantage, the common intention was to

apply the given procedures to unique systems with the aim of finding vulnerabilities

specific to those systems. This application typically involved the use of a vulnerability

matrix or similar tool, to stimulate the identification of vulnerabilities. These tools

generally aimed to map system assets against the security attributes: confidentiality,

integrity, availability (in the VAM matrix more specific attributes were used). The

common downside to these more general procedures was the fact that the success of the

assessment depended almost entirely on the ability of the assessor to identify

vulnerabilities. This need for experience and expertise in finding vulnerabilities was

also noted within the documentation for some of the vulnerability assessment

procedures themselves.

From this review, it can be seen that the existing methods for vulnerability assessment

are not optimally suited for identifying break out path vulnerabilities. In order to ensure

that shared access computers are correctly locked down, a vulnerability assessment

technique that is tailored to break out path vulnerabilities of these systems is required.

Based on the review, a number of probable characteristics of this tailored technique can

be identified, they include:

 Systematic: the technique should systematically assess the system for break out

path vulnerabilities.

 System specific: the technique should be able to take into consideration a given

systems unique requirements.

 Standalone: the technique should not be dependant on a vulnerability repository.

 Minimal user dependence: the technique should not be entirely dependant on the

knowledge or ability of the user.

Therefore, it is suggested that a vulnerability assessment technique with the above

characteristics would be more suitable for the identification of break out path

vulnerabilities in shared access computers.

An Ontological Solution

36

4 An Ontological Solution

The previous chapter identified the need for an improved vulnerability assessment

technique that would be: systematic, system specific, standalone, and have minimal user

dependence. This chapter proposes that an ontology for break out path vulnerability

assessment will adequately fulfil these requirements. The chapter will begin by briefly

reviewing ontologies in information systems, giving emphasis to the features which are

potentially advantageous for vulnerability assessment. This will be followed by an

examination of how ontologies have already been used in the security field. Finally,

based on the supporting references, an ontology for lockdown assessment will be

outlined. The aim of this chapter is to justify the selection of ontologies as a potential

solution to the lockdown problem.

4.1 Ontologies

Originally a philosophical discipline concerned with nature and organization of what

exists, ontology has in recent years been adopted by the information systems

community to deal with the nature and organization of what exists in the information

systems domain. [69]. Perhaps due to its philosophical origins, some debate exists

concerning the precise definition of the term ontology. Therefore, the first order of

business will be to consider some popular definitions and settle on a definition that will

be sufficient for this thesis.

4.1.1 Definition

The most often quoted definition for ‘ontology’ is Gruber’s, which states that an

ontology is “an explicit specification of a conceptualization” [32]. This is possibly the

most often quoted definition for two main reasons. Firstly, it is concise. Secondly, it

was published in 1995 and was one of the first of such definitions. In order to aide in

understanding this definition, it is useful to also include Gruber’s explanation of the

term conceptualization. Gruber defines a conceptualization as the objects, concepts, and

An Ontological Solution

37

other entities that are assumed to exist in some area of interest and the relationships that

hold among them [32]. Gruber also states that a conceptualization is an abstract,

simplified view of the world that we wish to represent for some purpose [32]. He also

adds that every knowledge base, knowledge based system, or knowledge level agent is

committed to some conceptualization, either explicitly or implicitly [32]. Returning to

the original definition, an ontology is therefore the explicit specification of the objects,

concepts, and entities of an area of interest and the relationships that hold among them.

A longer definition for the term is offered by Guarino, who attempts to refine the

Gruber definition [33]. Guarino states that an ontology is a logical theory accounting

for the intended meaning of a formal vocabulary [33], i.e. it’s ontological commitment

to a particular conceptualization of the world. The intended models of a logical

language using such a vocabulary are constrained by its ontological commitment. An

ontology indirectly reflects this commitment (and the underlying conceptualization), by

approximating these intended models [33]. Guarino’s refinement is motivated by the

argument that an ontology can only weakly represent a conceptualization, and that an

ontology could allow models other than those intended [33].

Zuniga builds on the previous two definitions in the hope of providing a unified

definition that is interdisciplinary understandable [69]. Zuniga states that an IS

(information systems) ontology is an axiomatic theory, made explicit by means of a

specific formal language. The IS ontology is designed for at least one specific and

practical application. Consequently, it depicts the structure of a specific domain of

objects, and it accounts for the intended meaning of a formal vocabulary or protocols,

that are employed by the agents of the domain under investigation [69].

In 2004 the World Wide Web Consortium (W3C) made a recommendation for a Web

Ontology Language (OWL) [50]. The recommendation describes an ontology as a

definition of the terms used to describe and represent an area of knowledge [35]. The

recommendation also states that ontologies include computer-usable definitions of basic

concepts in a domain and the relationships among them [35]. The W3C

recommendation also lists three concepts that ontologies need to be able to specify.

These are [35]:

 Classes (general things) in the many domains of interest

An Ontological Solution

38

 The relationships that can exist among things

 The properties (or attributes) those things may have.

Taking into consideration the above definitions and descriptions of ontology, the

following definition, which is based on the Gruber definition [32], will be used to define

an ontology.

Ontology: An explicit definition of the classes, relationships, and properties that

collectively represent the concepts of a domain.

This definition has simply extended the Gruber definition by including the concepts

listed by the W3C. Next, the features of ontologies that are potentially useful for break

out path vulnerability assessment will be explored.

4.1.2 Features

Depending on the area of application, ontologies can have various beneficial features.

The following will highlight those features of ontologies which could be useful for

solving the lockdown assessment problem.

 Expert knowledge capture: Domain experts are able to perform complex tasks

in their respective fields. This is commonly achieved by experts exercising

substantial explicit and tacit knowledge about their domain of interest [43].

Ontologies aim to formally represent a domain on interest [32]. This

representation can formally capture expert knowledge about the domain [43].

This is beneficial for break out path vulnerability assessment. Potentially, the

expert knowledge that attackers exercise to break out of locked down computing

environments could be captured with an ontology.

 Knowledge sharing: Ontologies can be used to facilitate knowledge sharing

about specific domains of interest [43]. An ontology that represents attackers

expert knowledge of breaking out of locked down computing environments

could be shared amongst non-experts. The sharing of this expert knowledge

amongst non-experts could help non-experts assess shared access computers for

break out path vulnerabilities.

An Ontological Solution

39

 Training: Ontologies can be used to aide in the training of challenging topics

[62]. Not only could an ontology for break out path vulnerability assessment be

used by non-experts to assess shared access computer systems, but it could also

be used to train non-experts with the underlying expert knowledge.

 Minimal encoding bias: Ontologies should be specified at the knowledge level

without depending on a particular symbol-level encoding [32]. If an ontology

for break out path vulnerability assessment is developed with minimal encoding

bias, it could potentially be universally useful for all types of shared access

computers. This could result in a break out path vulnerability assessment

technique that would be specific to shared access computers, independent of

operating system or intended function.

 Extendibility: Ontologies should offer a conceptual foundation for a range of

anticipated tasks, and they should be designed in such a way that they can be

easily extended and specialised [32]. Having an ontology that is extendible

would be beneficial for break out path vulnerability assessment, due to the

varying nature of break out path vulnerabilities from system to system.

Interestingly, ontologies are perhaps better known for their connection with the

semantic web and their potential to present knowledge in a machine readable format,

which can be automatically reasoned about [50]. Although these are prominent features

of ontologies, they are not the features that have led to the selection of ontologies for

break out path vulnerability assessment. Next, is a review of how ontologies have

already applied to the domain of security.

4.2 Ontologies in Security

Although the use of ontologies in information systems is on the rise, it is still a

relatively new discipline. Accordingly, the amount of research that has been focused on

the application of ontological concepts to vulnerability assessment is limited. However,

the amount of research focused on the application of ontological concepts into the more

general domain of information systems security is somewhat more substantial. This

more general literature provides useful insights into the application of ontologies in

security and is therefore worth examining. Following is a brief review of existing

An Ontological Solution

40

security related ontologies. Some aspects of these existing ontologies are tied back to

break out path vulnerability assessment where relevant.

4.2.1 NRL Security Ontology

One interesting piece of research was conducted by Kim, Lou, and Kang from the

United States Centre for High Assurance Computer Systems at the Naval Research

Laboratory [41]. What resulted was a broad set of security ontologies for annotating

resources, which the authors collectively refer to as the NRL Security Ontology [41].

Although the ontology does not cover vulnerability assessment or even risk analysis, the

authors do point out an interesting benefit of using ontologies for security. The authors

claim that the ontology is able to represent numerous security statements and can be

applied to any electronic resource [41]. The authors also indicate that the developed

ontology provides the ability for precisely describing security concepts at various levels

of detail [41]. This example of using the same ontology to describe concepts of a

varying nature is interesting, with regards to break out path vulnerability assessment,

due to the varying nature of break out path vulnerabilities from system to system.

4.2.2 An Ontology for Network Security Attacks

An ontology for network security attacks is also proposed in the literature [49]. This

ontology is built with the attacker in mind being represented by the Actor class. The

ontology focuses on the relationships the attacker has with other parts of the domain,

such as: Threat, Motive, Attack, Information, Outcome, and Intangible [49]. Although

the authors present a table of vulnerability categories, the vulnerabilities or a class

representing them is not found in the ontology itself. Even so, the vulnerability

categories are of interest, as they give an overview of some of the different types of

vulnerabilities that exist in systems. The categories are divided into two parts. The first

is Security Policy vulnerabilities, which include social engineering (e.g. Information

fishing, and Trojans) and policy oversight (e.g. poor planning, and poor control). The

Second is Technology vulnerabilities which include Logic Errors (e.g. Bugs, OS

vulnerabilities, etc) and Weakness (e.g. weak password system, old encryption

An Ontological Solution

41

standards). This is interesting, in regards to break out path vulnerabilities, as it provides

a documented example of the division that exists between vulnerabilities that can and

cannot be automatically discovered (recall that one unique characteristic of break out

path vulnerabilities was that they were unable to be automatically detected by

vulnerability scanners).

4.2.3 Security Ontology as a Methodical Tool

Raskin et al, in one of the earlier papers involving ontology and security, propose the

use of ontology in information security as a useful theoretical foundation and

methodical tool [60]. The authors indicate that the ultimate goal of their research is two

fold. Firstly, to have natural language data sources as an integral part of the overall data

sources used in information security. Secondly, to provide a formal specification of the

know-how that exists in the information security community (i.e. capture, share, and

reuse expert knowledge). Given these goals, the paper starts by trying to organize and

unify the terminology used in the information security domain. At the time of printing,

the research had only advanced as far as collecting terms to use in the theorised

ontology, and in its current state only provided a taxonomy of security related terms.

The authors do, however, point out some of the advantages of using ontologies for

security. These include: organising and systematising domain concepts at different

levels of detail, induced modularity (e.g. automatic relationships between an attack and

a control that would prevent it), full combinational possibilities (e.g. possible attacks

that have not occurred yet) [60].

The suggested use of ontologies for knowledge capture of security expertise, combined

with the organisation and systematisation of the coinciding domain concepts, is again

interesting with regards to break out path vulnerability assessment. The use of

ontologies as a systematic, methodical tool relates directly to the first characteristic of

the envisioned tailored vulnerability assessment technique for break out path

vulnerability assessment, as detailed at the end of chapter 3.

An Ontological Solution

42

4.2.4 Ontologies for Security Planning

In three related papers Ekelhart et al [23, 27] and Fenz and Weippl [28] employ the use

of ontologies into security planning and quantitative risk analysis. The Fenz and

Weippl paper proposes a security ontology that models the following concepts:

attribute, threat, infrastructure, role, and person [28]. Although the concepts are similar

to those used in vulnerability assessment, the scope of the paper appears to focus more

on risk analysis of physical assets. The actual ontology itself is not provided in the

paper, however the authors claim a proof of concept by providing a summary of how

the ontology was applied to a simulated spreading fire situation (i.e. fire as a threat,

asset damage by room, sprinkler control, etc) [28]. The two papers by Ekelhart et al

[23, 27] are extremely similar in content and appear to build on the Fenz Weippl paper

[28]. The authors propose a way of simulating threats to corporate assets and quickly

calculating the cost of countermeasures. Again, the focus of these papers is on physical

assets, and again the example of a simulated fire is given as a proof of concept. The

authors provide a borrowed security and dependability taxonomy that defines six

security attributes (an expansion of the CIA triad), six potential threats belonging to

three different categories, and a number of controls or countermeasures referred to as

‘means’ [23, 27]. The ontology is provided graphically, divided across three diagrams,

each providing a view of a different sub-tree of the ontology in what appears to be an

instantiated form [23, 27]. Again, although these papers are focused more on

calculating the cost of potential damage versus the cost of countermeasures, some

interesting points emerge. In particular, is the use of the ontology to methodically

simulate the progress of a fire from one room to the next, while also being used to keep

track of the resulting damage. This is interesting with regards to break out path

vulnerability assessment, as it shows the use of an ontology as a methodical tool for

assessing the potential impact a certain threat has on assets.

4.2.5 Ontologies for Security Critical Software Development

Two papers by Karyda et al propose the use of ontologies to aide in the development of

security critical applications [30, 38]. The authors state that the advantages of

developing an ontology for this purposes is: to express the most important security

An Ontological Solution

43

concepts, realise the relationships among these security concepts, provide a common

understanding and vocabulary of security issues among application developers, and

facilitate the development of secure applications [30]. The ontology hierarchy is given,

and consists of the following main classes: Assets, Countermeasures, Objective, Person,

and Threat [38]. Each of these main classes, except Objective, each has a number of

subclasses. The relationships between the significant classes are also given

diagrammatically across four subsequent figures [30]. Although vulnerabilities are not

explicitly included, it is feasible to assume that they would be included within the

Threat subclasses (i.e. Errors and Technical Failure). The authors claim that the

ontology itself is validated by querying the ontology [30]. The queries are meant to

represent typical questions that a developer of a security critical application would have

(e.g. what are the typical security objectives?). It appears however that the ontology

first needs to be either tailored to a specific type of application (i.e. e-Tax, or e-Voting

are examples used) either by extending the ontology, or by instantiating the ontology (it

is not clear from the provided information which of these two methods were used).

Although not explicitly focused on vulnerability assessment, these papers offer some

interesting insights into how ontologies can practically aide in information security. In

particular, the example of being able to query the ontology, with questions like: which

threats might compromise the anonymity of the voter?[38] This is a similar type of

question that could be asked in vulnerability assessment (e.g. what vulnerabilities might

compromise the confidentiality of a particular asset?). However from the papers it can

be seen that the query will only return the correct answer if the necessary information

and relationships are first hard coded into the ontology. This becomes a hindrance

when considering break out path vulnerability assessment. This is because one of the

major challenges with break out path vulnerabilities is that they are not yet known and

therefore cannot be hard coded into an ontology. Nevertheless, the research gives an

interesting example of how security information can be queried from an ontology.

4.2.6 Ontologies for Security Management

Finally, three related papers by Tsoumas and Gritzalis [65], Tsoumas, Dristas, and

Gritzalis [31], and Tsoumas et al [66] make an attempt at using ontologies for security

An Ontological Solution

44

management. The authors claim that they have fully implemented a security ontology

that relates to risk assessment [65]. They also state that their security ontology is a

standards-based knowledge container, that has extended the CIM model with

ontological semantics, and finally that it can also be used for reusable security

knowledge interoperability, aggregation and reasoning, by using security knowledge

from diverse sources [65, 66]. However, a closer examination of the security ontology

offered by the authors reveals some obvious mistakes regarding ontology development.

Firstly, the Asset class and Countermeasure class are both classified as subclasses of the

Risk Assessment class [65]. This seems counterintuitive, as it is difficult to see how an

asset such as software, hardware, or information (all actual subclasses of the Asset class

given in the ontology) could be considered a type of risk assessment. This is likewise

the case with the Countermeasure class, for example, it is again difficult to see how a

firewall could be considered a type of risk assessment.

The second problem involves how assets are related to given security attributes. Table

1 shows the six relationships that the authors claim exist between assets and different

security attributes:

Asset Class Relationship Security Attribute Class

Asset HasAuthenticity Authenticity

Asset HasAvailability Availability

Asset HasCompliance Compliance

Asset HasConfidentiality Confidentiality

Asset HasIntegrity Integrity

Asset HasNonRepudiation NonRepudiation

Table 1. Asset to security attribute relationship table [65]

It seems redundant to have a unique relationship for each security attribute, when the

security attributes are unique themselves. A more efficient way to model this would be

to have a single relationship called HasSecurityAttribute that is used for every security

attribute. X shows the resulting relationships if this approach were adopted.

An Ontological Solution

45

Asset Class Relationship Security Attribute Class

Asset HasSecurityAttribute Authenticity

Asset HasSecurityAttribute Availability

Asset HasSecurityAttribute Compliance

Asset HasSecurityAttribute Confidentiality

Asset HasSecurityAttribute Integrity

Asset HasSecurityAttribute NonRepudiation

Table 2. Improved asset to security attribute relationship table

This reduces the number of relationships needed to one. Furthermore, it makes

extending the ontology far easier. For example, if a new security attribute is required it

can simply be added once into the security attribute class, without having to create a

corresponding relationship.

The third and perhaps most significant error begins with the author’s statement that the

ontology development language OWL (Web Ontology Language) has limitations in

expressing arrays [65]. The authors point out that a single asset can have many threats,

and a single threat can itself have many countermeasures. This is true, however the

authors go on to imply that this cannot be modelled in an ontology, specifically in using

OWL and therefore implementing a multidimensional array is required [65, 66]. This

claim is false and reveals a misunderstanding on the authors’ part concerning ontology

relationships. It appears the authors believe a unique relationship is required for each

instance of a relationship type (this is also seen in the above noted redundant

implementation of multiple security attribute relationships). This is incorrect. The

ontology simply describes the types of relationships that exist between different classes.

X shows a way of ontologically modelling what the authors claim cannot be modelled

with OWL (bubbles represent classes, arrows represent relationships).

Figure 7. Asset, threat, countermeasure ontology model

hasCountermeasure hasThreat Asset Threat Counter
Measure

An Ontological Solution

46

This problem has adverse effects on the rest of the ontology. Having incorrectly

modelled these relationships, the extendibility, reasoning, information sharing and reuse

capabilities intended by ontologies and OWL are reduced, or even no longer possible,

due to the suggested arrays not belonging to the OWL language. This is unfortunate for

the research as it appears this mistake was made during the foundational stages and has

eventually become a very large problem.

On the plus side, the authors do provide an interesting four phase process for using the

ontology [31, 65, 66]. The first is to build the ontology (i.e. instantiate the ontology

with a given systems information), the second to collect the security requirement of the

system, the third phase involves matching the security requirement with specific

controls, and the final phase involves deployment and monitoring of the secure system.

This is interesting for break out path vulnerability assessment as it shows an ontology

being used to facilitate the assessment of a given system. This is similar to the

envisioned intention of an ontology for break out path vulnerability assessment.

4.2.7 Summary of Ontologies in Security

The literature involving the use of ontologies for information systems security, although

not specifically focused on vulnerability assessment, has been useful via a number of

semi-related illustrations. The literature has shown that there is potential for concepts

such as vulnerabilities, to be modelled at different levels of abstraction using ontologies.

It has also shown that vulnerabilities can be categorised in such a way that a division

can be seen between those due to technology and those due to higher level concepts,

such as social engineering or policy oversight. It has shown that concepts involved in

the security domain can be organized by hierarchy, and that the relationships between

those concepts can also be modelled. The literature has given an example of how an

ontology can be used as a methodical tool. It has also given an example of the phases

involved when instantiating a security ontology from an arbitrary system. It has

provided examples of how ontologies can be queried to answer certain questions.

Finally, the literature has also shown how making mistakes when developing ontologies

can have a detrimental impact on the usefulness of the ontology.

An Ontological Solution

47

4.3 Proposed Ontological Solution

The creation of an ontology for break out path vulnerability assessment seems fittings

when the relevant information is considered collectively. Firstly, the theorised

requirements of a useful break out path vulnerability assessment technique (i.e.

systematic, system specific, standalone, and minimal user dependence). Secondly, the

potentially useful features of ontologies (i.e. expert knowledge capture, knowledge

sharing, training, minimal encoding bias, and extendibility). Finally, the evidence

found in the literature of the application of ontologies to security problems.

Therefore the ontology for break out path vulnerability (or lockdown) assessment was

developed with the following intended purpose:

 To capture the expert knowledge of attackers, that is exercised when breaking

out of locked down computing environments

 Hold this captured knowledge in such a way that it can be shared amongst non-

experts (knowledge sharing).

 Be used by non-experts as a tool for break out path vulnerability assessment

 Through its use, increase the expertise of the user with regards to break out path

vulnerability assessment (training).

 Be able to be applied to different systems and tailored to different intended

functions (standalone and system specific).

 Provide a systematic approach to break out path vulnerability assessment

(systematic).

The next chapter is focused on the development of the break out path vulnerability

(lockdown) assessment ontology.

Lockdown Assessment Ontology

48

5 Lockdown Assessment Ontology

In order to develop an ontology that captures the expert knowledge that attackers use to

break out of locked down computing environments, it is worthwhile to consider the

break out process. This chapter begins by looking at some examples of break out path

vulnerabilities being exercised to achieve a broken state in locked down shared access

computers. The chapter continues by extracting the underlying principles of the break

out path examples. Next, based on these underlying principles, an ontology is

developed and explained. Finally, the process of using the ontology for break out path

vulnerability assessment is described.

5.1 Breaking Out

The process of breaking out of a locked down computing environment involves

executing a series of state changing actions until a broken state is achieved. The broken

state is dependant on the intended function and system requirements of each shared

access computer (i.e. different shared access computers may vary in what functions they

allow users to perform). Each example will begin with a basic description of the shared

access computer and its intended use. This will be followed by a description of state

changing actions that lead to a broken state. Each example is based on actual break out

path vulnerabilities found in real systems, but have been anonymised for obvious

ethical, privacy and security reasons.

5.1.1 Example One

The first break out path vulnerability to examine was found on a Windows based shared

access computer that was set up with an automatic login. The desktop provided the user

with four icons which each opened various web pages in a locked down version of

Internet Explorer. The start menu was empty, apart from the same four icons and the

shut down icon. The standard right click context menu was disabled for the desktop,

start menu, taskbar, and their corresponding icons. The intended function of the

Lockdown Assessment Ontology

49

computer was to provide instant anonymous user access to the four web resources

accessible via the desktop or start menu icons.

The broken state was achieved according to the following process. Firstly, one of the

desktop icons was double clicked opening a web page in an internet explorer window.

Next the web page was navigated to the ‘contact’ page of the website. This page

included a number of mailto hyperlinks for staff email addresses. Next, a mailto

hyperlink was clicked. This launched an outlook express email compose window.

From this window, the attachment paperclip button was clicked. This opened a file

browser window. From within this file browser window, the file system could be

browsed. The right click context menu was also available on every icon in the file

system from this view, which included options such as: explore, open, search, cut, copy,

paste, and delete. Write access to parts of the file system was also available.

In this instance, the broken state was achieved by spawning the default mail client

(outlook express). This in turn was used to obtain access to the file system via the email

attachment feature. This provides an example of leveraging a legitimate intended

function (i.e. the intended use of internet explorer), to perform an unintended function

(i.e. open outlook express) which resulted in a broken state (i.e. access to the file

system).

5.1.2 Example Two

The second break out path vulnerability to examine was also found on a Windows based

shared access computer that was set up with an automatic login. In this instance, the

start menu was empty apart from a shut down button and the start up folder which had a

single Public Web Browser (PWB) icon. The PWB was automatically launched at start

up and was set to be permanently maximised, without the option of closing the window.

The web navigation was also restricted to a single web resource. The intended function

of the computer was to provide anonymous user access to a single web resource via the

PWB window.

Lockdown Assessment Ontology

50

The broken state was reached according to the following process. Firstly, the keyboard

combination of ‘windows’ key and the ‘U’ key was pressed. This opened the Microsoft

Utility Manager which had a list of three utilities: Magnifier, Narrator, and On-Screen

Keyboard. Next, the Narrator utility was selected and the Start button was pressed.

This opened the Narrator dialog box which gives an overview of the program and also a

blue hyperlink to the Microsoft website (Figure 8 provides a screen capture of the

dialog box).

Figure 8. Generic Microsoft Narrator dialog box

Next, the hyperlink was clicked, which opened the default Internet Explorer web

browser. This web browser was not locked down and allowed unrestricted user access

to the internet. This included the download, installation, and execution of applications.

The break out path provides two examples of leveraging dormant technology. Firstly,

the keyboard shortcut opened the dormant Microsoft Utility Manager and the Microsoft

Narrator. Secondly, the hyperlink opened the dormant Internet Explorer browser

window. This resulted in a broken state, as the Internet Explorer browser was

unrestricted in its capabilities.

5.1.3 Example Three

The third example of a break out path vulnerability was found on the same shared

access computer as the second example. That is, the Windows based machine with the

Lockdown Assessment Ontology

51

empty start menu (bar PWB icon and shut down button) and PWB window. Again, the

intended function of the computer was to provide anonymous user access to a single

web resource via the PWB window.

The broken state in this instance was reached in the same machine via a different

process. Firstly, the CD drive open button was pressed, which unsurprisingly opened

the CD drive. Next, a music CD was inserted and the CD drive was then closed. This

caused an autorun window to appear on the screen with two possible options: Open

folder to view files using Windows Explorer, or Take no action. The Open folder to

view files using Windows Explorer option was then selected and the OK button clicked.

This caused a Windows Explorer window to open which provided access to file system

and network neighbourhood. From here, other applications including the command

prompt, registry editor and internet explorer were able to be executed.

The broken state in this example was again reached by using an unintended, yet possible

system function, associated with a hardware device. Specifically, the default autorun

function associated with the CD drive was exercised. Interestingly, the computer did

not even have speakers. Through the Windows Explorer option in the autorun menu,

the broken state was achieved.

5.1.4 Example Four

The fourth break out path vulnerability to examine was found on a pay for use shared

access computer. The computer was set up to allow users to perform basic desktop

publishing tasks (Microsoft Office) and provide users internet access. The computer

required payment via an attached eftpos device in order to use the computer. The screen

consisted of a full screen display (i.e. no start button or taskbar, the operating system

could not even be discerned from this state). This display gave directions on using the

eftpos device. On paying, via the eftpos device, the full screen display would close and

the user could use the computer.

The broken state was achieved starting from an unpaid full screen display according to

the following process. Firstly, the keyboard combination of the ‘windows’ key and the

Lockdown Assessment Ontology

52

‘D’ key was pressed. This caused the full screen display to minimise into the taskbar.

From here the desktop publishing tools could be opened and used, and the internet

browser could be open and the internet accessed.

In this example of very simple break out path vulnerability, the payment system for a

shared access computer was bypassed. This was achieved by leveraging a built in

operating system command against the payment software. In this instance, an

unintended possible function was used to bypass a security control to achieve a broken

state.

5.2 The Underlying Principles

The above examples begin in various initial states and exercise different break out paths

in order to reach various broken states. A break out path, in general, has been referred

to as a series of state changing actions performed by the user. In order to help identify

the underlying principles that can be extracted from the above four examples, it is useful

to begin by looking at an information system from a very basic level. Figure 9 provides

a graphical representation of the input processes output (IPO) model, which can be used

to describe a very basic system.

Figure 9. The basic IPO model

With regards to break out paths, it can be seen that the attacker is responsible for the

inputs. These inputs cause the shared access computer to perform some internal

processes which result in a state change, which is then output to the attacker via the

screen. Based on this output, the attacker repeats the process (beginning with the next

input) until the output produced by the system is a desired broken state. Therefore the

first underlying principle that will be examined will involve the different possible inputs

of a given system.

INPUT OUTPUT PROCESSES

Lockdown Assessment Ontology

53

5.2.1 Inputs

In order to break out of a locked down computing environment, an attacker works on

the computer via its inputs. The inputs that can be extracted from the break out path

examples, can be seen to fit into three distinct categories: mouse inputs, keyboard

inputs, and hardware inputs. The next step is to explore each of these categories to

identify the potential inputs.

Mouse inputs can vary depending on the type of pointing device connected to the

machine. A generic apple mouse for example only has one button and is therefore

limited to single click combinations. A generic PC mouse usually has at least a left and

a right mouse button which increases the number of possible click inputs. A common

feature of a newer PC mouse is the presence of a scroll wheel. This scroll wheel also

functions as a third button which can also be clicked and double clicked. A standard set

of generic mouse inputs can be listed as:

 Primary Button Single Click

 Primary Button Double Click

 Secondary Button Single Click

 Secondary Button Double Click

 Scroll Wheel Single Click

 Scroll Wheel Double Click

Keyboard inputs are restricted to the keys available on a given keyboard and the

combinations therein. For a standard QWERTY keyboard this includes the twenty six

English alphabet letter keys, numeric keys, function keys (F1-F12), punctuation and

bracket keys, formatting keys (enter, space, tab, etc), modifier keys (alt, ctrl, shift, etc),

arrow keys, number pad keys, and the other miscellaneous keys (Print Screen, Scroll

Lock, Pause/Break, Insert, Delete, Home, Page Up, etc). This set of potential inputs

allows a significant number of combinations via the modifier keys. The key

combinations that involve modifier keys usually represent keyboard shortcuts of

application or operating system standard functions.

Lockdown Assessment Ontology

54

Hardware inputs are restricted by the variety of input devices and input ports that are

present on a given computer. Common hardware inputs include CD/DVD drives,

floppy disk drives, USB ports, and IEEE 394 Firewire ports. The ports in particular can

potentially allow additional input devices to be connected (e.g. microphones, or even

different pointing devices).

Interestingly, combinations of inputs from different categories can also cause different

processes to occur on some applications. For example using the keyboard modifier

Shift key and performing a primary button single click on a hyperlink in Internet

Explorer will cause the link to open in a new window.

From an attacker’s perspective, the members and combinations of these input categories

represent the means by which they are able to attack the system. Combined with

objects of focus (i.e. what they click on, or what is in focus when a key press is

performed), they become the access points of the system.

Having explored the realm of possible system inputs, the next step is to consider the

processes and outputs of the system. These two will be considered together.

5.2.2 Processes and Outputs

Generally speaking, the processes that occur within a given system are invisible to the

user. The end result of an input made by a user, from the user’s perspective, is the

system output. However, depending on the state of a given system the same input by

the user may cause a different process and consequently a different output. Therefore,

an appreciation of the varying processes of a system depending on its state is useful. A

simple way to illustrate this is through an example. Pressing Ctrl + S while an unsaved

Microsoft Word document is open and in focus, will result in a process that outputs a

save dialogue box to the screen. Pressing the same Ctrl + S key combination while a

previously saved Microsoft Word document is open and in focus will result in a process

that saves changes made to the document since the save and will produce an output of a

progress bar at the bottom of the window for a short moment. Pressing yet again the

Lockdown Assessment Ontology

55

same Ctrl + S key combination on a blank Windows desktop will result in a process that

produces an unchanged output (i.e. it does nothing).

As mentioned the outputs of a given system are the result of inputs and internal

processes. Based on the output of a given input, an attacker then proceeds with the next

input and continues until a broken state is achieved. The impact of a given input has

been shown to be dependant on the current state of the system. More accurately, for a

given input its impact is dependant on object of focus of that input. These objects of

focus can be generally referred to as the assets of the system. From a hardware

perspective hardware assets also exist and are the objects of focus for hardware inputs

(e.g. CD drive or USB port). From a non hardware perspective, the objects of focus fit

into two main asset groups, software (i.e. applications) and information (i.e. data used

and displayed by applications). The next section will show an ontology that represents

the extracted underlying principles of the basic break out process.

5.3 The Ontology

Based on the above identified underlying principles of the break out process, the

following ontology was developed. X gives a graphical representation of the ontology.

The bubbles represent classes of the ontology, and the arrows represent relationships.

Figure 10. Ontology of the break out process

Access

Point

Asset

Key Press

Hardware Input

Mouse Click

Hardware

Information Software

IsA
IsA

IsA IsA
IsA

IsA

Gives Access To

Provides A

Lockdown Assessment Ontology

56

The ontology of the break out process has two main parts. The first is the Access Point

class. This class represents the different system inputs and has three subclasses: Key

Press, Mouse Click, and Hardware Input. These correspond to the three previously

outlined categories of possible inputs. If additional inputs are encountered with a

particular shared access computer system, the ontology can easily be extended by

adding additional Access Point subclasses (e.g. voice input).

The second part is the Asset class. This class represents the different objects of focus

that can be presented by the system. The Asset class also has three subclasses, which

again correspond to the three previously identified asset categories: Information,

Software, and Hardware.

The final aspect of the ontology that needs to be explained is the relationships that exist

between assets and access points. The basic relationship is as follows: A given asset

can potentially contain a number of access points (Provides A relationship).

Conversely, a given access point will give access to usually one specific asset (Gives

Access To relationship). An example of the Asset Provides A Access Point relationship

can be seen in a basic Windows desktop. The Windows desktop is an Asset (Software

subclass) and this Asset provides a number of access points. The Access Points could

be Double Primary Click on the My Documents Icon, Single Secondary Click on the

My Documents Icon, Enter Key Press on the My Documents Icon, or even Delete Key

Press on ArbitraryFile.txt. Building from this example, corresponding examples of the

Access Point Gives Access To Asset relationship can be shown. The Double Primary

Click on the My Documents Icon would give access to the My Documents Folder in

Windows Explorer Asset. The Single Secondary Click on the My Documents Icon

would give access to the My Documents Folder Context Menu Asset. The Enter Key

Press on the My Documents Icon would give access to the My Documents Folder in

Windows Explorer. Finally the Delete Key Press of ArbitraryFile.txt would give access

to ArbitraryFile.txt Confirm Delete Dialogue Box Asset. As the building up of

relationships from Assets to Access Points and then back to Assets continues, a path is

created. Figure 11 shows a graphical representation of an example path (note: white

bubbles are Software Assets, grey bubbles are Mouse Click Access Points, black arrows

are Provides A relationships, grey arrows are Gives Access To relationships, and PBSC

stands for Primary Button Single Click).

Lockdown Assessment Ontology

57

Figure 11. Ontological Asset to Access Point path

If the created path reaches an asset that corresponds to a broken state, the path becomes

a break out path. What defines the broken state will depend on the intended function of

the system being assessed. For example, the broken state may be defined by reaching

an asset that can be used to interact with the file system (e.g. Windows Explorer, or the

Command Prompt). A broken state could also be defined as reaching a particular asset

via a path that does not involve another particular asset (e.g. reaching the desktop via a

path that bypasses using the eftpos payment asset).

The next section will explain in more detail the process of using the ontology for break

out path vulnerability assessment (i.e. ontological lockdown assessment).

5.4 Ontological Lockdown Assessment

The ontological lockdown assessment process can be separated into four phases. These

phases provide a structured approach for tailoring the assessment process to a specific

shared access computer system. The first phase is concerned with defining the broken

state. The second phase involves identifying the initial assets of the system. The third

phase requires the building Asset Access Point paths. The final phase involves the

Windows

Desktop

PBSC

Start Button

Start

Menu

PBSC

Notepad Icon

Notepad

Lockdown Assessment Ontology

58

compilation and analysis of the discovered paths. The following section provides a

more detailed description of each of these phases.

5.4.1 Phase 1: Define the Broken State

The purpose of this phase is to define the goal, or broken state of the assessment (i.e. if

the broken state is reached the system is not correctly locked down).

This phase is only dependant on knowing the intended function of the shared access

computer that is being assessed.

The broken state of a shared access computer will vary from system to system,

depending on the intended function of the system. Given the intended function of the

system, a perfectly locked down shared access computer would be one that has all other

functions restricted. Therefore, a reasonable place to begin is by defining the broken

state as any function that is not an intended function of the system. Or with regards to

assets, the broken state can be defined as access to an asset which is not an asset that

was intended to be accessed by the system.

This is a conservative definition, as some unintended yet possible functions may not be

detrimental to the shared access computer. However, this definition of the broken state

is quick and simple and has the advantage of covering all unintended functions,

including all those that could be detrimental to the shared access computer. Decisions

concerning unintended yet possible functions that are not detrimental to the system are

made in phase four.

The output of this phase is a definition of the broken state which is unique to the shared

access computer that is being assessed.

Lockdown Assessment Ontology

59

5.4.2 Phase 2: Identify the Initial Assets

Having defined the goal of the assessment in the first phase, the purpose of this second

phase is to define that starting points of the assessment (i.e. in order to reach the broken

state the assessment will begin from these starting points or initial assets).

This phase is only dependant on having physical access to the shared access computer

that is being assessed.

The initial assets of shared access computers will also vary from system to system,

depending on what they consist of, with regards to hardware, and how they are set up

with regards to software.

A good practice is to begin by identifying the hardware assets through physical

inspection of the system (this includes computer case, monitor, keyboard and other

components). This will result in a list of devices, drives, and ports present on the

physical system (USB ports for example can be found on monitors and keyboards as

well as the traditional locations). The next step is to identify the software assets. A

good approach is to start by turning on the shared access computer and wait for it finish

loading. Once the system is loaded, begin listing what is on the screen. This will result

in a list of software assets (i.e. start button, network connections system tray icon, my

documents desktop icon, internet explorer web browser window). The operating system

of the machine should also be included in this list, in order to cover operating system

specific keyboard short cuts for example (e.g. ‘Windows’ key and ‘U’ key will open the

Microsoft Utility Manager application of windows based machines).

The combined list of initial hardware and software Assets forms the starting points for

the ontological lockdown assessment. It is from these initial assets that the broken state

needs to be reached.

The output from this phase is a list of initial assets.

Lockdown Assessment Ontology

60

5.4.3 Phase 3: Build Access Paths

The purpose of this phase is to systematically step through the system building Asset

Access Point paths, making note of paths that result in a broken state (i.e. break out

paths).

This phase is dependant on having physical access to the shared access computer that is

being assessed and also requires the outputs from the first two phases, specifically the

definition of the broken state and the list of initial assets (i.e. the goal and the starting

points).

This phase is where the main discovery of break out paths occurs and is performed

according to the follow procedure:

 Beginning with the first initial Asset, start by building Asset Access Point paths

according to the ontology. It is likely that starting from a single initial Asset, it

will be possible to build a number of different paths (e.g. when a single Asset

provides multiple Access Points).

 When a path reaches a broken state, it becomes a break out path and should be

recorded. To record the break out path, write down the chain of Assets and

Access Points used to reach the broken state.

 If a particular path does not reach a broken state, then that path does not need to

be recorded.

 If, during the creation of a path an asset is reached that appears in a previously

recorded break out path, the current path can be immediately recorded and

joined to the existing break out path at that particular asset (this removes the

redundancy of exploring the same path segments multiple times).

 Continue this process until all possible paths have been explored for every initial

asset.

The output from this phase is either an empty set (for a suitably locked down system),

or a set of break out paths.

Lockdown Assessment Ontology

61

5.4.4 Phase 4: Compilation and Analysis

The purpose of this phase is to organise and analyse the break out paths that have been

identified in phase three.

This phase is dependant on successful completion of phase three and requires the set of

break out paths and knowing the intended function of the shared access computer. It

does not necessarily require physical access to the shared access computer being

assessed.

The first step in this phase is to organise the identified break out paths. It can be useful

to organise the interconnected break out paths in graph format. The next step is to

examine each break out path, paying particular attention to the assets that have caused

the broken state. Each break out path represents an unintended yet possible system

function. At this point, these unintended yet possible functions should be considered

with regards to the intended function of the shared access computer. If these unintended

functions are deemed detrimental or unwanted, they can be marked as break out path

vulnerabilities. There also remains the option of returning to the shared access

computer to review particular break out paths, to determine if they are in fact

detrimental or unwanted. Optionally, once the vulnerabilities have been identified, they

can then be given an impact rating. This rating should correspond to a predefined scale

(e.g. high, medium, low or 1-10, etc) and is selected at the discretion of the assessor.

Having identified the break out path vulnerabilities, technically speaking, at this stage

the vulnerability assessment process has been completed.

The output from this phase is a list of break out path vulnerabilities.

As a side note, once the break out path vulnerabilities have been marked the graph

format of the recorded break out paths can be used as an aid when mitigating the

vulnerabilities. This graph format can used to identify commonalities between break

out paths. However, mitigation of vulnerabilities is a different step in the risk analysis

process and is outside the scope of this research.

Lockdown Assessment Ontology

62

The next chapter involves a case study that provides a real world application of the

aforementioned ontological locked assessment process.

Case Study

63

6 Case Study

As a proof of concept, a case study has been performed in order to showcase the

usefulness of the ontological lockdown assessment process. Due to privacy, security,

and ethical reasons, the shared access computer that forms the focus of the case study

has been anonymised as much as possible. The case study begins by introducing the

characteristics of the shared access computer, its intended function and environment.

Next, the case study will be presented according to the four phases of the assessment

process. Following the ontological lockdown assessment process of the case study,

some comparative results from other vulnerability sources will be proved. Finally, a

conclusion of the case study will be given.

6.1 System Characteristics

The shared access computer that forms the focus of this study is a library catalogue

computer. The catalogue computer is a Windows XP based machine and is set up with

an automatic logon. In its default state, the computer presents the user with a locked

down Public Web Browser window which displays the library catalogue home page.

The Start menu only includes the programs, start up folder with the PWB icon, and the

Turn off computer button. The system tray consists of the clock and three icons: audio,

virus scanner, and security centre. The desktop is inaccessible due to the PWB window

being permanently maximised.

Physically, the computer consists of screen, keyboard, mouse, and main case. The

system sits on a standard desk with all parts of the computer physically accessible.

The intended function of the shared access computer is to provide anonymous user

access to the library catalogue. As a second function, the web based catalogue system

also allows known users to log in with a usernames and password, in order to view their

lending status, renew and reserve books.

Case Study

64

6.2 Ontological Lockdown Assessment

This section presents the four phases of ontological lockdown assessment process, as

applied to the shared access computer with the aforementioned characteristics, intended

function, and physical environment.

6.2.1 Phase 1: Define the Broken State

The broken state will be defined by taking the compliment of the intended function of

the system. Firstly, the intended function of the system is to provide anonymous user

access to the web based library catalogue via a Public Web Browser window and

secondly to provide known users access to their lending status via the same Public Web

Browser window. Therefore, the broken state is defined as any function that is not

either browsing the library catalogue or viewing lending status via the Public Web

Browser Window.

6.2.2 Phase 2: Identify the Initial Assets

The initial assets form the starting points of the access paths in phase three. Firstly, the

initial hardware assets will be identified, and secondly the initial software assets.

The initial hardware assets that were identified by physical inspection were as follows:

 Screen control panel

 Keyboard port

 Mouse port

 Two USB ports

 CD Drive

 Floppy Disk Drive

The initial software assets that were identified by visual inspection were as follows:

 Start Button

 PWB window

Case Study

65

 Symantic Antivirus system tray icon

 C-Media Mixer system tray icon

 Security Centre system tray icon

 System tray clock

 Taskbar

 Windows XP operating system

6.2.3 Phase 3: Build Access Paths

The access paths that were derived from the exploration of each of the initial assets, and

that resulted in a broken state, will be presented next. An explanation of each broken

state will also be given. The access paths consist of numbered steps of alternate assets

and access points, where assets are odd numbered plain text and access points are even

numbered underlined text. The following acronyms for mouse clicks are also used:

 PBSC: Primary Button Single Click

 PBDC: Primary Button Double Click

 SBSC: Secondary Button Single Click

Screen control panel access path 1:

1. Screen control panel

2. Contrast down button press and hold

3. Contrast level = 0 information box, black screen

Broken state: Results in a black, blank screen, rendering the computer unusable.

Screen control panel access path 2:

1. Screen control panel

2. OK button press

3. Main controls menu

4. Down button press

5. Zoom option highlighted

6. OK button press

7. Zoom menu

Case Study

66

8. Left button press and hold

9. Zoom level = 0 information box, tiny image

Broken state: Results in a tiny image on the screen, reducing the usability of the

computer.

Screen control panel access path 3:

(Path begins at step 7 of screen control panel access path 2)

7. Zoom menu

8. Right button press and hold

9. Zoom level = 100 information box, maximum zoomed in image

Broken state: Results in a maximum zoomed in image, reducing the usability of the

computer by pushing much of the user interface out of view.

Screen control panel access path 4:

(Path begins at step 3 of screen control panel access path 2)

3. Main controls menu

4. Down button press x2

5. Adjust horizontal option highlighted

6. OK button press

7. Adjust horizontal menu

8. Left button press and hold

9. Horizontal position = 0 information box, image off centre to the left.

Broken state: Results in the screen image being pushed off the left hand side of the

screen, reducing the usability of the system.

Screen control panel access path 5:

(Path begins at step 7 of screen control panel access path 4)

7. Adjust horizontal menu

8. Right button press and hold

9. Horizontal position = 100 information box, image off centre to the right

Case Study

67

Broken state: Results in the screen image being pushed off the right hand side of the

screen reducing the usability of the system.

Screen control panel access path 6:

(Path begins at step 7 of screen control panel access path 4)

7. Adjust horizontal menu

8. Down button press

9. Horizontal size option highlighted

10. Right button press and hold

11. Horizontal size = 100 information box, image expanded left and right

Broken state: Results in the screen being expanded off either side of the screen,

reducing the usability of the system.

Screen control panel access path 7:

(Path begins at step 3 of screen control panel access path 2)

3. Main controls menu

4. Down button press x3

5. Adjust vertical option highlighted

6. OK button press

7. Adjust vertical menu

8. Left button press and hold

9. Vertical position = 0 information box, image moved off screen upwards

Broken state: Results in the screen image being pushed upwards out of the viewable

screen area, reducing the usability of the system.

Screen control panel access path 8:

(Path begins at step 7 of screen control panel access path 7)

7. Adjust vertical menu

8. Right button press and hold

9. Vertical position = 100 information box, image moved off screen downwards

Case Study

68

Broken state: Results in the screen image being pushed downwards out of the viewable

screen area, reducing the usability of the system.

Screen control panel access path 9:

(Path begins at step 7 of screen control panel access path 7)

7. Adjust vertical menu

8. Down button press

9. Vertical size option highlighted

10. Right button press and hold

11. Vertical size = 100 information box, image expanded off screen vertically

Broken state: Results in the screen image being expanded vertically out of the viewable

screen area, reducing the usability of the system.

Keyboard port access path 1:

1. Keyboard port

2. Unplug keyboard

3. Disconnected keyboard

Broken state: The keyboard can be disconnected, resulting in reduced usability

availability of the system. This also allows the possibility of hardware key logger

attacks.

Mouse port access path 2:

1. Mouse port

2. Unplug mouse

3. Disconnected mouse

Broken state: The mouse can be disconnected, resulting in reduced usability and

availability of the system.

USB port access path 1:

1. USB port

2. Insert USB flash drive

Case Study

69

3. Auto Run Window

4. Open folder to view files PBDC

5. Windows Explorer window

6. Local Disk (C:) PBSC

7. Windows Explorer view of C:\

8. Windows folder PBSC

9. Windows Explorer view of C:\windows\

10. System32 PBSC

11. Windows Explorer view of C:\windows\system32\

12. cmd.exe PBDC

13. Command Prompt window

Broken State: Results in the system opening a Windows Explorer window that can be

used to navigate the file system. Furthermore, the command prompt can be opened.

Note: Steps 6 to 13 were included to test system permissions

USB port access path 2:

(Path begins at step 11 of USB port access path 1)

11. Windows Explorer view of C:\windows\system32\

12. regedt32.exe PBDC

13. Registry Editor window

Broken state: Results in the system opening a Windows Explorer window that can be

used to navigate the file system. Furthermore the registry editor can be opened.

Note: Again, this path was included to text system permissions

USB port access path 3:

(Path begins at step 3 of USB port access path 1)

3. Auto Run Window

4. Print the pictures PBDC

5. Photo Printing Wizard window

Case Study

70

Broken state: Results in the system opening the Photo Printing Wizard, an unintended

function of the system.

USB port access path 4:

(Path begins at step 3 of USB port access path 1)

3. Auto Run Window

4. View a slideshow of the images PBDC

5. Windows Picture and Fax Viewer

Broken state: Results in the system opening the Windows Picture and Fax Viewer, an

unintended function of the system.

USB port access path 5:

(Path begins at step 3 of USB port access path 1)

3. Auto Run Window

4. Copy pictures to a folder on my computer PBDC

5. Microsoft Scanner and Camera Wizard window

Broken state: Results in the system opening the Microsoft Scanner and Camera Wizard

window, an unintended function of the system.

CD drive access path 1:

1. CD drive

2. Open Button press

3. Opened CD drive

4. Insert data CD, close button press

5. Auto Run Window

(Continue from step 3 of USB port access paths 1, 2, 3, 4 and 5)

Broken State: Results in an Auto Run window that can be used to launch four

unintended system applications, including Windows Explorer, which can be used to

navigate and manipulate the file system and execute system applications. This is not an

intended function of the system.

Case Study

71

PWB window access path 1:

1. PWB window

2. Hyperlink SBSC

3. Hyperlink context menu

4. Save Target As option PBSC

5. Directory Browser window

6. Folder SBSC

7. Folder context menu

8. Explore option PBSC

9. Windows Explorer window

(Continue from step 5 of USB port access path 1)

Broken state: Results in the system opening a Windows Explorer window, an

unintended function of the system.

PWB window access path 2:

1. PWB window

2. Ctrl + S combination key press

3. Directory Browser window

(Continue from step 5 of PWB window access path)

Broken state: Results in the system opening a Windows Explorer window, an

unintended function of the system.

PWB window access path 3:

(Path begins at step 3 of PWB window access path 1)

3. Hyperlink context menu

4. Print option PBSC

5. Print window

6. Preferences button PBSC

7. Preferences window

8. Go online hyperlink PBSC

9. Internet Explorer window

Case Study

72

Broken state: Results in the system opening an unrestricted Internet Explorer window

which can be used to navigate the entire internet and also the local file system.

PWB window access path 4:

1. PWB window

2. Ctrl + P combination key press

3. Print window

(Continue from step 5 of PWB window access path 3)

Broken state: Results in the system opening an unrestricted Internet Explorer window

which can be used to navigate the entire internet and also the local file system.

PWB window access path 5:

1. PWB window

2. F9 key press

3. Print window

(Continue from step 5 of PWB window access path 3)

Broken state: Results in the system opening an unrestricted Internet Explorer window

which can be used to navigate the entire internet and also the local file system.

Symantic Antivirus system tray icon access path 1:

1. Symantic Antivirus system tray icon

2. Symantic Antivirus system tray icon SBSC

3. Symantic Antivirus context menu

4. Open Symantic Antivirus option PBSC

5. Symantic Antivirus window

6. Look for help button PBSC

7. Look for help contents page

8. Help System Contents link PBSC

9. Symantic Antivirus Help window

10. Print button PBSC

11. Print window

(Continue from step 5 of PWB window access path 3)

Case Study

73

Broken state: Results in the system opening an unrestricted Internet Explorer window

which can be used to navigate the entire internet and also the local file system.

Security Centre system tray icon access path 1:

1. Security Centre system tray icon

2. Security Centre system tray icon SBSC

3. Security Centre context menu

4. Go to Microsoft Security Web Site option PBSC

5. Internet Explorer window

Broken state: Results in the system opening an unrestricted Internet Explorer window

which can be used to navigate the entire internet and also the local file system.

Windows XP operating system access path 1:

1. Windows XP operating system

2. Windows key + U combination key press

3. Utility Manager window, Microsoft Narrator window

4. Microsoft Web Site hyperlink PBSC

5. Internet Explorer window

Broken state: Results in the system opening the Windows Utility Manager, an

unintended function of the system. This can then be used to open an unrestricted

Internet Explorer window which can be used to navigate the entire internet and also the

local file system.

6.2.4 Phase 4: Compilation and Analysis

Having discovered numerous access paths that lead to broken states in phase three, the

fourth phase aims to compile and analyse these access paths to determine if they are

potentially detrimental to the system (i.e. break out path vulnerabilities). In order to aid

in the analysis, the break out paths will be compiled into graph format. This provides a

visual representation of the break out paths and their relationships to one another. Each

Case Study

74

node in the graph uses the following notation: Letter(s) Number decimal point Number

(e.g. S1.2). Where the letters stand for the initial asset, the first number indicates which

access path, and the final number identifies the step within the specified path.X shows

the screen control panel access paths in graphical format (e.g. S1.2 translates as Screen

Control Panel access path 1 step 2). White nodes represent assets and grey nodes

represent access points. Figure 12 provides the graphical representation of the Screen

Control Panel access paths.

Figure 12. Screen Control Panel access paths in graph format

Figure 13 provides the interconnected graphical representation of the USB port, CD

drive, PWB window, Symantic Antivirus, Security Centre, and Windows XP operating

system access paths. Figure 14 provides the graphical representation of the Keyboard

and Mouse access paths

S1.1

S1.2

S1.3

S2.2

S2.3

S2.4

S2.5

S2.6

S2.7

S2.8

S2.9

S4.4

S4.5

S4.6

S4.7

S4.8

S4.9

S7.4

S7.5

S7.6

S7.7

S7.8

S7.9

S5.8

S5.9

S3.8

S3.9

S6.8

S6.9

S6.10

S6.11

S9.8

S9.9

S9.10

S9.11

S8.8

S8.9

S = Screen Control Panel

Case Study

75

Figure 13. Interconnect access path graph

SA1.1

SA1.2

SA1.3

SA1.4

SA1.5

SA1.6

SA1.11

SA1.10

SA1.9

SA1.8

SA1.7

U1.1

U1.2

U1.3

U1.4

U1.5

U1.6

U1.11

U1.10

U1.9

U1.8

U1.7

U4.4

U4.5

U3.4

U3.5

U5.4

U5.5

P1.1

P1.2

P1.3

P1.4

P1.5

P1.6

P1.8

P1.7

P2.2

P3.4

P3.5

P3.6

P3.9

P3.8

P3.7

SC1.1

SC1.2

SC1.3

SC1.4

W1.1

W1.2

W1.3

W1.4

U = USB port

C = CD drive

P = Public Web Browser window

SC = Security Centre

SA = Symantic Antivirus

W = Windows XP operating system

C1.1

C1.2

C1.3

C1.4

U1.13

U1.12

U2.12

U2.11

Case Study

76

Figure 14. Keyboard port and Mouse port access paths in graph format

The determination as to whether a particular break out path is detrimental (i.e. a

vulnerability) is at the discretion of the assessor. For each break out path in this case

study, an analysis will be given to provide an explanation as to whether the break out

paths have been deemed a vulnerability or not. An impact rating of between 1 and 10

has also been assigned to each break out path vulnerability, where 1 is the least impact

and 10 is the most severe impact.

Screen Control Panel access paths

The first group access paths that resulted in a broken state all stemmed from the same

initial asset, that is, the screen control panel. All of the eight broken states reached were

concerned with usability, specifically altering the screen configuration to reduce the

usability of the system.

The first access path that sets the contrast to zero, which results in a blank screen

appears the most damaging, as it is not immediately obvious from a maintenance

perspective what has occurred. The remaining seven access paths are less significant

because, from a maintenance perspective, it is obvious the screen configurations have

been altered.

The screen control panel break out paths fall into the category of computer vandalism

vulnerabilities. Table 3 shows the impact ratings that were assigned to each of the eight

vulnerabilities:

K1.1

K1.2

K1.3 M1.3

M1.2

M1.1 K = Keyboard port

M = Mouse port

Case Study

77

Access Path Impact Rating

Screen Control Panel access path 1 5

Screen Control Panel access path 2 1

Screen Control Panel access path 3 1

Screen Control Panel access path 4 1

Screen Control Panel access path 5 1

Screen Control Panel access path 6 1

Screen Control Panel access path 7 1

Screen Control Panel access path 8 1

Table 3. Screen Control Panel vulnerability impact ratings

Keyboard and Mouse port access paths

The next two access paths that resulted in a broken state relate to the keyboard and

mouse ports, respectively. Both vulnerabilities simply involved the removal of the

keyboard and mouse plugs from their respective ports. The keyboard port vulnerability

is of a more serious nature, as a hardware key logger can easily be installed between the

keyboard plug and the keyboard port. This is a particular issue, due to the intended

function of the computer, which includes the use of the system to log in and checking

lending status. The mouse port vulnerability is less severe and, at most, reduces the

usability of the system. Table 4 shows the impact ratings that were assigned to each of

these vulnerabilities.

Access Path Impact Rating

Keyboard port access path 1 7

Mouse port access path 1 1

Table 4. Keyboard and Mouse port vulnerability impact ratings

Case Study

78

USB, CD, PWB, Windows, Security Centre and Symantic Antivirus access paths

The finally group of access paths to be analysed consists of twelve interconnecting

paths, originating from six different initial assets.

The Windows XP operating system, Security Centre, Public Web Browser path 3, and

the Symantic Antivirus access paths all reached the same broken state, that is, the

opening of an unrestricted Internet Explorer window. Although the computer had a

restricted version of the Public Web Browser installed, the default system web browser

appeared to still be Internet Explorer, which was not restricted and allowed full access

to the internet. This was not an intended function of the system and shows the danger

of dormant technology. A secondary examination of the broken state revealed that the

Internet Explorer window could be also be used to reach the local file system.

Malicious software, such as software key loggers could easily be downloaded from the

internet and installed on the local machine. The four break out path vulnerabilities were

given high ratings, with the Windows XP operating system and Security Centre

vulnerabilities receiving slightly higher ratings due to the shortness of their paths (i.e.

the Internet Explorer window was launched in fewer steps).

The USB port, CD drive, and Public Web Browser access paths were all able to be used

to reach a Windows Explorer window, thus creating a broken state. A deeper

exploration into the file system revealed that powerful system tools, such as the

command prompt and registry editor, were unrestricted. It was also found that write

access was allowed in many parts of the file system including the Start up start menu

folder. Providing this level of system access was not part of the intended function of the

shared access computer.

Finally, the third, fourth, and fifth access paths of the USB port allowed the opening of

three different built in system applications. This again was not part of the intended

function of the system. A second examination of the fourth access path revealed that

the Windows Picture and Fax Viewer could be used to reach the file system via the file

save and open menus. The graph format also shows that the CD drive initial asset can

also be used to reach these same broken states.

Case Study

79

Through the analysis ten of the twelve access paths were found to provide access to the

local file system.

Table 5 shows the impact ratings that were assigned to each of these twelve

vulnerabilities.

Access Path Impact Rating

USB port access path 1 8

USB port access path 2 8

USB port access path 3 5

USB port access path 4 7

USB port access path 5 5

CD drive access path 1 8

Public Web Browser access path 1 8

Public Web Browser access path 2 8

Public Web Browser access path 3 8

Symantic Antivirus access path 1 8

Security Centre access path 1 9

Windows XP operating system access path 1 9

Table 5. Interconnected break out path vulnerability impact ratings

The ontological lockdown assessment process has successfully been able to identify 22

break out path vulnerabilities, of varying degrees of impact and nature in a supposedly

locked down shared access computers. The following section will show the

comparative results of other vulnerability identification sources, with regards to the

same system.

Case Study

80

6.3 Comparative Results

This section will briefly examine the vulnerability assessment results for the same

system, based on other vulnerability sources. The section aims to further emphasise the

uniqueness of break out path vulnerabilities in shared access computers and to show the

unsuitableness of traditional vulnerability assessment techniques.

6.3.1 Vulnerability Scanner

Despite the paradigm mismatch that has been identified between network vulnerability

scanning and break out path vulnerabilities, the results of an automated vulnerability

scanner have been included. Due to limitations of this research, not every commercially

available vulnerability scanner could be tested against the target system. Fortunately

though, the Nessus software package, which is regarded as the leader in automated

vulnerability assessment, is free to use in non-commercial situations. Nessus scan

results list open ports and categorise vulnerabilities according to three levels of severity:

low, medium, and high. Table 6 shows the results of a full Nessus local scan (note:

some fields have been removed for privacy, security, and ethical reasons, these field are

indicated by the italic text Removed)..

127.0.0.1 (Localhost)

Number of vulnerabilities Open ports:

Low:

Medium:

High:

3

11

0

0

Information: Operating System:

NetBIOS name:

DNS name:

Microsoft Windows XP

Removed

localhost

Port general/tcp

Host FQDN

Case Study

81

127.0.0.1 resolves as Localhost

OS Identification

Remote operating system : Microsoft Windows XP
Confidence Level : 99
Method : MSRPC

The remote host is running Microsoft Windows XP

Nessus ID : 11936
Information about the scan

Information about this scan :

Nessus version : 3.2.1.1
Plugin feed version : $Date: 2005/11/08 13:18:41 $
Type of plugin feed : CVS
Scanner IP : 127.0.0.1
Port scanner(s) : synscan
Port range : default
Thorough tests : no
Experimental tests : no
Paranoia level : 1
Report Verbosity : 1
Safe checks : yes
Optimize the test : yes
Max hosts : 20
Max checks : 5
Recv timeout : 5
Scan Start Date : 2008/8/20 9:10
Scan duration : 199 sec

Nessus ID : 19506
Port microsoft-ds (445/tcp)

SMB Detection

A CIFS server is running on this port

Nessus ID : 11011
Using NetBIOS to retrieve information from a Windows host

Case Study

82

Synopsis :

It is possible to obtain the network name of the remote host.

Description :

The remote host listens on tcp port 445 and replies to SMB requests.
By sending an NTLMSSP authentication request it is possible to obtain
the name of the remote system and the name of its domain.

Risk factor :

None

Plugin output :

The following 2 NetBIOS names have been gathered :

Removed = Computer name
Removed = Workgroup / Domain name

CVE : CVE-1999-0621
Other references : OSVDB:13577

Nessus ID : 10150
SMB NativeLanMan

Synopsis :

It is possible to obtain information about the remote operating
system.

Description :

It is possible to get the remote operating system name and
version (Windows and/or Samba) by sending an authentication
request to port 139 or 445.

Risk factor :

None

Case Study

83

Plugin output :

The remote Operating System is : Windows 5.1
The remote native lan manager is : Windows 2000 LAN Manager
The remote SMB Domain Name is : Removed

Nessus ID : 10785
SMB log in

Synopsis :

It is possible to log into the remote host.

Description :

The remote host is running one of the Microsoft Windows operating
systems. It was possible to log into it using one of the following
account :

- NULL session
- Guest account
- Given Credentials

See also :

http://support.microsoft.com/support/kb/articles/Q143/4/74.ASP
http://support.microsoft.com/support/kb/articles/Q246/2/61.ASP

Risk factor :

none

Plugin output :

- NULL sessions are enabled on the remote host

CVE : CVE-1999-0504, CVE-1999-0505, CVE-1999-0506, CVE-2000-0222,
CVE-2002-1117, CVE-2005-3595
BID : 494, 990, 11199

Case Study

84

Nessus ID : 10394
SMB registry can not be accessed by the scanner

Synopsis :

Nessus is not able to access the remote Windows Registry.

Description :

It was not possible to connect to PIPE\winreg on the remote host.

If you intend to use Nessus to perform registry-based checks, the
registry checks will not work because the 'Remote Registry Access'
service (winreg) has been disabled on the remote host or can not be
connected to with the supplied credentials.

Risk factor :

None

Nessus ID : 26917
SMB NULL session

Synopsis :

It is possible to log into the remote host.

Description :

The remote host is running one of the Microsoft Windows operating
systems. It was possible to log into it using a NULL session.

A NULL session (no login/password) allows to get information about
the remote host.

See also :

http://support.microsoft.com/support/kb/articles/Q143/4/74.ASP
http://support.microsoft.com/support/kb/articles/Q246/2/61.ASP

Case Study

85

Risk factor :

None
CVE : CVE-2002-1117
BID : 494

Nessus ID : 26920
Port epmap (135/tcp)

MSRPC Service Detection

Synopsis :

A DCE/RPC server is listening on the remote host.

Description :

The remote host is running a Windows RPC service. This service
replies to the RPC Bind Request with a Bind Ack response.

However it is not possible to determine the uuid of this service.

Risk factor :

None

Nessus ID : 22319
Port ntp (123/udp)

NTP read variables

Synopsis :

An NTP server is listening on the remote host.

Description :

An NTP (Network Time Protocol) server is listening on this port.
It provides information about the current date and time of the
remote system and may provide system information.

Case Study

86

Risk factor :

None

Nessus ID : 10884

Table 6. Comparative Nessus vulnerability scan results

These results clearly show the unsuitableness for using Nessus or any other automated

network vulnerability scanner for the identification break out path vulnerabilities in

shared access computers. Firstly, the vulnerabilities identified by the scanner all had a

risk factor of ‘None’. Secondly, none of the identified vulnerabilities were break out

path vulnerabilities. These results further emphasise the uniqueness of break out path

vulnerabilities and particularly their difference from network vulnerabilities.

6.3.2 Online Vulnerability Databases

Online vulnerability databases are designed to be used by security experts to keep up to

date with the latest vulnerabilities. These databases are also a common reference point

used by automated scanning tools. Interestingly, they are a vulnerability source

recommended for review by the more general vulnerability assessment procedures, and

are indicated as the basis of vulnerability expert knowledge [55]. This is significant, as

it was found that the more general vulnerability assessment procedures relied heavily on

the expertise of the assessor. For these reasons, it is worthwhile using the contents of

these extremely comprehensive online vulnerability databases, in an attempt to identify

break out path vulnerabilities in the case study shared access computer.

The online vulnerability databases that were consulted were: National Vulnerability

Database (NVD) [54] which includes the CVE database, US-CERT databases, and

OVAL database.

The National Vulnerability Database links to five distinct resources that can be utilised

for vulnerability assessment. As of August 2008, this included 32358 CVE (Common

Case Study

87

Vulnerabilities and Exposures) Vulnerabilities [52], 161 Checklists [54], 147 US-CERT

(United States Computer Emergency Readiness Team) Alerts [67], 2238 US-CERT

Vulnerability Notes [68], and 3258 OVAL (Open Vulnerability and Assessment

Language) queries [53]. Interestingly, the NVD database is maintained by the Nation

Institute of Standards and Technology (NIST), which were also responsible for the

creation of the NIST Guide to Risk Management, as reviewed in section 3.2.1.

The 32358 CVE vulnerabilities are divided into two categories; entries and candidates.

The entries are acknowledged vulnerabilities and the candidates are potential

vulnerabilities that are yet to be reviewed (i.e. check they exist and have not already

been reported etc). The vulnerabilities listed are all application or component specific.

Due to this fact, and the unique nature of break out path vulnerabilities, these

vulnerabilities do not address break out path vulnerabilities as found in shared access

computers.

The 161 checklists were all focused on the configuration aspects of specific software

(65 checklists) packages and operating systems (96 checklists). Not one of the

checklists took into consideration the unique security requirements of shared access

computers, or break out path vulnerabilities.

The 147 US-CERT alerts are announcements concerning updates released by specific

vendors, where detail is provided concerning the updates and the addressed

vulnerabilities. Each alert details the software packages involved and specific

vulnerabilities that have been addressed. Being application specific, none of these alerts

were concerned with break out path vulnerabilities in shared access computers.

The 2238 US-CERT vulnerability notes were all application specific vulnerabilities.

Each vulnerability note detailed an error in a particular application, for example, Adobe

Flash Player long string buffer overflow. Again, being application specific, none of the

vulnerability notes were concerned with break out path vulnerabilities in shared access

computers.

The 3258 OVAL queries are similar to Nessus plugins and are designed to be used to

automatically test for a specific vulnerability. As with the Nessus plugins the OVAL

Case Study

88

queries are tailored to identify already documented application specific vulnerabilities.

Yet again, being application specific, none of the OVAL queries address break out path

vulnerabilities in shared access computers.

The underlying problem with using these online vulnerability databases for break out

path vulnerability assessment is essentially the same problem that was encountered with

the automated scanner. That is, that the vulnerabilities are application or component

specific. This has resulted in a null result in identifying break out path vulnerabilities in

the target case study system.

6.4 Case Study Summary

The ontological lockdown assessment process managed to identify 22 break out path

vulnerabilities in the target shared access computer system. Nessus, the industry

leading vulnerability scanner reported 11 zero risk factor vulnerabilities which, upon

examination, were not detrimental vulnerabilities. Furthermore, none of the

vulnerabilities identified by Nessus were break out path vulnerabilities, nor were they

related to break out path vulnerabilities. Finally, the online vulnerability databases due

to the application and component specific nature also failed to identify any break out

path vulnerabilities in the case study system.

Conclusion

89

7 Conclusion

This chapter begins by reviewing the research and showing that each research objective

was successfully fulfilled. Following from this, potential future work associated with

this research is given. Next, the limitations experienced in this research are outlined.

Finally, the thesis ends with a brief discussion, concerning the path that led to the

developed process

7.1 Review

In the introduction, four research objectives were identified They were as follows:

1. Highlight the unique security issues that are encountered when dealing with shared

access computers, in particular the lockdown problem.

2. Reveal that existing vulnerability assessment tools are insufficient to assess whether

shared access computers are adequately locked down.

3. Show that by developing an ontology for lockdown assessment, a systematic

approach for assessing shared access computers can be achieved.

4. Prove the usefulness of the developed approach with a case study

The first research objective of highlighting the unique security issues of shared access

computers was fulfilled in the second chapter. The unique issues included the under

appreciation of shared access computers, the low security emphasis, the significant

threat to the internal network, the threat to user information, and issues that can arise

from dormant technology. To further emphasise these issues, potential attacks on

shared access computers were explored. Finally, it was shown that locking down shared

access computers was the first and most significant line of defence. However, the

problem of assessing a locked down computer for break out path vulnerabilities was

also apparent.

In the third chapter, the existing tools and techniques for vulnerability assessment were

shown to be insufficient for identifying break out path vulnerabilities. This fulfilled the

Conclusion

90

second research objective. The existing methods for vulnerability assessment were all

shown to suffer from essentially the same problem of being focused on vulnerabilities

that were application specific. Also, another significant issue identified with the more

general vulnerability assessment procedures, was their dependence on the expertise of

the assessor. With break out path vulnerabilities consisting of a series of actions

performed by an attacker, it became apparent that these existing techniques were

unsuitable for break out path vulnerability assessment.

The fourth and fifth chapters presented an ontological solution to the lockdown

assessment problem. Chapter four justified the selection of ontologies based on their

unique characteristics and existing applications in the field of information system

security. The chapter finished with specifications for an ontology for break out path

vulnerability assessment. Chapter five presented the development and documentation

of the ontological lockdown assessment process. The chapter ended with a four phase

description on how to use the process to identify break out path vulnerabilities. The

combination of these two chapters fulfilled the third research objective, of showing that

an ontology could be developed to provide a systematic approach to break out path

vulnerability assessment.

The fourth research objective of proving the usefulness of the developed approach with

a case study was fulfilled in the sixth chapter. The case study chapter presented the

ontological lockdown assessment process being applied phase by phase to a real world

shared access computer. The ontological lockdown assessment process was used to

systematically find a significant number of break out path vulnerabilities in the case

study system. The same system was assessed for break out path vulnerabilities using an

automated scanner and by examining online vulnerability databases. Both of these

methods produced null results with regards to break out path vulnerabilities.

7.2 Future

The ontological lockdown assessment process is essentially the first of its kind. For this

reason improvement, additions and modifications are expected.

Conclusion

91

One foreseeable development would incorporate the association of security attributes

such as confidentiality, integrity, availability to particular break out paths or perhaps

even particular assets or access points.

Development of a metric for the impact rating of each break out path vulnerability that

takes into consideration the length of the break out path could also be explored.

Methods for the remediation of the identified break out path vulnerabilities could also

be explored.

7.3 Limitations

Two main limitations to this research were encountered during the comparative results

section. The first was due to the funding limitations which restricted the ability for the

research to comprehensively test numerous commercial vulnerability scanners. With

scanners costing hundreds, and even thousands of dollars, the purchase of each of these

tools was infeasible. However, as noted earlier, fortunately the industry leading

vulnerability scanner Nessus is free for use in non-commercial situations. Nessus

therefore provided an adequate example of the type of results that could be expected

from an automated scanner. Due to the identified paradigm mismatch between network

vulnerabilities and break out path vulnerabilities, this inability to test every automated

scanner is not seen as significant with regards to the outcome of this research.

The second limitation was concerned with the more general vulnerability assessment

procedures, which were shown to rely heavily on the ability of the assessors. The

inability to assess the results of these more general procedures, independent of the

ability of the assessor, limited the degree to which the comparative results supported the

usefulness of the ontological lockdown assessment process. In order to compensate, a

review of online vulnerability databases was conducted, in order to ascertain if any

break out path vulnerabilities could be identified by using these resources. The

motivation in doing this was based on the premise that vulnerability assessment expert

knowledge comes from having an extensive knowledge of known vulnerabilities. If the

entire online vulnerability databases were unable to identify any break out path

Conclusion

92

vulnerabilities, then it could be reasonably concluded that the average assessor would

have at best the same result. However, it is appreciated that some assessors, due to

experience and intuition, may produce better results than those obtained by referencing

online vulnerability databases. This factor again limited the degree to which the

comparative results were able to support the usefulness of the ontological lockdown

assessment process.

The third and final limitation that was noted, was the lack of existing research in this

field. With break out path vulnerabilities in shared access computers being a very

specific area of focus, the amount of corresponding literature was accordingly quite

limited. Also, due to the commercial nature of vulnerability assessment, a number of

industry sources were referenced and examined throughout the course of the research.

Due to the lack of peer-review and sometimes biased nature of industry produced

literature, its quality and relevance can be debated. Due to these two factors, the

research was limited in its ability to reference perfectly sound literature. However, in

order to compensate for this, every effort was employed in order to ensure that the

industry documentation that was being referenced was well regarded and accepted

within the security community.

7.4 Discussion

As far as is known, the developed approach of ontological lockdown assessment

appears to be the first and only vulnerability assessment technique focused specifically

on identifying break out path vulnerabilities in shared access computers.

By the final stages of this research, it became apparent that the third phase in the

ontological lockdown assessment process was very clearly recursive in nature. As the

core phase of break out path vulnerability identification, it can be seen as the most

important phase of the process. In hindsight, it would have been interesting to have

explored process modelling techniques for this aspect of the developed approach.

Initially, due to the ontological backbone of developed approach, formally developing

the ontology in the Protégé ontology development environment according to the Web

Conclusion

93

Ontology Language (OWL) was performed. In the beginning stages of the research, it

was envisioned that the ontology would exist as a static resource, and that the

assessment process would require each break out path found on a given system to be

formally instantiated in Protégé (or other ontology development environment) according

to the OWL ontology. This would have allowed automated reasoning about the break

out path vulnerabilities. However, it was found very quickly that this formal

instantiation incurred a very large and time consuming overhead. Also, the benefits of

formally instantiating each break out path in Protégé were minimal and in some cases

non-existent. Furthermore, due to limitations in the description logics field regarding

the ability to perform transitive queries, the usefulness of having formally instantiated

interconnected break out paths was reduced even more. It was noted during

experimentation that the main value and most useful part of the process occurred during

the discovery phase, where the literal exploration of the system was performed

according to the underlying principles documented in the ontology. For this reason, the

formal instantiation of the break out paths was abandoned in favour of a more practical

approach, that is, the developed four phase ontological lockdown assessment process.

References

94

References

1. Application Access Control. HorizonDataSys.com (2008) Retrieved on: August
5, 2008. Available from: http://www.horizondatasys.com/304850.ihtml.

2. CORE IMPACT Pro Overview. CORE Security Technologies, coresecurity.com

(2008) Retrieved on: August 7, 2008. Available from:
http://www.coresecurity.com/content/core-impact-overview.

3. Faronics WINSelect: DYNAMIC Preference Control. Faronics.com (2008)

Retrieved on: August 5, 2008. Available from:
http://www.faronics.com/html/Winselect.asp.

4. Foreign National Sentenced to Nince Years in Prison for Hotel Business Center

Computer Fraud Scheme. Department of Justice (2008) Retrieved on: August 5,
2008. Available from:
http://www.justice.gov/criminal/cybercrime/bonillaSent.pdf.

5. Fortres 101: Proven Desktop Security Software. Fortresgrand.com (2008)

Retrieved on: August 6, 2008. Available from:
http://www.fortresgrand.com/products/f101/f101.htm.

6. GFI LANguard Netowrk Security Scanner: Overview. gfi.com (2008) Retrieved

on: August 7, 2008. Available from: http://www.gfi.com/lannetscan/.

7. GFI LANguard Network Security Scanner: Features. gfi.com (2008) Retrieved

on: August 7, 2008. Available from:
http://www.gfi.com/lannetscan/lanscanfeatures.htm.

8. Information on Security Compromise in Computer Labs VCU Technology

Services (2006) Retrieved on: August 5, 2008. Available from:
http://www.ts.vcu.edu/security/lab_compromise.html.

9. Keystroke-logging software -- secret threat. Computer Fraud & Security, 2003.

2003(3): p. 2-2.

10. MBSA: Microsoft Baseline Security Analyzer. MicrosoftTechNet (2008)

Retrieved on: August 7, 2008. Available from: http://technet.microsoft.com/en-
nz/security/cc184924(en-us).aspx.

11. Nessus: Plugins. Tenable Network Security (2008) Retrieved on: August 7,

2008. Available from: http://www.nessus.org/plugins/.

12. Nessus: the Network Vulnerability Scanner. Tenable Network Security (2008)

Retrieved on: August 7, 2008. Available from: http://www.nessus.org/nessus/.

References

95

13. Public PC Desktop: Turn your PC into a public access workstation. (2008)
Retrieved on: August 5, 2008. Available from:
http://www.softheap.com/pubpcd.html.

14. Retina Network Security Scanner. eEye Digital Security, eyee.com (2008)

Retrieved on: August 7, 2008. Available from:
http://www.eeye.com/html/Products/Retina/index.html.

15. SAINT: Security Administrator's Integrated Network Tool. SAINT Vulnerability

Scanner (2008) Retrieved on: August 7, 2008. Available from:
http://www.saintcorporation.com/products/vulnerability_scan/saint/saint_scanne
r.html.

16. SARA: Security Auditor's Research Assistant. The Advanced Research

Corporation, www-arc.com (2008) Retrieved on: August 7, 2008. Available
from: http://www-arc.com/sara/.

17. SiteKiosk. SiteKiosk.com (2008) Retrieved on: August 5, 2008. Available from:

http://www.sitekiosk.com/en-US/SiteKiosk/Default.aspx.

18. WinLock. CrystalOffice.com (2008) Retrieved on: August 6, 2008. Available

from: http://crystaloffice.com/winlock/.

19. WinLock Professional. CrystalOffice.com (2008) Retrieved on: August 6, 2008.

Available from: http://crystaloffice.com/winlockpro/.

20. Anton, P.S., et al. Finding and Fixing Vulnerabilities in Information Systems.

The Vulnerability Assessment and Mitigation Methodology. RAND, (2003)
Retrieved on: August 8, 2008. Available from:
http://www.rand.org/pubs/monograph_reports/2005/MR1601.pdf.

21. Anusha, I. and Hung, Q.N., Towards a Theory of Insider Threat Assessment, in

Proceedings of the 2005 International Conference on Dependable Systems and
Networks. 2005, IEEE Computer Society.

22. Arno, K. How MySQL Treats Security Vulnerabilities. MySQL, (2007)

Retrieved on: August 7, 2008. Available from: http://dev.mysql.com/tech-
resources/articles/security_vulnerabilities.html.

23. Bagchi, A. and Atluri, V., eds. Security Ontology: Simulating Threats to

Corporate Assets. ICISS 2006, LNCS 4332. 2006, Springer Verlag Berlin
Heidelberg. 249-259.

24. Brackney, D., The Cyber Enemy Within ... Countering the Threat from

Malicious Insiders, in Proceedings of the 20th Annual Computer Security
Applications Conference. 2004, IEEE Computer Society.

25. Chahrvin, S., Keyloggers - your security nightmare? Computer Fraud &

Security, 2007. 2007(7): p. 10-11.

References

96

26. Cranor, L.F. and Garkinkel, S., eds. Security and Usability: Designing Secure
Systems That People Can Use. 2005, O'Reilly.

27. Ekelhart, A., et al., Security Ontologies: Improving Quantitative Risk Analysis.

System Sciences, 2007. HICSS 2007. 40th Annual Hawaii International
Conference on, 2007: p. 156a-156a.

28. Fenz, S. and Weippl, E., Ontology based IT-security planning. Dependable

Computing, 2006. PRDC '06. 12th Pacific Rim International Symposium on,
2006: p. 389-390.

29. Frank, L.G., et al., Combating the Insider Cyber Threat. IEEE Security and

Privacy, 2008. 6(1): p. 61-64.

30. Funabashi, M. and Grzech, A., eds. Employing Ontologies for the Development

of Security Critical Applications IFIP 2005, I3E 2005. Vol. 189. 2005, Springer-
Verlag Berlin Heidelberg.

31. Gorodetsky, V., Kotenko, I., and Skormin, V., eds. An Ontology-Based

Approach to Information Systems Security Management. MMM-ACNS 2005,
LNCS 3685. 2005, Springer-Verlag Berlin Heidelberg.

32. Gruber, T.R., Toward principles for the design of ontologies used for knowledge

sharing. International Journal of Human-Computer Studies, 1995. 43(5-6): p.
907-928.

33. Guarino, N., Formal Ontology in Information Systems: Proceedings of the 1st

International Conference June 6-8, 1998, Trento, Italy. 1998: IOS Press. 337.

34. Hadad, H. and Gaffney, M. Queens man sentenced to 27 months' imprisonment

on federal charges of computer damage, access device fraud and software
piracy. (2005) Retrieved on: August 7, 2008. Available from:
http://www.usdoj.gov/usao/nys/pressreleases/February05/jiangsentencingpr.pdf.

35. Heflin, J. OWL Web Ontology Language Use Cases and Requirements. W3C

(2004) Retrieved on: August 11, 2008. Available from:
http://www.w3.org/TR/webont-req/.

36. Hough, B. The Joy of Computing: A Cookbook for Small and Rural Libraries.

(2008) Retrieved on: August 7, 2008. Available from:
http://webjunction.org/maintainit-cookbooks/articles/content/456270.

37. Johansson, J.M. Security Management - The Fundamental Tradeoffs. (2004)

Retrieved on: August 7, 2008. Available from:
http://www.microsoft.com/technet/archive/community/columns/security/essays/t
radeoff.mspx?mfr=true.

38. Karyda, M., et al., An ontology for secure e-government applications, in First

International Conference on Availability, Reliability and Security (ARES'06).
2006, IEEE Computer Society.

References

97

39. Kemp, M., Barbarians inside the gates: addressing internal security threats.

Network Security, 2005. 2005(6): p. 11-13.

40. Kessler, G.C. and Pritsky, N.T., Local Area Networks, in Computer Security

Handbook, S. Bosworth and M.E. Kabay, Editors. 2002, John Wiley & Sons,
Inc. p. 1224.

41. Kim, A., Luou, J., and Kang, M., Security Ontology for Annotating Resources,

in 4th International Conference on Ontologies, Databases, and Applications of
Semantics (ODBASE'05). 2005: Agia Napa, Cyprus.

42. Kizza, J.M. and Kizza, F.M., Securing the Information Infrastructure. 2008:

CyberTech Publishing.

43. Koenderink, N.J.J.R., Top, J.L., and van Vliet, L.J., Expert-based ontology

construction: a case-study in horticulture. Database and Expert Systems
Applications, 2005. Proceedings. Sixteenth International Workshop on, 2005: p.
383-387.

44. Leyden, J. Student charged with massive ID fraud. The Register, (2003)

Retrieved on: August 5, 2008. Available from:
http://www.theregister.co.uk/2003/02/07/student_charged_with_massive_id/.

45. Littlejohn, K. 10 things you should do to protect yourself on a public computer.

TechRepublic, (2008) Retrieved on: August 5, 2008. Available from:
http://blogs.techrepublic.com.com/10things/?p=322.

46. Lyon, G. Nmap - Free Security Scanner For Network Exploration & Security

Audits. Nmap.org, (2008) Retrieved on: August 5, 2008. Available from:
http://nmap.org/.

47. Lyon, G. Top 10 Vulnerability Scanners. insecure.org, (2006) Retrieved on:

August 5, 2008. Available from: http://sectools.org/vuln-scanners.html.

48. Lyon, G. Top 11 Packet Sniffers. insecure.org, (2006) Retrieved on: August 5,

2008. Available from: http://sectools.org/sniffers.html.

49. Manandhar S. et al, ed. An Ontology for Network Security Attacks. AACC.

LNCS 3285. 2004, Springer-Verlag Berlin Heidelberg. 317-323.

50. McGuinness, D.L. and van Harmelen, F. OWL Web Ontology Language

Overview. W3C (2004) Retrieved on: August 11, 2008. Available from:
http://www.w3.org/TR/owl-features/.

51. Microsoft 5 Safety tips for using a public computer. Retrieved on: August 5,

2008. Available from:
http://www.microsoft.com/protect/yourself/mobile/publicpc.mspx.

References

98

52. MITRE. Common Vulnerabilities and Exposures (CVE). cve.mitre.org (2008)
Retrieved on: August 20, 2008. Available from: http://cve.mitre.org/.

53. MITRE. Open Vulnerability and Assessment Language Repository.

oval.mitre.org (2008) Retrieved on: August 20, 2008. Available from:
http://oval.mitre.org/.

54. NIST. National Vulnerability Database Version 2.1. nvd.nist.gov (2008)

Retrieved on: August 20, 2008. Available from: http://nvd.nist.gov/.

55. Peltier, T.R., Information Security Risk Analysis. 2001: Auerbach.

56. Peters, C. Introduction to Windows SteadyState. WebJunction.org, (2007)

Retrieved on: August 5, 2008. Available from:
http://webjunction.org/25/articles/content/448713.

57. Pfleeger, C.P. and Pfleeger, S.L., Security in Computing. 4th ed. 2007: Prentice

Hall.

58. Poole, O., Network Security a practical guide. 2003: Butterworth Heinemann.

59. Poulsen, K. Guilty plea in Kinko's keystroke caper. The Register, (2003)

Retrieved on: August 5, 2008. Available from:
http://www.theregister.co.uk/2003/07/19/guilty_plea_in_kinkos_keystroke/.

60. Raskin, V., et al., Ontology in information security: a useful theoretical

foundation and methodological tool. Proceedings of the 2001 workshop on New
security paradigms, ACM, 2001: p. 53-59.

61. Schauland, D. Control users' temporary Internet files and browser history using

Windows Server 2003 Group Policy. TechRepublic, (2007) Retrieved on:
August 5, 2008. Available from:
http://blogs.techrepublic.com.com/datacenter/?p=204.

62. Slotta, J.D. and Chi, M.T.H., Helping Students Understand Challenging Topics

in Science Through Ontology Training. Cognition and Instruction, 2006. Science
Through Ontology Training(24:2): p. 261-289.

63. Stoneburner, G., Goguen, A., and Feringa, A. Risk Management Guide for

Information Technology Systems. NIST, (2002) Retrieved on: August 7, 2008.
Available from: http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf.

64. Tanase, M. Sniffers: What They Are and How to Protect Yourself.

SecurityFocus, (2002) Retrieved on: August 5, 2008. Available from:
http://www.securityfocus.com/infocus/1549.

65. Tsoumas, B. and Gritzalis, D. Towards an Ontology-based Security

Management. in Proceedings of the 20th International Conference on Advanced
Information Networking and Applications (AINA'06). 2006: IEEE Computer
Society.

References

99

66. Tsoumas, B., et al., Security-by-Ontology: A Knowledge-Centric Approach, in

Security and Privacy in Dynamic Environments. IFIP International Federation
for Information Processing, S. Fischer-Hubner, Rannenberg, K., Yngstrom, L.,
Lindskog, L., Editor. 2006, Springer Boston. p. 99-110.

67. US-CERT. US-CERT Technical Cyber Security Alerts. us-cert.gov (2008)

Retrieved on: August 20, 2008. Available from: http://www.us-
cert.gov/cas/techalerts/.

68. US-CERT. US-CERT Vulnerability Notes. kb.cert.org (2008) Retrieved on:

August 20, 2008. Available from:
http://www.kb.cert.org/vuls/byupdate?open&start=1&count=10.

69. Zuniga, G.L., Ontology: its transformation from philosophy to information

systems. Proceedings of the international conference on Formal Ontology in
Information Systems - Volume 2001, 2001: p. 187-197.

