
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

GRAPH THEORETIC FACILITY LAYOUT DESIGN
AND EVALUATION: THEORETICAL AND PRACTICAL

CONSIDERATIONS

A THESIS PRESENTED IN PARTIAL FULFILMENT
OF THE REQUIREMENTS FOR

THE DEGREE OF PH.D. IN
OPERATIONS RESEARCH AT

MASSEY UNIVERSITY

Kelvin Watson
January 1996

\

11

lll

Abstract

In this thesis we examine the Graph Theoretic Facility Layout Problem (GTFLP) .

The GTFLP i s concerned with designing a building layout, with a specified number

of facilities, with data relating to the facilities' areas, and proximity desirability

ratings or material flows between the facilities. The objective is to design an

efficient layout which incorporates these issues, by attempting to minimise the

transportation cost of material flow between facilities, or maximise the desirability

ratings, and designing regularly shaped facilities which allow effectiveness of the

layout.

The GTFLP proceeds as a two phase process; the first generates a highly

weighted (maximal) planar graph, called an adjacency graph, which specifies the

relative spatial location of each facility, with respect to its adjacent facilities. This

phase has been extensively studied, and although not a focus of this thesis, we ad­

dress adjacency graph generation and provide a worst case analysis of the so-called

TESSA method.

The main thrust of this thesis addresses the second phase of the GTFLP, where

we examine the construction of the layout in light of the information given by the

first phase. We review previous literature in this area, and extend this work by

a series of enhancements to existing methods, and introduction of new techniques

including: introducing the Vertex Splitting Algorithm, the Tiling Algorithm, and

the SIMPLE Algorithm; analysis of previous methods, by completing the theory

of the Deltahedron and Contraction Layout Algorithms for instance. Initial steps

in characterising adjacency graphs, which by their structure allow the easy con­

struction of a corresponding layout, is introduced, by providing a series of template

layouts; furthermore we compare and contrast algorithms which force an overly­

ing grid structure against those more generic methods, which do not impose this

rigidity; and introduce some simple procedures for improving the regularity of a

layout.

We formally define the concept of regularity, by presenting a series of quantifi­

able measures, which can be calculated to give an evaluation of the effectiveness of

a layout. Thereby we attempt to quantifiably compare and rank the layout gener­

ation methods, by evaluating the regularity measures over a set of test problems.

The effects of the various layout improvements, and initialisation processes will be

shown within this computational process. We also examine the incorporation of a
Material Handling System (MHS) within a layout . The calculation of the trans­

portation costs involved in the implementation of each layout , via the Material

Handling System, provides another mechanism for ranking the layout algorithms.

Directions for future wotk are provided in the area of the Material Handling Sys­

tem. Indeed our work in this area only highlighted the importance of modelling

this concept.

The final contribution of this thesis is the generation of a framework which

attempts to look beyond the more theoretical GTFLP model. By invoking a three

phase process, which allows the decomposition of the adjacency graph, interaction

with a decision planner, and the ability to perturb the problem constraints, we can

produce a range of alternative layout scenarios, since there is no right answer to this

second phase, and indeed an infinite number of different layouts satisfy the problem

constraints. This allows the design process to be directed in a more mean.ingful

way, by exploiting structure within the adjacency graph and the working knowledge

of a decision planner, providing a basis whereby the GTFLP can be effectively used

within any building design process.

We conclude that the GTFLP model is an important concept within the more

general Facility Layout Problem. We provide evidence that the standard Graph

Theoretic model is perhaps overly restrictive. Indeed we shall see that the gen­

eration of a good adjacency graph does not in general correspond to obtaining a

practical layout. With this in mind, we have identified the strengths and weaknesses

of the various concepts and ideas used within Graph Theoretic Facility Layout De­

sign, and consequently have created an integration of the adjacency graph and

layout phases of this problem. This has provided a unification of the GTFLP into

a more malleable form, which provides enough flexibility to accurately model the

mechanics behind the design process.

IV

V

Acknowledgements

This work would not have been possible without the support and encouragement

of a number of people. Firstly I would like to thank my Lord Jesus, who saved

me, and gave my life direction and vision . I am indebted to my supervisor, Dr

John Giffin (who probably stopped reading after the previous sentence) , who has

taught me everything I know about Operations Research and in particular the

Graph Theoretic Facility Layout Problem. He has doubled as my English teacher,

correcting many grammatical errors and replacing my fiuffisms with what I really

meant. My wife, Veronica has been a constant source of love and encouragement ,

and I would like to thank her not only for this, but also for her perserverence and

understanding. I would like to thank Mum and Dad for their support, and for

fostering my interest in learning in my early years. Many thanks to Mark Johnston

and Richard Rayner who managed to teach me enough about computers to make

me dangerous. I would also like to acknowledge the support of John and Sandra

Griffin through prayer, and finally thanks go to Placemakers without whom I could

never have learnt the practical aspects of facility layout.

Vl

Contents

Abstract

Acknowledgements

Table of Contents

List of Figures

List of Tables

List of Algorithms

1 Introduction

2 Problem Description
2 . 1 Nomenclature and Definitions

2 .2 Formulations of the Facility Layout Problem

2.3 Justification of the G raph Theoretic Approach

2 .4 Related Work in Classical Layout

2.5 Regularity

3 Obtaining the Adjacency Graph
3 . 1 Heuristic Methods that Require Planarity Testing

3 .2 .
Heuristic Methods A voiding Planarity Testing

3.2 .1 Deltahedron

3.2.2 Deltahedron Extensions

3.2.3 TESSA

3.3 Improvement Procedures

Vll

111

V

Vll

.
XVI

XX

.
XXI

1

3
3

1 0

1 2

13

15

19

20

21

22

25

30

36

4 Obtaining the B lock Plan
4 . 1 Deltahedron

4 . 1 . 1 The Deltahedron Layout Algorithm

4 . 1 .2 An Illustrative Example

43
43

44

52

4 . 1 . 3 Obtaining an Initial Tetrahedron c ontaining the Exterior 53

4 . 1 .4 The Extended Deltahedron Layout Algorithm 58

4.2 Grid Approac hes

4 .3 The Contrac tion Algorithm . .

4 .3 . 1 The Contrac tion Proc ess

4 .3.2 The Orthogonal Division Algorithm .

4 .3 .3 An Illustrative Example

4 .3 .4 A Pathologic al Counter-Example . .

4 .3 .5 Notes on the implementation of the ODA .

4 .4 S IMPLE

4 .4 . 1 The SIMPLE Algorithm

62

68

68

7 0

7 6

80

82

84

85

4 .4 .2 Proof of the Correc tness of SIMPLE 86

4 .4 .3 Applic ation of the SIMPLE Insertion Order to the ODA 87

4 .4 .4 Properties of oGp

4 .4 .5 An Illustrative Example

4 .5 The Vertex Splitting Algorithm

4.5. 1 MPGs with Conc entric Distanc e Classes

4 .5 .2 Transforming an Arbitrary MPG to one with Conc entric Dis-

87

89

90

90

tanc e Classes 95

4 .5 .3 An Illustrative Example 1 00

4.5 .4 Upper Bound on the Number of Pseudo Vertic es Required 1 03

4.5 .5 Layout Enhanc ements . . . 1 05

4 .6 Quasi Graph Theoretic Tec hniques

4 .6 . 1 The Spiral Algorithm

4 .6 .2 Matc hing Based Layout Algorithm

4.6 .3 The Spanning Tree Algorithm

4 .6 .4 The Tiling Algorithm

4 . 7 Spec ial Classes of MPGs

4 .7 . 1 All Vertic es Adjac ent to the Exterior Vertex

4 . 7.2 One Vertex is Not Adjac ent to the Exterior

Vlll

1 06

1 07

1 07

1 08

1 1 1

1 19

1 19

1 22

4.7.3 Two Mutually Adjacent Vertices Not Adjacent to the Exte-

4.7.4

4.7.5

4.7.6

r10 r . .

m Distinct Vertices Not Adjacent to the Exterior

Small Problems

Others

5 Layout Improvement Procedures
5. 1 Rectilinear Segment Reduction

5.2 Linear Transformation . .

6 Computer Implementation
6 . 1 G eneration of Test Problems .

6.2 Existence . . .

6.3 Starting Points

6.4 Improvement vs Non-Improvement Experiment

6.5 Comparison of Layout Methods for Arbitrary MPG s .

6.6 Regularity vs Adjacency E xperiment

6.6. 1 Average Performance

6.6.2 Worst Performance

6.6.3 Problem-by-Problem Performance .

7 Biased Examples
7 .1 Del tahedron

7.2 The Vertex Splitting Algorithm

7.3 The Contraction Algorithm

7.4 SIMPLE

7.5 The Tiling Algorithm .

7.6 Spanning Tree

8 Perturbation of Problem Constraints
8.1 Area Perturbation

8 . 1 . 1 Effect of Area on the Layout .

· .

8 . 1 .2 Floorplanning and the G raph Theoretic Facility Layout Prob-

8.2

lem . .

8. 1 .3 Methods for Perturbation of Facility Areas

Adjacency Perturbation . .

IX

1 24

1 24

1 26

126

129

1 29

1 33

137

137

1 39

140

147

156

160

1 64

1 7 1

1 79

181

182

185

188

190

1 93

1 95

201

201

202

203

205

214

8.2 .1 The Non-Triviality of Adjacency Perturbation . . . 2 1 4

8.2.2 Methods for Perturbation of Adjacencies 2 16

8.2.3 The Validity of the Maximal Planarity Assumption 222

9 Interaction and Decomposition 229

9. 1 Decomposition 229

9. 1 . 1 Decomposition via Separating Triangles . 230

9. 1 .2 Forcing Decomposition 241

9 .2 Interaction 247

10 The role of Material Handling Systems in Evaluating Layouts 253

10 . 1 Previous Work on Near Adjacency 253
10.2 Previous Work on the MHS 254

10.3 Considering the MHS as a Facility . 257

10.4 Considering the MHS as a Post Construction Phase 258
10.5 MHS Computational Experiments 267

11 Putting It All Together - A Tutorial 279

1 1 . 1 Case Study 1 : A Manufacturing Plant 27 9

1 1 .2 Case Study 2: A Small Job Shop . . . 298

12 Conclusions and Areas for Further Study 317

Bibliography 323

A Small MPGs and their layouts 333

X

XI

List of Figures

2 . 1 The Tetrahedron 6

2.2 The Regular Octahedron 7

2 .3 The Regular Dodecahedron 7

2.4 An Example of a Faultline 8
2.5 A 3-joint showing Top, Left, and Right Facilities 9

3 . 1 The Deltahedron Insertion Operation 23

3 .2 Bowen and Fisk Sufficiency Operations 27

3.3 The W heel Expansion Operation 28

3.4 The Additional Operation for Extended Deltahedron . 29

3.5 The TESSA Operations 3 1

3 .6 Partial Solution to a Pathological Problem Exhibiting TESSA's

Worst Case Performance . 34

3 .7 Later Partial Solution to a Pathological Problem Exhibiting TESSA's

Worst Case Performance . . . 35

3 .8 The Diagonal Swap Operation 36

3.9 The Second Case of the a-Operation . 37

3 . 10 The Beta Operation ; . 37

3 . 1 1 The Second Case of the r -Operation . 38

3 . 12 The Third Case of the r -Operation 39

4 . 1 The Initial Deltahedron Layout . . . 44

4.2 Initial Deltahedron Placement Options 46

4.3 A Forbidden Deltahedron Placement . . 47

4.4 Deltahedron Placement Operation POl 47

4.5 Deltahedron Placement Operation P02 48

4.6 Dimensioning of 1-shaped Facilities 50

4 .7 Dimensioning of T-shaped Facilities 51

4.8 Deltahedron Illustrative Example 52

4 .9 The Deltahedron Layout for the Illustrative Example 53

4 . 10 Initial layouts for the Regular Octahedron 59

4 . 1 1 Extended Deltahedron Placement Operation P03 60

4 . 12 Extended Deltahedron Placement Operation P04 6 1

4 . 1 3 Dimensioning o f X -shaped facilities 6 1

4 . 14 Hassan and Hogg Illustrative Example 64

4 . 15 Partial Hassan and Hogg Layout for the Illustrative Example 65

4 . 16 Example of Grid Splitting 67

4 .17 Initial Division of a Facility in the ODA . 72

4 . 18 Division of the Rectanguloid q in the ODA 72

4 . 19 Identification of a Rectangle to Transfer in the ODA 73

4.20 Transferring Only a Part of an Identified Rectangle in the ODA . 73

4 .21 An Example Division of a Facility using the ODA 76

4.22 Contraction Algorithm Illustrative Example 77

4 .23 Partial Contraction of the MPG for the Contraction Algorithm

Example Problem . 78

4 .24 Layout of the Transformed MPG for the Contraction Algorithm

Example Problem . , · 78

4.25 Partially Constructed Contraction Algorithm Layout for the Illus-

trative Example . 79

4 .26 Final Contraction Algorithm Layout for the Illustrative Example 79

4.27 A Pathological Problem for the Contraction Algorithm 80

4 .28 Partial Contraction of the MPG for the Pathological Contraction

Algorithm Problem 8 1

4 .29 A Modified Dissection of a Facility using the ODA 83

4.30 The Empty Space of Partial SIMPLE Layouts 88

4.31 SIMPLE Illustrative Example 89

4.32 The SIMPLE Layout for the Illustrative Example 90

4.33 Placement Regions for the VSA Version of the ODA 9 1

4 .34 Facility placement using the ODA variant derived for the VSA 92

4.35 Deletion of a shortcut edge

4.36 Expansion of a cut vertex .

4.37 VSA Illustrative Example .

Xll

96

97

100

4 .38 The Transformed VSA MPG for the Illustrative Example

4.39 The Partial VSA Layout for the Illustrative Example

4.40 The Final VSA Layout for the Illustrative Example

4 .41 Allowance of 4-joints in VSA Layouts

4.42 Spanning Tree Illustrative Example

4.43 Spanning Tree Layout for the Illustrative Example

101

1 02

1 03

1 05

1 10

1 10

4.44 Tiling Algorithm Layout for the Illustrative Example . 1 17

4.45 Example of placing a facility twice into a Tiling Algorithm Layout 1 18

4.46 Example of a W heel for a Centre Vertex 1 20

4.47 Placement of a face not adjacent to a centre vertex 12 1

4.48 The Layout of a MPG having conditions ID11 = n - 2, ID2I = 1 ,

and dr = n - 2, x E D2 . 1 23

4.49 The Layout of a MPG having conditions ID11 = n - 3, and D2 =
{X' y}' (X' y) E E . 124

4.50 The Layout of an MPG having structural condition ID21 =m, V{x, y} E
D2' (X' y) rt E ' . 125

5 . 1 Recti linear Segment Reduction - Simple Example .

5.2 Rectilinear Segment Reduction - Conditions of U se .

5.3 Example of RSR .

5.4 An example where there are no immediate RSR reductions, but

129

130

1 32

iterative reduction may be successful 1 33

5.5 Behaviour of Regularity Measures under the LT 134

5.6 An example where maximising the average perimeter ratio will re-

sult i n an impractical layout . 1 35

6. 1 Graphs of the percentage difference between the R insma and Delta-

hedron starting points . 1 48

6.2 Graphs of the percentage difference between the Improved and Non-

Improved versions . 155

6.3 Graphs of the percentage difference between the VSA and Contrac-

tion Algorithm . . . -. . 1 59

7 . 1 Biased Deltahedron Example 1 84

7 .2 Biased Vertex Splitting Algorithm Example . 187

7 .3 Biased Contraction Algorithm Example 189

Xlll

7.4 Biased SIMPLE Example 192

7.5 Biased Tiling Algorithm Example 194

7.6 Biased Spanning Tree Example . . 196

8 . 1 Example to show how area pertubation can create infeasibility 202

8.2 Example to Illustrate Area Perturbation within a Dimensionalis-

able Layout . 209

8.3 Graph of a = wl, and its piecewise approximation 2 1 1

8.4 Example to Illustrate Area Perturbation within an Undimension-

alisable Layout . 213

8 .5 First example of the non-trivial process of adjacency perturbation 215

8.6 Second example of the non-trivial process of adjacency perturbation 215

8. 7 Fundamental Operation for Adjacency Perturbation 218

8.8 An example of the performance of multiple layout adjacency swaps 219

8.9 A second example of the performance of multiple layout adjacency

8. 1 0

8. 1 1

8 . 12

9. 1

9.2

9 .3

9 .4

9.5

9 .6

9 .7

9.8

9 .9

9 . 10

10 . 1

10 .2

swaps . .

Family of Adjacency Swap Oper ations for Dimensionalisable Lay-

outs . .

A sequence of operations applied to a dimensionalisable layout

An example of a non maximal planar graph, and two possible lay-

outs . .

A typical layout consisting of a separating triangle

Example of the Decomposition of an MPG

Example of the nesting of subproblems via a decomposition tree

Decomposition Illustrative Example

Decomposition of the Illustrative Example

Subproblem Layouts for the Decomposition Illustrative Example

Final Decomposition Layout for the Illustrative Example

Example of Forcing Decomposition

Example of forcing decomposition, followed by application of adja­

cency perturbation to obtain layout dual to original MPG

Interaction Illustrative Example

MHS Illustrative Example

Initial MHS design for the Illustrative Example .

XIV

220

221

223

225

230

232

233

237 '

238

239

240

244

246

248

265

266

10.3 Final MHS design for the Illustrative Example 267

1 1 . 1 MPG generated by TESSA for the Manufacturing Plant Problem 281

1 1 .2 Deltahedron Layout for the Manufacturing Plant Problem 284

1 1 .3 Tiling Algorithm(T) Layout for the Manufacturing Plant Problem 285

1 1 .4 Tiling Algorithm(!) Layout for the Manufacturing Plant Problem 286

1 1 .5 Spanning Tree Layout for the Manufacturing Plant Problem . . . 287

1 1 .6 Decomposition Tree of the MPG for the Manufacturing Plant . . 288

1 1 .7 First Decomposition Layout for the Manufacturing Plant Problem 289

1 1 .8 Second Decomposition Layout for the Manufacturing Plant Prob-

lem 290

1 1 .9 Modified Tiling Algorithm Layout for the Manufacturing Plant

Problem 295

1 1 . 10 Modified Spanning Tree Layout for the Manufacturing Plant Prob-

lem . 296

1 1 . 1 1 Modified Decomposition Layout for the Manufacturing Plant Prob-

lem . 297

1 1 . 12 MPG generated by TESSA for the Small Job Shop Problem . 301

1 1 . 13 MPG generated by Deltahedron for the Small Job Shop Problem 302

1 1 . 14 VSA Layout for the Small Job Shop Problem 304

1 1 .15 Contraction Algorithm Layout for the Small Job Shop Problem . 305

1 1 . 16 SIMPLE Layout for the Small Job Shop Problem 306

1 1 .17 Deltahedron Layout for the Small Job Shop Problem 307

1 1 .18 Tiling Algorithm(!) Layout for the Small Job Shop Problem . 308

1 1 . 19 Tiling Algorithm(T) Layout for the Small Job Shop Problem 309

1 1 .20 Spanning Tree Layout for the Small Job Shop Problem . . . 3 10

1 1 .21 Modified Spanning Tree Layout for the Small Job Shop Problem 312

1 1 .22 Modified Tiling Algorithm Layout for the Small Job Shop Problem 315

A . 1

A.2

A.3

A.4

A.5

A.6

Template 34

Template 3243

Template 46

Template 324252

Template 31 4353

Template 324362

XV

334

334

335

335

336

336

A.7

A.8

A.9

A .lO
A .ll

A . 12

A . 13
A .14

A . 15

A . 16

A . 17

A.l8

A . 19
A .20

A.21

A .22

Template 4552 . .
Template 32425261

Template 335361

Template 32415461

Template 31445162

Template 32425262

Template 3256
. .

Template 3243516171 •

Templat e 31435361

Template 4454

Template 4662 .

Template 3464 .
Template 324472

Template 33415163

Template 32425371

Template 3341526171

337

338

338

339
339

340
341
341

342

343

344
345

345

346

346

347

XVI

List of Tables

2 . 1 The AEIOUX Scheme

2.2 Possible nominal scales for facility regularity

3 . 1 Relationship Chart of a Pathological Problem exhibiting TESSA's

xvu

4

18

Worst Case Performance . 34

4 . 1 Area specifications for the Deltahedron Illustrative Example . 52

4.2 Placement Operations for the Deltahedron Illustrative Example . 53

4.3 Area Specifications for the Hassan and Hogg Illustrative Example 64

4.4 Insertion Processes for the Hassan and Hogg Illustrative Example 64

4.5 Area specifications for the Contraction Algorithm Illustrative Ex-

ample . 77

4 .6 Areas Specifications for the SIMPLE Illustrative Example 89

4. 7 Areas specifications for the VSA Illustrative Example . . 1 00

4.8 Areas Specifications for Spanning Tree Illustrative Example 1 09

4.9 Tiling Algorithm Illustrative Example 1 16

4 . 10 Area specifications for the Tiling Algorithm Illustrative Example 1 16

5.1 Changes in Regularity Values after performing RSR 132

5.2 Changes i n Regularity Values after performing LT 136

6 .1 Commonly Used Abbreviations 137

6.2 Generation of arbitrary MPGs 139

6.3 Existence of Solutions to Test Problems 139

6.4 Performance of Starting Points for n = 10 142

6.5 Performance of Starting Points for n = 15 143

6.6 Performance of S tarting Points for n = 20 144

6.7 Performance of Starting Points for n = 25 1 45

6.8 Performance of Starting Points for n = 30 146

6.9

6. 10

6. 1 1

6 . 12

6 . 1 3

6 . 1 4

6 . 15

6. 16

6. 17

6. 18

6. 19

6.20

6.21

6.22

6.23

6 .24

6 .25

6.26

6 .27

6 .28

6 .29

6.30

Performance of Improvements for n = 10

Performance of Improvements for n = 15

Performance of Improvements for n = 20

Pef formance of Improvements for n = 25

Performance of Improvements for n = 30

Performance of VSA vs Contraction Algorithm for n = 1 0

Performance of VSA vs Contraction Algorithm for n = 15

Performance of VSA vs Contraction Algorithm for n = 20

Performance of VSA vs Contraction Algorithm for n = 25

Performance of VSA vs Contraction Algorithm for n = 30

Comparison table for two layouts . .

Regularity vs Adjacency for n = 1 0

Regularity vs Adjacency for n = 15

Regularity vs Adjacency for n = 20

Regularity vs Adjacency for n = 25

Regularity vs Adjacency for n = 30

W orst Case Regularity vs Adjacency for n = 10 .

W orst Case Regularity vs Adjacency for n = 15 .

W orst Case Regularity vs Adjacency for n = 20 .

W orst Case Regularity vs Adjacency for n = 25 .

W orst Case Regularity vs Adjacency for n = 30 .

Problem-by-Problem Regularity

150

151

152

153

154

157

157

158

158

158

162

1 65

1 66

167

168

169

173

174

175

176

177

17 9

7 . 1 Area Specifications and Regularity Values for the Biased Deltahe-

dron Example . 183

7 .2 Area Specifications and Regularity Values for the Biased VSA Ex-

ample . 186

7 .3 A rea Specifications and Regularity Values for Biased Contraction

Algorithm Example . 190

7 .4 Area Specifications and Regularity Values for Biased SIMPLE Ex-

ample . 192

7 .5 A rea Specifications and Regularity Values for Biased Tiling Algo-

rithm Example . 194

7 .6 A rea Specifications and Regularity Values for Biased Spanning Tree

Example . 197

XVlll

9 . 1 Areas Specifications for the Decomposition I llustrative Example . 237

9.2 Decomposition as applied to the test problem set 241

9.3 Generation of 8- and ID -Decomposable MPGs on test problems 242

10 . 1 Flow data for the MHS Illustrative Example

10.2 Inter-facility distances for teh MHS Illustartive Example .

10.3 Inter-facility flows per unit distance for the MHS Illustrative Ex-

265

265

ample 266

10.4 MHS Cost and Length for n = 1 0 269

10.5 MHS Cost and Length for n = 15 270

10.6 MHS Cost and Length for n = 20 271

10.7 MHS Cost and Length for n = 25 272

10.8 MHS Cost and Length for n = 30 273

10.9 Deltahedron results under Adjacency Benefit and Transportation

Cost Objectives for n = 10 . 274

10 . 10 Deltahedron results under Adjacency Benefit and Transportation

Cost Objectives for n = 15 . 274

10. 1 1 Deltahedron results under Adjacency Benefit and Transportation

Cost Objectives for n = 20 . 275

10 .12 Deltahedron results under Adjacency Benefit and Transportation

Cost Objectives for n = 25 . 275

10 . 13 Deltahedron results under Adjacency Benefit and Transportation

Cost Objectives for n = 30 275

1 1 . 1 Adjacency Benefits for the Manufacturing P lant Problem 280

1 1 .2 Function and Area of Facilities for the Manufacturing Plant Prob-

lem . 280

1 1 .3 Adjacency, Regularity and Transportation Data of the Layouts gen-

erated for the Manufacturing Plant Problem 282

1 1 .4 Adjacency, Regularity and Transportation Data of the Layouts gen-

erated by Decomposition for the Manufacturing Plant Problem 283

1 1 .5 Considerations for the modification of the Tiling Algorithm Layout 291

1 1 .6 Considerations for the modification of the Spanning Tree layout . 293

1 1 .7 Considerations for the modification of the Decomposition layout 294

X IX

1 1 .8 Adjacency, Regularity and Transportation Data of the Modified

Layouts for the Manufacturing Plant Problem

1 1 .9 Adjacency Benefits for Small Job Shop Problem

294

299

1 1 . 10 Function and Area of Facilities for the Small J ob Shop . 299

1 1 . 1 1 Benefit Scores for the Small Job Shop Problem 300

1 1 . 1 2 Adjacency, Regularity and Transportation Data of the Layouts gen-

erated for the Small .Job Shop Problem 303

1 1 . 1 3 Adjacency, Regularity and Transportation Data of the Modified ST

Layout generated for the Small Job Shop Problem 313

1 1 . 1 4 Adjacency, Regularity and Transportation Data of the Modified TA

Layout generated for the Small Job Shop Problem 314

X X

XXI

List of Algorithms

3 . 1 Deltahedron . 22

3.2 TESSA 32

4 . 1 The Deltahedron Layout Algorithm . 51
4 .2 Exterior to Tetrahedron Algorithm 1 54

4 .3 Exterior to Tetrahedron Algorithm 2 56

4.4 The Contraction Operation(j --+ i) 69

4 .5 The Contraction Algorithm 7 0

4 .6 The Orthogonal Division Algorithm(x -+ (x, w)) . 74

4.7 Generation of the SIMPLE Placement Order . 85

4.8 Concentric Layout (i) . . 94

4 .9 Shortcut Eliminate (i , j) 96

4 . 1 0 Cut Vertex Expand (i) . 97

4 . 1 1 The Vertex Splitting Algorithm 98

4 . 1 2 The Spanning Tree Layout Algorithm . 108

4 . 1 3 The Tiling Algorithm 1 14

9 . 1 Decomposition Subproblem Identification . 234

9 .2 Layout Construction via Decomposit ion/Recomposition . 236

1 0. 1 MHS Construction . 264

1

Chapter 1

Introduction

The Facility Layout Problem (FLP) seeks the best spatial arrangement of a set of

facilities, which minimises the total transportation cost of material flow between

facilities, or maximises total facility adjacency benefits. The FLP has applications

in arranging rooms within a building floorplan, placing machines on a factory floor,

controls on an instrument panel, or components on a circuit board. For this reason,

the FLP is an important problem within Industrial Design.

The FLP has been modelled as a Q uadratic Assignment Problem [63] , and a

Graph Theoretic Problem [33] . Other models have been developed [72, 97] for

instance, but essentially are based on either of these two models. W e concentrate

on the second model; the Graph Theoretic Facility Layout Problem (GTFLP) . It

was first proposed by Foulds and Robinson [33] , as an alternative to the Q AP;

we will discuss more fully the contrasts between these two models in Chapter 2.

The GTFLP is composed of two phases. The first phase is called the Adjacency
Problem, where we seek to determine the spatial relationships between the facilities

by generating an adjacency graph, in which each facility is represented by a vertex,

including the outside, or exterior region , with an edge conne cting two vertices of this

graph if it is deemed desirable to have the corresponding facilities sharing a common

wall within the layout . The adjacency graph must be planar for the second phase

to be feasible, and in an optimization context this translates to maximal planarity,

requiring that the Adjacency Graph is a Maximal Planar Graph (MPG) .

The second phase i s called the Layout Problem, where we attempt to determine

an orthogonal geometric dual to the adjacency graph, while also incorporating area

specifications on the facilities. This second phase is the main focus of this thesis:

the construction of a practical layout, attaining certain regularity, efficiency, and

2 Chapter 1 . Introduction

aesthetic conditions. Somewhat surprisingly this second phase has attracted far less

attention than the first phase in the literature. The reasons for this are not clear,

perhaps due to the somewhat fuzzy nature of the problem, in that there exists no

predefined objective guiding the construction of the layout (other than consistency

with the fi rst phase) , and indeed, as we will see, there seldom exists a right or

best answer. Rather the development of the layout must be able incorporate any

qualitative measures, which are in general diffi cult to describe, let alone measure,

and hence this phase can be very subjective. In pursuit of these goals, we do not

only attempt to unify the literature directed at this phase, and indeed the GTFLP

as a whole, but also to develop from this a mechanism whereby the subjective nature

of the problem can be fully accommodated within the G TFLP model, developing

the theoretical model into one which could prove to be a powerful tool within

industrial design.

Background reading in the form of survey articles includes Foulds [30], Hassan

and Hogg [51] , Kusiak and Heragu [68] , and Meller and Gau [84] . These papers

provide summaries of the most common formulations of the FLP, as well as pro­

viding descriptions of the more widely utilised techniques in this area. A working

knowledge of Graph Theoretic techniques and ideas is assumed; see for example

Bondy and Murty [1 1] .

Cod a
In the next chapter we proceed to formally define the GTFLP. We present the

definitions and descriptions that will be extensively used throughout this thesis, as

well as providing the formulation of the GTFLP, and details of the :r;n ore classical

approach, the Q AP. We also define the concept of regularity, which will become an

important tool as we attempt to provide an extensive analysis of the GTFLP model.

In Chapters 3 and 4, we review the two phases of the G TFLP, respectively, including

new ideas and motivations, leading to the development of new approaches, for the

second phase especially. Following these chapters, we embark upon an attempt to

set the GTFLP within a more interactive design process, in order to show that the

GTFLP is an important tool for any design process, and to provide the mechanism

whereby this can be achieved.

3

Chapter 2

Problem Description

This chapter lays the foundation for the work that will be undertaken through­

out this thesis. W e begin by defining some standard notation and definitions for

the GTFLP. W e then examine some different formulations of the Facility Layout

Problem, including the evolution and justification of the GTFLP. Finally we briefly

critique t he relevant previous literature, and define the concept of regularity.

2 . 1 Nomenclature and Definitions

In this section we set up some standard Graph Theoretic nomenclature, and pro­

vide some of the more important definitions and descriptions that we will require

specifically for the GTFLP.

G The graph G which is an ordered triple with vertex set V, edge set E

and weights on the edges We, e E E

n The number of facilities, lVI. This includes a facility to represent the

exterior of the layout , generally labelled e, or exterior

(i, j) The edge {i , j) , (i , j) E E.

Gp A subgraph of G having vertex set Vp (� V), edge set Ep, where (i , j) E
Ep if {i, j } � Vp, and {(i , j) } E E, and weights on the edges We, e E Ep.

di The degree of vertex i, that is the number of edges incident on i .

J(n The complete graph on n vertices, with all pairs of vertices joined by

an edge.

Maximal Planar Graph A maximal planar graph (MPG) is a graph which can

be drawn in the plane with no edges crossing {planarity), and such that no more

4 Chapter 2. Problem Description

edges can be added to this graph without violating this planarity (maximality) .

Every face of an MPG is a triangle. This set of faces (or triangles) i s denoted by T.

A face bounded by edges (i , j) , (i , k) , and (j, k) is represented by its three vertices

i.e. (i , j, k). Note that T is usually used as the data structure to represent an

MPG. Euler showed that in every MPG, IEI = 3n - 6, and IT I = 2n - 4 (Euler

Polyhedral Formulae) .

Layout A n orthogonal geometric dual of an MPG in which each vertex of the

MPG corresponds to a facility, and each edge (i , j) of the MPG represents the

requirement of a common length of wall, between i and j. A layout is also known

as a block plan.

Benefit Matrix The matrix vV where each entry Wij represents the benefit of

placing facilities i and j adjacent. The benefit matrix is also referred to as an

adjacency matrix , relationship chart, relationship matrix or REL chart. In some

instances we refer to the cost/flow matrix· vV where each entry Wij represents the

material flow between facilities i and j .

AEIOUX Scheme A n ordinal scale which provides qualitative importance of an

adjacency in the benefit matrix, as an alternative to quantitative cost/flow data.

This scale and some commonly used numerical values associated with them are

given in Table 2. 1 .

Symbol Meaning Weights
A A bsolutely Essential 64 5
E Essential 16 4
I Important 4 3
0 Optional 1 2
u U nimportant 0 1
X Forbidden -256 0
Table 2 . 1 : The A EIOUX Scheme

Exterior Face The infinite region of any graph is referred to as the exterior or

boundary face.

2. 1 . Nomenclature and Definitions 5

Adjacent, Non-Adjacent Two facilities in the layout are adjacent if they share

a common length of wall in the layout; conversely they are non-adjacent if there is

no common length of wall between them in the layout. In an MPG , two vertices

are adjacent if they are connected by an edge, and non-adjacent if there is no edge

connecting them.

Area Requirements A facility i has an area requirement , also called an area

specification, denoted by ai. ai is the area of facility i in the layout . In an MPG

the area specifications correspond to vertex weights.

Layout Perimeter The layout perimeter is the boundary of a rectangular poly­

gon, whose area is equal to the sum of the facility areas to be placed in the layout .

The layout perimeter is also known as the layout boundary.

3-Joint, 2-Joint An important artefact of any layout is the confluence of three

walls called a 3-joint, and the confluence of two walls called a 2-joint . Each joint

is a corner coordinate of at least two facilities. 2-joints are created as part of the

orthogonalisation process. The four corners of the layout perimeter are all 2-joints.

We also refer to 4-joints, which are similarly defined. Note that 4-joints can never

occur in a layout with an underlying MPG adjacency structure.

Duality A Duality exists between an MPG, and its corresponding layout . The

MPG is easily obtainable from the layout, but given an MPG it is usually not easy

to find an orthogonal geometric dual. The vertices of the MPG correspond to the

facilities of the layout , the edges of the MPG correspond to the sharing of positive

wall length in the layout , and the faces of the MPG correspond to the 3-joints in

the layout .

Separating Triangle A 3-cycle i n an MPG which i s not a face of the M P G is

called a separating triangle, i.e. for a separating triangle (i , j, k), { (i , j), (i, k), (j, k)}
C E, { (i , j, k) } rf. T. Separating Triangles are sometimes referred to as Complex

Triangles.

Cyclic Ordering The cyclic ordering of a vertex x is a cyclic permutation of the

list of edges adjacent to x. We denote this by cycx(k) where k is the first vertex in

6 Chapter 2. Problem Description

the cyclic ordering. Unless otherwise stated we assume a clockwise orientation of

the ordering. We sometimes refer to cyc:r: when the starting vertex is unimportant.

Distance Class A vertex is in distance class i (denoted Di) if it is of shortest

edge distance (in terms of the number of edges) i from a specified root vertex. We

also define Dma:r:, the distance class of vertices farthest from the root vertex. This

root vertex is normally the exterior facility, and unless otherwise stated this will

be assumed throughout, i. e . Do= {e}.

Partial Layout A layout in which only a subset of facilities have been placed

is said to be a partial layout . Since there could exist a number of partial layouts

before the final completion of a layout , we commonly refer to the current partial

layout.

Tetrahedron, Regular Octahedron, Regular Dodecahedron These are three

special MPGs which we refer to extensively. Each of these three graphs is the only

MPG which exists with all vertices of degree 3 (Tetrahedron) , degree 4 (Regular

Octahedron) , and degree 5 (Regular Dodecahedron) , respectively. Further by ex­

amining Euler's Polyhedral Formulae, these are the only three MPGs on n � 4

vertices with all vertices having the same degree. The Tetrahedron i s shown in

Figure 2 . 1 , the Regular Octahedron in Figure 2.2, and finally the Regular Dodec­

ahedron in Figure 2.3.

Figure 2.1: The Tetrahedron

Rectanguloid Each facility in the layout is defined by a rectanguloid, which

is a simple closed curve whose boundary is made up of straight line segments

2. 1 . Nomenclat ure and Definitions 7

Figure 2.2: The Regular Octahedron

Figure 2.3: The Regular Dodecahedron

8 Chapter 2. Problem Description

each parallel to a wall of the layout perimeter, with every corner being a right

angle. It proves useful to define a facility by a list of its corner coordinates. Each

rectanguloid can be described by a turn sequence, where each corner is either an

L(left) or R(right) turn as we proceed around the boundary of the rectanguloid in a

clockwise direction. Right turns correspond to interior 90° angles (convex corners) ,

and left turns t o interior 270° angles (reflex corners) . Note that two turn sequences

describe the same rectanguloid , if they are a cyclic permutation of each other.

Facility Shape Classification Facility shapes are determined by their turn se­

quences. A rectangular facility, labelled as an !-shaped facility, has turn sequence

RRRR. Other common facility shapes are the L-shaped facility with turn sequence

RRRLRR, T-shaped RRLRRLRR, S-shaped RRRLRRRL, Y-shaped RRRLRRL­

RRL, and X-shaped RRLRRLRRLRRL. We refer to a facility as an X facility, for

example, if it is X-shaped. Furthermore we define a layout to be an L-layout, for

example, if the worst facility shape in the layout is an L facility. Other facility

shapes exist , such as the U-shaped facility with turn sequence RRRRRRLL, and

these will be described as they are encountered.

Block of Facilities A block of facilities is a rectangular substructure within a

layout which wholly contains a subset of the facilit ies.

Faultline A faultline in a layout is any wall in the layout which has at least two

walls perpendicular to i t , one on each side of the wall. This is better described by

referring to Figure 2.4.

Figure 2.4 : An Example of a (Vertical) Faultline

2. 1 . Nomenclat ure and Definitions
I

9

Dimensioned Layout, Undimensioned Layout A layout is said to be di­

mensioned if all the area specifications of the facilities are met in the layout , pro­

portional to some scale factor. An undimensioned layout does not consider area

specifications.

Dimensionalisable Layout A layout is said to be dimensionalisable if there

exists no faultline within it. Dimensionaliasable layouts can be dimensioned re­

gardless of the area specifications, and their structure is unaffected by any dimen­

siOmng.

Entering Facility The entering facility is the facility which is being placed in

the current partial layout.

Placement Host A placement host is a facility within which an entering facility

is entirely placed.

Top Facility The top facility at a 3-joint is defined to be the facility which does

not have a corner point at that 3-joint. Occasionally we refer to the left and right

facilities at a 3-joint with respect to the top facility at that 3-joint. Where there

is no ambiguity we simply refer to the top facility. This is better described by

referring to Figure 2.5, where we see that facility t is the top facility, 1 is the left

facility and r the right facility.

t

1 r

Figure 2.5: A 3-joint showing Top (t) , Left (1) , and Right (r) Facilities

Maximal Outerplanar Graph An outerplanar graph can be embedded in the

plane so that all vertices lie on the exterior face. A maximal outerplanar graph is

an outerplanar graph to which no more edges can be added without violating the

outerplanarity, and is a triangulation of a polygon.

1
0

Chapter 2. Problem Description

2 . 2 Formulations o f the Facility Layout P rob­

lem

In this section we formally present the GTFLP, and discuss it in relation to its

alternative formulation, the Quadratic Assignment Problem (QAP). Foulds [3
0
]

and more extensively Kusiak and Heragu (68] survey the work done on the FLP,

on both the classical and graph-theoretic models, giving alternative formulations.

The first formulation of the FLP was due to Koopmanns and Beckman [63] , as a

QAP. Each facility is considered as being composed of a number of unit subfacility

modules. The building perimeter is divided into an orthogonal grid, with each

cell of the grid having area equal to the area of a subfacility module. The QAP

has the objective of minimising the relative location of the subfacilities so as to

minimise total transportation cost throughout the layout , while maintaining the

contiguity of each facility. We describe a variation on the original formulation in

Formulation 1, as given by Hillier and Conners (58].

Formulation 1 QAP

N
M

= { 1, 2, ... , n } , the set of subfacilities

= { 1 , 2, . . . , m} , the set of grid locations

The cost per unit time period of assigning subfacility i to location j.

The distance from location i to location j, where the distance is an

appropriate measure of the travel cost between i and j .

The material flow from subfacility i to subfacility j.

=
{ fiidjr i =/= k or j =/= r

fiidii + Cii i = k or j = r

=
{

0
1 if subfacility i is assigned to location j

otherwise

s.t. L:�1 Xii

L:�l Xij

1

1

j E M
i E N

0
or 1 i E N, j E M

If n < m , we can introduce m - n dummy subfacilities, with zero Cii and fii
values. The division of each facility into an integral number of modules circumvents

2.2. Formulations of the Facility Layout Problem 1 1

the assumption that each facility is represented as a single object . The cost of this

however, can result in a significant increase in the computational burden through

the expansion of the problem size. The QAP formulation has been shown to be

N P-complete [77, 99] , so the optimal solution can be found for problems with fewer

than 20 subfacilities in a reasonable time. In Section 2.4, we briefly outline heuristic

methods which have been developed in order to solve the QAP approximately. The

QAP and the work related to it is also known as Classical Layout.

We now consider an alternative formulation of the FLP within a Graph The­

oretic framework. In this instance each facility is represented as a vertex in the

graph. We assume that a relationship matrix is given, which identifies the desir­

ability of placing pairs of facilities adjacently. This adjacency between two facilities

is represented by an edge between the two corresponding vertices. The graph rep­

resenting the adjacencies is planar if and only if the layout is planar [101] , and in

fact, provided no facility is nested entirely within another and all wall junctions

are 3-joints, the graph must be maximally planar. The GTFLP formulation is

given in Formulation 2, due to Foulds and Robinson [33) . Giffin [39) proves that we

can assume the Wij values are non-negative, and that the minimisation form of the

objective, when using cost/flow data is equivalent to the objective of Formulation 2.

Formulation 2 GTFLP

Wij The closeness rating for placing facilities i and j adjacently.

N The set of pairs of adjacencies which must be adjacent in any feasible

solution

F The set of pairs of facilities which must not be adjacent in any feasible

solution.

E' = { (i , j) : Xjj = 1 , (i, j) E E}

=
{ 1 i f facility i is adjacent to facility j

0 otherwise

s.t. Xij

Xjj

1
0

(i , j) E N
(i , j) E F

(V, E' U N) is a planar graph

1 2 Chapter 2. Problem Description

2 . 3 J ustification o f t he G raph Theoretic Approach

Comparing the QAP and GTFLP formulations, we see that the GTFLP produces

an adjacency prescription only, implying the necessity of a second phase to develop

the actual layout. The location assignment costs Cii of the QAP are assumed to be

zero by the GTFLP, implying that the GTFLP is more applicable to a new layout

design, rather than modification of an existing one, where the QAP, could be ap­

plied in either instance. The GTFLP does not consider non-adjacent facilities, so

the overall transportation cost of the layout is not explicitly considered; however,

Giffin and Foulds [31 , 40] present formulations to remedy this, while not compro­

mising the GTFLP formulation. Therefore concerns regarding the correspondences

among transportation cost, material flow, and desired adjacency are alleviated.

A major advantage of the GTFLP over the QAP is the increased freedom al­

lowed in the design of the layout. Rather than a rigid grid , the planner may begin

with a blank area within which irregularly shaped facilities of differing areas may

be manipulated. The GTFLP also allows provision for alternative objective func­

tions as shown by Giffin and Foulds, with few algorithmic modifications required

in moving from one objective to the other for the first phase, and indeed the sec­

ond phase proceeds independently of the objective function. We will see in later

chapters, however, that we can impose a second objective on the second phase in

order to increase the likelihood of efficient and practical layout designs.

Hassan and Hogg [51 , 53] provide an in-depth review of the application of Graph

Theory to the FLP, including a synopsis of what the authors consider are draw­

backs of the approach. They state the following advantages of the graph theoretic

approach: the establishment of the upper bound of the sum of the 3n - 6 largest

edge weights; purported improvement in objective function value over conventional

methods; and ability to specify exterior facilities. Hassan and Hogg attempt to

discredit these last two advantages. They state that the purported improvement

in the objective function shown by Hammouche and Webster [48] is of minimal

value, as they do not compare the correct objectives. Reexamination of [48] how­

ever renders this statement incorrect as Hammouche and Webster did in fact make

the correct comparisons. Hassan and Hogg state that the exterior facility could be

added to conventional methods by delaying the addition of some facilities, which

by default then be come adjacent to the layout exterior. However the inclusion

of the exterior is not adequately represented within classical approaches by simply

2.4. Related Work in Classical Layout 13

delaying the placement of certain facilities, as this assumes a 0/ 1 type of relation­

ship between facilities and the exterior, while in reality there may exist relevant

transportation data between facilities and the exterior which must be accommo­

dated within the formulation. Hassan and Hogg also present the following reasons

why the Graph Theoretic approach is not a adequate model: the umbrella effect;

ignoring the minimum length of common borders between adjacent facilities; and

having to be careful about the placement of the exterior so that it does not become

interior. In the following chapters it will become apparent that these conclusions

are weak. We will see that the only significant disadvantage is the ignoring of the

common wall length between adjacent facilities, as the umbrella effect can be over­

come, and the incorrect placement of the exterior inside the layout, comes from a

lack of appreciation of the consequences of the arbitrary embedding of any MPG,

of which one can always be obtained with the exterior on the outside.

Furthermore, Bozer and Meller (16] present a paper in which they show that

the QAP formulation for the FLP is not necessarily realistic, and unnecessarily

constrains the flexibility of the resulting layout. They show that the usual centroid­

to-centroid distance measure is usually somewhat conservative, and present a new

measure which includes a correction factor to more accurately determine the flow

cost between facilities .

2 .4 Related Work in Classical Layout

The heuristics that resulted from an attempt to approximate the optimal solution to

the QAP are the initial layout procedures, on which much of the Graph Theoretic

second phase work is based. The first attempt at computerized layout was the

improvement procedure CRAFT [6]. Starting from a given feasible layout CRAFT

considers departmental interchanges that are of equal area, or share a common

border, in an effort to reduce the transportation cost of the layout. Malmborg (83]
extends the CRAFT procedure to incorporate further parameters such as material

handling system fleet size, in order to broaden the range of factors considered in

swapping facilities. CORELAP [73] and ALDEP [100], are the most commonly

quoted construction methods. CORELAP assigns the facility with the highest

column sum in the relationship matrix, and places it in the centre of the layout .

Subsequent facilities are selected on the basis of having the maximum adjacency

1 4 Chapter 2. Problem Description

with a facility in the partial layout . The entering facility is placed by considering all

possible positions in which the facility could be placed, and selecting the one which

maximises the closeness rating between the entering facility and its neighbours.

ALDEP places facilities columnwise from left to right, going first down and then

up, as if ploughing a field. A so-called sweep width is defined, which specifies

how wide the columns are. The first facility is chosen randomly, and is placed in

the north-west corner. Subsequent facilities are chosen on the basis of having the

maximum relationship with the facility placed previously. The facility is placed

from where the previous facility finished. Other construction methods such as

PLANET [24] , and improvement procedures such as COFAD [104] , for example,

have also been implemented, using much the same mechanisms as CORELAP,

ALDEP and CRAFT. Whitehead and Eldars [107] presented a method essentially

the same as CORELAP. This method was used in a case study by Agraa and

Whitehead [2] to lay out a school building. This work was then extended by these

same authors in [1] to incorporate nuisance restrictions, by automatically rejecting

positions for the entering facility that do not satisfy the nuisance restrictions. Lewis

and Block [79] conducted an experiment between some of these classical approaches,

and some experienced layout planners. The results showed that as the problem size

increased, computer implementation became more efficient than human experience.

Hassan, Hogg and Smith [54] presented SHAPE, which is essentially another ex­

tension of CORELAP, but with a rather more intelligent and intuitive foundation.

Rather than examining every position where the entering facility could be placed

as in CORELAP, a distance function was developed to rank potential candidate

positions, by considering placing the entering facility on each side of the layout ,

and evaluating the movement cost for each candidate position with the facilities in

the current partial layout . The method i s compared to PLANET, and the results

obtained showed SHAPE compared favourably. Hassan and Hogg [53] presented a

paper which attempted to combine the classical approaches with graph-theoreti c

methods, but essentially produced a method very similar to CORELAP. We defer

discussion of this approach until Section 4 .6.4.

Heragu and Kusiak [56] present two mixed integer formulations for the FLP,

which are not based on a linearisation of the QAP. Unlike the QAP formulation,

this formulation does not require that the location of the sites need to be known a

2.5. Regularity 15

priori. A knowledge-based approach is introduced in order to heuristically deter­

mine layouts under these formulations. No experience is given as to how efficient

the resulting layouts are. In a subsequent paper [57] Heragu and Kusiak, trans­

form these formulations into linear continuous formulations with absolute values in

the constraints and objective function, and also into nonlinear formulations which

are solved heuristically using the penalty method of non-linear optimization, and

Powell's method for unconstrained minimization. Heragu and Alfa [55] present a

heuristic using the generic Simulated Annealing heuristic to solve the QAP, us­

ing two-opt and three-opt facility exchanges. The computational experience given

shows that this is an effective approach, yielding highly weighted layout solutions

in reasonable computational time. Jajodia, Minis, Harhalakis and Proth [61] in­

troduced CLASS, another extension of CRAFT. The model used allows facilities

to have u nequal areas, by considering a facility as being divided into submodules,

having large flow between them. CLASS uses Simulated Annealing strategies to

improve a randomly chosen initial solution. Bozer, Meller and Erlebacher [17]
introduce the the use of spacefilling curves in facility layout . By using space fill­

ing curves, any two facilities can be exchanged, making it a more powerful tool

than C RAFT. Raoot and Rakshit [93] give a comparison of various alternative

procedures for solving the QAP. This comparison examines the generic placement

methodologies used, and concludes that methods such as CORELAP perform bet­

ter than routines with more myopic placement mechanisms.

As we have discussed already Hammouche and Webster [48] showed that these

classical approaches do not perform as well as the Graph Theoretic techniques.

Some of the classical ideas can be utilised within the Graph Theoretic model,

and these will be developed as they occur. On their own however the classical

approaches are superseded by the Graph Theoretic methods.

2 . 5 Regularity

An integral part of the FLP that has been largely unexplored, is the measuring of

how regular, usable or efficient a given layout is. A number of authors, for example

Hassan and Hogg [52] , have recognised the importance of regularity considerations,

however have provided no details as to how this might be accommodated. The only

insights into this problem were due to Raoot and Rakshit [92] , and Bozer, Meller

16 Chapter 2. Problem Description

and Erlebacher [1 7] who each provided an evaluator of how regularity could be

measured. We will describe these two measures along with some new possible eval­

uators shortly. Previously it has been left to the layout planner to make alterations

by hand, with the only criterion being that it looks good. In this chapter we dis­

cuss ways of measuring regularity in a layout, by considering a variety of so called

regularity measures and objectives.

G iven a scenario of possible feasible layouts, we may subjectively choose the

one which we think is best , however our choice may not be the same as someone

else's, indeed our criteria for choice may be significantly different. In an effort

to standardise the basis for comparison we will define regularity measures which

attempt to objectively quantify how regular a layout is. Consider the following

definitions of a facility i :

Ri The area of the largest rectangle contained wholly within i

Gi The area of the largest golden rectangle contained wholly within i

Si The area of the largest square contained wholly within i

Ri The area of the smallest rectangle that wholly contains i
Gi The area of the smallest golden rectangle that wholly contains i
Si The area of the smallest square that wholly contains i

Ci The number of corners of a facility i
Pi The length of the perimeter of facility i

The concept of the Golden Rectangle requires more explanation. A Golden

Rectangle has a width-to-length ratio of 1 : (1 + -/5)/2, called the Golden Ratio,

i. e. the same width-to-length ratio as this page. This ratio is found from solving

the quadratic equation x
2 + x - 1 = 0. It is widely accepted that the Golden

Ratio was a term of proportional beauty administered in classical architecture.

The Golden Ratio was included in the building instructions for Moses' Tabernacle

i n the Midian desert, and in the planning of the Great Pyramid of Egypt [1 8, 19] .
It is useful to consider the Golden Rectangle within this work on regularity, as we

will see it provides a useful intermediate polygon between the restrictive square,

and the overly flexible rectangle with arbitrary width-to-length ratio.

We can define a number of measures which could provide a quantitative value

for each facility, for example:

The ratio of the area of the largest rectangle contained

in i · to the area of i
(2 . 1)

2.5. Regularity 17

Gi/ai The ratio of the area of the largest golden rectangle con- (2.2)
tained in i to the area of i

Si/ai The ratio of the area of the largest rectangle contained (2.3)
in i to the area of i

ad� The ratio of the area of i to the area of the smallest (2.4)
rectangle that will enclose i (Raoot and Rakshit [92])

ai/Gi The ratio of the area of i to the area of the smallest (2.5)
golden rectangle that will enclose i

ai/Si The ratio of the area of i to the area of the smallest square (2.6)
that will enclose i

Ri/Ri The ratio of the area of the greatest rectangle in i to the (2.7)
area of the smallest rectangle that will enclose i

Gi/Gi The ratio of the area of the greatest golden rectangle in (2.8)
i to the area of the smallest golden rectangle that will

enclose i
Si/Si The ratio of the area of the greatest square in i to the (2.9)

area of the smallest square that will enclose i

ci The number of corners facility i has (2 . 10)
4-Jfii/Pi The ratio of the optimal perimeter of a square facility i (2. 1 1)

to the perimeter of i (Bozer, M ell er and Erlebacher [17])

Measures 2 . 1 , 2.2 and 2 .3 attempt to measure the useable space available within

a facility, by considering the ratio of the area of the largest polygon specified to

the area of the facility. These are known as the enclosed polygon ratios. Measures

2.4, 2 .5 and 2.6 attempt to measure the spread of a facility by considering the ratio

of the area of the smallest polygon specified that will enclose the facility to the area

of the facility. These are known as the bounding polygon ratios. Measures 2.7, 2 .8
and 2.9 are measures which multiply the corresponding pairs from measures 2.1 -
2 .3 and 2.4 - 2.6. This set of measures is the ratio of the useable space to the spread

of the facility. Measure 2 . 1 0 is a simple yet effective measure which measures how

many corners a facility has. Measure 2 . 1 1 assumes that the optimal shape for a

facility is a square, which is where the perimeter is minimised i. e. Pt = 4yfai.
We do not in general use Measures 2.7 - 2.9, as consider if the bounding rect­

angle and enclosed rectangle ratios were both 0 . 1 , this would give a value of 1 to

Measure 2 .7 . Measures 2 .4 and 2 .10 are known as shape based measures, while the

18 Chapter 2. Problem Description

Shape Score 1 Score 2
Rectangle 1 4
1-shape 0.5 1
S-shape 0.25 0
T-shape 0.25 0
Other 0 -1

Table 2.2: Possible nominal scales for facility regularity

other measures are known as usable area based measures.

Of course we can also include more qualitative measures such as a nominal

scale for room shapes, as shown by Table 2.2. Unfortunately scales of this type

are very subjective, and finding the right values to assign to each shape is hard.

This problem is similar to that of what values to assign the AEIOUX scores in

relationship charts.

Objectives could either be to maximise total regularity, also the same as max­

i mising the average facility regularity, or to maximize the minimum facility regu­

larity. We will see in the course of this thesis that it is prudent to consider both

objectives in considering layout alternatives, as both omit important information

which the other can better encapsulate.

C o d a
In this chapter we have outlined the basis of the GTFLP process. We have com­

pared the GTFLP with the QAP, and have concluded that the GTFLP is certainly

a valid representation of the FLP, and hence worthwhile exploring. We will see as

we progress the solidifying of this conclusion. We have briefly outlined the work

that was previously completed in Classical Layout. Furthermore we have defined

and discussed the concept of regularity.

In the next chapter, we examine the generation of a highly weighted MPG , in

order to complete the first phase of the GTFLP. This comprises a literature review

of the relevant heuristics, together with some theorems related to the performance

of these heuristics. Chapter 4 provides the main foundational thrust for the re­

mainder of this thesis, describing fully the second phase of the GTFLP: the design

of the layout.

19

Chapter 3

O btaining the Adj acency Graph

In this chapter, we examine the first phase of the GTFLP: the construction of

a highly weighted MPG. This problem has been shown by Garey and Johnson

[37] , and Liu and Geldmacher [80] to be NP-complete, therefore it is unlikely that

there will ever exist computationally efficient algorithms for generating the opti­

mally weighted MPG for realistically sized problems. For this reason, we resort to

heuristics, which attempt to build up the MPG so that its final weight is as large

as can be found i n a reasonable time. We shall see however that obtaining the

best MPG, seldom corresponds to obtaining the most practical layout. This does

not nullify the importance of obtaining highly weighted MPGs, as in most cases

it provides a useful starting point from which important information can still be

gleaned. We will address a more beneficial role of the best MPG in later chapters.

The construction methods for obtaining a highly weighted MPG can be divided

into two groups: those which require a planarity testing routine in order to main­

tain planarity of the adjacency graph are discussed in Section 3 . 1 , and those, more

widely used and d iscussed, which avoid planarity testing by utilising the underly­

ing structure of the MPG, are examined in Section 3.2. Finally in this chapter we

explore improvement routines which have been developed in order to attempt to

improve upon the value of an initial MPG construction. Throughout this chapter

we assume that in finding an MPG, we are finding one of as large weight as possible,

unless otherwise stated.

20 Chapter 3. Obtaining the Adjacency Graph

3 . 1 Heuristic Methods t hat Require Planarity

Testing

Foulds, Gibbons and Giffin (31] describe a Greedy Heuristic for obtaining an MPG,

which we simply refer to as Greedy. Their heuristic orders the set of possible edges

in non-increasing order, and then adds the edge at the top of the list to the current

subgraph, as long as planarity is maintained until 3n - 6 edges have been added.

Foulds et al. use a series of filters described by Foulds and Robinson (33] in order

to reduce the computational burden of the planarity testing algorithm of Hopcroft

and Tarjan (59] , which is used to ensure that the edge being added does not violate

the planarity of the current subgraph. Unfortunately, even though the planarity

testing algorithm of Hopcroft and Tarjan has a computational complexity of O(n),
i t is extremely difficult to implement. We provide the computational complexity

and worst case analysis of Greedy in Theorems 3 . 1 . 1 and 3 . 1 .2 . Firstly however,

we provide a background description on the worst case analysis of heuristics due

to Dyer, Foulds and Frieze (26] . Let q denote a problem instance, and let H be a

heuristic applied to the problem q. Let EH,q denote the set of edges chosen by H

and let E.,q denote the set of edges in the optimal solution. Let w(S) be the total

weight of the edges in the set S. Then the ratio RH,q given in Equation 3 . 1 is a

measure of the quality of the solution produced by H.

R _ w(EH,q)
H,q - w(E) •,q

(3. 1)

The worst case ratio pH is defined by Equation 3.2. This value gives us a guaranteed

value for the quality of our solution in comparison with the optimum.

PH = i�f(RH,q) (3.2)

Theorem 3.1.1 The computational complexity of Greedy is O(n3)

Proof: See (3 1] 0

Theorem 3.1.2 PGreedy = �
Proof: See (26] 0

A second approach is due to Carrie, Moore, Roczniak, and Seppanen (2 1] . This

approach starts by constructing a Maximal Spanning Tree, and then adding edges

3.2. Heuristic Methods A voiding Planarity Testing 21

to the subgraph, in decreasing order of their weight , as long as planarity is not

violated, until the graph is maximally planar on the n vertices. Carrie et al. also

devise a set of rules which are intended to place the edges as intelligently as possible,

but the planarity testing phase is still required.

Hashimshony, Shaviv and Wachman [49] present a method of obtaining an

MPG, by considering the complete graph on n fac ilities and deleting edges un­

til planarity is obtained. Two methods are used, cancelling one, possibly highly

weighted edge, and deleting a number of low weighted edges. The method uses the

planarity testing algorithm of Lempel, Even and Cederbaum (76] .

Giffin (39] presented the Greedy-Hamiltonian heuristic, which reduced the bur­

den of the planarity testing phase. Initialising with a greedy Hamiltonian circuit,

the highest weighted edge not violating planarity was added. The test for planarity

simply coloured the vertices of a so-called auxiliary graph to assign the edges not

on the Hamiltonian circuit to either the inside or outside of the current planar

graph. A 2-colouring was used, and if every vertex in the auxiliary graph could be

coloured such that no other vertex of the same colour was adjacent to it , the new

edge could be accepted.

3.2 Heurist ic Methods A voiding Planarity Test-
•

1ng

This section describes the most widely used construction heuristics for generating

an MPG. These methods are motivated by a desire to remove the difficulty of the

planarity testing of the methods of Section 3 . 1 . The first heuristic is Deltahe­

dron which, due to its simple placement operation, has been widely explored, and

variants of the objective function and alternative placement operations have been

discussed at length by various authors. Section 3 .2.2 discusses some fundamental

extensions of Deltahedron. Finally we examine TESSA, which is a comparatively

new heuristic, but has the advantage of being able to generate every MPG on n

vertices.

..

22 Chapter 3. Obtaining the Adjacency Graph

3 . 2 . 1 Delt ahedron

Foulds and Robinson [34] were the first to present a method for obtaining an MPG

which required no planarity testing. Their method initially chooses four mutually

adjacent vertices to create the initial MPG, I<4• Subsequent vertices are chosen,

and placed in the MPG, by inserting them one at a time within a face of the current

subgraph, so that the entering vertex (the vertex being inserted in the subgraph) is

adjacent to each of the vertices of the face the entering vertex is inserted in. This

basic vertex placement operation, of vertex x being inserted in face (p, q, r) is shown

in Figure 3. 1 , with corresponding increase in benefit B(Delta; p, q, r, x) shown in

Equation 3.3. Foulds and Robinson called this method the Deltahedron Heuristic,

but other authors have referred to it as Face Triangulation. The basic steps of the

Deltahedron Heuristic are described in Algorithm 3.1 ; where Constructions A and

B therein , are described below.

B(Delta ; p, q , r, X) � Wpx + Wqx + Wrx

Algorithm 3.1 Deltahedron

end

Input: Adjacency Matrix
Output: Deltahedron MPG G
Choose 4 vertices (a , b, c, d) , via Construction A
V a +-- {a , b, c, d}
Ea +-- { (a , b) , (a, c), (a, d), (b, c) , (b, d), (c, d) }
Jra +-- { (a , b, c) , (a , b, d) , (a , c , d) , (b, c, d) }
while (IVa l < n) do

Choose vertex x to be placed in face (p, q , r) via Construction B

Va +-- Va U {x}
Ea +-- Ea U { (p, x) , (q, x) , (r, x) }
Jra +-- Jra U { (p, q, x) , (p, r, x) , (q, r, x) }\ (p, q, r)

end

(3.3)

A number of possible versions for Constructions A and B have been suggested

in the literature. Foulds and Robinson outline two in the original paper, the S-

I

3.2. Heuristic Methods A voiding Planarity Testing

p

q r q

Figure 3 . 1 : Deltahedron Insertion of a Vertex x into Face (p, q , r)

23

r

and R-constructions. The S-construction calculates S(i) , as shown in Equation 3.4,
and orders the vertices in non-increasing order of their S(i) values.

n

S(i) = 2: Wij (3.4)
j=l

Under this mechanism Construction A chooses the four vertices of highest S(i)

value (called SELECT by Foulds et al. [31]) while Construction B , chooses the

vertex i which has the largest S(i) value of all unplaced vertices, and inserts i in

the face which will increase the overall benefit maximally. The R-construction uses

the Tetrahedron in which the least benefit edge is maximised, for Construction A ,

and then for Construction B , the increase i n benefit of placing each unplaced vertex

in each face of the current subgraph is calculated. The vertex to be inserted in the

MPG is one which has the largest difference between its first and second choice

of possible faces; it is inserted in its first choice face, giving the highest increase

in benefit. Foulds et al. give another A Construction, called AVARICE, which

chooses the edge (a, b) of highest weight , then chooses a third vertex c such that

the benefit of triangle (a , b, c) is maximised , and then chooses a fourth vertex d such

that the weight of the Tetrahedron (a , b, c, d) is maximised. Green and Al-Hakim

[47) define Construction A to choose the triangle Ka of maximum benefit, and then

add to this t riangle, the vertex which gives the largest increase in benefit. They

also define a greedy B Construction, where the benefit derived from placing each

unplaced vertex in each face is evaluated, and the vertex/face pair giving the best

increase in total benefit is chosen. Giffin [39) tested the most obvious construction ,

24 Chapter 3. Obtaining the Adjacency Graph

that of evaluating all possibilities for the tetrahedron, and choosing that of highest

weight, for Construction A , and then using the Construction B of Green and A l­

Hakim. Boswell [13] provides a computational experiment of the various A and B

Constructions. The results show overwhelmingly that the greedy vertex insertion

of G reen and Al-Hakim was the best B construction, providing the best solutions

in 80% of the problems solved. The experiment on the A Construction was less

conclusive, with the greedy tetrahedron construction of Giffin having the edge

over both the SELECT and AVARICE constructions, all of which were clearly

superior to the Green and Al-Hakim A Construction. Boswell noted that as the

problem size increased, the choice of A Construction became less important, as

the tetrahedron contributed a smaller proportion to the final benefit of the MPG .

Boswell recommended that the greedy constructions of Giffin, and Green and Al­

Hakim should be used for the A and B Constructions respectively, and further

noted that the computational times were minimal, being less than two seconds on

forty facility problems. Theorems 3.2 . 1 - 3.2.3 due to Giffin, Foulds and Robinson ,

and Green and Al-Hakim provide the computational complexity of the Deltahedron

heuristic for the various A and B constructions. Furthermore Dyer et al. provide a

series of theorems on the worst case performance of some of the different variations

on the Deltahedron Constructions. These are provided in Theorems 3.2.4 and 3.2.5,
'

and Corollary 3.2 . 1 ; the reader is referred to Dyer et al. for proofs. We will see

in Section 3.3 that although theoretically important, these results are in general

overcome by powerful improvement techniques.

Theorem 3.2. 1 The constructions of Foulds and Robinson have computational
complexity of O(n2)

Proof: See [31 , 39] 0

Theorem 3.2.2 The construction of Green and Al-Hakim has computational com­
plexity of 0(n3)

Proof: See [4 7] 0

Theorem 3.2.3 The greedy construction of Giffin has computational complexity
of O(n4)

3.2. Heuristic Methods A voiding Planarity Testing

Proof: See [39]

Theorem 3.2.4 PDelta = 0, using the S construction

25

0

Corollary 3.2.1 � � PDelta < � ' using the S construction, and where all edge
weights are either 0 or 1

Theorem 3.2.5 PDelta = � ' using the S construction, where S(i) = maxi Wij

Giffin and Foulds [40] present adaptations of the Deltahedron, and the Greedy­

Hamiltonian heuristics to incorporate near adjacency. Near adjacency is defined

in terms of the number of boundary crossings required in the layout to travel

between i and j say, and hence the minimum path, in terms of the number of

edges, between i and j in the MPG. The two methods use a tailored version of

Dantzig's shortest path algorithm [23], in order to extend the objective function to

include benefits for near adjacency. The tailoring of Dantzig's algorithm reduces

the computational complexity from O(n5) to O(n3) for the Deltahedron heuristic,

however the Greedy-Hamiltonian method only reduces from O(n6) to O(n5) .
Foulds and Giffin [32] present another variant on the Deltahedron heuristic,

which attempts to minimize the total transportation cost between facilities. The

S-construction, and AVARICE, are used, with a rectilinear distance norm in the

objective function to approximate the transportation distances, by assuming that

all facilities are square in shape. The S-construction is shown to have O(n3) com­

putat ional complexi ty, while the AVARICE construction has O(n4) complexity. vVe

will return to these two modifications by Giffin and Foulds in Chapter 10 .
This completes the basic discussion of the Deltahedron heuristic. In the next

section, we examine some extensions of Deltahedron which attempt to allow the in­

sertion of more general structures into the MPG subgraph, whilst still maintaining

planarity.

3 . 2 . 2 Deltahedron Extensions

The extensions of the Deltahedron that we will discuss can be divided into two

groups. The first is the generalisation of placement of a vertex into more than one

face, which we will see through the Wheel Generation Heuristic, and more generally

26 Chapter 3. Obtaining the Adjacency Graph

through the Wheel Expansion Heuristic. The second type of generalisation is the

generation of more complex substructures which can be placed within a face of the

current subgraph.

The Wheel Generation and Wheel Expansion Heuristics

The motivation behind wanting to somehow generalise the Deltahedron Heuristic

lies in the inability of Deltahedron to be able to generate any MPG on n facilities.

This was noticed by Foulds and Robinson [34], who cited the Regular Octahedron

as an MPG which has no vertex of degree 3, and hence cannot be created by

Deltahedron. The Wheel Generation Heuristic was motivated by a theorem of

Bowen and Fisk [15], which simply stated that the three operations of Figure 3.2,
are sufficient to generate all MPGs from /{4 •

Giffin stated thaf the three operations of Figure 3.2 need only be applied lo­

cally to the current subgraph, and hence was able to develop the greedy Wheel

Generation Heuristic. The three operations yield the increases in benefit given in

Equations 3.5 - 3. 7, where each operation involves placing a vertex x in the appro­

priate triangle (p, q, r) , quadrilateral (p, q, r, s) , or fan (p, q, r, s, t) , respectively.

B(WG : p, q, r, x) - Wpx + Wqx + Wrx (3.5)
B(WG : p, q, r, s , x) Wpx + Wqx + Wrx + W,x - Wpr (3.6)

B(WG : p, q , r , s , t , x) Wpx + Wqx + Wrx + Wsx + Wtx - Wps - Wqs (3 .7)

The modification to the original Deltahedron heuristic then , was to initialise us-

ing any suitable A Construction, and then for each vertex/triangle, vertex/quadrilateral,

and vertex/fan pairing, to calculate the increase in benefit of that pairing, and to

perform the one giving the maximal increase, until all vertices have been inserted

into the subgraph.

Eades, Foulds and Giffin [27] extend the Wheel Generation Heuristic to the

Wheel Expansion Heuristic, which is a more general form, of which the Wheel

Generation Heuristic becomes a special case. The method uses the fact that every

vertex x in an MPG is the hub of a wheel Wx with all of its adjacent vertices

forming the rim, which Eades et al. prove for each vertex is unique. The wheel

expansion approach was first outlined by Baybars and Eastman [8], who proved

some theoretical results about the underlying wheels in MPGs.

I

3.2. Heuristic Methods A voiding Planarity Testing

p

q r q

p q p

s r s

p q

t r

s

27

p

r

q

r

p q

s

Figure 3.2: Bowen and Fisk Sufficiency Operations for Generating all MPGs from
/(4

28 Chapter 3. Obtaining the Adjacency Graph

Figure 3.3: Wheel Expansion Operation placing vertex y in Wx

The Wheel Expansion operation considers a vertex x in the current partial

solution, together with a vertex y not in the current partial solution. Two vertices

k and l which are on the rim of Wx are chosen, and y is placed such that k and l
are both on the rim of vVy and the new vV�. This operation is shown in Figure 3.3,
with corresponding benefit in Equation 3.8, where the set P is the set of vertices on

Wx forming a chain having k and l as its endpoints. Note that there are two such

chains, and we distinguish between them by defining that the chain must move

clockwise from k to 1. We can easily see that Wheel Generation is a special case

of Wheel Expansion, where we only consider k and 1 on Wx whose chain clockwise

from k to 1 on Wx is of length three or less.

B(W E : X, k, 1, y) = Wxy + Wky + W/y + L(Wjy - Wky) (3.8)
iEP

Theorem 3.2.6 Wheel Expansion and Wheel Generation have computational com­
plexity of O(n4)

Proof: See (27, 39] 0

The Extended Deltahedron Heuristic

Leung (78] provides a different type of generalisation of Deltahedron, in which as

well as the single insertion of a vertex in a face, insertion of a triple of vertices into a

face is also permissible, providing that the subgraph of the three entering vertices,

3.2. Heuristic Methods A voiding Planarity Testing

q r q
Figure 3.4: The Additional Operation for Extended Deltahedron

29

r

and the three vertices which make up the face the triple is placed in, form a regular
octahedron. This operation is shown in Figure 3.4, where we insert vertices x, y and
z i n face (p, q , r) , and the benefit of this operation is given by Equation 3.9. The
method uses the greedy construction which chooses the operation which gives the
best average increase, by dividing each B (ExDelta : p, q , r, x, y, z) by three in order
to make a valid comparison, between it and the standard Deltahedron operation.
Leung initialises with a Tetrahedron, but this prohibits a six facility problem from
generating the Regular Octahedron. Initialisation with the triangle](3 overcomes
this caveat, and also allows MPGs created entirely from the second operation to be
formed. However, even with this slight generalisation, the Extended Deltahedron
heuristic, cannot generate all MPGs, as there is no way of attaining, for example,
the Regular Dodecahedron.

Theorem 3.2. 7 The Extended Deltahedron Heuristic has computational complex­
ity of O(n4 log n) .

Proof: See [78] 0

30 Chapter 3. Obtaining the Adjacency Graph

3.2.3 TES S A

The TESSA heuristic was devised by Boswell [14] as an alternative method for
obtaining a highly-weighted MPG. The benefits of TESSA are not only that it
requires no planarity testing, but is capable of generating any MPG on n vertices,
using face augmentation. Boswell used the fact that an MPG with n vertices can
be defined by a list of its 2n - 4 faces. If we define the benefit of a face to be
the sum of the benefits of its three edges, the sum of the face benefits of a given
MPG is twice the sum of its edge benefits. Hence maximizing the face benefit is
equivalent to maximizing the edge benefit sum. TESSA begins by selecting, from a
list of all possible triangular faces on n vertices, the face with the greatest benefit
as the initial partial solution. It then repeatedly adds faces with highest benefit to
the boundary of the partial solution, where the boundary of a partial solution is
defined to be the set of edges and vertices which are still available for inclusion in
entering faces, without destroying its planarity, until the MPG is complete. Two
operations exist, as shown in Figure 3.5, where we either add a face which contains
two adjacent vertices on the boundary, or, add a face containing three consecutive
vertices on the boundary.

By placing the n(n - l) (n - 2)/6 possible faces in a list of unused faces in
decreasing order of benefit, deciding ties arbitrarily, we are able to simply find the
first face in the list that can. be inserted, update the list , and repeat until 2n-4 faces
exist in the layout. Note that the explicit inclusion of the last face is unnecessary,
as it will be the boundary of the current partial solution on 2n - 5 faces. If all three
vertices of the face are consecutive on the boundary of the current partial solution,
as in Figure 3.5(a) , and the boundary has more than three edges, the length of
the boundary is reduced by one, and the vertex b has moved from the boundary
into the interior of the new partial solution. Therefore no other faces containing
b can be added. Note that if the boundary of the current partial subgraph has
three vertices, application of this operation would prematurely end the heuristic,
and hence is disallowed. If two of the vertices of the face are consecutive on the
boundary, and the third is not in the current partial solution, as in Figure 3.5(b) ,
the length of the boundary i s increased by one, and the edge de has moved from
the boundary into the interior of the new partial solution. Thus no other faces
containing the edge de can be added. A full description of TESSA is given in
Algorithm 3.2, where the set F is the set of faces in the current solution, Bv is

3.2. Heuristic Methods A voiding Planarity Testing

EXTERIOR

INTERIOR

(a)

EXTERIOR

INTERIOR

(b)

31

Figure 3.5: The TESSA Operations: (a) Adding a new face abc to the current
partial solution; (b) Adding a new face def to the current partial solution

32 Chapter 3. Obtaining the Adjacency Graph

the set of vertices on the boundary of the current solution, and BE is the set of
edges on the boundary of the current solution.

Algorithm 3 . 2 TESSA

Input: Adjacency Matrix
Output: TESSA MPG G
Order faces n(n - 1)(n - 2)/6 in non-increasing order, denote i th face of this
list as the graph Mi, with vertices mit , mi2, and mi3

Va +-- VM1
Ea +-- EM1
Ta +-- TM1
F +-- { 1 }

Bv +-- VM1
BE +-- EM!
while (!Ta l < 2n - 5) do

for i = 2 to n(n - 1) (n - 2)/6 d o
if (i � F and { (mi1 , mi2) } E BE and mi3 � Va) then
*Relabel vertices of Mi if necessary to obtain all perturbations *

Va +-- Va U VMj

end

Ea +-- Ea U EM;

Ta +-- Ta U TMj

F +- F U {i }

Bv +-- Bv U VMj

BE +-- (BE U EMJ\{ (mib mi2) }

i +-- 1

if (i � F and { (mit , mi2) , (mi2 , mi3) } E BE and IBv l > 3) then
Relabel vertices of Mi if necessary to obtain all perturbations

Va +-- Va U VMj

Ea +-- Ea U EMi
Ta +-- Ta U TM;
F +-- F U { i }

Bv +-- Bv\ {m;2 }

BE +-- BE U { (mil , mi3) }\{ (m;b mi2) , (mi2 , mi3) }

i +-- 1

3.2. Heuristic Methods A voiding Planarity Testing

end

end

end
i +- i + 1

end

for i = 1 to n(n - 1) (n - 2)/6 do

end

if (i 1- F and IVM; n Bv l = 3) then
Ta +-- Ta U TM;

i +-- n(n - 1) (n - 2)/6 + 1
end

Theorem 3.2.8 The computational complexity of TESSA is O(n5)

Proof: See [13]

33

0

Al-Hakim [5] provided the first hint that there may exist pathological problems
for TESSA, by providing an example where TESSA would generate an infeasible
solution. This is not entirely correct as the solution provided is in fact feasible, but
has a very poor objective function value. Theorem 3.2.9 confirms the misgivings
outlined by Al-Hakim, by providing an example where the worst case performance
is achieved.

Theorem 3.2.9 PTESSA = 0

Proof: Consider the n facility layout problem, with relationship chart as given in
Table 3. 1 . In this problem only four faces have weight three; obviously no other face
has weight equal to or greater than two. If face (1 , 2 , 3) is chosen as the initial face,
then the subsequent three insertions will be (1 , 3 , 4) , (1 , 4, 5) and (1 , 2, 5) , since no
other face has weight three. This gives the partial solution of weight 12. Obviously,
regardless of the order i n which the first four faces are added, the partial solution
will take the form of Figure 3.6.

Note that no other face which includes vertex 1 can be added to this partial
graph, as vertex 1 has become interior. Since there remain no more faces of weight
three, the next four faces in the list are all of weight two; no other face has weight
greater than one. Only one of the faces of weight two, i.e. (2, 3, 4) , (3, 4, 5) , (2, 4, 5)

34 Chapter 3. Obtaining the Adjacency Graph

Edge Weight
(1 , i) 'v'i # 1 1

(2, 3) 1
(3, 4) 1
(4, 5) 1
(2, 5) 1

All other edges 0

Table 3 . 1 : Relationship Chart for the Pathological TESSA Example

Figure 3.6: The partial solution after the addition of the first four faces

3.2. Heuristic Methods A voiding Planarity Testing

2

4

35

Figure 3.7: A partial solution after all possible non-zero weight faces are added by
TESSA

and (2, 3, 5), can be added, as the addition of any one of these faces leads to a
boundary of three vertices. Subsequently, of the three faces not inserted, two are
now unavailable because one of the vertices 2 ,3,4 or 5 is now interior. The other
face is the current boundary and cannot be added; therefore the next insertion will
make one of the edges of this face interior. The addition of any one of these faces
will be the fifth insertion TESSA makes, and leads to the objective value being
incremented by 2. Of the three edges now on the boundary, two have weight one,
whilst the other has weight zero. Now, while there are still 2(n - 5) faces with
weight one remaining to be added, they all include either of the boundary edges of
weight one. TESSA can add only one face adjacent to each of these edges, as the
edges will then become interior. These two insertions will increment the objective
value by two, and each will be a case (b) insertion. The remaining n - 7 vertices
will not increase the value of the MPG when they are added to the partial solution,
as no non-zero weight faces remain which can be added to the partial solution, and
so the value of the TESSA MPG is 16. A possible partial TESSA MPG could be
that shown in Figure 3.7 where face (2, 3, 4) was chosen, followed by (2, 5, 6) and
(4 , 5, 7) .

Consider now an alternative solution to this problem, which includes all vertices
being adjacent to facility 1 , for example faces (1 , 2, 3) , (1 , 3, 4) , (1 , 4, 5) , . . . , (1 , n -
1 , n) , (1 , n, 2) , which gives weight 2(n-2)+3. We could also add faces (2 , 3, 4) , (2, 4, 5)
and (2, 5, 6) to increment the solution by 5, to give a solution value of 2n + 4, with

I

36 Chapter 3. Obtaining the Adjacency Graph

additional edges added to obtain maximal planarity. Finally Equation 3 .10 com­
pletes the proof.

PTESSA = lim
(

2
16) = 0

n-oo n + 4

3 . 3 Improvement Procedures

(3 . 10)

0

Finally in this chapter, we examine the concept of improvement procedures, which
attempt to make local changes to a heuristically constructed MPG, in an attempt
to improve upon the total adjacency benefit of the MPG. The most simple local
improvement is the diagonal swap which has been described by various authors
[3 , 28, 34, 35, 90] , although it is not always referred to as the diagonal swap. The
diagonal swap considers two faces (a, b, c) , and (a, b, d) , which share the edge (a, b) .
The diagonal of (a , b) is (c, d) , and (c, d) may or may not appear in the current
MPG. If (c, d) is in the MPG, then e"dge (a, b) is said to be braced, while if (c, d)
does not appear in the MPG, (a, b) is said to be unbraced. Eggleton, Al-Hakim
and MacDougall [29] showed that at most two thirds of the edges in an MPG can
be braced. The diagonal swap works on an unbraced edge, replacing the unbraced
edge with its diagonal. This operation is shown in Figure 3.8.

a b > a b

Figure 3.8 : The Diagonal Swap Operation (a , b) ---? (c, d)

Foulds and Robinson [35] introduced the a-operation, which consists of two
cases, the first of which is the diagonal swap, of Figure 3.8, and the second case

3. 3. Improvement Procedures 37

f b > ! b

Figure 3.9: The Second Case of the a-Operation (a, b) -+ (e, f)

Figure 3.10: The Beta Operation x -+ (a , b, c)

can be applied to a braced edge (a, b) as shown in Figure 3.9, and is equivalent to
the two diagonal swaps (c, d) -+ (e , f), followed by (a, b) -+ (c, d) .

Foulds and Robinson (34 , 35] also considered the repositioning of a vertex of
degree three, termed the ,8-operation, shown in Figure 3 . 10, where a vertex x is
taken from face (p, q, r) , and placed in face (a , b, c) .

Foulds and Robinson proved that the a and .8 operations are sufficient to trans­
form any MPG on n vertices to any other MPG on n vertices by a finite sequence
of these operations. The authors also conjectured that the ,8-operation may in fact
be redundant. The second case of the a-operation can be decomposed into first
case a-operations, or diagonal swaps, hence the conjecture of Foulds and Robinson

38 Chapter 3. Obtaining the Adjacency Graph

reduces to the diagonal swap alone. Lehel [74] provided a proof of this conjecture,
however Eggleton and Al-Hakim [28] showed that Lehel's first assumption was in­
correct. A proof was fully completed by Ning [89] who showed the ,8-operation is
indeed redundant , and hence the a-operation alone is sufficient to transform any
MPG on n vertices to any other. Eggleton and Al-Hakim provided another proof
by firstly showing the flaw in Lehel's proof, then providing a correction to complete
Lehel's proof.

Al-Hakim [3] presents the r-operation, which is an extension of the diagonal
swap, but overcomes the problem of braced edges. However Boswell [12] presents
the r-operation in a somewhat more elegant fashion. The following description of
the r -operation is based on that of Boswell.

The r-operation possesses three cases, the first of which is the standard diagonal
swap of Figure 3.8. The second case considers an edge (a , b) , braced by its diagonal
(c, d) . With reference to Figure 3 . 1 1 , showing this operation , the diagonal of (c, d)
is (a , e) . So the operation is that of (a, b) -+ (a , e) , overcoming the difficulty of the
fact that (a , b) is braced.

e b > e b

Figure 3. 1 1 : The Second Case of the r-Operation (a , b) -+ (a, e)

The third case of the r-operation is where edge (a , b) is braced by (c, d) , which
has diagonal (e , !), where e and f are distinct from a , and b. There is a path
between vertex a, and e or J, which does not pass through b, c, or d. The edge
(a , b) , may be replaced by one of edges (a, !) , (b, e) , or (e , f) . Figure 3.12 shows
these three cases. The shaded areas of Figure 3 . 12 indicate an arbitrary subgraph
which contains a path between a and e, and there also exists a path between b and

3.3. Improvement Procedures 39

f b f b

(a) (b)

f b f b

(c) (d)

Figure 3 . 12 : The Third Case of the f-Operation (a) : (a, b) � (b) : (a, J), (c) : (b, e) ,
(d) : (e , f)

40
I

Chapter 3. Obtaining the Adjacency Graph

f . If there is no path between a and e , then paths between a and f, and b and e

exist, and (a , b) may be replaced by (a, e) , (b, f), or (e , f) .
Boswell shows that the f-operation is the best possible single edge replacement

method by proving a series of theorems about edge disjoint MPGs, the proofs of
which can be found in [12] .

Theorem 3.3.1 If two MPGs have edge difference one, then they can be an arbi­
trarily large number of a-operations apart.

Theorem 3.3.2 If two MPGs have edge difference one, then they are only one
r -operation apart.

Theorem 3.3.3 If two MPGs have edge difference two, then they are only two or
three r -operations apart.

Theorem 3.3.4 If two MPGs have edge difference three, then they can be an ar­
bitrarily large number of r -operations apart.

A number of improvement frameworks have been developed in order to imple­
ment these improvement procedures, ranging from simple iterative improvement
[3, 1 3 , 3 1 , 34] , to more complex meta-heuristic frameworks such as Simulated An­
nealing [22, 62] and Tabu Search [43, 44, 45] , as implemented by Boswell [13] .
Foulds e t al. [3 1] perform a computational experiment between Deltahedron, Wheel
Expansion, and Greedy (which recall, requires planarity testing) . The authors also
include Deltahedron with greedy a and f3 improvement operations. Both the SE­
LECT and AVARICE constructions were used for Deltahedron, with and without
improvements, and the Wheel Expansion heuristic. The computational results
show that Greedy and Deltahedron with improvements perform the best overall,
with the Wheel Expansion Heuristic performing poorly as it was dominated by all
three methods in most cases. Foulds et al. noticed that this was a little surprising,
as Wheel Expansion is a generalisation of Deltahedron. Al-Hakim [3] showed the
superior performance of the f-operation, over the a-operation, on a set of 24 test
problems. Boswell [13] undertook a full experiment comparing the f-Operation
under Tabu Search, Simulated Annealing, and Iterative Improvement frameworks.
The results show that the f-operation under the Tabu Search framework, is the
most effective improvement procedure for obtaining an improved solution to an ini­
tial MPG, providing far superior solutions to iterative improvement , and slightly
superior solutions to Simulated Annealing, but with far less running time required.

3.3. Improvement Procedures 41

Coda:

In this chapter we have described the various methods in the literature for generat­
ing a highly weighted MPG. The most widely used methods are those which bypass
the need for planarity testing by exploiting the structure of the MPG. Furthermore
computational experiments conducted by various authors have shown that regard­
less of the initial construction of the MPG, the most powerful tool to constructing
a highly weighted MPG, is the implementation of improvement procedures, the
most powerful of which is the f-operation, using a Tabu Search framework to di­
rect the improvement process. We will return to the role of the MPG later, and in
particular its lack of correspondence with the most practical layout.

In the next chapter, we examine the second phase of the GTFLP, the devel­
opment of the layout from the MPG and area requirements. We examine the
current methods in the literature, and where appropriate develop these algorithms
to facilitate implementation . We will see that there exists a simple procedure for
Deltahedron MPGs, and we describe and develop a variety of more theoretical
methods for arbitrarily constructed MPGs. vVe examine the greater flexibility of
layout procedures which do not enforce an overlying grid, and finally show that
characterisations of some MPGs are possible so that the layout is developed easily,
utilising the Deltahedron type of layout approach, by exploiting structure inherent
in these MPGs.

42 Chapter 3. Obtaining the Adjacency Graph

..

43

Chapter 4

Obtaining the B lock Plan

In this chapter we examine the construction of the dimensioned orthogonal geo­
metric dual, or layout , for any specified MPG with area requirements. We discuss
in detail previous methods from the literature, providing enhancements to these
methods where appropriate to facilitate implementation. Previously, little had
been done to implement the more theoretical methods that have been presented.
The modifications, either in the implementation, or in rounding out the theoret­
ical background, are in some instances to the point where the original algorithm
is no longer recognisable, with only the motivational argument remaining. This
effectively leads to some new methods for designing a layout , and indeed we will
also see the motivation for, and implementation of, some rather different methods.
Finally we present a characterisation of MPGs with special structural properties
which enable a dimensionalisable layout to be easily constructed by exploiting the
MPG structure.

4.1 D eltahedron

The first method that we will discuss is the Deltahedron layout method. As could
probably be surmised , this �ethod uses the special structure of the Deltahedron
MPG from Section 3 .2 . 1 to create the layout. The principle behind this approach
was first shown by G iffin, Foulds and Cameron (41] for Deltahedron MPGs with
at most two distance classes, plus the exterior facility, and was fully developed by
Giffin, Watson and Foulds [42] for arbitrary Deltahedron MPGs. The description
of the Deltahedron Layout Algorithm which follows is based on that of the later.

44 Chapter 4. Obtaining the Block Plan

4. 1 . 1 The D e lt ahedron Layout Algorithm

In Section 3 .2 .1 we showed that the Deltahedron heuristic proceeds by inserting one
vertex and three edges at a time into a face of the current MPG, starting with the
Tetrahedron as the initial triangulation. The layout is constructed in essentially the
same manner by considering an initial template representing the Tetrahedron, and
then placing facilities in the layout in the same order in which they were inserted
into the MPG. Throughout this description, we assume that the exterior facility,
labelled 1 , is in the initial Tetrahedron, which is a requirement for the creation
of the layout by this method. We will see in Section 4 . 1 . 3 that this requirement
can always be satisfied by a rearranging of the insertion order used to generate the
MPG, which forces the exterior to be in the initial Tetrahedron without changing
the final MPG.

The initial tetrahedron may be constructed as shown in Figure 4 . 1 . The wall
intersections of the layout labelled J are the 3-joints, whereas those labelled j de­
note 2-joints. This labelling can be easily updated to reflect subsequent placements
of facilities into the layout.

1(1 ,3,4)

j 1 j

J

r-----------------------�

2
1(2,3,4)

t-----�-----4 1(1 ,2,4)

3 4

1(1 ,3,4) J

Figure 4 . 1 : The Initial Deltahedron Layout

If a face (!1, f2 , h) is deleted from the MPG by inserting a vertex f in this face,
then in the layout f must be placed adjacent to the facilities represented in the
MPG by f1, h and !J. In order to maximise the resultant regularity of these four
facilities, we require a suitable placement mechanism, which maintains as much of

4. 1 . Deltahedron 45

the current structure of the- layout as possible. In order to attain this, we place
f inside one of fh h, or f3 bordering the other two facilities. The dimensioning
of the layout must also be addressed, and the placement of facilities in the layout
must ensure that we can dimension the layout once the layout is completed, by
ensuring that no faultlines are formed during the placement process. Figure 4.2
shows the four possibilities for the insertion of a facility 5 into the initial layout,
corresponding to vertex 5 being placed in each of the four faces of the initial MPG.
We describe such placements of a facility to be at a particular 3-joint.

In Figure 4 .2(a) facility 5 i s being placed at 3-joint (1 , 2, 3), i. e. adjacent to
facilities 1, 2, and 3 . In order to maintain the rectangular layout perimeter the
placement host must be either facility 2 or 3. If facility 2 were to be chosen, then
the layout would take the form of Figure 4.3, with all facilities maintaining their
rectangularity, and the adjacencies (1 , 5) , (2, 5) and (3, 5) would all be assured,
regardless of the facility areas. However if a4a5 > a2a3 , then adjacency (2, 3) would
not be satisfied. Therefore we do not allow placements of the form of Figure 4 .3 .

Some 3-joint labels require updating to reflect the placement of facility 5. In
the MPG, face (1 , 2, 3) is removed, being replaced by faces (1 , 2, 5) , (1 , 3, 5) , and
(2 , 3, 5), which i s parallelled in the layout, with the 3-joint (1 , 2, 5) replacing (1 , 2, 3) ,
and two new 3-joints (1 , 3 , 5) , and (2 , 3, 5) being created. The placement of facility
5 in Figures 4 .2(b) and 4 .2(c) are similar to that of Figure 4.2(a) , however the
placement of facility 5 at the 3-joint (2, 3, 4) is different, since facility 5 cannot
be adjacent to the exterior. This cannot be accommodated, while maintaining
rectangularity of each facili ty, and either facility 3 or 4 must become 1-shaped as
shown in Figure 4.2(d) .

Two basic placement operations are easily identifiable, as those of Figures 4 .2(a)
and 4.2(d) ; each having an obvious variation if the placement host is 1-shaped
rather than rectangular, and implicit variants determined by reflections and rota­
tions of these operations. Describing fully these two operations will enable us to
see the choice of placement hosts, and the use of placement directions. We call the
two operations P01 , the general form of which is given in Figure 4 .4 , and is akin
to the operation of Figure 4 .2(a) , while the second operation of Figure 4 .5 is called
P02, and is akin to Figure 4.2(d) . Figure 4.4 shows facility h being placed in
ft at 3-joint J. For simplicity, the fact that f1 is chosen as the placement host at
J is indicated by an arrow emanating from J into f1 , called a placement direction.

46

5

3

5

1

2

3

(a) 5 at (1 ,2 ,3)

1

2

(c) 5 at (1 ,3,4)

4

4

Chapter 4. Obtaining the Block Plan

3

3

1

2

4

(b) 5 at (1 ,2,4)

1

2

5

(d) 5 at (2 ,3 ,4)

5

4

Figure 4.2 : Four options for placing facility 5 within initial layout

4. 1 . Deltahedron 47

1

5 2

3 4

Figure 4.3: A forbidden placement of facility 5 at (1 , 2, 3)

J 3-joint

2-joint 3-joint
Figure 4.4: Deltahedron Placement Operation POl

48 Chapter 4. Obtaining the Block Plan

If cl is a 2-joint
If C1 is a 3-joint

Figure 4.5: Deltahedron Placement Operation P02

New 3-joints J1 and J2 are created by the. placement of j2 • In the undimensioned
layout , J1 and J2 are created by bisecting the wall containing the adjacent joints.
The placement direction at J2 is as shown, so that any further facility placed at J2
will enable ft and h to maintain rectangularity, whereas placing within f1 would
make ft L-shaped. Having determined the placement direction for J2 , the di�ection
for J1 must follow on the same side of the wall, in order that a faultline is not cre­
ated. This ensures the maintenance of the adjacency between ft and f2 irrespective
of subsequent placements at either J1 or J2 • When applying POl to an L-shaped
placement host, the 3-joint J1 bisects the wall connecting J and the 3-joint adjacent
to J, with J2 equidistant from the 2-joint , whilst maintaining orthogonality. Using
the L-shaped placement host for POl , the placement directions at J1 and J2 are
defined similarly as for the rectangular version of POl , whereas those for the other
existing 3-joints of ft have already been defined by some previous application of
P02, which we now consider.

The general form of the placement operation P02 is shown in Figure 4.5 for the
case of a rectangular placement host, with the obvious variation for the 1-shaped
placement host . The placement is of facility h in f1 at J. The two cases where C1
is a 2- or 3-joint may be considered together as only the placement direction at C2
is affected in each instance. Note that C2 must be a 3-joint, otherwise we would
be able to apply P O l . The new 3-joints, are again labelled J1 and J2 , with the

4. 1 . Deltahedron 49

placement directions at these 3-joints motivated by the desire to maintain facility
shape regularity. Had either of these placement directions been directed into /1 1
/1 would prematurely lose its L-shape. It is evident from their descriptions that
applications of POl and P02 will not result in prescribed adjacencies being lost.

Note that following the insertion of the first facility into the initial layout, all
subsequent placement directions are then uniquely defined. Regularity of the layout
is maintained, as Deltahedron layouts have a worst case room shape topologically
equivalent to a T, which we prove in Theorem 4. 1 . 1 .

Theorem 4 .1.1 The operations POJ and P02 together with the initial layout con­
figuration for the Tetrahedron will always generate at worst T-shaped facilities

Proof: Certainly this is t rue for all layouts of four or five facilities, as shown by
Figures 4. 1 and 4.2. Let us then assume that we have a current layout with at
least five faci lities, so all placement directions are now uniquely prescribed. The
insertion of the entering facility is made totally within the appropriate placement
host, therefore only the placement host can have its shape worsened. Note that the
application of POl from Figure 4.4 does not worsen the shape of /1 1 and therefore
only P02 can. Similarly, if we perform P 02 when ft is a rectangle, then /1 becomes
L-shaped. The only way in which we may create a facility shape worse than a
rectangle or an L is to perform P02 on an L-shaped placement host. Consider
then P02, with ft L-shaped; referring to Figure 4 .5 , the only way in which the
shape of !I can be worsened is via placement at c3, when cl is a 3-joint, as if cl is
a 2-joint, we are performing POl . If we perform this placement at C3, then /1 , will
become T-shaped; but , by construction, no placement directions now lie within /i ,
hence /1 can never again be a placement host , consequently never worsening its
shape beyond a T. 0

We must now consider the final phase of the Deltahedron Layout Algorithm:
dimensioning. Deltahedron layouts by construction are dimensionalisable. This
enables the dimensioning to be applied as a post-construction phase. Indeed, the
layout itself is constructed without recourse to the area specifications, which as
we will see in examining other methods is a most desirable property. The process
whereby we enforce the area specifications on an undimensioned dimensionalisable
layout is called inflation. By sequentially considering blocks of facilities created by
the initial layout, or by applications of POl , we are able to easily determine the

50

t

I

Chapter 4. Obtaining the Block Plan

Figure 4.6: Dimensioning of L-shaped Facilities

dimensions of these blocks given only the dimensions of the layout perimeter. The

only difficult component of this process is the dimensioning of T- and L-shaped

facilities, and the blocks of facilities within them. Firstly let us consider Figure 4.6

which examines a facility J� , and a facility or block of facilities h placed within ft .

A standard way of dimensioning f1 and h is given by Equation 4 . 1 .

� = (4 . 1)

We treat the case for the T-shaped facility in much the same way, with reference

to Figure 4.7. Facilit ies f2 and h must not be adjacent, let alone overlap, and this

is easily accomplished via Equations 4.2 and 4.3. Note that H2 and H3 are the

same value, hence f1 will have 4 collinear corner points, and hence can be divided

easily into two rectangles.

(4.2)

(4.3)

The full Deltahedron Layout Algorithm is given in Algorithm 4. 1 .

4. 1 . Deltahedron 51

t t
f2 f3

ft

Figure 4. 7: Dimensioning of T -shaped Facilities

Algorithm 4 . 1 The Deltahedron Layout Algorithm

end

Input: Deltahedron Insertion Order in form (vertex, triangle) of MPG, to­
gether with initial tetrahedmn, exterior in tetrahedron; area specifications
Output: Dimensioned Layout dual to MPG
Create initial layout from tetrahedron
for each (vertex, triangle) of Deltahedron Insertion Order do

h +-- new facility to be placed

end

J +-- 3-joint
f1 +-- placement host indicated by placement direction at J

if there is a 2-joint J' adjacent to J then
apply PO 1 at J

add placement directions for h
end
else

apply P02 at J
add placement directions for h

end

Dimension layout via inflation

52 Chapter 4. Obtaining the Block Plan

4 . 1 .2 An Illustrat ive Example

We now proceed to illustrate the Deltahedron Layout Algorithm using the MPG of

Figure 4.8, and area specifications of Table 4. 1 . The initial tetrahedron has vertices

1 ,2 ,3 and 4, while the insertion order is given in Table 4.2. Initially we arbitrarily

set the placement directions at joints (2, 3, 4) , and (1 , 3, 4) into facility 4, however

following the insertion of facility 5 these must now be directed i nto facility 3; this

is the only occasion where such a redirection is required. The final dimensioned

layout is given in Figure 4.9, where the arrows indicate the placement directions

of any further placements which could occur. Notice that facility 3 (which is T­

shaped) has no placement directions directed into it, and hence will never become

worse than a T -shape. The dimensioning is first examined by considering the ratio

a2 :a3 + a4 + as + a6 + a1 + as + ag + a10, followed by a3 + a6 + a1 + as:a4 + as + a9 + a 10,
and a4:as + ag + a10. The dimensioning of facility 6 is completed by the ratio

a6:a3 + a7 + as, while facility 9 is dimensioned via a9:as + a10. Facilities 7, 8 and

10 are dimensioned via Equations 4.1 - 4 .3 .

2 3

Figure 4.8: Deltahedron Illustrative Example

Facility 1 2 3 4 5 6 7 8 9 1 0
Area - 15 12 12 10 19 1 1 18 21 1 0

Table 4 . 1 : Area specifications for the Deltahedron Illustrative Example

4. 1 . Deltahedron 53

Facility 3-joint Placement Operation
5 (1 ,2,4) P01
6 (1 ,3,4) P01
7 (1 ,2,3) P02
8 (2,3,4) P02
9 (1 ,4,5) P01
10 (1 ,2 ,5) P02

Table 4.2: Placement Operations for the Deltahedron Illustrative Example

1
2

6 9

Figure 4.9 : The Deltahedron Layout for the Illustrative Example

4 . 1 . 3 Obtaining an Initial Tetrahedron cont aining t h e Ex­

terior

It has been assumed that in order for the Deltahedron Layout Algorithm to gen­
erate a feasible layout , the exterior vertex must be one of the vertices in the initial
tetrahedron to ensure that the exterior facility i s to be on the outside of the final
layout [31] . We present two algorithms to show that we can transform an arbitrary
Deltahedron-generated MPG into one, where the exterior vertex is in the initial
Tetrahedron. In order to describe the first algorithm, define two graphs G�, the

54 Chapter 4. Obtaining the Block Plan

given arbitrary Deltahedron MPG, and Go , the graph generated from the algo­

rithm. We will show that, regardless of the insertion order used to create G1 , the

algorithm will produce the exterior vertex in the Tetrahedron of Go , and G1 = G0 .

We call this algorithm the Exterior to Tetrahedron Algorithm 1 (ETA!) , which is

shown in Algorithm 4.2. The motivation behind this algorithm, is that there ex­

ists a Tetrahedron in the MPG which contains the exterior; by first finding this

Tetrahedron, and then subsequently building up the insertion order from it, we

regenerate our original MPG.

Algorithm 4.2 Exterior to Tetrahedron Algorithm 1

end

Input: G1
Output: l<4 ; Revised Insertion Order in form (vertex, triangle)
Vo +- 0

Eo +- 0

To +- 0
Determine a , b, c E V1 , such that { (a , e) , (b, e) , (c, e) , (a , b) , (a , c) , (b, c) } � E1

Vo +- {a , b, c, e }
Eo +- { (a , b) , (a , c) , (a , e) , (b, c) , (b, e) , (c, e) }
To +- { (a , b, c) , (a , b, e) , (a , c, e) , (b, c, e) }
l<4 +- (a , b, c, e)
if (I Vo l < n) then

end

Determine x � Vo and p, q , r E Vo such that { (p, x) , (q , x) , (r, x) } � E1
and (p, q , r) E To

Insertion:(x , (p, q , r))
Vo +- Vo U {x}
Eo +- Eo U { (p, x) , (q, x) , (r, x) }
To +- To U { (p, q , x) , (p, r, x) , (q, r, x) } \ { (p, q, r)}

In order to prove that the algorithm works, we must first prove Lemmas 4. 1 . 1

and 4. 1 .2 .

Lemma 4 . 1 . 1 For every vertex x E V1 :3 {p, q , r} � V1 such that { (p, q) , (p, r) , (q, r) ,
(p, x) , (q , x) , (r, x) } � E1

4. 1 . Deltahedron 55

P roof: During the Deltahedron insertion process, we insert a vertex x into a face

(p, q, r) that is already in the adjacency graph. The insertion removes the face

(p, q, r) and creates three more - (p, q, x) , (p, r, x) , and (q, r, x) . The insertion of

vertex x into face (p, q, r) , means that the edges (p, x) , (q, x) , and (r, x) are all

placed in E1. While additional insertions may delete faces from T�, no edges are

ever removed from E1. Consider the special case of the initial Tetrahedron: let

K4 = (i , j, k, l) , then the edges (i , j) , (i , k) , (i , l) , (j, k) , (j, l) , and (k, l) are all added
0

Lemma 4 .1 .2 For every face (p, q , r) E T1 , 3 x E Vr such that { (p, q) , (p, r) , (q, r) ,
(p, x) , (q, x) , (r, x)} � E1

Proof: Since every vertex is inserted into a face, there must exist a vertex x, such

that w. l. o .g. vertex q, say, was inserted in face (p, r, x) , which would create the

face (p, q , r) E Tr, and the edges { (p, q) , (p, r) , (q, r) , (p, x) , (q, x) , (r, x) } E E1. 0

Theorem 4 .1 . 2 ETAJ will always generate an insertion order containing the ex­
terior face in the initial tetrahedron, given any Deltahedron generated MPG.

Proof: Having determined which vertex will constitute the exterior facility, we

know by Lemma 4 . 1 . 1 that the three vertices a, b, and c must exist. If there is no

vertex x adjacent to a triangle (p, q, r) E To , then To � Tr. If To = T1, then IVo I
= n, and we have finished. Therefore let us assume that To C T1 and that there is

no candidate x to enter Vo which satisfies the condition that {p, q , r} E Vo , such

that { (p, x) , (q , x) , (r, x) } E E1, and { (p, q , r)} E To . Now the graph consisting of

the faces in To is always a Deltahedron generated MPG. This is because we start

with an initial Tetrahedron, consisting of (a, b, c, e) and we add vertices one at a

time into a face. Since To C Tr, by Lemma 4. 1 .2, we know that there must exist a

vertex x which will enter one of the faces in To . Therefore we have a contradiction,

and x is a candidate to enter. 0

Theorem 4 .1 .3 The worst case time complexity of ETAJ is O(n2}

Proof: ETAl is most efficient when, during the generation of the initial MPG, we

store the face that each vertex is inserted into (the vertices in the initial Tetrahedron

56 Chapter 4. Obtaining the Block Plan

can each have the other 3 vertices in the initial Tetrahedron as their face) . In

general this is all that is stored, as the adjacency graph is largely redundant.

Having determined the exterior facility, and the three vertices adjacent to it, we

can order the remaining n - 4 vertices by their facility number. These steps take

O(n) t ime.

Consider now the partial graph of k vertices. In the worst case, there will be
only one vertex which can enter the partial graph, and this vertex will be the last

one considered. Therefore, this will take n - k steps. Therefore the total time will

be given by Equation 4.4.

n-4
O(n) + O(l: (n - k)) = O(n2) (4.4)

k=l
0

We now describe a second more elegant, method for producing a revised Delta­

hedron insertion order, in which the exterior facility is in the initial Tetrahedron.

This algorithm, called ETA2, sequentially . deletes vertices of degree 3 until we are

left with a tetrahedron which contains the exterior facility. ETA2 is described in

Algorithm 4.3 , again calling the given MPG GI.

Algorithm 4.3 Exterior to Tetrahedron Algorithm 2

end

Input: GI
Output: I<4 ; Revised Insertion Order in form (vertex, triangle)
while (l VI I > 4) do

end

if dx = 3 and x =/= exterior facility and x adjacent to p, q, r then
Insertion:(x,(p, q , r))
VI +- VI\{x}
E1 +- EI\{ (p, x) , (q, x) , (r, x) }
T1 +- TI\{ (p, q , x) , (p, r, x) , (q , r, x) } U {(p, q, r) }

end

Reverse insertion order

In order to prove that ETA2 also works we require Lemmas 4 . 1 .3 and 4 . 1 .4.

4. 1 . Deltahedron 57

Lemma 4 .1 .3 Insertion of a vertex into a Deltahedron MPG on n > 5 vertices
will not decrease the number of vertices of degree 3.

Proof: Consider a Deltahedron MPG on k vertices, which has i vertices of degree

3. The insertion of a vertex into a face, will only increase the degree of the vertices

of degree 3 if they are part of that face. Therefore we can only decrease the number

of vertices of degree 3 if there are at least two vertices of degree 3 in the face. But

in a MPG we cannot have two adjacent vertices of degree 3 and therefore we cannot

decrease the number of vertices of degree 3. An entering vertex can be placed in

a face with no vertex of degree 3 , and therefore the subsequent Deltahedron MPG

on k + 1 vertices has either i or i + 1 vertices of degree 3 . 0

Lemma 4 .1 .4 There are at least two vertices of degree 3 in a Deltahedron MPG
on n � 5 vertices.

Proof: The initial Tetrahedron /{4 has all vertices of degree 3. Now consider

the first Deltahedron insertion: a vertex will be placed in a face of this initial

Tetrahedron, and will have degree 3. Also the other vertex in the Tetrahedron

which is not in the face, will still have degree 3. So a Deltahedron MPG on 5

vertices has two vertices of degree 3, therefore for n > 5 we must have at least 2
vertices of degree 3, by Lemma 4.1 .3. 0

Theorem 4 .1 .4 ETA2 will always generate an insertion order containing the ex­
terior face in the initial tetrahedron, given any Deltahedron generated MPG.

Proof: By Lemma 4. 1 .4 we know that there are at least 2 vertices of degree 3

initially, and after each deletion. Therefore we can always delete a vertex of degree

3 which is not the exterior, and hence the exterior must be one of the vertices in

the final /{4 • 0

Theorem 4. 1 . 5 The worst case time complexity of ETA2 is O(n2)

Proof: Given a list of the vertex degrees we can simply delete the vertex with
'

minimum degree which is not the exterior vertex at each stage, taking O(n) time.

However we must update the degrees of the vertices that made up the face that

58 Chapter 4. Obtaining the Block Plan

the vertex was deleted from which will also take 0(n) time. We must repeat this

process n - 4 times hence the complexity is given by Equation 4.5.

n-4
2: (0(n) + O(n)) = O(n2) (4.5)
i=l

0

Obviously ETA2 appears less cumbersome than ETA l , and in practise, when

building up an adjacency graph by Deltahedron, as soon as the exterior facility

is placed in the MPG, the feasible Deltahedron insertion order can be found; this

saves us some work rather than waiting until all vertices are in the MPG before

finding the feasible insertion order. ETA2 is conceptually more simple, and easier

to implement. The two methods could be thought of as starting at opposite ends,

where ETAl finds the initial Tetrahedron from the arbitrary MPG, and then finds

vertices to add, ETA2 finds the initial Tetrahedron as the final step. Therefore

we have overcome the problem outlined initially by Foulds et al. [3 1) , so that in

constructing the Deltahedron MPG, the exterior vertex need mot be treated any

differently than the other vertices of the MPG.

4 . 1 .4 The Extended Deltahedron Layout Algorithm ,

We conclude our discussion of the Deltahedron Layout Algorithm, with an exten­

sion of the layout procedure motivated from the extension of Leung [78] to the

Deltahedron MPG Algorithm. We discussed in Section 3.2.2 how Leung provided

a second operation for the Deltahedron MPG Algorithm to obtain the Extended

Deltahedron MPG Algorithm, whereby we insert three mutually adjacent vertices '

into a single face of the currently constructed MPG, each having two adjacencies

with the vertices of the face. This extra operation can be helpful in construct­

ing highly weighted MPGs, however the corresponding layout .cannot be directly

constructed via the Deltahedron Layout Algorithm given in Section 4. 1 . 1 . In this

section we will show that we need define two further placement operations P03,

and P04 , which are analogous to POl and P02 respectively, in order to com­

plete the Deltahedron Layout Algorithm Extension. We will discuss the extended

method of determining the insertion order, and examine the ramifications upon the

worst case facility shape.

Firstly let us determine how we might obtain the insertion order from a given

4. 1 . Deltahedron 59

arbitrary Extended Deltahedron MPG, also including the rationale of ETA2, in

order to complete both processes simultaneously. Previously we would delete ver­

tices of degree three (which were not the exterior) to obtain our insertion order.

In this case, we do exactly the same, except we also delete structures of three mu­

tually adjacent vertices, none of which is the exterior, each of degree four. This

second structure is that proposed by Leung. This is done until either we have the

Tetrahedron, or the Regular Octahedron, remaining. Note that Leung initialised

with only the Tetrahedron, but this could easily be extended to include the Reg­

ular Octahedron starting configuration, as outlined in Section 3.2.2. We see here,

that there now exist two initial structures, the first is the Tetrahedron, for which

we have already developed an initial layout; the Regular Octahedron provides the

initial layout configurations of Figure 4. 10, with the initial placement directions,

again indicated by arrows.

1 1

2 2

(a) (b)

Figure 4 . 10 : Initial layouts for the Regular Octahedron

Note that in Figure 4 . 10(a) , the placement directions on the wall between facilities

5 and 6 could be directed into facility 5 or 6, as long as both placement directions

are directed into the same facility, similarly for Figure 4 . 1 O(b) for the placement

directions between facilities 3 and 5, and facilities 4 and 5. Which initial configu­

ration and set of placement directions to use would be a matter of preference, and

indeed all possibilities could be examined .

60

J

2-joint

Chapter 4. Obtaining the Block Plan

3-joint

3-joint
Figure 4 . 1 1 : Extended Deltahedron Placement Operation P03

We now introduce placement operations P03 and P04. The form of P03

is shown in Figure 4. 1 1 , and is analogous to P01 , where we do not worsen the

shape of the placement host , and we place at J which is adjacent to a 2-joint .

Again the placement directions between /2 and /3 could be on either side of the

wall. Placement operation P04 is shown in Figure 4.12, and we see here that the

placement directions for cl and c2 are linked, in that they must both be on the

same side of the wall. This operation is akin to P02, where there is no 2-joint

adjacent to J.

Previously, any facility in the Deltahedron Layout Algorithm would become

at worst T-shaped, the Extended Deltahedron Layout Algorithm cannot maintain

this guarantee, relaxing the worst case room shape to that of an X; the worst

possible for dimensionalisable layouts. Therefore we now allow X, S and Y shaped

facilities under this construction. Obviously the dimensionalisability of Extended

Deltahedron Layouts, is retained by the consistent use of placement directions.

The final issue which we need to discuss here, is the dimensioning of any S-,

Y- or X-shaped facilities. With reference to Figure 4 . 13 , we obtain the dimensions

provided in Equations 4 .6 - 4 .8 . The values for H; can be derived as a function

of a fi , and H1 only, if desired. Furthermore Equations 4 .6 - 4 .8 provide the most

general form of the dimensioning of irregular facilities. Dimensioning for a T­

shaped facility for example, could be provided by setting a J4 = 0 and a J5 = 0 . This

4. 1 . Deltahedron 6 1

Figure 4. 12: Extended Deltahedron Placement Operation P04

._ H2� � H3�

f2 f3

ft

f4 fs

Figure 4. 1 3: Dimensioning of X-shaped facilities

62 Chapter 4. Obtaining the Block Plan

will not produce the same dimensioning of Equations 4 .2 and 4.3, but is still a valid

dimensioning.

(4.6)

(4.7)

(4.8)

4 . 2 Grid Approaches

The first integrated attempt at the development of an algorithm which would du­

alise any given MPG was proposed by Hassan and Hogg [52] . Their method used

the theme of the classical ALDEP and SHAPE algorithms, within a graph theo­

retic framework. They outlined three phases for constructing a layout: the order

of selecting facilities to enter the layout , the placement of the entering facility, and

finally the construction of facility shapes, adhering to specified area and regularity

requirements.

We now discuss the method proposed by Hassan and Hogg in more detail. The

procedure considers facilities one at a time for both construction and placement

within the layout . A rectangular grid is constructed of unit squares having total

area equal to the sum of the areas of all facilities. The first facility is placed in the

northwest corner, and extends downwards. Subsequent facilities are placed adjacent

to the previously placed facility, and at least one other placed facility, starting

from where the previous facility ended. When the layout boundary is reached the

direction of expansion is reversed, following the classical ALDEP approach.

The entering facility is determined by establishing a set Gi for all unplaced

facilities i; Gi is the set of all placed facilities that have adjacency in the MPG

with the facility i . If IGd 2: 2, denote two of its elements as 91 and 92 , which direct

the placement of facility i in the layout , with one of 91 or 92 being the last facility

that was placed. There may be more than one i which satisfies these requirements;

the tie-breaking rule used by Hassan and Hogg chooses the facility to enter as the

one with the greatest number of adjacencies in the current partial layout; if the tie

remains unsolved the candidate facility with the largest area is then chosen.

4.2. Grid Approaches 63

Upon designating the entering facility, a set of candidate squares must be de­

veloped, within which the entering facility can be placed in order to maintain

feasibility of the adjacencies in the MPG in the current layout , without precluding

subsequent facility placements. These candidate squares are defined by determin­

ing starting(S) and ending(E) , rows(R) and columns(C) for the candidate squares.

S R = R(g1) + A, where R(g1) is the last boundary row of g1 reached in the direction

of expansion, and A = 1 if the direction of expansion is downwards, and - 1 other­

wise. ER = R(g2) - Aa(g2) , where a(g2) + 1 is the number of remaining adjacencies

to be satisfied for 92 · se = mingEGie2(9) + 1 , where e2(9) is the rightmost column

of facility g. Finally Ee = Se + 8c, where 8c is the number of columns determined

proportional to the area of the entering facility and the number of candidate rows

obtained. From these candidate squares a set of size lad is selected by considering

-the minimum cost of assigning j a i l of these candidate squares to define facility i .
Following this assignment, p and q which are the 3-joints at g1 and g2 are denoted,

assigning one as q* to ensure vertical direction of expansion of the layout, as the

next facility to enter will have q* as one of its 3-joints. The authors provide an

example of the algorithm working for a seven facility problem proposed by Moore

[88] . We will return to the theoretical motivation of this approach in Section 4.4.

Al-Hakim [4] provided the first cracks in the method proposed by Hassan and

Hogg by producing a counter example. We provide another example here, to

demonstrate the method of Hassan and Hogg, and to show the flaws in it . Consider

the six facility problem of Figure 4 .14 , with area specifications given by Table 4.3.

Table 4 .4 give the process for inserting the first three facilities, while Figure 4 . 15

provides the layout after these first three placements. At this point we see the

flaw of this approach; facility 5 cannot obtain its adjacency with facility 2 from

this partial layout. Therefore the approach of Hassan and Hogg fails to dualise the

MPG in this case.

Al-Hakim demonstrates by a series of examples how the method will fail to

place all facilities in the presence of so-called nested facilities, which are essentially

facilities that lie within a separating triangle. Notice in the example of Figure 4 . 14

facilities 5 and 6 laid within the separating triangle (2 , 3 , 4) . By identifying sets of

nested facilities Al-Hakim presents a remedy to this problem, by assuming blocks

of nested facilities are treated as a single facility initially, and by then considering

each block of nested facilities in turn, and laying out the facilities in each block

64

1

2

Chapter 4. Obtaining the Block Plan

3
Figure 4 . 14 : Illustrative Example of the method of Hassan and Hogg

Facility 1 2 3 4 5 6
Area - 25 23 18 19 25

Table 4 .3 : Area Specifications for the Hassan and Hogg Illustrative Example

z Gi .A 91 92 p q q*

2 1 1 1 1 a b -
3 1 ,2 - 1 1 2 c cl b
4 1 ,2,3 - 1 1 3 f e cl

Table 4 .4 : Insertion Processes for the Hassan and Hogg Illustrative Example

4.2. Grid Approaches

a
1 f

. . I I
I I · · · ·� ····•···· · · · · ·t· · · ·i·····t· · · ·t· · · · · · · ·•· · · ·�· · · ·

: : : : 4 : : : :
: : : : : : : : · · · · � ········· · · · ··· · · · · ·· · · · � · · · · · · · · ·
. : : : : : : : :

. . . . :. · · ·:. ·: :··.. : :

! 2 : d : : e . . : i
.......... . ,... ,,. ,

.
• • • • � •••• 't---, · · · · ·� .••• i· · i + : +

: : : : : : : :
I I I I I I I I

.;. · · · · �· · · · ·So· · · -�· · · · · · · ·1· · · ·� ·-··1· · · ·�· - · ·
. I I I I I I I I
. · · · · •·· · · ·• · · · ·•····· · · · · · · · · · � · · · · · · · · · .. · · · ·

: : ! 3 ! : : : :
.

· · · · �· · · · · · · · ·�· · · · ·� · · · · (····· · · · · •· · · · ·>· · · · • ····�· · · · ·
. : : : : : : : :
. • . . •• . . . • •.
.

b c

Figure 4.15 : Partial Hassan and Hogg Solution

65

by the same method, as was employed during the initial layout . Hassan [50] de­

fended the original paper in the light of Al-Hakim's comments in [4] , using the

argument that Al-Hakim violated the two assumptions of the original paper [52] ,

namely that the umbrella effect described in [41] was not present , and that the

facility areas were compatible. The existence of the umbrella effect is easily deter­

mined, but the compatible area requirement is not well defined in the original paper

and although Hassan [50] provides examples of compatible areas, there is still no

guarantee of existence of the layout ; indeed, the first counterexample proposed by

Al-Hakim consisted of only five facilities, which d idn't violate these assumptions.

Hassan [50] eventually acknowledged that the method is best suited to uncompli­

cated situations, showing further that the method is very sensitive to complicated

substructures within the MPG. The dimensions of the layout perimeter can play

a large part in the applicability of the method, as can even small deviations from

the assumptions in the original paper. Hassan shows examples that will only work

under manual implementation, as they cannot work under the layout process de­

scribed in the original paper.

Overcoming the difficulties inherent in the counterexamples proposed by Al­

Hakim turns out to be very simple. The basic problem with the original method is

that, in the presence of separating triangles, there can exist more than one vertex

66 Chapter 4. Obtaining the Block Plan

adjacent to two already placed facilities, one of which is the last facility placed. By

choosing the facility to enter which actually shares a face with the two facilities to

which it is adjacent, we can remove this problem. In Section 4.4, we will develop

this further, as well as producing a method based on Hassan and Hogg's original

motivation, but without the clumsiness exhibited by both the facility selection and

placement phases. Al-Hakim's counterexamples show the flaws in the selection

phase, as making an alternative choice of facility to enter the layout at crucial points

can determine whether or not the layout can to be completed. In Section 4.4 we will

show that these crucial decisions can be easily made algorithmically, by considering

the nested facil ities discussed by Al-Hakim. The placement phase in the original

method is also awkward. By having an inflexible grid of unit squares it makes it very

difficult to assign small facilities, as there is little flexibility allowed. Furthermore,

the designation of the squares for facility placement is made by considering the

cost of assigning a facility to a set of squares, which is part of the classical, rather

than Graph Theoretic model philosophy. The authors give no indication of what

action might be taken if the set of squares assigned to a facility has holes in it or

is disconnected. For example, i n Figure 4 . 15 , facility 2 could be assigned any 25

(if all costs are the same) of the 30 squares in the first 3 columns of the grid. If all

three squares of row 3 say were not assigned facility 2 would become disconnected.

Although it could be assumed that these assignments would be disallowed, there is

no comment made by the authors that this could even occur. The Hassan and Hogg

method is fundamentally therefore a classical approach, which attempts to use a

given MPG as a guide to creating the layout but with no guarantee of generating

a layout preserving the adjacencies specified by the given MPG.

We made an attempt to improve the approach of Hassan and Hogg; this new

approach proved theoretically correct, but was hindered by an exploding complexity

under implementation. The method relied upon making the correct choice of the

entering facility (as outlined above) , so that a feasible layout would be constructed;

however, the main thrust of the placement routine was to allow grid squares to be

split in half, by row or by column, in order to accommodate tricky placements.

Therefore, in placing a facility, the set of candidate squares was redefined as all

unassigned squares, except those which bordered facilities the entering facility was

not adjacent to. From this set we assigned squares to ensure the facility was as

compact as possible. As a result , there became no possibility of not acquiring all

4.2. Grid Approaches

1
I I I I I I I I
I I I I I I I I

• • r • ., • +--� • • • • • • • • r • ·� • •.- • -.• • ._ • •
I I I I I I I I I I

. . ; . . ;; i . . ; . . ; . . ; . ·!· • .; • • , • •
I I I I I I I I I I · - � · ··· · · · -:- · · · i · · t • - r · -:- · -:- · -:- · -£ · • : 2 :

. - � . ·:- . . . -:· . . - � . ·:- . ·:· . -:· . � - .
I I I I I I I t

• • " • • � • -'• • • . � • •"- • ... • J'e • r# e •
.
I I I I I I I I

.
1 I I I I I I
t I I I I I I

I : 3 I I I I I I
I I I I I I I I

• • r • • • •,• • �· • • • ' • ., • .,. • �· • .. • •
• • • • • • • •

. . ; . . . ·:· . .;. . . . ; . . ;, . -:- . .; . . , . . : • : : : : : :
(a)

67

1
• - � . -� . +----+�!--+,--+ . - � . ·:- . ·:· . �- . � - .
• • r • ._. • +--� · • • • • • • r • ., • ... • ._. • " ' •

I I I I I I I I I
• • ; • • ; • •I- . -:- • • • i ; . . ; . ·!· • .;

I I I I I I I I I
• • \. • • • • • ·I- • • • • • • • i . . . · t . ·!· . ·:· . ·:· . � - . : 2 : :
. - � . ·:- . ·I- . -:· - � . ·:- . ·:· . -:· . � - 5 ��. . ,. � � . . �

• • • • • • • •
• • • • • • • •

.
• 3 • • • • • •
• • • • • • • • • r • • • •,• • ._. • • • ' • .,. • ••• • ._. • ' • •

• • • • • • • •
. . ; . . . ·:· . .;. . . . ; . . ; . . : . . -=· . ' . .

I 1 I I I I I t
.

(b)

Figure 4 . 1 6: Splitting the first row to accommodate facility 2 adjacencies

the adjacencies of the MPG, as if infeasibility was imminent , a row or column of

the grid could have each of its squares split in half in order to allow more flexibility

for subsequent placements. This posed no problem for already placed facilities, as

the assignment for these facilities remained the same. This process is shown by

Figure 4 . 16 , based on the example of Figure 4 . 14 and Table 4.3 , where we are in

danger of not being able to complete the layout, as only one square adjacent to

facility 2 remains, with two adjacencies yet to be met. This is overcome by splitting

row 1 , as in F igure 4 . 16(b) , allowing room for facilities 4 and 5. Further note that

in order to place facilities 4 and 6 we will need to split the final row, to meet the

adjacencies with facility 3.

This method is theoretically valid, as we can spli t grid squares ad nauseum,
however a consequence of allowing grid splitting is an increased number of grid

squares. This led to severe implementation problems when it came to examining

squares for potential assignment, as it took an inordinate amount of time to search

through a very much enlarged grid set. This was the first attempt at developing

a method which would circumvent the problems exhibited by Hassan and Hogg's

approach, but we will see in Section 4.4 that it is superseded by a more relaxed

version of this type approach, which does not require the restrictive grid structure.

The one benefit of an unsplit grid structure is a guaranteed minimum facility width,

, ·

68 Chapter 4. Obtaining the Block Plan

which cannot easily be incorporated within more generic approaches. We will see

i n later chapters that , while we cannot guarantee a minimum facility width under

more flexible approaches, we can in general develop acceptable solutions which

overcome this issue.

4.3 The Contraction Algorithm

In this section we present the first algorithm which was guaranteed to generate a

layout to an arbitrary MPG. Rinsma, Giffin and Robinson [96] presented what we

term the Contraction Algorithm, for determining a facility layout. This method

is important theoretically, not only as the existence of the layout in the arbitrary

case is proved, but also as i t forms a building block via which we can develop other

layout algorithms, by using the motivational ideas and , especially, the placement

routine - the Orthogonal Division Algorithm, which we will discuss later.

The Contraction Algorithm sequentially reduces the given layout to a more

manageable structure via a set of contraction operations, lays out this reduced

problem, and then reverses the contraction process to place the remaining facilities.

We will discuss this method in two parts; the first examines the contraction process,

the second the placement algorithm.

4 . 3 . 1 The Contraction Pro cess

Rinsma et al. reduced the given MPG to a standard form, in which every vertex,

except the exterior, became an element of distance class D1 • This was achieved

by performing a sequence of so-called contraction operations. Successive contrac­

tions involving the vertices in the innermost distance class of the partially trans­

formed MPG provided the mechanism whereby the standard form could be ob­

tained. Rinsma et al. define the contraction operation in the following manner: for

a given edge e = (i , j) in G, let the set of vertices adjacent to i and j be A(i) and

A(j) , respectively. Consider the operation on e whereby vertex j is removed, and

all edges previously incident upon j are now made incident upon i , with all conse­

quent loops and multiple edges coalesced . This operation is called the contraction
of j to i , and the graph obtained from this operation is denoted by G\ij . The set

of vertices adjacent to the new vertex i in G\ij is A(i) U A(j) - { i , j } . Rinsma et
al. further defined the notion of weighted contraction, where ai is the vertex weight

4.3. The Contraction Algorithm 69

of i , and we augment ai by ai . In the layout this would correspond to the merging

of the areas of facilities i and j . This process is shown in Algorithm 4.4, where

S(i) is the set of vertices directly contracted into vertex i .

Algorithm 4.4 The Contraction Operation(j ---+ i)

end

Input: G
Output: G\ij

S(i) .--- S(i) u j

Va .--- Va\i
for k = 1 to n do

end

if ((j, k) E Ea and (i , k) rt Ea) then
Ea +--- Ea U (i, k)

end
Ea .--- Ea\(j, k)

The contraction process works by considering blocks, which are maximal out­

erplanar subgraphs of the MPG, of the innermost distance class. The blocks are

contracted to a single vertex, by sequentially contracting the vertices of degree

two i n the maximal outerplanar subgraph of the block of vertices in the innermost

distance class (and their edges) , to one of the adjacent vertices in the subgraph.

This is achieved using a technique from Rinsma [94] , where a labelling is forced

upon the subgraph, by sequentially labelling vertices adjacent to two other labelled

vertices, starting with an initial labelling of an arbitrarily chosen triangle of the

subgraph. If we call this subgraph H, then, by successively applying H\ij (where i
is the vertex adjacent to j of highest label, initialising with j as the highest labelled

vertex) , a tree will be obtained which can be successively contracted to a single

vertex by contracti ng pendant vertices of the tree. Once the distance class, Dk say,

has been contracted to a single vertex, that vertex is contracted into a vertex of

Dk-t · The contraction process continues until the resulting transformed graph has

all vertices in D1 (and the exterior vertex in D0) . Rinsma et al. state, but do not

prove, that no vertex is contracted into more than twice.

70 Chapter 4. Obtaining the Block Plan

Algorithm 4.5 The Contraction Algorithm

end

Input: MPG G, and facility area specifications
Output: Transformed MPG on m vertices of which m - 1 are in D1
for i = max to 2 do

end

for each maximal outerplanar subgraph H of Di do

end

.

perform Contraction Operation(j -+ k), where j is the highest la­
belled vertex of H, and k the highest labelled vertex adjacent to j
until H is a single vertex following the labelling of Rinsma {94}

for each tree subgraph R of Di do

end

perform Contraction Operation(j -+ k) until R is a single vertex by
contracting pendant vertex j of R to adjacent vertex k of R

for each vertex j of Di do

end

perform Contraction Operation(j -+ k), where (j, k) E Ea, k E
Di-I J and IS(k) l < 2

4.3.2 The Ort hogonal D ivision Algorithm

The second phase of the Contraction Algorithm focuses on the construction of

the layout , firstly by constructing an initial layout using techniques of either the

Deltahedron Layout Algorithm or Rinsma [94] which is described in Section 4. 7. 1 ,

as in the original paper. We will prove i n Section 4.7 .1 that all MPGs with n - 1

facilities i n D1 are Deltahedron-generateable.

Following the construction of this initial layout, a reverse contraction procedure

is performed, in order to generate a layout which is dual to the original MPG. This

is done by considering the reverse order in which facilities were contracted during

the contraction process. This forms the basis of the Orthogonal Division Algorithm

(ODA) , which is conceptually simple but very hard to implement .

The ODA considers a vertex w which was contracted into a vertex x. Facility w
is to be placed within facility x , so that w attains, and x maintains, their respective

4.3. The Contraction Algorithm 71

adjacencies and, following the nomenclature of the Deltahedron Layout Algorithm,

x is the placement host of w. The authors define N(x) to be the neighbours of

vertex x , i. e . the facilities adjacent to x, arranged in a cyclic ordering around x.

The neighbours of x are assumed to be {Nb . . . , Nt } , and the neighbours of w,

{Nb . . . , N., } , where t is the cardinality of N(x), and similarly for s and N(w) .

Consider now the facility x in the currently constructed layout. Let a and f3 be

two points, which are not 2- or 3-joints on the common wall between x and N1 , and

x and N., respectively. The portion of wall of x between the two points a and {3,

which is common successively to N1 , N2 , up to N .. , is denoted by b(x; a, {3) . Let L

be a rectil inear path contained wholly within x, which connects a and {3. The line

L is determined as having a minimum number of corners, and being a minimum

distance h from any wall of x. L divides facility x into two rectanguloids, one

labelled q, which has area aq, and neighbours {Nb . . . , N.,} , which are facility w's

adjacencies , and the other, p, having area ap, and neighbours { N.,+b . . . , Nt , NI } ,
being facility x's adjacencies. This i s more clearly shown by Figure 4 . 1 7. I f aq = aw,

then ap = a x , and we can relabel the two rectanguloids such that p is now facility

x, and q i s now facility w. Note that this is very unlikely to occur. Otherwise

aq > aw or aq < aw, and we must perturb the line L until q has area aw and p has

If aw < aq then we define a very small facility labelled q1 (c) , determined by

b(x; a, /3) , and a second rectilinear l ine Lq(c), a distance c away from the wall

joining a and f3 inside q. If h and v are the minimum distances between any two

horizontal and vertical walls of x respectively, then define c = � min(h, v, h) . The

remainder of q is labelled q2(c) . This is shown in Figure 4. 18.

If aw = aq1 (�) , then relabel q1(c) as w. If aw < aq1 (�), then perform an iterative

bisection search on c to obtain facility w. Otherwise, successively add rectanguloids

from q2 (c) to q1 (c) , until aq1 (�) = aw. We now describe how this rectanguloid

transfer can be achieved. We consider sets of consecutive walls of q2 , { c, d, e, J, g}
as shown in Figure 4 . 19 , with at least one of the corner points at the intersections of

{d, e } , { e , J} , or {f, g } being a corner of the line Lq (c) . In Figure 4 . 19, l ld l l > 1 1! 1 1 ,

however l ldl l can equal 1 1! 1 1 , forcing the lines c and g to be collinear, or even,

l ld l l < 1 1! 1 1 · We will discuss the case given in Figure 4. 19, where l ldl l > 1 1!1 1 , but

the other two cases can be developed similarly. Extend g by a line j to a point

di on d, which divides d into two segments d* , and d'. This divides q2 (c) into

72

q
Nl

rt

Chapter 4. Obtaining the Block Plan

Ns
r-- �

L

p

Figure 4 . 17 : Initial Division of Facility x in the ODA

b(x; a,J3)

a

L�
Figure 4. 18: Division of Rectanguloid q

4.3. The Contraction Algorithm 73

rectanguloid q�(c:) , and a rectangle q3 , which has walls j, a', e and J, as shown in

Figure 4 . 19 .

c d * , d
i
I

• I q3 e j I q; (£) I

f
g

Figure 4.19 : Identification of a Rectangle to Transfer

Now if aw � aq1 (e) + aq3 , augment q1 (c:) by q3, and update the wall description

of q1 (c:) and q2 (c:). If aw < aq1 (e) + aq3 , then only a portion of q3 of area aw - aq1 (e) is

required. This is easily achieved by dividing a' into two sections, a� and a; (where

I I d� I I = awli:n<•)) Creating a line j' parallel to j , and orthogonal to the point at

which a� and a; meet completes the division. The rectangle defined by the walls a; ,
e, /2, and j' is l abelled q4, which is added to q1 (c:) . This is shown by Figure 4.20.

c d * , , dl d2
i i
I I

. I J l
., I j I q4 e

I :
!J 12

g

Figure 4.20: Transferring only a part of the identified rectangle

From this point Rinsma et al. go on to describe the case when aw > aq. It is ,

however, rather clumsily devised, and involves performing similar steps as for the

74 Chapter 4. Obtaining the Block Plan

case when aw < a9, but with p and q, and x and w interchanged throughout , then

decreasing ap by adding rectanguloids to q which are incident upon L. It makes

more sense to simply reverse the entire process described above, by constructing a

rectilinear line Lp(c;) from a to f3 a distance c; from the line b(w; a, /3) , to create p1 (c;)
and then adding rectanguloids in the same manner as also described above. We will

discuss further in Section 4.3.5 the changes that were made in the implementation
of the ODA in order to simplify the rather complex description of Rinsma et al.
Algorithm 4.6 describes the complete ODA process for placing facility w within

facility x, where Y is the set of walls of facility x and we swap the labels of q and

p, and x and w, if aq > aw.

Algorithm 4.6 The Orthogonal Division Algorithm(x ---+ (x, w))
Input: A(w) , A(x) , the rectanguloid facility x
Output: Facilities x and w

determine a and {3, hence determining b(x ; a , {3) , and b(w; a , {3)
determine the line L a distance h from any wall with a minimum number of
corners, label the two rectanguloids p and q, as in Figure 4. 1 7
if (aq = aw) then

w +-- q
x +- p

end
else

if (aw > a9) then
q +-+ p
X +-+ W

end
determine h and v

c; +-- �min(h, v, h)
determine the line L9 (c:) to give rectanguloids q1 (c:) and q2 (c:) , as in Fig­
ure 4 . 18
if (a9I (�) = aw) then

w +-- ql (c:)
X +-- q2 (C:) + p

end
if (aq1 (�) > aw) then

4.3. The Contraction Algorithm

end

perform iterative bisection search on c, until aq1 (�) = aw
w +- qt (c)
x +- q2 (c) + p

while (aq1 (c) < aw) do

75

determine set of walls c, d, e, f, g as defined in Figure 4- 19, with
l ld l l ;::: l lfl l
determine the line j , and the resulting dissection of d, into d* and
d'
q3 +- the rectangle enclosed by j ,d' , e , and f
q� (c) +- q2(c) - qa
if (aw > aq1 (�) + aq3) then

if (l ldl l = l lf l l) then
g +- c + j + g

end
else

end
else

end

y +- y - { e , f}

g +- g + j
d +- d*
Y +- Y - {c, d, e , f}

w +- q1 (c) + qa
X +- q�(c) + p

a w - aqt(•)
p +- l le l l
construct a wall j' a distance p from, and parallel to e

partition d' into d� and d� , with d� incident on e

partition f into ft and h, with h incident on e

q4 +- the rectangle enclosed by j',d� ,e , and h

if (l ldl l = l l f l l) then
d +- d�

end
else

76

end
end

end

end

end
f +-- !t
Y +-- Y U {j'} - { e }
w +-- qt (c) + q4
x +-- p + q; (c) + qa - q4

Chapter 4. Obtaining the Block Plan

An example of rectangle addition is given in Figure 4.2 1 , where the rectanguloids

were added in numerical order to q1 (c) . Note that the addit ion of rectangle 3 has

the two lines c and e collinear. Further notice that all the rectangles all have the

edges c, d, e , J, g adjacent on L9(t:) .

i
2 I

I
..__I ...__

a.

: .

5

- - - - -

� - · · .

I
I

.

3 I

4 --

1
....__ �

Figure 4 .2 1 : A division of x via the Orthogonal Division Algorithm

4.3.3 An Illustrative Example

We now proceed to provide a full example of the Contraction A lgorithm by consid­

ering the MPG of Figure 4.22 and area specifications given in Table 4.5. Firstly we

4.3. The Contraction Algorithm 77

determine the distance class sets D1 = {2, 3 , 4 } , D2 = {5, 6, 7, 8} , and D3 = {9, 10} .

The contraction of the tree of the vertices of D3 involves contracting facility 10 to

facility 9, to obtain the single vertex, and then contracting vertex 9 to vertex 5,
resulting in the MPG shown in Figure 4.23. Note that vertex 9 could have been

contracted to any of vertices 5,6, 7 or 8.

1

3

Figure 4 .22: Example Problem to illustrate the Contraction Algorithm

Facility 1 2 3 4 5 6 7 8 9 10

Area - 20 15 15 10 20 10 20 25 10

Table 4.5: Area specifications for the Contraction Algorithm Illustrative Example

Following this we contract vertices 6 and 8, since they are of degree 2 in the

maximal outerplanar component consisting of the vertices in D2 , into vertex 7 ,

which is then contracted into vertex 5 to obtain the single vertex in D2 • Vertex 5

is then contracted into vertex 4 of D1 , providing the MPG with all vertices, except

the exterior, in D1 , being the tetrahedron. The layout for this transformed MPG

is easily constructed by the Deltahedron Layout Algorithm, to give the layout of

Figure 4.24. Note that facility 4 has area equal to that of itself plus any facilities

which were contracted, directly or indirectly, into vertex 4.

78

1

Chapter 4. Obtaining the Block Plan

Figure 4.23: Transformed MPG after the contraction of D3

1
2

3 4

Figure 4.24: Layout of the transformed MPG

The first placement is that of facility 5 into facility 4 , followed by the place­

ments of facility 7 into facility 5, and also facility 6 into facility 5, to provide the

partially constructed layout of Figure 4 .25. Note that the two different layouts

in Figure 4 .25 correspond to different values used in the ODA for a and (3 when

4.3. The Contraction Algorithm 79

1 1
2 2

7 7

6 3 6 3
5 5

4 4
(a) (b)

Figure 4.25: Partial construction of the layout via reverse contraction of facilities
5, 6 and 7, with different a and f3 values for the placement of facility 6

placing facility 6. Continuing from Figure 4 .25(a) , the remaining three facilities

are placed in the reverse order to which they were contracted, to obtain the layout

shown in Figure 4 .26.

1
2

I 8 7 I
1 0

3 6

9
5 I

4

Figure 4 .26: Final Layout of the example problem

80 Chapter 4. Obtaining the Block Plan

Note that the placement of facility 6 impacts quite severely on the final layout, as

facility 8 cannot be placed as a rectangle, and further, the size of facility 9 when it

is placed forces facility 5 to become quite irregular. Contraction of facility 6 into

facility 7 would have alleviated the problem of irregularity in this layout and we will

see, in Chapter 9, ways in which we might choose more carefully the contraction

ordering, in order to produce more regular layouts.

4.3.4 A Pathological Counter-Example

In this section we examine a counter-example to the original Contraction Algorithm

as provided by Rinsma et al. The MPG for this problem is given in Figure 4.27,

1

Figure 4.27: MPG to exhibit pathological problem

where facility 1 is the exterior, and the distance class sets are Do = { 1 } , D1 =

{ 2 , 3 , 4} and D2 = {5, 6, 7} . Now we consider the contraction of those vertices in

D2 • They form a maximal outerplanar component , and so we enforce the labelling

as given by Rinsma et al. Then the precursor of 7 is 6, and under the contraction

process, we are required to contract vertex 7 into vertex 6. This contraction gives

the MPG shown in Figure 4 .28.

In order to maintain maximal planarity, we are required to add in the edge

(3, 5) . Vertex 5 does not form part of the contraction operation, and therefore

..

4.3. The Contraction Algorithm 81

1

Figure 4.28: MPG after the contraction of facility 7 into facility 6

should not have an additional adjacency from this operation. The ramifications of

allowing the edge (3, 5) , is that when using the ODA we will not be able to place

facility 7 totally within facility 6 as the ODA requires. We will need to delete the

adjacency (3, 5), which will require part of facility 7 being placed partly in either

or both of facilities 3 and 5.

The method proposed by Rinsma et al. requires only a minor correction to

overcome this difficulty. Rather than enforce the labelling outlined by Rinsma

et al. onto the maximal outerplanar components, we simply contract subsequent

vertices of the maximal outerplanar component , by choosing the next vertex to be

contracted as a vertex of degree 2 with other vertices in the same distance class,

such that the vertex which is contracted into, the vertex being contracted and a

vertex from the next outer distance class do not create a separating triangle; this

is proved in Theorem 4 .3 . 1 . The contraction processes for trees and single vertices

remain valid, however. This may be seen more easily in the example above, where

the separating triangle (2, 6, 7) existed, and when we tried to contract vertex 7 into

vertex 6, we were required to coalesce (2, 7) with (2 , 6), yet 5 lay between them.

Theorem 4.3.1 Contraction of a vertex of a maximal outerplanar component is
valid if and only if the vertex has degree 2 within its distance class, and the vertex

82 Chapter 4. Obtaining the Block Plan

which will be contracted into, the vertex being contracted and a vertex from the next
outer distance class do not create a separating triangle.

Proof: Rinsma [94] has shown that there will always exist at least two vertices of

degree 2 in a maximal outerplanar component. There is no problem with separating

triangles between three vertices of the same distance class, since there must be at

least one vertex inside this separating triangle, of distance class one more than the

three vertices that make up the separating triangle, and hence we would not have

completed contracting the previous distance class.

Let us assume that there is no candidate vertex which we can contract . Because

we know there must be vertices of degree 2, they all must form separating triangles

with their adjacent vertices. Consider any one of these vertices of degree 2. If

it forms part of a separating triangle with a vertex it is adjacent to in the same

distance class, and one in the next distance class below, then the vertices in the

separating triangle must all be in the same distance class as the vertex of degree 2.

But, since the vertex is of degree 2 , there can only be one vertex in the separating

triangle. We therefore have a contradiction, as we can contract this vertex in

the separating triangle into either of the vertices in the same distance class which

comprise the other vertices of the separating triangle; no separating triangle exists

with this vertex, as it is adjacent to only one vertex of the distance class below,

and the two faces comprising this new vertex to be contracted, the vertex in the

distance class below, and respectively, the other two vertices it is adjacent to, exist .
0

This correction ensures multiple edges can be coalesced without violating max­

imal planarity, and hence without needing to add in arbitrary edges.

4.3.5 Notes o n t he implement at ion of the ODA

In this final section on the Contraction Algorithm, we examine the description of

the ODA given in Section 4 .3 .2 and Rinsma et al. [96) from an implementation

perspective. The purpose of this section is to examine the motivation behind the

ODA, and to use it to simplify this rather complicated mechanism both theoreti­

cally and practically. Some of the issues here were initially raised in Section 4.3.2,

and we will return to these throughout the course of this section.

The ODA as described by Rinsma et al. attempted to find a minimal facility

.;

4 . 3. The Contraction Algorithm 83

to represent the placement of the entering facility, in the sense that would satisfy

all the current adjacencies of the entering facility. Having obtained this minimal

facility, which is the rectanguloid labelled q1 (c) in the ODA, it was then possible

to ignore the adjacency structure of the MPG, concentrating instead on satisfying

the area requirement of the entering facility, by transferring rectanguloids from

the placement host to the entering facility. The concept of the L-line however,

i s redundant , as we can create minimal facilities for both the placement host and

the entering facility, leaving the rectanguloid surrounded by these two minimal

facilities, which we will call the redistribution region, to be assigned to these two

minimal facilities according to their respective area requirements. This leads to a

re-assigning of the placement host . This modification is significant if the area of

the entering facility is greater than the area of the rectanguloid q in the ODA, as

Rinsma et al. proceeded to implement a further, more complicated, routine to deal

with this. However, by creating a minimal facility for the placement host , we are

able to remove the necessity for this entire extra routine.

Using the notation of Section 4;3 .2, where facility x is the placement host and

facility w is the entering facility, we create two minimal facilities labelled qx(c-) , and
qw(c:) (qw(c:) is the same as q1 (c) in the original version) , leaving rectanguloid p to

represent the redistribution region. This scenario is shown by Figure 4 .29, where

again the neighbours N1 and N, are adjacent to both facilities x and w .

q (£) � w

N ·
Nl

p � s

�
qx(cr

Figure 4 .29: Dissection of facility x using the modified ODA approach

84 Chapter 4. Obtaining the Block Plan

From this point , all that is required is the correct dissection of p, so that facilities

x and w have the correct area. This is achieved by implementing essentially the

same approach of Rinsma et al. , but instead of choosing a rectanguloid to transfer

from the placement host to the entering facility, we now choose a rectanguloid

from the redistribution region to join either the entering facility or placement host .

Having obtained a rectanguloid from the redistribution region, we can transfer part

or all of this rectanguloid to one of the minimal facilities. The minimal facility this

rectanguloid is assigned to must share a common wall with the rectanguloid to

maintain contiguity. This process continues until either of the facil ities attains its

correct area, resulting in the remainder of the redistribution region being assigned

to the other facility. This is always possible, as both minimal facilities always border

the redistribution region. If a facility can not accommodate an entire rectanguloid ,

the rectanguloid i s split in the same way as for the original ODA. Furthermore,

this method extends the original ODA in aspects such as the ability to perform an

iterative search on the value of c, dependent on both qw(c) and qx(c) , as opposed

to just q1 (c) for the original ODA.

This approach may sound as complicated as that proposed by Rinsma et al. ,
but i t significantly reduces the complexity of the algorithm, by requiring only one

procedure to assign rectanguloids. Furthermore, implementation on a computer is

made simpler by the generation of this one mechanism. The modification uses the

same underlying motivation of the original ODA, by first ensuring all adjacencies

are satisfied, and then satisfying the area requirements. By also generating a

minimal facility for the placement host , however, we are able to more fully employ

the motivational strategy.

4.4 SIMPLE

This section provides a correct implementation of the ideas and motivation of

Hassan and Hogg [52] , Al-Hakim [4] , and Irvine and Rinsma [60] . The initial paper

by Hassan and Hogg, has been shown to not work in all cases by Al-Hakim, and

both Al-Hakim, and lrvine and Rinsma have attempted to correct the inherent

problems exhibited by the initial algorithm outlined by Hassan and Hogg, whilst

maintaining the intuitive motivation behind the algorithm.

4.4. SIMPLE 85

4.4 . 1 The SIMPLE Algorithm

In this Section we describe an algorithm for generating an insertion order in the

MPG which will determine the processing order for placing the facilities into the

layout during the ODA. The approach of Hassan and Hogg was described in Sec­

tion 4 .2 , but we will briefly reiterate their approach here. Hassan and Hogg gener­

ated the insertion order by selecting a vertex adjacent to the vertex corresponding

to the previous facil ity that was placed, and at least one other vertex correspond­

ing to a placed facil ity. Unfortunately this insertion approach fails to generate an

insertion order in the presence of a separating triangle in the MPG, as shown by

Al-Hakim [4] . Facilities were subsequently placed in the layout by assigning each

facility to an integral number of grid squares, which the layout perimeter enclosed.

To help with this discussion, define the empty face of a graph X, denoted by

ax' which is simply a face of the planar graph dual to a current partial layout ,

which is not a face of the MPG. 8X is not necessarily a face of length three. We

refer to the sets of vertices and edges of 8X as Vax , and Eax , respectively.

The new algorithm for generating an insertion order we call Sequential Insertion

Method for Planning Layouts Effectively (SIMPLE). It simply chooses a facility to

be placed in the layout which is adjacent to at least two already-placed facilities,

and such that no non-existing faces are created in the MPG (an exception is 8Gp,

which will always be a face which is not in Ta) . This process continues until the

last facility is placed. Initialisation comprises the choice of a vertex adjacent to

the exterior vertex. The output will be a layout with the adjacency graph G as

its dual , as is justified below. We notice here that this is the necessary addition

to Hassan and Hogg's insertion approach to overcome the presence of separating

triangles. The SIMPLE insertion order is generated by Algorithm 4.7 .

Algorithm 4. 7 Generation of the SIMPLE Placement Order

Input: MPG G
Output: SIMPLE Insertion Order
VaP +-- 0

Ea +-- 0 p
Ta +-- 0 p
Vap +-- {e }
Determine the first facility to b e placed in the layout (call it x) as one which is

86

end

Chapter 4. Obtaining the Block Plan

adjacent to the exterior facility; since there is always more than one candidate,
we usually choose the one of maximum degree
Va, +-- Va, U {x}
Ea, +-- { (e, x) }
while (IVa, l < n) d o

end

Select t E Va\ Va, , which creates faces (t , Yi, Yi+I) E Ta, i = 1, . . . , k - 1 ,
such that {y1 • • • , yk } form a chain o n 8Gp, or, ifp = n - 1, select x � Va,

(Any tie breaking rule may be used) .
Va, +-- Va, U { t }
for v = 1 t o n do

end

if (v E Va, and (t , v) E Ea) then
Ea, +-- Ea, U { (t , v) }

end

for v = 1 to n do

end

for w = 1 to n do

end

if ({v , w} � Va, and (t , v , w) E Ta}) then
Ta, +-- Ta, U { (t , v , w) }

end

4.4.2 Proof of the Correct ness of SIMPLE

We now proceed to show that the SIMPLE insertion order of Algorithm 4 .7 is

guaranteed to produce an insertion order for arbitrary MPGs. In order to prove

that the SIMPLE procedure will work, we need to show that there always exists a

facility which can be placed , and if there is not , then the layout must be complete.

Theorem 4.4. 1 When choosing the next facility to be placed in the layout, SIM­
PLE will always provide at least one corresponding vertex in Va\ VaP from which
to choose, or else all facilities have been placed in the layout.

4.4. SIMPLE 87

Proof: Let us assume that IVaP I < n, and that there is no candidate x E Va \ VaP
which can be inserted into GP.

By maximal planari ty, there exists a vertex x which creates a face (x , y , z) E T a,

where (y , z) is an edge on 8Gp. Now by definition x is not a candidate to enter,

hence the insertion of x would create a face (x, a , b) fj. Ta, where (a , b) is also an edge

on 8Gp. Note that the chain formed by the vertices on 8Gp adjacent to x includes

a , b, y and z. Now as (x , a , b) fj. Ta, there must exist c E Va\VaP which creates a

face (a, b, c) E Ta, but as x is also adjacent to a and b, by maximal planarity, c

must be a candidate to enter. Therefore we have a contradiction. Therefore either

there is a candidate to be inserted, or else G = GP. 0

4.4.3 Application of the SIMPLE I nsertion O rder t o t he

O DA

In this section we describe the construction of the layout using the SIMPLE inser­

tion order, by using a modification of the ODA. The placement order generated by

SIMPLE can be easily incorporated into the ODA framework. We begin by plac­

ing the first facility in the placement order across the top of the predefined layout

perimeter, leaving the remaining area as the empty space. We then successively

add the corresponding facilities according to the vertex insertion order, where the

entering facility (EF) is always considered as having been contracted into the empty

space. Therefore, the EF is w, while the empty space is x in the description of

the ODA in Section 4 .3 .2. To complete the placement process for each facility,

the empty space is adjusted so as to no longer include the region used by the fa­

cility just placed. Explicitly placing the final facility is unnecessary, as it simply

comprises the empty space remaining after the placement of all other facilities .

4.4.4 P roperties of 8Gp

Throughout the SIMPLE procedure, we allow the non-existing face 8Gp to be

present until the final vertex is placed. This face could be thought of as a pseu­

dovertex which corresponds to the empty space in the layout. Figure 4.30 depicts

this more clearly; the shaded empty space is represented in the MPG by the pseu­

dovertex PS, and the dotted lines represent adjacencies with the facilities which

are adjacent to the empty space, i. e . those in VaGp · Note that the empty space is

88

·- --

Chapter 4. Obtaining the Block Plan

•
I

'
\

•

Figure 4.30: An example showing the empty space, and its relationship to the
facilities in 8Gp

not required to be adjacent to the exterior.

We have proven that SIMPLE will always admit an insertion order, but now we

must prove that EF can be placed in the partial layout, as shown by Theorem 4.4.2.

Theorem 4.4.2 Using the SIMPLE insertion order and the ODA modification,
EF can be placed in the partial layout.

Proof: Firstly, due to the criterion that only the nonexisting face 8Gp cannot

exist, there can never be more than one empty space. This means that we will

never encounter infeasibility when inserting the vertex corresponding to EF into

Gp with respect to the area of the facility, since the area of the empty space is

equal to the sum of the areas of all facilit ies not yet placed. Therefore we need

only be concerned with whether or not EF will meet all of its adjacencies with

those facilities which have already been placed.

Let us consider all 3-joints which include the empty space; call them pending
3-joints. EF will have adjacencies with at least 2 facilities in VaP , and all facilities

adjacent to EF will appear consecutively in cycEF (this is easily seen by the criterion

for choosing EF) . Since G is maximal planar, all pending 3-joints which are adjacent

to EF will be able to be covered (i. e . become true 3-joints rather than pending

3-joints) without covering any which are not adjacent to· EF. Therefore, we can

4. 4. SIMPLE 89

draw the line Lq(c) of the ODA from the first placed vertex in cycEF to the last

one to create the rectanguloid QEF(c) , and this will enclose all other facilities which

are already placed and adjacent to EF. Therefore it is always possible to place EF

into the current partial layout . 0

4.4.5 An Illustrative Example

In this Section we illustrate S IMPLE by considering the 10 facility problem shown

in Figure 4 .31 and Table 4.6, where facility 1 is the exterior. A SIMPLE insertion

order could be 2 ,7,4,9,3,8,6,5, 10. Variations are possible depending on the choice

of the first vertex, and at subsequent points where there exists more than one

candidate vertex to insert.

7 4

Figure 4.3 1 : An MPG on 10 vertices (exterior = facility 1)

Facility 1 2 3 4 5 6 7 8 9 1 0

Area - 30 25 10 40 35 15 20 10 30

Table 4 .6 : Areas Specifications for the SIMPLE Illustrative Example

90

2

7 9 8

3

4

6

Chapter 4. Obtaining the Block Plan

10

s

Figure 4.32: The final layout for the example problem using SIMPLE

The layout generated by the ODA using SIMPLE is shown in Figure 4.32. For

simplicity the choices of a and (3 were taken to be simply half way along the common

wall between the relevant facility and the empty space. Following the placement

of a facility, the values of a and (3 could be implicitly changed by searching the

newly-placed facility for redundant concave corners. This process and some related

ideas and issues will be discussed fully in Section 5. 1 .

4 . 5 The Vertex Splitting Algorithm

In this section we describe a new method for obtaining a layout to a given arbitrary

MPG. This method is motivated by a desire to transform the MPG into one in which

the layout can easily be constructed, in much the same way as the Contraction

Algorithm does. This method however is based on vertex splitting or expansion ,

as opposed to the contraction ideas used by Rinsma e t al.

4 . 5 . 1 M P G s with Concentric Distance C lasses

Consider the set of MPGs in which each vertex in D; for 1 :::; i :::; max - 1 is

adjacent to exactly two other vertices in D; . vVe call this the set of concentric
MPGs. Consider the subgraph P of G where P includes all vertices except the

exterior facility, and includes all edges (i, j) for which { i, j } � Dk , k = 1 , . . . , max.

4.5. The Vertex Split ting Algorithm 91

Then an embedding of the subgraph P is equivalent to an embedding of concentric

circles, with the vertices of D1 in the outer circle, and those of Dmax in the innermost

circle.

MPGs of this type are amenable to layout construction, by considering the in­

nermost distance class first . This distance class, Dmax, may be laid out using either

the Deltahedron method [42] , as all maximal outerplanar MPGs are Deltahedron

when the exterior is added, (which we prove in Section 4.7. 1) , or by the approaches

of Rinsma [94] . Further, we are guaranteed that each facility in Dmax will be at

worst L-shaped. The facilities in Dmax are laid out within a square perimeter with

sides of length /'LieDmaz a ; . Working now from distance class Dmax-I to Dt , we

sequentially lay out each distance class. This is done by first determining a perime­

ter or frame within which to lay out the facilities in the current distance class. The

frame is dimensioned by determining on which sides of the previous frame facili­

ties to be placed must be in order to satisfy their adjacency requirements. This is

equivalent to determining within which region(s) each facility will lie, as indicated

in Figure 4.33.

A

B D

c

Figure 4 .33: The regions of D; , where the shaded region represents the layout of

all facil ities in distance classes greater than i

Facilities which have adjacencies in more than one region have their area split

evenly among these regions. Facilit ies which are adjacent to only one facility situ­

ated at a corner of the previous frame are placed in one region only. Dirnensioning

of the regions is then carried out with respect to the previous distance class; using

the length and width of the previous frame, the dimensions of the four regions are

well defined.

Once the frame has been determined, facilities are dimensioned using an iter­

ative process which assures that each facility to be placed fills the space enclosed

92 Chapter 4. Obtaining the Block Plan

by lines joining the new frame and the previous one, each line containing at most

three rectilinear segments.

In order to perform the iterative scheme, we first find two facilities, termed the

min-facility and the max-facility (which are akin to the rectanguloids labelled q1(c)

and q2(c) in the ODA) , by identifying a facility, termed the reference facility, which

is the last facility in the previous distance class to which the entering facility is ad­

jacent . S ince facilities are laid out sequentially, by considering the concentric cycle

of the facilities, an orientation is implied, so this reference facility is the last facility

the entering one will encounter as it is placed, i. e . the next facility to be placed

will also be adjacent to this reference facility. We determine a minimum adjacency

parameter (c), which scales the total possible physical adjacency between the en­

tering facility and its reference facility to its desired minimum physical adjacency.

A straight wall is placed to the frame of the distance class from the frame of the

previous distance class so that this minimum adjacency requirement is obtained.

This minimum adjacency parameter is a desirable minimum adjacency, however it

may need to be reduced in order to guarantee existence of the layout. The polygon

between this line and the last line of the previous facility is the min-facility. The

max-facility is determined similarly by considering a maximum adjacency param­

eter, normally (1 - c) , between these two facilities. This is better represented by

Figure 4 .34, where the min-facility is the rectanguloid defined by (1 , 2, 3, 4) , while

the max-facility is the rectanguloid defined by (1 , 2, 5, 6). The reference facility

being denoted by r .

6 4 1

X

: 9. . p : . .

5 3 2
r

Figure 4.34: Facility placement using the ODA variant derived for the VSA

4 . 5. The Vertex Split ting Algorithm 93

The iterati ve search between the min- and max-facilities is based upon a mid­

point search. The average of every pair of corresponding coordinates representing

the corners of each facility is calculated, and if the new facility defined by the region

enclosed by these average coordinates has area less (greater) than ai , it is set to be

the new min(max)-facility. This continues until lamin-facilit11 - amax-facilit11 l < 6,
where 6 is small. In some circumstances coordinates may need to be duplicated in

order that both the min- and max-facilities have the same number of coordinates;

this is always possible in order that we can then have distinct pairs of correspond­

i ng coordinates for each of the min- and max-facilities. This occurs if one of the

min- or max-facilities has a straight line between frames and the other does not.

If the min-facility has area greater than that of the entering facility, a line is

created from the previous frame to the frame of the current distance class consisting

of three rectilinear segments, by following the outline created by the previous frame,

and the previous facility placed, maintaining a width a (a small) from this outline

to obtain a new min-facility, with the old min-facility becoming the max-facility

(note that a = c can be used) . A s
.
imilar procedure applies if the max-facility has

area less than that of the entering facility. This is shown by the dotted lines of

Figure 4 .34, where the previous facility placed was x , and the new min-facility is

bounded by the line p, and similarly for the new max-facility which is bounded by

q.

If the min-facility thus created still has area greater than ai , we halve c and

re-lay the previous facility. This process is perhaps the least desirable scenario,

as we may be required to make c very small in order to maintain that each line

between the frames has at most three rectilinear segments , and we may have to

re-lay more than one previously laid facility in order to lay out all the facilities in

the region. This phenomenon may lead to arbitrarily small wall lengths between

adjacent facilities, however successful completion of the layout is guaranteed. Note

that the area of the enlarged max-facility is never smaller than the area of the

entering facility if a is small enough (A special case exists if the entering facility

is the last facility to be placed in a region; obviously it is placed by placing a line

between the frames at the end of the region as defined in Figure 4.33) .

The placement of the first facility for each distance class is a special case of

the iterative midpoint procedure, where we consider an artificial facility whose

boundary starts at the edge of a region, and has area equal to the sum of the areas

94 Chapter 4. Obtaining the Block Plan

of all facilities in that region which will not be placed until all facilities in the other

three regions have been placed. In other words, if the first facility to be placed lies

i n the middle of a particular region, we will be dividing this region into two parts.

Whichever orientation we use to lay out the facilities, one of these parts will contain

the final facilities to be placed in this distance class; we must therefore ensure that

both of these halves of the region are of the correct area to accommodate this.

This artificial facility is then laid out using the above procedure. The initial line

defining the edge of the region is then deleted. The procedure for laying out a

facility i is described in Algorithm 4.8.

Algorithm 4.8 Concentric Layout (i)

Input: Partial Layout, with entering facility i
Output : Partial Layout containing i
if i is last facility to be placed in region then

Place facility i using special case
end
else

Determine the last facility in Dk+1 that i is adjacent to; call it j
Determine the min-facility and the max-facility, and their respective ar-
eas.
while (am in-facility > ai) do

end

Determine reduced min-facility and its corresponding area
max-facility � m in-faci lity
if (am in-facility > ai) then

end

E � c/2
if (c too small and previous facility laid was m) then

Concent1·ic Layout (m)
end

while (amax-facility < ai) do
Determine enlarged max-facility and its corresponding area
min-facility � m ax-facility
if (amax-facility < ai) then

4.5. The Vertex Split ting Algorithm

end

end
end

£ +- c/2

Do iterative midpoint search between the min- and the max-facility
end

95

4.5.2 Transforming a n Arbitrary MPG to o n e with Con­

centri c D istance Classes

The layout method proposed for MPGs with concentric distance classes can be

applied to an arbi trary MPG by transforming that MPG into one whose distance

classes are concentric. This allows an arbitrary MPG to be successfully dualised

automatically, using the procedure described in Section 4.5 . 1 .

The transformation of an arbitrary MPG into one with concentric distance

classes uses an expansion technique, which augments the vertex set. We term

the new vertices pseudo vertices, as they do not correspond to facilities, but are

produced as a result of splitting the facility corresponding to a vertex of the MPG

into two parts of equal area. Obviously, the two halves of any split facility must be

adjacent in the final layout . This is the basis for the Vertex Splitting Algorithm

(VSA) .

In order to obtain concentric distance classes, we must ensure that each vertex

i n Dm is adjacent to exactly two other vertices in Dm for 1 :::; m :::; max - 1 . In order

to achieve this we employ two operations. The first is the deletion of a shortcut

edge, i. e . an edge (i , j) such that { i , j } C Dm and (i , j) is not an edge of any face

whose vertices are i , j and a vertex from Dm-I · An example of the shortcut edge

(i , j) defined above, where the curved dotted line represents the circuit through the

other vertices in Dm , is given in Figure 4 .35(a) .

To delete a shortcut edge (i , j) , { i , j } C Dm , where ai � aj , and { (i , j, k) , (i , j, 1) } C
T we use Algorithm 4.9, where we add in a vertex i' which deletes the adjacency

between i and j . Application of Algorithm 4.9 results in the transformation of the

MPG shown in Figure 4 .35(b) .

96

(a)

Chapter 4. Obtaining the Block Plan

(b)

Figure 4 .35: Deletion of a shortcut edge (i , j)

Algorithm 4.9 Shortcut Eliminate (i , j)

end

V � V u { i'}

E � E \ { (i , j) }

E � E U { (i , i') , (j, i') , (i' , k) , (i' , 1) }

T � T \ { (i , j, k) , (i , j, /) }

T � T U { (i' , i , k) , (i', i , l) , (i', j, k) , (i' , j, /) } .
ai' � ai/2
ai � ai/2
Dm+l � Dm+l U { i'}
parent [i'] � i

The second operation required is the expansion of a cut vertex . A cut vertex is

a vertex which , if deleted from the subgraph of the vertices in Dm and any edges

that exist in the MPG between these vertices, would divide the subgraph into more

more than one component . (Obviously if a distance class contains only one or two

vertices, it contains no cut vertices) . An example of a cut vertex i E Dm, where

the curved dotted line again represents the circuit around the other vertices in Dm,
is shown in Figure 4.36(a) .

Suppose we which to delete a cut vertex i E Dm , with {p, q, r , s} C Dm and

p, q, r, and s all adjacent to i , such that p and r are in the same component if

i is deleted, and q and s are in the same component if i is deleted. Note that

4.5. Tbe Vertex Split ting Algorithm 97

i f a component consists of a single vertex, then p = r and/or q = s . Also let

{a\ . . . , aY} C Dm-1 and {bl , . . . , bz } C Dm-b be vertices adjacent to i, as shown

in Figure 4 .36. This procedure is described by Algorithm 4.10 . Algorithm 4 . 10
results in the transformation of the MPG as shown in Figure 4.36(b) .

bl b' bl b'

, ' , .. - - ' , ' , ' , ' , '
, ' , ' , ' , '

I ' I '
I ' I '

I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
' I I I
' , ' ,

' , ' ,
' , ' , ' , ' , ' , ' , ' , , - - , ' , , _ _ ,

(a) (b)

Figure 4.36: Expansion of a cut vertex i

Algorithm 4.10 Cut Vertex Expand (i)

end

V +-- V U {i'}
E +-- E \ { (i , a1) , . . . , (i , aY)}
E +-- E U { (i , i') , (r, i') , (s , i') , (i', a 1) , . . . , (i ' , aY)}
T T \ { (. 1) (" Y) (" i i+1) . " - 1 1 } +-- z , r, a , z , s , a , z , a , a . z - . . . y -
T T { (. •t) (" ·t) ("' 1) ("' Y) (" i i+1) · · - 1 1 } +-- U z , z , r , z , z , s , z , r, a , z , s , a , z , a , a . z - . . . y -
Dm +-- Dm U { i' }
ai' +-- ai/2
ai +-- ai/2
parent [i'] +-- i

98 Chapter 4. Obtaining the Block Plan

Theorem 4.5 .1 The two operations Cut Vertex Expand and Shortcut Eliminate
are sufficient to transform an arbitrary MPG into one with concentric distance
classes.

Proof: Firstly note that D1 cannot contain any cut vertices, as the exterior is

the only facility in D0, and it cannot have two edges adjacent to a facility in D1 .
The deletion of all shortcuts i n D1 adds pseudo vertices to D2, and so D1 is now

of the form where all of the vertices in D1 have degree two with all other vertices

in D1 , i . e . D1 is now concentric.

Consider Di, which has inherited pseudo vertices from the deletion of Di-1 's
shortcuts. If we delete any cut vertices that exist in Di , then each new facility

becomes a part of Di , and a shortcut edge is added. Hence all that remains is to

delete the shortcuts from Di ; the pseudo facilities created from the elimination of

these shortcuts are placed in Di+1 , and hence Di is now in the required form. We do

this for 2 � i � max - 1 . The pseudo vertices that Dmax inherits from Dmax-1 do

not create a problem, as we simply eliminate all cut vertices, and we are assured of

having a maximal outerplanar graph for Dmax, since we do not delete the shortcut

edges from Dmax· The transformed MPG now contains concentric distance classes.
0

As each pseudo facility is created, we record which facility it was split from,

i. e . when the MPG has been transformed into an MPG with concentric distance

classes there is a tree-like structure, which records relationships between the original

facility called the ancestor, and any pseudo vertex (called a child) , which came from

it . This means that the complete method for generating the layout of an arbitrary

MPG for the Vertex Splitting Algorithm (VSA) is given in Algorithm 4. 1 1 , where

Gmax is simply the subgraph of the vertices in Dmax together with the edges between

vertices in Dmax from G.

Algorithm 4. 1 1 The Vertex Splitting Algorithm

Input: MPG G, area specifications
Output: Layout dual to G
for i = 1 to n - 1 do

for j = i + 1 to n do

if ((i , j) is a shortcut in Dt) then

I

4 . 5. The Vertex Split ting Algorithm

end

end
end

Shortcut Eliminate (i , j)

for k = 2 to max - 1 do
for i = 1 to n do

end

while (i is a cut-vertex in Dk) do
Cut Vertex Expand (i)

end
end for i = 1 to n - 1 do

for j = i + 1 to n do

end
end

if ((i , j) i s a shortcut in Dk) then
Shortcut Eliminate (i , j)

end

for i = 1 to n do

end

while (i is a cut-vertex in Dmax) do
Cut Vertex Expand (i)

end

lengthmax +- VLieDrna:r aj
widthmax +- VLiEDma:r ai
Deltahedron Layout Algorithm (Gmax)
Set c;

for k = max - 1 down to 1 do
Dimension regions for Dk
while (all facilities in Dk not laid out) do

for i = 1 to n do

end

if (i next to be laid) then
Concent1·ic Layout (i)

end

99

100

end

end
end

Chapter 4. Obtaining the Block Plan

Combine child and ancestor facilities together

4 . 5 . 3 An Illustrative Example

In this Section we illustrate the VSA, by considering the 1 1 facility problem shown

in Figure 4.37 and Table 4.7 . The distance classes are as follows: Do = { 1 } ,
Dt = {2, 3 , 4 } , D2 = {5, 6 , 7, 8, 9 } and D3 = { 10, 1 1 } .

1

Figure 4 .37: VSA Illustrative Example

Facility 1 2 3 4 5 6 7 8 9 10 1 1
Area - 20 25 30 30 10 15 20 10 15 20

Table 4 . 7: Areas specifications for the VSA Illustrative Example

There are no shortcut edges in D1 1 nor are there any cut vertices which exist

in D2 • However we need to eliminate the shortcut edge (5, 8) in D2 • We do this by

adding a vertex 12, which is a child facility of 5. Following the split of vertex 5,

4.5. The Vertex Split ting Algorithm 101

vertex 1 1 i s then a cut vertex, which i s deleted by introducing facility 13 , which i s a

child of 1 1 . Following the steps of the algorithm, facility 5 will have area 15 , as will

facility 12, and the areas of 1 1 and 13 will now be 10. The resulting transformed

MPG is shown in Figure 4 .38; it now has concentric distance classes, with facility

5 from the original MPG now represented by vertices 5 and 12, and facility 1 1 now

represented by vertices 1 1 and 13.

1

Figure 4.38: The transformed MPG with concentric distance classes

We now turn our attention to the layout phase. D3 is the maximum distance

class, so we lay out this distance class by considering the subgraph of the vertices

in D3 and the edges between vertices in this distance class. We also consider an

exterior, e', which is adjacent to all of these facilities. A Deltahedron insertion

order could be 12 in (e' , 1 1 , 13) , with initial tetrahedron (e' ,10,1 1 , 13) .

The layout of the vertices in D3 is shown in Figure 4.39 within the innermost

bold frame, where the length and width for the D3 frame is V5Q.
The next step is to determine the dimensions of the regions for D2 • We require

facility 5 to be in regions A and B, facilities 7,8 and 9 to be in region C, and facility

6 to be in region D.

Therefore the area of Region A must be 7� , as must Region B; Region C must

have area 45 and Region D must have area 10 . The dimensions of each region are

1 02
I

Chapter 4. Obtaining the Block Plan

found easily by considering the dimensions of the frame for D3, and proceeding ac­

cordingly. Placing the facilities in D2 is easily performed: firstly facility 5, followed

by 7,8 and 9, and lastly 6. The layout of the vertices contained in D2 is shown in

the second frame of Figure 4 .39. D1 is laid out similarly, by requiring facility 4 to

be in Regions A and B, facilities 2 and 3 to be in region C, with facilities 2 and 4

in Region D . The areas of each of these regions will be 1 0 for Regions A and B , 35

for Region C , and 20 for Region D . This process is also seen in Figure 4.39, where

we place facility 3 followed by facility 2 and lastly facility 4. The final dimensioned

layout is presented in Figure 4.40, where facilities 5 and 12 have been combined to

give facility 5, and facilities 1 1 and 1 3 have been combined to give facility 1 1 from

the original MPG.

1

4

13

5 12 1 1 10 6

-

7 l 9

8

---,
3 2

Figure 4 . 39 : The layout before combination of the ancestor and child facilities

4.5. The Vertex Split ting Algorithm

I
5

7

�
3

103

1

4

6

1 1 1 0

�

I 9

8

2

Figure 4 .40 : The final layout of the example MPG using the vertex splitting algo­

rithm

4.5.4 Upper B o und on t he Numb er of P seudo Vertices

Required

When using the VSA , an obvious question that arises is, how much splitting might

we need? or, is there a limit to the amount of splitting we require? In this Section

this quest ion is answered by providing an upper bound on the number of pseudo

vertices required in Theorem 4.5.2.

Theorem 4.5.2 Let the number of pseudo vertices required for an MPG be PV. If
a given MPG has distance class cardinalities of { n1 , n2 , • • • , nmax } then:

max max
n + PV � 9 + nt (2max - 1) + L n; L:. 2j-i+I + 8(max - 2max)

i=2 i=i

Proof: In a distance class i comprising ni vertices there can be at most ni - 3

shortcuts , corresponding to the maximal outerplanar subgraph consisting of the

vertices in Di , and any edges in the MPG that exist between these vertices. Pseudo

1 04 Chapter 4. Obtaining the Block Plan

vertices which eliminate cut vertices in Di belong to Di+l · For every cut vertex,

we insert a vertex to eliminate that cut. A cut vertex whose deletion will create p
components will require the insertion of at most p - 1 cut vertices. But for every

component there exists at least one vertex which is not a cut vertex. Therefore we

will require at most ni - 2 pseudo vertices to eliminate the cut vertices in Di .
The pseudo vertices used to eliminate cut vertices in Di are also in the set Di .

Therefore let us consider the new cardinality of Di , call it nt . Then

nt - ni + (nt1 - 3) + (ni + (nt1 - 3) - 2)
2ni + 2nt1 - 8

We want to find a form for nt which is independent of nt_1 , given the boundary

conditions n0 = nci = 1 and nt = n1 .
It is easy to verify that, for 2 � i � max

i
nt = 2i-1 nt + 2: 2i-j+l nj - 8(2i-t - 1)

j=2

Then the complete number of vertices in the MPG must be
max
E nt
i:O

max
nci + nt + L nt

i=2
max 1

- 1 + n1 + L (2i-Int + L 2i-i+I ni - 8(2i-I - 1))
i=2 j=2
max max i max

1 + n1 + I: 2i-1 n1 + I: I: 2i-j+1 nj - I: s(2i-l - 1)
i=2 i=2 j=2 i=2

max max
9 + nl (2

max
- 1) + I: ni I: 2j-i+l - 2max+3 + smax

i=2 i=i
n

(using L 2i = 2n+1 - 1 and swapping the order of summation)
i=O

max max
- 9 + nt (2max - 1) + L ni L 2j-i+l + 8(max - 2max)

i=2 i=i
0

Therefore, given an arbitrary MPG, we can calculate a priori the maximum

number of pseudo vertices that will be required to transform this MPG. Hopefully

on average it will not require the amount specified by the upper bound, however

MPGs with a large number of disjoint distance classes may come close to or even

attain the upper bound. For the example of the Section 4 .5 .3, the upper bound

4.5. The Vertex Split ting Algorithm 105

on the number of vertices was 24, where we required only 13 . The upper bound

will be achieved, for example, on an MPG with 6 vertices, where ID1 1 = 4 and the

vertex in D2 has degree 3; in this case the bound will be 7.

4 . 5 . 5 Layout Enhancements

Using the VSA can cause an overconstraining of adjacencies between facilities: if

a vertex and one of its child vertices (or two child vertices with the same ancestor)

are both adjacent to the same vertex in the transformed MPG, then only one of

these adjacencies needs to be met in the layout before the corresponding facilities

are combined with their ancestor facilities (in order to satisfy the adjacencies in

the original MPG) . Therefore we can relax some adjacencies of this type in the

transformed MPG, without compromising the original MPG's adjacencies. This

relaxation comes in the form of allowing 4-joints.

Consider the portion of an MPG with concentric distance classes in Figure 4 .41 ,

where i , j, l, and m are in distance .class Dt and i', k, n and p are in distance class

Dt+l ·

m

Figure 4 .41 : Portion of an MPG with concentric distance classes

Note that the relationship between i and i' can be distant (as long as they

have the same ancestor) , and they cannot be in the same distance class (otherwise

a shortcut exists) . An exception to this is in Dmax i due to the special maximal

outerplanarity property of the subgraph of the vertices in Dmax and any edges

between these vertices, we do not allow 4-joints within Dmax·
Note that we cannot remove the edge (i , i') , since the ancestor facility may then

become disconnected in the layout . We cannot remove edges (i , j) or (i', k) or our

distance classes will be such that the 4-joint created will have a facility from Dt+l

1 06 Chapter 4. Obtaining the Block Plan

and Dt-t meeting at a point; this is infeasible in an orthogonal layout of an MPG,

as i and j would meet at a point, since they must be opposite each other in the

4-joint.

For the deletion of edge (i', j) we have 2 cases. Either; edge (m , i') exists, in

which case i and m would be required to meet at a point, which is infeasible. (The

exception to this is if i' is on a corner of a frame, in which case we can allow the

4-joint; however this occurrence can be determined only during the layout phase,

not prior to it) ; or, edge (j, n) exists, in which case we can allow deletion of (i' , j)

to create a 4-joint. The deletion of edge (i , k) i s similar to the deletion of edge

(i', j) , in which case, if edge (1, k) exists, we can allow the 4-joint. Otherwise, if

edge (i , p) exists we cannot, even if k is at a corner.

The changes to the layout method required to allow these 4-joints are minor.

Rather than create a min-facility and max-facility, we simply create a facility, with

a coordinate meeting at the 4-joint and call it the min(max) facility depending

on whether or not it has area greater(less) than required. The max(min) facility

is constructed in the same manner as for the general case, and then the iterative

scheme is applied. It may seem that in most cases having to create an £-shaped

facility in order to create the 4-joint does not gain much; however, if we have to

create the facility as an £-shape without the 4-joint , then we are increasing the

degree of enforced irregularity in the block plan, and if the facility could have been

created without the need for an L shape (without the 4-joint) , we do not increase

the degree of irregularity.

4 . 6 Quasi Graph Theoret ic Techniques

In this section we describe four layout algorithms which do not fit exactly into the

Graph Theoretic model that we are using, but are included for completeness. The

first three methods are presented previously in the literature, while the fourth, the

Tiling Algorithm, is a new, more classical, method akin to CORELAP, but with a

more structured design to ensure higher objective function values, by guaranteeing

3n - 6 adjacencies, and hence an underlying MPG to the layout.

4. 6. Quasi Graph Theoretic Techniques 107

4.6.1 The Spiral Algorithm

Goetschalckx [46] presents an interactive two-stage heuristic for generating the

layout, called the Spiral Algorithm. The first phase is the construction of the planar

adjacency graph, which is specially constructed so that no vertex has degree greater

than six (hence coining the term hexagonal adjacency graphs) . The construction of

the hexagonal adjacency graph is undertaken by considering three operations . The

first is a unary tuple, and consists of the total closeness rating from CORELAP;

the binary tuple considers two facilities, one of which is in the currently constructed

graph, and the other yet to be inserted, which have a high relationship value, akin

to the ALDEP methodology; the ternary tuple considers three vertices, one of

which is not in the current graph, in the same way which the first TESSA case

does. These tuples are adjusted to incorporate the adjacencies of the facilities with

the exterior. Maximality of the adjacency graph is not assured under this process.

The second phase of this approach is the development of the layout , using the

specially constructed hexagonal . adjacency graph. The maximum degree of the

vertices ensures the umbrella effect does not impinge upon the layout , and the

layout is constructed with all rectangular shaped facilities. The layout is able to be

constructed by considering a stratified approach. The adjacency graph is amenable

to construction by assigning levels to the vertices of the adjacency graph. Each

row of the graph becomes a row of facilities in the layout, providing layouts which

look like brick walls. The author however does not appear to notice the subsequent

dimensioning of the layout may involve the loss of adjacencies from the adjacency

graph, due to the creation of fault lines between levels imposed on the adjacency

graph. This dimensioning problem does not therefore guarantee the existence of

a dimensioned layout using the Spiral Algorithm which is a dual to the given

hexagonal adjacency graph.

4.6.2 Matching Based Layout Algorithm

Montreuil, Ratliff and Goetschalckx [85] presented a somewhat different approach

to the GTFLP, by considering a so-called matching property. Montreuil et al.
determined that in an adjacency graph, not only should adjacencies be specified,

but also the length of wall that these adjacencies should have. In order to determine

the length of these adjacencies, a b-matching approach was used; this is essentially

a minimum cost flow network problem, with a flow of size k between vertices i

1 08 Chapter 4. Obtaining the Block Plan

and j specifying that facilities i and j should have k segments in common, where

segments are sides of grid squares imposed upon the layout. The resulting solution

does not necessarily generate a planar graph however, and hence represents an

upper bound on the value of the solution able to be obtained under this objective.

The method uses a grid to lay out the facilities, but the authors do not elaborate

further - it appears to be a jigsaw type of approach, where the facility shapes

are determined a priori, and a b-matching solution is attempted. If this proves

infeasible the solution to the b-matching is relaxed, by considering violation of the

planarity property. Under this approach the eventual feasible adjacency graph is

not necessarily maximal.

4.6.3 The Spanning Tree Algorithm

Rinsma [95] provides an approach which constructs the layout using an underlying

tree structure. This approach uses a stratified approach as well, by assigning a root

to the tree, and constructing the layout in a top-down fashion. The algorithm is

simply described by considering a tree T. A vertex X is chosen as the root of the

tree, and is placed as the top facility. The remainder of the layout is divided into k
rectangles each of area equal to the sum of the areas of the vertices in each of the

k subtrees of T - X, where k is the degree of X in T. The root of each subtree is

the vertex in the subtree which is adjacent to X in T. This root is laid out as the

top facility within its rectangle, and the process continues until all facilities have

been placed, guaranteeing the construction of a rectangular layout. The process is

formally described in Algorithm 4 . 12 .

Algorithm 4.12 The Spanning Tree Layout Algorithm

Input: Tree T, and area requirements on facilities
Output: Layout dual to T
R +-- { e }
Pe +-- BuildingPerimeter
ae +-- 0
while (R =/; 0) do

Choose v E R Place v as the top facility of area av in rectangle Pvi label
remainder of Pv as P�
Vr +-- Vr\{v}

4.6. Quasi Graph Theoret ic Techniques 1 09

end

end

R +-- R\{v}
for i = 1 to n do

end

if ({(i, v)} E ET) then
ET +-- ET\ {(i ' V) }
R +- R U {i}

end

Create rectangle of area equal to sum of areas of vertices in
the tree rooted at i, adjacent to facility v, within P� , label the
rectangle Pi

The appearance of faultlines created in dividing the layout into rectangles for the

subtrees poses no problem to the dimensioning of the layout, as only the horizontal

adjacencies (i. e . those determined by a horizontal wall) of the layout are specified

within the tree. Therefore there is no preconceived requirement for the adjacencies

along these faultlines, and hence the adjacency benefit of the tree provides only a

lower bound on the total benefit of the layout .

To illustrate the Spanning Tree Algorithm consider Figure 4.42, where we see

a given specified tree, and Table 4 .8 which provides its area specifications. The

constructed layout is shown in Figure 4 .43, where we see that the adjacencies of

the tree are indeed horizontal, and every vertical adjacency can only increase the

total benefit derived from the layout . In the layout of Figure 4.43, vertex 5 was

chosen as the root of the tree, and the layout was completed from there.

Facility 1 2 3 4 5 6 7 8 9 1 0 1 1
Area 1 5 10 25 20 15 30 15 20 20 10 20

Table 4.8 : Areas Specifications for Spanning Tree Illustrative Example

There are a few points which should be noted while we are discussing the

Spanning Tree approach . The first is the role of the exterior facility, which was

essentially ignored by Rinsma. In order to maintain consistency of the Spanning

Tree approach with the other methods discussed, the exterior is considered to be a

1 1 0 Chapter 4. Obtaining the Block Plan

1

2

3 4

5 .----<

9 1 0

1 1

7
8

Figure 4.42: Spanning Tree Illustrative Example

5
1 0

3
6

2
9 1 1

4
7 8

1

Figure 4.43: Spanning Tree Layout for the Illustrative Example

4 . 6. Quasi Graph Theoretic Techniques 1 1 1

part of any tree which is constructed; further i t is assigned zero area, and i s always

chosen to be the root of the tree. Furthermore, in order to bring the Spanning Tree

approach into line with the Graph Theoretic model, it is assumed that there are

3n - 6 adjacencies within the layout. This is sometimes hindered by the creation

of a 4-joint , on a vertical faultline, which generally only occurs if facility areas are

common multiples of one another. In instances where a 4-joint occurs, a slight

perturbation is applied to the 4-joint, so that one of the adjacencies across the

4-joint can be realised. This perturbation requires the loss of the rectangularity of

the layout , however the facilities in general become only L-shaped at worst .

The actual construction of the Spanning Tree uses Kruskal 's Maximal Spanning

Tree Algorithm [67] , to ensure that the n - 1 adjacencies we are guaranteed are of

largest possible weight. We attempt to increase the overall value of the layout by

using a simple swapping technique between blocks of facilities within the layout. By

considering rotations of the subtrees, we can produce different overall adjacency

values in the layout . For example, in Figure 4.43, facilities 7 and 8, or blocks

{ 1 , 2 , 3, 4} and {9 , 10 , 1 1 } , could be swapped, whilst still maintaining the vertical

adjacencies specified in the tree. This process could be used within a Tabu Search

framework for instance in order to systematise the process of attaining vertical

adjacencies.

4 . 6 .4 The Tiling Algorithm

In this section we introduce a new classical type of approach to developing the

layout. This method, which we term the Tiling Algorithm, uses ideas similar to

those of CORELAP, but ensures the underlying adjacency graph is maximal planar.

Hassan and Hogg [53] develop a related method, which attempts to minimise

the total transportation cost, but it does not adequately allow enough generality

to be applicable within a true Graph Theoretic framework. Using a grid structure,

H assan and Hogg place initially two or three mutually adjacent facilities, with

minimum transportation cost in the layout . Subsequent facilities are added by

considering the transportation cost between facilities on a side of the layout , and

a possible entering facility. The chosen facility of minimum cost, is placed in an

i ntegral number of grid squares, with its dimensions determined iteratively, so that

each facility can be placed as a rectangle.

The method described by Hassan and Hogg goes some way towards developing

1 12 Chapter 4. Obtaining the Block Plan

a classical method which could be compared to the layout methods especially de­

signed for the GTFLP, however it has several drawbacks as we will outline now.

Firstly in Section 4.2, we outlined the problems involved in using a grid structure

for facility placement, and this problem is even more pronounced in this method,

since each facility must be a rectangle. Therefore a facility i may not attain its

correct specified area if for example, ai is a prime number. Furthermore, Hassan

and Hogg place minimal consideration upon the adjacencies with the exterior. The

only emphasis on the exterior is to divide the facilities into two groups, one con­

taining facilities having movement cost with the exterior, and the other containing

facilities with no movement cost with the exterior, and then placing the second

group in the layout first . This rationale appears a little coarse, and does not con­

sider the consequences of a placed facility having material flow with the exterior

being cut off from the exterior.

We now develop the Tiling Algorithm, which builds upon CORELAP and the

ideas of Hassan and Hogg. Firstly we formalise the concept of a side of the layout,

by defining that facilities having adjacency with the exterior in a current partial

layout to be on the side(s) of the layout where that adjacency is satisfied. This

means that a corner facility will be on at least two sides. The sides are labelled t , b, 1,
and r , corresponding to top, bottom, left and right respectively. The set of facilities

adjacent to each side is denoted by T, B, L , and R respectively, and for any partial

layout having m facilities adjacent to the exterior, IT I + IB I + IL l + IRI = m + 4 ,
since the facility at each corner i s counted twice.

The Tiling Algorithm builds upon the idea of placing a facility on only one

side of the layout as used by Hassan and Hogg, but the placement routine is taken

further to allow a more versatile approach. Firstly we abolish the grid structure, in

order to allow facility areas to be satisfied exactly and, as we will see, to produce

a dimensionalisable layout. This is all achieved by placing facilities along an enti re

side of the layout. The basic idea of the Tiling Algorithm is to greedily choose a

facility to be placed in the layout , and to then place that facility along an entire

side so that, in the subsequent dimensioning phase, no adjacencies are lost . Di­

mensioning is carried out using the Inflation process as described in Section 4. 1 . 1 .
Initialisation of the Tiling Algorithm involves choosing three facilities whose mutual

adjacencies with each other and the exterior is maximised. This initialisation in

I

4. 6. Quasi Graph Theoretic Techniques 1 13

the MPG is effectively the greedy initial Tetrahedron from the Deltahedron Algo­

rithm. The placement of these three facilities is also the same as that for the i nitial

Deltahedron layout, except in this instance we do not place subsequent facilities

inside these initial three facilities, but around the outside instead.

Subsequent facilities are placed in the layout by considering the available sides

on which facilities can be placed so that maximal planarity of the underlying adja­

cency graph is preserved. Obviously the exposed side the last facility was placed on

is not available, as this would lead to the entering facility only being adjacent to

the exterior and the previously placed facility, hence violating maximal planarity

of the partial layout. For each facili ty which is a candidate to enter the layout ,

we determine the increase in benefit of the total adjacency of the layout on each

side of the layout . The facility /side pairing which gives the greatest increase to the

total benefit is chosen as the entering facility and placement side respectively.

Two objective measures were used to find the facility(i) and side(J) pairings

(i , J) . These are shown in Equations 4.9 and 4 . 1 0, corresponding to the best

overall increase in the adjacency graph, and the best average adjacency value of

the entering adjacencies, respectively, where the following sets are defined: S is the

set of sides which are candidates for placement sides; J*
=

B U T U L U R\J; and

the current graph is labelled Gp, containing p vertices including the exterior vertex

e.

(i , J)

(i, J)

arg max
i�Vap
Jes

(Wie """' Wik """' Wke) arg �:� IJ I + fe; IJ I - � PT Jes k�J·

(4.9)

(4 . 10)

Furthermore we can extend the Tiling Algorithm to allow a greater variety of

facility shapes, with few changes. This is undertaken by considering how many

rectangles each facility shape can be broken down into, e.g. £-shaped facilities can

be made up of two rectangles, and similarly for T-shaped facilities. Therefore if we

determine that L and T shaped facilities are to be permitted, we allow facilities

to be placed twice, with the only restriction being that the second time the facil­

i ty is placed, it is placed adjacent to its first placement position. This allows for

a final merging of the two placements to give the required facility shapes. Since

1 14 Chapter 4. Obtaining the Block Plan

the resulting layout is dimensionalisable, there is no problem in satisfying the area

of any facility which is placed more than once. We can also allow imposition of

user-defined constraints with this approach, so that facilities which are required

to be rectangular are placed only once, while Material Handling Systems, for ex­

ample, could be placed multiple times. The modifications to the objective values

for choosing the facility /side pairs (i , J) are shown in Equations 4. 1 1 and 4.12 ,
corresponding to Equations 4.9 and 4.10 respectively, where Ii is the set of facili­

t ies adjacent to i in the current layout. Therefore when considering a facility i, if

Pi = 0, we use Equation 4.9 or 4 . 10 , while if 0 < Pi < ima:z:, we use Equation 4 . 1 1
or 4 . 12 , where imax is the maximum number of times i can be placed , and the

number of times i has been placed is denoted by Pi .

(i , J) - argtlf [� Wik - � WkeJ
k�li kE J . k�J"

(i , J) arg rr_;;s
x [L �;� - L �;j)

iEJ lcEJ lc,ti
k�li kEJ

k�J·

(4. 1 1)

(4 .12)

We are now in a position to give the full description of the Tiling Algorithm

which is shown in Algorithm 4 . 13, for the case using Equations 4.9 and 4 . 1 1 , and

where J1 and J2 are the sides adjacent to side J.

Algorithm 4.13 The Tiling Algorithm

Input: Adjacency matrix of benefits, imax values, and area specifications for
each facility
Output: Dimensioned Layout
best +-- - 1
V, +-- 0
for i , j, k = 1 to n do

if (best < Wie + Wje + 'Wke + Wij + 'Wik + Wjk) then
best +-- Wie + 'Wje + Wke + Wij + 'Wik + Wjk

Vp +-- { e, i , j, k}
end

4 . 6. Quasi Graph Theoretic Techniques

end
adjacency benefit +-- best
Place vertices of V, via initial Deltahedron layout
for For each element i of V, do

I; +-- V, \i
end
S +-- L, R, B

1 15

while (Improvement in Total Adjacency Value or All Facilities Not Placed)
do

for i = 1 to n do

end

for J = B, R, L, T do
B(i , J) +-- - 1

end

if (p; = 0 and J E S) then
B(i, J) +-- Wie + LkeJ Wjk + L kEJ Wek

krtJ·
end
if (0 < Pi < imax and i E J and J E S) then

B(i , J) +-- EkeJ Wik - 2:::: k�i Wke
krtl kEJ

end
krtJ·

B(i* , J*) +-- max;,J B(i, J)
Vap +-- Vap U i*
adj acency benefit +-- adjacency benefit + (i* , J*)
Place facility i* along side J*
for k = 1 to n do

end

if (k E J and k rt J*) then
h +-- h U i*\e

end
if (k E J and k E J*) then

h +-- h u i*
end

I;· +-- e U J*

Pi• +-- Pi• + 1

I .

1 1 6

end

end

Jl +- Jl u i*
J2 +- J2 u i*

Dimension layout via inflation

Chapter 4. Obtaining the Block Plan

Consider now the following example problem. The benefit matrix is given in

Table 4 .9 , and area requirements in Table 4 . 10 , and we assume that each facility

2 3 4 5 6 7 8 9 10
1 409 0 0 0 1 79 0 444 353 229
2 0 0 0 0 0 0 437 190
3 0 283 52 0 208 204 0
4 0 20 0 239 0 0
5 138 249 410 391 0
6 0 0 124 0
7 0 0 283
8 325 0
9 0

Table 4.9 : Adjacency matrix to illustrate the Tiling Algorithm

Facility 1 2 3 4 5 6 7 8 9 10
Area - 15 1 5 10 20 10 25 20 20 10

Table 4.10 : Area specifications for the Tiling Algorithm Illustrative Example

can be placed at most twice. The initial layout comprises facilities 2, 8 and 9, along

with the exterior facility 1 . Facility 5 is then placed on the bottom side, note that

at this point only the left and right sides are available for placement. Subsequent

placements are the placement of facility 3 on the right side, followed by facilities 6
and 1 0 on the bottom and top respectively. Facility 7 is then placed on the right,

4.6. Quasi Graph Theoretic Techniques 1 17

10

2

8 9 3 7

5

6

4

Figure 4 .44 : Tiling Algorithm Layout for the Illustrative Example

and lastly facility 4 is placed at the bottom. The corresponding layout to this

problem is shown in Figure 4 .44. Notice that we cannot now improve the total

benefit even though we are able to place facilities more than once. The only extra

adjacencies which could be currently obtained are placing one of facilities 2,4,5,6,8,

or 10 along the left side, but this would result in at least two of the adjacencies

(1 , 2) , (1 , 6) and (1 , 8) being removed. For the purpose of illustration, assume that

placing facility 8 say along the left side would i ncrease the total benefit. The layout

after this second placement of facility 8 is given in Figure 4 .45, where facility 8's

area was split evenly between its two placements.

Finally let us consider improvement techniques which could be applied to Tiling

Algorithm layouts. Two processes are immediately available, called facility swap­

ping and facility transformation. The facility swap operation simply considers two

facilities i and j which we attempt to swap; note that there exists no problem

regarding facility shapes here (as long as the Pi values permit) , as the layout is al­

ways maintained as a dimensionalisable layout. The potential benefit of swapping

two facilities i and j is denoted by P8(i , j) , and is given by Equation 4 . 13 . If there

exists P8(i , j) > 0 , then the swapping facilities i and j will improve the adjacency

value of the layout.

1 18

10

l

8

s

6

4

9

I

Chapter 4. Obtaining the Block Plan

3 7

Figure 4.45: Example of placing a facility twice into a Tiling Algorithm Layout

Ps (i , j) = L (wki - Wki) + L (wki - Wkj)
kef; kEii

(4 . 1 3)

The second operation, facility transformation, involves transferring one rectan­

gle from a facility to another facility. The facility the rectangle is taken from must

have been placed more than once, the reassigning of the rectangle must not discon­

nect the facility the rectangle is taken from, and the facility the rectangle is being

reassigned to must have been placed fewer than its allowed maximum number of

placings. The potential benefit of transforming a rectangle r from facility i to facil­

ity j is denoted by Pt (ir , j) , and the benefit derived in making this transformation

is given by Equation 4 . 14 , where l;r is the set of facilities adjacent to rectangle ir .

Pt (ir , j) = L Wkj - L Wki
kel;r \ {Ijnl;r) kEl;r \(I;nl;r)

(4 . 14)

Two further operations are available, involving the deletion of, or addition of,

rectangles to facilities, and are denoted by Pd(in J) (where we consider deleting

a rectangle r of i from side J with benefit given by Equation 4 . 15) and Pa (i , J)
(where we consider adding another rectangle to i along side J, with benefit given

by Equation 4 . 16) .

4. 7. Special Classes of MPGs

Pd(ir , J) - I: Wek - E
kEl;r \(J;rn(J1UJ2)) kEl;r \(l;nl;r)

Pa(i, J) I: Wki - L: Wek
keJ\{l;nJ) keJ\(Jn(Jl uJ2))

1 19

Wki (4 . 15)

(4. 16)

These two latter operations ensure that we are able to create and destroy rectan­

gles to avoid having a fixed number of possible rectangles in any layout. Rectangle

addition and deletion may only be carried out as long as the dimensionalisability

of the layout is retained, and for that reason are conducted on the outskirts of

the layout, with rectangles being only being deleted if they are the only element

in B, R, L , or T; similarly rectangles must be added in the same way as in the

original algorithm - along an entire side of the layout, whilst maintaining maximal

planarity. The four operations could be used within a Tabu Search framework for

instance, in order that we move through a variety of layouts.

4.7 S p ecial C lasses of MP Gs

In this section we examine some MPGs which allow the simple generation of dimen­

sionalisable layouts with guaranteed worst-case facility shape. We are motivated

by an attempt to characterise as many classes of MPGs as possible which , due to

their structure, allow dimensionalisable layouts to be constructed easily. Structural

characterisation is important, as each MPG can represent an infinite number of dif­

ferent layout problems, given different area condit ions, thereby we can effectively

solve a vast array of layout problems (although each set is probably of measure

zero within the entire set of GTFLP instances) , satisfying any of the conditions

characterised.

4. 7. 1 All Vert ices Adjacent t o the Exterior Vertex

Structural Condition: ID1 1 = n - 1. This first class has been used extensively

throughout this thesis, especially as starting points for the ODA and the VSA. We

now proceed to show that all MPGs of this type are Deltahedron-generatable and

further, when using the Deltahedron Layout Algorithm, generate layouts with a

worst case facility shape of L. Consider a MPG on n vertices in which there exists

120 Chapter 4. Obtaining the Block Plan

a vertex i adjacent to every other vertex, i. e. di = n - 1 . Let us call this vertex of
degree n - 1 the centre vertex.

Theorem 4. 7.1 If an MPG contains a center vertex, then the MPG is Deltahedron
generatable.

Proof: By definition, the wheel corresponding to the centre vertex must have the

form of Figure 4.46.

Figure 4.46: Wheel for a centre vertex

Consider the faces in the MPG which do not involve the centre vertex. Since

all vertices are in the partial graph of the centre vertex's wheel, the other faces will

be placed via case (b) of the TESSA heuristic, whereby a face is created involving

three vertices and two edges of the partial graph. The insertion of a face in this

i nstance is shown in Figure 4.47.
One of the vertices in the face added has now become interior, and has degree

three. Once a vertex becomes interior, it cannot be a part of any more faces, and

hence cannot increase its degree. This vertex of degree three is then an equivalent

Deltahedron insertion, i. e . we know that if the final MPG is indeed Deltahedron,

then we will be able to delete this vertex of degree three in order to find the

Deltahedron insertion order, via ETA2. Therefore this vertex may be deleted.

Hence, we now have a partial MPG on n - 1 vertices. By repeating this process

of adding faces via TESSA, and deleting interior vertices of degree three, we will

end up with the Tetrahedron as our final MPG, the starting point for Deltahedron,

with the insertion order being the reverse order in which the vertices were deleted.

4. 7. Special Classes of MPGs

Figure 4.47: Placement of a face not adjacent to the centre vertex

1 2 1

This can be further described as follows: all MPGs have 2n - 4 faces; the centre

vertex and its wheel account for n - 1 of these faces, leaving n - 4 faces to be added

by TESSA. TESSA creates an MPG by adding 2n - 5 faces, and the remaining

face is the final infinite face. Now each face added creates a vertex of degree three,

which can then be deleted. Therefore we can delete n - 4 vertices from the MPG,

which leaves four vertices, the centre vertex plus the vertices in the final infinite

face, from which to create the final MPG, and only one MPG on four vertices

exists. 0

Corollary 4.7. 1 If ID1 1 = n - 1 , then the MPG is Deltahedron-generatable.

Proof: If ID1 1 = n - 1 , then the exterior is a centre vertex, the result follows
from Theorem 4 .7 . 1 0

Theorem 4. 7.2 lj, in an MPG the exterior facility is a centre vertex, then there
exists a layout. with every facility at worst L shaped.

Proof: Consider the initial tetrahedron layout. Each 3-joint containing the ex­

terior can place a facility using P01 , therefore the initial placement retains the

rectangularity of the layout. Consider the Deltahedron placement directions; the

two facilities on the bottom left and right corners will have two placement direc­

tions directed into them from the 3-joints containing the exterior. Placement at

1 22 Chapter 4. Obtaining the Block Plan

these corner facilities are P01 operations, and therefore do not violate the rectan­

gularity of the corner facility. Therefore the facility shape can only be worsened by

placement within a facility which is not a corner facility. We are only concerned

with the 3-joints involving the exterior, of which there are exactly two for each

facility. If we can show that each rectangular facility not having a 2-joint, has

exactly one placement direction into it , and each L-shaped facility has none, we

have completed the proof, as rectangular facilities with a 2-joint will perform sim­

ilarly to the corner facilities. Therefore, consider the left side of the layout, having

k rectangular facilities bordering this side, labelled /1 , /2 , • • • , /k , where /1 is the

top facility, and fk the bottom left corner facility. This chain of facilities provides

the 3-joints (!1 1 /2 , e) , (/2, /J, e) , . . . , (/k-1 , /k, e) . Now, if each of the placement

directions at these 3-joints is directed into the second facility of each 3-joint , and

considering similar analysis for the bottom and right sides, each facility has at most

one placement direction, except the bottom left, and bottom right corners (which

we have considered already) . Consider some L-shaped facility; the reflex corner of

this facility is a 2-joint of some rectangular facility. Thus, the placement direction

for this L-shaped facility is directed into this rectangular facility, which therefore

has two placements directions directed into it; however, this second one is adjacent

to a 2-joint, and therefore only one of the placement directions can worsen the

shape of this facility. 0

Rinsma [94] also provided a mechanism for producing layouts of this type,

although Rinsma's method was defined in terms of Maximal Outerplanar Graphs

(which are equivalent to this class by adding a vertex representing the exterior

adjacent to every other vertex) . Rinsma's method and the Deltahedron Layout

Algorithm perform essentially the same steps, the only difference being in the

choice of initial Tetrahedron , where any face not including the exterior can be

chosen to complete the Tetrahedron, together with the exterior. Deltahedron uses

the ETA1 or ETA2 methods to choose this face, while the choice using the Rinsma

approach is the first face encountered when the faces of the maximal outerplanar

graph are ordered lexicographically.

4 . 7.2 One Vertex is Not Adjacent t o t he Exterior

Structural Condition: ID2 1 = 1 , ::::} ID1 1 = n - 2. We will discuss this class of

MPGs in two sections. The first is a simple sub-case, where we impose the extra

4. 7. Special Classes of MPGs 123

condition that dx = n - 2, x E D2 • The layout is formed by choosing two facilities

to be placed in regions A and C of the VSA, respectively. Unless n = 5, they

should be non-adjacent facilities. The other facilities are placed by considering the

cyclic ordering of the facility i n D2 • This is best i llustrated by Figure 4.48, where

x is the vertex in D2 , and i and j are chosen to be placed in regions A and C.

. "'
~ bm _______ j

al

.

.

.

.

8]<

i

bt

.
X .

.

.

bm

j

Figure 4.48: The Layout of a MPG having conditions jD1 j = n - 2, jD2 j = 1 , and

dx = n - 2, X E D2

The layout generated in this case will have a worst case room shape of a rectan­

gle, as long as the facilities chosen to be placed in regions A and C are non-adjacent;

otherwise the worst case room shape becomes L . Note that for n = 5 we cannot

generate a layout with the facilities in regions A and C non-adjacent .

H aving considered this special case, we are now in a position to discuss the

complete set of MPGs of this type. vVe must consider the D1 facilities in two sets:

those which are adjacent to the facility in D2 , and those which are not . The first

step is to lay out the set of D1 facilities adjacent to the D2 facility, as we would

the special case discussed previously. The remaining facilities to be laid out will all

be Deltahedron type P01 and P 02 insertions. Note that if the two facilities to be

placed in regions A and C are adjacent, one must be placed as an L. This does not

increase our worst case room shape as this facility will only have one placement

direction within it , which is adjacent to a two joint , and hence will remain an L.
Therefore we can lay out this class of MPGs with a worst case room shape of T.

Also note that this set is not a subset of Deltahedron MPGs; consider the Regular

Octahedron.

1 24 Chapter 4. Obtaining the Block Plan

4 . 7 . 3 Two M ut ually Adj acent Vertices Not Adjacent t o

t he Exterior

Structural Condition: D2 = {x, y } , (x, y) E E, ::::} jD1 l = n - 3. This class of

MPGs is very similar to the the class of Section 4.7.2. The difference is that we lay

out the facilities in D2 as a block, with a horizontal wall separating them, and the

facilities in D1 to be placed in regions A and C are chosen as the facilities which

are adjacent to both facilities in D2• The remainder of the class is laid out in the

same way as for the class of Section 4.7.2. MPGs in this class have layouts with

at worst T room shape, and are not Deltahedron-generatable. The layout of an

MPG of this type is shown in Figure 4.49, where x and y are in D2 and i and j are

chosen to be in regions A and C , as they are the two vertices adjacent to x and y .

i

at bt

. .

. X y .

. .

.

ak q,

j
j

Figure 4 .49: The Layout of a MPG having conditions ID1 l = n - 3, and D2
{x, y } , (x, y) E E

4. 7.4 m D ist inct Vertices Not Adj acent t o the Exterior

Structural Condition: ID2 l = m, V{x, y} E D2 , (x, y) � E, ::::} IDt l = n - m - 1 .
The ability to be able to create dimensionalisable layouts from this class of MPGs

is extremely fortuitous, since included in this class are all MPGs which exist after

the contraction of groups of D2 vertices to a single D2 vertex when using the

Contraction Algorithm. The layout process for this class is similar to that used in

Section 4. 7 .2. We choose a vertex in D2 , and create the partial layout consisting of

it and all facilities in D1 adjacent it , as in Section 4.7.2. Now for each subsequent

4. 7. Special Classes of MPGs

. .

.

. .
.

··· ... •• ••

3.k; � .
.

.

. .
.

.

.
···· ...•

b
••

m ____,... __ ._ Cp

125

i

al bl

.

.

.
X .

. Cl
. y Ilk .
.

Cp bm

j

Figure 4.50: The Layout of an MPG having structural condition ID2 1 -
m , V{x , y} E D2 , (x , y) (j. E

vertex in D2 which is adjacent to facilities in the partial layout (each facility is

either adjacent to two facilities in the partial layout, since if it were· adjacent to

more, it must be adjacent to another vertex in D2 , or it is adjacent to none) ,

we can place the facility in D2 at the 3-joint defined by the exterior and the two

facilities it is adjacent to which are already placed, using Deltahedron placement

directions. This allows the illegal adjacency between the exterior and the vertex in

D2 , but this is rectified when we place the, as yet unplaced, facilities in D1 that the

newly placed facility from D2 is adjacent to. These facilities are placed as a block

which extends from the 3-joint defined by the exterior, one of the facilities in D1
the newly placed facility in D2 is adjacent to, and the newly placed facility, to the

3-joint consisting of the exterior, the newly placed facility, and the other facility it

is adjacent to. This procedure is shown better by Figure 4.50, where we first lay

out facility x and all the facilities in D 1 adjacent to it , followed by vertex y , and

then the block of c facilities.

Once all of the facilities in D2 are placed along with the facilities in D1 which are

adjacent to them, we can place any remaining facili ties in D1 using the Deltahedron

insertion operations. MPGs of this type have a worst case room shape of T.

1 26 Chapter 4. Obtaining the Block Plan

4. 7.5 S mall P roblems

Structural Condition: n :5 8 . The final class we will consider explicitly gives a

guaranteed worst case of T and is essentially a trivial class. The complete set

of these MPGs and their corresponding dimensionalisable layouts are shown in

Appendix A. The value of n for which dimensionalisable layouts can no longer be

guaranteed is not yet known. The 12 facility problem the Regular Dodecahedron

is one which currently defies the generation of a useful d imensionalisable layout.

4. 7.6 Others

While there exist other possible sets of MPGs which allow dimensionalisable layouts

with worst case room shape, they are not as general as the classes described in

Sections 4 .7 . 1 - 4 .7 .5 . Examples would include some special cases of MPGs with

concentric distance classes, and obviously the MPGs created using the Deltahedron

and Regular Octahedron structures. Unfortunately it does not appear possible to

generate useful characterisations for the complete set of MPGs - while further

characterisations may be found, it is unlikely that the full set of MPGs will be able

to be characterised in this way. Each new class found however does effectively solve

an infinite number of problems as we have stated, due to arbitrary area conditions.

Coda

In this chapter we have described the available Graph Theoretic techniques for

developing a layout . We have described, and enhanced, one method from the liter­

ature, the Contraction Algorithm, which will find a layout for any given problem

instance. We have produced a correct implementation of another approach for this

problem, SIMPLE, and further, have developed a completely new and different

approach to finding a layout for any given problem instance, the Vertex Splitting

Algorithm. Within the context of these three methods we have explored the Delta­

hedron Layout Algorithm which will provide a layout to a Deltahedron MPG with

a worst case guarantee equivalent to a T, as well as characterising various special

classes of MPG structures which allow dimensionalisable layouts to be simply con­

structed. Also in this chapter we have discussed the relative merits of grid layout

approaches and the more generic continuous approaches which use the ODA or a

variant. Finally we have described two other methods, the Spanning Tree method,

4. 7. Special Classes of MPGs 127

which uses a tree rather than an MPG to structure the layout , and the Tiling Al­

gorithm, which is more in line with more classical approaches, but guarantees to

provide the 3n - 6 adjacencies of Graph Theoretic techniques.

In the next chapter we introduce some local improvement procedures, which can

be applied to a layout in an attempt to increase the efficiency and regularity of the

layout , and in Chapter 6 we will perform an extensive computational experiment

on these layout approaches.

128 Chapter 4. Obtaining the Block Plan

129

Chapter 5

Layout ln1provement Procedures

In this chapter we identify two fundamental procedures which enable the quantifi­

able improvement of a layout with respect to at least one of the regularity measures

described in Section 2.5 . These procedures will work on both dimensionalisable and

undimensionalisable layouts. Obtaining procedures which can work on all layouts

are difficult, due to the possibility ·of foregoing adjacencies, or area requirements,

because of the presence of faultlines in undimensionalisable layouts.

5 . 1 Rectilinear Segment Reduction

The first improvement procedure which we introduce here takes two adjacent facili­

ties which share at least 3 adjacent rectilinear segments, and attempts to eliminate

two corners common to both facilities. This procedure is called Rectilinear Seg­

ment Reduction (RSR) . A simple example of which is shown in Figure 5. 1 . There

Figure 5. 1 : Rectilinear Segment Reduction - Simple Example

130

a

� J �

Chapter 5. Layout Improvement Procedures

0
1

�2 1
�1

0
2

�

Figure 5.2: Rectilinear Segment Reduction - Conditions of Use

are two things which we must be aware of when performing RSR. The first is re­
taining the correct areas for each of the facilities, hence eliminating the need for
re-dimensioning, and thus retaining the improvement at a local level . The second
is that in changing the segments no adjacencies should be violated.

Let us assume that there exist two facilities, i and j, which share three adjacent
rectilinear segments as shown in Figure 5.2, where each corner k is defined by its
coordinate (xk , Yk) · We wish to find new a and f3 coordinates. With reference to
Figure 5.2, consider two lengths, Y1 = I Ya - Ya(new) I and Y2 = I Y� - Y�(new) I · Also let

x1 = lxcr - X51 1 , x2 = jx52 - x� l · Regardless of how much we change the segments,
we are constrained by Equation 5. 1 .

(5. 1)

Now either the 3-joint a1 or the 3-joint a2 will constrain the RSR on the left ,
and the 3-joint (31 or the 3-joint (32 will constrain the RSR on the right , or we will
be able to successfully perform the reduction. The 3-joints which constrain the
RSR are called a* , and (3* , respectively. Let c be a minimum specified adjacency
wall length , providing Equations 5.2 and 5.3.

YI (5.2)

Y2 = (5.3)

Choosing y1 and y2 via Equations 5.2 and 5.3 ensures that Equation 5. 1 is
satisfied. Furthermore, if y1 satisfies the first minimisation term, y2 will satisfy its

5. 1 . Rectilinear Segment Reduction 13 1

second, and vice-versa. In the first instance we are constrained by the 3-joint a:* ,
and in the second by /3*. If both satisfy their third term, then the reduction will

be successful.

If the reduction is successful, then the number of corners of each facility will

be reduced by two. This will naturally lead to an increase in regularity with

respect to the number of corners; further, reducing the perimeter of the facility,

will also enhance the perimeter ratio values. We cannot guarantee an increase

in the bounding polygon measures, but they will not decrease. The usable space

polygon ratios may either increase or decrease.

RSR is useful mainly for methods which employ the ODA or a variant of it ,

encompassing SIMPLE, the VSA and the Contraction Algorithm. RSR may be

incorporated into the VSA by deleting three rectilinear segments formed during

the recoupling of the facilities in the layout, while in SIMPLE, and the Contraction

Algorithm, RSR essentially provides the a: and f3 values used in the ODA, which

is preferable to attempting to input them by hand or fixing them at a set value for

all facilities.

Note that we can reduce quite complicated structures by using this one simple

operation, as two facilities sharing k adjacent rectilinear segments can have their

shape improved using repeated RSRs. Also note that the RSR may not be success­

ful in attaining a single straight line segment, but it may be beneficial in making y1
and y2 as long as possible i n order to reduce the perimeter ratio values, by reducing

l l 81 - 82 1 ! (the length of the middle line segment) .

Figure 5 . 3 shows an example of a layout constructed using the Contraction

Algorithm, before and after the use of RSR, complete with the respective regularity

values in Table 5. 1 .

If we are constrained by /32 or o:2, as opposed to o:1 and /31 i n Figure 5.2, we

may have sets of nested facilities of the form of Figure 5.4. By iteratively changing

these segments as much as possible, we can eliminate such nestings, providing the

constraining 3-joints allow this, even though to begin with there may seem initially

to be no possible reductions.

1 32

5

10
6

I

:. 7

I
9

l
(a)

Chapter 5. Layout Improvement Procedures

5

10
6

I

4

l 7 2

3

9

(b)
Figure 5.3 : The Layouts of a 1 0 Facility Problem (a) Before and (b) After perform­
ing RSR

Measure Average Values % Increase
Before RSR After RSR

Enclosed Rectangle 0.8255 0 .8568 3.8%
Enclosed Golden Rectangle 0 .3385 0 .3631 7.3%

Enclosed Square 0.2151 0 .2244 4.3%
Bounding Rectangle 0 .7143 0 . 7367 3 . 1%

Bounding Golden Rectangle 0.3643 0 .3755 3 . 1%
Bounding Square 0.2252 0 .2321 3 . 1%

Perimeter 0.6049 0 .6629 9.6%
Number of Corners 8.2222 4 .6667 -43.2%

Table 5. 1 : Changes in Selected Regularity Values for Layouts in Figure 5.3

5. 2. Linear Transformation 133

Figure 5.4: An example where there are no immediate RSR reductions, but iterative
reduction may be successful

5 . 2 Linear Transformation

This improvement procedure is a global improvement, yet still requires minimal

effort . We consider a Linear Transformation (LT) of the layout. Fundamental

components of this linear transformation are that area (as the determinant of the

transformation matrix is 1) and shape are preserved, allowing us to never need be

concerned about redimensioning, or about losing adjacencies.

Consider every 2- and 3-joint within a layout with coordinates (xi , Yi) · Let

(xo, Yo) denote the top left coordinate of any layout i. e. xo $ Xi , and Yo $ Yi , 'Vi .
Then we can perform a linear transformation of the layout as shown in Equation 5.4 ,
where a is a scale parameter.

[xi'w , yf"w] = [(x; - xo), (y; - Yo)] [� �] + [xo, Yo] , a > 0 (5.4)

The value of a corresponds to the factor by which we stretch the layout. The

determination of the scale parameter is the key to the success of this improvement.

Firstly note that the enclosed rectangle, bounding rectangle and number of corners

regularity values are unchanged by this transformation. We can optimize the value

of a with respect to one of the other regularity measures only. It is difficult to pre­

dict the behaviour of the other enclosing and bounding polygon measures, but the

perimeter ratio follows a smooth curve, leading up to a point where the perimeter

is minimised for a particular shape. Therefore we have chosen the perimeter ratio

with which to optimize a .

As an example of the effect of a on a facility, consider Figure 5.5. We see that

1 34

(a)

0.1

0.6

0.4

0.2

fo ..

(c)

Chapter 5. Layout Improvement Procedures

(b)

o.a

0.6

0.4

0.2

101 0
10 .. 10_, 10'

(d)

Figure 5.5: An 1-shaped facility (a) and graphs of the regularity measures as
a varies; (b) perimeter ratio; (c) bounding polygon ratios; (d) enclosed polygon
ratios

101

5.2. Linear Transformation 135

the perimeter ratio is a smooth robust curve; the golden rectangle polygon ratios

bound the square polygon ratio. Note that the enclosed polygon measures have two

local optima corresponding to the two values of a where each of the parts of the L
become squares, or golden rectangles, respectively.

Note that we do not consider maximising the average perimeter ratio, as this

may lead to very elongated layouts, which are impractical . For example, consider

the layout i n Figure 5.6, where there are n + 1 facilities all of area 1 , and the top

facility has degree n.

Figure 5 .6 : An example where maximising the average perimeter ratio will result

in an impractical layout

If we maximize the average perimeter ratio, the optimal value of a, will be

where all facilities except the top facility will be squares, having perimeter ratios

of 1 . This means that the average perimeter ratio for the layout of Figure 5.6 is

given by Equation 5.5.

1 n+l 4yfai 1 4
n + 1 ?:: -p· = n + 1 (n + 2n + .l..) t=l 1 2n

(5.5)

Now as n -+ oo , in Equation 5.5 the average perimeter ratio -+ 1, yet the

perimeter ratio of the top facility -+ 0, leading to an impractical layout where the

top facility cannot be used. Therefore when using the linear transformation , we

seek to maximise the minimum perimeter ratio. This ensures that the layouts are

attempting to maximize usability. This example also highlights the necessity for

considering minimum and maximum statistics, in tandem with average statistics,

in general .

Consider the example we saw in F igure 5.3. When we perform the linear trans­

formation , the changes in the regularity values given in Table 5.2.

1 36 Chapter 5. Layout Improvement Procedures

Measure Average Values % Increase
Before LT After LT

Enclosed Golden Rectangle 0.3631 0.3837 5.7%
Enclosed Square 0.2244 0.2371 5.7%

Bounding Golden Rectangle 0.3755 0.4098 9. 1 %
Bounding Square 0.2321 0.2537 9.3%

Perimeter 0.6629 0.6689 1 .0%
Measure Minimum Values % Increase

Before LT After LT
Enclosed Golden Rectangle 0 . 1043 0 . 1 185 13.6%

Enclosed Square 0.0645 0.0733 13.6%
Bounding Golden Rectangle 0. 1553 0. 1 753 12.9%

Bounding Square 0.0960 0 . 1091 13 .7%
Perimeter 0.4013 0.4079 1 .6%

Table 5 .2 : Changes in Selected Regularity Values for the Layout in Figure 5.3 (b)
after application of the LT

C o da:

In this chapter, we have introduced two methods for improving the regularity val­

ues of a layout . We have been able to implement these improvement procedures

locally, and hence retain the duality with the MPG and area specifications. These

improvement procedures can prove very effective, as we shall see in Section 6.4.

The next chapter, in fact, more fully examines the methods described in Chapter 4,

via an extensive computational experiment which considers a variety of different

attributes of the layouts.

137

Chapter 6

Computer Implementation

In this chapter we provide the main computational study of the thesis. As far as

we are aware, this is the first-in depth analysis that has been done on layouts in the

GTFLP. We will examine the usefulness of each of the respective methods, compar­

ing layouts generated by each method on a set of test problems, and investigate the

trade off between attempting to maximize regularity and adjacency concurrently.

In tables of this chapter and Chapter 7, we employ a number of abbreviations; those

not previously described are found for reference in Table 6 . 1 . Further the VSA,

the Contraction Algorithm, and SIMPLE commonly have bracketed abbreviations

relating to improvement procedures, and/or initialisation.

CA

TA (I)
ST

R

D

NI

I

The Contraction Algorithm

The Tiling Algorithm with worst case facility shape 1
The Spanning Tree Algorithm

The initialisation of Rinsma

The Deltahedron initialisation

Methods used with no improvements

Methods used with improvements

Table 6 . 1 : Commonly Used Abbreviations

6 . 1 Generat ion o f Test P roblems

The set of test problems generated consisted of 45 problems on each of n=10, 15,

20, 25, 30, 40, and 50. Test problems between 10 and 30 facilities were used to

'

1 38 Chapter 6. Computer Implementation

analyse the layouts, while those test problems of size 40 and 50 were used at times

in order to gain more understanding of the asymptotic affects of some parameters.

It was felt that generating layouts of size at most size 30 was large enough to

gain insight into what we might expect in the general case. Within each set of 45
benefit matrices for each problem size, 15 have 50% non zero elements, 15 have

75% non zero elements, and the remaining 15 have 100% non zero elements on

average, and all problem sets are generated so that the average edge weight was

1 12.5. This ensured that any averaging of adjacency benefits was unbiased, and

furthermore, given a problem instance, we could determine the expected value of the

total adjacency benefit. Adjacency benefits were randomly chosen from a uniform

distribution, with range dependent on the percentage of non-zeros required - for

example, problems with 75% non-zeros had their benefits determined from the

uniform distribution with range (-99, 300) , with all negative benefits generated

set to zero, in order to generate our required percentage of non zeros. Further,

using the assumption that any negative entries in the adjacency matrix could be

eliminated by adding a large enough constant to each entry in the matrix [39] ,
i t was not considered worthwhile to allow negative entries in the benefit matrix.

Within each set of 15, we have 5 problems all of area 40, 5 with areas in the range

30-50, and 5 with areas in the range 1 0-70. This ensured that layout methods

were well tested on a variety of different area specifications, so as to eliminate any

advantage a method may have had on a certain set of area requirements. Areas

also were randomly chosen from a uniform distribution with ranges equating to

those specified above.

Following the generation of the benefit matrices, we were required to generate

highly weighted MPGs, in order to firstly create layouts from the MPGs, and

secondly to be able to use the adjacency benefits of the MPGs when comparing

with the regularity values. To generate the MPGs, we implemented TESSA as

a construction phase, and followed that with a Tabu search routine using the f­
operation. The Tabu Search routine was set to terminate when no improvement

had been found in the last l OOn iterations. It was assumed that TESSA, being

able to create any MPG on n vertices, would give unbiased initial starting points,

whereas using Deltahedron as the initial construction may have affected the final

MPG. Following the results of [13] , it was tacitly assumed that this method of

generating the MPGs would generate highly weighted MPGs. Table 6.2 gives the

6.2. Existence 1 39

results of the generation. All tests and generations of test problems were carried

out on a Spare Station ELC.

Averages

n Upper Bound MPG Value % of Upper Bound Time(s)

1 0 4582.24 4258.02 93% 5.05
1 5 8676.84 7463.27 86% 26.67
20 13732.16 1 1550.47 84% 9 1 .63
25 1 8432.64 15267.22 83% 243 .20
30 23077.96 18791 .44 8 1% 589 .65

Table 6.2: Generation of arbit rary MPGs

6 . 2 Existence

Our first experiment deals with the ability of the given layout methods to success­

fully dualise a given MPG. The results of this are seen in Table 6.3 .

Method n=lO n=l5 n=20 n=25 n=30
VSA(D) 100% 100% 100% 100% 100%
VSA(DI) lOO% 100% 100% 100% 100%
VSA(R) 100% 100% 100% lOO% lOO%
VSA(RI) 100% 100% 100% 100% 1 00%
CA(D) lOO% 100% 1 00% 100% 1 00%
CA(DI) 100% 100% 100% 100% 100%
CA(R) 100% 100% 100% 100% 1 00%
CA(RI) 100% 100% 100% 100% 100%
SIMPLE 100% 100% 0% 0% 0%
SIMPLE(!) 100% 100% 27% 2% 0%
Deltahedron 44% 2% 0% 0% 0%

Table 6 .3 : Existence of Solutions to Test Problems

We see that the VSA , and the Contraction Algorithm are able to successfully dualise

an arbitrary MPG with or without improvements for n � 30, rega�dless of whether

the Deltahedron or Rinsma starting points are used . In fact further experiments

140 Chapter 6. Computer Implementation

with n = 40 and n = 50, showed that these methods could successfully dualise

MPGs with n � 50. Unfortunately due to computer limitations, we were unable

to proceed higher. However, it seems reasonable to hypothesise, that n = 50
represents the top of the range that the unimproved versions could be expected

to handle. Regarding the improved versions, it would be d ifficult to estimate the

highest value of n for which they could successfully dualise. The VSA will be limited

eventually by the sheer size of the number of facilities that i t will create during the

splitting phase, while the Contraction Algorithm will eventually be constrained by

the number of corners generated during creation of later facilities using the ODA.

S IMPLE showed disappointing results, failing to make it past n = 1 5, for the .

unimproved version, and only managing one problem out of the 45 for n = 25.
SIMPLE is, in fact, constrained by the ODA, in that once a facility becomes ir­

regular in the layout, shapes of facilities subsequently adjacent to it become worse.

This is the same phenomenon which would be exhibited by the Contraction Algo­

rithm at the top of its facility size range. The performance of Deltahedron was not

surprising since, as n increases, the number of Deltahedron MPGs on n vertices

which exist relative to the total number of MPGs which exist on n vertices tends

to zero.

In the next two sections we concentrate our thoughts on the VSA and the

Contraction Algorithm. Since these two methods are guaranteed to dualise all of

our test problems, and beyond, it seems worthwhile to give them more thought.

6 . 3 Starting Point s

One of the first interesting questions is whether the two starting points that exist

for constructing the layouts by these methods, i. e. Deltahedron and Rinsma, per­

form similarly. Tables 6.4 - 6.8 provide data on how the methods perform using

the different starting methods. Comparison is made on four aspects: time, which

allows comparison of the speeds of the respective methods; number of corners and

bounding rectangle regularity measures, which give an indication of the shape ir­

regularity that exists; and the perimeter ratio measure, which provides an estimate

of the usable space available. At each step we are examining our hypothesis Ho

against the alternative HA , shown in Equation 6. 1 , where AveR is the average value

of the measure we are considering using the Rinsma starting point , and similarly

6. 3. Starting Points 141

for Avev and the Deltahedron starting point. The percentage increase, i .e . the

relative increase in the measure incurred between the Deltahedron and Rinsma

i nitialisation routines, is evaluated using Equation 6.2.

Ho : AveR = Avev; HA : AveR > Avev or AveR < Avev

(jf_I OO (AveR - Avev) (jf_ 10 ne = 1 * 10 Avev

(6 . 1)

(6.2)

We examine these hypotheses and, for each test , either cannot reject the null

hypothesis Ho , or accept the alternative hypothesis at the highest significance level

possible; 90%, 95% or 99%.
Examining the tables, we see that for n = 10 (Table 6.4) VSA using Deltahe­

dron takes a significant amount of extra time to complete than VSA using Rinsma,

i n both the improved and unimproved cases, yet the Contraction Algorithm shows

no significant difference between the starting points timewise. Furthermore, VSA

using Rinsma is significantly better than VSA using Deltahedron according to the

two shape regularity measures, while the perimeter ratio has essentially constant

values between the two starting points. Note that the Contraction Algorithm ap­

pears to be unaffected by the starting points, showing only a slight significant

difference in the number of corners for the Contraction Algorithm with improve­

ments. The results are consistent with expectations; the difference between the

two starting points should be minimal, as they perform essentially the same steps.

We see essentially the same patterns for n = 15 (Table 6.5) . Table 6.6 exhibits the

results for n = 20, and we now start to see some changes in the performance of

the starting methods. There is suddenly no significant difference in the times of

either method, and furt.hermore the regularity values appear to be coming into a

more similar line. There is only one difference of 99% significance, being that the

Contraction Algorithm with improvements averages more corners per facility using

the Rinsma initialisation. Examining Table 6. 7 for n = 25, we see that there are no

significant differences at the 99% level, and it appears that the starting points are

essentially equivalent. Table 6.8 appears to show the start of an interesting pattern,

however. The times for the Rinsma starting point using the VSA having eclipsed

those for Deltahedron. However, although the differences are not significant, the

142 Chapter 6. Computer Implementation

Measure Method Avev AveR AveR - Avev % Inc
VSA(NI) 0.28 0.24 -0.04 - 14.88

Times(s) Avev > AveR (99%)
VSA(I) 0.46 0 .38 -0.08 - 16.64

Aven > AveR (99%)
CA(NI) 0 .76 0 . 77 0.00 0.64

Cannot Reject Ho
CA(I) 0.48 0 .50 0.02 4.21

Cannot Reject Ho
VSA(NI) 6.97 6 .01 -0.96 - 13.81

Ave Ci Aven > AveR (99%)
VSA(I) 6.61 5 .70 -0.90 -13 .68

Aven > AveR (99%)
CA(NI) 1 1 . 1 5 1 1 . 1 9 0.03 0.31

Cannot Reject H0
CA(I) 6.28 6 .65 0.37 5.90

AveR > Aven (90%)
VSA(NI) 0.6813 0 .6997 0 .0184 2.70

Ave 4 yfai/ Pi Cannot Reject Ho
VSA(I) 0 .7147 0 . 7 130 -0.00 17 -0.24

Cannot Reject Ho
CA(NI) 0.6024 0 .6041 0.0016 0.27

Cannot Reject Ho
CA(I) 0 .6895 0 .6794 -0.0100 - 1 .46

Cannot Reject H0
VSA(NI) 0.6558 0 .7135 0 .0577 8.79

Ave ad� AveR > Avev (99%)
VSA(I) 0.6895 0 .7308 0.0413 6.00

AveR > Avev (95%)
CA(NI) 0.6427 0 .6331 -0.0096 -1 .49

Cannot Reject Ho
CA(I) 0 .7238 0. 7006 -0.0232 -3.21

Cannot Reject Ho

Table 6.4: Performance of Starting Points for n = 10

6. 3. Starting Points 143

Measure Method Aven AveR AveR - Aven % lnc
VSA(NI) 1 .04 0 .76 -0.28 -26.96

Times(s) Aven > AveR (95%)
VSA(I) 1 .51 1 .09 -0.41 -27.36

Aven > AveR (95%)
CA(NI) 3 .46 3.42 -0.05 - 1 .30

Cannot Reject H0
CA(I) 1 .46 1 .4 1 -0.05 -3 .36

Cannot Reject Ho
VSA(NI) 8.93 8 .06 -0.87 -9 .70

A ve Ci Aven > AveR (95%)
VSA(I) 7.73 7.00 -0.73 -9.49

Aven > AveR (99%)
CA(NI) 1 6.55 16 .45 -0. 10 -0.58

Cannot Reject Ho
CA(I) 9.22 9 .37 0.15 1 .58

Cannot Reject Ho
VSA(NI) 0 .5738 0.5915 0 .0177 3 .09

Ave 4ylai/ Pi Cannot Reject Ho ·
VSA(I) 0 .6169 0.61 78 0.0008 0 . 1 3

Cannot Reject Ho
CA(NI) 0 .4475 0.4610 0.0136 3.03

Cannot Reject Ho
CA(I) 0 .5621 0.5709 0.0087 1 .55

Cannot Reject Ho
VSA(NI) 0 .5430 0.5889 0.0460 8.46

Ave ad Ri AveR > Aven (99%)
VSA(I) 0 .5751 0.61 65 0.0414 7 . 19

AveR > Aven (99%)
CA(NI) 0 .4596 0.4581 -0.0015 - 0.32

Cannot Reject H0
CA (I) 0 .5679 0.5659 -0.0020 -0 .36

Cannot Reject H0

Table 6.5: Performance of Starting Points for n = 15

144 Chapter 6. Computer Implementation

Measure Method Avev Aven Aven - Avev % Inc
VSA(NI) 3 . 10 3.32 0.22 7 . 12

Times(s) Cannot Reject Ho
VSA(I) 4 . 12 4.08 -0.04 -0.98

Cannot Reject Ho
CA(NI) 7.45 7.42 -0.03 -0.46

Cannot Rej ect Ho
CA(I) 2.63 2.78 0 . 15 5.69

Cannot Reject Ho
VSA(NI) 10.55 9.93 -0.62 -5.83

Ave Ci Cannot Reject H0
VSA(I) 8.51 8.15 -0.36 -4.21

Cannot Reject Ho
CA(NI) 19 .84 20.02 0 . 18 0.91

Cannot Reject Ho
CA(I) 10 .02 10.90 0.88 8.80

Aven > Avev (99%)
VSA(NI) 0.5343 0.5269 -0 .0073 - 1 .37

Ave 4foi/ Pi Cannot Reject Ho
VSA(I) 0.5886 0.5635 -0.0250 -4.25

Avev > Aven (95%)
CA(NI) 0 .3644 0.3733 0 . 0089 2.44

Cannot Reject Ho
CA(I) 0 .5284 0.5184 -0 .0099 -1 .88

Cannot Reject Ho
VSA(NI) 0.4820 0.4892 0 . 0072 1 .49

Ave ai/Ri Cannot Reject Ho
VSA(I) 0.5286 0.5368 0 .0082 1 .54

Cannot Reject H0
CA(NI) 0 .3503 0.3497 -0.0005 -0.15

Cannot Reject H0
CA(I) 0.5142 0.4917 -0 .0225 -4.37

Avev > Aven (90%)

Table 6.6: Performance of Starting Points for n = 20

6.3. Starting Points 145

Measure Method Avev AveR AveR - Aven % Inc
VSA(NI) 7 . 10 7.29 0 . 19 2.69

Times(s) Cannot Reject H0
VSA(I) 9.75 8 .38 - 1 .37 - 14.04

Cannot Reject Ho
CA(NI) 12.28 1 1 .81 -0.47 -3.82

Cannot Reject Ho
CA(I) 5. 16 5.34 0 . 1 8 3.47

Cannot Reject H0
VSA(NI) 1 1 .86 1 1 .37 -0.49 -4. 1 1

Ave Ci Cannot Reject Ho
VSA(I) 9.34 9.24 -0. 1 1 - 1 . 1 3

Cannot Reject Ho
CA(NI) 21 .38 21 .25 -0. 1 3 -0.62

Cannot Reject Ho
CA(I) 1 1 .57 12.38 0 .81 6.99

AveR > Aven (90%)
VSA(NI) 0.4822 0.4723 -0.0099 -2.05

Ave 4ylai/ Pi Cannot Reject Ho
VSA(I) 0 .5394 0.5170 -0.0223 -4. 1 4

Aven > AveR (95%)
CA(NI) 0 .3341 0.3419 0 .0078 2 .34

Cannot Reject Ho
CA(I) 0.4621 0.4532 -0.0090 - 1 .94

Cannot Reject Ho
VSA(NI) 0.4289 0.4386 0 .0097 2 .26

Ave ai/Ri Cannot Reject Ho
VSA(I) 0.4779 0.4790 0 .00 1 1 0.24

Cannot Reject Ho
CA(NI) 0 .3255 0.3185 -0.0070 -2. 14

Cannot Reject Ho
CA(I) 0.4463 0.4258 -0.0205 -4.60

Cannot Reject Ho

Table 6.7 : Performance of Starting Points for n = 25

146 Chapter 6. Computer Implementation

Measure Method Avev AveR AveR - Avev % Inc
VSA(NI) 1 7.26 22.79 5.52 32.00

Tirnes(s) Aven > Avev (90%)
VSA(I) 23.62 25.73 2 .10 8.90

Cannot Reject Ho
CA(NI) 26.09 24.76 - 1 .33 -5. 1 1

Cannot Reject Ho
CA(I) 1 0.37 9 .38 -1 .00 -9.61

Cannot Reject Ho
VSA(NI) 13.70 1 3.30 -0.40 -2.91

Ave Ci Cannot Reject Ho
VSA(I) 10.41 1 0. 1 8 -0.23 -2.24

Cannot Reject Ho
CA(NI) 25.49 24 .92 -0.57 -2.24

Cannot Reject H0
CA(I) 14.27 14 . 13 -0.14 - 1 .00

Cannot Reject Ho
VSA(NI) 0.4394 0.4204 -0.0190 -4.32

A ve 4fo/ Pi Avev > Aven (95%)
VSA(I) 0 .4928 0.4645 -0.0283 -5.74

Avev > Aven (99%)
CA(NI) 0.2654 0.2720 0.0066 2.48

Cannot Reject H0
CA(I) 0.4130 0.4 126 -0.0005 -0. 1 1

Cannot Reject H0
VSA(NI) 0.3958 0.3893 -0.0064 - 1 .63

Ave ad� Cannot Reject Ho
VSA(I) 0.4382 0 .4326 -0.0056 - 1 .27

Cannot Reject Ho
CA(NI) 0 .2362 0.2377 0.0015 0.65

Cannot Reject H0
CA(I) 0.3810 0.3760 -0.0050 - 1 .31

Cannot Reject H0

Table 6.8: Performance of Starting Points for n = 30

6.4. Improvement vs Non-Improvement Experiment 147

average number of corners for each facility is less using the Rinsma starting point,

yet the perimeter ratios appear to indicate that VSA using Deltahedron will pro­

duce better perimeter ratio values. Figure 6 . 1 shows some of these trends more

effectively.

These results appear to show that it is worthwhile to consider each starting

point in order to obtain a layout to a given MPG, as there it appears that either

could perform better on any given problem.

6 .4 Improvement vs Non-Improvement Experi­

ment

In this section we explore how well the improvements introduced in Chapter 5 actu­

ally perform in practise. We again present our null hypothesis Ho , and alternative

hypothesis HA , shown in Equation 6.3 , where AveNI is the average value for the

methods without improvements (non-improved), and similarly for Ave1, and the

methods with improvements.

Ho : AveNI = Ave1; HA : Ave1 > AveNI or Ave1 < AveNI (6.3)

Tables 6.9 - 6 . 1 3 exhibit the results for this experiment, where we again measure

the results against the four measures used previously, but now the percentage

increase column entries represent the relative increase in measure incurred between

not having and having improvements, as evaluated using Equation 6.4.

(6.4)

Once again the results confirm expectations, obviously the values will improve,

otherwise the improvements wouldn't be necessary. However with reference to the

tables, and also to Figure 6.2, there are a number of more interesting observations

that can be made. Firstly with respect to the times that the improved versions

required, it is worthwhile observing that as n increased for the VSA, the proportion

of time spent on the improvements decreases , until for n = 30, the increase in time

148

..

..

..
il
e; i 10
a, ! 0 ••••••••·•••••·•·•·••••••••••·•·•••···•·••]��·�· · · · · · · · ·········· · ······················· ·

i.-to ,,'
' -

-
--

-
-!

_,,
,' - - --

-

..

..

..
il
e; J 10
a, ! 0 ··········· · · ································�·�·��·� ·:·�·: ·�·"·�·

�
·"·" ·�·:·:··�·:·· ·

1-10 - - - -
!

4o 12
..

..

....

4o 12
..

..

..
il

14 "

14 "

e; for.-.�--=--::-,_ .:-:.:-:.-::-.-,.._ -�

11 20 22 2-t :rt a :so

11 20 22 !4 2'1 28 30

! 0 ········· · · · · · · · · ········· · · · · · · · · · · · · · · ······· · · · · · · · · · · · · " ·'···�-·---·-·

�-ta
§

....

Chapter 6. Computer Implementation

..

..

..
il
e; � 10
! 0
1-10
!

....

....

..

..

..
il e;

- - - � - - -
- .. �-�-�-�-�.:.�.�-�-�-�-�� -···············

-- --

J 10
a, - - - - - -- - -

- - - - - - - - - - - - - - -� or-�-�--�---------�·····=·��2��.��-, "'• l-10
!

....

• •

..

....

40

..

- - -- - - - - - - - - - - - - - -

....

Figure 6. 1 : Graphs of the percentage difference between Rinsma and Deltahedron
starting points for the four measures used; dashed line is the unimproved versions,
and the solid line is the improved versions

6. 4. Improvement vs Non-Improvement Experiment 1 49

for the improvements was not significant. This observation pales in comparison,

however, to the fact t hat the Contraction Algorithm was about 37% faster with
improvements than without for n = 10 , and for larger n, even better at around 60%.
This means that the running times were reduced by more than half the time over

the unimproved version. Although this result is initially startling, consideration of

the reduced numbers of corners produced for each facility meant that , during the

running of the ODA, there were fewer corners to search through at various stages

in the implementation, thereby significantly reducing the complexity of facility

placement in the layout.

The performance of the regularity measures was also as expected. The VSA

performance showed steady improvement over all three measures and, at n = 30,
the average number of corners had decreased by more than 20% , while the other

two measures had both increased by more than 10%. By n = 15, all three measures

had changed significantly. The Contraction Algorithm made tremendous advances

with the regularity measures, with all three having significant changes at the 99%
level, throughout the range of n. Furthermore the number of corners was steady at

a reduction of more than 40%, while the other two measures increased from around

12% for n = 10 , to the giddy heights of around 55% increase for n = �0.

These results conclusively support the effectiveness of the two improvement

procedures of Chapter 5, in both efficiency of implementation and in the increase

in regularity. One important note involves contrasting results between the VSA,

and the Contraction Algorithm. The VSA performs both improvements at the

completion of the layout, while the Contraction Algorithm implements RSR as

each facility is placed in the layout , with the global transformation coming at the

completion of the layout. The effect of performing RSR as each facility is placed in

the Contraction Algorithm is the reason for the better performance of the improve­

ments, as each RSR on a facility in a partially constructed Contraction Algorithm

layout impinges not only on the regularity of that facility, but on subsequent facility

placements in the layout. VSA, on the other hand, is constrained by its specialised

version of ODA, wherein each facility is placed in the layout , with the minimum

number of corners possible, and it is not until we recombine the facilities that we

can identify RSRs to eradicate redundant corners. In this case, the RSR will only

affect the two facilities directly involved in the RSR, and hence the impact of each

RSR in a VSA layout is not as great .

150 Chapter 6. Computer Implementation

Measure Method AveNI Ave1 Ave1 - AveNI % lnc
VSA(D) 0.28 0.46 0 . 18 65.33

Times(s) Ave1 > AveNI (99%)
VSA(R) 0 .24 0.38 0 .15 6 1 .9 1

Ave1 > AveNI (99%)
CA(D) 0.76 0.48 -0.28 -37.00

AveNI > Ave1 (99%)
CA(R) 0.77 0.50 -0.27 -34.76

AveNI > Ave1 (99%)
VSA(D) 6.97 6.61 -0 .37 -5 .24

Ave Ci AveNI > Ave1 (90%)
VSA(R) 6.01 5.70 -0.31 -5.09

AveNI > Ave1 (90%)
CA(D) 1 1 . 15 6.28 -4.87 -43.67

AveNI > Ave1 (99%)
CA(R) 1 1 . 19 6.65 -4.53 -40.53

AveNI > Ave1 (99%)
VSA(D) 0.6813 0. 714 7 0.0334 4 .90

Ave 4..;ai/ Pi Ave1 > AveNI (95%)
VSA(R) 0.6997 0.7130 0 .0133 1 .90

Cannot Reject Ho
CA(D) 0.6024 0 .6895 0 .0870 14.45

Ave1 > AveNI (99%)
CA(R) 0.6041 0.6794 0.0754 12 .48

Ave1 > AveNI (99%)
VSA(D) 0.6558 0.6895 0.0337 5 . 1 3

Ave ai/ Ri Ave1 > AveNI (95%)
VSA(R) 0 .7135 0.7308 0 .0173 2 .43

Cannot Reject H0
CA(D) 0.6427 0 .7238 0 .0810 12 .61

Ave1 > AveNI (99%)
CA(R) 0.6331 0.7006 0.0674 10 .65

Ave1 > AveNI (99%)

Table 6.9: Performance of Improvements for n = 10

6.4. Improvement vs Non-Improvement Experiment

Measure Method AveNI Ave1 Ave1 - AveNI
VSA(D) 1 .04 1 .51 0.46

Times(s) Ave1 > AveNI (95%)
VSA(R) 0.76 1 .09 0 .33

Ave1 > AveNI (99%)
CA(D) 3.46 1 .46 -2.00

AveNI > Ave1 (99%)
CA(R) 3.42 1 .41 -2.00

AveN 1 > Ave1 (99%)
VSA(D) 8.93 7 .73 - 1 .20

Ave Ci AveNI > Ave1 (99%)
VSA(R) 8.06 7.00 - 1 .07

AveNI > Ave1 (99%)
CA(D) 16.55 9 .22 -7 .33

AveNI > Ave1 (99%)
CA(R) 16.45 9 .37 -7 .09

AveNI > Ave1 (99%)
VSA(D) 0.5738 0 .6169 0.0432

Ave 4vfai/ Pi Ave1 > AveNI (99%)
VSA(R) 0.5915 0 .6178 0.0262

Ave1 > AveNI (95%)
CA(D) 0.4475 0.5621 0 . 1 147

Ave1 > AveNI (99%)
CA(R) 0.4610 0.5709 0 . 1098

Ave1 > AveNI (99%)
VSA(D) 0.5430 0.5751 0 .0322

Ave ai/f4 Ave1 > AveNI (95%)
VSA(R) 0.5889 0.6165 0 .0276

Ave1 > AveNI (90%)
CA(D) 0.4596 0.5679 0 . 1083

Ave1 > AveNI (99%)
CA(R) 0.4581 0.5659 0 . 1078

Ave1 > AveNI (99%)

Table 6.10 : Performance of Improvements for n = 15

151

% Inc
44.41

43.61

-57.80

-58.68

- 13.44

- 13 .23

-44.27

-43.06

7.52

4 .43

25.63

23.82

5.93

4.68

23.57

23.52

152 Chapter 6. Computer Implementation

Measure Method AveNr Aver Aver - AveNr % Inc
VSA(D) 3.10 4 . 12 1 .02 32.85

Times(s) Aver > AveNr (90%)
VSA(R) 3.32 4 .08 0.76 22.80

Cannot Reject Ho
CA(D) 7.45 2.63 -4.82 -64.68

AveNr > Aver (99%)
CA(R) 7.42 2 .78 -4.64 -62.50

AveNr > Aver (99%)
VSA(D) 10.55 8 .51 -2.04 -19 .38

Ave Ci AveNr > Aver (99%)
VSA(R) 9.93 8 . 15 - 1 .79 - 1 7.99

AveNr > Aver (99%)
CA(D) 19.84 1 0.02 -9.82 -49.50

AveNr > Aver (99%)
CA(R) 20.02 1 0.90 -9. 12 -45.55

AveNr > Aver (99%)
VSA(D) 0.5343 0.5886 0.0543 10 . 16

Ave 40ii/Pi Aver > AveNr (99%)
VSA(R) 0.5269 0 .5635 0 .0366 6.94

Aver > AveNr (99%)
CA(D) 0.3644 0.5284 0. 1639 44.99

Aver > AveNr (99%)
CA(R) 0.3733 0 .5184 0. 1451 38.86

Aver > AveNr (99%)
VSA(D) 0.4820 0 .5286 0.0466 9.67

Ave a i/Ri Aver > AveNr (99%)
VSA(R) 0.4892 0.5368 0.0476 9.72

Aver > AveNr (99%)
CA(D) 0.3503 0 .5142 0. 1639 46.80

Aver > AveNr (99%)
CA(R) 0.3497 0.49 17 0. 1420 40.60

Aver > AveN r (99%)

Table 6 . 1 1 : Performance of Improvements for n = 20

6.4. Improvement vs Non-Improvement Experiment

Measure Method AveNI Ave1 Ave1 - AveNI
VSA(D) 7. 1 0 9.75 2 .65

Times(s) Ave1 > AveNI (95%)
VSA(R) 7.29 8.38 1 .09

Cannot Reject Ho
CA(D) 12 .28 5 . 16 -7 . 12

AveNI > Ave1 (99%)
CA(R) 1 1 .8 1 5.34 -6.47

AveNI > Ave1 (99%)
VSA(D) 1 1 .86 9 .34 -2.51

A ve Ci AveNI > Ave1 (99%)
VSA(R) 1 1 .37 9.24 -2. 13

AveNI > Ave1 (99%)
CA(D) 21 .38 1 1 .57 -9 .81

AveNI > Ave1 (99%)
CA(R) 21 .25 12.38 -8.86

AveNI > Ave1 (99%)
VSA(D) 0.4822 0.5394 0.0572

Ave 4-.fiii/ Pi Ave1 > AveNI (99%) ·

VSA(R) 0.4723 0 .5170 0.0448
Ave1 > AveNI (99%)

CA(D) 0.3341 0.4621 0 . 1280
Ave1 > AveNI (99%)

CA(R) 0.3419 0.4532 0. 1 1 12
Ave1 > AveNI (99%)

VSA(D) 0.4289 0.4 779 0.0490
Ave ai/ft Ave1 > AveNI (99%)

VSA(R) 0.4386 0.4790 0.0404
Ave1 > AveNI (99%)

CA(D) 0.3255 0.4463 0 . 1208
' Ave1 > AveNI (99%)

CA(R) 0.3185 0.4258 0 . 1073
Ave1 > AveNI (99%)

Table 6 .12: Performance of Improvements for n = 25

153

% lnc
37.27

14 .91

-57.98

-54 .79

-21 .21

- 18 .77

-45.87

-41 .72

1 1 .86

9.48

38.32

32.53

1 1 .41

9 .21

37. 12

33.68

154 Chapter 6. Computer Implementation

Measure Method AveNI Ave1 Ave1 - AveNI % Inc
VSA(D) 17.26 23.62 6.36 36.85

Times(s) Cannot Reject Ho
VSA(R) 22.79 25.73 2.94 12.90

Cannot Reject Ho
CA(D) 26.09 1 0.37 - 15.72 -60.25

AveNI > Ave1 (99%)
CA(R) 24. 76 9 .38 - 15.39 -62. 1 4

AveNI > Ave1 (99%)
VSA(D) 13 .70 10.41 -3.29 -24.03

Ave C; AveNI > Avq (99%)
VSA(R) 13.30 10 . 18 -3. 13 -23.50

AveNI > Ave1 (99%)
CA(D) 25.49 14.27 - 1 1 .22 -44.02

AveNI > Ave1 (99%)
CA(R) 24.92 14. 13 - 10.79 -43.3 1

AveNI > Ave1 (99%)
VSA(D) 0.4394 0.4928 0.0534 12. 1 5

Ave 4yfai/P; Ave1 > AveNI (99%)
VSA(R) 0 .4204 0 .4645 0.0441 10.48

Ave1 > AveN1 (99%)
CA(D) 0 .2654 0 .4130 0 . 1476 55.62

Ave1 > AveNI (99%)
CA(R) 0.2720 0.4126 0. 1406 51 .69

Ave1 > AveNI (99%)
VSA(D) 0.3958 0.4382 0 .0425 10.73

Ave a;j/t Ave1 > AveNI (99%)
VSA(R) 0 .3893 0.4326 0 .0433 1 1 . 1 3

Ave1 > AveNI (99%)
CA(D) 0.2362 0 .3810 0 .1448 61 .32

Ave1 > AveNI (99%)
CA(R) 0.2377 0 .3760 0 . 1383 58. 18

Ave1 > AveNI (99%)

Table 6 . 13 : Performance of Improvements for n = 30

6.4. Improvement vs Non-Improvement Experiment

..
'11 f, l .. _ _

... _ _ _ - - -j·

I fa
...

tO 11 1• 11 tl 20 ft � M a �
.

..

..
'11 I; J zo

VSA .,..... tuftber rl�

j·

t� !!
...

tO 12 ,. tl tl 20 Z2 24 M a 30
.

..

..
'11 � ..
I L--=�-�-�--�- .7.--�--�-�--7.--�--=-=- -=--=--=-�-- -
J: 0 .!" •• ":".::.:" . • ":". ::.:: .-:-. ::

l
!!

...

10 tz w '' ,, m n 24 a a 30

- - ---

..

..
'11 f, J .. I �==�------���----�· 0 . C .. 7.� -�.7.�.:.: .. .

1 !!
...

10 12 W 11 11 20 Z2 24 M a 30

..

..
� .. I,
I o

l

f-
to 12 w ,, ,, 20 a " a a �

.

00

•• � zo
� . ··· ·· ···· · ····· · ············· · · · ············· · · · · · · · · ··· · · · · · ········ ········ · · · · · ·· ········ ·

I-� §

'11

....

10 U! t• 11 11 20 Z2 24 2'1 Jl 30
.

00

..

i" i ..
I, �

i ... !!
...

....

10 12 " 11 ,, 20 Z2 24 " • 30

00

..
'11

.. .. � -!

i !!

....

10 tZ W 11 tl 20 Z2 � M a 30

155

Figure 6 .2 : Graphs of the percentage difference between Improved and Non Im­
proved versions for the four measures used; dashed line is Rinsma initialisation and
the solid line is the Deltahedron initialisation

1 56 Chapter 6. Computer Implementation

From this point onwards we will only consider the improved versions of the

VSA, and the Contraction Algorithm. It appears non-sensical to carry around

the excess baggage of the unimproved versions when we know they will always be

out-performed by the improved versions in both regularity and proportionally time.

6 . 5 Comparison of Layout Methods for Arbi­

trary MP G s

I n this section we examine the performance of the methods which act on an arbi­

t rary MPG. We omit Deltahedron from this discussion, for the reasons encapsulated

in Table 6 .3 . Nor do we include SIMPLE, as for n 2: 20, it fails to complete any

of the given problems, and furthermore it will in general be outperformed by the

Contraction Algorithm, which generates a more relaxed insertion order, in that

there are many facilities to act as placement hosts, rather than the single one (the

empty space) for SIMPLE. Therefore this experiment now becomes a showdown

between the VSA, and the Contraction Algorithm, the only two methods which

can successfully dualise all the given test problems.

This experiment attempts to determine which of the two methods is better on

average. We used the methods with the Deltahedron i nitialisation only, for two

reasons: firstly the regularity is not significantly affected by the initialisation, and

secondly, comparing the VSA and the Contraction Algorithm against a particular

initialisation is well nigh irrelevant , as the starting point impinges differently on

each method.

Again we consider our null and alternative hypotheses as given by Equation 6.5,

where AvevsA represents the average values for the VSA, and similarly for AvecA,
and the Contraction Algorithm.

Ho : AvevsA = AvecA ; HA : AvevsA > AvecA or AvevsA < AvecA (6.5)

Results are summarised in Tables 6 . 14 - 6 . 18 and Figure 6.3, where we note that

the y-scale on the time graph is different to the scale on the other three. From these

Tables we conclude that the VSA takes more than twice the time of the Contraction

Algorithm for n = 30, but this is offset by the superiority of the VSA in all of the

6.5. Comparison of Layout Methods for Arbitrary MPGs

Measure AvecA AvevsA AvevsA - AvecA
Times(s) 0.48 0.46 -0.02

Cannot Reject Ho
Ave Ci 6.28 6.61 0.33

AvevsA > AvecA (90%)
Ave 4-Jiii/ Pi 0 .6895 0 .7147 0.0252

AvevsA > AvecA (95%)
Ave ai/Ri 0 .7238 0.6895 -0.0343

AvecA > AvevsA (90%)

% lnc
-4.91

5 . 1 9

3 .65

-4.74

Table 6 . 14 : Performance of VSA vs Contraction Algorithm for n = 1 0

Measure AvecA AvevsA AvevsA - AvecA % lnc
Times(s) 1 .46 1 .51 0 .05 3 .09

Cannot Reject H0
Ave Ci 9.22 7 .73 - 1 .49 - 16 . 18

AvecA > AvevsA (99%)
Ave 4-Jiii/Pi 0.562 1 0 .6169 0 .0548 9 .75

AvevsA > AvecA (99%)

Ave ai/Ri 0 .5679 0.5751 0 .0072 1 .27
Cannot Reject H0

Table 6 . 15 : Performance of VSA vs Contraction Algorithm for n = 15

157

regularity measures by a significant margin. The real times for the VSA are around

20 seconds for n = 30, while the times for the Contraction Algorithm are around

1 0 seconds. Consider now the time to construct and improve the initial MPG. We

saw in Table 6.2 that this time was around 10 minutes, which overwhelms the 1 0

second discrepancy between the times for the two layout methods. For small n

the two methods are comparable; moreover, as we will see in Sections 6.6 and 7 .3,

the poor average performance of the Contraction Algorithm compared to the VSA,

does not discount it from consideration, as i t can perform significantly better than

VSA on a given problem.

158 Chapter 6. Computer Implementation

Measure AvecA AvevsA AvevsA - AvecA % Inc
Times(s) 2.63 4 . 12 1 .48 56.34

AvevsA > AvecA (99%)
Ave Ci 10 .02 8.51 - 1 .5 1 - 15. 1 1

AvecA > AvevsA (99%)
Ave 4.fiii/ Pi 0.5284 0.5886 0.0602 1 1 .39

AvevsA > AvecA (99%)
Ave a;jR; 0 .5142 0.5286 0.0144 2.81

Cannot Reject Ho

Table 6. 16: Performance of VSA vs Contraction Algorithm for n = 20

Measure AvecA AvevsA AvevsA - AvecA % Inc
Times(s) 5.16 9 .75 4.59 89.00

AvevsA > AvecA (99%)
Ave Ci 1 1 .57 9 .34 -2.23 - 19.30

AvecA > AvevsA (99%)
Ave 4.j(ii/ Pi 0.4621 0.5394 0.0772 16.71

AvevsA > AvecA (99%)
Ave a;fR; 0.4463 0.4779 0.03 16 7.07

AvevsA > AvecA (95%)

Table 6 . 17: Performance of VSA vs Contraction Algorithm for n = 25

Measure AvecA AvevsA AvevsA - AvecA % Inc
Times(s) 10.37 23.62 13.25 127.74

AvevsA > AvecA (99%)
Ave Ci 14.27 10.41 -3.86 -27.05

AvecA > AvevsA (99%)
Ave 4.fiii/ Pi 0.4130 0.4928 0.0797 19.30

AvevsA > AvecA (99%)
Ave ai/ Ri 0.3810 0.4382 0.0572 15.01

AvevsA > AvecA (99%)

Table 6. 18: Performance of VSA vs Contraction Algorithm for n = 30

6.5. Comparison of Layout Methods for Arbitrary MPGs

-

-1111

•o

..

..

� � 10

10 12 t• 11 11 20 22 2• 21 a 30
.

�· 0 ···············•···•·····•·· · · • · · · • · • •• ••··•••••• • • • • ··•·····•······················•····•

"• .1-10
�

....

4�o�1�2�1�.�1�1�1�. � .. ��n�����a��.�� ..
.

..

....

4- �o�1�.����1�1�1�.� .. ��n�����a��.�� ..
.

..

..

� � 10

�· 0 .•.....•....... • • • . . ••.......

"•
l -10
�

....

4- �o�1�2�1�.�1�1�1�. � .. ��n��.�. �a��.�� ..
"

1 59

Figure 6 .3 : Graphs of the percentage difference between the VSA and Contraction
Algorithm for the four measures used

160 Chapter 6. Computer Implementation

6 . 6 Regularity v s Adjacency Exp eriment

This section forms the culmination of the work presented so far. Hence we at­

tempt to answer the regularity versus adjacency tradeoff, with respect to carefully

constructed objectives which attempt to fairly weight both the adjacency and the

regularity values. We must be careful here in that we are comparing values on

the range [0, 1] , the regularity values, against values dependent on the size of n,

the adjacency values. Previous work by Rosenblatt [97] , D utta and Sahu (25] and

Shang [102] , who presented additive multiple objective functions, is somewhat mis­

guided by the fact that weights must be found in order to treat both regularity and

adjacency fairly.

In order to find a sensible objective function we need to consider what we can

assume about our regularity and/or adjacency values. The conclusion reached

is that if we assume regularity values give a measure of how effective a particular

adjacency is , then we can introduce a multiplicative objective function. This means

that a regularity value of 0 . 7 say, would mean that the layout is 70% effective,

therefore the benefit derived as the value of the layout is in fact only 70% of

what we initially estimated. Initially it seemed that we may be multiplying two

incompatible commodities, but careful consideration seemed to indicate that this

multiplicative approach was perhaps intuitive, and more realistic than attempting

to use an additive model.

A n advantage of this model is that it requires only one scalar or weight, .X,
in contrast to the additive model , which requires at least two. We introduce this

scalar into the objective in order to allow the impact of the regularity measure

to be varied. For convenience, we introduce a generic measure r* , as shown in

Equation 6 .6 .

r* = (1 - .X) + .Xr (6.6)

This allows us to adjust the importance we place on the regularity, using the

linear combination between the best regularity measure we could attain, i. e . 1 ,

against the worst i . e . r . r can represent any of the regularity measures outlined in

Section 2.5, dependent upon the situation and the type of layout required .

6. 6. Regularity vs Adjacency Experiment 161

We have developed two objective functions using this multiplicative model. The

first considers the entire layout , while the second considers each adjacency individ­

ually; we consider these in turn. The first objective function utilises the motivation

that the average regularity value gives a true weighting to the effectiveness of the

total adjacency score. This objective function is shown in Equations 6. 7 and 6.8.

surrogate score
� - [(1 - �) + - :L ri] L :L aijXij
n . . . 1 1 J

(6.7)

The second objective function considered requires the further assumption that

an adjacency aii has impact upon the average of ri and rh or alternatively on the

minimum of ri and ri . vVe implement this with the averaging assumption. The

objective function then is given in Equations 6.9 and 6. 10 .

surrogate score
r · + r · - � �[(1 - �) + � 1 2 3]aijXij

I J
r · + r ·

� � aijXij - A � � [1 - 1 2 3]a ijXij
1] 1]

(6.9)

(6. 1 0)

Equations 6.8 and 6. 10 both have the form of Equation 6. 1 1 , a linear equation

in A which is of the form required to compare two layouts generated from the same

benefit matrix.

surrogate score = c1 - c2 A (6. 1 1)

Let us consider two layouts A and B, with corresponding surrogate scores cf ­
c� A, and cf - c� A respectively. The question then, is under what conditions is A
a better layout than B? Table 6.19 exhibits the conditions on the constants c1 and

c2 for each layout , that are required to answer this question.

The comparison of two layouts is easily conducted using Table 6 . 19 . The com­

parison of more than two layouts is also easily performed by repeated application

of Table 6 .19 ; this can be shown by induction . We can easily compare two layouts,

1 62

ct < cf

ct = cf

ct > cf

cf < cf

B A A : � < -\ < 1 c2 -c2 - -

B A
B : 0 ::; ,\ ::; �};=�� 2 2

B : 0 ::; -\ ::; 1

B : O s -\ ::; 1

I

Chapter 6. Computer Implementation

CA - CB 1 - 1

A : 0 ::; -\ ::; 1

B : -\ = 0

A : 0 ::; -\ ::; 1

B : O s -\ ::; 1

A : -\ = 0

B : o s -\ s 1

CA > CB 1 1

A : 0 ::; -\ ::; 1

A : 0 ::; -\ ::; 1

A B
A : 0 ::; ,\ ::; ��=�}; 2 2

A B B : �74=�!1 ::; ,\ S 1 2 2

Table 6 . 19 : Comparison table for two layouts A and B: preferred ranges for ,\

6. 6. Regularity vs Adjacency Experiment 1 63

so consider k layouts which have already been compared, and their respective best

ranges found. Then we need only compare a new layout on the ranges for each

layout already examined. i. e . if a layout is the best on some range [a, b] , then

comparison of this layout with a new one will only admit one of these two as the

best on [a , b] , as we know that the other k - 1 are i nferior on [a , b] (since the layout

is already the best on that range) . The process of comparing the layouts that exist

in a problem instance is then easily achieved by calculating the respective values

for c1 and c2 , and then repeatedly applying Table 6 . 19 .

As this experiment represents an opportunity to contribute a major develop­

ment in the area of GTFLP, we examine carefully the impact of our chosen objective

by not only examining the average performance of the methods (as in Section 6.6. 1)

but also the worst performance (as in Section 6 .6.2) and also on a problem-by­

problem basis (as in Section 6 .6 .3) .

In this experiment, we compare the methods which work on an arbitrary MPG:

the VSA and the Contraction Algorithm (considering both starting layouts) and

SIMPLE, all using improvements. We call these Class A Algorithms and compare

them with the methods which require the benefit matrix: Deltahedron, the Tiling

Algorithm, and the Spanning Tree Algorithm. Note that this last set of methods

can be divided further, by considering the worst-case facility shape of T for Delta­

hedron, and the Tiling Algorithm(T) (calling these Class T Algorithms) against

the worst-case facility shape of I for the Tiling Algorithm(!) and Spanning Tree

(calling these Class I Algorithms) . Note that while we have highlighted the case

where Spanning Tree may have L-shaped facilities in Section 4.6 .3 , we assume that

this is rare enough not to impact too much on the grouping of Spanning Tree with

the worst-case facility shape of I methods. It turns out that this assumption is

valid, as we will see in Sections 6.6.1 - 6.6.3.

The hypothesis that we theorised before the undertaking of this experiment was

that the Class A methods which work on arbitrary MPGs would be the best for

small A (due to the highly weighted MPG value and irregular layouts) , while the

Class I methods would be better for large A (due to the higher regularity values

but lighter weighted MPG) , while the Class T methods would exist in some sort of

middle ground.

1 64 Chapter 6. Comp uter Implementation

6 . 6 . 1 Average Performance

Tables 6.20 - 6.24 exhibit the data for comparing the average regularity values for

the problem instances. We recognise at the outset that any conclusions drawn here

are based on taking averages of averages, and that while the conclusions reached

in this section are valid, there is a large amount of information lost , hence lead­

ing to the increased analysis provided by the worst-case, and problem-by-problem

performances of Sections 6.6.2 and 6.6.3 respectively. The tables herein all utilise

Equation 6.8, as we are dealing with the averages of the facility values. Furthermore

the tables are broken into two parts. The first contains the raw averages, for each

of the measures, while the second part , provides the intervals for A within which

that particular method is the best. In all tables Deltahedron, refers to Deltahedron

which has had an MPG generated especially (as there were insufficient arbitrary

MPGs which were Deltahedron to make implications) . Note however, that for

n = 10 , when 44% of the arbitrary MPGs were Deltahedron, the regularity values

were almost identical to those for which a specially constructed Deltahedron MPG

was generated.

Table 6.20 (for n = 10) provides us with some interesting points for �iscussion.

Firstly note that the Tiling Algorithm(T) , was able to generate MPGs of weight on

average larger than the MPGs generated by TESSA and Tabu Search. vVhile this

is a little surprising, we have already stated in Section 6. 1 that the implementation

of Tabu Searc� was not a major component in the study, hence possibly allowing

for an inferior implementation to that of [13] say, and secondly, due to the small

size of the problem instances, it is likely that we will get some unusual behaviour

not exhibited by larger problem instances. Further, recall from Section 4 .7 .5 that

it is possible that for n = 10 layouts can be guaranteed to have worst-case facility

shape of T. The Tiling Algorithm(T) would be able to generate a large number of

these, providing another reason for its impressive performance.

The times for the different methods were largely variable. The Tiling Algo­

rithm(T) required nearly nine times the computational effort compared to the Class

A methods, including the time to generate the MPG, providing another possible

reason for the impressive performance of the Tiling Algorithm(T) in generating

higher weighted MPGs. However note that all of the Tiling Algorithm(T)'s regu­

larity scores were inferior to those of the Class A methods, even SIMPLE (except on

the number of corners) , leading to the Tiling Algori thm(T) , only being preferred if

Measure VSA(D) VSA(R) CA(D) CA(R) SIMPLE Deltahedron
Benefit 4258.02 4258.02 4258.02 4258.02 4258.02 4186.42
4vfai/ pi 0 .71 0.71 0.69 0.68 0 .65 0 .72
ai/Ri 0.69 0.73 0.72 0 .70 0 .72 0.83
ai/Gi 0.52 0.48 0.48 0.48 0.41 0 .43
ai/Si 0.36 0.34 0.34 0.34 0.29 0.29
ci 6.61 5.70 6.28 6.65 8.34 4 .56
Time(s) 5.05+0.46 5.05+0.38 5.05+0.48 5.05+0.51 5.05+0.85 0.22
4vfai/ pi [0. 13,0.53] - - - - -

ai/Ri - [0. 12,0. 13] - - - -

ai/Gi [0.07 ,1 .00] - - - - -

ai/Si [0. 1 1 ,1 .00] - - - - -

ci - - - - - -

Table 6.20: Regularity vs Adjacency for n = 10

TA(T) TA(I)
4304.02 4 1 10.58

0 .64 0 .77
0 .64 1 .00
0 .37 0.46
0 .27 0.31
5.20 4 .00

42.55 4.47
[0.00,0. 13] [0.53,1 .00]
[0.00,0 .12] [0. 13 ,1 .00]
[0.00,0.07] -

[0.00,0. 1 1] -

[0 .00,0. 13] [0._13, 1 .00]

ST
3619.22

0.83
1 .00
0.57
0.39
4.03
0.30

-

-

-

-

-

�
�
::tl .Cb

�
� §" §
......

�
0') CJ1

Measure VSA(D) VSA(R) CA(D) CA(R) SIMPLE Deltahedron
Benefit 7463.27 7463.27 7463.27 7463.27 7463.27 7441 .69
40ii/ pi 0.62 0.62 0.56 0.57 0.47 0.67
ai/Ri 0.58 0.62 0.57 0.57 0.56 0.79
ai/Gi 0.40 0.38 0.36 0.38 0 .24 0.39
ai/Si 0.28 0.27 0.25 0.27 0 . 16 0.26
ci 7.73 7.00 9.22 9.37 14.75 4.65
Time(s) 26.67+1 .51 26.67+1 .09 26.67+1 .46 26.67+1 .41 26.67+9. 1 1 0.31

40ii/ pi - - - - - [0.08,0. 72]
ai/Ri - - - - - [0.05,0. 1 1]
ai/Gi [0.05,0.88] - - - - -

ai/Si [0.08,0.92] - - - - -

ci - - - - - [0.07 ,0. 12]

Table 6.2 1 : Regularity vs Adjacency for n = 15

TA(T) TA(I)
7518.36 7266.96

0 .55 0 .69
0 .60 1 .00
0.27 0.35
0 . 19 0.23
5.26 4.00

156.60 15.52
[0.00,0.08] [0. 72, 1 . 00]
[0.00,0.05] [0. 1 1 , 1 .00]
[0.00,0.05] -

[0.00,0.08] -

[0.00,0 .07] [0. 12 , 1 .00]

ST
6100.78

0 .79
1 .00
0.52
0.36
4.06
0.91

-

-

[0.88,1 .00]
[0.92,1 .00]

-

.......
0') 0')

Q
�
�
�

g E3
"0 c
<'"+-

�
�
� s §
.... !;�>
c-+-

g·

Measure VSA(D) VSA(R) CA(D) CA(R) SIMPLE Deltahedron
Benefit 1 1550.47 1 1550.47 1 1550.47 1 1550.47 - 1 1506.27
4V(ii/ pi 0.59 0.56 0.53 0.52 - 0.61
ai/Ri 0.53 0.54 0.51 0.49 - 0.74
ai/Gi 0.38 0 .34 0 .34 0.34 - 0.33
ai/Si 0.27 0.24 0.24 0.24 - 0.23
ci 8.51 8 . 15 10 .02 10.90 - 4 .76
Time(s) 91 .63+4 .07 91 .63+4.08 91 .63+2.63 91 .63+2.78 - 0.44
4V(ii/Pi [0.00,0. 16] - - - - [0. 16,1 .00]
ai/Ri - [0.00,0.02] - - - [0.02,0. 14]
ai/Gi [o.oo,o:94] - - - - -

ai/Si [0.00 , 1 .00] - - - - -

ci - [0.00,0 .01] - - - [0.01 ,0 . 15]

Table 6.22: Regularity vs Adjacency for n = 20

TA(T) TA(I)
1 1 367.22 1 1 099.82

0 .48 0.63
0 .53 1 .00
0 .22 0 .28
0 .16 0 . 18
5.36 4 .00

269 . 1 1 42.63
- -

- [0. 14,1 .00]
- -

- -

- [0 . 15 , 1 .00]

ST
9046.56

0 .77
1 .00
0.50
0 .34
4 .03
2.66

-

-

[0.94 , 1 .00]
-

-

--

�
�
� _('t)

('t) !::! . :3 � cot-

-
0) --l

Measure VSA(D) VSA(R) CA(D) CA(R) SIMPLE Deltahedron
Benefit 15267.22 15267.22 15267.22 15267.22 - 15373.38
40ii/ P; 0 .54 0.52 0.46 0.45 - 0.63
ai/R; 0.48 0.48 0.45 0.43 - 0 .75
ai/S; 0 .33 0 .31 0.27 0.28 - 0.36
ai/G; 0.24 0.22 0 . 19 0.20 - 0.25
C; 9.34 9.24 1 1 .57 12.38 - 4.78
Time(s) 243.20+9.75 243.20+8.38 243.20+5. 16 243.20+5.30 - 0.54
40ii/P; - - - - - [0 .00, 1 .00]
ai/R; - - - - - [0.00,0 .18]
ai/G; - - - - - [0 .00,1 .00]
a;/S; - - - - - [0 .00,1 .00]
C; - - - - - [0 .00,0 . 19]

Table 6.23: Regularity vs Adjacency for n = 25

TA(T) TA(I)
14963.78 14678.07

0.45 0.58
0 .55 1 .00
0 . 19 0.24
0. 13 0 .16
5.24 4 .00

541 . 12 87. 1 0
- -

- [0. 18,1 .00]
- -

- -

- JO� 1�,1 .0Q]
--

ST
1 1683.40

0.75
1 .00
0 .48
0.33
4.03
6.64

-

-

[1 .00 ,1 .00]
-

-

1--'
0) 00

g
�
�
?l

g
a 1"'0 c:::
�
�

�� s �
<-0-
�
<-0-

g·

Measure VSA(D) VSA(R) CA(D) CA(R) S IMPLE Del tahedron
Benefit 18791 .44 18791 .44 18791 .44 18791 .44 - 19157.67
4..fiii/Pi 0 .49 0.46 0.41 0 .41 - 0.60
ai/Ri 0.44 0.43 0 .38 0.38 - 0.74
ai/Gi 0.29 0 .26 0.25 0.25 - 0.33
ai/Si 0.20 0 . 18 0 . 18 0 . 18 - 0.23
ci 10.41 10.18 14.27 14 . 13 - 4.80
Time(s) 589.65+23.62 589.65+25.73 589.65+ 10.37 589.65+9.26 - 0.66

4 ..fiii/ pi - - - - - [0.00, 1 .00]
adR - - - - - [0.00,0. 17]
ai/Gi - - - - - [0.00,0.93]
ai/Si - - - - - [0.00,0 .94]
ci - - - - - [0.00,0 . 19]

Table 6.24: Regularity vs Adjacency for n = 30

TA(T) TA(I)
18572.24 18295.87

0.41 0.54 .
0.52 1 .00
0 . 16 0.21
0. 1 1 0 . 13
5.35 4.00

766.38 151 .76
- -

- [0. 1 7, 1 .00]
- -

- -

- (0. 19 ,1 .00)

ST
14309.18

0.74
1 .00
0.47
0.32
4.02

18.52
-

-

(0.93, 1 .00]
[0 .94 , 1 .00]

-

�
�

tt:t
I� et> !::::! . s §

.,.,.

�
0') 1;0

1 70 Chapter 6. Computer Implementation

A is around 1 0% or less. The VSA with the Deltahedron initialisation surprisingly

makes up a healthy chunk of the remaining usable area-based regularity measures,

while the Tiling Algorithm(!) is preferred for the shape-based measures for A above

10%. As we have seen in the previous experiments, the Class A methods all per­

form with about the same effectiveness, with SIMPLE not too far away (although

clearly i nferior, especially with respect to the number of corners) . Spanning Tree

was hindered by its inability to generate highly-weighted layouts, generating lay­

outs of total weight around 15% less than TESSA with Tabu Search generated

MPGs. Deltahedron appears to be essentially in the middle of the methods of the

Class A and the Tiling Algori thm(!) , with respect to benefit, and the shape based

measures, but was slightly inferior to the Tiling Algorithm(!) and/or the Tiling

Algorithm(T).

Table 6.21 (for n = 15) shows some significant differences to those exhibited in

Table 6.20. The Tiling Algorithm(T) still generates the highest weighted MPGs,

requiring more time than the Class A methods. However the highest A value for

dominance of the Tiling Algorithm(T) has dropped to around 7%. Deltahedron

appears briefly among the shape-based measures. As with n = 10, the Tiling

Algorithm(!) performs the best for A above 1 1 % on the shape-based measures, while

the usable space measures see VSA with the Deltahedron initialisation between

approximately 7% and 90% for the bounding square and bounding golden rectangle,

followed by Spanning Tree above 90%, while Deltahedron is best for A between

8% and 72% followed by the Tiling Algorithm(!) for the perimeter ratio. Note

that Deltahedron has MPG values only slightly inferior to those of the arbitrary

MPGs, superior regularity values for those which are shape-based, and values on

a par with those which are usable space based. While Spanning Tree has a highly

inferior weight, the superiority of its bounding square and golden rectangle lead to

its inclusion for large A .

Table 6 .22 (for n = 20) shows yet more changes in the performance of the

methods over the A range. The Tiling Algorithm(T) no longer appears, overtaken

for small A by the Class A methods, which now have the highest MPG values.

The shape-based measures are still dominated by the Tiling Algorithm(!) , with

Deltahedron appearing among these measures for small >.. The perimeter ratio is

also dominated by Deltahedron, while VSA with Deltahedron is superior on the

bounding square and golden rectangle measures. Note that SIMPLE no longer

6. 6. Regularity vs Adjacency Experiment 171

appears, as it was able to successfully dualise only 27% of the MPGs. The shape­

based measures appear to be levelling out to what we originally expected, with the

Class I methods having the best values followed by the Class T methods, and lastly

the Class A methods. The usable area measures do not yet follow expectations.

The Tiling Algorithm(T) appears to be generating some elongated facilities , as its

poor performance on the usable area measures shows.

Tables 6.23 and 6.24 (for n = 25 and n = 30 respectively) show an impressive

performance by Deltahedron, which completely dominates the usable area based

measures, while the Tiling Algorithm(!) dominates the shape-based measures. The

Class A methods do not appear due to the superiority of Deltahedron in both

benefit and all regularity values, while taking only a fraction of the time of the

Class A methods to complete the layout construction. For n = 30, Deltahedron

is surpassed at the top end of the). scale for the bounding square and golden

rectangle values by Spanning Tree, which is not so affected by elongated facilities

as n mcreases.

It appears therefore that the average performance of the methods studied is

dominated for small n by the ability to generate a highly weighted MPG, while

keeping irregularity to a minimum (which can usually be accomplished for small n) ,

while for large n, the performance is dominated by a method which can generate

highly weighted MPGs, whilst guaranteeing a good worst-case facility shape (to

ensure the regularity values do not degrade unnecessarily) . The results obtained

were a little surprising but , even allowing for the ability of TESSA and Tabu

Search to generate the highest weighted MPG, Deltahedron would soon surpass

the Class A methods due to its superior regularity values and ability to generate

highly-weighted MPGs.

6 . 6 . 2 Worst Performance

This section is designed to be a reinforcement of the conclusions reached in Sec­

tion 6.6. 1 . We discussed in Chapter 2.5 that there were two different objectives

which we could consider when evaluating any layout , being to maximize the aver­

age facility regularity, or to maximize the minimum facility regularity. This section

examines the second of these objectives, by providing in Tables 6.25 - 6 .29 the

average regularity values of the worst facility in each layout. While we again take

the averages of these values, there is far less information lost in this instance as we

I

1 72 Chapter 6. Computer Implementation

are examining only one facility in each layout , rather than all facilities. Of interest

in this section are not only the relationships and patterns within Tables 6.25 - 6.29 ,

but also the relationships to Tables 6.20 - 6.24 for each respective value of n . Note

that we omit the time values, as they do not alter.

Table 6 .25 (for n = 10) shows a consistency in the performance of the Tiling

Algorithm(T). Naturally, since the benefit values of the MPGs do not change, the

Tiling Algorithm(T) will be the best method for >. = 0, but the point at which it is

superseded by another method is approximately the same as for the average case.

Again the Class A methods dominate the bounding square and rectangle measures,

although different Class A methods appear compared to those in Table 6.20. The

Tiling Algorithm(!) parallels its behaviour from the average case, albeit with a

slightly lower value of >. at the lower end . The main differences between Tables 6.20

and 6.25 are the best methods for the perimeter ratio. Deltahedron appears for

the worst facility case for >. between 37% and 48%, which we stated was close

to happening in the average case. However Spanning Tree overtakes the Tiling

Algorithm(!) , for >. above 50%, while a Class A method no longer appears. This

change between the average and worst cases is not surprising, as the average case

gave very similar perimeter ratios for each problem instance, while there was more

variance in the worst case values. As for the data in the first part of Table 6.25,

notice the large average number of corners in the worst facility of a SIMPLE layout,

compared to the other Class A methods. Also it is hardly surprising that the Class I

methods dominate the shape-based measures, having far superior values, especially

for the bounding rectangle compared to the Class T and A methods, whereas the

usable area measures show a higher degree of similarity over all the classes.

Table 6.26 (for n = 15) closely follows the patterns of its companion Table 6.2 1 .

The Tiling Algorithm(T) has ranges almost identical i n both cases for the shape­

based measures, while for the usable area measures, >. increases to around 20%

compared to 6% in the average case. The Class A methods again take over from the

Tiling Algorithm(T) for the bounding square and golden rectangle, though this time

it is via the Contraction Algorithm with the Rinsma initialisation . Deltahedron

does not appear in the worst case, but the patterns for the Class A methods are

essentially preserved. Again note the astronomical value of the worst case number

of corners for SI�-IPLE.

The shape measures for Tables 6.22 and 6.27 (for n = 20) are very similar, even

Measure VSA(D) VSA(R) CA(D) CA(R) SIMPLE Deltahedron TA(T)
Benefit 4258.02 4258.02 4258.02 4258.02 4258.02 4186.42 4304.02
4Vai/Pi 0.31 0.38 0.32 0.30 0.28 0.43 0.34
ai/Ri 0 .15 0.20 0.22 0.22 0 . 16 0.21 0 . 13
ai/Gi 0 .15 0 .17 0 . 19 0 . 19 0 .15 0 . 16 0 . 12
ai/Si 0 . 13 0 . 14 0 . 15 0.15 0 . 11. 0 . 12 0 . 10
ci 1 1 .51 9.51 1 1 .64 12.44 20.27 6.36 7.51

4Vai/ pi - - - - - [0.37 ,0.48] [0.00,0. 17]
ai/Ri - - - - - - [0.00,0.05]
ai/Gi - - [0. 14,0.86] - - - [0.00,0. 14]
ai/Si - - - [0 . 18, 1 .00] - - [0 .00,0 .18]
ci - - - - - - [0.00,0.06]

Table 6.25: Worst Case Regularity vs Adjacency for n = 10

TA(I)
41 10.58

0.60
1 .00
0 .18
0 .1 1
4.00

[0. 1 7,0.37]
[0.05,1 .00]

-

-

[0.06, 1 .00]

ST
3619.22

0.67
1 .00
0.26
0 .16
4 .13

[0.48,1 .00]
-

[0 .86, 1 .00]
-

-

�
�

2 Cb :::: . s §
....

......
-.J �

Measure VSA(D) VSA(R) CA(D) CA(R) SIMPLE Deltahedron TA(T)
Benefit 7463.27 7463.27 7463.27 7463.27 7463.27 7441 .69 7518.36
4Vai/Pi 0.21 0.25 0 . 19 0 . 19 0 . 10 0.32 0.26
ai/Ri 0.08 0.09 0 . 10 0 . 10 0.08 0 . 1 1 0.07
ai/Gi 0 .08 0.08 0 .09 0 . 10 0.08 0.09 0.07
ai/Si 0.07 0.07 0 .08 0.08 0.06 0 .07 0 .06
ci 15.51 13.16 20.89 21 .60 47.07 6.71 7.82

4 ..(iii/ pi - - - - - - [0.00,0. 14]
ai/Ri - - - - - - [0.00,0 .04]
ai/Gi - - - [0.22,0. 71] - - [0.00,0.22]
ai/Si - - - [0.25,1 .00] - - [0.00,0.25]
ci - - - - - - [0.00,0.05]

Table 6.26: Worst Case Regularity vs Adjacency for n = 15

TA(I) ST
7266.96 6100.78

0.48 0.55
1 .00 1 .00
0 . 1 1 0 . 16
0 .07 0 . 10
4 .00 4.36

[0. 14 ,1 .00] -

[0.04 , 1 .00] -

[0.71 ,0 .87] [0.87, 1 .00]
- -

(0.05, 1 . 00] -

......
-l *""

g
�
.,...

�
�

�
"t::l
c::
.,...

�
s-

"0
-s §
.,...
�
.,... g·

Measure VSA(D) VSA(R) CA(D) CA(R) SIMPLE Deltahedron TA(T)
Benefit 1 1550.47 1 1550.47 1 1550.47 1 1550.4 7 - 1 1506.27 1 1 367.22
4Jcli/Pi 0 . 18 0.20 0 . 15 0 . 14 - 0.26 0 .22
adfli 0.06 0.06 0.07 0.06 - 0.07 0.05
ai/Gi 0.06 0.06 0.06 0.06 - 0.06 0.05
ai/Sie 0.05 0.05 0.06 0.06 - 0.05 0.04
ci 18. 18 17.07 24 . 13 26.09 - 6.58 7.87
4Jcli/ pi - [0.00,0.06] - - - [0.06,0.21] -

ai/Ri - - [0 .00,0.04] - - - -

ai/Gi - - [0 .00,0.83] - - - -

ai/Si - - - [0.00 ,1 .00] - - -

ci - [0.00,0 .01] - - - [0.01 ,0.06] -

Table 6.27: Worst Case Regularity vs Adjacency for n = 20

TA(I)
1 1 099.82

0.4 1
1 .00
0.07
0.05
4 .00

[0 .21 ' 1 .00]
[0.04 ,1 .00]
[0 .83,0.94]

-

[0 .06, 1 .00]

ST
9046.56

0.47
1 .00
0. 1 1
0.07
4 .22

-

-

[0 .94,1 .00]
-

-

?l
?l
::0
.et>

�
et>
::::! . s �
.....

......
-l C;1

Measure VSA(D)
Benefit 15267.22
4Vai/Pi 0 . 15
ai/Ri 0.04
ai/Gi 0.04
ai/Si 0.04
cj 20.58
4Vai/Pi -

ai/Ri -

ai/Gi -

ai/Si -

cj -

VSA(R)
15267.22

0 . 15
0.05
0.05
0.04

20.53
-

-

-

-

-

CA(D)
15267.22

0 . 13
0 .05
0.05
0 .04

28.89
-

-

-

-

-

------ - ---

CA(R)
15267.22

0. 12
0 .05
0 .05
0 .04

31 . 1 1
-

-

-

(0.63,1 .00]
-

-

SIMPLE Deltahedron TA(T)
- 15373.38 14963.78
- 0.24 0 . 19
- 0.06 0 .04
- 0.05 0 .04
- 0.04 0 .04
- 7. 1 1 7.82
- [0.00,0.29] -

- [0 .00,0.05] -

- [0 .00,0.90] -

- [0.00,0 .63] -

- [Q_.QO_,�_._Q_?]- -

--

Table 6.28: Worst Case Regularity vs Adjacency for n = 25

TA(I) ST
14678.07 1 1683.40

0.36 0.41
1 .00 1 .00
0 .06 0.08
0 .04 0.05
4.00 4.40

[0.29,1 .00] -

[0.05 , 1 .00] -

[0.90,0.98] (0.98 , 1 .00]
- -

[0.07,1 .00] -

......
--l O'l

g
�
e-o-

�
?l

� s
'0
c::
e-o-

�
�

'0 ..._ s �
e-o-
�
e;..

g'

Measure VSA(D) VSA(R) CA(D) CA(R) SIMPLE Deltahedron TA(T)
Benefit 1879 1 .44 18791 .44 18791 .44 18791 .44 - 19157.67 18572.24
4y'cii/Pi 0 . 12 0 . 12 0 .09 0.09 - 0.19 0 . 1 7
at/ Ri 0.03 0.03 0 .03 0 .03 - 0.04 0 .03
atfGi 0.03 0.03 0 .03 0 .03 - 0.04 0 .03
ai/Si 0.03 0.03 0 .03 0 .03 - 0.03 0 .03
ci 26.53 26.71 35.78 36.31 - 7.20 8.00

4 0ij/Pi - - - - - [0 .00,0.29] -

at/� - - - - - [0 .00,0.05] -

atfGi - - - - - [0 .00,0.88] -

at/Si - - - [0.92,1 .00] - [0 .00,0.92] -

ci - - - - - [0.00,0 .07] -

Table 6.29: Worst Case Regularity vs Adjacency for n = 30

TA(I) ST
18295.87 14309.18

0.32 0.38
1 .00 1 .00
0.05 0.07
0.03 0.04
4.00 4.22

[0.29, 1 .00] -

[0.05 ,1 .00] -

[0.88,0.97] [0.97 ,1 .00]
- -

[0.07, 1 .00] -

�
�
::0 .Cb

�
"0
� §• Cb t:l -
.,....

-
-.)
-.)

1 78 Chapter 6. Computer Implementation

though Deltahedron does not appear for the bounding rectangle. The bounding

square and golden rectangle are also similar in the worst case to the average case,

with a Class A method possessing the bulk of the >. values. The perimeter ratio

again does not follow the pattern set out by the average case, with the Tiling

Algorithm(!) taking over ..\ above 20%, where Deltahedron was preferred in the

average case.

For n = 25 (Table 6.28) and n = 30 (Table 6.29) , the main surprise is the

appearance of a Class A method as the best method for the bounding square for

large ..\, as i t might have been expected that the Class T and I methods to be

superior for large ..\ , since they are based on regularity. However the other trends,

with the exception of the perimeter ratio, exhibited by Tables 6.23 and 6.24, appear

to be preserved, with Deltahedron making up the bulk of the usable area measures,

and the Tiling Algorithm(!) the bulk of the shape-based measures.

The comparison of the worst case to the average case, produced very pleasing

results. It would have been difficult to draw conclusions if the ..\ ranges had varied

considerably between the two objective functions. However, with the exception of

the perimeter ratio, the two objectives exhibited essentially the same results. It is

worth noting at this point that there may not be a large difference in a decision

maker's mind between ..\ = 0.35 and ..\ = 0 .45 say, and therefore we should be careful

at the interface of two or more methods giving essentially the same objective value

i. e . the point at which two methods' surrogate score lines would cross, would be a

fuzzy area rather than a single point in a subjective environment .

The performance of the perimeter ratio was rather variable. It appears that the

difference between the worst and average case has a significant impact on the best

method ranges in this case. Examining this more closely, we must remember what

the perimeter ratio measures: the length of the perimeter compared to the length

of the perimeter for a square of the same area. Consider the elongated facilities

which tend to appear in the Class T and I methods. In the average case, the effect

of these elongated facilities is significantly reduced, while in t he worst case a long

top facility for example could significantly reduce the worst perimeter ratio in a

layout . Consider again the example of Figure 5.6, where in the average case the

perimeter ratio tends to 1 , while in the worst case the perimeter ratio tends to 0.

This phenomenon is not so pronounced in the other regularity measures, leading

to the comparable trends in the average and worst cases.

6.6. Regularity vs Adjacency Experiment

6.6.3 P roblem-by-Problem Performance

1 79

The final stage in examining the comparison of the layout methods is to compare

them on a problem-by-problem basis. Obviously, i n real terms, we wish to forgo

building a large set of different layouts by the same method. In general, due to the

cost of building a layout, or indeed changing an existing layout, the costs can be

enormous, therefore we would not simply pick the method which has been shown

on average to be the best , we would choose the one which is best for that particular

circumstance. The solutions for each problem instance on a number of regularity

measures were calculated showing largely variable results. Clearly it is not helpful

to show all the problems on all the different measures; however, Table 6.30 gives

examples chosen to show as closely as possible the variable values that can occur.

We do not consider all possible methods, but rather consider the classes which

depend upon the worst case facility shape. All measures use Equation 6.8. By

examining Table 6.30 we can see that , for the three problem instances chosen, we

cannot with certainty choose one class of method over another arbitrarily. Rather,

being able to generate the best layout for some problem instance requires careful

analysis of all possible layouts which could be generated, and upon which regularity

measures and objectives we choose to base our decisions. We will return to this

point a number of t imes throughout the remainder of this thesis.

Measure n Problem Class A Class T Class I

40ii/Pi 1 0 22 [0 . 13,0 .91] [0.00,0.13] [0.91 , 1 .00]

ai/Si 1 0 22 [0.04, 1 .00] [0.00,0 .04] -

ci 1 0 22 - [0.00,0.34] [0.34,1 .00]

40ii/ pi 20 14 [0.00 ,0 . 1 0] [0 .10,0. 75] [0. 75, 1 .00]

ai/ si 20 14 [0 .00,0. 73] - [0 . 73, 1 .00]

ci 20 14 [0 .00,0.00] [0.00,0.31] [0.3 1 , 1 .00]

40ii/Pi 30 35 [0.00,0 .22] [0.22,0.93] [0 .93,1 .00]

ai/ si 30 35 [0 .00,0.62] [0.62,1 .00] -

ci 30 35 [0.00,0 .03] [0.03,0.16] [0 . 16 ,1 .00]

Table 6.30: Sample of problem instances, and their associated best ranges

1 80 Chapter 6. Computer Implementation

C o d a
In this chapter we have undertaken an extensive computational examination of the

methods pertaining to the GTFLP. We have seen in Section 6.3 the similarity of the

two different starting points for the VSA and the Contraction Algorithm and also in

Section 6 .4 the impact of the improvements from Chapter 5 . We have examined the

performance of the Class A methods in Section 6.5, and concluded that the VSA

has an edge over the Contraction Algorithm in terms of the regularity measures. In

Section 6.6 we have examined extensively the relationship between regularity and

adjacency, by introducing an intuitive surrogate score which provides a measure of

a layout incorporating both regularity and adjacency. We conclude that while the

Deltahedron method in general provides an all-purpose solution, it is wise to make

decisions at the problem level, rather than making sweeping generalisations. We

will examine this point further in Chapter 7, where we consider problem instances

which are designed specifically to perform well on one method, and not on the

others. The purpose of this is to show that all the methods which have so far been

designed to produce layouts to the GTFLP have their place within this framework,

and can aid the production of a good final layout.

18 1

Chapter 7

B iased Examples

In Section 6.6 we saw that we could not accredit any one method with being the

best layout method i. e. the one which we would always turn to regardless of the

situation. We saw that while Deltahedron was perhaps the most robust method, a

problem by problem analysis of the layouts generated by each method was required.

In this chapter we continue to reinforce this idea by carefully constructing an MPG

for each layout algorithm which works very well on that particular method. The

purpose of this is to further demonstrate that all the methods from Chapter 4 have

their niche within the GTFLP framework.

By considering the motivation and algorithmic process of each of the layout

algorithms, we attempted to provide an example where that respective method

would produce a more practical layout than the other methods. It was not deemed

necessary for the other methods to perform poorly on each example, but, in many

instances this phenomenon occurred. vVe will discuss further the generation of

each problem instance as we encounter them. As formal characterisation of these

problems is difficult, we felt that it sufficed to provide only one example for each

method, as providing a single problem instance where each method performs well

is sufficient to show that the method may provide important information within a

general setting, even if it does not produce the best layout.

In order to determine that a particular layout was best, we examined the layout

generated by each method, and made comparisons on two fronts: objective and

subjective. The objective analysis involved the examination of the regularity values

for each layout, while the subjective analysis investigated whether each facility was

usable and each adjacency was able to be realised. As we have discussed previously,

we do not simply base our decisions on a single value, but consider the objective

182 Chapter 7. Biased Examples

and subjective issues to ensure a practical layout is obtained. We provide the best

layout in each instance, but for brevity and coherency we do not include all the

layouts generated on each problem instance. Figures 7 . 1 - 7.6 provide the best

layout generated for each of the given problems, while Tables 7 . 1 - 7.6 provide

the regularity values and area specifications for each problem. The problems are

not explicitly stated, however the MPG used for the Class A and Deltahedron

methods can be obtained from the layouts, with the area specifications given in

the respective table for each layout , while the benefit matrices for the Tiling and

Spanning Tree Algorithms have zero benefit for all edges which do not exist in the

MPG generated from their layouts, and benefit of one for every edge that does

exist, again with the area conditions given in the respective tables.

7. 1 D eltahedron

The generation of a problem instance which would perform well on Deltahedron was

not difficult. We saw in Chapter 6 that Deltahedron layouts consistently provide

better regularity values than the Class A methods; therefore a problem which

would be biased towards the Deltahedron Algorithm, would obviously have an MPG

which was Deltahedron-generateable. It was hypothesised that the presence of the

umbrella effect would reduce the effectiveness of the layout, and so we attempted

to generate the MPG with vertex degrees as uniform as possible. Initially the

layout was constructed with all area specifications the same. Following this initial

construction we perturbed the area requirements until we were satisfied that each

facility was adequately practical. This process was conducted by choosing facilities

which were elongated beyond what we considered acceptable, adding a percentage

to their area specification, and reconstructing the layout. This was based on a

subjective examining of the layout, until we were satisfied that no facility suffered

from elongation. Once we were satisfied that the Deltahedron layout was practical

both objectively and subjectively, we implemented the Class A algorithms on this

problem instance. Generation of Tiling and Spanning Tree layouts were not possible

as they cannot generate layouts from an MPG.

The Deltahedron example produced performed exceptionally on all but one

of the regularity values. Table 7 . 1 shows the shape-based, and perimeter ratio,

measures being far higher than all other layouts on both objectives. The one

7. 1 . Deltahedron 183

Facility 1 2 3 4 5 6 7 8 9 10 1 1 12
Area - 30 50 40 20 20 40 1 0 1 0 20 20 20

Average Value
VSA CA SIMPLE Deltahedron

ci 8.0000 6.5455 1 3.0909 4 . 5455

ad .it 0.5040 0.7530 0.6461 0 .9091

a i/Gi 0.4908 0.4728 0.2631 0 . 5583

ai/Si 0 .3721 0.3334 0 . 1728 0.3637
4Jcii/ pi 0.6461 0.6900 0.5399 0 .8283

Worst Value
VSA CA SIMPLE Deltahedron

ci 14 .0000 16 .0000 44.0000 8.0000

ai/Ri 0 . 1622 0 .2432 0 . 1250 0 .3333

a i/Gi 0 . 1622 0 .2103 0 . 1250 0 .2725

ai/ si 0 . 1031 0 . 1300 0.0883 0 . 1 684

4Jcii/ pi 0.3370 0 .3530 0 . 1804 0 . 5663

Table 7. 1 : Area Specifications and Regularity Values for the Biased Deltahedron
Example

blemish i s for the average bounding square, which is slightly better on the VSA

layout . This is not a concern for two reasons: firstly, there is less than 0.01 (or 2%)

difference between their respective values, and secondly the worst case values for

this measure show that the Deltahedron has a better value, implying that there is

less variance in the Deltahedron values for the bounding rectangle than for the VSA.

Examining the layout itself (Figure 7 . 1) in a subjective manner, the layout appears

directly implementable. Facilities 8 and 9 are small enough relative to facility 7

that they could be made squarer without unduly affecting the adjacency between

facilities 3 and 7; further this increases the average bounding square measure for

this layout beyond the VSA measure. The VSA measure is unlikely to be able

to be improved due to the non-dimensionalisable layout generated by the VSA.

Facility 4 is perhaps the least practical of the facilities, suggesting the need for a

closer examination of the adjacencies with 4 (if facility 4 was is a material handling

system, or corridor, for instance, t hen it is likely to be efficient without further

changes) .

This problem instance provides a basis for an archetypical family of MPGs

which produce practical layouts using the Deltahedron Algorithm. Obviously the

184 Chapter 7. Biased Examples

MPGs will be Deltahedron-generateable, but also, will not exhibit the umbrella

phenomenon. To produce area specifications which do not result in elongation

requires interaction with the layout, a point we will return to in Chapter 8 as we

modify the area requirements to ensure squarer facilities. Problem instances which

exhibit these characteristics are likely to be very amenable to generation of directly

implementable layouts.

3

2 9 8
s 7 6

1 1 12

10

4

Figure 7. 1 : Biased Deltahedron Example

This family of problem instances is unlikely to allow generation of practical

layouts using the other approaches we have discussed. The Tiling and Spanning

Tree Algorithms cannot generate layouts from the MPG, while the VSA is likely

to be hindered by the disjoint distance classes exhibited by many Deltahedron lay­

outs (especially those not exhibiting the umbrella effect) . The amount of vertex

splitting required by the VSA for MPGs when there are disjoint distances classes,

in general leads to impractical layouts. SIMPLE is also unlikely to perform well, as

its placement mechanism places facilities outside previously placed facilities, in di­

rect contrast to Deltahedron's placement operations. For this reason Deltahedron­

generated MPGs are not in general amenable to the SIMPLE Algorithm. The

7.2. The Vertex Split ting Algorithm 185

Contraction Algorithm is perhaps the most comparable to Deltahedron, as they

both use the same mechanism, of placing facilities within other facilities. This cor­

respondence is further exhibited by Table 7 . 1 where the Contraction Algorithm in

general produced the layout which was the best of the rest. The Contraction Algo­

rithm however is susceptible to losing the dimensionalisability of the layout, hence

generating layouts less practical those of Deltahedron, especially as n increases.

7 . 2 The Vertex S plitting Algorithm

The VSA works best on MPGs which have concentric distance classes. The reason

for this is that the MPG is then already in a form directly applicable to the layout

routine of the VSA, without the requirement of splitting facilities. It was also

desired that each facility could be placed as a rectangle. Two factors must be

considered to ensure rectangular facilities: the sides each facility is placed on, and

the area of each facility. Each corner facility of a distance class was required to have

at least two adjacencies with the next outer distance class. This was easily achieved

initially by ensuring that each facility in Dmax had at least two adjacencies with

the next outer distance class. A corresponding layout was generated with each

facility of equal area. Adjustment was required to both the MPG and the area

specifications to generate the final regular layout . Since VSA layouts in general

do not produce dimensionalisable layouts, we were required to make adjacency

swaps within t he MPG to allow the walls between the frames to be placed as single

straight lines, and/or to perturb the area specifications of some of the facilities.

Having obtained rectangular facilities (still within a non-dimensionalisable layout) ,

we were able to carefully perturb the area requirements to ensure elongation of

facilities was not exhibited.

The VSA layout of Figure 7.2 is clearly the best layout that is constructed by the

given methods in Table 7.2. Since the MPG was not Deltahedron-generateable, we

could only generate layouts for this problem instance using the Class A algorithms.

The worst case VSA values give the most conclusive evidence of this, as they are on

a par with the average values of the other two methods. Furthermore, the difference

between the VSA average and worst values is reasonably small, implying that all

facilities in the layout have essentially the same degree of usefulness. Examination

of the actual layout confirms this, with every facility being rectangular, and facility

186 Chapter 7. Biased Examples

Facility 1 2 3 4 5 6 7 8 9 10 1 1 12
Area - 20 20 30 40 20 40 30 20 50 30 50

Average Value Worst Value
VSA CA SIMPLE VSA CA SIMPLE

ci 4.0000 6.5455 1 1 .6364 4.0000 16 .0000 38.0000
ai/Ji.; 1 .0000 0 .7588 0 .6130 1 .0000 0 . 1333 0 . 109 1
ai/Gi 0 .5987 0.3410 0 .2439 0.3298 0 . 1333 0 . 1091
ai/Si 0 .4035 0 .2318 0 . 1707 0.2038 0 . 1000 0.0900

4Jcii/Pi 0 .8682 0.6626 0.4928 0.7501 0.2585 0 . 1348

Table 7.2: Area Specifications and Regularity Values for the Biased VSA Example

9 having the worst width to height ratio. The one blemish on this VSA layout would

be the adjacency between facilities 2 and 5. Obviously with the arbitrariness in

the area units used, it is difficult to know what exactly the current common length

of wall is between 2 and 5, and further e�amination would be required to ensure

the efficient use of this adjacency.

This problem instance exhibits characteristics of a set of problem instances

where the VSA would produce very effective results. MPGs with concentric dis­

tance classes allow the direct implementation of the VSA, without the requirement

of vertex splitting. If each corner facility of each distance class has degree at least

two with the facilities in the next outer distance class, we can guarantee that each

facility is placed on only one side of the layout when using the VSA. Concentric

MPGs which have this property ensure VSA layouts with only rectangular, L- and

S-shaped facilities. However we cannot be sure of which vertices of the MPG will

correspond to corner vertices of each frame a pri01·i.

The Contraction Algorithm does not perform well on these type of problems in

general due to its contraction mechanism. Each distance class is connected, and

therefore the entire distance class becomes a single vertex which is then contracted

to the next outer distance class. When applying the reverse contraction process,

all facilities in a distance class (and all facilities of the inner distance classes) will

be placed (explicitly or implicitly) within the same placement host for that dis­

tance class. This leads to a high degree of irregularity in the placement hosts, and

large variability in regularity between those facilities which are placement hosts,

and those which are not . SIMPLE has the potential to mimic the behaviour of

7.2. The Vertex Split ting Algorithm

10

4
7

5

2 3

1

1 1

9
8

6

12

Figure 7.2: Biased Vertex Splitting Algorithm Example

187

188 Chapter 7. Biased Examples

the VSA when using concentric MPGs. If SIMPLE were to place an entire dis­

tance class (starting from D1 then proceeding to the next inner distance class), it

is possible that the SIMPLE and VSA layouts could be identical. However, this

does not happen, as the VSA considers all facilities in a distance class simultane­

ously when the regions are dimensioned for placement of the next distance class.

SIMPLE provides no such mechanism, placing each facility independently of sub­

sequent placements . For this reason, even if S IMPLE were able to produce the

correct placement order (which it very unlikely unless input manually) , the regu­

larity of facilities would become steadily worse. As we have seen SIMPLE is very

susceptible to an irregular facility impinging on other facilities' regularity. Unless

we are extremely fortuitous, the Deltahedron Algorithm will not generate a layout

to problem instances of this type.

7.3 The Contract ion Algorit hm

Generating a problem instance which would produce a practical Contraction Al­

gorithm layout , required careful analysis of the placement of facilities using the

reverse contraction process. As we discussed in Section 7. 1 , the process is partic­

ularly amenable to disjoint distance classes. If each facility is a placement host

explicitly to only one facility, and we are able to maintain regular facility shapes,

then we are likely to produce practical Contraction Algorithm layouts. Facility

areas were addressed in much the same way as for the VSA example, where we

wanted to ensure that the area specifications did not impinge upon the ability to ,

attain adjacencies without forcing irregularity.

The Contraction Algorithm layout of Figure 7.3 is perhaps the weakest of the

examples produced in this chapter, as far as showing conclusive evidence of being

superior to the other layouts on the same MPG. Table 7.3 shows that the average

case values for the Contraction Algorithm layout are all clearly superior to the

VSA and SIMPLE values, by significant margins. Disappointingly, however, the

worst case values for the bounding golden rectangle and square are inferior to

the corresponding VSA values. Examination of the layout shows that the four

L-shaped facilities are the likely cause of this. Facility 3 especially appears to

be more elongated than would be practical. Facilities 9 and 1 0 are unnecessarily

7.3. The Contraction Algorithm 189

1

2

3 4 5

7
12

10

9

8

1 1 6

Figure 7 .3 : Biased Contraction Algorithm Example

L-shaped, and could both be made into rectangles by having facility 8 cover the 2-

joint currently occupied by facility 10 , and redimensioning the block of facilities 8,9

and 10. We formalise this process in Section 8.2.2. This modification (although not

possible without manual intervention) will enhance the average regularity values of

the Contraction Algorithm layout , however the worst case values for the bounding

rectangle and square will remain the same. Perturbation of facility 2's area would

remedy this, as it is that facility which currently produces the worst bounding

square and golden rectangle values. These modifications would not change the VSA

regularity values however. Facilities 3 and 7 would require further investigation into

their use before a judgment on the usefulness of this layout could be made.

1 90 Chapter 7. Biased Examples

Facility 1 2 3 4 5 6 7 8 9 10 1 1 12
Area - 30 40 40 10 30 40 10 20 20 20 30

Average Value Worst Value
VSA CA SIMPLE VSA CA SIMPLE

ci 6.9091 4.7273 14 .7273 12.0000 6.0000 56.0000
ai/ft 0 .6241 0.8017 0 .5789 0.2424 0 .3077 0 . 1 1 10
ai/Gi 0 .4241 0.5818 0.3377 0.2371 0 .2156 0 .0771
ai/Si 0.2703 0 .4443 0.2477 0 .1465 0 . 1332 0 .0476

4.Jiii/ pi 0.6686 0.7813 0.5132 0.3158 0 .5523 0. 1299

Table 7.3: Area Specifications and Regularity Values for Biased Contraction Algo­
rithm Example

The Contraction Algorithm, as we have discussed, is particularly amenable to

problem instances where the distance classes are disjoint, or more generally where

each placement host can be monitored, to ensure that placements within it do not

distort the placement host. The Contraction Algorithm will be dominated by the

Deltahedron Algorithm in some instances, however for problem instances of this

type which are not Deltahedron-generateable, the Contraction Algorithm is likely

to produce the most efficient layouts. vVe will see in Chapter 9 that the Contraction

Algorithm works best within an interactive environment , as the contraction process

can be manipulated to produce practical Contraction Algorithm layouts.

The VSA and SIMPLE are not so amenable to MPGs of this type for the same

reasons outlined for the Deltahedron Algorithm in Section 7. 1 . The disjointness of

the distance classes for the VSA, and the placement of facilities on the outside for

SIMPLE as opposed to the placement host idea used in the Contraction Algorithm

and Deltahedron. Further the Tiling and Spanning Tree Algorithms again fail to

generate layouts as they cannot work off a given MPG.

7.4 SIMPLE

Generating problem instances which generate practical S IMPLE layouts is diffi­

cult . As we saw in Chapter 6 SIMPLE is often dominated by either or both of the

VSA and the Contraction Algorithm. In order to generate a example amenable

to SIMPLE, we were required to identify the conditions under which the VSA

7. 4. SIMPLE 191

and Contraction Algorithm exhibit irregularity. As we have discussed already, dis­

joint distance classes affect the practicality of VSA layouts, while the Contraction

Algorithm can be hindered by the incorrect designation of placement hosts. In gen­

erating a problem instance amenable to SIMPLE, we attempted to exploit these

two factors. Further we considered the placement order chosen by SIMPLE. By

ensuring that each facility was placed along an entire side of the layout, we were

able to generate an example which was not applicable to Deltahedron or the Tiling

Algorithm, yet remained dimensionalisable. The example was thus constructed in

a roundabout way, in which we constructed a layout (which could not be generated

by Deltahedron or the Tiling Algorithm) , from which we generated the MPG. The

area conditions were considered last, whilst examining the presence of elongation

in our initially constructed layout .

The SIMPLE layout i s clearly more efficient than the layouts generated by the

other two Class A methods for this problem - Table 7.4 shows that both the average

and worst case values for SIMPLE are significantly better than the values for the

other layouts. The layout itself, shown in Figure 7.4, has only facility 12 as non­

rectangular, yet facility 12 is not necessarily inefficient. Probably the least usable

facility would be facility 7, dependent of course on its function, which is rather

more elongated than the other facilities . Furthermore all adjacencies are made by

a significant sharing of common wall, with the adjacency between facilities 9 and 12

being the smallest. This example at first appears to be applicable to construction

by the Tiling Algorithm; however there does not exist an initial Tetrahedron within

this layout (even given the double placement of facility 12), hence construction of

this layout by the Tiling Algorithm is infeasible.

In previous sections we have identified structures within the MPG which char­

acterise the applicability of one method over the others: In this instance there

appear to be no obvious structures which indicate that SIMPLE will perform well.

An indicator of the success of SIMPLE can be seen if the placement of facilities can

be made so as to maintain the empty space as a regular polygon. Facilities placed

within the empty region become more irregular as the empty region becomes more

irregular; however, this property cannot be identified within the MPG. We saw in

Chapter 6 that SIMPLE was perhaps the least effective of the layout algorithms.

This example does not discount this conclusion , however we maintain that in spe­

cific problem instances there may be information that can be gleaned from the

1 92 Chapter 7. Biased Examples

1

2

3 5 7 9 1 1
12

10

8

6

4

Figure 7.4: Biased SIMPLE Example

Facility 1 2 3 4 5 6 7 8 9 10 1 1 12
Area - 40 40 40 30 30 20 20 20 10 10 30

Average Value vVorst Value
VSA CA SIMPLE VSA CA SIMPLE

ci 5.6364 7.8182 4 .3636 12.0000 18.0000 8.0000
ad� 0.7867 0 .6626 0 .9636 0 . 1429 0 . 1 1 1 1 0 .6000
ai/Gi 0.4280 0.29 1 1 0.4945 0. 1429 0 . 1 1 1 1 0 .2589
ai/Si 0 .2725 0 .2109 0.3783 0. 1 123 0 . 1057 0.1600

4.,fiii/ pi 0.6997 0 .5529 0.8049 0.3145 0.2762 0.6897

Table 7.4 : Area Specifications and Regularity Values for Biased SIMPLE Example

7.5. The Tiling Algorithm 1 93

SIMPLE layout, such as the one above, where the structure of the MPG could be

identified as not being easily amenable to the VSA or the Contraction Algorithm,

SIMPLE may produce more pleasing results.

7 . 5 The Tiling Algorithm

Generation of a problem instance which was amenable to the Tiling Algorithm was

not difficult . As with Deltahedron, we were able to exploit the rigid nature of the

placement process to produce a practical Tiling Algorithm layout . Tiling Algorithm

layouts have a distinctive pattern to them. In most cases (especially those where

all facilities are deemed to be rectangular) the layout appears to show an obvious

tiled pattern (hence the name) . Having produced a basic Tiling Algorithm layout,

all that was required (again) was examination of the area conditions, and ensuring

that no facility was unnaturally elongated. Having obtained a practical layout , the

corresponding (non-Deltahedron) MPG was generated for application of the Class

A algorithms.

The Tiling Algorithm generates a rectangular layout, shown in Figure 7.5. Ta­

ble 7 .5 provides the regularity values for this and the Class A layouts. All except

the average bounding square value of Table 7.5 prove the superiority of the Tiling

Algorithm layout over the others. The average bounding square value is better

for the VSA, by approximately 3%. Note however that the worst case value for

this regularity measure is significantly better for the Tiling Algorithm layout . The

shape-based measures evaluate exceptionally the Tiling Algorithm layout , as all

the facil it ies are rectangular. Examining the actual layout, we see that it is a real­

istic layout, with facility 2 the most elongated. This could be remedied by making

facilities 2 and 3 a block, meaning that facility 12 would contain the bottom left

corner of the layout . This however may lead to a reduction in the effectiveness of

facility 1 2. The same argument could apply for facilities 4 and 10 , and facilities 12

and 10 .

1 94 Chapter 7. Biased Examples

Facility 1 2 3 4 5 6 7 8 9 10 1 1 12
Area - 30 40 30 10 20 10 10 20 20 30 40

Average Value
VSA CA SIMPLE TA

ci 6.5455 7.6364 8.0000 4 .0000
ai/!4 0.6140 0.6019 0.7907 1 .0000
ai/Gi 0.4986 0.4168 0 .4208 0 .5232
ai/Si 0.3639 0.2901 0.2744 0.3521

4vfiii/ pi 0.6901 0.6135 0.6831 0 .8256
Worst Value

VSA CA SIMPLE TA
ci 12.0000 14.0000 24.0000 4.0000

ai/Ri 0. 1538 0.0973 0.2105 1 .0000
ai/Gi 0. 1538 0.0973 0.2105 0 .2409
ai/Si 0. 1047 0.0973 0 .1335 0 .1489

4ylai/ pi 0.3732 0.2288 0.3704 o:6717

Table 7 .5 : Area Specifications and Regularity Values for Biased Tiling Algorithm
Example

2 10
4

3

5 9 6

7 8

1 1

1 2

Figure 7.5: Biased Tiling Algorithm Example

The Tiling Algorithm does not generate its layout from the .r..·IPG, yet the MPG

generated from a Tiling Algorithm layout can provide insights into the effectiveness

7. 6. Spanning Tree 1 95

of the Class A methods. Perhaps surprisingly the Class A methods, when used

within an interactive framework, have the potential to mimic the Tiling Algorithm

layout. The Tiling Algorithm cannot generate layouts with disjoint distance classes,

implying amenability to the VSA, as there is a reduced amount of vertex splitting

required. Reversal of the placement order for the Tiling Algorithm will generate

the correct SIMPLE placement order to obtain the same layout, and the manual

assignment of placement hosts for the Contraction Algorithm can ensure the same

layout is generated in many instances. Note that although these methods have

the potential to generate the same layout, this is in general only possible through

manual intervention within the Class A algorithms. We will return to this point

further in Chapter 9.

7.6 Spanning Tree

The final method that we have examined is the Spanning Tree method. Again

generation of an example amenable to this particular algorithm is based on the

generic structure exhibited in all Spanning Tree layouts. Since Spanning Tree lay­

outs guarantee rectangular facilities (except the case where we force the expulsion

of a 4-joint) we were able to simply concentrate on ensuring that the area spec­

ifications did not allow a 4-joint to be created within the layout , and that the

facilities were not required to be elongated. As with the Tiling Algorithm we ob­

tained the corresponding (non-Deltahedron) MPG for comparison with the Class

A algorithms.

The layout for this example is shown in Figure 7 .6 . The regularity values of

Table 7.6 give overwhelming evidence of the superior efficiency of this layout over

the other methods on this problem. The layout itself subjectively looks good, with

only facilities 6 and 7 perhaps requiring further examination as they are more

elongated than the remainder of the layout. Furthermore all adjacencies are met

with a significant amount of common wall length, ensuring no further examination

of unusable adjacencies.

The Spanning Tree Algorithm does not work off an MPG, however we can

glean information regarding the tree structure used. The Spanning Tree Algorithm

performs badly when facilities near the root (the top facility) of the tree are also

leaf nodes of the tree. Facilities of this type are in general elongated, and reduce

196 Chapter 7. Biased Examples

2

3 5 8

1 0

4 9

6 7
1 1 12

Figure 7.6 : Biased Spanning Tree Example

7. 6. Spanning Tree 197

Facility 1 2 3 4 5 6 7 8 9 10 1 1 12
Area - 40 10 30 20 10 10 10 30 40 20 20

Average Value
VSA CA SIMPLE Spanning

ci 7.0909 4.9091 9 .2727 4.0000
ai/Ri 0.6576 0.8910 0.5812 1 .0000
ai/Gi 0.4468 0.3904 0.2996 0.6159
ai/Si 0.3060 0.2733 0 .2187 0.4303

4,;a:/Pi 0.6926 0.6704 0 .5429 0.8690
Worst Value

VSA CA SIMPLE Spanning
ci 12.0000 8.0000 18.0000 4 .0000

ad it 0.3333 0.3333 0 .0833 1 .0000
ai/Gi 0.2430 0 . 1042 0 .0833 0.3236
ai/Si 0. 1502 0.0644 0 .0702 0.2000

4,;a:/Pi 0.5192 0.3203 0 .2563 0.7454

Table 7.6: Area Specifications and Regularity Values for Biased Spanning Tree
Example

the effectiveness of the layout. Binary Trees (where each vertex which is not a

root (having degree 2) or leaf (having degree 1) node has degree 3) produce very

practical results as paths from the root node to a leaf node pass through a number

of vertices. In the layout this translates to vertical blocks of facilities, as opposed

to a single elongated facility. Facility areas must be addressed for the Spanning

Tree layouts, not only to ensure that no 4-joints exist, but also to ensure that the

vertical adjacencies are adequately represented by the corresponding common wall

length in the layout .

The underlying MPG of a Spanning Tree layout does not i n general provide

much i nformation about the performance of the Class A methods. The Spanning

Tree A lgorithm is able to produce MPGs with disjoint and connected distance

classes, and indeed it requires identification of the structures within the underlying

MPG of a particular Spanning Tree layout before possible conclusions could be

found for the expected performance of the Class A algorithms. The only method

which is likely to perform badly in general is SIMPLE. The facilities are considered

as blocks �ithin the Spanning Tree layout ; SIMPLE cannot mimic this process.

In general the SIMPLE routine will not identify the obvious blocks that can be

198 Chapter 7. Biased Examples

identified by the Spanning Tree Algorithm, and hence the SIMPLE layout becomes

irregular. The distance classes are connected in the above example, implying that

the VSA may be applicable. Indeed the worst case values i ndicate its usefulness

over the Contraction Algorithm. However there are identifiable blocks within the

layouts which the Contraction Algorithm has the ability to exploit . In contrast to

the worst-case values, the average values identify a superiority of the Contraction

Algorithm over the VSA. Both however are clearly inferior to the Spanning Tree

regularity values.

Coda

In this chapter we have attempted to more closely examine the characteristics of the

layout algorithms which make them amenable to families of MPGs having special

characteristics or sub-structures. We cannot predict exactly the performance of the

algorithms, however we have been able to identify some simple structures which

direct us to a particular method. We have identified that the Deltahedron, Tiling

Algorithm and Spanning Tree algorithms will in general perform the best on any

problem to which they are applicable. The Class A algorithms required a �eeper

analysis . We concluded that MPGs with concentric distance classes were likely to

be amenable to solution via the VSA, while the Contraction Algorithm was likely to

perform well on problems with disjoint distance classes. We further identified that

the area specifications can impact significantly on the resulting practicality of the

layout , especially for methods where facilities could become elongated. We have

identified that the process of area perturbation becomes important in remedying

elongation, and that manual intervention in the determination of the placement

order can be especially useful in the Contraction and SIMPLE Algorithms.

This chapter completes the more theoretical component of this thesis. Thus

far we have examined the GTFLP algorithms for generating layouts. We have

defined the concept of regularity, and have performed research into determining

the characteristics of each method. A computational study has been undertaken

by which we have seen that the solution process of the GTFLP is more complicated

than simply generating the highest benefit layout possible. For this reason the

GTFLP requires a closer examination of the problem at hand, rather than the

existence of sweeping generalisations.

7.6. Spanning Tree 1 99

This chapter has introduced us to some of the more practical concepts of layout

design, such as perturbation and interaction, leading us into the remainder of this

thesis where we explore the interface between the t heoretical model we have so

far discussed, and some of the practical aspects which would be required in order

to implement the GTFLP model as a basis for architectural or planning design.

Chapter 8 examines the possibility of changing problem parameters such as area

and adjacency at minimal cost in order to increase the flexibility and efficiency

of the layout, and the conditions under which we might do this. Chapter 9 ex­

plores user i nterfaces, and identification of exploitable subgraphs within the MPG,

culminating in the development of a generic framework incorporating these ideas.

200 Chapter 7. Biased Examples

201

Chapter 8

Perturbation of Problem

Constraints

In this chapter we are interested in identifying possible changes that can be made to

a layout problem's data, in order to obtain more realistic layouts, without unduly

reducing the benefit that would be obtained from a more theoretical implemen­

tation applied to the original problem. We examine two possible ways in which

we might perturb our problem: area and adjacency perturbations. Area perturba­

tion encapsulates the process of changing the area specifications of facilities within

a problem, and further identifies a relationship with a related topic: Floorplan­

ning. Adjacency perturbation goes beyond simple adjacency swaps (which we will

see are not simple when conducted in a layout) , to an examination of one of the

fundamental assumptions of the GTFLP: the validity of the maximal planarity

assumption.

8 . 1 Area P erturbation

In this section we explore the possibility of changing given area specifications, with

the aim of improving layout regularity. Firstly we examine the effect changing area

requirements has on a layout ; we then proceed to outline ways in which we can

systematically perturb the area specifications of our problem. Subsequently we

highlight connections between literature for the FLP and that for Floorplanning,

and discuss how we might utilise ideas from this latter area, in order to apply them

to the GTFLP.

202

8 . 1 . 1

I

Chapter 8. Perturbation of Problem Constraints

Effect of Area o n t he Layout

In order to motivate the possible advantages of area perturbation, let us consider

the impact area specifications have on a layout. Firstly consider a five facility layout

which is undimensionalisable, as shown in Figure 8. 1 . Now the layout requires that

the areas are compatible, i. e . a2a4 > a3a 5 , for this layout to dualise the MPG upon

dimensionalisation. If this condition is not met, the layout cannot successfully

correspond to the problem data in its current form.

2 3

s 4

Figure 8. 1 : Example to show how area pertubation can create infeasibility

Now consider an undimensionalisable layout such as might be generated by the

VSA. The area specifications dictate whether we can place each facility between

two single rectilinear segments. Consider a situation which schematically resembles

Figure 5.4. In this instance, there is likely to be an earlier placed facility whose

area specification is either too small, or too large, compared to the other facilities

being placed along that side of the layout . This phenomenon requires only one

facility area to be incompatible, and it may impact on the regularity of the entire

layout .

Finally consider a dimensionalisable layout, generated by Deltahedron or the

Spanning Tree Algorithm, for instance. The layout can always be successfully

dualised regardless of the area conditions, by definition of being dimensionalisable.

The question here becomes: is the resulting layout practical? An obvious example

is where the top facility has small area relative to the other facilities, it may become

too elongated to be practical - recall Figure 5.6, where we showed that the average

regularity would tend to one, while the regularity of the top facility tended to zero,

and hence became impractical. This particular problem could have been remedied

by allowing the top facility to increase in area to maintain a given width-to-length

ratio for instance, although the remedy in general is not necessarily so simplistic.

I

8. 1 . Area Perturbation 203

The three examples described have highlighted three main areas where area

specifications can severely impact upon the feasibility of a layout , ranging from

possible infeasiblity in the first instance, through to unnatural elongation of di­

mensionalisable facilities in the last. The existence of these area incompatibilities

in a large number of the problems generated, led to a more detailed examination

of the importance of the area requirements. We will return to this point in Sec­

t ion 8. 1 .3 , but we first examine the i nteraction between Floorplanning and the

GTFLP in Section 8.1 .2, and in particular the issue of area specifications, in order

to lay a stronger foundation for Section 8. 1 .3 .

8 . 1 .2 Floorplanning and the Graph Theoretic Facility Lay­

o ut Problem

Floorplanning remains a largely untapped area m GTFLP. Floorplanning tech­

niques are applied to similar applications such as VLSI design, but there is one im­

portant d ifference: Floorplanning ideas and methodologies do not consider facility

areas. Floorplanning literature appears to direct future research at the incorpora­

tion of facility areas, but thus far nothing applicable to the GTFLP has appeared.

This difference between the two problems actually forms a vast chasm between

the two areas, because of the significant impact the area specifications have on

the GTFLP; hence Floorplanning is not directly applicable to the GTFLP, as the

layouts generated by Floorplanning methodology are usually undimensionalisable,

and imposing area conditions will in general lead to infeasibility of the layout . We

have already seen examples of this in Section 8. 1 . 1 .

The exterior facility i s not considered to be a vertex, but vertices u , 1 , r and b,
called the outer vertices, corresponding to the top, left , right and bottom respec­

tively, are added to form a 4-cycle. Edges are then added between vertices on the

infinite face of the original graph and the new 4-cycle. This new graph is called

an extended plane triangulated graph (EPTG). A vertex adjacent to two or three

of these vertices u, 1, r or b will be a corner facility in the layout . In this section

the intent is to examine the literature on Floorplanning, in order to gain insight

into how the Floorplanning methodology might be applicable to the GTFLP. Un­

less stated otherwise, the layouts discussed in this section are all assumed to be

undimensioned.

204 Chapter 8. Perturbation of Problem Constraints

Initial advances in the area of Floorplanning were concerned only with rectan­

gular layouts. Leinwand and Lai [70, 75] introduced an O(n2) time algorithm for

determining if a given plane triangulated graph (PTG) will admit a rectangular

dual . The algorithm searches for separating triangles, and if none exist, then a

rectangular dual will exist, via a perfect matching. Kozminski and Kinnen (64, 65]

introduced a O(n2) algorithm for determining an undimensioned rectangular dual,

if it exists, from a given planar graph. Essentially all that is required is to assign

a horizontal or vertical orientation to each of the edges in the PTG. This is done

by a recursive division of the ETPG, into subgraphs, until the orientations become

trivial , based on an initial orientation of the edges between the corner vertices, and

the outer vertices. Kozminski and Kinnen [66] presented a graph theoretic charac­

terization of rectangular duals, giving necessary and sufficient conditions for their

existence. They also developed a technique for enumerating all rectangular duals

for a given PTG, by examining alternative orientations during the development of

the duals. Bhasker and Sahni [9] improved upon the previous work by presenting

a l inear time algorithm to determine if a rectangular dual exists for a given planar

graph. Bhasker and Sahni then extended this work in [10] , describing a linear time

algorithm for finding an undimensioned rectangular dual. Their method is based

upon construction of a path digraph reflecting the on top of relations defined by

the dual ; traversing down the digraph from the head node, which is deemed to be

on top of all facilities dictates the spatial location of each facility in the layout ; this

is a similar methodology to that of the Spanning Tree Algorithm, where the root

node of the Spanning Tree Algorithm would be the head node in this case.

Sun and Sarrafzadeh [103] extended the work on rectangular duals to include

L-shaped (or 1-cQncave rectilinear) modules . A test in O(n �) time determines if

a given planar graph will admit an L-shaped dual and, if it does, a construction

is generated it in 0(n2) time. This is done by finding the nesting of the complex

(separating) triangles, and developing a rooted tree representing this nesting. A

vertex from each complex triangle adjacent to the root is chosen, and if all the

vertices chosen can be distinct , and not any of u , r, 1 or b, then a L-shaped dual

will exist ; with each chosen vertex being L-shaped in the resulting dual. The dual is

constructed via a direct modification of Kozminski and Kinnen [65] , by recursively

dividing the graph i nto smaller ones satisfying the conditions of L-shaped duals

(rather than those for rectangular duals originally in (65]) , until the trivial case of

8. 1 . Area Pert urbation 205

five vertices is produced. The split parts are then merged in the same fashion of

Kozminski and Kinnen [65] .

Yeap and Sarrafzadeh [109] further extended this work to allow T, U, W, and Z
shaped (or 2-concave rectilinear) modules, and proved that these facility shapes,

together with the L and rectangular shapes , were sufficient to generate an undi­

mensioned dual for any planar graph. The method relied upon the proof that

complex triangles could be assigned to verti ces, with the number of complex trian­

gles assigned to any one vertex not exceeding two, hence the requirement of only

2-concave (or less) rectilinear modules. This assignment performs similar steps to

those of the placement directions of the Deltahedron Layout Algorithm, to ensure

that worst case facility shape is maintained. The authors also showed by the use

of a counterexample that L and rectangular shaped m�dules were insufficient for

use with arbitrary planar graphs. The construction of the dual is performed in

linear time, and is a further modification of the divide and conquer type of strategy

employed by both Kozminski and Kinnen, and Sun and Sarrafzadeh, where the

graph is divided into smaller more manageable components.

The only work involving area in the Floorplanning literature was due to Yeap

and Sarrafzadeh [108] who explored the dimensioning of rectangular duals, by al­

lowing dead area, or empty space, within the layout, and allowing adjacencies to

be relaxed from those specified in the PTG in order to complete the dimensioned

layout .

This section has described the Floorplanning literature, and provides interesting

results; especially Yeap and Sarrafzadeh's proof that at worst 2-concave rectilin­

ear modules are required to produce undimensioned layouts for arbitrary planar

graphs. In the next section we aim to ulitise this and other ideas from the Floor­

planning literature, as we examine the possibility of perturbing facility areas, and

the conditions under which this is advantageous.

8 . 1 .3 Methods for Perturbat ion of Facility Areas

In this section we investigate models which allow soft area conditions i .e . conditions

which we desire to satisfy, but which can be violated if necessary. Any violations

are performed within a controlled environment, for instance within upper and lower

bounds on the area of facilities, as we still desire to minimise the deviation from

the original problem data. There are three models we wish to consider here. The

206 Chapter 8. Pert urbation of Problem Constraints

first is a different Graph Theoretic method to those which have been discussed

already, and is due to Roth, Hashimshony and Wachman [98] . In their model the

area specifications are stated in terms of upper and lower bounds on the lengths of

the walls i n the x and y directions (although which is which, is not known initially) ,

providing a range of possibilities for the dimensioning of the layout , with the overall

objective to minimise the length of the building perimeter in each direction. The

method considers only rectangular facilities, which can be overly restrictive but

allows easier manipulation of the facility areas and shapes. The exterior is again

represented by four vertices, labelled north, south, east and west , and the adjacen­

cies with these vertices are given in the (not necessarily maximal) planar graph.

The graph is split into two subgraphs representing adjacencies between facilities

i n the x (north-south) direction, and the other representing adjacencies between

facilities in the y (east-west) direction. This is achieved by directing the original

graph, and then dividing it using a colouring technique, adding edges to attain

maximal planarity if required. The two graphs are called the Coloured Directed

Subgraphs (CDSG) . These CDSGs are then converted to Dimensions Subgraphs

(DSG) where the vertices represent walls, and the edges the distances between

these walls. The DSGs are converted to flow networks with a sink and source. The

PERT technique [91] is then used to determine the minimum cost flow through

these two networks in order to obtain the minimum perimeter dimensions in each

direction. Those facilities on the critical path will be assigned their minimum wall

length allowable in that direction. The realisation of the layout is obtained by ex­

amining combinations of the dimensions available to ensure there is no violation of

adjacency requirements (which the authors state can be easily achieved) , providing

a set of alternative layouts which can be then evaluated using the regularity mea­

sures of Section 2 .5 , or via the subjectivity of an experienced layout planner. The

flexibility of this approach lies in the availability of alternative decisions at four

key points i n the algorithm: the various ways of adding extra edges to the graph to

enable the colouring process, the different ways of colouring the graph, the varying

of the slacks for dimensions of facilities not on the critical path, and the ability

to interchange the dimensions in each direction specified for each facility. Roth

e t al. state that the method can also be extended to include non-convex layout

perimeters and non-rectangular facilities, however the authors do not describe how

this might be achieved. Since we are examining area perturbations, i t is interesting

8. 1 . Area Perturbation 207

to note that the wall dimension bounds must be flexible enough to allow a feasible

solution. Consider for example a problem which has a facility with lower bounds

of 100 in both dimensions, and 1 0 other facilities have upper bounds of 5 in each

direction . The method of Roth et al. would then fail to complete even one layout ,

as there would be no feasible solution to the flow network problems.

The second model that we wish to consider is developed for application to

dimensionalisable layouts. We have seen already that methods such as Deltahedron

and the Tiling Algorithm generate dimensionalisable layouts. However, as we have

the seen in Figure 5 .6 for example, dimensionalisable layouts are not always usable

or efficient layouts. The concept of dimensionalisable layouts is useful primarily for

a shape-oriented generation of layouts, with a specified worst case facility shape.

In each dimensionalisable layout there will exist a set of optimal area specifications,

where every facility is bounded by a square, leading to exceptional regularity values

for each facility, or such that each facility's area allows the facility to function as

intended. However this optimal set of area requirements may be very different

from those specified in the original problem data, as the optimal specifications are

dependent on the structure of the layout. Our goal then is to minimally vary the

area specifications on the facilities, in order to make facilities squarer, i. e. to make

elongated facilities come within a specified width-to-length ratio, or to maximise

ulitisation. In order to implement this type of idea it is desirable to have a variety of

different layouts available, (e .g. for Deltahedron, in principle, generate all possible

layouts using a search tree) , as having, if possible, a facility with large area as

the top facility may reduce elongation exhibited in an alternative layout without

actually changing the area conditions.

We can formulate this problem as a non-linear problem with a quadratic ob­

jective function and linear constraints. Firstly we show the general formulation for

at worst T-shaped layouts in Formulation 3, and then, with the aid of an example,

show a particular formulation (mainly to illustrate the problem defined continu­
ity constraints) . We will see that the formulation is adaptable to any specified

worst-case facility shape of a dimensionalisable layout. The objective function is

quadratic because area is determined by multiplying the width and the length of a

facility. Needless to say, this non-linearity is the reason that finding minimal area

perturbations to satisfy the given constraints is difficult.

208 Chapter 8. Perturbation of Problem Constraints

Formulation 3 Dimensionalisable Area Perturbation

Wi,li Width and length of the bounding rectangle of facility i

Ji ,Ki Sets of those facilities which define blocks of facilities contained within

h Length to width ratio (h � 1)
f3 Minimum wall length (/3 > 0)

Min L:i'::2 la i - (wili - EieJ; wili - EkeK; wklk) l
s . t . hwi - li > 0 i = 2 . . . n

hli - Wi > 0 i = 2 . . . n
Problem-defined continuity constraints
lj , Wj � f3 Vi

Note firstly the definitions of Wi and li . Wi and li define the bounding rectangle

of facility i . From this we can delete any blocks of facilities which are contained

within i defined by the sets Ji and J(j . vVe assume that facility 1 is the exterior.

The length to width ratio h, may be facility dependent requiring the use of hi . For

rectangular facilities J = 0 and](= 0 , while L-shaped facilities will have [(= 0

only. Layouts which have at worst L or rectangular shaped facilities generate an

obvious special form of the objective function in Formulation 3 , while as we have

seen, the most general dimensionalisable layout has a worst case facility shape of

X; the formulation can be easily extended by allowing two new sets Li and Mi,
representing the other blocks of facilities which may exist within a facility. The

problem-defined continuity constraints are better shown via the aid of the following

example; they simply ensure that there are no holes, or overlapping facilities, in

the layout.

Equations 8 . 1 - 8.21 depict the area perturbation problem as applied to the

layout given in Figure 8.2. As was the case with h, the f3 values can depend on i ,
and indeed the f3 values for Equations 8.9 and 8 . 15, which both relate to facility 5,

could be different, depending on the problem.

n
Min 2:: l ai - (wili - 2:: Wjlj - L Wklk) l

i=2
s . t . i = 2 . . . 10

(8 . 1)

(8.2)

8. 1 . Area Pert urbation 209

2

3 4 7

9

8

�
5

6

Figure 8.2: The dimensionalisable layout on which Equations 8 . 1 - 8.21 are based

210 Chapter 8. Perturbation of Problem Constraints

6/; - Wi � 0 i = 2 . . . 1 0 (8.3)

Wt = w2 (8.4)

Wt = Wto + W4 + Ws (8.5)

Ws = Wto (8.6)

Ws = Wg (8.7)

Wto � w3 + Wg + f3 (8.8)

Ws � W7 + (3 (8.9)

1t = 12 + 1to + 1s (8. 10)

14 = ls + lto (8. 1 1)

ls = /4 (8. 12)

lto � ls + /g + f3 (8.13)

lto � 13 + f3 (8.14)

ls � /1 + f3 (8. 15)

Js = {7} (8. 16)

JlO = { 3} (8. 17)

I<to = {8, 9} (8. 18)

Ji = 0 i = 2, 3, 4 , 6, 7, 8, 9 (8.19)

I<; = 0 i = 2, 3, 4 , 5, 6, 7, 8, 9 (8.20)

l; , w; � f3 Vi (8.21)

The general formulation of Formulation 3 i s not easily solvable. I t requires the

use of non-linear programming techniques which we do not desire to discuss here,

however the interested reader is referred to Bunday [20] . The point is that we

could solve this formulation as it stands if we desired , however we can linearise

our objective function by incurring a small percentage error, between the resulting

actual area and that stated in the objective function. The following work on the

linearisation of the equation a = 1w is due initially to Lacksonen [69] .

Consider the graph of Figure 8.3, where the dotted line is the line corresponding

the equation a = wl, and the solid line represents a piecewise linear approximation

of this equation . The segment endpoints are given by Equations 8.22 - 8.24.

zmax Wmax ffa (8 .22)
zmed

- 'Wmed
- Va (8.23)

zmin wmin - Fib (8.24)

8. 1 . Area Perturbation 2 1 1

1 max

1 mm

w mm w med w max

Figure 8.3: Graph of a = wl, and its piecewise approximation

Define two new variables y1 and y2, representing the length of w in the left

and right segments respectively. The equations for the length and width are then

defined by Equations 8.25 - 8.28.

w -

Yt <

Y2 <

zmax v/8 1
- Yt - -y2 Vb

Wmin + Yt + Y2
wmed _ wmin
Wmax _ Wmed

(8.25)

(8.26)

(8.27)

(8.28)

Note that the slopes of the left and right hand segments, are -.ft and �
respectively, leading to the coefficients for y1 and y2 in Equation 8.25. This lin­

earisation leads easily to a mixed integer formulation, by replacing the non-linear

objective function with the piecewise linear approximation for the area, coupled

with the standard techniques for prioritisation of the segments, and linearisation

of absolute value functions.

Lackonsen states that if b = 2, the areas are between 0% and +3% of their true

values, while a single segment linearisation of the curve a = wl would result in errors

from -9% to + 12%. If further accuracy is required , a four segment linearisation

will result in areas with at most 0.8% error. The cost of the small errors in the areas

212 Chapter 8. Perturbation of Problem Constraints

is offset by the ability of the integer program to be more amenable for solution than

the non-linear problem. Furthermore we may impose a cost coefficient upon each

of the terms in the objective function representing preferences for perturbations, or

alternative costs on perturbing different facilities. This is useful for ranking which

facility areas we prefer to perturb.

The third model examines possible area perturbations in undimensionalisable

layouts, involving ideas from Floorplanning. We have discussed already that undi­

mensionalised layouts can be created with at worst 2-concave rectilinear modules.

Therefore the problem that remains is to impose (if possible) a dimensioning upon

the layout which is as close as possible to the specified facility areas, without vi­

olating the adjacencies in the layout . Upon generation of a Floorplanning layout,

we simply impose a grid over the layout, with an intersection of a vertical and

horizontal grid line at every corner point in the layout . A non-linear problem can

then be formulated, whose solution would generate the width and length of each

row and column of the grid , thus obtaining the areas for each facility. We desire

to satisfy a set of equations of the form of Equation 8.29, where the set I is the set

of grid squares (j, k) comprising facility i .

"" . k LJ w1J = ai
(j,k)E !

i = 2 . . . n (8.29)

As an example, consider the layout of Figure 8.4, where the dotted lines rep­

resent the overlaid grid . For this layout the set of equations would be as given

in Equations 8.30 - 8.40. The lower bounds of Equation 8.40 ensure that every

grid is of at least a specified minimum length, and as with the second model we

considered, could be dependent on i .

za (Wa + Wb + Wc + Wd + We + wf) a2 (8.30)
wa(Ib + zc + zd + ze + z!) = a3 (8.3 1)

zb (wc + wd) + zc (wb + WC + wd + we) a4 (8.32)
zbwb as (8.33)
zbwe = a6 (8.34)

zc(wb + we) - a1 (8.35)

ZC(wd + we) as (8.36)
zewb - ag (8.37)

ze (wc + wd + we) a w (8.38)

8. 1 . Area Perturbation

1
.
. • 2 • • .
. . . . •
• • • • •
• • • • •
• • • • •

.
• 5 4 • 6 •
•
•

. · · · · · · · �· · · · ·
• •
• •

.
•
. 3 7 • 8 1 1 .
•
.

.

9 1 0
. ·

I
I •
I .
I I
. •
• :

Figure 8.4: An undimensionalisable layout , with an overlaid grid

Jf (Wb + We + Wd + We + wf) + Wf (lb + zc + [d + ze) - a n
zi , wi � f3 Vi

213

(8.39)

(8.40)

The problem with solving these systems of equations, other than the quadratic

terms, is the inability to determine whether a feasible solution exists, as there

is no non-linear equivalent to the rank function used to determine if linear sys­

tems have a solution. Therefore it is wise to consider a relaxation of the system,

whereby we formulate a nonlinear problem, with the objective of minimising the

difference between the required area, and the actual area. This system can be

further approximated using the linearisation technique for the area as we discussed

. for the second model . The second and third models are essentially equivalent , as

the dimensionability of the layouts in the second model implicitly impose a grid

structure. However the formulation for the dimensionalisable layout is more ele­

gant , and less restrictive, due to the ability of the d imensionalisable layouts to not

lose their adjacencies.

The Floorplanning ideas are interwoven with the third model as we attempt

to generate dimensionalisable layouts from the layouts generated using Floorplan­

ning techniques. The formulations require either powerful techniques for solving

non-linear problems or, alternatively, approximations of the formulation for ease

214 Chapter 8. Perturbation of Problem Constraints

of solution generation, via approximate linearisation of the nonlinear functions.

The design of heuristics using these ideas may prove useful as the formulations,
although theoretically correct , are very difficult to solve. Perhaps in conjunction

with the use of powerful search techniques such as Tabu Search, reasonable solu­

tions may be found quite quickly. A special case exists for rectangular layouts.

The Floorplanning theory has developed necessary and sufficient conditions on the

existence of rectangular layouts, and techniques for generating a corresponding lay­

out. The results of Rinsma [94] can be extensively applied to undimensionalisable

layouts, as Rinsma developed a theory for area conditions on rectangular layouts.

By considering blocks of facilities, as we would for the Deltahedron method, we can

develop a set of conditions for the areas which satisfy the adjacencies of the MPG.

Unfortunately this does not easily extend to 1- or 2-concave rectilinear facility

layouts.

In this section we have outlined three models which could be considered in

perturbing facility areas. The first model was essentially added for completeness,

although it may provide an alternative perspective to problem instances which we

may consider. The second and third models are the two models which we would

see as being most useful for dimensionalisable, and undimensionalisable layouts

respectively. Although as we have discussed, the development of heuristics to solve

these w�uld prove most useful.

8 . 2 A djacency Perturbation

We now turn our attention to a second way in which we might change our problem

data. We saw in Section 3 .3 that the f-operation could perturb an MPG by

swapping an edge in the MPG for another edge not currently in the MPG. We

want to now explore the likelihood of extending the simplicity of adjacency swaps

in the MPG to the layout , for the purpose of making layouts more effective.

8.2 . 1 The Non-Triviality of Adj acency Perturbation

If possible it is desirable to be able to make changes in the MPG, which could have

easy and direct impact on the layout. For example if we make one a-operation on

an MPG, that change affects only four of the vertices in the MPG, independent of

the other vertices in the MPG. However, the same change in a layout could have

8.2. Adjacency Pert urbat ion 2 15

2
2 3

3 4 s
s 4

4
(a) (b) (c)

Figure 8.5: First example of the non-trivial process of adjacency perturbation

catastrophic affects on the ability of the layout to now reflect all adjacencies in the

MPG. We will now show this with the aid of three examples.

Consider the 5-facility problem of Figure 8.5(b) and the f-operation (1 , 2) -+

(3 , 5) . There is no easy way of implementing this adjacency swap without rearrang­

ing the entire layout, i. e . the local MPG f-operation is non-local in the layout .

Consider Figure 8.5(c) with area condition a2a4 > a3a5, and the f-operation

(2 , 4) -+ (3 , 5) . There is no easy way of implementing this adjacency swap without

rearranging the entire layout. i. e . area specifications may induce non-trivial swaps

i n the layout .

z
3

4
6 5 7

Figure 8 .6 : Second example of the non-trivial process of adjacency perturbation

The above two examples are somewhat contrived, so let us consider a slightly

more realistic problem, shown in Figure 8.6. This example has ID1 l = n - 1 , and

216 Chapter 8. Perturbation of Problem Constraints

is laid out using the method of Rinsma [94) . Consider the f-operation (3, 4) --.

(2 , 5) . Again, there is no easy way of implementing this adjacency swap without

rearranging the entire layout. This swap would require a re-dimensioning of the

block of facilities (3,5,6,7), and possibly the repositioning of facility 6. Hence

we have seen that adjacency perturbation cannot be guaranteed to be local, if

done arbitrarily. Therefore, while it appears that we cannot extend the simplicity

of the adjacency swap in the MPG to the layout in a general setting, we can

examine conditions under which we may make inroads into this problem, which we

i nvestigate next.

8 .2 . 2 Methods for Perturbat ion of Adj acencies

In this section we attempt to develop some methodologies for adjacency perturba­

tions within a layout. Firstly we must determine the conditions under which we

would want to exchange an adjacency, and then we must determine how we would

complete that exchange. When developing the MPG, we assign edges to the MPG

based upon the benefit derived from having the two facilities incident on that edge

adjacent . Now, in order for this benefit to be fully realised within the layout, the

practicality of this adjacency must be assessed. Obviously if we require movement

of large amounts of materials between two facilities, it is u nreasonable to join them

by a small door, leading to the benefit of having those two facilities adjacent being

severely compromised. We define practical adjacency to be an adjacency specified

in the MPG, which is fully realised, i .e . we attain the fullest benefit, within the

layout. Practical adjacency then could be the requirement of a minimum common

wall length between two facilities, or it could be that the adjacency does not require

either of the facilities to become unnecessarily irregular because of it. The opposite

to practical adjacency would be the01'etical adjacency, where adjacencies exist in

the MPG, ·but in the layout the benefit of having them adjacent is compromised.

Therefore the objective is to ensure (as far as possible) that every adjacency is

practical . This was in part addressed by the experiment of Section 6.6, where we

constructed a multiplicative model in which it was assumed that the regularity

measured proportionally how much of the adjacency benefit for the layout was

realised. In this section we are attempting to extend these ideas, by examining

each adjacency as independently as possible, in order to ensure regularity, whilst

maintaining a larger proportion of each adjacency benefit. The problem then is

8.2. Adjacency Pert urbation 217

to attempt to modify an existing layout by either making theoretical adjacencies

become practical, or by swapping theoretical adjacencies for practical adjacencies

w ithout reducing the overall adjacency benefit excessively.

Welgama, G ibson and Al-Hakim [106] proposed a knowledge-based approach to

this problem. The knowledge base uses a web grammar, which is a set of logical

statements which are designed to mimic the way in which a decision planner might

tackle the problem. Their method uses fundamental ideas from the classical CORE­

LAP, and SIMPLE approaches. The layout is built by choosing a facility already

i n the layout which does not have all its adjacencies satisfied, termed the central
facility. All facilities which have adjacency with this central facility which are not

i n the layout , are then sequentially placed, so as to form a chain around the central

facility. The web grammar rules are used for the actual placing of each facility.

Facilities are placed as dimensioned rectangles, firstly by considering the adjacency

with the central facility, and then other adjacencies within the partial layout , with

the objective of minimising the number of adjacencies which are not met , and also

minimising the empty space within the layout. Once the layout is completed an

adjustment phase is used to further reduce the empty areas. Initialisation is by

choosing the exterior as the central facility. This method was designed to pro­

d uce layouts with regularly shaped facilities. As we are examining the possibility

of adjacency perturbations , it is not unreasonable to expect that the final layout

does not completely represent the MPG, however the objective function (which

minimises the number of adjacencies not met) is completely unrealistic. There

would be a large discrepancy between the non satisfaction of two small weighted

adjacencies compared to two large weighted adjacencies. The repercussions of this

could be the resulting layout representing only a fraction of the adjacency benefit

derived from the MPG. The authors do however partially redeem themselves by

stating that an interactive feature can be enabled to produce alternative layouts,

which would alleviate some of this problem. In order to determine the usefulness

of procedures such as this, the eventual benefit of the layout, and its corresponding

regularity must be weighed against what could have been achieved by techniques

such as Deltahedron , the Tiling Algorithm, and the Spanning Tree Algorithm. The

shape regularity of these methods is guaranteed , and the adjacencies are consid­

ered corresponding to their benefit at the time of construction of the MPG, rather

than the approach employed by Welgama et al. , where the benefits are regarded as

218 Chapter 8. Perturbation of Problem Constraints

irrelevant. These methods can determine benchmark figures for the layout before

attempting to remedy higher weighted, irregular layouts. Obviously, if these lay­

outs with the guaranteed worst case facility shape perform within an acceptable

decrease in benefit, then the problem is nullified.

Let us now consider ways in which we may modify an existing irregular layout ,

to hopefully make theoretical adjacencies become practical . We have seen i n Sec­

tion 8.2 . 1 that attempting any sort of change in adjacencies within the layout is

non trivial. The strategy then must be to develop procedures which remain as local

as possible. Figure 8. 7 presents a fundamental operation from which complicated

perturbations can be produced.

1 1

3 4 3 4

2 2

Figure 8.7: Fundamental Operation for Adjacency Perturbation: f-operation

(1 , 2) -+ (3, 4)

The increase in benefit of making this swap will be w34 - w 1 2 • I f this cost is

acceptable, then we allow the swap. The redimensioning poses a problem, however,

so in general we make the assumption that the rectanguloid of facility 2 which

was deleted was small. This assumption is valid, as if the area was not small, the

adjacency between facilities 1 and 2 may well have been practical. Blind application

of this operation is likely to lead to difficulties; if, for example, facilities 3 and 4

were actually blocks of facilities, then we would need to be careful of the impact

of creating a fault line at the new common border of the blocks 3 and 4. In that

case the cost of the swap would then be a more complicated function, as we may

be making more than one adjacency swap at a time. If we are making k swaps at

once say, then in the MPG, this corresponds to a cycle of length k + 3 consisting of

the facilities involved in the k swaps, where the edges within the cycle are removed,

and replaced in a new formation.

The operation is also useful for getting rid of so-called tentacles. Methods which

8. 2. Adjacency Perturbation 219

use the ODA are prone to having some facilities with a large number of corners,

but with more than 90% of the area contained within one rectangle. The remaining

area is used to create narrow segments which are formed to maintain the adjacen­

cies from the MPG, hence the formation of tentacled facilities . The adjacencies

maintained by these tentacles are, in most cases, destined to be theoretical ad­

jacencies. Figure 8.8 presents a simple example of this, where we see facility 5

has two small tentacles. By deleting the horizontal tentacle first, we are able to

red imension facilities 3 and 6 to form a block , while the deletion of the second ten­

tacle allows facility 5 to become a rectangle. Note that the ability to redimension

facilities 3 and 6 was fortunate, and more often than not, is not possible; if we

had performed the adjacency swaps in the reverse order the redimensioning would

not have been (locally) possible. The increase in benefit of these two swaps was

(w36 - Ws7) + (w23 - Wts) .

1 1

2 3 2 3
7 .. 7 -

4 5 6 4 5 6

Figure 8.8: An example of the performance of multiple layout adjacency swaps

Figure 8.9 presents another example of the repeated application of the adjacency

swap operation . Note that in this instance we have no choice about the order of

performing the swaps. Firstly we swap (2, 5) for (1 , 3) , followed by swapping (1 , 5)

for (3, 4) . The associated increase in benefit will be (w13 - W2s) + (w34 - Wts) .

The examples of Figures 8.8 and 8.9 are simplistic examples. In general the

performance of this operation is far more complicated, to the extent we would

not recommend comprehensive employment of this procedure. The compounding

errors produced in the facility areas are a constant concern, and it is recommended

that on layouts generated using the ODA or a variant, the operation be performed

manually only by a decision planner, as the implementation using a computer would

be difficult and is unlikely to give satisfactory results. We reiterate that there is

little sense in performing repeated applications of the operation which decrease the

220

2
3

1

4 5

Chapter 8. Perturbation of Problem Constraints

2
3

1

4 5

Figure 8.9: A second example of the performance of multiple layout adjacency
swaps

adjacency benefit below that which could be obtained instead via a method with

a guaranteed worst-case facility shape.

In spite of this however, we can make more progress with the operation of Fig­

ure 8. 7 within dimensionalisable layouts. Methods such as the Tiling Algorithm

and Deltahedron especially, generate layouts which are very amenable to the appli­

cation of this operation. The expectation of success is dependent upon the ability

to retain the dimensionalisability property within the layout . Furthermore, the

continued retention of dimensionalisability nullifies the impact of errors creeping

into the facility areas (as occurs in the general case) , as we can redimension the

layout after each swap.

In Figure 8 . 10 we present a family of five operations for application to dimen­

sionalisable layouts, two based upon the operation of Figure 8. 7, and the other three

based upon alternative decisions which can exist in the application of placement

operations. The motivation of these five operations came from a consideration of

dimensionalisable layouts, and how they can be altered without violating dimen­

sionalisability. For example, consider the Deltahedron method; operations (c)-(e)

alone would provide the necessary operations for transforming one Deltahedron

layout to any other on the same MPG i. e . without considering adjacency swaps.

This is because operation (c) allows for the choosing of different placement direc­

tions, operation (d) allows for the choosing of a different top facility, and operation

(e) allows the choosing of a different facility to cover a 2-joint. For general di­

mensionalisable layouts, considering all the operations (a)-(e) would allow a large

amount of flexibility to the type of layout which could be created. Furthermore the

facilities 1-4 in Figure 8 .10 could be blocks of facilities, provided that at all times

8. 2. Adjacency Perturbation

1

3
1

2

2

3

1

2 J
3

2 3

1

2

(a)

4

(b)

(c)

(d)

3

(e)

221

1 3

2

2

1 4
3

2 I
3

1

2
3

3
1

2

Figure 8 . 10 : Family of Adjacency Swap Operations for Dimensionalisable Layouts

222 Chapter 8. Perturbation of Problem Constraints

we retain the dimensionalisability property. Operations (a)-(e) are well suited to be

embedded within a Tabu Search framework, using the multiplicative model used in

Section 6.6, in order to ensure the best possible layout is created in terms of both

regularity and adjacency benefit. Note that operations (a) and (b) are essentially

the same, the difference being the L and T shapes respectively.

As an example, we provide a sequence of operations performed on a 10 facility

layout in Figure 8 . 1 1 . The first operation is of type (e) , and does not actually

swap any adjacencies. This is useful if we are attempting to maintain all the

adjacencies, and improve regularity. Facility 3 now covers the lower left 2-joint,

with facility 6 now contained within facility 4. Facility 4 remains T-shaped, with

the adjacency with the exterior now on the bottom side, rather than the left,

and facility 5 is redimensioned to avoid overlapping and to become squarer. The

second operation performed is of type (a), where we perform the adjacency swap

(1 , 4) --+ (3, 6) . The increase in benefit for this swap is w36 - w14 ; facility 4 now

becomes £-shaped. The third and fourth operations are both of type (d) . The

adjacency swap of the third operation is (7 , 8) --+ (2, 9) , while the swap for the

fourth operation is (1 , 7) --+ (6, 9) . Note that these two operations could not be

performed in the reverse order, as doing the swap (1 , 7) --+ (6, 9) first would lose

the dimensionalisability of the layout by creating a faultline between facilities 7

and 9 . The last operation shown in Figure 8. 1 1 is of type (c) , where we again do

not change the adjacency benefit of the MPG, but facility 5 now has facility 7 as

its placement host, as opposed to 4 previously. There are other operations that we

could continue to perform on the sixth layout such as a type (d) operation so that

facility 3 becomes the top facility of the 3-joint (2, 3, 4) .

8.2.3 The Validity of the Maximal P lanarity Assumption

The classical Graph Theoretic Facility Layout model considers that the adjacency

graph will always be maximally planar. Indeed many methods require maximal

planarity and , if the graph is not maximally planar, will arbitrarily add edges as

necessary to attain maximal planarity. All of the methods we have studied thus far

have required maximal planarity, except the Spanning Tree approach of Rinsma [94)

which requires only a Maximal Spanning Tree. In the course of the work thus far we

have also enforced maximal planarity on that approach if a 4-joint has been created

in the layout. The GTFLP model assumes (for benefit matrices with non-negative

8. 2. A djacency Perturbation 223

1 1

2 2

8 5 8
3 4 5

4
7 3 7

1---
9 10 9 10

6
6

1

2 2

5 8 5 8

3 4 7 9 3 4 7
9 10

6 10 6

1

2 2

5 8 5 8
7 4

3 9 3 9
4 7

10 10
6 6

1 1

Figure 8. 1 1 : A sequence of operations applied to a dimensionalisable layout

224 Chapter 8. Perturbation of Problem Constraints

entries) that the addition of edges to a less than maximal planar graph will not

decrease the value of the adjacency graph. It therefore assumes that the preferred

approach is to generate adjacency graphs with as many edges as possible, giving the

largest possible adjacency benefit. Planarity is a requirement of the existence of a

layout , hence we create maximally planar graphs. This assumption is certainly valid

when determining the adjacency graph, however, as we have seen, the requirement

of meeting all of the adjacencies in the layout can be very restrictive, and often

overly optimistic. The predominant cause of irregularity characteristic of the layout

methods is the maximal planarity assumption, although we have seen in Section 8 . 1

that the area requirements can influence this significantly as well.

Let us therefore examine possible ways in which we might relax maximal pla­

narity. Firstly let us consider the repercussions of removing, as opposed to replac­

ing, an edge in the MPG. Figure 8 . 1 2 shows the two cases that can occur, where

either edge (2, 5) or edge (3, 4) has been removed. Either we will create a 4-joint

in the layout, as the top layout of Figure 8 . 12 shows, or we will create a hole, rep­

resented by the shaded region of the bottom layout of Figure 8 . 12 ; both are valid

representations of the non-maximal planar graph (NMPG) .

Given a NMPG, in general a 4-joint would be uncommon, especially with facility

areas which were largely variant. If it is infeasible to have holes in our layout , then

in general we would allow that an adjacency will be created which is not i n our

NMPG. Doing this does not violate the conditions of the NMPG, as all adjacencies

of the NMPG are still met, however other edges have been arbitrarily added during

the construction of the layout, to ensure the layout does not form holes. This is the

principle employed by the Spanning Tree method, where the vertical adjacencies

between blocks in the layout are arbitrary. An advantage of this type of approach is

to include only the greatest k say, edges in the adjacency graph, whilst maintaining

planarity, and then during the layout construction, choose the remaining edges to

ensure there are no holes.

If we are not concerned about having holes in our layout, we can utilise several

ideas from Baybars [7] . Baybars used NMPGs to create layouts, and if it proved

advantageous to create a hole in the layout , the hole was deemed to be a courtyard

or circulation space. In fact, using this type of approach , the NMPG does not

even need to be connected. A disconnected NMPG translates to a layout with a

circulation space which contains at least one cycle. This can be useful when defining

8.2. A djacency Pert urbation 225

1

2 3

1
4 5

1

3

2 5

4

Figure 8.12: An example of a non maximal planar graph, and two possible layouts

226 Chapter 8. Perturbation of Problem Constraints

and incorporating Material Handling Systems, and will be addressed further in

Chapter 10.

A second assumption of the Graph Theoretic Facility Layout model, is that

the optimally weighted maximal planar graph will create the best layout . We

have seen in Chapter 6 that this assumption is unrealistic, yet all layouts we have

considered (holes and 4-joints aside) have an MPG as their underlying adjacency

structure. We have essentially answered this problem through this chapter, where

we retain the maximal planarity of the layout as we make adjacency swaps within

the layout. To reiterate, the motivation of making adjacency swaps was to increase

the regularity of the layout, while the overall benefit was likely to decrease. Hence

we were essentially nullifying the assumption that the optimally weighted MPG

would create the best layout . Further, as we have discussed already, it is perhaps

more important to include the best k edges (where k is say a third of the number

of edges of an MPG) . From here we can create practical layouts via the Spanning

Tree Algorithm say, whilst still satisfying the required number of adjacencies to

attain maximal planarity (if required) . We will discuss further ways of addressing

the problem of creating effective layouts in Chapter 9, where we present ways of

ensuring the MPG will be amenable to creating practical layouts. These layouts

however do not necessarily have an optimally weighted underlying adjacency graph;

rather, they have large weight while guaranteeing practicality of the layout . This

allows the adjacency graph to be created without recourse to the layout , yet still

retains (approximate) information for the layout construction. We will address this

and some more powerful techniques which seek a unification of the entire GTFLP

process.

In conclusion, the maximal planarity assumption is an integral part of the

GTFLP model. The removal of this assumption can be an intelligent decision,

as the removing of adjacencies with small benefit allows the decision planner an

increased amount of freedom. For instance, the Spanning Tree approach could be a

first attempt at a layout , as it incorporates the best adjacencies whilst still allowing

for an increase in the benefit of the resulting layout; the layout is then created with

adjacencies not in the NMPG to ensure there are no holes in the layout.

8. 2. Adjacency Pert urbation 227

Coda

This chapter has examined the GTFLP model, and the implications of relaxing

integral assumptions within this model. We have i dentified the impact of both the

area requirements and the specified adjacencies on the layout and its regularity.

The importance of these ideas is best seen within an interactive framework with

a decision maker, where the principles outlined in this chapter can be used to

guide enhancements to the layout, using the problem data for the specific problem,

the plethora of alternative layouts which can be generated for the same MPG (or

NMPG) , and area data.

In the next chapter we continue to examine the interface between the graph the­

oretic model and a decision maker, by considering two important ideas: decompo­

sition and interaction. We will examine the usefulness of identifying substructures

within the MPG, and the role of a decision maker on the entire layout process.

228 Chapter 8. Perturbation of Problem Constraints

229

Chapter 9

Interaction and Decomposition

In this chapter we continue to examine the Graph Theoretic model in an attempt

to provide more practical results. vVe saw in the previous chapter the concepts

i nvolved in the relaxation of problem constraints. In this chapter we endeavour to

analyse two further mechanisms for generating practical layouts. The first method

that we will explore is Decomposition , which attempts to divide the MPG into

smaller, more manageable, subgraphs, each of which is an MPG in its own right, to

facilitate the creation of the layout using a building block type of approach. The

second approach is that which has been alluded to a number of times already: the

i nteraction of the decision maker with the layout process.

9 . 1 Decomp osition

In solving medium sized, or larger, layout problems, even as small as n = 9, there is

so much happening within the process that it is virtually impossible to predict the

implicat ions of each decision, as shown by Lewis and Block [79] . Even predicting

the performance of the perturbations we have already examined in Chapter 8 is

difficult . To facilitate identification of key elements of the process, we attempt

to divide our problem into smaller more manageable subproblems, which can be

solved virtually independently of the other subproblems. Therefore the important

concepts to grasp are: how might we perform the decomposition, how easy will

subproblems be to manoeuvre, and how will the solution to the original problem

be reconstructed?

230 Chapter 9. Interaction and Decomposition

9 . 1 . 1 Decomposition via Separat ing Triangles

Firstly let us consider how we might decompose an MPG. The most obvious and

easily identifiable structure within an MPG is a separating triangle. We have seen

that the presence of a separating triangle, or complex triangle from the Floorplan­

ning l iterature, will enforce at least one of the three vertices of that separating

triangle to generate an L-shaped facility in the corresponding layout . We have

recognised that the existence of separating triangles can be a hindrance to the

construction of the layout , however we will see that they can also prove useful.

Figure 9.1 shows a typical layout in which the separating triangle (a, b, c) exists

in the corresponding MPG. vVe define a vertex to be on the inside of a separating

triangle if all paths from that vertex to the exterior vertex must pass through one

of the vertices of the separating triangle. Conversely a vertex on the outside of a

separating triangle has all shortest paths to the exterior not passing through any

vertex of the separating triangle. Analogous definitions for the facilities in the

layout are shown by the shaded regions of Figure 9 . 1 .

Figure 9 . 1 : A typical layout consisting of the separating triangle (a, b, c)

We can see from Figure 9 . 1 that the inside region is disjoint from the outside

region. We can therefore perform the layout process on the inside and outside

regions independently, whilst maintaining an eye on consistency. In order to do

this within the nesting of the subproblems, the vertices of each separating triangle

are placed within two subproblems: the subproblem of the facilities outside the

separating triangle, and the subproblem of the facilities inside the separating tri­

angle. Note that we know that one of the facilities corresponding to a vertex of the

separating triangle must be L-shaped, and this facility cannot be at the top of the

3-joint of the vertices on the separating triangle in the subproblem of the facilities

outside the separating triangle. This is better seen with reference to Figure 9.2,

9. 1 . Decomposition 231

where the separating triangle (3, 4 , 5) appears in both subproblems. Note further

that we could continue a decomposition using the separating triangles (2, 4, 5) and

(6, 7, 8) .

Two issues must be addressed: each subproblem requires an exterior facility

(either existing already or added artificially) in order to adhere to the assumptions

of the Graph Theoretic model within the subproblems; the linking or nesting of the

subproblems must be consistent. Firstly let us consider the linking of the subprob­

lems. Each subproblem must be nested within another subproblem, except for the

root problem, which must contain the exterior facility (the root problem is the sub­

problem within which all other subproblems are nested - explici tly or otherwise) .

This leads to the formation of the decomposition tree which shows the hierarchical

structure of the nested subproblems. If there exists more than one subproblem

containing the exterior facility, the subproblem with the largest number of vertices

containing the exterior facility is chosen as the root problem. The subproblems

are considered in a top-down manner in order to ease the linking of nested sub­

problems, and to ensure the consistency of later subproblems. As one facility in

a separating triangle acts as a placement host for subsequent subproblems within

this separating triangle, we must ensure that in considering previous subproblems

this can be accommodated. An example showing these ideas is given in Figure 9 .3 ,

where we have root problem A, within which are nested subproblems B , D, and E,

and a subproblem C which is nested within subproblem B.

Every subproblem except the root problem has a pseudo exterior facility added

to it , in order to satisfy the assumptions of the Graph Theoretic model within the

subproblems. The pseudo exterior is a facility of degree three, which is adjacent

to each of the vertices of the separating triangle. This addition of a pseudo exte­

rior ensures the correct embedding of the facilities withiri the separating triangle

i. e . the facilities of the separating triangle must be adjacent to the outside of

the subproblem layout to ensure its subsequent placement within its parent sub­

problem. Subproblems which contain the exterior facility, and are not the root

problem, still have the pseudo exterior added (with the actual exterior assigned

zero area and placed as if it were not the exterior i n the original problem) . This

is required to maintain the consistency within the l inking of the subproblems (we

will demonstrate this process with the aid of an example shortly) . Note that each

subproblem may be laid out using a different layout technique than is used for the

232

3 /

Chapter 9. Interaction and Decomposition

1

1

Figure 9.2: Decomposition of an !v1PG via the separating triangle (3 , 4, 5)

9. 1 . Decomposition

1

A

1

B c

2

D E

233

A
�

B D E
I

c

2

4

Figure 9.3: Example of the nesting of subproblems via a decomposition tree

234 Chapter 9. Interaction and Decomposition

other subproblems. In Chapter 7 we provided examples of problems amenable to

one particular layout algorithm, and the structures exhibited by the correspond­

ing MPGs which characterise these problems. By examining the structure of the

MPG underlying each subproblem, we can choose the best method of construct­

ing the layout for that subproblem, independent of the method of constructing

layouts for the other subproblems. The VSA is the only method which we must

be careful about using, as it does not guarantee to generate layouts with two of

the facil ities in D1 rectangular, and the other L-shaped . All the other methods

we have discussed can guarantee this (within the interactive framework we will

discuss shortly) . This leads to a global type of approach, which has the ability to

consider all the mechanisms we have so far developed as subroutines within a more

generic framework. We formally provide the process of identifying subproblems i n

Algorithm 9 . 1 , where Piik is the subproblem based on separating triangle (i , j, k) ,
P000 i s the root problem, Parentiik is the subproblem within which Piik i s nested,

and eP represents a pseudo exterior. The process of creating the actual subproblem

layouts, and recoupling them to create a layout for the original problem is provided

i n Algorithm 9.2.

Algorithm 9.1 Decomposition Subpmblem Identification

Input: MPG G
Output: Set of subproblems Piik
VPooo +- { e }
Determine all separating triangles (i , j, k)
for All separating triangles (i , j, k) do

Vp,ik +- { i , j, k}
end
for m = 1 to n do

if shortest path from m to e passes through separating triangle (i , j, k)
before any other separating triangle then

Vp,ik +- {m}
end
if shortest path from m to e passes thmugh no separating triangle
then

VPooo +- {m}

9. 1 . Decomposition

end

end
end
for each pair Pijk and P:ryz (xyz =I ijk) do

if ({ i , j, k} E Vpz11z) then
Parentijk +- P:ryz

end
end
for each P mnp do

end

if (Pmnp =I Pooo) then
VPmnp +- VPmnp u { eP }

EPmnp +- { (eP , m) , (eP , n) , (eP , p) }

TPmnp +- {(eP, m, n) , (eP, m , p) , (eP, n , p) }
end
for i = 1 to n - 1 do

end

for j = i + 1 to n do

end

if ({ i , j } E Vprnn� ' { (i , j)} E Ea) then
EPrnnp +- EPrnnp U { (i , j) }

end

for i = 1 to n - 2 do

end

for j = i + 1 to n - 1 do

for k = j + 1 to n do

end
end

if ({i , j, k} E 1/prnnp , { (i , j , k)} E Tc) then
TPrnnp +- Tprnnp U { (i , j, k) }

end

235

236 Chapter 9. Interaction and Decomposition

Algorithm 9 .2 Layout Construction via Decomposition/Recomposition

Input: Set of subproblems Pijk
Output: Layout dual to original MPG from which PijkS were derived
Generate layout for subproblem P000 using best technique
for each Pxyz such that Parentxyz = Pooo do

txyz +-- the top facility of the 3-joint (x, y, z) in Parentxyz
end
while (all Pijk layouts not constructed) do

end

if Parentijk layout constructed and Pijk layout not constructed then
Generate layout for subproblem Pijk using best technique, with tijk
as the top facility of the layout

end

Cijk +-- the £-shaped facility of D1
for each Pxyz such that Parentxyz = Pijk do

txyz +-- the top facility of the 3-joint (x, y , z) in Parentxyz
end

for each Pijk do

end

Calculate the total area of Pijk , denoted A;ik
Liik +-- 0

if (VPxyz 1 Parentxyz "/= Pijk) then
Liik +-- 1

end
while (at least one Lijk = 0) do

end

if V Parentxyz = Pijk , Lxyz = 1 and Lijk = 0 then
if Parentxyz = Pijk then

end

Aijk +-- A;jk + Axyz
a +-- a + A *in P.,·1·k only* Czyz Czyz xyz

Liik +-- 1

end

Reconstruct layouts with modified area specifications retaining the same Cijk

9. 1 . Decomposition 237

and tiik for each Piik as before
Merge layouts {using rotations and reflections as required)

end

Let us now consider an example of the decomposit ion approach, by considering

the twelve facility problem of Figure 9.4, with area conditions given in Table 9. 1 ,
with facility 1 as the exterior. There exist two separating triangles: (1 , 3, 8) and

(2, 4, 5). This creates three subproblems as shown in Figure 9.5, where facility 0
is the pseudo exterior facility that has been added, and in subproblem 2, facility 1
has been given area zero.

Figure 9.4: Decomposition Illustrative Example

Facility 1 2 3 4 5 6 7 8 9 10 1 1 12
Area - 1 0 20 15 10 20 20 25 10 20 25 1 0

Table 9. 1 : Areas Specifications for the Decomposition Illustrative Example

Examining Figure 9 .4 alone would make it difficult to discern how this MPG

might be best dualised. However, Figure 9.5 makes this decision much clearer. Each

of the three subproblems will have their layouts constructed from the templates

238

0

SUBPROBLEM 1

Chapter 9. Interaction and Decomposition

1

ROOT PROBLEM

0

SUBPROBLEM 2

Figure 9.5: Decomposition of Figure 9 .4

9. 1 . Decomposition 239

1
6

5 7

4

2 8

3

ROOT PROBLEM
0 0
4

9
3

1 1 10 8
5

1 2 SUBPROBLEM 2
2

SUBPROBLEM 1

Figure 9.6 : Layouts of the Subproblems of Figure 9.5

discussed in Section 4 .7 .5, and found in Appendix A , since each of the problems is

of size eight or less. The result ing layouts of the three subproblems are shown in

Figure 9.6. Firstly note that facility 1 is missing from the layout for subproblem

2. This is due to assigning facility 1 zero area, leading to facility 1 not being

(explicitly) drawn. This is exactly what we require to maintain consistency. The

top of the layout for subproblem 2 is where facility 1 lies, and it effectively ensures

that facility 9 is adjacent to the exterior in the final layout . Note that the layout

for subproblem 1 could have had facility 5 as the placement host for the block of

faci lities 10 , 1 1 and 12 ; however, facility 3 could not be the placement host for

facility 9 in subproblem 2, as this would lead to a faultline in the final layout .

We see here the basic structure of a wave type of approach, as shown formally by

Algorithm 9.2, whereby we start at the top of the decomposition tree and work our

240

2

5
I
I
I
I
I
I 10 I
I
I
I
I
I
I

Chapter 9. Interaction and Decomposition

1
6

7

12 • · · · · · · · · · · · · · · · · · · ··· 4
8

..
I 1 1 I
I
I
I
I 9 I

I I
I I I � - - · · • •
I
I
.

3

Figure 9. 7: Actual Layout of Root Problem with Facility Areas changed to allow
for nested Subproblems

way down, ensuring consistency of the subproblems, and ensuring that placement

hosts are assigned so that no faultlines are created in the final layout ; then having

completed this, we must adjust the areas of all the placement hosts further up the

tree so that they may accommodate the subproblems to be placed within them.

Following this we can re-lay the subproblems which, upon completion, can be easily

superimposed upon their parent subproblem. We see the modified root problem

layout in Figure 9.7, as the subproblem layouts remain unchanged, where facility

2 now has area 65 in the root problem, so as to accommodate subproblem 1 , and

facility 8 now has area 35 in the root problem so as to accommodate subproblem

2. Subproblems 1 and 2 are superimposed on Figure 9. 7, exhibiting the process

of recoupling the subproblems to generate the layout corresponding to the original

MPG. From Figure 9.6 we see that the layouts for subproblems 1 and 2 have

been rotated anticlockwise 90° , and then reflected in the x-axis for placement in

Figure 9.7. Note that we have only two L-shaped facilities; no single approach

performs this well on this problem of those we have discussed.

We call a problem which can be decomposed into subproblems of size a or less

a-decomposable. The decomposition process isolates vertices of degree three, so

Deltahedron MPGs are 4-decomposable; the i llustrative example in Figure 9.4 was

9. 1 . Decomposition 241

n Benefit Average Number of Average
Sub Problems Vertices of Largest Density (p)

Degree 3 Subproblem
10 4258.02 5.09 3 .80 6.60 68.2%
15 7463.27 6.93 4.93 9. 1 6 53.9%
20 1 1550.47 7.27 5.42 13 .33 39.2%
25 15267.22 9.58 7.40 15.53 40.9%
30 18791 .44 1 1 .76 9 . 18 16.58 4 1 .4%
40 2681 1 .64 13.42 10.93 25.00 34.5%
50 34570.71 16.44 13 .93 29.40 33.6%

Table 9.2: Decomposition as applied to the test problem set

8-decom posable.

Table 9.2 shows the effect of the decomposition theory on the set of test prob­

lems generated in Section 6. 1 . The effect of the decomposition process is a reduction

to 60% the size of n for the largest subproblem, meaning that we can effectively

treat 25 facility problems as 15 facility problems on average, hopefully leading to

increased regularity, and usability.

9 . 1 .2 Forcing D ecomposit ion

The effectiveness of the decomposition process relies heavily on the density of sepa­

rating triangles within an MPG. We define the density, p, of the separating triangles

in Equation 9 . 1 , where p is the number of separating triangles in the problem P.

p = 100 (-p-) %
n - 4

(9. 1)

There can exist at most n - 4 separating triangles i n an MPG (an MPG with ex­

actly n - 4 separating triangles is Deltahedron generateable as we initialise with

the Tetrahedron, and each subsequent insertion creates a separating triangle) . Fur­

thermore the process is most effective when all the subproblems are of size 8 or

less, as we can guarantee the existence of dimensionalisable layouts regardless of

the size of n, by using the templates of Appendix A . Decomposition fails if there

exist no separating triangles in the MPG, however we will discuss shortly ways in

which we might tackle this problem. The density of the separating triangles within

the set of test problems is exhibited in Table 9.2 .

242 Chapter 9. Interaction and Decomposition

Two further experiments were undertaken, in an effort to generate MPGs which

were 1 0-decomposable and 8-decomposable. The purpose of these was to examine

the effect on the adjacency benefit of forcing decomposition. This was achieved by

forcing TESSA to create a separating triangle when there were a vertices on the

outside of all separating triangles. A separating triangle was created by allowing

TESSA to only make case (b) operations (those which create a face using three

existing vertices on the boundary) , until a separating triangle was created. By

only performing case (b) TESSA operations, existence of a separating triangle is

guaranteed; if no separating triangle is created previously, a boundary of length

three (creating a separating triangle) will be eventually attained. We will expand

on this process shortly.

The results were disappointing as no improvement mechanism was able to be

implemented. Having created the MPG, it was impossible to find a feasible move

space (i. e . f-operations performed on an a-decomposable MPG could not guar­

antee the resulting MPG was also a-decomposable) , hence forcing travel through

infeasible solutions. This resulted in there being no guarantee of finding even one

feasible solution once we moved into infeasible space, and so it turned out that in

very few cases could the initial construction be improved upon. The results are dis­

appointing, as Deltahedron, which after all generates 4-decomposable MPGs, could

in all cases create MPGs of higher weight, while guaranteeing layouts with guar­

anteed worst-case facili ty shape. The results of this, along with the Deltahedron

MPG benefits for comparison are given in Table 9 .3 .

n Benefit

Del tahedron 1 0-Decomposition 8-Decomposition

10 4 186.42 4056.33 3922.98

15 7441 .69 6779 . 18 6651 . 18

20 1 1506.27 10536.29 10180.73

25 15373.38 13817 . 13 1 3398.36

30 1 9157.67 16694.93 16469.80

Table 9.3: Generation of 8- and 10-Decomposable MPGs on test problems

All is not lost, however, as the ability to force TESSA to create separating tri­

angles can be very useful for the enjo1·ced decomposition of large undecomposable

subproblems. Suppose we have an MPG which has large weight . We desire to have

9. 1 . Decomposition 243

an MPG which is a-decomposable, but have a subproblem of size greater than a

(or, indeed, the whole MPG cannot be decomposed at all) . At this point we can

initiate a TESS A routine which will generate the a-decomposition for us, and im­

portantly does not affect the other subproblems. The process is initialised with the

separating triangle as the first face chosen by TESSA, or equivalently the Tetra­

hedron, consisting of the three vertices of the separating triangle on the TESSA

boundary, and the pseudo exterior already an interior vertex. Thereafter we can

force TESSA to create separating triangles at any desired or specified point, as we

described in performing the 8- and 1 0-decomposable experiments, until all vertices

have been placed in the subproblem's MPG. The subproblem MPG must now be

a-decomposable. Perhaps it is easier to then see the impact of this approach by

changing the embedding so that the face consisting of the vertices in the separating

triangle has all other vertices inside it, and then adding the pseudo exterior. An

example of this process is given by Figure 9.8, where we see the separating triangle

(2, 3, 4) providing a subproblem of size 9 in Figure 9.8(a). In order to create an 8-

decomposition , we initialise with the triangle (2, 3, 4) , followed by case (a) TESSA

operations until we have eight vertices (2,3 ,4,5,6,8,9 and 10) in the current subprob­

lem. At this point we allow only case (b) operations until a separating triangle (in

this case (8, 9, 10)) is created . Vertex 7 i s then added to complete the example in

F igure 9.8(b) . The reembedding is shown in Figure 9 .8(c) . The decrease in benefit

i n the MPG in this example would be Ws,7 + w6,7 - ws, Io - w9,IO· This problem is

now 8-decomposable with separating triangles (2, 3, 4) and (8, 9, 10) .

If the root problem cannot be a-decomposed, initialisation for TESSA is as nor­

mal (i. e. the face of largest weight is chosen) , since this problem is not nested within

a separating triangle. There is an important caveat which must be considered when

forcing decomposition using TESSA. If the non-a-decomposable subproblem has

other subproblems nested within it we must ensure that the separating triangles

which have subproblems nested within them are not deleted . This can be accom­

plished in two ways, both of which have their pitfalls. To illustrate these principles

we suppose F igure 9.8(c) was required to be 6-decomposable, hence we are required

to modify the subproblem consisting of the vertices (2, 3, 4, 5, 6, 8, 9, 10) which has

the subproblem (7, 8, 9, 10) nested within it . The first approach is to include any

subproblems which are nested within the non-a-decomposable subproblem when

forcing the a-decomposition. For example we would impose the 6-decomposition

244

1

2

(a)

Chapter 9. Interaction and Decomposition

1

(c)

(b)

Figure 9 .8 : Forcing 8-decomposition upon a 9-decomposable MPG: (a) 9-
decomposable MPG; (b) TESSA MPG to form 8-decomposability; (c) reembedding
of 8-decomposable MPG

9. 1 . Decomposition 245

on the MPG consisting of (2, 3, 4, 5, 6, 7, 8, 9, 10) . This is undesirable if the non-a­

decomposable subproblem is the root problem, or some other subproblem including

a large proportion of the problem's vertices. The second approach is to force the

inclusion of all faces which are separating triangles with nested subproblems. For

example force the 6-decomposition on the MPG (2, 3, 4, 5, 6, 8 , 9, 10) , while ensur­

ing the face (8, 9 , 1 0) is created, so that (7 , 8 , 9, 10) can be subsequently nested.

The danger here is that if all the faces of the non-a-decomposable subproblem

are also separating triangles in the original MPG, then we cannot change the sub­

problem. Therefore we must have some alternative strategy for dealing with these

pathological problems. One possibility might be to force an a-decomposition on

the non-a-decomposable problem, and afterwards place any subproblems nested

within this one in a face of the new MPG for that subproblem (akin to the /3-

operation) . For example we would create the 6-decomposable MPG on the vertices

(2, 3 , 4 , 5, 6, 8, 9, 1 0) , and add facility 7 in the best place subsequently. This pro­

vides a minimal disruption to the subproblems, by changing only the vertices of

the separating triangle for each nested subproblem in the best way possible, i. e. at

most three adjacency swaps for each nested subproblem.

A concern may be raised as to the detrimental effect these changes to the MPG

may have on the overall adjacency benefit. This may become a problem, however

utilising the adjacency perturbation ideas from Section 8.2 we can attempt to

reconstruct the original underlying MPG. · An example of this process is provided

in Figure 9.9, where we force the 8-decomposition of a non-decomposable 1 0 vertex

MPG with decrease in weight of w5,8 + w6,9 - w4,7 - w4,10• Following construction

of a layout dual to this new MPG (using Decomposition) , application of adjacency

perturbation will replace the adjacencies between facilities 5 and 8, and 6 and 9.

Note that there is no other way of tackling this problem using the techniques we

have explored.

The greater flexibility of this approach, allows us to take our analysis of prob­

lems further. Chapter 1 1 provides a full example, where we can see the Decompo­

sition process in action.

246

1

(a)

2

3
5

6 4 7

1 0 8

9

(c)

Chapter 9. Interaction and Decomposition

1

(b)

2

3
5 7

4
1 0 6

8

9

(d)

Figure 9 .9 : Forcing decomposition, followed by application of adjacency perturba­
t ion to obtain layout dual to original MPG: (a) non-decomposable MPG; (b) forced
8-decomposition on (a) ; (c) layout dual to (b) ; (d) adjacency perturbation applied
to (c) to obtain layout dual to (a)

9. 2. Interaction 247

9 . 2 Interaction

Another powerful concept in the layout process is to include the decision maker

at a number of key steps in the creation of the layout , allowing a wide range

of flexibility for the decision maker, and bypassing the need to quantify largely

subjective factors such as aestheticity and practicality, which is necessary in order

to automate layout construction techniques.

Firstly we must identify the important decisions facing the decision maker.

Within specified MPGs these are the specification of the placement host for an

entering facility, and (for a particular 3-joint) the designation of the top facility.

However we also require manual intervention in implementing perturbations, and

in selection of promising paths of investigation. The specification of the placement

host becomes important in most of the methods, whereby we have two choices in

general for the placement host, either the left or right facilities of a 3-joint . Every

choice that must be made effectively doubles the number of layouts which could

be generated from that MPG. This is especially important for the Contraction

Algorithm, where the MPG is contracted originally with no foresight as to the im­

plications on the layout. By implementing an interactive interface the Contraction

Algorithm can be genuinely enhanced to allow the backtracking of decisions , so

that the best choices, in the eyes of the decision maker, for the contractions and

their order, is found. The ability to designate the top facility for 3-joints is im­

portant also. This has implications for the starting points of most methods, which

rely on the Deltahedron initialisation, which uses the tetrahedron initially. The

choice of the top facility out of the possible three facilities in the tetrahedron has

repercussions throughout the remainder of the layout. This is also helpful when

considering the decomposition approach, where in order to maintain consistency of

the nested subproblems, we need to be able to determine the top facility from the

facilities in the parent separating triangle.

Figure 9 . 10 shows the steps taken to interactively change the contraction order­

ing of the MPG defined by the layouts, in order to obtain a more efficient layout.

Initially, we see that every contracted facility is essentially within the top facility

5; therefore the only change which we make initially is to change the contraction of

facility 10 into facility 7 instead of 5. The impact of this single change is significant ,

and is represented by the first two layouts of Figure 9. 10. The adjacency between

facilities 8 and 10 is small in the second layout, and facility 8 is rather irregular.

248

LAYOUT

s 10
2

6

8

4

7 9

s
3

10

4 6
2

--, 8

7

s
3

10
4

2

6

8

7

Chapter 9. Interaction and Decomposition

CONTRACTION ORDER

3

2 ---+ 6
3 ---+ 1 0
4 ---+ 8
6 ---+ 8
8 ---+ 1 0

10 ---+ 5

9
2 ---+ 6
3 ---+ 10
4 ---+ 8
6 ---+ 8
8 ---+ 10

10 ---+ 7

9
2 ---+ 6
3 ---+ 10
4 ---+ 10
6 ---+ 10
8 ---+ 10

10 ---+ 7

Figure 9 . 10 : Example of Interact ion working from the initial computer generated
layout at the top through to a more acceptable layout at the bottom

9. 2. Interaction 249

We attempt to remedy this by contracting facilities 4 and 6 into facility 10 instead

of 8. The change to the layout is seen immediately, in the bottom layout of Fig­

ure 9 . 10. Note that we have gone from an initial layout of four U-shaped and three

L-shaped facilities, through one 3-concave-corner and three L-shaped facilities, to

the final layout which has j ust one T-shaped facility and one L-shaped facility. Fur­

ther note that no standard implementation of the Contraction Algorithm could be

used to generate the final layout, as facility 10 has four other facilities contracted

into it , whereas the standard implementations of the Contraction Algorithm state

that each facility can be contracted into at most twice. The choices made in the

example were made as intelligently as possible. Unfortunately the impact of a

choice cannot usually be predicted when using this interactive approach, and it is

therefore helpful to iterate through a number of arbitrary choices to find a good

starting layout from which to refine. 'We can outline some general principles for

this process however:

Facilities which are a placement host to a large number of facilities (explicitly

or implicitly) should not be the top facility of any 3-joint, as exhibited by the

first change made in Figure 9. 10.

Selection of placement hosts should be made with respect to all facilities

which will be placed (explicitly or implicitly) within that host, as shown by

the selection of facility 6's placement host in Figure 9 .10 - selection of facility

10 as the placement host allowed facility 2 to cover the 2-joint formed at the

creation of facility 6 .

Facilities should be placed to minimise the number of faultlines created (to

retain dimensionality as much as possible) , as exhibited in Figure 9 . 10 by

choosing the same placement host for facilities 4 and 6 to ensure the retaining

of the adjacency between facilities 8 and 10.

Interaction allows algorithms such as the Contraction Algorithm to be relaxed

in such a way that almost any vertex can be contracted into any other adjacent

vertex. The only restrictions upon this are that there must exist three vertices in

D1 , and that the exterior cannot be contracted or contracted into. These conditions

simply ensure that the exterior is never a placement host, and that the Tetrahedron

layout structure becomes the initial building block for the layout . In general it is

250 Chapter 9. Interaction and Decomposition

wise not to contract facilities into a facility in a distance class further from the

exterior, as this can cause substantial irregularity when the layout is constructed.

This not only allows greater flexibility in the Contraction Algorithm, but also

simplifies the theory behind this approach, leading to it being a more intuitively

motivated method.

The VSA can also be improved by an interactive feature. For example, the

deletion of shortcut edges (i , j) , makes a choice for which of i or j will be the

parent facility of the newly-created pseudo facility. This choice could be made

i n an interactive way, enabling the decision planner to the examine the outcome

of each choice. Furthermore the choice of the first facility of each distance class

which is placed in the layout again has an impact on the outcome of the final

layout , this choice could be made by a planner, as could the determination of the

region that facilities adjacent only to a corner facility can be placed , as they can

be assigned to either region that this corner facility borders. Guidelines for the

VSA are much more difficult , as each choice impacts on every subsequent facility

placed, as opposed to the Contraction Algorithm where the alternatives in general

have a much more local impact.

The flexibility and elegance of the decomposition approach, lends itself naturally

to interaction with decision makers, and planners, due to the large degree of versa­

t ility inherent in the generic approach. Decision makers need not be restricted by a

particular method, but rather are able to call upon a wealth of concepts which act

within a structured framework. Importantly this removes any arbitrariness from

the ideas and concepts developed within the GTFLP model. In short, interaction

is useful at any point in facility layout methods where a choice must be made.

The ability to successfully incorporate this interface is likely to lead to a layout

framework which is applicable to virtually any layout design process, as the layout

planner has control over all factors, and the knowledge of unquantifiable issues,

coupled with knowledge of each facility's function.

Cod a

In this chapter we have continued to build a framework which enables complex

problems to be handled easily. Decomposition and interaction, along with the

perturbations discussed previously, provide the GTFLP solution process with the

9.2. Interaction 251

flexibility it requires to be successful within a practical setting. The GTFLP model

is now set within a versatile framework ensuring the greatest use is made of the

concepts, rather than the rigid use of the algorithms. The ability to incorporate

intangible factors such as aestheticity have been addressed through the use of in­

teraction, ensuring that the Graph Theoretic model is as realistic as possible.

I n the next chapter we examine an important evaluator of layouts: the Ma­

terial Handling System (MHS). The GTFLP model does not in general consider

relationships between non-adjacent facilities; the determination of the MHS allows

the examination of relationships between such facilities, by considering flows be­

tween these facilities, and the route by which this interaction might be undertaken.

Issues such as minimising the total flow on the MHS, and minimising the farthest

distance of any flow on the MHS, arise. In Chapter 1 1 , we attempt to put the

methods and ideas we have described into practise, by considering two realistic

examples, from conception.

252 Chapter 9. Interaction and Decomposition

Chapter 1 0

T he role of Material Handling

Systems in Evaluating Layouts

253

In the course of the work so far, we have considered only the benefit derived from

adjacent facilities. In this chapter we are interested in relationships between non­

adjacent facilities, and in particular, the cost of transporting materials between all
'

pairs of facilities. In general there will exist desirable adjacencies which are unable

to be i ncluded in the MPG, due to the constraint on the maximum number of

edges permitted in the adjacency graph to maintain planarity. Therefore, while in

general we accept that we have obtained the best adjacency structure available, we

are unable to predict the ramifications on a final layout of any unsatisfied desirable

adjacencies. This leads to the concept of a Material Handling System (MHS) , which

for our purposes is simply a mechanism which links facilities, for example a corridor

or conveyor system. In this chapter we explore the role of the MHS in generating

complete transportation cost data. Further we will see that the transportation cost

of an MHS, provides another evaluator of the efficiency of a layout.

1 0 . 1 Previous Work on Near Adjacency

Giffin and Foulds [31 , 40] examined the issue of omitting consideration of non­

adjacent facilities when constructing a Deltahedron adjacency graph. The first

paper, [31] , examined the creation of the adjacency graph, under the objective of

minimising the transportation cost, rather than maximising the adjacency benefit.

254 Chapter 10. The role of Material Handling Systems in Evaluating Layouts

By changing the objective function, and assuming that all travel is rectilinear be­

tween facility centroids (by designating each facility to be square in shape) Foulds
and Giffin, were able to insert vertices into the adjacency graph under the stan­

dard Deltahedron operation, such that the overall transportation cost between the

vertices in the current MPG, and the candidate vertex was minimised. This heuris­

tic, together with more modern improvement search routines such as Tabu Search,

provides adjacency graphs, with overall transportation cost minimised, under the

assumptions of Foulds and Giffin. However note that the assumption of square

shaped facilities is overly optimistic, and therefore the final layout , may not accu­

rately reflect the transportation cost derived by the MPG.

In the subsequent paper [40] , Giffin and Foulds developed the concept of near­
adjacency. Giffin and Foulds assumed NI adjacency matrices, each depicting adja­

cency relationships of facilities k, k = 1 , . . . , NI, walls apart . A tailored version of

Dantzig's Shortest Path Algorithm [23] was incorporated , to calculate the shortest

distance between two vertices. The objective was extended to choose the vertex to

enter which induced the best overall adjacency benefit relative to all the vertices in

the current partial MPG. Calculation of the derived adjacency between a candidate

vertex with each vertex in the current MPG, was dependent on its edge distance

from where the candidate vertex would be placed. However the objective function

will still not in general accurately reflect the actual benefit of near adjacency, as

the objective assumes that the distance between pairs of facilities is a constant.

These two modified heuristics provide an alternative method of constructi ng the

MPG in order to incorporate non-adjacency. However as we will see in Section 10 .5

they cannot hope to accurately reflect the actual benefit through this consideration.

In the next section we examine the literature which considers a model for gen­

erating representative transportation cost data on the designed MHS within the

layout by explicitly designing the MHS (or communication path), rather than by

using an approximation in the adjacency graph.

1 0. 2 Previous Work o n the MHS

Gawad and Whitehead [38] consider placing a communication path (which is a

t ree structure) onto the completed layout by sequentially considering the highest

links between non-adjacent facilities, and building up the communication path by

1 0.2. Previous Work on the MHS 255

linking these facilities, with the paths only existing on facility boundaries, using

already devised links where possible.

Baybars [7] presented two possible approaches for designing communication

paths; the first was to delete edges from the MPG, so that during the layout

construction facilities are non-adjacent, and hence circulation spaces result ; the

second approach is to consider the generated layout , and from this define a graph,

where each node represents a 3-joint , and the lengths of the edges are the lengths of

the walls joining these joints. The MHS is constructed by finding a tree structure

(to provide minimal length of the MHS) in this graph, which is then embedded in

the layout .

MacGregor-Smith [81] uses a Steiner node to represent the circulation system of

a layout. In order to discuss the ideas of MacGregor-Smith further, we require the

concept of a Voronoi Cell, which is the set of points in R2 equidistant from all other

cells in R2 , and closer to i, than any other cell j. Formally it is the intersection of

all halfplanes defined by the bisectors of i and j. A Voronoi Diagram is a collection

of all nonempty Voronoi Cells. Further a Delaunay Triangulation is the planar

straight line dual graph of the Voronoi Diagram; this dual is a triangulation.

MacGregor-Smith obtains the network upon which the MHS is placed, by con­

sidering a Delaunay Triangulation of the layout. This Delaunay Triangulation, is

equivalent to an MPG, except that the exterior is not considered, and the embed­

ding is unique as it is dependent on the layout. From this Delaunay Triangulation,

we derive the Voronoi Diagram, which parallels the layout; however, the building

perimeter i s missing, and the facility shapes are very distorted. A Steiner Tree

is then able to be found using a heuristic devised by MacGregor-Smith, Lee, and

Liebman [82] , in O(n log n) time. The model used by MacGregor-Smith, requires

a set of vertices which must be on the MHS.

For completeness we now also consider some other related work on the MHS.

These papers consider the MHS to be the fundamental building block, with the

layout being subsequently constructed around it . The layouts in general become

irregular i n their building perimeters, and in many cases the generated layouts have

holes. Montreuil and Venkatadri [86] present a comprehensive linear programming

model for generating a net layout . The main objective is to minimize the average

aisle travel , while the constraints consider positions and shapes of facilities, as well

as the location of Input/Output stations, and location and size of aisles. Montreuil,

256 Chapter 1 0. The role of Material Handling Systems in Evaluating Layouts

Venkatadri and Ratliff [87) present a linear programming approach to determining

a layout from a design skeleton, which is essentially an underlying graph of the

layout , specifying adjacencies for example. The linear program in this paper at­

tempts to retain as much as possible the structure of the design skeleton, while still

generating the best possible layout given the overall objectives. The formulation

specifies the layout of rectangular facilities within a rectangular building perime­

ter. Welgama and Gibson [105] consider a layout problem in which each facility

has pick-up and drop-off points, and dimensions specified a priori. The problem

then is to arrange the facilities in such a way as to minimize the movement cost.

The authors provide a construction heuristic along the same lines as many of the

classical approaches; they note that a secondary objective is to make the layout

as compact as possible, by considering the sprawl of the layout in the objective

function. Finally, Langevin, Montreuil and Riopel [71] consider a spine layout de­

sign, in which the MHS is placed in the middle of the layout, and facilities are

placed on either side of it , in order to minimize the movement costs. The method

is divided into two steps, firstly to obtain a linear ordering of the cells, and then

from this chain, to determine which facilities should be on which side of the spine.

The second phase is completed optimally, however the solution to the first phase is

heuristic, and hence the generation of a good solution to the first phase is crucial.

The ideas of Gawad and ·whitehead, Baybars and MacGregor-Smith, design an

MHS directly on an already constructed layout , as opposed to the other papers

which consider the MHS as the fundamental component around which the facilities

are placed. The methods outlined by these authors, have certain characteristics in

common, the most important being the concept of an underlying network structure.

The network that we will use, is the layout i tself, where every wall, either in part or

in full, is a potential edge to add to the MHS. We call this the layout network. The

objective function is to minimise the total transportation cost, but there is also

a cost associated with the length of the MHS. This is likely to lead to a tradeoff

between the length of the MHS and the total transportation cost. Note that while

we generally deal with adjacency benefit values, we assume that these values are

proportional to the material flow between the facilities , and hence in general we

assume the adjacency benefit between i and j equals the material flow between

facilities i and j . Ignoring the cost associated with the length of the MHS, is likely

to lead to an MHS where every pair of facili ties has its own private MHS, whereas

1 0.3. Considering the MHS as a Facility 257

ignoring the transportation cost is likely to lead to a Minimal Spanning Tree within

the layout network. An adaptation of the techniques discussed, incorporating a

multi-criteria objective, is easily motivated, however not necessarily easily solved.

The structure of the MHS is generally of two forms; a tree, or a more general form

allowing cycles within the MRS.

1 0 . 3 Considering t he MHS as a Facility

In this section we consider the impact of considering the MHS as a facility of the

layout . In this approach, we consider that the MHS is adjacent to every facility,

hence the MHS becomes a centre vertex. In Theorem 4 .7. 1 , we proved that every

MPG having a centre vertex, is Deltahedron generateable, therefore the layout

can be easily constructed in this case. The difficulty that we have with this type

of approach, is that adjacencies with the MHS incorporate (asymptotically) one

third of the adjacencies of the adjacency graph, and thereby severely restricts the

number of adjacencies the other facilities of the layout can attain. This indicates

that the modification of Giffin and Foulds [40] is a preferable model in this case,

as all facilities will be at most two walls apart , as the shortest path from any

vertex in the MPG to any other can pass through the vertex representing the

MRS. However, this approach will still not guarantee an accurate assessment of

the actual transportation cost, as there is no provision for maintaining a compact

MRS. This is better illustrated by considering how the layout would be constructed

when using the Deltahedron Layout Algorithm. The MHS must be in the initial

Tetrahedron, due to its large degree. vVe could place the MHS as the top facility,

providing in most cases an elongated MHS, with facilities at opposite ends of the

layout considered the same as two non-adjacent facilities near the middle of the

layout. The alternative is to place the MHS as either the left or right facility. This

is probably more efficient, as it is likely to lead to the MHS being T-shaped due

to its large degree; however, it is more likely to be compact, and therefore provide

a reduced transportation cost. If we desire to have more than one MHS, say two

different production lines, then any subsequent MHSs can be easily incorporated

into the problem data by adding as many extra vertices (representing each MHS) as

required, following some of the ideas of circulation spaces as described by Baybars

[7] . This leads to adjacency graphs with less structure, which are not guaranteed

258 Chapter 1 0. The role of Material Handling Systems in Evaluating Layouts

to be Deltahedron, but it is likely that the structure of the MPG could satisfy the

structural conditions of Section 4. 7 .4 , where we have a set of disjoint vertices in D2
which could correspond to the disjoint MHSs.

As with most ideas and methodologies provided throughout this thesis, the

consideration of the MHS as a facility can be examined on a problem-by-problem

instance, where we can examine the transportation costs in the set of alternative

layouts. As a simple guideline, if we are able to utilise the concepts of placement

directions and placement hosts of Deltahedron and the special classes of Section 4. 7,

then the MHS should be used as a placement host as often as possible, as this allows

the MHS to become (at worst) X -shaped while other facilities are able to retain

(as much as possible) their rectangularity.

The area taken up by the MHS must be addressed, and in general we would

require that the area of the MHS is sufficient to allow its effective functionality.

For the d imensionalisable layouts of the Deltahedron Layout Algorithm, and the

classes of MPGs of Section 4 . 7, this poses no difficulty, and indeed we can utilise

the area perturbation ideas discussed in Section 8. 1 to guide this .

10 .4 Considering t he MHS as a Post Construc­

t ion P hase

In this section we examine ways in which we may incorporate an MHS into a con­

structed layout. There are several issues which need to be addressed. Firstly we

must determine how Input/Output Stations can be assigned for each facility; an

Input/Output (1/0) Station, is simply a position on a facility's perimeter, which

enables material to enter or leave that facility e.g. doors. In order to meaningfully

compare the MHS on different layouts on the same problem data, these I/0 sta­

tions must be able to be assigned consistently between the layouts. Next we must

determine under what conditions and measures we assess the performance of the

MHS. In the absence of further information, assume that material destined for a

facility is to be used uniformly throughout that facility. This leads to the use of

the centroid of each facili ty. Therefore we assume centroid-to-centroid distances,

unless otherwise stated, from this point onwards. To measure the distance between

these centroids, we assume a rectilinear metric, which is the intuitive choice due to

the orthogonality of the layout . Further we recognise that the derived distance on

1 0.4. Considering the MHS as a Post Construction Phase 259

the MHS between all pairs of facilities will be a function of the flow of materials

between those pairs of facilities, in order to reduce the total transportation cost of

all material flows.

Under these assumptions, we define our model i n terms of minimising the total

transportation cost of an MHS. vVe impose no structural constraints on the MHS,

other than that it is connected. There are two issues to address. The first is

that, upon designation of the 1/0 stations, there is a fixed cost of transporting the

material flow for a facility from the centroid to the 1/0 station for each facility.

This appears to necessitate a 2-phase process for the determination of the MHS,

the assigning of 1/0 stations, and secondly the actual determination with respect

to these 1/0 stations of the MHS structure, with the cost of intra-facility flows

a fixed cost within this second phase. The second issue is the development of a

lower bound on the total transportation cost of the layout. If we assume that we

could have a separate MHS for every pair of facili ties' centroids, with a separate

1/0 station for each, then we can assign the lower bound on the MHS to be the

shortest rectilinear distance in the layout between each pair of facilities, scaled by

the flow between each pair of facili ties . The 1/0 stations in this case would simply

be located at the point at which each MHS leaves and enters each facility on the

shortest paths.

In order to discuss this more easily, let us define some notation . Let fii be the

material flow between two facilities i and j , di1 be the shortest rectilinear path

between facilities i and j in the layout network, and d;i be the shortest rectilinear

distance between facilities i and j on the MRS. Further, suppose that each facility

i is defined by m; corner points, with coordinates (x;k , y;k) , k = 1 , . . . , m;. The

objective function for determining the MHS under this model is given by Equa­

tion 10. 1 , with the lower bound to this objective being given by Equation 1 0.2.

Note that Equation 1 0 . 1 allows only one 1/0 station for each facility, whereas the

lower bound of Equation 10.2 assumes as many as are required for each facility.

n-1 n

Afin L L J;jdii
i=l j=i+1

n-1 n n-1 n

L: 2: !ii dij :::; 2: 2: li1 d;j
i=l j=i+1 i=l j=i+ I

(10 . 1)

(1 0.2)

260 Chapter 1 0. The role of Material Handling Systems in Evaluating Layouts

Let us examine ways in which we might tackle this problem. Firstly in Equa­

tion 10.3 , we formally define the centroid of facility i, denoted by (xf, yf) .

(1 0.3)

Note that while the centroid of a non-convex facility may lie outside the facility, this

poses no problem (as we will see the 1/0 station is derived to lie on the perimeter

of the facility regardless) , as the centroid is simply a point to which we can direct

all material flow in order to calculate what the actual cost would be, under the

assumption of uniform use of material throughout the facility. If this assumption

is not valid, we can weight points in the facility, so that the centroid is closer to

areas which have greater material flow. This adaptation can be easily achieved,

and so is ignored henceforth.

The first issue we must address is the placement of the 1/0 stations, and two

methods have been devised for achieving this. The first seeks to minimise the intra­

facility travel cost , while the second attempts to strategically place the 1/0 station

so that it is as close as possible to the other facility centroids. The placement

of the 1/0 stat ion under the first construction is simply to place the 1/0 s,tation

of facility i at the point on the perimeter of i closest to the centroid of i. For a

convex facility, either the x or y coordinate of the I/0 station will be the same as

for the centroid . For non-convex facilities we must also consider the complete set

of corners. The optimal point for each facility will be either a corner, or one of (at

most) four points on the perimeter of the facility as for the convex facilities . Note

that for centroids lying outside the respective facility, not all of these four points

may exist . Denote the I/0 station of facility i to be at the coordinate (x[/0 , y{/0) .
Then this point is given by Equations 10.4 - 10 .7, where X; and }'i , are the sets of

all corner points j of i, where xf, respectively yf, lies between x;i , respectively y;i ,
and the next corner coordinate x;i+ t , respectively y;i+l , encountered. Note that we

. .
assume Zm;+l = Z t ·

(x�, yf)
(xf , yY)

(10.4)

{ 10 .5)

1 0.4. Considering the MHS as a Post Construction Phase

(x� , yi) - (xi�< , Yi�<) : min (lx� - Xi�< I + IYi - Yik l) k=l . ..m;
(x[10 , y{10) (x7 , Y7) : k���r (lxi - x7 1 + IYi - Y7D

261

(1 0.6)

(10. 7)

The second construction that we consider is concerned with strategically placing

the 1/0 station, in an attempt to minimise the inter-facility flows. This is achieved

by considering the weighted centroid of the distance from a facility to all other

facilities. Therefore define (x:, yi) to be the point of the weighted centroid of the

other facilities' flows with facility i, and call it the sink of facility i. For each

facility we determine its sink via Equation 10.8; note that since fii = 0, there is no

unnecessary biasing of this centroid.

(1 0.8)

To assign the locations of the I/0 stations, we use Equations 10 .9 - 1 0. 12 . Note

that the I/0 stations are determined independently of the actual route the material

would have to traverse in going from the sink to the facility centroid. This creates

no difficulty, and indeed Equations 10.9 - 10 .12 can be easily modified so that the

1/0 station's placement is determined relative to the layout network.

(xf , yf) - (xi , Yi�r) : .miry (IYi�< - Yi D (1 0.9) '�< e.x i
(xi , yi) (xi�< ' yi) : ,:nin(lxi�< - xi I) • �rEY; (10. 10)

(x� , yi) (xi�r , Yi�r) : min (lxi - Xi�r l + IYi - Yi�r l) k=l. .. mi
(1 0. 1 1)

(1/0 1/0) (x7, yf) : min (lxi - Xi�r l + IYi - Yi�r D (10 . 12) Xj ' Yi - k=h,v,r

There are two further issues which we must consider when considering I/0

stations. The first is the I/0 station of the exterior facility. Obviously the centroid

of this facility lies in the centre of the layout , yet the I/0 station for the exterior

facility can still be meaningfully determined, via the two constructions outlined.

The second issue is the use of tie-breaking rules. There may exist more than one

candidate I/0 station location for a facility. In this instance an arbitrary choice is

not generally desirable, as we wish to keep the I/0 station as central as possible.

262 Chapter 10. The role of Material Handling Systems in Evaluating Layouts

Therefore we could implement the alternative 1/0 construction in order to rank

these candidate locations under the chosen construction.

Initial experimental evidence showed that the first construction based on min­

imising the intra-facility flows was the most realistic, as the sinks are in general

closely clustered near the centre of the layout . The second construction (using

the sinks) however proved very useful as a tie-breaking mechanism. Furthermore

the intra-facility transportation costs overwhelmed the i nter-facility transportation

costs if the second construction was used as the main 1/0 placement routine. This

was due to many pairs of adjacent facili ties having their material flow travelling

more than twice the distance that it could if the 1/0 stations were placed as close

to the centroid as possible. Therefore we consider only the first construction, using

the second as the tie-breaking routine. The two constructions outlined are able to

be applied to any layout, and therefore the 1/0 stations of two layouts, although

probably not at the same coordinates, are placed consistently, in order to facilitate

comparison between the layouts.

The next step is to minimise the inter-facility transportation costs with respect

to the 1/0 stations. Having determined the 1/0 stations, we can calculate the

fixed costs of the intra-facility transportation costs, and this cost S is given by

Equation 10 . 1 3 . Note that under the first construction, the intra-facility costs are

optimised.

n n

S = L L fii (lx� - x[10 1 + IYf - y{10 1) i=l i=l
(10 . 13)

The determination of which edges in the layout network should actually com­

prise the MHS is not a trivial task. Since our goal is to create a consistent eval­

uation only, we confine our discussion to that of underlying tree MHS structures;

extensions to the more general case are easily obtained, by modifying the objective

function to include a cost associated with the length of the MHS, and can be solved

in essentially the same way. Note that even though the MHS has an underlying

tree structure, the nature of the rectilinear metric implies that the placement of

the MHS on the actual layout network may generate MHSs containing cycles.

As we are dealing with a tree structure, we require the identification of n - 1

connected edges to construct the MHS. Unfortunately this is not simply a Minimum

Spanning Tree Problem, as every 3-joint in the layout is a possible Steiner point, at

1 0.4. Considering the MHS as a. Post Construction Phase 263

which we can create intersections of the MHS which are not at I/0 stations, leading

to the possibility of the MHS allowing cycles. In order to derive the MHS, we must

take account of the flows between the facilities . This weighting lends itself easily

to a scaling of the length of each path connecting every pair of facilities . From

the layout network, we determine the graph l(n , with every edge having weight

proportional to the rectilinear distance between facilities, and the flow between the

facilities. This is achieved by assigning the weight t ;j to each edge (i, j) , where

t ;j is defined by Equation 10 . 14 . This definition of the edge weights provides an

intuitive measure, of the flow per unit length.

(1 0. 14)

From this constructed graph Kn , we determine a Maximal Spanning Tree, using

the method of Kruskal [67] . The edges of the Kn graph are chosen for inclusion

in the MHS so that the edges of largest flow per unit distance are chosen first .

The total transportation cost of the layout then becomes the fixed intra-facility

costs added to the weighted cost of inter-facility travel between each facility. Note

that the placement of the MHS in the layout can cause a reduction in the total

length of the MHS, as edges added to the MHS from Kn may duplicate walls in

the layout. This may lead to some 3-joints within the layout becoming Steiner

points. Two improvement type procedures have been developed to remove some of

the arbitrariness in the placement of the MHS; they guarantee not to increase the

length or the cost of the MHS, and so can be performed without recourse to the

ramifications of the changes. The first improvement procedure considers a facility

whose complete material flow all travels through another facility's I/0 station,

and there exists another path of the same length between these two facilities,

we choose the path which provides the most duplication of edges on the layout

network. This cannot increase the transportation cost , and can decrease both the

length of the MHS and the transportation costs for that facility, leading to a lower

overall transportation cost. The second improvement assumes that the exterior I/0

station may be placed at any point on the perimeter, as there are no intra-facility

costs associated with the exterior. In this instance, if the exterior I/0 station is

a leaf node of the MHS system , we can move the I/0 station to the first point

encountered which is either a junction of the MHS, another I/0 station, or the

264 Chapter 10. The role of Material Handling Systems in Evaluating Layouts

first point encountered on the layout perimeter on the path to the exterior's I/0

station. The full MHS construction is given in Algorithm 10 . 1 .

Algorithm 10.1 MHS Construction

end

Input: Layout, and inter facility flow data fii for each pair of facilities
Output: Layout with corresponding MHS
for i = 1 to n do

end

(xf, yf) � (E��l �, E��l �)
(xi , yi) � L:''1 1 (E'J=I fiixj , L:'J=I fiiY})

J = l IJ

With reference to Equations 10.4 - 1 0. 7 assign the I/0 stations

Implement Floyd 's Algorithm to determine the shortest path length dii between
each pair of I/0 stations
for i = 1 to n - 1 do

end

for j = i + 1 to n do

t · · � b. IJ d;j
end

Determine the Minimal Spanning Tree under the tii weights using [(ruskal 's
Algorithm
Place MHS on layout network via the shortest path and minimal spanning
tree data
Implement the two improvement procedures to reduce the cost and length of
the MHS

We proceed to illustrate the construction of the MHS through the use of a six

facility example. The layout is given by Figure 10 . 1 , while the material flow data

is given in Table 1 0 . 1 . The centroids are found, and then the I/0 stations are

assigned using the technique described earlier. From this set of I/0 stations, we

construct the [(6 network, with edge distances given by Table 10 .2, and hence the

corresponding weights for the edges given by Table 10.3.
With reference to Table 10 .3 , we see that the Minimal Spanning Tree associated

with this network is the set of edges { (3, 4) , (4, 5), (2, 5) , (5, 6) , (1 , 2) } . Overlaying

I

1 0.4 . Considering the MHS as a Post Construction Phase

1

2

3

6 5

4

Figure 1 0. 1 : MHS Illustrative Example

2 3 4 5 6
1 40 15 30 20 20
2 20 0 25 0
3 80 10 0
4 20 0
5 45

Table 10 . 1 : Flow data for the MHS Illustrative Example

2 3 4 5 6
1 22.50 26.25 26.25 28.75 23.75
2 1 6.25 16.25 1 1 .25 16.25
3 0.00 7 .50 27.50
4 7.50 27.50
5 22.50

Table 10 .2 : Inter-facility distances between I/0 stations

265

I

266 Chapter 1 0. The role of Material Handling Systems in Evaluating Layouts

2 3 4 5 6
1 1 .78 0 . 19 1 . 14 0 .70 0.84
2 1 .23 0.00 2.22 0.00
3 00 1 .33 0.00
4 2.67 0.00
5 2.00

Table 10.3 : Inter-facility flows per unit distance between 1/0 stations

1
-
-

�
-

3

-
-

6 •• 5 4.

4

Figure 10.2 : Initial MHS design

this MHS on the layout provides the MHS of Figure 10.2, with length 60, and total

cost of 7468.75, of which the inter facility costs are 5862.50. Note that facilit ies 3

and 4 have their 1/0 station at the same point.

We now attempt to implement our two simple improvement procedures on this

MHS. The path between facilities 5 and 6 can be changed for its alternative path,

and the 1/0 station of the exterior can be moved to the first point at which the

perimeter is touched en route to its current position. This results in the new MHS

of Figure 1 0.3 , with length 33. 75, and total cost of 5356.25, resulting in the MHS

length and inter-facility costs being significantly reduced.

Note that while we are unable to guarantee optimality, the effect of this is re­

duced when comparing layouts, as consistency between the two layouts is paramount

I

1 0.5. MHS Computational Experiments 267

1
2

-
-

3

-
-

6 u 5 �

4

Figure 10 .3 : Final MHS design

for the effective comparison of them under the MHS evaluation scheme. For ex­

ample, if we found an MHS for a rectangular layout heuristically, and a highly

i rregular layout optimally, we would be unable to make a valid comparison. If the

MHS for each layout is constructed under the same mechanism, we can rank the

layouts with respect to the derived total transportation costs, as another measure

of the effectiveness or practicality of each layout . Therefore, while i t is possible

to implement a Tabu Search, or similar, routine in order to attempt to improve

upon the initially constructed MHS, we do not implement this for comparison pur­

poses, as we want to maintain as much consistency as possible. In attempting to

determine the best MHS for some chosen layout , however, this improvement type

of strategy can be performed.

1 0 . 5 MHS Comp utat ional Exp eriments

In this section we examine the MHS as an evaluation mechanism for comparing

different layouts. The MHS construction was applied to the layouts generated

in Chapter 6, and the results are shown in Tables 10.4 - 10.8. The VSA and

Contraction Algorithm routines used the Deltahedron initialisation and the layout

268 Chapter 10. The role of Material Handling Systems in Evaluating Layouts

improvement routines.

We expected the results would overwhelming show that a good adjacency score

corresponded to a good transportation cost. Surprisingly, the opposite occurred,

with those layouts having lower adjacency scores having the most efficient MHSs.

Throughout the problem instances the Spanning Tree Algorithm consistently out­

performs the MHSs of the other layouts. This is due mainly to the structure of

the Spanning Tree layouts, as the hierarchical layering of the facilit ies in the lay­

out allows the MHS to closely mimic the underlying tree adjacency graph. The

Contraction Algorithm outperforms the VSA in all cases, which is perhaps a little

surprising, as we saw in Section 6.6 that the VSA outperformed the Contraction

Algorithm under the regularity measures. Furthermore for n = 10 , and n = 15 ,

S IMPLE outperforms the VSA, the Contraction Algorithm, and surprisingly Delta­

hedron, yet has vastly inferior regularity scores. The reason for this is that the ir­

regularity of many facilities in SIMPLE and Contraction Algorithm layouts, allows

many non-adjacent facilities to be in close proximity. The Tiling Algorithm with

a worst case T shape performs poorly in all problem instances, and this is due to

the large proportion of facilities which are indeed T shapes within these layouts.

The Contraction Algorithm performs surprisingly well for large n , surpassing the

Deltahedron and Tiling Algorithms.

The results of this experiment are rather surprising, and the preliminary con­

clusion that the adjacency benefit is not a good predictor is both unexpected and

disappointing. The apparent lack of correlation between the regularity of the layout

and the efficiency of the MHS is also disappointing, as is the relationship between

the transportation cost and the length of the MRS. Although there is the expected

general t rend of the transportation cost increasing as the length of the MHS in­

creases, there is a large variance in these values, and indeed in many instances a

longer MHS can provide a better transportation cost. These results are a function

of the MHS form derived from this construction. As a direction for further work,

alternative MHS constructions may prove further insights into the relationship be­

tween the regularity values and transportation costs.

As a second experiment , we examine the methods designed by Giffin and Foulds

which incorporate near adjacency, in order to quantifiably analyse their perfor­

mance at approximating the true transportation cost. We concentrate on the first

Measure VSA CA SIM PLE Deltahedron TA(T)
Adj Benefit 4258.02 4258.02 4258.02 4186.42 4304 .02
Transport Cost 128546.03 124252.07 103449.84 122782.83 143733 . 10
MHS Length 80. 76 81 .75 70.4 1 81 .23 92.25

Table 10.4 : MHS Cost and Length for n = 10

TA(I) ST
41 10.58 3619.22

100962.56 104307.25
69.60 67.83

.......

�
�

� �
�

"'0
c
.,....
�
.,.... g'
e:.

2
Cl) ::: . s �
.,.... tll

t-.:) 0') (Cl

Measure VSA CA SIMPLE Deltahedron TA(T)
Adj Benefit 7463.27 7463.27 7463.27 7441 .69 7518.36
Transport Cost 407209.30 368713 . 18 311392. 13 3751 69.26 485102.83
MHS Length 148.58 139.00 128. 18 140.28 173.43

Table 10.5: MHS Cost and Length for n = 15

TA(I) ST
7266.96 6100.78

313266.97 310151 .56
130.52 1 18. 18

t-.:) -.J 0

Q
� i'i:::l <'+-

�
�

�

�
('t)

8 (b
2.
�
c-+-('t) :::!
�·
..._

::t:: �
e::
::;·
�q

� Cl)

� Cl)

c c
e-t­Cl)

Measure VSA CA SIMPLE Deltahedron TA(T)
Adj Benefit 1 1550.47 1 1550.4 7 - 1 1506.27 1 1 367.22
Transport Cost 1028984.58 933726.03 - 919898.24 1301800.77
MHS Length 220. 16 214.59 - 220.63 283.78

Table 10.6: MHS Cost and Length for n = 20

TA(I) ST
1 1 099.82 9046.56

836981 . 13 772929.81
214. 1 3 1 73.64

"-

�
SJl

�
Cl)

�
� 'i::l c

.,...
;:1.>
.,...
..... . g
e!.
� 'i::l
�. s
(l) -:::;, .,... Cl)

t-.:1 --1
1-'

Measure VSA CA SIMPLE Deltahedron TA(T)
Adj Benefit 15267.22 1 5267.22 - 15373.38 14963.78
Transport Cost 1927076.81 1598925.70 - 1665489. 18 2392326.76
MHS Length 302. 17 298.92 - 281 .30 388.66

Table 10.7: MHS Cost and Length for n = 25

TA(I) ST
14678.07 1 1683.40

1618287.59 1452495.80
309.88 236.86

t..,:) � t..,:)

g
�
<"+-

�
�

�

� �
<b

*-
�
�
� §.:
�
e:
..... . ::::s

� Cl)

�
Cl)

t;·
tt:l
� ..._ c
�
c-+-

t;·
t"-1

·� 0 c
c-+­
C/)

Measure VSA CA SIM PLE Deltahedron TA(T)
Adj Benefit 18791 .44 18791 .44 - 19 157.67 18572.24
Transport Cost 3350072.28 2584713.62 - 2747796.95 4515771 .14
MHS Length 412.31 371 .28 - 352.80 527.50

Table 10.8: MHS Cost and Length for n = 30

TA(I) ST
18295.87 14309.18

280723 1 .77 2355569.53
413.21 293.95

�

�
�

�
bJ s

'\:) c .,....
�
.,.,..

g·
�
�

'\:)
� §" �
.,.... tll

I'.? -l �

274 Chapter 1 0. The role of Material Handling Systems in Evaluating Layouts

Measure Adj Benefit Transport Cost
Greedy s Greedy s

Transport Cost 122782.83 1 12410.92 12731 7.35 120252.87
MHS Length 81 .23 77.37 88. 1 1 80.53
Adj benefit 4 186.42 4 105.44 2159.47 4 1 63.07
Transport Approx 35768.85 34164.54 49255.27 34766.56

Table 1 0.9: Deltahedron results under Adjacency Benefit and Transportation Cost
Objectives for n = 10

Measure Adj Benefit Transport Cost
Greedy s Greedy s

Transport Cost 375169.26 374264.26 383009. 12 381954 . 10
MHS Length 140.28 133.52 160.67 143.83
Adj Benefit 7441 .69 7258.44 3282.00 7238. 18
Transport A pprox 97643.98 92236.90 128128.34 89900.45

Table 10 . 10 : Deltahedron results under Adjacency Benefit and Transportation Cost
Objectives for n = 15

paper (3 1] which uses the transportation cost by approximating the centroid-to­

centroid distances. Upon examination of the method of Giffin and Foulds we see

that there is an inconsistency between the choice of the initial Tetrahedron, and

the placement of the subsequent vertices. In order to remedy this, we brought the

initialisation into line with the insertion process by greedily choosing the Tetra­

hedron of minimal cost. We will see that this led to some surprising results, and

hence we also implemented the S-construction in order to generate an alternative

MPG under this objective. The results of the constructions are given in Tables 10 .9

- 1 0. 1 3.

The most surprising feature of this experiment is the performance of the greedy

approach under the transportation cost objective. In all cases the length of the

MHS is longer than the other methods, while for n larger than 20, the true trans­

portation cost is smaller. Furthermore, the adjacency benefit scores for this ap­

proach are significantly inferior to those constructions under the adjacency benefit

objective, and the S-construction under the transportation cost objective, being

only around 40% of the other adjacency benefit scores. Intuitively we would ex­

pect this method to perform well , however the method actually adds the vertices

1 0.5. MHS Compu tational Experiments 275

Measure Adj Benefit Transport Cost
Greedy s Greedy s

Transport Cost 919898.24 906889.55 889636.84 954459.40
MHS Length 220.63 209 .51 244.64 230.77
Adj Benefit 1 1506.27 10943 .91 4534.40 10553 .31
Transport A pprox 225307.59 208681 .26 280399.99 195920. 7 1

Table 10. 1 1 : Deltahedron results under Adjacency Benefit and Transportation Cost
Objectives for n = 20

Measure Adj Benefit Transport Cost
Greedy s Greedy s

Transport Cost 1665489.18 1672619 .34 1576721 .50 1724804.55
MHS Length 281 .30 275.60 333.66 3 1 1 .83
Adj Benefit 15373.38 14497.27 5580.44 1 3623.42
Transport Approx 402046.64 358686.44 480631 .47 321901 .44

Table 10.12: Deltahedron results under Adjacency Benefit and Transportation Cost
Objectives for n = 25

Measure Adj Benefit Transport Cost
Greedy s Greedy s

Transport Cost 2747796.95 2844532.97 2589838.73 29154 10.56
MHS Length 352.80 348.77 429.40 423.73
Adj Benefit 19157.67 18509.93 7127.31 16584.04
Transport Approx 615854 . 13 561481 .24 740859.48 479819 . 15

Table 10.13 : Deltahedron results under Adjacency Benefit and Transportation Cost
Objectives for n = 30

276 Chapter 10. The role of Material Handling Systems in Evaluating Layouts

with minimal material flow first. For example the initial Tetrahedron can be con­

structed using four facilities having no material flow between any pair, resulting

in a transportation cost of zero. However placing all of these vertices with smaller

flows first makes the efficient placing of pairs of facilities with large material flows

difficult . For this reason we implemented the S-construction, which ensures that

the facilities with the largest flows are placed first, resulting in a better approxi­

mation of the transportation cost, and providing more realistic adjacency benefits.

Note, however, that the actual transportation cost in these layouts is inferior to

the other approaches. The effectiveness of the S-construction, which is usually

outperformed in the Deltahedron methods under the adjacency benefit objective

by the other constructions [13] , is not surprising upon reflection, as it ensures ver­

tices with large flows are placed early in the MPG. It is interesting to note that

the two constructions under the adjacency benefit objective both provide efficient

approximate and actual transportation costs. As a final comment we also see that

the approximation of Foulds and Giffin of the transportation cost of the layout

severely underestimates the actual cost of material flow through the MHS under

the MHS design outlined. This is, of course, due primarily to the transportation

cost approximation being calculated without recourse to the actual layout .

Cod a

In this chapter we have investigated the incorporation of a Material Handling Sys­

tem, into a layout for the purpose of generating a further comparison scheme based

upon transportation cost. The heuristic nature of the MHS construction is not a

major concern, as we are interested in calculating the transportation cost of the

MHS with respect to the MHS of another layout on the same problem constraints,

under the same MHS construction. This enables a relative ranking of the layouts,

and we assume (as the MHS construction will be a function of the layout) that

the layout which produces the best transportation cost heuristically is also likely

to produce the best transportation cost optimally. Therefore once we have chosen

a preferred layout, we can concentrate more fully on obtaining the best MHS for

that layout .

We have seen m this chapter that the adjacency benefit objective does not

1 0.5. MHS Computational Experiments 277

correlate with the transportation cost objective. Further we have seen that ap­

proximating the transportation cost does not necessarily provide a surrogate for

the true t ransportation cost, by severely underestimating the impact of the layout

structure on the transportation cost. There are perhaps a number of areas for fu­

ture work within the design of MHSs. In this chapter we have been concerned with

the role of the MHS as another evaluator for comparing layouts, and hence have

concentrated more on the consistency of the MHS construction between layouts.

We have considered only one MHS construction in this work; it would appear

that the development of further constructions would be worthwhile, and indeed

a characterisation of the relationship between the layout structure and the M HS

construction would prove most useful. Other directions for research of the role of

MHS could examine how the transportation cost might be more realistically ap­

proximated within the MPG. A useful starting point could be the examining of

the EDIST measure proposed by Bozer and Meller [16] as an alternative to the

centroid-to-centroid distance measure. A further interesting problem in MHS de­

sign is the possible decomposition of the flow matrix into sets of facilities with large

interactions to provide a set of disjoint MHSs.

In the next chapter, we attempt to put the material covered so far into practise,

by considering the design of a layout from conception through to the final con­

struction of the set of alternative layouts. We will use the ideas of decomposition,

interaction and perturbation to generate the layouts, and the MHS constructions

and regularity measures to quantifiably rank the layout alternatives.

278 Chapter 1 0. The role of Material Handling Systems in Evaluating Layouts

Chapter 1 1

Putting It All . Together - A

Tutorial

279

In this chapter we conduct two case studies from the raw data through to the

generation of a set of alternative layouts, with the aims of showing the application

of the many methods and to coalesce ideas discussed throughout this thesis.

1 1 . 1 Case Study 1 : A Manufact uring P lant

This problem is an 18 facility problem given on pg 180 of Francis, McGinnis and

White (36] . The problem given is for a manufacturing plant, with material flows

between facili ties provided in Table 1 1 . 1 , with area specifications and facility func­

tions in Table 1 1 .2. We assume that the adjacency benefits are proportional to the

material flows in accordance with our discussion in Chapter 10 on the relationship

between adjacency and material flow.

TESSA coupled with a Tabu Search routine returns an MPG, as shown in

Figure 1 1 . 1 , which at first sight appears complicated and rather overwhelming,

of overall adjacency benefit of 1 234 (the upper bound is 1314) , while Deltahe­

dron generates an MPG of weight 1216 . A quick test shows Figure 1 1 . 1 to be

non-Deltahedron generateable, hence we will concentrate on generating a practical

layout dual to this MPG, while remembering that we can guarantee a layout with

a worst-case facility shape of T for a decrease in benefit of 18.

Layouts generated via myopic implementation of the VSA, Contraction and

SIMPLE techniques are impractical and not worth pursuing further, as is plainly

280

2 3 4 5 6 7
1 100 0 0 0 0 0
2 25 22 30 62 0
3 0 0 0 0
4 0 1 0 5
5 5 10
6 10
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7

Chapter 1 1 . Putting It All Together - A Tutorial

8 9 10 1 1 12 13 14 15 16 1 7
0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 18 0 0
0 0 0 20 5 0 0 0 0 0
0 0 0 5 0 0 0 0 0 0
0 7 5 0 0 0 0 3 0 0
0 5 5 6 26 2 0 31 0 0
0 5 3 10 23 0 1 20 0 0

0 0 15 10 5 7 8 0 0
2 5 0 8 0 0 0 0

0 4 3 0 0 0 0
35 25 7 1 0 0

5 2 5 0 0
15 30 0 0

32 0 0
1 75 0

1 75

Table 1 1 . 1 : Adjacency Benefits for the Manufacturing Plant Problem

Facility Function Area Facility Function
1 Receiving 500 10 Broaching
2 Raw Materials Storage 1 000 1 1 Milling
3 Shearing 200 12 Drilling
4 Sawing 200 13 Heat Treating
5 Automatic Screw Machine 4000 14 Plating
6 Turret Lathe 2000 15 Assembly
7 Engine Lathe 500 16 Finished Goods Storage
8 Punch Press 1 000 1 7 Shipping
9 Robbing 400 18 Exterior

Table 1 1 .2 : Function and Area of Facilit ies for the Manufacturing Plant Problem

1 8
1 00
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1 75

Area
300

3000
1 200
500
300
700

1000
500

-

1 1 . 1 . Case Study 1 : A Manufact uring Plant

2

281

Figure 1 1 . 1 : MPG generated by TESSA for the Manufacturing Plant Problem

Measure VSA CA SIM PLE Deltahedron TA(T) TA(I) ST
Adj Benefit 1234 1234 1234 1216 1 147 1 1 77 1 1 19

Ave Ci 9.41 1 1 .06 20.82 4 .71 4.59 4 .00 4.00
Max Ci 18.00 26.00 74.00 6.00 6.00 4.00 4.00

Ave ai/Si 0.201 0 .186 0.208 0. 137 0. 163 0 . 175 0 .407
Min ai/Si 0.042 0.024 0.024 0.033 0 .018 0.013 0.015
Ave ai/ft 0.400 0 .460 0.571 0.800 0.744 1 .000 1 .000
Min ai/Ri 0.053 0.037 0.028 0.046 0.029 1 .000 1 .000

A ve 4Jcii/ Pi 0.452 0.438 0.474 0.563 0.538 0.618 0 .746
.M in 4Jcii/ Pi 0.190 0. 136 0.064 0.214 0. 165 0.225 0.238

Transport Cost 1 791 16.66 207961 .65 13481 1 .4 1 221020.49 168925.80 183940.48 149736. 1 1
M H S Length 973.67 1228.85 171 1 .02 905.62 1 14 1 . 1 9 1005.50 714.73

Table 1 1 .3: Adjacency, Regularity and Transportation Data of the Layouts generated for the Manufacturing Plant Problem

� 00 �

g
� .,....
r:!l
1-.o
1-.o

'\j
1:: .,.... .,..,..
s ·

Cll .,..,..
:::r
r:!l
)...
� .,....
0 ::::!.
e:..

I

1 1 . 1 . Case Study 1 : A Manufacturing Plant

Decomposition 1
(Figure 1 1 . 7)

Adj Benefit 1234
Ave Ci 4 .70
Max Ci 8.00

Ave ai/Si 0.316
Min ai/ S; 0 .054
Ave aifll; 0.781
Min ai/Ri 0.075

Ave 4yliii/ Pi 0 .697
Min 4..;ai/ Pi 0 .271

Transport Cost 210423.36
MHS Length 810 .26

283

Decomposition 2
(Figure 1 1 .8)

1234
4.70
6.00
0.233
0.034
0.766
0.085
0.610
0.288

293618. 1 0
1096.99

Table 1 1 .4 : Adjacency, Regularity and Transportation Data of the Layouts gener­
ated by Decomposition for the Manufacturing Plant Problem

seen in Table 1 1 .3, where the worst case number of corners on each of these layouts

is 18, 26 and 74 respectively. For brevity their layouts are not included. Layouts

generated by the Tiling, Deltahedron , and Spanning Tree Algorithms are much

more promising however, and are depicted in Figures 1 1 .2 - 1 1 .5 , with their corre­

sponding transportation, adjacency and regularity values provided in Table 1 1 .3.

We see that none of these layouts is initially ideal , especially with regard to the

elongation of facilities 3 and 4. From Table 1 1 .3 it appears that the Spanning Tree

layout is the most regular having the best regularity value in every category, except

the minimum bounding square, and further provides the shortest, and most cost

effective (disregarding the SIMPLE layout as discussed already) MRS. Subjective

examination of these layouts appears to confirm the superiority of the Spanning

Tree layout.

From this j uncture we also attempt alternative approaches for increasing the ef­

ficiency of the layouts. Interactive Decomposition i s the obvious route to try. There

exist nine separating triangles in the MPG of Figure 1 1 . 1 , providing the decom­

position tree of Figure 1 1 .6 and hence the MPG is found to be 7-decomposable.

Two alternative decomposition layouts, provided in Figures 1 1 .7 and 1 1 .8 with

data values in Table 1 1 .4, are created using The Templates of Appendix A, and

the Contraction Algori thm with interaction. The regularity values of these Decom­

position layouts are comparable to those of the Til ing, Deltahedron and Spanning

284

16
1 2

3

8

1 3

5

10

1 1

Chapter 1 1 . Pu t ting It All Together - A Tutorial

1 8

7

Figure 1 1 .2: Deltahedron Layout for the Manufacturing Plant Problem

I

1 1 . 1 . Case Study 1 : A Manufact uring Plant

1 8

1 1

2
1 5

6 1 4

1 3

1
1 6

1

285

1 2

5

Figure 1 1 .3 : Tiling Algorithm(T) Layout for the Manufacturing Plant Problem

286

2

12

1 1

Chapter 1 1 . Put ting It All Together - A Tutorial

18

5
6

7

15

14 1 6

8 17

Figure 1 1 .4 : Tiling Algorithm(!) Layout for the Manufacturing Plant Problem

1 1 . 1 . Case Study 1 : A Manufact uring Plant

18

-
...
2

-
...

5 6

-
-

12

4 � -
7 -

4 •

-
10 -

�

1 1

.. •
1

17

8 -
...

16

4 •

• 4 • 15
'

13
4 •

4

4 • 9

Figure 1 1 .5: Spanning Tree Layout for the Manufacturing Plant Problem

287

14

•

288 Chapter 1 1 . Pu t ting It All Together - A Tutorial

(1 ,2,5, 1 5 , 1 6, 1 7' 1 8)

(1 ,2,8, 1 5) (2,5,6, 15)

(5,6,7 , 15) (2,4,5,6)

(5,6,7, 1 0) (6,7, 1 1 , 1 3 , 14, 1 5) (2,3,4,6)

(6,7, 1 1 , 1 2) (7,9, 1 1 , 1 3)
Figure 1 1 .6 : Decomposition Tree of the MPG for the Manufa�turing Plant

Tree layouts, yet with a higher adjacency benefit. This is offset however by the

substantially higher transportation costs. None of these layouts is currently ideal,

so we attempt to examine the layouts for possible modifications that can be applied

to increase their practicality.

The Deltahedron layout (Figure 1 1 .2) has 6 L-shaped facilities, of which only

facility 6 is really in a practical form. A number of the rectangular facilities are

particularly elongated, and the MHS on this layout appears to have an unnecessar­

i ly high cost due to the spiral type structure around facilities 8 and 12. It appears

that a reasonable amount of work is required to ensure this layout is practical , so

· while we do not completely discard it, we attempt to examine the other alternatives

that are available first .

1 1 . 1 . Case Study 1 : A Manufact uring Plant

18

2

5

12

1 1

7

9

1 6

289

8

1

1

17
13 14

Figure 1 1 .7 : First Decomposition Layout for the Manufacturing Plant Problem

290

5

9

13

14

6

8

'

Chapter 1 1 . Putting It All Together - A Tutorial

1 8

4

1 1
2

1 2
3

1

Figure 1 1 .8 : Second Decomposition Layout for the Manufacturing Plant Problem

1 1 . 1 . Case St udy 1 : A Manufacturing Plant 291

Facility Problem Possible Remedy
3 Elongation Repositioning to attain as many of the adjacencies (2 ,3) ,

(3 , 1 1) and (3, 12) , the most important being the first
two. Possible positioning in 1 2 adjacent to 2 and 1 1 ,
but will create a faultline. Alternatives require either
(2 ,3) or (3 , 1 1) to be not met .

4 Elongation Repositioning such that adjacency (2,4) is maintained,
with as many of (4,6), (4,7) and (4, 1 1) as possible also
being attained. Unable to satisfy all 4 adjacencies, but
positioning in 12 adjacent to 2 and 6 is possible. Alter-
native of positioning in 12 adjacent to 7 as well creates
a faultline.

9 Elongation Has many small adjacencies of which a overall benefit of
7 is currently realised. Positioning adjacent to 1 3 allows
increase of at least 1 to the overall benefit. Positioning
in 8, deleting zero adjacency (8 ,18) retains dimensional-
isability. Possible alternatives require deletion of highly
weighted adjacencies.

10 Elongation As for 9 has many small adjacencies of which only a
total benefit of 5 is currently derived. Flexibility allows
repositioning adjacent to any one of 5,6,7 or 12 at a cost
of at most 2.

Table 1 1 .5 : Considerations for the modification of the Tiling Algor1thm Layout
(Figure 1 1 .4)

The Tiling Algorithm layout with a worst-case of T shaped facilities (Fig­

ure 1 1 .3) , suffers from unnatural elongation. Even those facilities which are red­

angularly shaped would require a substantial modification to ensure the regularity

of this layout . Further the adjacency benefit of this layout is dominated by the ad­

jacency benefit derived from the Tiling Algorithm where we only allow rectangular

facilities.

The Tiling Algorithm layout with only rectangular facilities (Figure 1 1 .4) re­

quires the further development of facilities 3,4,9 and 10 . These facilities can be

made more regular by a simple area perturbation, or via an analysis of the zero

weight adjacencies in the benefit matrix. Table 1 1 .5 provides some insights into

the directions these modifications might take.

From Table 1 1 .5 we see that the repositioning of facility 4 is quite structured,

292 Chapter 1 1 . Pu t ting It All Together - A Tutorial

and so is performed first (note we do not choose the alternative remedy as we ini­

tially want to retain dimensionalisability) , in case it becomes unavailable as a result

of other modifications. Facilities 9 and 10 are dealt with next due to their as they

retain dimensionalisability. Facility 3, whose only realistic modification results i n

the loss of dimensionalisability, i s performed last, as once dimensionalisability is

lost modifications become much more difficult. Facility 4 is repositioned within

facility 12, adjacent to facilities 2,3 and 6. This removes the zero weight adjacen­

cies (2,12) , (1 ,4) , and (4,18) , replacing them with other zero weight adjacencies,

and the adjacency (4 ,6) of weight 10; hence this change increases the regularity,

retains dimensionalisability, and increases the overall benefit by 10 ! Facility 9 i s

repositioned in facility 8 adjacent to facilities 13, 17 and 18 for a total decrease in

adjacency of 1 ; meanwhile facility 10 is repositioned in facility 12 between facili­

ties 4 and 12, resulting in an increase in benefit of 4. As we have already stated,

repositioning of facility 3 creates a faultline which threatens the adjacency between

1 1 and 12. However the area specifications enable us to create the layout without

violating that adjacency. This loss of dimensionalisability is not a concern if we are

content with this as our final layout ; however further modification may be difficult

in the presence of the newly created faultline. This modified layout is provided

in Figure 1 1 .9 , with regularity, transportation and adjacency values provided in

Table 1 1 .8 .

The Spanning Tree layout of Figure 1 1 .5 only requires the examination of fa­

cilities 3 and 4 as seen in Table 1 1 .6 . Placement of facility 3 within facility 6 ,

adjacent to facility 8 provides an increase in benefit of 5 (through the adjacency

(3 ,12)) , while placement of facility 4 also in facility 6 , adjacent to facility 3 has

a net increase of 10 . This improved layout is provided in Figure 1 1 . 10, with the

appropriate data values in Table 1 1 .8.

Upon the first Decomposition layout (Figure 1 1 .7) we can perform adjacency

swaps of zero net change to create rectangular facilities 1 and 13, yet there is little

which can be achieved with facilities 6, 7 and 15, due to their large number of

non-zero material flows with other facilities.

The second Decomposition layout (Figure 1 1 .8) suffers from a similar problem

with the elongation and L-shape of a number of facilities, as shown by Table 1 1 .7.

From Table 1 1 .7 , we see that remedies applied to facili ties 1 1 and 13 have no net

effect on the overall benefit, and hence are performed first; indeed , facility 12 is

1 1 . 1 . Case Study 1 : A Manufact uring Plant 293

Facili ty Problem Possible Remedy
3 Elongation Repositioning to attain as many of the adjacencies (2,3),

(3, 1 1) and (3, 12) ; both (2,3) and (3, 1 1) cannot be met
without violating (8, 12) and creating a faultline. Repo-
sitioning in 6 adjacent to 2 and 12 results in an increase
in overall benefit of 5 . Positioning in 5 adjacent to 2 will
not reduce the elongation significantly without requiring
5 to become L shaped . Positioning in 17 adjacent to 2
is a valid alternative, but does not increase the overall
adjacency benefit.

4 Elongation Repositioning such that adjacency (2,4) is maintained,
with as many of (4 ,6) , (4, 7) and (4 , 1 1) as possible also
.being attained. Unable to satisfy all 4 adjacencies, but
positioning adjacent to 2 and 6 is possible, by placement
of 4 in 6 while retaining (4,6). Alternatives are similar
to those for facility 3.

Table 1 1 .6: Considerations for the modification of the Spanning Tree layout (Fig­
ure 1 1 .5)

now adjacent to facility 7 on two sides, hence this adjacency will be most likely

retained. Modifications to facility 7 are now much cheaper, but significant sacrifices

are made in modifying facilities 2 and 6. Final simple changes (including swapping

facilities 3 and 4) create a rectangular layout shown in Figure 1 1 . 1 1 . This results

in a very practical layout , but at a decrease in adjacency of 29. The biggest loss is

the inability to retain the adjacency (2 , 15) .

In the absence of alternative possibilities, we return to the Deltahedron layout

(Figure 1 1 .2) . We do not produce an extensive table of the possible remedies, as

it should be becoming clearer by examining the layout and the benefit matrix, as

to which options are available. The L-shape of figures 6 and 7 can be removed at

a cost of 10 to the adjacency benefit, by repositioning the block (3,4) into facility

5, adjacent to facilities 2 and 6 , and assigning 5 as the placement host of the

block (9,10) . Facility 5 becomes T-shaped, but this is removed by deletion of the

adjacency between facilities 5 and 6. This leads to a solution of benefit only 1

greater than that of Figure 1 1 . 1 1 , yet we must still deal with the elongation of

facilities 1 and 17 , and the L shapes of facilit ies 12 and 15. We do not pursue this

further, as it is unlikely that we will obtain a realistic alternative.

Therefore we are left \·vith the three modified layouts of Figures 1 1 .9 - 1 1 . 1 1

294

Facility Problem
1 L-shape,

elongation

2 L-shape,
elongation

6 L-shape

7 L-shape,
elongation

1 1 L-shape

13 L-shape

I

Chapter 1 1 . Put ting It All Together - A Tutorial

Possible Remedy
Reposition 8 which currently offers overall benefit of 18 ,
adjacent to either 2 or 1 1 (for a maximum decrease of 3)
while attempting to attain adjacencies with as many as
possible of 12 , 13 , 14 and 15. Alternative involve the cur-
rent placement of facility 8 with either (1 , 15) -+ (8 , 1 7)
or (1 , 2) -+ (8, 18) , only the first of which is viable with
respect to adjacency benefit.
Deletion of either adjacencies with (6,8, 15) or (4,5) . Nei-
ther is particularly promising so we await further alter-
natives through the application of other modifications.
Loss of adjacencies (4,6) and (5,6) at a cost of 15. Al-
ternative of losing adjacency with 7, 1 2 and 15 is more
costly.
Loss of (6,7) and (7 ,12) is costly, but modification on 1 1
first (as we will see) reduces the cost of this significantly.
Alternative is to lose (7 , 15) which is also costly.
Reposition 1 2 so that 12 covers the 2-joint currently
covered by 1 1 improves regularity with no adjacency
changes.
Adjacency swap (7, 13) -+ (9, 15) at zero cost.

Table 1 1 .7 : Considerations for the modification of the Decomposition layout (Fig­
ure 1 1 .8)

Decomposition Spanning Tree Tiling Algorithm
Adj Benefit 1205 1 1 34 1 190

Ave Ci 4.00 4.00 4.00
Max Ci 4.00 4 .00 4.00

Ave ai/Si 0.304 0.434 0 .239
Min ai/Si 0.034 0 .045 0 .035
Ave ai/� 1 .000 1 .000 1 .000
Min ai/ft 1 .000 1 .000 1 .000

Ave 4.,;ai/ Pi 0.701 0. 784 0.701
Min 4..;ai/ Pi 0.356 0.405 0 .364

Transport Cost 152754.35 161934.04 157273.676
MHS Length 701 . 74 739.41 827.57

Table 1 1 .8 : Adjacency, Regularity and Transportation Data of the Modified Lay­
outs for the Manufacturing Plant Problem

1 1 . 1 . Case Study 1 : A Manufact uring Plant

1 8

3

7

1 5

14

1 1 8

1 7 16
9

295

6 5

Figure 1 1 .9: Modified Tiling Algorithm Layout for the Manufacturing Plant Prob­
lem

296

5

7

Chapter 1 1 . Put ting It All Together - A Tutorial

1 8

2

6

1 2

1 1

4 3

8

1 7

1 6

1 5

1 3

9 14

Figure 1 1 . 10: Modified Spanning Tree Layout for the Manufacturing Plant Problem

1 1 . 1 . Case Study 1 : A Manufact uring Plant

1 8

5

7

9

16 1 5 1 1

14

6

8

297

1 2

2
4

Figure 1 1 . 1 1 : Modified Decomposition Layout for the Manufacturing Plant Prob­
lem

298 Chapter 1 1 . Put ting It All Together - A Tutorial

which provide a good set of alternative layouts (we could also retain the initial

Spanning Tree layout (Figure 1 1 .5) which has the best transportation cost) . The
three layouts are compared in Table 1 1 .8 , where we see that the Spanning Tree

layout provides the best regularity values, but inferior adjacency benefit and trans­

portat ion cost. The remaining two layouts are comparable with regard to regularity,

but the Decomposition layout has the edge in both adjacency benefit , and trans­

portation cost. Before a final decision could be made on which of these layouts

would be the most practical, we would require the evaluation of the dimensions

of the machines to be placed in each facility. For instance a long turret lathe (fa­

cili ty 6) could probably not be accommodated within the Spanning Tree layout

(Figure 1 1 . 10) , while assembly (facility 15) may not be efficient (due to elongation)

within the Decomposition layout (Figure 1 1 . 1 1) .

There exist other possible layouts which could be generated by Decomposition,

and by Deltahedron ; further, due to the large degree of non-zero elements in the

benefit matrix, we can generate a vast number of MPGs of weight 1234 (the best we

generated) , each with different substructm;es and characteristics. The enumeration

of all possibilities is in general impractical , however we can implicitly generate a

number of these alternatives as we consider adjacency swaps within the layout

which generate zero net change to the adjacency benefit .

1 1 . 2 . Case Study 2: A S mall Job S hop

The second problem which we will study is a 17 facility problem given on pg 134 of

Francis, McGinnis and White [36) . The problem given is for a small job shop, with

adjacency benefits determined by the A ,E,I ,O,U,X scheme as shown in Table 1 1 .9,

with functional and area data in Table 1 1 . 1 0.

Unlike the example of Case Study 1 , the data is not expressed as transportation

cost data, or as numerical adjacency benefit scores. It is difficult to place a numeri­

cal value on each of the A,E,I ,O,U and X benefits, however as we have concentrated

on numerical data throughout this thesis , it would appear prudent to attempt to

determine numerical values for the adjacencies. \Ve assign values to the classes as

given by Table 1 1 . 1 1 . vVe do not in general deal with negative adjacency benefits,

and hence we add 256 to each benefit, to obtain the adjusted benefit scores. This

does not change the objective function, simply adding a fixed value to it , as shown

1 1 . 2. Case Study 2: A Small Job Shop

2 3 4 5 6 7 8 9
1 u 0 A X u A X I
2 0 u E E u 0 0
3 u I u u 0 u
4 u E E 0 u
5 I u E I
6 u I u
7 0 u
8 u
9

10
1 1
12
13
14
15
16

10 1 1 12 13 14 15 16 17
u E I u u X 0 u
u E I u I X 0 u
u u 0 u 0 0 0 u
u u u u u u u u
u 0 0 u I 0 0 u
u u u u u u u u
u u u u u u u u
I I E A u I I u
u A u u u u u A

u u A u u u A
u u u u u u

u u u u u
u u u u

u 0 u
I u

u

Table 1 1 .9: Adjacency Benefits for Small Job Shop Problem

Facility Function Area Facility Function Area
1 Foundry 2000 10 Shipping 3000
2 Press 3000 1 1 Raw Material Storage 2500
3 Drill 1000 12 WIP Storage 2000
4 Grind 500 13 Finish Goods Storage 3000
5 Machine 3000 14 Maintenance 500
6 Weld 500 15 Offices 2000
7 Tumble 500 16 Locker Room 1000
8 Assemble 4000 17 Exterior -

9 Receiving 2000

Table 1 1 . 10: Function and Area of Facilities _for the Small Job Shop

299

300

Benefit
A
E
I
0
u
X

Chapter 1 1 . Put ting It All Together - A Tutorial

Score Adjusted Score
64 320
1 6 272
4 260
1 257
0 256

-256 0

Table 1 1 . 1 1 : Benefit Scores for the Small Job Shop Problem

by Giffin [39] . Indeed all values shown relating to the benefit scores have this

fixed cost removed to provide the true benefit. The adjacency graph derived from

TESSA coupled with a Tabu Search routine is shown in Figure 1 1 . 12, with total

adjacency benefit of 596, while the Deltahedron MPG is given in Figure 1 1 . 13, and

has overall adjacency of 618. The two interesting points about the MPGs, is that

the TESSA generated MPG is also Deltahedron generateable, and the MPG gen­

erated from Deltahedron has a better overall benefit than the TESSA MPG, hence

we will use the Deltahedron generated MPG. The upper bound on the value of any

MPG from this problem data is 648, involving all of the A, E and I adjacencies,

the remainder being 0 adjacencies.

From the Deltahedron MPG we generate a layout via each of the techniques we

have discussed for given MPGs, as well as generating (from the benefit matrix), the

Tiling Algorithm and Spanning Tree Algorithm layouts. The adjacency benefits,

regularity scores, and MHS costs are given in Table 1 1 . 12. We see from this table

that the Tiling Algorithm with a worst room shape of a rectangle provides the best

transportation cost , while the best regularity values are provided by the Spanning

Tree Layout . Of the layouts designed from the Deltahedron MPG, the Contraction

Algorithm does surprising well with respect to the transportation cost . Deltahedron

however provides the best regularity scores for its layout. The layouts generated

by each of these designs are shown in Figures 1 1 . 14 - 1 1 .20.

We can see from the Figures that no one layout stands out as being very good

in all respects. The VSA, CA and Sll\1PLE layouts are deceptive, as there are walls

which cannot be seen as they are too close too each other. For example, facilities

1 0 and 1 1 do not appear to be adjacent in the VSA layout (Figure 1 1 . 14) , 14 and 6

do not appear to be adjacent in the CA layout (Figure 1 1 . 15) , and in the SIMPLE

1 1 .2. Case Study 2: A Small Job Shop

17

Figure 1 1 . 12 : MPG generated by TESSA for the Small Job Shop Problem

301

5

302

8

Chapter 1 1 . Put ting It All Together - A Tutorial

17

Figure 1 1 . 13 : MPG generated by Deltahedron for the Small Job Shop Problem

Measure VSA CA SIMPLE Deltahedron TA(T) TA(I) ST
Adj Benefit 618 6 18 6 18 6 18 602 603 599

Ave Ci 9.25 1 1 .50 14.88 4 .88 5.00 4.00 4 .00
Max Ci 20.00 26.00 60.00 8.00 8.00 4.00 4.00

Ave ad Si 0 .2 1 7 0.279 0. 153 0.200 0.202 0 . 1 7 1 0.402
Min ai/Si 0.069 0.054 0.024 0.029 0.01 6 0.0 1 9 0.083
Ave ai/ Ri 0.558 0 .582 0.501 0.74 1 0 .636 1 .000 1 .000
Min ai/Ri 0 . 1 3 1 0. 1 14 0.024 0.091 0 .016 1 .000 1 .000

Ave 4fo/Pi 0.56 1 0.591 0.458 0.598 0 .509 0.6 1 7 0.853
Min 4fo/Pi 0 .235 0 .2 10 0. 126 0.301 0. 128 0.270 0.532

Transport Cost 1 292 13 .85 1 06667.58 1 1 6755.43 127506.64 202498.44 1 05472.40 1 08 106.02
MHS Length 1 148.56 757.05 1084.23 981 . 1 3 1 361 .05 1 09 1 . 19 842.39

Table 1 1 . 12: Adjacency, Regularity and Transportation Data of the Layouts generated for the Small Job Shop Problem

.._
.._

�

� Cb
CJi
.,...
s:::
Cl..
�
�
;:t..
r3
�
�
0"'

�
.g

VJ 0 VJ

304

3

1 5

1 6 2

1 3

Chapter 1 1 . Put ting It All Together - A Tutorial

17

5 1 1

1

8

12

9

10

Figure 1 1 . 14: VSA Layout for the Small Job Shop Problem

1 1 .2. Case Study 2: A Small Job Shop

2

1 2
6

15

16

5

9 1 0

1 7

305

8

1 4
3

1 1

4

1

7

1 3

Figure 1 1 . 15: Contraction Algorithm Layout for the Small Job Shop Problem

306

8

13 10

4

1 1

1

Chapter 1 1 . Put ting It All Together - A Tutorial

17

2 12
1 5

1 6

5 9

3

14
6

Figure 1 1 . 16 : SIMPLE Layout for the Small Job Shop Problem

1 1 .2. Case Stu dy 2: A Small Job Shop

8

9
5 1 6

1 5

3

2

1

1 0

1 7

1 1
1 2

4

Figure 1 1 . 1 7: Deltahedron Layout for the Small Job Shop Problem

307

1 3

308

9

2

5

8

Chapter 1 1 . Put ting It All Together - A Tutorial

1 7

1 3

1 6

1 2 1 5

1 1

1

1 0

Figure 1 1 . 18: Tiling Algorithm (!) Layout for the Small Job Shop Problem

1 1 .2. Case Study 2: A Small Job Shop

17

r-��================================� 5
2

9 1 1

1 2 1 0

1 3

8

1 6

1 5

309

Figure 1 1 . 19: Tiling Algorithm(T) Layout for the Small Job Shop Problem

310

1 0

--

1 3

--

8

--

1 2 1 5

4 t 4

Chapter 1 1 . Put ting It All Together - A Tutorial

17

9

-.._,

1 1

--

1

2

4 � -.._,
14 6

16 t
5

4
4 • 4 • 4 7

• 4 •
- 4 • 4 t -

3

... ..

Figure 1 1 .20: Spanning Tree Layout for the Small Job Shop Problem

1 1 .2. Case Study 2: A Small Job Shop 3 1 1

layout (Figure 1 1 . 16) , facilities 2 and 6 do not appear to be adjacent. The reality

is that in fact all of these adjacencies are met , however the tentacles of one or both

of these pairs of facilities are too narrow too be drawn. Note the maximum number

of corners for each of these layouts in Figure 1 1 . 12. Therefore while these layouts

on paper appear to perform reasonably well, they are not realistic alternatives. Of

the other layouts, the Tiling Algorithm layout, with the worst facility shape of a

T, (Figure 1 1 . 19) has an extremely high transportation cost ; examining the actual

layout, we see that facil ities 4,6,7 and 1 4 are extremely elongated. The remaining

three layouts appear promising. Note that since the highest weighted MPG is

Deltahedron, decomposition of the MPG will not provide extra information , as we

already know that the MPG is 4-decomposable.

Consider the Spanning Tree layout of Figure 1 1 .20. The most concerning factor

is the length-to-width ratio of facilities 6 and 14. The function of facility 6 is

maintenance, while that of facility 14 is the weld. The elongation of facility 14

can be remedied by allowing the removal of the adjacencies (2, 14) and (8 , 14) ,

replacing them with (5, 8) and (5 , 16) . This allows facilities 5 and 8 to satisfy their

essential adjacency (which was previously unmet) and creates a squarer facility 14 .

Furthermore this change results in an increase in adjacency of E + 0 - I - U = 13 .

This creates a new Spanning Tree layout with adjacency benefit of 612. Note that

this new layout can still be constructed by the Spanning Tree algorithm, as the

underlying tree adjacency graph would replace edge (2, 14) with edge (5, 14) . The

elongation of facility 6 can also be remedied, by allowing the swap of adjacency

(6,, 1 7) , for adjacency (3 , 4) . This change has a net effect of zero on the adjacency

benefit, and provides a more regular facility 6. Note that this change could not be

accommodated within the normal Spanning Tree routine. This perturbed Spanning

Tree layout , given by Figure 1 1 .2 1 , with regularity, transportation and adjacency

values given in Table 1 1 . 13, provides a valid alternative layout for the Small Job

Shop, as each facility is able to function more efficiently.

The Deltahedron layout has similar concerns, in particular to the elongations of

the facilities 4,6 and 7. Note that facility 6 is impractical in its current form. This

applies to all the Deltahedron layouts which can be constructed from the Delta­

hedron MPG, using the alternative possibilities for the top facility, and insertions

of subsequent facilities. Furthermore all of these possible layouts contain four L
shaped facilities and facility 6 as a T shaped facility. In order to obtain a functional

3 1 2

10

--

1 3

-...

8

--

12 15
� � �

Chapter 1 1 . Put ting It All Together - A Tutorial

17

9
-...

1 1

-...

2

4 � 1

5 � � 6

16
� 4 � - 4 7

... , � � �
14 � � 3

... ..

Figure 1 1 .2 1 : Modified Spanning Tree Layout for the Small Job Shop Problem

1 1 . 2. Case Study 2: A Small Job Shop

Measure
A dj Benefit

Ave Ci
Max Ci

Ave ai/Si
Min ai/Si
Ave ad�
Min ai/ it

Ave 4yfiii/ Pi
Min 4yliii/ Pi

Transport Cost
MHS Length

3 1 3

Modified ST
612

4 .000
4.000
0.477
0. 1 70
1 .000
1 .000
0.830
0.246

109036.36
773.87

Table 1 1 . 1 3: Adjacency, Regularity and Transportation Data of the Modified ST
Layout generated for the Small Job Shop Problem

layout using the Deltahedron layout of Figure 1 1 . 1 7, we would be required to swap
(6 , 8) for (12, 15) , resulting in a decrease of four in the adjacency benefit. Facility 4

would also be required to lose its adjacency with facility 9, which would allow the

adjacency (7, 10) to be met with no net change to the adjacency benefit. However

we still have facilities 2, 10 and 1 1 L shaped after performing these perturbations.

T his is especially undesirable for facility 2 , as the press would be required to fit

within this facility, which is unlikely in its current form. Modifications to this lay­

out to make facility 2 rectangular would result in one of its essential adjacencies,

i nvolving facilities 5 and 6, being lost. Alternatively, we could make facility 5 the

placement host of the block of facilities (3 , 6, 12, 14 , 15 , 16) , creating an L shaped

facility 5, however facility 5 's function as the machine would become infeasible.

Therefore although the Deltahedron layout init ially appears to be promising, in

hindsight the layout becomes impractical when functional considerations are ex­

amined.

The Tiling Algorithm layout with a worst case facility shape of a rectangle

(Figure 1 1 . 18) , exhibits again the elongation concerns of facilities 3,6,7 and 14 . The

area specifications of facilit ies 4,6, 7 and 14 have been a consistent problem, due to

their small size proportional to the remainder of the facilities' areas. Within the

Tiling Algorithm layout the remedy to these elongations is to perform swaps such

as swapping (4, 7) for (1 , 1 3) , in order to reduce the elongation of facility 7. This

however removes the essential adjacency between facili ties 4 and 7. Alternatively

3 14 Chapter 1 1 . Put ting It All Together - A Tutorial

Measure Modified TA
Adj Benefit 597

Ave C, 4.00
Max C, 4.00

Ave aafS, 0.342
Min aafS, 0.066
Ave aafR, 1 .000
Min aaf .it 1 .000

Ave 4...;a./ P, 0.803
Min 4foijP, 0.481

Transport Cost 109152.31
MHS Length 800.15

Table 1 1 . 14 : Adjacency, Regularity and Transportation Data of the Modified TA
Layout generated for the Small Job Shop Problem

we swap (7, 1 7) for (1 , 10) , which has no net change and results in an even squarer

facility 7. We must be careful in this instance that the dimensioning maintains the

adjacencies, as the dimensionalisability of the layout is lost . Facility 3 has only

one, currently unmet, important adjacency, and no essential adjacencies. This

could result in the repositioning of facility 3 , as i t currently only contributes 1

to the overall adjacency benefit , within facility 5 say. This would result in an

overall increase of I + 0 - U - U = 5. Further swaps to attain better facility

length-to-width ratios for facilities 4,6 and 14 results in the layout of Figure 1 1 .22

(which was actually created by the Spanning Tree Algorithm) as the structure of

the layout after making these changes is amenable to i t . Further we provide the

transportation, regularity and adjacency values for this new layout in Table 1 1 . 14 .

I t would again be left to a decision planner to make the final decision between

the two layouts of Figures 1 1 .21 and 1 1 .22, as their transportation and regularity

values are very similar. It is likely that the modified Spanning Tree layout is likely

to be chosen as it appears to be more robust , as facility 9 now appears a little

elongated in the modified Tiling Algorithm layout. Further, the transportation

costs are better for the Spanning Tree layout . It was perhaps disappointing that

we were unable to implement the decomposition ideas for this problem, as in general

that process creates the biggest impact . This was due to the stratified nature of the

benefit matrix . By containing only six different values, the benefit matrix was able

to generate a number of distinct, similarly weighted MPGs. This was exhibited

1 1 . 2. Case Study 2: A Small Job Shop

17

9
-
-

2
-
-

8 5

13

4 • -
-

16
4 •

1 5

14 3 � •
4 � � �

3 15

"11"' 1 1

6 1
-
-

4
-
- ·

7
-
-

10 4 t
4 t

1 2

4 •

Figure 1 1 .22: Modified Tiling Algorithm Layout for the Small Job Shop Problem

3 1 6 Chapter 1 1 . Put ting It All Together - A Tutorial

also when we were perturbing our final layouts. We were able to make a number of

adjacency swaps which provided no net change to the overall adjacency benefit . It
was therefore not surprising that we were able to obtain a Deltahedron MPG as the

highest weighted MPG . The set of alternative layouts was disappointing, providing

only two acceptable alternatives, and again this was due to the structure of the

benefit matrix , as the essential adjacencies could not be compromised. It was no

surprise really that the Spanning Tree layout algorithm provided the best layout ,

as the underlying tree was able to contain all the essential adjacencies, and from

there we could construct a functional layout, of high weight. Further, following the

construction of the layout we were able to obtain a number of important adjacencies

to further boost the adjacency score, whilst maintaining the overall regularity of

the layout.

Coda
In this section we have attempted to exhibit the process of determining a functional

layout from the raw data. The problems chosen allowed us to make use of many of

the techniques that we had previously discussed. This chapter has shown that the

GTFLP techniques we have discussed are able to produce effective layouts, within

a generic framework, where we concentrate on ensuring each facility, and the layout

as a whole, performs efficiently.

In the next chapter we review the work that we have undertaken, reiterating

the major components and contributions of this work. Further we offer some ideas

where future research could be directed within the GTFLP.

317

Chapter 1 2

Conclusions and Areas for

Further Study

In this thesis, we have examined the Graph Theoretic Facility Layout Problem. In

particular we have investigated the construction of orthogonal geometric duals, or

layouts, from defined adjacency and area specifications.

Chapter 4 reviewed and, in some instances, revised current methods for gen­

erating a layout. This chapter also included new techniques for the generation of

the layout : the Vertex Splitting Algorithm, SIMPLE, and the Tiling Algorithm,

as well as providing an initial characterisation of possible adjacency graphs. These

algorithms were assigned to three classes, labelled, I, T and A , dependent on the

guaranteed worst case facility shape of the method (where A stands for arbitrary) .

Chapter 5 provided two improvement techniques, Rectilinear Segment Reduction,

and Linear Transformation, which attempted to enhance the effectiveness of lay­

outs constructed by algorithms of Chapter 4. It was the applicability, or otherwise,

of these techniques to real world situations which we wished to examine. This in­

vestigation initially considered the algorithms for generating a layout on a set of

test problems.

A number of regula1·ity measures were devised which quantifiably measured

the effectiveness of each facility within a layout , and indeed the effectiveness of

the layout as a whole. The results of the tests of Chapter 6, indicated that the

best algorithm for generating a layout from a given adjacency graph with area

specifications, was the Vertex Splitting Algorithm. However a comparison of all the

methods of Chapter 4 indicated that a significant preference for adjacency benefit

318 Chapter 1 2. Conclusions and Areas for Further Study

over regularity was required for these Class A methods to be effective in a general

setting. Indeed we saw that algorithms such as the Tiling Algorithm, Spanning
Tree Algorithm, and Deltahedron Layout Algorithm, which circumvent the need

for an adjacency graph, provided the most effective layouts when regularity of the

layout was given even small consideration.

Chapter 7 provided examples where each layout algorithm of Chapter 4 was

more effective than the other available algorithms. The purpose of this was to

show that even though the Class A algorithms in particular performed poorly on

average, they could still provide helpful insights into the final structure of the

layout . This chapter provided an important conclusion: that each Facility Lay­

out Problem should be examined on its merits. As each method could assist in

the construction of the layout , it proved that sweeping generalisations about the

performance of the layout algorithms on a specific problem were dangerous. This

chapter also enabled us to develop a set of rules on how each layout algorithm

would perform, based on characteristics an MPG may exhibit. Chapters 8 and 9

examined three important concepts: Perturbation, Interaction and Decomposition.

These two chapters provided a foundation for an interface between the rigidity of

the algorithms and the subjectiveness and flexibility of a design planner.

Perturbation investigated the modification of the problem specifications. Chap­

ter 8 outlined the factors which must be considered in modifying the problem

specifications, and concluded that although theoretically possible in general, per­

formed best within d imensionalisable layouts, and provided a framework for their

implementation . By retaining the dimensionalisability of the layout, area pertur­

bation became algorithmic under specified width-to-length ratios for each facility,

for example. Furthermore, a family of adjacency swaps which would maintain the

dimensionalisability property were devised, by which we could iterate through a

variety of layouts perturbed from the originally constructed layout.

The concept of Decomposition was perhaps the most important contribution

of this work, as it enabled a generic framework to be devised within which we

could more efficiently construct the layout . The decomposition of the MPG was

based on the separating triangles that existed within the adjacency graph. An

adjacency graph consisting of k separating triangles could be decomposed into

k + 1 subproblems which could be studied virtually independently. This enabled

the closer examination of each subproblem, heightening the chances of generating

319

efficient layouts. The concept of a-decomposibility was discussed, where a was the

number of facilities in the largest subproblem. It was shown that if the adjacency

graph was 8-decomposable, then a dimensionalisable layout could be constructed.

Further we showed by experimentation, that decomposition on average reduces the

largest subproblem to 60% the size of the original n. This allowed us to consider 25

facility problems as 15 facility problems within this framework, where the remaining

1 0 facilities could be added to the layout as a result of the separate consideration

of the other subproblems. Further we showed that the non-existence of separating

triangles does not necessarily prohibit the decomposition process, by providing

guidelines where we can reconstruct parts of the MPG to enforce decomposition. An

important development from Decomposition, was that each subproblem could be

solved using the layout algorithm most appropriate to it. Therefore a single problem

instance could utilise all of the techniques of Chapter 4 within this decomposition

framework.

The third process developed was that of the interaction of the design planner

to the overall process. By considering the arbitrariness of a number of important

decisions within the layout algorithms, especially the Contraction Algorithm, we

showed that practical layouts could be constructed by directing the algorithm in

the most effective way via the development of some rules of thumb, which would

help the decision making process. Interaction was also deemed to be important

when attempting to perturb the problem specifications, as local knowledge can more

effectively direct perturbations, rather than attempting to rely on the regularity

measures for evaluation .

Interaction, Decomposition and Perturbation together provide a complete frame­

work for generating a layout for a given set of problem specifications, as the degree

of flexibility allowed by these concepts can incorporate as many factors into the

problem as are deemed necessary, by allowing the examination of small components

of the problem (Decomposition) , the incorporation of subjective and local knowl­

edge (Interaction) , and the ability to change the problem specifications as the need

arises (Perturbation) .

Chapter 1 0 examined the role of the Material Handling System within the

layout, and its effectiveness as an alternative evaluator of a layout. This chapter

provided a review of the previous literature on the MHS, from which we were able to

devise a heuristic for obtaining an MHS given the material flows between facilities in

320 Chapter 1 2. Conclusions and Areas for Further Study

the layout. The construction of the MHS was based on a. Minimal Spanning Tree
between a. set of Input/Output stations, determined with respect to the facility

centroids and material flows. This heuristic for designing the MHS also admitted

two simple improvement techniques, which could reduce the overall transportation

cost of the MHS. The results of the experiment to evaluate layouts under this MHS

scheme were somewhat surprising, with the Contraction Algorithm outperforming

the Vertex Splitting Algorithm significantly, yet having inferior regularity scores,

and even rivalling the Class I algorithms for large n. The Class I algorithms

performed very well, and coupled with their exceptional regularity scores, produced

the most practical layouts.

Chapter 1 1 worked through a tutorial on how we might tackle a. real world
problem. We were able to utilise the many ideas and algorithms we have devel­

oped, and were able to obtain good quality solutions with respect to adjacency,

regularity and transportation cost. The step by step analysis of the two problems

we investigated showed the power of the layout approaches we have used, within

the generic framework discussed earlier.

It is somewhat disappointing that maximising the adjacency benefit does not

appear to correspond to minimising the transportation cost within the layout .

This is the basic assumption under which we use the Graph Theoretic model as an

alternative to the Quadratic Assignment Problem. The transportation cost is de­

pendent on the structure of the layout , hence as the adjacency graph incorporates

no information about the layout, we cannot correlate the benefit of the adjacency

graph with the MHS transportation cost of the layout. Further we have shown

that the Class I and T algorithms in general will produce the most practical lay­

outs, yet these methods circumvent the requirement of an adjacency graph. This

does not nullify the Graph Theoretic model , as we saw in Chapter 7, where we

provided examples of the effective working of this model. It appears that the best

approach is one which incorporates the Graph Theoretic ideal of attaining 3n - 6

high benefit adjacencies whilst maintaining as much structure in the subsequent

layout as possible. Methods such as the Spanning Tree Algorithm, which has an

underlying tree adjacency graph, allow this interface to be fully utilised . Further

the Maximal Spanning Tree adjacency structure has a worst case performance of � '
as opposed to the arbitrary worst case performance of TESSA, and some versions

of Deltahedron.

321

Although this thesis has in many ways tied up many of the loose ends in the

GTFLP, there are several directions where future research may further enhance the

development of the layout design. The complete characterisation of MPG structures

which are amenable to dimensionalisable layout construction along similar lines to

those of Section 4 . 7, would be an invaluable tool in developing standard layout

templates. It is unlikely that the complete set of MPGs could ever be characterised

in this way; indeed, i t has not been possible to obtain a dimensionalisable layout

for the Regular Dodecahedron, which is only of size n = 12.

Further work could also be focused on developing new layout algorithms along

similar lines to the Class I algorithms, which as we have seen in general perform the

most effectively. It would seem that more algorithms which can dualise arbitrary

area specifications and MPG are unwarranted, unless they can be developed to

perform with some degree of worst case analysis on the facility shape.

The final area of future research could be the further development of Material

Handling System methodologies, which we briefly examined in Chapter 10 . We

provided one mechanism whereby we could construct the MHS, considering only

one set of assumptions . There could exist a number Material Handling System

models applicable to a variety of situations. Further investigation of the centroid­

to-centroid distance metric, and the placement of Input/Output stations could

provide many different ways of evaluating the transportation cost within a layout.

It has been difficult in the course of this work to make firm statements as to

the effectiveness of the layout procedures. While we have seen general trends in

Chapters 6 and 10 as to the practicality of layouts under the regularity measures

and transportation costs, we cannot discard the importance of the (in general)
inferior layout algorithms. These inferior algorithms can provide important i nfor­

mation, especially within an interactive setting. I t is therefore our conclusion that

the Graph Theoretic model for the Facility Layout Problem contains important

information for the effective development of any layout, and indeed the amalgam

of the Layout Algorithms of Chapter 4 and the Interaction, Decomposition and

Perturbation concepts of Chapters 8 and 9 is an important tool within any layout

design process.

322 Chapter 1 2. Conclusions and Areas for Further Study

323

B ibliography

[1] 0 . M. Agraa. and B. Whitehead. Nuisance restrictions in the planning of

single-storey layouts. Building Science, 2 :291-302, 1968.

[2] 0 . M. Agraa and B. 'Whitehead. A study of movement in a school building.

Building Science, 2:279-289, 1968.

[3] L. A. Al-Hakim. Two graph-theoretic procedures for an improved solution to

the facilities layout problem. International Journal of Production Research,
29(8) : 1 701-17 18, 1991 .

[4] L . A . Al-Hakim. A modified procedure for converting a dual graph to a

block layout . International Journal of Production Research, . 30(10) :2467-

2476, 1 992.

[5] L. A. Al-Hakim. A note on 'on TESSA' . International Journal of Production
Research, 32(1) :223-225, 1 994.

[6] G. C. Armour and E. S . Buffa. A heuristic algorithm and simulation approach

to relative allocation of facilities . Management Science, 9(2) :294-300, 1963.

[7] I . Baybars. The generation of floor plans with circulation spaces. Environ­
ment and Planning B, 9:445-456, 1982.

[8] I . Baybars and C. M. Eastman. Enumerating architectural arrangements by

generating their underlying graphs. Envimnment and Planning B, 7:289-310 ,

1980.

[9] J. Bhasker and S. Sahni. A linear time algorithm to check for the existence

of a rectangular dual of a planar triangulated graph. Networks, 17:307-317 ,

1987.

324 BIBLIOGRAPHY

[10) J. Bhasker and S. Sahni. A linear algorithm to find a rectangular dual of a

planar triangulated graph. Algorithmica, 3:247-278, 1988.

[1 1] J. A . Bondy and U. S. R. Murty. Graph Theorey With Applications. North­

Holland, New York, 1 976.

[12] S. G. Boswell. Bounds on the number of f-operation edge substitutions

required to transform a maximal planar graph into another. Australasi�n
Journal of Combinatorics, 4:5-24 , 1 991 .

[13] S . G . Boswell. Graph theory for facilities layout planning: An investigation
of the practicalities of heuristics for the adjacency problem. PhD thesis, Uni­

versity of Newcastle, 1992.

[14] S. G . Boswell. TESSA - a new greedy heuristic for facilities layout planning.

International Journal of Pmduction Research, 30(8) : 1957-1968, 1 992.

[15] R. Bowen and S. Fisk. Generation of triangulations of teh sphere. Mathe­
matics of Computation, 21 :250-252, 1967.

[16) Y. A. Bozer and R. D. Meller. A reexamination of the general facility layout

problem. Technical report, Auburn University, 1993.

[1 7] Y. A . Bozer, R. D. Meller, and S. J. Erlebacher. An improvement-type

layout algorithm for single and multiple-story facilities. Management Science,
40(7) : 9 18-932, 1 994.

[18] T. Brunes. The Secrets of Ancient Geometry - And its use, volume 1 . Rhodes

International Science Publishers, Copenhagen, 1967.

[19] T. Brunes. The Secrets of Ancient Geometry - And its use, volume 2. Rhodes

International Science Publishers, Copenhagen, 1967.

[20] B. D . Bunday. Basic Optimisation Methods. Edward Arnold Publishers,

Baltimore, 1 984.

[21) A. S. Carrie, J. M. Moore, M. Roczniak, and J. J . Seppanen. Graph theory

and symbolic processors for computer aided facilities design. Omega, 6 :353-

361 , 1 978.

BIBLIOGRAPHY 325

[22] V. Cerny. Thermodynamical approach to the travelling saleman problem:

An efficient simulation algorithm. Journal of Optimization Theory and Ap­
plications, 45:41-5 1 , 1985.

[23] G. B . Dantzig. Al l shortest routes in a graph. In Theory of Graphs. Cordon
and Breach, New York, 1967.

[24] M. P. Deisenroth and J. M. Apple. A computerized plant layout analysis and

evaluation technique. In Annual AIIE Conference, Norcross, GA, 1972.

[25] K. N. Dutta and S . Sahu. A multigoal heuristic for facilities design problems:

MUGHAL. International Journal of Production Research, 20(2) : 147-154,

1 982.

[26] M. E . Dyer, L. R. Foulds, and A. M. Frieze. Analysis of heuristics for find­

ing a maximum weight planar subgraph. European Journal of Operational
Research, 20: 102- 1 14, 1985.

[27] P. Eades, L. Foulds, and J. Giffin. An efficient heuristic for identifying a

maximum weight planar subgraph. In Lecture Notes in Mathematics 952
(Combinatorial A1athematics _IX). Springer-Verlag Berlin, 1981 .

[28] R. B . Eggleton and L. A . Al-Hakim. Maximal planar graphs and diagonal

operations. Australasian Journal of Combinatorics, 3:93-1 10, 199 1 .

[29] R . B . Eggleton, L . A. R. Al-Hakim, and J . MacDougall . Braced edges in

plane triangulations. The Australasian Journal of Combinatorics, 2 : 12 1-133,

1 990.

[30] L . R. Foulds. Techniques for facilities layout : Deciding which pairs of activ­

ities should be adjacent. Management Science, 29(12) : 14 14-1426, 1 983.

[31] L. R. Foulds, P. B . Gibbons, and J . W. Giffin. Facilities layout adjacency de­

termination: An experimental comparison of three graph theoretic heuristics.

Operations Research, 33(5) : 1 091-1 106, 1985.

[32] L. R. Foulds and J. W. Giffin. A graph-theoretic heuristic for minimising

total transport cost in facilit ies layout . International Journal of Production
Research, 23(6) : 1247-1257, 1 985.

326 BIBLIOGRAPHY

(33) L. R. Foulds and D. F. Robinson . A strategy for solving the plant layout

problem. Operational Research Quarterly, 27:845-855 , 1976.

(34) L. R. Foulds and D. F. Robinson. Graph theoretic heuristics for the plant lay­

out problem. International Journal of Production Research, 16 :27-37, 1978.

[35) L. R. Foulds and D. F. Robinson. Construction properties of combinatorial

deltahedra. Discrete Applied Mathematics, 1 : 75-87, 1 979.

[36) R. L. Francis , L. F. McGinnis Jr. , and J.A. White. Facility Layout and
Location: An Analytical Approach. Prentice Hall, 2nd edition, 1992.

[37] M. R. Garey and D. S. Johnson. Computers and Intractability: A guide to
the theorey of N ?-completeness. Freeman, San Francisco, 1979.

[38) M. T. A. Gawad and B. Whitehead. Addition of communication paths to

diagrammatic layouts. Building and Environment, 1 1 :249-258, 1976.

[39) J. W. Giffin. Graph Theoretic Techniques for Facilities Layout. PhD thesis,

University of Canterbury, 1984. Unpublished.

[40) J. W. Giffin and L. R. Foulds. Facilities layout generalized model solved

by n-boundary shortest path heuristics. European Journal of Operational
Research, 28:382-391 , 1987.

[41) J. W. Giffin, L. R. Foulds, and D. C. Cameron. Drawing a block plan with

graph theory and a microcomputer. Computers and Industrial Engineering,
10 : 1 09-1 16, 1986.

[42) J. W. Giffin, K. H. Watson, and L. R. Foulds. Orthogonal layouts using the

Deltahedron heuristic. Australasian Journal of Combinatorics, (to appear),
1994.

[43] F. Glover. Tabu search - part I. ORSA Journal on Computing, 1 : 190-206,

1989.

[44] F . G lover. Tabu search - part II . ORSA Journal on Computing, 2 :4-32, 1990.

[45] F. Glover. Tabu search: A tutorial . Inte1jaces, 20:74-94, 1990.

BIBLIOGRAPHY 327

[46] M. Goetschalckx. An interactive layout heuristic based on hexagonal adja­

cency graphs. European Journal of Operational Research, 63:304-321 , 1 992.

[47] R. H. Green and L. Al-Hakim. A heuristic for facilities layout planning.

Omega, 1 3(5) :469-474, 1985.

[48] A. Hammouche and D . B. Webster. Evaluation of an application of graph

theory to the layout problem. International Journal of Production Research,
23(5) :987-1000, 1985.

[49] R. Hashimshony, E. Shaviv, and A. Wachman. Transforming an adjacency

matrix into a planar graph. Building and Environment, 15:205-217, 1 980.

[50] M. M. D. Hassan. Some observations on converting a dual graph in�o a

block layout. International Journal of ?1'0duction Research, 30(10) :24 77-

2482, 1 992.

[51] M. M. D. Hassan and G. L. Hogg. A review of graph theory application to

the facilities layout problem. Omega, 15(4) :291-300, 1 987.

[52] M. M. D. Hassan and G. L. Hogg. On converting a dual graph into a block

layout. International Journal of P1'0duction Research, 27(7) : 1 1 49-1 160, 1 989.

[53] M. M. D. Hassan and G . L. Hogg. On constructing a block layout by graph

theory. International Journal of P1·oduction Research, 29(6) : 1263-1278, 1 99 1 .

[54] M . M . D . Hassan, G . L . Hogg, and D. R. Smith. SHAPE: A construction

algorithm for area placement evaluation. International Journal of Production
Research, 24: 1283-1295 , 1986.

[55] S. S. Heragu and A. S. Alfa. Experimental analysis of simulated annealing

based algorithms for the layout problem. European Journal of Operational
Research, 57: 190-202, 1 992.

[56] S. S. Heragu and A. Kusiak. Machine layout: an optimization and knowledge­

based approach. International Journal of Production Research, 28(4) :615-

635, 1 990.

[57] S . S . Heragu and A. Kusiak. Efficient models for the facility layout problem.

European Journal of Operational Research, 53: 1-13 , 1991 .

328 BIBLIOGRAPHY

(58] F. S . Hillier and M. M . Conners. Quadratic assignment problem algorithms

and the location of indivisible facilities. Management Science, 1 3:42-57, 1966.

(59] J. E. Hopcroft and R. E. Tarjan. Efficient planarity testing. Journal of the
Association for Computing Machinery, 21 :549-568, 1974 .

. (60] S . lrvine and I. Rinsma-Melchert . Lampg - implementation of a new facilities

layout algorithm. Research Report 42, Waikato University, 1 995.

(61] S. Jajodia, I . Minis, G. Harhalakis, and J . Proth. CLASS: Computerized lay­

out solutions using simulated annealing. International Journal of Production
Research, 30(1) :95-108, 1992.

[62] S. Kirkpatrick, C. D Gelatt , and M. P. Vecchi . Optimization by simmulated

annealing. Science, 1 3:671-680, 1983.

[63] T . C. Koopmanns and M. Beckmann. Assignment problems and the location

of economic facilities. Econometrica; 25:52-76, 1957.

[64] K. Kozminski and E. Kinnen. An algorithm for finding a rectangular dual of

a planar graph for use in area planning for vlsi integrated circuits. In 21st
Design Automation Conference, pages 655-656, 1 984.

[65] K . Kozminski and E. Kinnen. Rectangular duals of planar graphs. Networks,
15 : 145-157, 1985.

[66] K . Kozminski and E. Kinnen. Rectangular dualization and rectangular dis­

sections. IEEE Transactions on Circuits and Systems, 35(1 1) : 1401-14 16 ,

1 988.

(67] J. B. Kruskal. On the shortest spanning sub tree of a graph and the travelling

salesman problem. Proceedings of the American Mathematical Society, 7:48-

50, 1 956.

[68] A. Kusiak and S. S. Heragu. The facility layout problem. European Journal
of Operational Research, 29:229-251 , 1987.

[69] T. A. Lacksonen. Static and dynamic layout problems with varying areas.

Journal of the Operational Resea1·ch Society, 45(1) :59-69, 1 994.

BIBLIOGRAPHY 329

(70] Y. Lai and S. M. Leinwand. A theory of rectangular dual graphs. Algorith­
mica, 5:467-483, 1990.

[71] A . Langevin, B. Montreuil, and D. Riopel. Spine layout design. International
Journal of Production Research, 32(2) :429-442, 1 994.

[72] E. L. Lawler. The quadratic assignment problem. Management Science,
9 :586-599, 1963.

(73] R. Lee and J . M. Moore. CORELAP - computerized relationship layout

planning. Journal of Industrial Engineering, 18 : 195-200, 1967.

[74] J . Lehel. Deltahedra are realizable as simplicial convex polyhedra. Discrete
Applied Mathematics, 2:81-84 , 1980.

(75] S. M. Leinwand and Y. Lai . A n algorithm for building rectangular floorplans.

In 21st Design Automation Conference, pages 663-664, 1 984.

[76] A . Lempel, S . Even, and I . Cederbaum. An algorithm for planarity testing

of graphs. Theorie des Graphs, 1966.

[77] J. K. Lenstra. Sequencing by enumerative methods. Mathematisch Centrum,

A msterdam, 1976.

[78] J. Leung. A new graph-theoretic heuristic for facility layout. Management
Science, 38(4) :594-605, 1992.

[79] W . P. Lewis and T. E. Block . On the application of computer aids to plant

layout. International Journal of Production Research, 18 (1) : 1 1-20, 1980.

[80] P. C. Liu and R. F. Geldmacher. On the deletion of non-planar edges of

a graph. Technical report , S tevens Institute of Technology, Hoboken, New

Jersey, 1976.

[81] J. MacGregor-Smith. Cellular arrangement problems and steiner-star duals.

Tech reprot, University of Massachusetts, 1 993.

[82] J. MacGregor-Smith, D . T. Lee, and J . S. Liebman. An o(n log n) heuris­

t ic algorithm for the rectilinear Steiner minimal tree problem. Engineering
Optimization, 4 : 179-192, 1980.

330 BIBLIOGRAPHY

(83] C. J . Malmborg. A heuristic model for simultaneous storage space allocation

and block layout planning. 1nternational Journal of Production Research,
32(3) :517-530, 1 994.

[84] R. D. Meller and K-Y Gau. The facility layout problem: A review of recent

and emerging research. Technical report, Auburn University, Alabama, 1995.

[85] B . Montreuil, H. D . Ratliff, and M. Goetschalckx. Matching based interactive

facility layout. liE Transactions, 19(3) :271-279, 1987.

(86] B. Montreuil and U. Venkatadri . From gross to net layouts: An efficient

design model. Technical report , Laval University, 1988.

(87] B. Montreuil, U. Venkatadri , and H. D. Ratliff. Generating a layout from a

design skeleton . liE Transactions, 25(1) :3-15, 1993.

[88] J. M. Moore. Facilities design with graph theory and strings. Omega, 4 : 193,

1 976.

[89] Q. Ning. On a conjecture of Foulds and Robinson about deltahedra. Discrete
Applied Mathematics, 18:305-308 , 1987.

(90] 0. Ore. The Four-Color Problem. New York: Academic Press, 1967.

[91] P. E. Radcliffe, D . E. Kawal, and R. J. Stephenson. Critical Path Method.
Cahner, Chicago, Ill , 1 967.

(92] A. D . Raoot and A. Rakshit . An experimental comparison of systematic

placement procedures for facility layout design. International Journal of
Production Research, 31 (7) : 1 735-1756, 1993.

(93] A . D. Raoot and A . Rakshit. A "linguistic pattern" approach for multiple cri­

teria facility layout problems. International Journal of Production Research,
3 1 (1) :203-222, 1 993.

[94] I . Rinsma . . Existence Theorems for Floorplans. PhD thesis, University of

Canterbury, 1 987. Unpublished.

[95] I . Rinsma. Rectangular and orthogonal floorplans with require room areas

and tree adjacency. Environment and Planning B, 15: 1 1 1-1 18, 1988.

BIBLIOGRAPHY 331

[96] I . Rinsma, J. W. Giffin, and D. F. Robinson. Orthogonal fl.oorplans from

maximal planar graphs. Environment and Planning B, 1 7:57-71 , 1990.

[97] M. J. Rosenblatt. The facilities layout problem: a multi-goal approach. In­
ternational Journal of Production Research, 1 7(4) :323-332, 1 979 .

. [98] J . Roth, R. Hashimshomy, and A . Wachman. Turning a graph into a rectan­

gular floorplan. Building and Environment, 17 : 163-173, 1982.

[99] S. Sahni and T. Gonzalez. P-complete approximation problems. Journal of
the Association of Computing Machinery, 23(555-565) , 1 976.

[100] J. M. Seehof and W. 0. Evans. An automated layout design program. Journal
of Industrial Engineering, 18(2):690-695 , 1967.

[101] J. M. Seppanen and J. M. Moore. Facilities planning with graph theory.

Management Science, 17:242-253 , 1970.

[102] J. S. Shang. Multicriteria facility layout problem:an integrated approach.

European Journal of Opemtional Research, 66:291-304, 1993.

[103] Y. Sun and M. Sarrafzadeh. Floorplanning by graph dualization: L-shaped

modules. Algorithmica, 1 0 :429-456, 1993.

[104] J. A. Tompkins and R. Reed Jr. An applied model for the facilities design

problem. International Journal of Production Research, 14(5) :583-595, 1 976.

[105] P. S. Welgama and P. R. Gibson. A construction algorithm for the machine

layout problem with fixed pick-up and drop-off points. International Journal
of Production Research, 3 1 (1 1) :2575-2590, 1993.

[106] P. S. Welgama, P. R. Gibson, and L. A. R. Al-Hakim. Facilities layout : A

knowledge-based approach for converting a dual graph into a block layout.

International Journal of Production Economics, 33: 17-30, 1994.

[107] B. Whitehead and M. Z. Eldars. The planning of single-storey layouts. Build­
ing Science, 1 : 1 27-139, 1 963.

[108] K. Yeap and M. Sarrafzadeh. A unified approach to fl.oorplan sizing and

enumeration . Northwestern University Manuscript, 1992.

332 BIBLIOGRAPHY

[109] K. Yeap and M. Sarrafzadeh. Floor-planning by graph dualization: 2-concave

rectilinear modules. Siam Journal of Computing, 22(3) :500-526, 1 993.

333

Appendix A

S n1all MP Gs and their layouts

In Section 4. 7 .5, we stated that all MPGs with n � 8 could generate dimensionalis­

able layouts with at worst T shaped facilities. This appendix provides the templates

for these layouts . Bowen and Fisk [15] show that the number of unlabelled MPGs

on n = 4 , 5 , 6, 7 , and 8 are 1 , 1 ,2,5, and 14 respectively. In order to generate the

templates, we need only specify the exterior facility, as usual labelled 1 , and then

impose an arbit rary labelling on the remaining n - 1 facilities. Firstly we show

that the set of MPGs generated for each n is indeed the complete set of unlabelled

MPGs on that n . The vertex degree numbering of an MPG is a ordering of each

distinct degree i n the MPG with superscript dependent on the number of vertices

having that degree. For example, an MPG with four vertices of degree four, and

two vertices of degree five, would have vertex degree numbering 4452 • For n = 4

and n = 5, there exists only one MPG, while for n = 6 and n = 7, the vertex degree

numberings for each MPG are distinct, and hence cannot be isomorphic. The set

of unlabelled MPGs on n = 8 has 13 distinct vertex degree numberings. Of the two

MPGs with the vertex degree numbering of 32425262 , one is Deltahedron generate­

able, and the other is not , hence we obtain the set of 1 4 non-isomorphic unlabelled

MPGs on n = 8. MPGs on n � 8 which are Deltahedron generateable, obviously

have a worst case facility shape of a T. Less obvious, is that MPGs on n � 8 which

are Extended Deltahedron generateable, also have a worst case facility shape of T.

The reason for this is that Y and X shaped facilities can only be created by placing

3 or 4, respectively, facilities within a placement host , which has four placement

directions directed into it. In order to create a valid placement host which has this

condition requires at least a six facility partial layout , including the exterior, but

at that point we have only two facilities remaining to be placed. Furthermore, in

334 Appendix A. Small MPGs and their layouts

the case where an S shaped facility could be created, we can redirect the placement

directions on one side of the placement host to circumvent this.

n = 4

Deltahedron

Figure A. l : Temp-late 34

n = 5

Deltahedron

Figure A.2: Template 3243

335

n = 6

Extended Deltahedron

Figure A.3: Template 46

Deltahedron

336 Appendix A. Small MPGs and their layouts

n = 1

Extended Deltahedron

Deltahedron

337

1 1
4

7
5 2

6

3

(a)

2 1
4

7
5 2

6

3

(b)

Figure A .7 : Template 4552 ; (a) exterior vertex of degree 4; (b) exterior vertex of
degree 5

338 Appendix A. Small MPGs and their layouts

Deltahedron

Deltahedron

339

n = 8

Extended Deltahedron

Extended Deltahedron

340 Appendix A. Small MPGs and their layouts

Deltahedron

(a)

Extended Deltahedron

(b)

Figure A. 12 : Template 32425262 ; (a) Deltahedron Generateable (b) Not Deltahe­
dron Generateable

Extended Deltahedron

Figure A . 13: Template 3256

Del tahedron

341

342

4

Appendix A. Small MPGs and their layouts

(a)

1
2

4 5
7

3 6
8

Use Templates of Figure A.7, and perform
a Deltahedron insertion to place the ver­
tex of degree 3

(b)

Figure A . 15 : Template 31 43536\ (a) exterior vertex of degree 3; (b) exterior vertex
of not of degree 3

343

1
5

4
7 8 6

2

3
2 3

(a)

1
5

4
7 8 6

2

3
2 3

(b)

Figure A . 1 6: Template 4454 ; (a) exterior vertex of degree 5; (b) exterior vertex of
degree 4

344

1

2

5

2

Appendix A. Small MPGs and their layouts

1
2

5 3
4

7 6

8
3

(a)

1
5

7 8 6 3 2

4
3

(b)

Figure A . 17 : Template 4662 ; (a) exterior vertex of degree 6 ; (b) exterior vertex of
degree 4

345

Del tahedron

Figure A. l8: Template 3464

Del tahedron

346 Appendix A. Small MPGs and their layouts

Deltahedron

Deltahedron

347

Deltahedron

348 Appendix A . Small MPGs and their layouts

	20001
	20002
	20003
	20004
	20005
	20006
	20007
	20008
	20009
	20010
	20011
	20012
	20013
	20014
	20015
	20016
	20017
	20018
	20019
	20020
	20021
	20023
	20024
	20025
	20026
	20027
	20028
	20029
	20030
	20031
	20032
	20033
	20034
	20035
	20036
	20037
	20038
	20039
	20040
	20041
	20042
	20043
	20044
	20045
	20046
	20047
	20048
	20049
	20050
	20051
	20052
	20053
	20054
	20055
	20056
	20057
	20058
	20059
	20060
	20061
	20062
	20063
	20064
	20065
	20066
	20067
	20068
	20069
	20070
	20071
	20072
	20073
	20074
	20075
	20076
	20077
	20078
	20079
	20080
	20081
	20082
	20083
	20084
	20085
	20086
	20087
	20088
	20089
	20090
	20091
	20092
	20093
	20094
	20095
	20096
	20097
	20098
	20099
	20100
	20101
	20102
	20103
	20104
	20105
	20106
	20107
	20108
	20109
	20110
	20111
	20112
	20113
	20114
	20115
	20116
	20117
	20118
	20119
	20120
	20121
	20122
	20123
	20124
	20125
	20126
	20127
	20128
	20129
	20130
	20131
	20132
	20133
	20134
	20135
	20136
	20137
	20138
	20139
	20140
	20141
	20142
	20143
	20144
	20145
	20146
	20147
	20148
	20149
	20150
	20151
	20152
	20153
	20154
	20155
	20156
	20157
	20158
	20159
	20160
	20161
	20162
	20163
	20164
	20165
	20166
	20167
	20168
	20169
	20170
	20171
	20172
	20173
	20174
	20175
	20176
	20177
	20178
	20179
	20180
	20181
	20182
	20183
	20184
	20185
	20186
	20187
	20188
	20189
	20190
	20191
	20192
	20193
	20194
	20195
	20196
	20197
	20198
	20199
	20200
	20201
	20202
	20203
	20204
	20205
	20206
	20207
	20208
	20209
	20210
	20211
	20212
	20213
	20214
	20215
	20216
	20217
	20218
	20219
	20220
	20221
	20222
	20223
	20224
	20225
	20226
	20227
	20228
	20229
	20230
	20231
	20232
	20233
	20234
	20235
	20236
	20237
	20238
	20239
	20240
	20241
	20242
	20243
	20244
	20245
	20246
	20247
	20248
	20249
	20250
	20251
	20252
	20253
	20254
	20255
	20256
	20257
	20258
	20259
	20260
	20261
	20262
	20263
	20264
	20265
	20266
	20267
	20268
	20269
	20270
	20271
	20272
	20273
	20274
	20275
	20276
	20277
	20278
	20279
	20280
	20281
	20282
	20283
	20284
	20285
	20286
	20287
	20288
	20289
	20290
	20291
	20292
	20293
	20294
	20295
	20296
	20297
	20298
	20299
	20300
	20301
	20302
	20303
	20304
	20305
	20306
	20307
	20308
	20309
	20310
	20311
	20312
	20313
	20314
	20315
	20316
	20317
	20318
	20319
	20320
	20321
	20322
	20323
	20324
	20325
	20326
	20327
	20328
	20329
	20330
	20331
	20332
	20333
	20334
	20335
	20336
	20337
	20338
	20339
	20340
	20341
	20342
	20343
	20344
	20345
	20346
	20347
	20348
	20349
	20350
	20351
	20352
	20353
	20354
	20355
	20356
	20357
	20358
	20359
	20360
	20361
	20362
	20363
	20364
	20365
	20366
	20367
	20368
	20369
	20370

