Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Origins and Evolution of the New Zealand Forest Flora a Molecular Phylogenetic Approach

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Plant Biology

at Massey University, Palmerston North, New Zealand.

> Karen Stöckler 2001

ABSTRACT

The origins and evolution of the New Zealand flora have puzzled the imagination of botanists world-wide. Competing hypotheses have sought to explain the floristic relationships between New Zealand and other Southern Hemisphere landmasses. Scientific approaches have involved geology, plant morphology, palynology and palaeobotany in investigations of the distribution patterns of these floras. Analyses presented in the current thesis use molecular data to investigate phylogenetic relationships of plant lineages native to the New Zealand forest flora.

In the present thesis, molecular work included amplification and sequencing of standard DNA markers such as nuclear ribosomal DNA, *ndh*F and *rbc*L gene sequence. These data were obtained for New Zealand and overseas species of Myrsinaceae, Nothofagaceae and genus *Agathis* (Araucariaceae). Analyses of these data have been presented alongside results and re-analyses of genetic data for Podocarpaceae, Proteaceae, Winteraceae and genus *Metrosideros* (Myrtaceae). These analyses aimed to synthesise recent work and provide a framework for further molecular investigations into the origins of the New Zealand woody forest flora.

Amplified fragment length polymorphism (AFLP) was used to locate polymorphic genome regions that were converted into sequence specific DNA markers. Information from AFLP and AFLP derived markers was used to elucidate evolutionary processes as well as interspecific and intraspecific relationships between closely related taxa of *Myrsine* and *Nothofagus*.

DNA analyses showed that the New Zealand forest hosts plants with very different origins and evolutionary histories. Results presented in the current thesis support hypotheses of vicariance and long-distance dispersal across Southern Hemisphere lands.

Molecular data are consistent with a continuous presence of Agathis (Araucariaceae), *Dacrydium* (Podocarpaceae) and *Pseudowintera* (Winteraceae) on the New Zealand archipelago since the break-up of the Gondwanan supercontinent. It is proposed that extant species of these lineages have evolved from ancestors that arrived on the New Zealand landmass during the Cretaceous. In contrast, divergence time estimates on *Nothofagus* suggest that relationships between extant *Fuscaspora* and *Lophozonia* beeches date back to the Mid Tertiary and are not explained by vicariance and continental drift.

Phylogenetic analyses substantiate fossil evidence of a Tertiary arrival of *Metrosideros* (Myrtaceae), *Myrsine* (Myrsinaceae), *Knightia* and *Toronia* (both Proteaceae). Similarly, dispersal from New Zealand to other southern lands has been inferred for *Metrosideros* and *Myrsine*. These findings and those reported earlier for

alpine plant groups suggest that trans-oceanic dispersal is likely to be an important explanation of floristic relationships between New Zealand and other distant landmasses.

Molecular studies on New Zealand *Myrsine* suggest recent speciation events, geographic differentiation and ongoing hybridisation between some morphologically and ecologically distinct species. Intraspecific analyses on *Myrsine divaricata* and *Nothofagus menziesii* show that extant distribution patterns within New Zealand are relatively recent and may have developed during the Quaternary. Although both lineages have an ancient history on the New Zealand archipelago, it is concluded that species and their distributions – including that of the monotypic genera *Elingamita* - are of recent origin.

ACKNOWLEDGEMENTS

I would like to thank my supervisor Dr. Pete Lockhart, who gave me the chance to work in this exciting field of research: thank you for your scientific experience, for countless discussions and for your support. Thank you for your motivation and your friendship!

I would like to thank my co-supervisor Prof. Dr. Bruce Christie for his efforts in providing ideas and plant material for this study.

I would like to thank my co-supervisor Prof. Dr. Uwe Maier for his encouragement, for providing a lab space in Marburg and for never shutting his door on me.

I would like to thank Prof. Dr. David Penny and Dr. Mark Large for discussions and for their friendly encouragement. It was very much appreciated!

Special thanks go to Trish McLenachan for her help in countless occasions: thank you for your advise in the lab, for listening and talking, for proof-reading my thesis, and..., and...., and.....

Thanks to all the people in the DEB Lab and the Boffin Lounge: to Richard, Carmel, Leon, Dan, Matt, Ant, Abbey, Nicole....

I really appreciated the support of the Institute of molecular BioSciences that gave me the opportunity to attend an international conference and provided possibilities for scientific exchange.

I gratefully acknowledge the Deutsche Akademische Austauschdienst, the New Zealand Marsden Fund and Massey University, without whose financial support this thesis work would not have been possible.

Last but not least, I would like to thank my husband Dr. Volker Sieber: thank you for standing by me after my decision to go to New Zealand, thank you for listening and supporting my efforts. Thank you for your time, patience, and encouragement. Thank you for giving helpful advise while I was writing up - without you I wouldn't have completed this work.

Abbreviations

19 - E	А	Adenine
	AFLP	Amplified Fragment Length Polymorphism
2	bp	base pairs
	С	Cytosine
·· .	DNA	Deoxyribonucleic acid
	G	Guanine
	Indel	Insertion or deletion
	ITS	Internal Transcribed Spacer
	ISSR	Inter Simple Sequence Repeats
	ML	maximum likelihood
	MP	maximum parsimony
	m.y.	million years
	m.y.a.	million years ago
	PAA	polyacrylamide
	PCR	Polymerase Chain Reaction
1.1	QP	quartet puzzling
	rDNA	ribosomal DNA
	т	Thymine
	RAPD	Random Amplified Polymorphic DNA markers
	RFLP	Restriction Fragment Length Polymorphism
	SSR	Simple Sequence Repeats

TABLE OF CONTENTS

- - -

- - -

. . .

Chapter 1

Introduction	1
1.1 Plate Tectonics and the Geological History of the Southern Continent 1.1.1 The Plate Tectonic Theory 1.1.2 The Geological History of Southern Hemisphere Lands	: s1 1
1.2 Biogeographic Relationships between Southern Hemisphere Lands	2
1.3 The History of the New Zealand Landmass	4
1.3.1 The Geological History of New Zealand	4
1.3.2 New Zealand Palaeoclimates	6
1.3.3 Effects of Pleistocene Glaciation on the Landscape	7
1.4 The Flora of New Zealand	8
1.4 The Flora of New Zealand 1.4.1 Biogeographic Elements	8 9
1.4 The Flora of New Zealand 1.4.1 Biogeographic Elements 1.4.2 Vegetation Types	8 9 10
 1.4 The Flora of New Zealand 1.4.1 Biogeographic Elements	8 9 10 13
 1.4 The Flora of New Zealand 1.4.1 Biogeographic Elements. 1.4.2 Vegetation Types. 1.4.3 History of the New Zealand Flora: Evidence from the Fossil Record. 1.4.4 The Importance of Trans-Oceanic Dispersal. 	8 9 10 13 15
 1.4 The Flora of New Zealand	8 10 13 15 16
 1.4 The Flora of New Zealand 1.4.1 Biogeographic Elements. 1.4.2 Vegetation Types. 1.4.3 History of the New Zealand Flora: Evidence from the Fossil Record. 1.4.4 The Importance of Trans-Oceanic Dispersal. 1.4.5 Effects of Past Environmental Changes on the New Zealand Flora 1.4.6 Distribution Patterns within the New Zealand Flora 	8 9 10 13 15 16 17
 1.4 The Flora of New Zealand	8 10 13 15 15 16 17 18
 1.4 The Flora of New Zealand 1.4.1 Biogeographic Elements. 1.4.2 Vegetation Types. 1.4.3 History of the New Zealand Flora: Evidence from the Fossil Record. 1.4.4 The Importance of Trans-Oceanic Dispersal. 1.4.5 Effects of Past Environmental Changes on the New Zealand Flora 1.4.6 Distribution Patterns within the New Zealand Flora 1.4.6.1 Glacial Refugia: A Hypothesis on the Survival of Species 1.4.6.2 Tectonic Movements: A Hypothesis on the Disjunction of Populations 	8 10 13 15 16 17 18 19

Material and Methods	22
2.1 Material	22
2.1.1 Laboratory Equipment	22
2.1.2 Plastic and Glass Ware	22
2.1.3 Consumables	22
2.1.4 Chemicals and Reagents	22
2.1.5 Kits and Ready-to-Use Products	23
2.1.6 Enzymes	23
2.1.7 DNA markers	24
2.1.8 Software	24
2.1.9 Standard Molecular Markers Used for Phylogenetic Analyses	24
2.1.10 Oligonucleotides	24
2.1.10.1 Oligonucleotides Used for PCR and DNA Sequencing	24
2.1.10.2 Oligonucleotides Used for AFLP	26

2.3 Methods	26
2.3.1 DNA Extraction from Plant Material	26
2.3.2 Gel Electrophoresis and Visualisation of DNA	28
2.3.2.1 Agarose Gel Electrophoresis	28
2.3.2.2 Denaturing Polyacrylamide Gel Electrophoresis	29
2.3.3 Polymerase Chain Reaction (PCR)	32
2.3.3.1 Amplification of DNA Regions Using a One-Step PCR Protocol	32
2.3.3.2 'Nested' and 'Semi-Nested' PCR	33
2.3.4 Purification of PCR Products and Plasmid DNA	34
2.3.5 Cloning Procedures	34
2.3.5.1 Ligation of PCR Products into a Plasmid Vector	34
2.3.5.2 Transformation of Ca ²⁺ Competent Cells	35
2.3.5.3 Selection of Transformed Cells	35
2.3.5.5 Isolation of Plasmid DNA from <i>E.</i> coli	36
2.3.5.6 Analytical Restriction of Plasmid Vectors	36
2.3.5.7 Characterisation of Cloned Inserts by PCR	37
2.3.6 Amplified Fragment Length Polymorphism (AFLP)	37
2.3.6.1 AFLP Step 1: Restriction of Genomic DNA	39
2.3.6.2 AFLP Step 2: Ligation of Adapter Sequences	39
2.3.6.3 AFLP Step 3: Preamplification	40
2.3.6.4 AFLP Step 4: Selective Amplification	40
2.3.7 Conversion of AFLP Bands into Sequence Specific DNA Markers	41
2.3.7.1 Isolation of DNA Fragments from Polyacrylamide Gels	41
2.3.7.2 Reamplification and Cloning of Excised AFLP Fragments	41
2.3.7.3 Primer Design	42
2.3.8 DNA Sequencing	42
2.3.9 Collection and Processing of Sequence Data	43
2.4 Phylogenetic Analyses of DNA Sequence	43
2.4.1 The Data Alignment	43
2.4.2 Pair Wise Distance Analyses	44
2.4.3 Models of Sequence Evolution	44
2.4.3.1 Objective Distance Models	45
2.4.3.2 Substitution Models and Likelihood Ratio Tests	47
2.4.3.3 A General Model for Additive Paths	47
2.4.4 Tree Building Methods	48
2.4.4.1 Maximum Likelihood and Maximum Parsimony	48
2.4.4.2 UPGMA and Neighbor Joining	49
2.4.4.3 Quartet Puzzling	50
2.4.4.4 Spectral Analysis and Split Decomposition	50
2.4.5 Measures for the Evaluation of Phylogenetic Trees:	51
2.4.5.1 Bootstrap and Jacknife Analyses	52
2.4.5.2 Quartet Puzzling Values	52
2.4.5.3 Global Fit Statistics on Graphs and Trees	53
2.4.5.4 Comparing Evolutionary Trees Using Global Scores	54

-

53
57

· · ·

Origins and Evolution of the New Zealand Forest Flora	58
3.1 Introduction	58
3.1.1 Aims and Expectations	59
3.1.2 Data and Analyses	60
3.2 Araucariaceae Henkel & W. Hochst. 1865	61
3.2.1 Introduction	61
3.2.1.1 New Zealand Araucariaceae:	62
3.2.2 Phylogenetic Analyses of Araucariaceae rbcL - Sequence	63
3.2.2.1 Split Decomposition	63
3.2.2.2 Maximum Likelihood Analyses	65
3.2.2.3 Molecular Clock Tests and <i>rbcL</i> -substitution Rate Estimates	67
3.2.2.4 Estimating the Age of the A. australis Lineage	68
3.2.3 Discussion: Agathis australis - a Living Fossil?	69
3.3 Podocarpaceae Endlicher 1847	70
3.3.1 Introduction	70
3.3.1.1 New Zealand Podocarpaceae:	71
3.3.2 Phylogenetic Analyses of Podocarpaceae 18S Sequence	72
3.3.2.1 Split Decomposition:	72
3.3.2.2 Maximum Likelihood Analyses:	74
3.3.2.3 Molecular Clock Tests	76
3.3.3 Discussion: Are New Zealand Podocarps Gondwanan Relicts?	76
3.4 <i>Metrosideros</i> Banks ex Gaertner 1788 (Myrtaceae de Jussieu 1789)	78
3.4.1 Introduction:	78
3.4.1.1 New Zealand Metrosideros:	79
3.4.2 Phylogenetic Analyses of Metrosideros nuclear rDNA Sequence	79
3.4.2.1 Split Decomposition	79
3.4.2.2 Maximum Likelihood Analyses	82
3.4.2.3 Molecular Clock Tests and Substitution Rate Estimates	84
3.4.3 Discussion: Metrosideros in New Zealand	84

- - -

...

3.5 Myrsinaceae R. Brown 1810	86
3.5.1 Introduction	
3.5.1.1 New Zealand Myrsinaceae	
3.5.2 Phylogenetic Analyses of <i>Myrsine</i> Nuclear rDNA Sequence	
3.5.2.1 Split Decomposition	
3.5.2.2 Maximum Likelihood Analyses	90
3.5.2.3 Molecular Clock Tests and Substitution Rate Estimates	92
3.5.3 Discussion: Ancient Origins and Recent Speciation?	93
3.6 Nothofagaceae Kuprianova 1962	95
3.6.1 Introduction	95
3.6.1.1 Hypotheses on the Phylogeography of Nothofagus	
3.6.1.2 New Zealand Nothofagaceae	97
3.6.2 Phylogenetic analyses of Nothofagus species	
3.6.2.1 Split Decomposition on Nuclear rDNA Sequence	
3.6.2.2 Maximum Likelihood Analyses on Nuclear rDNA Sequence	
3.6.2.3 Split Decomposition on Plastid Sequence Data	100
3.6.2.4 Maximum Likelihood Analyses on Plastid Sequence Data	101
3.6.2.5 Molecular Clock Tests and Substitution Rate Estimates	
3.6.2.6 Dating the Divergence Time for New Zealand Nothofagus Species	
3.6.3 Discussion: Is Nothofagus Dispersed or Vicariant?	
3.7 Proteaceae Juss., nom. cons. 1789	107
3.7.1 Introduction	
3.7.1.1 New Zealand Proteaceae	
3.7.2 Phylogenetic Analyses of Proteaceae <i>atp</i> B Sequence	
3.7.2.1 Split Decomposition	
3.7.2.2 Maximum Likelihood Analyses	110
3.7.2.3 Molecular Clock Tests and Substitution Rate Estimates	112
3.7.3 Discussion: AtpB and the Trans-Tasman Connections of New Zealand's	
Proteaceae	112
3.8 Winteraceae Lindl., 1830	113
3.8.1 Introduction	
3.8.1.1 New Zealand Winteraceae:	114
3.8.2 Phylogenetic Analyses of Winteraceae Nuclear rDNA Sequence	
3.8.2.1 Split Decomposition	
3.8.2.2 Maximum Likelihood Analyses	
3.8.2.3 Molecular Clock Tests and Substitution Rate Estimates	
3.8.3 Discussion: Pseudowintera	117
3.9 Discussion	118
3.9.1 Data and Analyses	118
3.9.1.1 Sampling and General Sequence Substitution Properties	118
3.9.1.2 Rates of Sequence Evolution	120
3.9.2 Biogeographic History of New Zealand Forest Plants	121

Chapter 4

-

Molecular Markers for Studying Closely Related Taxa	124
4.1 Introduction	124
4.1.1 Amplified Fragment Length Polymorphism	125
4.1.2 Aims and Expectations	127
4.2 AFLP Derived DNA Markers for <i>Myrsine</i>	127
4.2.1 Characterisation of Ma-af1	130
4.2.2 Characterisation of Md-af9	132
4.2.3 Genetic Distances between Taxa	133
4.2.4 Split Decomposition and Spectral Analyses	134
4.2.5 Molecular Clock Like Properties of the Data	136
4.2.6 Summary: The AFLP Derived Markers Ma-af1 and Md-af9	137
4.2.6.1 The Ma-af1 Region	137
4.2.6.2 The Md-af9 Region	138
4.3 AFLP Derived DNA Markers for <i>Nothofagus</i>	139
4.3.1 Characterisation of Nm-af2	141
4.3.2 Genetic Distances between Taxa	142
4.3.3 Split Decomposition and Spectral Analyses	144
4.3.4 Molecular Clock-Like Properties of the Data	145
4.3.5 Summary: the AFLP Derived Marker Nm-af2	146
4.4 Discussion	147
4.4.1 How efficient is the Approach Used to Derive Sequence Specific Markers?	148
4.4.2 Are the New Molecular Markers Identical to the isolated AFLP Bands?	148
4.4.3 What Types of Markers Were Isolated from AFLP Profiles?	149
4.4.4 What is the Potential of AFLP Derived Markers?	149

151
151
151
. 152
152
153
154
155
157
158
· · · · ·

5.3 Phylogeographic Analysis of Myrsine divaricata and M. argentea	159
5.3.1 Investigating Geographical Distribution of <i>M. divaricata</i> Genotypes	159
5.3.1.1 NdhF Sequence Type	159
5.3.1.2 Nuclear rDNA Sequence	161
5.3.1.3 AFLP: 'genetic fingerprints'	162
5.3.2 Investigating Interspecific Geneflow at Sympatric Sites	164
5.3.2.1 NdhF Sequence Type	164
5.3.2.2 Nuclear rDNA Sequence	165
5.3.2.3 AFLP Derived Marker Ma-af1	166
5.4 Discussion	167
5.4.1 Interspecific Relationships within genus Myrsine	167
5.4.2 Intraspecific Relationships for <i>M. divaricata</i> and <i>M. argentea</i>	168
5.4.3 Geographic Structure in Populations of Myrsine divaricata	169
5.4.4 Hybridisation	170
5.4.5 Evolution of Morphological Features	171

Chapter 6

Intraspecific DNA Studies on Nothofagus menziesii and N. moorei.. 173

6.1 Introduction	173
6.1.1 Southern Beech in New Zealand	173
6.1.1.1 Nothofagus menziesii	174
6.1.2 Southern Beech in Australia	175
6.1.2.1 Nothofagus moorei	176
6.1.3 Aims and Expectations	176
6.2. Nothofagus menziesii	177
6.2.1 Sequence Analyses of Nuclear DNA	
6.2.2 Sequence Analyses of Plastid Sequence	179
6.2.3 Nm-af2 Allele Frequencies and Wright's Statistics	181
6.3. Nothofagus moorei	185
6.3.1 Sequence Analyses of Nuclear DNA	
6.3.2 Sequence Analyses of Plastid Sequence	
6.4 Discussion	187
6.4.1 How Much Geneflow Occurs between Disjunct Beech Populations?	
6.4.1.1 Nothofagus menziesii	
6.4.1.2 Nothofagus moorei	188
6.4.2 Inferring the Age of Beech Population Disjunctions	189
6.4.2.1 Nothofagus menziesii	189
6.4.2.2 Nothofagus moorei	
6.4.2.3 Obtaining Further Information about the Nature of the Disjunctions	

.

General Discussion	192
7.1 Origins of the New Zealand forest flora	192
7.1.1 Gondwanan Origin of New Zealand Forest Plants	193
7.1.2 Dispersal Origin of New Zealand Forest Plants	
7.1.2.1 Mechanisms of Long-Distance Dispersal	197
7.2 Overseas Relationships of the New Zealand Flora	198
7.2.1 The Trans-Tasman Connection	
7.2.3 The Pacific Connection	199
7.2.4 Have Plants Dispersed From New Zealand?	200
7.3 What Events May Have Had An Influence on the Evolution and	
Biogeography of the New Zealand Forest flora?	201
7.3.1 The Cretaceous	201
7.3.2 The 'Oligocene Drowning'	202
7.3.3 The Pliocene Mountain Building	202
7.3.4 The Pleistocene Ice-Ages	
7.4 Conclusions	204
7.5 Directions for Future Work	205
Bibliography	206
Appendix I: Geological Time Scale	221
Appendix II: Herbarium Voucher Numbers	222
Appendix III: Herbarium Voucher Numbers for <i>Nothofagus menziesii</i> Population Samples	226
Appendix IV: DNA sequence of AFLP Derived Markers	231
Appendix V: Nexus Files	232

LIST OF FIGURES

Figure 1.2: Model of the New Zealand South Island including the Alpine Fault sector	5
Figure 1.3: Distribution of glaciers and vegetation in New Zealand during the Otiran glaciat	tion7
Figure 2.1: Overview of different steps performed under the protocol for Amplified Fra Length Polymorphism (AFLP).	agment 38
Figure 2.2: Interrelationship among five models for estimating the number of nuc substitutions among a pair of sequences.	leotide:46
Figure 2.3: Path length comparison for the relative rates test of Steel et al	55
Figure. 3.1: Splitsgraph for Araucariaceae.	64
Figure 3.2: Rooted phylogeny for Araucariaceae.	66
Figure 3.3: Scheme of divergence for Araucariaceae.	69
Figure 3.4: Splitsgraph for Podocarpaceae	74
Figure 3.5: Rooted phylogeny for Podocarpaceae	75
Figure 3.6: Splitsgraph for New Zealand and overseas species of Metrosideros	80
Figure 3.7: Splitsgraph for New Zealand Metrosideros.	82
Figure 3.8: Unrooted quartet puzzling tree from Metrosideros nuclear rDNA.	83
Figure 3.9: Splitsgraph from nuclear ITS and 5.8S rDNA sequence data for Myrsinaceae	89
Figure 3.10: Splitsgraph from nuclear ITS and 5.8S rDNA sequence data for Myrsin without <i>M. salicina</i>	naceae 90
Figure 3.11: Rooted phylogeny for Myrsinaceae based on ITS 1, ITS 2 and 5.8S	91
Figure 3.12: Splitsgraph for Nothofagus from nuclear rDNA sequence	99
Figure 3.13: Rooted phylogeny for Nothofagus based on nuclear rDNA.	100
Figure 3.14: Splitsgraph for Nothofagus based on plastid sequence data	101
Figure 3.15: Rooted phylogeny for Nothofagus based on tmL intron and tmL-tmF	102
Figure 3.16: Scheme for the divergence between Australian and New Zealand Lohpozo. Fuscaspora beeches	<i>nia</i> and 105
Figure 3.17: Splitsgraph for Proteaceae based on plastid coded atpB sequence data	109
Figure 3.18: Rooted phylogeny for Proteaceae based on plastid coded atpB sequence dat	a 111
Figure 3.19: Splitsgraph for Winteraceae based on nuclear rDNA sequence data	115
Figure 3.20: Unrooted quartet puzzling tree for Winteraceae based on nuclear rDNA	116

Figure 4.1: AFLP profile from <i>M. australi</i> s and <i>M. divaricata</i>	128
Figure 4.2: AFLP profile from <i>M. divaricata</i>	129
Figure 4.3: Ma-af1 amplification products for some accessions of <i>Myrsine sp</i>	131
Figure 4.4: Repetitive DNA sequence motif of 14 bp length from <i>M.australis</i>	131
Figure 4.5: Correlation between molecular markers	134
Figure 4.6: Splitsgraphs for New Zealand species of Myrsine and Elingamita.	135
Figure 4.7: Distance Hadamard spectra for New Zealand Myrsinaceae	136
Figure 4.8: AFLP profile for Nothofagus menziesii	139
Figure 4.9: Nm-af2 allele combinations found in N. menziesii.	141
Figure 4.10: Repetitive sequence motifs from <i>N. menziesii</i>	142
Figure 4.11: Correlation between molecular markers Nm-af2 and nuclear rDNA	143
Figure 4.12: Splitsgraphs for Nothofagus subgenera Lophozonia and Fuscaspora	144
Figure 4.13: Distance Hadamard spectra for Nothofagus.	145
Figure 5.1: Myrsine divaricata	151
Figure 5.2: ndhF sequence types displayed by Myrsine sp. and Rapanea sp	154
Figure 5.3: Splitsgraph for Myrsine sp. and Elingamita johnsonii based on nuclear rDNA	156
Figure 5.4: Splitsgraph for <i>Myrsine</i> sp. and <i>Elingamita johnsonii</i> based on sequence of AFLP derived marker Md-af1	the 157
Figure 5.5: Splitsgraph for <i>Myrsine</i> sp. and <i>Elingamita johnsonii</i> based on sequence of AFLP derived marker Md-af9.	the 158
Figure 5.6: Geographical distribution of <i>ndh</i> F sequence types CCA and CAA in <i>Myr</i> divaricata and <i>M. argentea</i>	rsine 160
Figure 5.7: Splitsgraph for samples of Myrsine divaricata and M. argentea.	161
Figure 5.8: AFLP Profiles for Myrsine divaricata and M. argentea	163
Figure 5.9: Splitsgraph for <i>Myrsine</i> sp. based on nuclear rDNA	166
Figure 5.10: Splitsgraph for <i>Myrsine australis</i> and <i>M. divaricata</i> based on sequence data o AFLP derived marker Ma-af1	f the 166
Figure 6.1: Distribution of Nothofagus menziesii in New Zealand	174
Figure 6.2: Distribution of Nothofagus moorei in Australia	. 176
Figure 6.3: Splitsgraph for N. menziesii based on nuclear rDNA sequence.	. 178
Figure 6.4: Splitsgraph for N. menziesii population samples based on Nm-af2 sequence	. 178

· · -

Figure 6.5: Splitsgraph for N. menziesii based on plastid sequence data	
Figure 6.6: Distribution of <i>N. menziesii</i> plastid sequence types	
Figure 6.7: Nm-af2 allele combinations found in <i>N. menziesii</i>	
Figure 6.8. Nm-af2 allele frequencies for four Nothofagus menziesii provenances	
Figure 6.9: Splitsgraph based on nuclear rDNA data of N. moorei	
Figure 6.10: Splitsgraphs based on nuclear Nm-af2 data of N. moorei.	

.....

LIST OF TABLES

Table 1.1: Overview over the geological history of New Zealand 6
Table 1.2: Examples from the pollen record of New Zealand plant families
Table 1.3: Suspected dispersal events for New Zealand plant groups
Table 2.1: Composition of two CTAB-based buffers used for DNA extraction. 26
Table 2.2: Thermocycling protocols for amplification of 6 gene regions from genomic DNA 33
Table 2.3: Thermocycling protocols for amplification of 3 gene regions from PCR products 34
Table 3.1: Details and results of substitution rate estimate for the <i>rbc</i> L gene region of Araucariaceae. 68
Table 3.2: Hamming distances between species of Metrosideros subgenus Metrosideros
Table 3.3: Hamming distances between species of Metrosideros subgenus Mearnsia. 85
Table 3.4: Details and results of substitution rate estimate for the nuclear ITS regions of New Zealand species of <i>Myrsine</i>
Table 3.5: Details and results of substitution rate estimate for the nuclear ITS regions of Nothofagus. 103
Table 3.6: Details and results of substitution rate estimate for the <i>trn</i> L intron and <i>trn</i> L- <i>trn</i> F intergenic spacer regions of <i>Nothofagus</i> . 104
Table 3.7: Divergence time estimates between Australian and New Zealand Lophozonia and Fuscaspora beeches derived from two molecular markers. 104
Table 3.8: Mean hamming distance between New Zealand and overseas species of Nothofagus. 106
Table 3.9: Details and results of substitution rate estimate for the nuclear ITS regions of Winteraceae. 117
Table 3.10: Substitution rate for plastid regions for Araucariaceae and Nothofagus
Table 3.11: Substitution rates for nuclear ITS regions of three New Zealand plant groups 121
Table 4.1: Relative success to isolate four markers for Myrsine from AFLP profiles 128
Table 4.2: Relative success to isolate seventeen markers for Myrsine from AFLP profiles 129
Table 4.3: Potential new molecular markers for Myrsine
Table 4.4: Comparison of pairwise hamming distance for New Zealand species of Myrsine 133
Table 4.5: AFLP fragments extracted from Nothofagus AFLP profiles 139
Table 4.6: Potential new molecular markers for Nothofagus
Table 4.7: Sizes of three Nm.af2 alleles of N. menziesii. 141

Table 4.8: Pairwise hamming distances for Nothofagus	. 143
Table 4.9: Substitution rate estimates for the new molecular marker Nm-af2 for Nothofagus.	146
Table 4.10: Overview over total efforts for obtaining molecular markers for Myrsine Nothofagus	and 148
Table 4.11: Possible uses for AFLP derived molecular markers	150
Table 5.1: Morphological characters to distinguish <i>M. argentea</i> and <i>M. divaricata</i>	. 152
Table 5.2: Species of Myrsinaceae used in Section 5.2.	. 153
Table 5.3: Species of Myrsinaceae used only in Section 5.2.1.	. 153
Table 5.4: Accession of Myrsine used in Section 5.3	. 164
Table 5.5: ndhF sequence types of samples taken from locations where two Myrsine spe occur sympatrically.	ecies 165
Table 6.1: Variable sites from aligned rDNA sequence of N. menziesii.	. 177
Table 6.2: Variable sites from aligned Nm-af2 sequence of N. menziesii.	. 178
Table 6.3: Variable sites from N. menziesii trnL intron and trnL-trnF intergenic spacer	. 179
Table 6.4: Nm-af2 alleles of N. menziesii samples in the central North Island	. 181
Table 6.5: Nm-af2 alleles of N. menziesii samples in the lower North Island	. 182
Table 6.6: Nm-af2 alleles of N. menziesii samples in the northern South Island	. 182
Table 6.7: Nm-af2 alleles of N. menziesii samples in the southern South Island	. 183
Table 6.8: Fixation index (F_{st}) and migration rate (Nm)	. 185
Table 6.9: Variable sites from aligned rDNA sequence of N. moorei population samples	. 186
Table 6.10: Variable sites from aligned Nm-af2 sequence of N. moorei.	. 186