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Abstract 

As part of the New Zealand Aluminium Smelters (NZAS) upgrade, a hot butt 

· cleaning system has been proposed, this would remove the bath from anodes as 

they are removed from the cells. It is expected that the time to cool for hot 

cleaned anodes would be significantly less than for current method of allowing the 

butts to cool before the bath is removed. 

In this project a mathematical model of the cooling process of both the clean and 

dirty anodes is developed. This model will aid in the investigation of the hot butt 

cleaning system by showing the difference in cooling times between the clean and 

dirty anodes. 

The temperature profiles within both clean and dirty anodes is calculated for one-, 

two- and three-dimensional models. Temperature changes in the anodes with time 

are also compared to experimental data. 
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IV 

Nomenclature 

All constants and variables used in this thesis are defined when first used. Com­

monly used notation is summarized here. 

a , b, c, d, e, f , g 

A 

A,B,C,D 

Ah 

Bi 

c 

D 

F(x), G(t) 

Fo 

g 

h 

diffusivity coefficients [m2/s) 

surface area [m2) 

defined variables 

horizontal downward facing surface area [m2
) 

Biot number [-] 

heat capacity [kJ/kgK] 

defined constant 

diameter of sphere [m) 

energy generated in a system [ J) 

energy transferred into a system [J] 

energy transferred out of a system [J] 

energy stored in a system [ J) 

defined function 

Fourier number [-] 

gravitional acceleration [m/ s2
) 

heat transfer coefficient [W/m2 K] 

convection heat transfer coefficient [W/m2 K] 



H 

H 

H 

k 

L 

Nu 

p 

Pr 

q 

radiation heat transfer coefficient [W/m2 I<] 

height [m] 

characteristic length [m] 

dimensionless heat transfer coeffecient [-] 

thermal conductivity [W/mI<] 

thermal conductivity in x-direction [W/mI<] 

thermal conductivity in y-direction [W/mI<] 

thermal conductivity in z-direction [W/mI<] 

length [m] 

longest linear dimension [m] 

x dimension [m] 

y dimension [ m] 

z dimension [ m] 

Nusselt Number[-] 

mean horizontal perimeter [m] 

Prandtl Number[-] 

rate of heat transfer [kW] 

rate of convection heat transfer [kW] 

rate of radiation heat transfer [kW] 

rate of heat transfer [kW] 

qi, qz , q3, q4, q5, q6 rate of heat transfer from specific direction [kW] 

RaH Rayleigh Number [-] 

Re Reynolds Number[-] 

t time [s] 

v 



T 

v 

x,y,z 

time normalisation constant ( s] 

normalised time (-] 

temperature (K] 

initial temperature (K] 

temperature normalisation constant ( K] 

surface temperature of anode (K] 

ambient temperature (K] 

normalised temperature [-] 

air speed (m/ s2
] 

length normalisation constant [m] 

volume of body [m3] 

spatial coordinate 

length normalisation constant [m] 

x, y, y normalised spatial coordinate [-] 

X(x), Y(y), Z(z) defined function 

ZJ 

Greek 

8 

t:..t 

6.x 

t:..y 

6.z 

thickness of body ( m] 

thermal diffusivity (m2 
/ s] 

coefficient of thermal volumetric expansion (K-1] 

ratio of timesteps to grid size squared [s/m2
] 

size of timestep [ s] 

distance between mesh points in x-direction [m] 

distance between mesh points in y-direction [m] 

distance between mesh points in z-direction [m] 

emissivity [-] 

Vl 



v 

p 

Subscripts 

b 

c 

J 

k 

s 

Superscripts 

m 

defined variables 

viscosity of air at surface temperature [kg/ sm) 

viscosity of air at ambient temperature [kg/ sm) 

kinematic viscosity [ m 2 
/ s) 

density [kg /m3
) 

Stefan-Boltzmann Constant [W/m2 K 4 ] 

bath 

carbon 

grid points 

grid points 

grid points 

steel 

timesteps 

Vll 
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Chapter 1 

Introduction 

1.1 Background 

The smelting of aluminium converts bauxite into aluminium, this process consumes 

carbon anodes within the cells. These anodes hang in the cells as shown in Fig­

ure 1.1. Known as the Hall-Heroult process, the smelting of aluminium can be 

represented by the following equation 

The spent anodes or butts are removed from the cells at a temperature of approx­

imately 950 °C. The removed butts are placed on pallets for up to six hours before 

being hung on a conveyor for transport to the anode cleaning station. If the anodes 

have a temperature in excess of 400 °C when they reach the cleaning station further 

cooling must take place until they can be processed. The cleaning station removes 

bath, a by-product of the smelting process. 

The spent anodes can vary in size and shape but a standard spent anode is shown 

on the right hand side in Figure 1.2; also shown is a new anode. The bath cover 

can be seen sitting on top of the carbon. 

As part of the NZAS upgrade a hot anode cleaning system is being considered. 

This would remove the bath from the anodes while they are still hot. This has 

several advantages. Firstly hot bath is softer and easier to remove and secondly, 

the cooling time of the spent anodes is expected to be reduced since unremoved 

bath insulates the spent anode. 
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e 
Figure 1.1: Schematic of smelting cell 

Figure 1.2: Spent anode and new anode in cooling gallery 
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Figure 1.3: A new anode with assembly yoke 
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1.2 Outline 

This work develops a mathematical model of the cooling process which takes place 

for anodes with a bath cover and those with the bath cover removed. The input 

variables within the model include the physical and thermal properties of the mate­

rials which make up the anodes. Other important factors are the air temperature, 

the initial temperature of the anodes and the air movement around the anodes. 

The size and shape of the anodes is also another important consideration. The 

effect of other anodes cooling nearby may also be significant. 

In Chapter 2 the rate of heat transfer from the anode to the surrounding environ­

ment due to convection and radiation is investigated. It is shown that radiation 

heat transfer is the significant mode of heat transfer for cooling anodes, especially 

at high temperatures. 

The rates of heat transfer calculated in Chapter 2 are used in Chapter 3 to develop 

a lumped system model. In this model the anode is treated as being of uniform 

temperature at any given time. 

In Chapter 4 the heat equation which describes heat conduction within the anode 

is developed for one-, two- and three-dimensions. The boundary conditions for 

the heat equation are found using the assumption that heat is removed only by 

radiation. 

By simplifying the radiation boundary conditions, an approximate solution can be 

found analytically using the method of separation of variables. This is done for 

one-, two- · and three-dimensions in Chapter 5. The analytic solution only allows 

simple-shaped regions. 

In Chapters 6, 7 and 8 the mathematical problem is solved numerically using an 

explicit finite difference method for one-, two- and three-dimensions respectively. 

This allows more complicatedly shaped regions and the possibility of several ma­

terials with different thermodynamic properties within the anode model. 
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Chapter 2 

Modes of Heat Transfer for a 

Cooling Anode 

A cooling anode is a solid object in which heat is transferred within the anode by 

conduction; at the surface heat is lost from the anode due to both convection and 

radiation. If the butt is considered to be at a uniform temperature throughout at 

any given time, this simple model allows the radiation and convection heat transfer 

rates to be compared. 

In this chapter both radiation and convection heat transfer rates are calculated for 

an anode at various temperatures. 

2 .1 Convection 

Convection is the process by which thermal energy is transferred between a solid 

and a fluid fl.owing past it. There are two types of convection: natural or free 

convection and forced convection. In natural convection fluid movement is due to 

the buoyancy effect felt by the relatively warmer regions of fl.ow. Forced convection 

occurs when another entity pushes the fluid past the surface. 

The rate of heat transfer due to convection between the surface and the fluid may 

be given by 

(2.1) 

where h is the heat transfer coefficient, Ts is the surface temperature of the object, 

and T 00 is the fluid temperature away from the surface which is of area A. 
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2.1.1 Natural Convection 

For natural convection the value of h depends on the orientation of the surface i.e. 

if the surface is vertical or horizontal. Also the convection from a surface facing 

upward is different from the convection from a surface facing down. The heat trans­

fer from a three-dimensional arbitrarily-shaped body due to natural convection can 

be found by using the method described in [3]. A characteristic length H can be 

defined as 

where z f is the thickness of the body and P is the mean horizontal perimeter of 

the body. The Rayleigh number based on H can be defined as 

RaH = g{3 H3(Ts - T=) 
va 

where g{3/11a is known for air. The Rayleigh number can be used to find the Nusselt 

number 

(2.2) 

where C1 = 0.515 and Nuc../A = 3.51 are approximately constant. Ct is given by 

- ( Ah z1P) VA Ct = 0.098 - 0.065A + 0.008A H 

where A is the surface area and Ah is the horizontal downward-facing surface area 

of the body. The exponents n and m in Equation (2.2) are estimated by 

• 1 /12 
m = 2.5 + 12e-13ICiRaH -0.5J 

and 

n = (1.26 - 2 - VA/ Lm ' 1) 
9)1 - 4.79V213/A max 

where V is the volume of the body and Lm is the longest linear dimension. The 

heat transfer coefficient is 
k 

he= NuH H 

and the heat transfer rate is found from Equation (2.1 ). 

The rate of heat transfer for an anode which is 0.2 m high by 1.4 m long and 0.8 m 

wide and a sphere of diameter 1.0 m which has the same surface area are given in 

Table 2.1. 
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Table 2.1: Natural Convection Heat Transfer Rates for rectangular anode and 
sphere (kW) 

temperature °C Sphere Cuboid 
50 0.26 0.03 
150 1.57 0.52 
250 3.19 1.51 
350 4.66 2.64 
450 6.18 3.93 
550 7.91 5.53 
650 9.79 7.34 
750 11.79 9.32 
850 13.59 11.10 
950 14.87 12.24 

2.1.2 Forced Convection 

The heat transfer due to forced convection is also found from Equation (2.1) but 

the heat transfer coefficient depends on the velocity of the air movement around 

the butt. In the smelter there is no forced air movement around the butts except 

for any drafts due to outside wind. This makes any analysis of forced convection 

around butts difficult as the air speed and direction are both unknown. Also the 

shape of the butts means the movement of air around them is difficult to predict. 

To get an idea of the amount of heat lost due to forced convection the heat transfer 

from a sphere was calculated. This was compared to the heat loss due to natural 

convection and radiation from a sphere. The heat transfer coefficient is found from 

the Nusselt number 

Nuv = 2 + (0.4Rei{
2 + 0.06Re;f

3
)Pr0

.4 (::) 

where Pr (the Prandtl number) is approximately 0.7 for air, µ 00 is the viscosity of 

air at the ambient temperature (kg/ms) and µ 5 is the viscosity of air at the surface 

temperature (kg/ms). Rev is the Reynolds number given by 

Rev= UooD 
v 

where U 00 is the air speed ( m / s), D is the diameter of the sphere ( m) and v is the 

kinematic viscosity ( m2 
/ s ). The heat transfer coefficient is given by 

h =Nu k 
D 
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Using Equation (2.1), 

gives the rate of heat transfer from a sphere at temperature Ts due to forced 

convection. 

The rates of heat transfer due to forced convection from a sphere with a diameter 

of 1.0 m for various surface temperatures and air speeds are shown in Table 2.2. 

2. 2 Radiation 

Thermal radiation is the stream of electromagnetic radiation emitted by a material 

entity (solid body, pool of liquid, cloud of reacting gaseous mixture) on account of 

its finite absolute temperature [l]. If each surface of the anode is treated as if it 

is surrounded by a much larger surface the heat exchange between the surface and 

its surroundings is given by 

(2.3) 

where E is the emissivity of the surface, a- = 5.67 x 10-s W/m 2 K 4 is the Stefan­

Boltzmann constant, Ts and T00 are surface and ambient temperatures respectively 

and A is the surface area. 

It can be seen from Equation (2.3) that the rate of heat transfer due to radiation 

does not depend on the orientation or shape of the surface. This means that for 

a body of given surface area the rate of heat transfer due to radiation does not 

depend on shape or orientation. The heat transfer rates for a sphere and butt of 

the same surface area is the same. 

The rates of heat transfer due to radiation from a sphere with a diameter of 1 m 

for various surface temperatures is shown in Table 2.2. 

2.3 Summary 

Heat is lost from the butt by both convection and radiation. Due to the difficulty 

in calculating forced convection for an anode shaped body, the convection from a 

sphere was used. Table 2.1 shows that for natural convection this is a reasonable 
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Table 2.2: Heat Transfer Rates for sphere (kW) 
Convection Radiation 

Natural Forced 
Air Speed (m/ s) 0 5 10 20 

Temperature (°C) 
50 0.26 0.61 0.95 1.50 0.50 
150 1.57 2.56 4.01 6.30 3.51 
250 3.19 4.41 6.90 10.85 9.61 
350 4.66 6.16 9.63 15.11 20.41 
450 6.18 7.88 12.30 19.28 37.88 
550 7.91 9.63 15.00 23.50 64.32 
650 9.79 11.58 18.02 28.21 102.36 
750 11.79 13.53 21.04 32.91 154.99 
850 13.59 15.85 24.64 38.51 225.55 
950 14.87 18.87 29.32 45.80 317.70 

approximation. Table 2.2 shows that for temperatures above 350 °C heat transfer 

due to radiation is the most significant. As the air speed increases the rate of heat 

transfer due to forced convection also increases however even with an air speed 

of 20 m / s (that is about 40 knots) this is still significantly less than the heat loss 

due to radiation. This means initially the model will include only heat loss due to 

radiation. 
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Chapter 3 

Lumped System Model 

If the anodes are considered to be of uniform temperature throughout at any given 

time, the heat transfer rates, q, calculated in Chapter 2 can be used to model the 

cooling rate of the anode. This is called the lumped system transient model. 

3.1 Heat Transfer in a System 

This is done by looking at the energy terms affecting the system. In this case 

the system is the entire anode, with energy transfer into the system (Ein), energy 

transfer out of the system (Eout), energy generated within the system (E9 ) and 

energy storage within the system (Es)· The first law of thermodynamics states 

that these must be conserved which gives the following equation for the energy 

balance 

(3.1) 

For a cooling anode Ein and E9 equal zero and Eout = q. Equation (reflubalancel) 

can then be written as 

Es= -q (3.2) 

The heat transfer rate out of the anode, q is given by 

q = E(J" A(T4 
- Tc!,) (3.3) 

The change in the energy stored in the anode is proportional to the change in 

temperature, this is given by 
dT 

Es= pcVdt (3.4) 
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where pis the density (kg/m3
), c is the specific heat capacity (kJ/kgK) and V 

is the volume of the anode. Substituting Equation (3.3) and Equation (3.4) into 

Equation (3.2) gives 
dT ( 4 4) pcVdt = -caA T -T= 

3.2 Numerical Solution 

If the rate of heat transfer q is calculated using the same methods as in Chapter 2 

the change in temperature can be calculated using a forward finite difference scheme 

in time: 
Tm+l -Tm 

pcV flt =-ca A [(Tm)4 
- T!] 

which can be rearranged to give 

rm+1 =Tm -flt::i [(Tm)4-T!] 

If the anode has the following thermal and physical properties 

Length = L = 1.4 m Width = W = 0.8 m 

Height= H = 0.2m Density= p = 1580 kg/m3 

Heat Capacity = c = 1670 kJ /kg]{ Emissivity = 0.8 

Initial Temperature= Ti= 1112 ]{ Ambient Temperature= T= = 293 ]{ 

and if flt= 10 s the solution can be seen in Figure 3.1. This figure also shows the 

temperature profiles of the data collected in [9]. 

3.3 Summary 

The temperature throughout the anode is of course not uniform at any given time. 

It would be expected that the outside of the anode would cool down more quickly 

than the interior. The temperature calculated from the lumped system model would 

be expected to be lower than the average of the actual temperature distribution 

since it assumes the interior temperature is the same as the surface temperatures. 

This can be seen by the fact that the temperature for the lumped system model is 

significantly lower than the lower quartile temperature for the data supplied. 
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Figure 3.1: Cooling curve for lumped system model compared with measured data 

If the butt is made up of several different materials ( e.g carbon, bath and steel) 

a lumped system model would be inadequate. The thermal properties would be 

different for the different materials, leading to temperature variation within the 

butt. 

In the next chapters the fact that the temperature is not uniform throughout the 

anode is included in the model. This leads to the heat equations developed in 

Chapter 4. These are then solved to give the temperature distribution throughout 

the anode. 
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Chapter 4 

Heat Equation 

To find the differential equations that describe heat transfer due to conduction 

within a solid, energy balances and rate equations are used. The energy balance is 

found in the same way as in Chapter 3 but in this case the system is a small part 

of the anode. 

4.1 Formulation of the Heat Equation 

The energy transfer into the system (Ein), the energy transfer out of the system 

(Eout), energy generated within the system (E9 ) and energy storage within the 

system (Es). The first law of thermodynamics states that these must be conserved 

which gives the following equation for the energy balance 

The energy transfer into and out of the system is given by the rate of heat flow by 

conduction through a surface of area A given by 

oT 
q = -kA­ox (4.1) 

Thermal energy storage in a solid occurs when the temperature increases (or de­

creases) with time. The equation describing this is 

(4.2) 

where it has been assumed that p, V and c are constant. The term p V c is known as 

the thermal capacitance of the solid. In the problem being considered it is assumed 
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£. 

A 

···· · ······ · · ·· --~ 

x x+1 

Figure 4.1: Important energy terms for a plane-wall system 

that there is no energy generated in the system. The one-dimensional form of the 

heat equation describes the flow of energy in a plane wall, where the temperature 

varies only in the x-direction. A system of length ~x is defined in the x direction 

with cross sectional area A normal to the x direction, see Figure 4.1. 

The energy balance equation can be written as 

Where 

and 

8TI qlx = - kA-ox 
x 

8T 
Es= pA~xc7Jt 

Substituting into the energy balance equation gives 

- kA- + pA~xc- = - kA-aTI ar aTI 
ox x+b.x ot ox x 
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This can be rearranged to give 

aT kA or! - kA or! 
ox x+ti.x ox x pAc-= --~-----

at .6.x 

As .6.x --+ 0 this becomes 

aT a ( aT) pAc-=- kA-
at ax ax 

A is constant; if k is also constant then this can be written as 

The thermal diffusivity a is defined as a = k/ pc so this equation can be written as 

aT a2T 
-=a--
at ax2 

( 4.3) 

This is known as the one-dimensional heat equation. 

For heat flow in two-dimensions the same argument is used but a system of width 

.6.x by .6.y in the x and y-directions respectively and a width of W normal to this 

is used. This system has heat flowing from four directions rather than two as in 

the one-dimensional case (see Figure 4.2). 

If it is assumed that all the heat flow is into the system, this gives an energy balance 

of 

where 

and ar 
qlx = - kW .6.y-ax 

x 

aTI qlx+ti.x = kW b.y ax 
x+ti.x 

arl qly = - kW .6.x-
ay 

y 
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y 

y+1 . .. . . .. . .. . ~-----~ 

qj 
x 

y ·· · ···· · ·· ·------~ 

qj 
y 

t:i.x 

x x+1 x 

Figure 4.2: Important energy terms for a two-dimensional system 

Substitution into the energy balance equation gives 

aT [)Tl [)Tl 8TI 8TI pW .6.x.6.ycat = kW .6.y ax - kW .6.y ax + kW .6.xa - kW .6.xa 
x+.D.x x Y y+.D.y Y y 

which can be rearranged to give 

kw arl - kwarl kwarl - kw arl W 8T _ ax x+t.x ax x ay y+t.y ay Y 

p c at - .6.x + .6.y 

As .6.x -+ 0 and .6.y --+ 0 this becomes 

pWc
0T = ~ (kw

8T) + ~ (kw
8T) 

at ax ax oy ay 

Since W is a constant, if k is a constant this can be written as 

ar = a (a 2
T + EJ2T) 

at 8x2 8y2 

where a= k/ pc. This is the two-dimensional heat equation. 

Using a similar argument the three-dimensional heat equation 

or= a (a2T + a2r + a2T) 
ot 8x2 8y2 8z 2 

can be found. 

( 4.4) 

( 4.5) 
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x=-L x=O 

Conduction 

Radiation 
t----

x=L 

Figure 4.3: Heat fl.ow in a one-dimensional anode 

4.2 Boundary and Initial Conditions 

17 

x 

Owing to the symmetry of the problem (see Figure 4.3), the solution can be found 

for just half of the anode. This simplifies the analytical solution and saves a lot of 

computation time when the solution is found using numerical methods. At x = 0 

the rate of heat transfer is zero due to symmetry, this gives the following boundary 

condition at x = 0: 

aTI =0 
ax x=O 

In Chapter 2 it was shown that at the surface of the anode the energy transfer was 

due mainly to radiation, the rate of heat transfer being given by 

Equation ( 4.1) states that 
BT 

q = -kA Bx 

therefore the boundary condition at x = L is 

arl -kA Bx x=L = w-A(T(L, t)
4 

- T!) 

The initial condition specifies the temperature distribution at t = 0. This is a 

function of position within the anode 

T(x, 0) = f(x) 
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the boundary and initial condi tions for the two- and three-dimension problems can 

be found similarly. 

4.3 Summary 

One-Dimensional Heat Equation 

The one-dimensional heat equation for the problem is 

aT(x, t) a2T(x, t) ---'------'- = a ----'---'-
8t ax2 

with boundary conditions 

arl =O 
ax x =O 

8TI = - f.(7(T(L )4 - T4) ax k Xl t 00 

x = L:r 

and 

T(x,O) = f (x) 

is the initial condition. 

Two-Dimensional Heat Equation 

The two-dimensional heat equation is 

ar =a (82T + 82T) 
at ax2 8y2 

with the following boundary conditions 

arl =O 
OX x=O 

and 

T(x, y, 0) = f( x, y) 

is the initial condition. 

(4.6) 

(4.7) 
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Three-Dimensional Heat Equation 

The heat equation in three-dimensions is 

8T =a (8
2
T + 82T + 82T) 

8t 8x2 8y2 8z2 

with the following boundary conditions 

and 

is the initial condition. 

aTI =0 
8x x=O 

fJTI = 0 
ay y=O 

8TI =0 
OZ z=O 

8T I ccr ( ( ) 4 4 ) ax x=Lx = -y T Lx , y,z , t -Too 

f)T I ccr ( ( 4 4 [) = -y T x,Ly,z,t) -T00 ) 

y y=Ly 

[)Tl ccr( ( 4 4 
OZ z=Lz = -k T X, y, Lz, i) - Too ) 

T(x,y, z ,O) = J(x,y,z) 

19 

(4.8) 

These equations are solved analytically in Chapter 5. In Chapters 6, 7 and 8 

the numerical solution to these equations are found for the one-, two- and three­

dimensional models respectively . 
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Chapter 5 

Analytical Solution 

The analytic solution can be found if the problem is simplified. While these sim­

plifications make this solution of little practical use, it does give an indication of 

the expected behavior of the numerical solution. 

5.1 One-Dimensional Solution 

5.1.1 Linearisation 

The one-dimensional heat equation with a radiation boundary condition is nonlin­

ear due to the dependence on the fourth power of the temperature. It is possible 

to linearise the radiation term, this is done by factoring the fourth power of the 

temperature as follows 

T4 -T4 
00 s (T! + Ts2 )(T! - Ts2

) 

(T! + Ts2)(Too + Ts)(Too - Ts) 

The radiation boundary condition may now be written 

where 

This gives the boundary equation the same appearance as the convection boundary 

condition but hr is really a variable since it depends on the surface temperature 
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Ts. If the temperature difference between the surface temperature and the ambient 

temperature is small Ts can be replaced with T 00 • This gives 

The radiation heat transfer coefficient is now a constant and it is possible to solve 

the differential equation using analytic methods. It must be noted that this lin­

earisation is only suitable in cases where T3 is close to T00 • 

Restating the differential Equation ( 4. 7) with the linearised boundary condition 

gives 
{)T 82T 
-=a--
{)t 8x2 

The initial condition at t = 0 is 

T(x, 0) =Ti 

The boundary condition at x = 0 is observed from symmetry to be 

aT = O 
ax 

The linearised radiation boundary condition at x =Lis 

5.1.2 Normalisation 

(5.1) 

These equations can be normalised if the following nondimensional variables are 

defined 
- T-Too 
T=-­

To 
x x=-
xo 

- t 
t= -

to 
where T0 , x 0 and t 0 are constants to be determined. Substituting these nondimen-

sional variables in to the differential equation gives 

To at T0 a21' 
----==a---
to at x5 ax2 
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This can rearranged to give 
at to a2t 
---=-=a---ot x5 ox2 

If t 0 is chosen to be L2 /a and x0 = L the differential equation reduces to 

at a2t 
al - ax2 

22 

(5.2) 

This is the normalised heat equation. The boundary condition at x = 0 that is 

x = 0 becomes 
at= 0 ox 

the linearised radiation boundary condition at x = L that is x = 1 is 

This can be simplified to give 

_of = hrL T = HT 
ox k 

(5.3) 

(5.4) 

where H = hrL/k is the normalised heat transfer coefficient. The normalised initial 

condition is 
t= Ti-Too 

To 
If T0 = Ti - T 00 then initial condition at t = 0 becomes 

(5.5) 

Equation (5.2) to Equation (5.5) are the normalised equations describing the prob­

lem. 

5.1.3 Separation of Variables 

The analytic solution to the normalised1
, linearised problem can be found by the 

method of separation of variables. If the solution is assumed to be of the form 

T(x, t) = F(x )G(t) (5.6) 

then Equation (5.2) can be written as 

F"(x)G(t) = F(x)G'(t) 

1In this section the normalised variables (eg x) have been written without the bar (eg x). 



.. 

CHAPTER 5. ANALYTICAL SOLUTION 

Separating the variables x and t gives 

F" ( x) G' ( t) 2 
F(x) = G(t) =-A =constant 

This gives two ordinary differential equations to solve: 

and 

F"(x) 2 
F(x) =-A 

G'(t) = -AZ 
G(t) 

Equation ( 5. 7) can be rearranged to give 

which has solutions of the form 

F ( x) = A sin AX + B cos AX 

where A and Bare constants to be determined. 

The boundary condition at x = 0 is 

ar = 0 ax 
This can be rewritten using Equation ( 5.6) as 

F'(O)G(t) = 0 

therefore 

F'(O) = 0 

Substituting into Equation (5.9) gives 

A=O 

Equation (5.9) can be rewritten as 

F(x) = B cos AX 

The boundary condition at x = 1 is 

arl - = -HT(l,t) 
ax x=l 

23 

(5.7) 

(5.8) 

(5.9) 
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This can be rewritten by using Equation (5.6) as 

F'(I)G(t) = -H F(l)G(t) 

canceling G(t) gives 

F'(l ) = -H F(l) 

This gives 

- B >. sin >. = - H B cos >. 

this can be simplified to give 

>.tan>.= H 

which is an eigencondition for the solution. 

Equation (5.8) is 

G' (t) = - >.2 

G(t) 

This has a solution of the form 

The partial solution of Equation (5.2) is 

where An, the nth eigenvalue, satisfies 

This gives a general solution of the form 

00 

T(x , t) = L Ane-.A~t cos AnX 
n=l 

The initial condition T(x, 0) = 1 gives 

00 

T(x, 0) = 1 = L An COS AnX 
n=l 

24 
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if both sides are multiplied by cos Amx then 

00 

COS AmX = L An COS AnX COS AmX 
n=l 

Integrating both sides between o. and 1 gives 

It can be shown that cos Amx and cos AnX are orthogonal2 , that is 

when m # n. Therefore 

Rearranging this gives 

which can be integrated to give 

This simplifies to 

1/ Am sin Am 
Am= -------

1/4Am sin 2A + 1/2 

Am= 4sin Am 
sin 2Am + 2Am 

The general solution to the normalised equation can now be written as 

00 4 sin An 2 
T(x, t) = L . A A e-,l..nt cos AnX 

n=I Slil 2 n + 2 n 

25 

(5.10) 

where An satisfies An tan An = H. If the original non-normalised variables are used 

the general solution can be written as 

(5.11) 

2 See Section 5.1.4 



CHAPTER 5. ANALYTICAL SOLUTION 

5.1.4 Orthogonality 

Function Xn ( x) and Xn ( x) are said to be orthogonal if 

foL X n(x)Xm(x)dx = 0 

when m '/= n. 

Equation (5.7) says that 

X~(x) = -.\~Xn(x) 

Using this fact, Equation (5.12) can be written as 

A~ foL Xn(x)Xm(x)dx = - foL X~(x)Xm(x)dx 
Using integration by parts the LHS is 

L { L 
- [X~(x)Xm(x)]0 +Jo X~(x)X:n(x)dx 

which can be further integrated by parts to give 

- [X~(x)Xm(x) - Xn(x)X:n(x)]~ - foL Xn(x)X~(x)dx 
Using Equation (5.7) this can be written as 

- [X~(x)Xm(x) - Xn(x)X:n(x)]~ + .\!i foL Xn(x)Xm(x)dx 

Therefore 

26 

(5.12) 

A~ foL Xn(x)Xm(x)dx = - [X~(x)Xm(x) - Xn(x)X:n(x)]~ + .\!i foL Xn(x)Xm(x)dx 

rearranging this gives 

(.\~ - .\~) foL Xn(x)Xm(x)dx = - [X~(x)Xm(x)- Xn(x)X:n(x)]~ 
If the LHS is equal to zero then Xn(x) is orthogonal. Using the boundary conditions 

the LHS can be written as 

HXn(L)Xm(L) - HXn(L)Xm(L) 

which is zero. 

Therefore 

(.\; - .\!i) foL Xn(x)Xm(x)dx = 0 

This means that for m '/= n 

foL Xn(x)Xm(x)dx = 0 

and the Xn ( x) are orthogonal. 
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5.2 Two-Dimensional Solution 

5.2.1 Linearisation 

The two-dimensional heat equation can be linearised in the same way as in the 

one-dimensional case. We have 

8T =a (8
2
T + 82

T) 
8t 8x2 8y2 

The initial condition at t = 0 is 

T(x, y, 0) =Ti 

The boundary condition at x = 0 is observed from symmetry to be 

Similarly the boundary condition at y = 0 is 

8T = O 
oy 

The linearised radiation boundary condition at x = Lx is 

and at y =Ly 

5.2.2 Normalisation 

(5.13) 

These equations can be normalised if the following nondimensional variables are 

defined 
- T - Too 
T=-­

To 
x 

x=-
vo 

- y y=-
Vo 

- t 
t = -

to 
where T0 , v0 and t 0 are constants to be determined. The lengths x and y are divided 

by the same value v0 to keep the ratio between the normalised lengths x and fj the 
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same as the ratio between x and y . Substituting these nondimensional variables 

into the differential equation gives 

To a'i' (To a2f' T0 a2
T) 

t;; al = a v6 ax2 + v6 ay2 

This can rearranged to give 

at to (a2t a2'i') 
al = a v6 ax2 + ay2 

If v0 = 1 and t 0 = 1 /a are chosen, this reduces to give 

at a2f' a2f' ---+-al - ax2 ay2 

The boundary condition at x = 0 becomes 

a'i'I =0 
ax x=O 

At j} = 0 the boundary condition is 

a'i'I = 0 
ay y=O 

The linearised radiation boundary condition at x = Lx is 

-kToa~1 =hrToT 
Vo ax --L 

X- :r: 

which can be simplified to give 

- a'i'I = hrLxf' = Hx'i' 
ax x=Lx k 

At 'fj = Ly the boundary condition is 

The initial condition is 

- af'I = hrLyT = HyT 
ay - -L k Y- y 

T= Ti -Too 
To 

If To= Ti - T00 • The initial condition at t = 0 becomes 

f' = 1 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

(.5 .19) 

Equations (5.14) to Equation (5.19) are the normalised equations describing the 

two-dimensional problem. 
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5.2.3 Separation of Variables 

If the solution to the normalised equation3 is assumed to be of the form 

T(x, y, t) = F(x, y)G(t) (5.20) 

then the differential equation can be written ·as 

F(x, y )G(t) = [Fxx(x, y) + Fyy(x, y )] G(t) 

Therefore 
Fxx(x,y) + Fyy(x,y) G'(t) 

= -- =c1 
F(x, y) G(t) 

This gives two equations 

Fxx(x , y) + Fyy(x, y) 
= C1 F(x,y) 

and 
G'(t) 
G(t) = C1 

The first of these can be rearranged to give 

Fxx(x,y) + Fyy(x,y)- c1F(x,y) = 0 (5.21) 

This can also be solved using separation of variables if we assume 

F(x,y) = X(x)Y(y) 

Then Equation (5.21) can be written as 

X"(x)Y(y) + X(x)Y"(y) - c1X(x)Y(y) = 0 

Dividing by X(x)Y(y) gives and rearranging gives 

X"(x) Y"(y) 
X(x) = c1 - Y(y) = c2 (5.22) 

This gives two equations 

and 

3 In this section the normalised variables ( eg x) have been written without the bar ( eg x) 
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If c2 = ->.2 the first of these equations has solutions of the form 

X ( x) = A sin >.x + B cos >.x 

where A and Bare constants. 

From the boundary conditions A= 0 and 

X ( x) = B cos >.x 

where >. satisfies 

which is an eigencondition. 

If c1 - c 2 = -µ2 then 

Y"(y) + µ2Y(y) = 0 

solving this gives 

Y(y) = C sinµy + D cos µy 

The boundary conditions give C = 0, so 

Y (y) = D cos µy 

and the eigencondition is 

µtanµLy =Hy 

The equation 
G'(t) 
G(t) = C1 

has a solution of the form 

G(t) = Cecit 

but c1 = - ( >.2 + µ 2
) so this can be written as 

The particular solution to Equation (5.14) is 

Tm ,n(x, y, t) 

Em COS AmXDn COS µnyCm,ne-(>.;,.+µ 2 )t 

Am,n COS AmX COS µnye-(>.;,.+µ~)t 

30 
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where Am satisfies 

and µn satisfies 

µn tan µnLy = Hy 

This gives a general solution of the form 

00 00 

T(x, y, t) = L L Am,ne-(>.;,+µ;)t COS AmX COS µny 
m=l n=l 

where Am,n is to be determined. Using the initial condition T(x, y, 0) = 1 gives 

00 00 

T(x, y, 0) = 1 = L L Am,n COS AmX COS µny 
m=l n=l 

If both sides are multiplied by cos ,\ix and cos µiy then 

00 00 

COS AiX COS µjy = L L Am,n COS AiX COS AmX COS µjy COS µny 
m=l n=l 

Integrating both sides between 0 and 1 gives 

fo1 fo1 

cos ,\ix cos µiydxdy = 

1
111 00 00 L L Am,n COS AiX COS AmX COS µjy COS µnydxdy 

O O m=l n=l 

31 

It can be shown that cos AiX and cos µiy are orthogonal (see Section 5.1.4) to 

cos AmX and cos µny respectively. This gives 

fo1 

cos AiX cos Amxdx = 0 

when m # i, and 

when n # j. Therefore 

fo1 fo1 
cos AiX cos µjydxdy = fo1 fo1 

A ,j cos2 AiX cos2 µiydxdy 

Rearranging for Ai,j gives 

Integrating gives 

A . . _ J~ J~ cos AiX cos µiydxdy 
'•

1 
- J~ J~ cos2 ,\ix cos2 µiydxdy 
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The general solution to the normalised equation can now be written as 

_ ~ ~ 16 sin Am sin µn -(A;.+µ~)t 
T(x,y,t) - L.J L.J (. 

2
, 

2
, )(. 

2 2 
)e COSAmXcosµny 

m=l n=l Slil Am + Am Slil µn + µn 
(5.23) 

where Am satisfies Am tan AmLx = Hx and µn satisfies µn tan µnLy = Hy. If the 

original variables are used the general solution can be written as 

T(x, y, t) =(Ti - T00 ) (f
1 

E Am,ne-a(A;,+µ~)t COS AmX COS µny) + T00 (5.24) 

where 
A _ 16 sin Am sin µn 

m,n - (sin2Am + 2>.m)(sin2µn + 2µn) 

5.3 Three-Dimensional Solution 

5.3.1 Linearisation 

The three-dimensional problem can be linearised in the same way as in the one­

dimensional and two-dimensional cases. The heat equation is 

fJT = a (a2T + a2T + a2T) 
fJt fJx2 fJy2 fJz2 

The initial con di ti on (at t = 0) is 

T(x,y,z,O) =Ti 

The boundary condition at x = 0 is observed from symmetry to be 

fJT = 0 
ax 

Similarly the boundary condition at y = 0 and z = 0 is 

fJT = 0 
fJy 

fJT = 0 
oz 

The linearised radiation boundary condition at x = Lx is 
oT 

k OX =hr [T00 - T(Lx, y, z, i)] 

and at y =Ly 
oT 

k oy =hr [Too - T(x, Ly, z, t)] 

and at z = Lz 
oT 

k OZ =hr [T00 - T(x, y, Lz, i)] 

(5.25) 
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5.3.2 Normalisation 

These equations can be normalised in the same way as the two-dimensional case if 

the following nondimensional variables are defined 
- T - Too 
T=--

To 
- x 
x=-

Vo 
- y 
y=-

Vo 
- z 
z=-

Vo 
- t 
t= -

to 
where T0 , v0 and t0 are constants. If v0 = 1 and t0 = 1/a then Equation (5.25) can 

be written as 
at a2r a2r a2r 
fJl = 8x2 + 8y2 + a-z2 

The boundary condition at x = 0 is 

at y = 0 is 

at z = 0 is 

81' = 0 
ox 

at 
-=0 
o'fl 

81' = 0 
oz 

The linearised radiation boundary condition at x = Lx is 

_ 8TI = hrLxt = Hxt 
OX x=Lx k 

at y = Ly the boundary condition is 

- 81'1 = hrLyt = HyT 
O'fj --L k Y- y 

at z = Lz the boundary condition is 

8tl hrLz - --- =-T=HzT 
OZ z=Lz k 

If T0 = Ti - T 00 then initial condition at t = 0 becomes 

'l' = 1 

(5.26) 

(5.27) 

(5.28) 

(5.29) 

(5.30) 

(5.31) 

(5.32) 

(5.33) 

Equations (5.26) to Equation (5.33) are the normalised equations describing the 

problem. 
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5.3.3 Separation of Variables 

The solution to the three-dimensional case can be found by extending the two­

dimensional case. If the solution to the normalised4 equation is assumed to be of 

the form 

T(x, y, z, t) = X(x )Y(y)Z(z)G(t) (5.34) 

then four ordinary differential equations can be found using the same method as 

in the two-dimensional case 

G'(t) - c1G(t) = 0 

X"(x) - c3X(x) = 0 

Y"(y) - (c2 - c3)Y(y) = 0 

Z"(z) - (c1 - c2)Z(z) = 0 

Solving these and using the boundary conditions gives 

where ,\z satisfies the eigencondition ,\z tan ,\zLx = Hx 

where µm satisfies the eigencondition µm tan µmLy = Hy 

where Vn satisfies the eigencondition Vn tan VnLz = Hz and 

Combining these gives the particular solution 

T ( ) A -(.\2+JL2 +v2)t \ 
l,m,n X, y, z, t = l,m,ne 1 m n COS A/X COS µmy COS l/nZ 

this gives the general solution 

00 00 00 

T(x, y, z, t) =LL L At,m,ne-(.\~+JL;,,+v~)t COS ,\Ix COS µmy COS l/nZ 

l=l m=l n=l 

4 In this section the normalised variables (eg x) have been written without the bar (eg x). 
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The constant A1,m,n can be found in the same way as the two dimensional case 

using the initial condition. The general solution to the normalised equation can 

now be written as 

T( ) =ff f 64sin >.1 sinµm sin Vn 
x, y, z , t l=I m=l n=l sin(2>.1 + 2>.1)(2µm + 2µm)(2vn + 2vn) 

(5.35) 

e-(>.r+µ;,,+v~)t cos >.1x cos µmy cos VnZ 

where >.1 satisfies >.1 tan >.1Lx = Hx, µm satisfies µm tan µmLy = Hy and Vn satisfies 

l/n tan VnLz = Hz. 

If the original variables are used the general solution can be written as 

T(x, y, z, t) = (5.36) 

(Ti - T00 ) (~ ~1 %i A1,m ,ne-a(>.r+µ;,,+v~)t cos >.1x cos µmy cos l/nZ) + T 00 

where 
A _ 64 sin >.1 sin µm sin Vn 

l,m,n - (sin 2).1+2>.1)(sin2µm + 2µm)(sin 2vn + 2vn) 

5.4 Summary 

A solution for the linearised problem can be found for each of the cases. Since the 

solution is given in terms of a series, the temperature at a given point and time is 

found by calculating the series for a finite number of steps. This is most efficiently 

done on a computer. 

If the following parameters are used for the one-dimensional case: 

Length= L = 0.4 m 

Density= p = 1580 kg/m3 

Emissivity = 0.4 

Thermal Conductivity= k = 5 W/mI< 

Heat Capacity= c = 16701/kgI< 

Initial Temperature= Ti = 1112 I< 

Ambient Temperature = T 00 = 293 J( 

the plot of the analytical solution is shown in Figure 5.1. This gives the expected 

qualitative results with the surface of the anode cooling more quickly than the 

centre. As time goes on the entire anode cools down. Since the difference between 
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Figure 5.1: Temperature surface for one-dimensional analytic solution 
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the surface temperature and the ambient temperature is high this does not give a 

good approximation to the non-linearised problem. 

Similar results could be found for the two- and three-dimensional cases also. How­

ever since in the physical problem the difference between the temperature at the 

surface and the ambient temperature is high, numerical methods will be used to 

solve the non-linearised problem. 
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Chapter 6 

One-Dimensional Numerical 

Solution 

The numerical method used to solve the problem was an explicit finite difference 

method. The finite difference equations were found initially for constant physical 

and thermal properties; these were then developed for variable properties. In this 

chapter solutions are found for one-dimensional problems with one and then two 

different materials. 

All solutions have been computed by code written in FORTRAN running on a 

DEC AlphaStation 200 4/233. The program writes output to MATLAB-readable 

files. 

6.1 Constant Physical and Thermal Properties 

Initially the physical and thermal properties (e.g. thermal conductivity, specific 

heat capacity and density) will be considered to be constant with both time and 

position. 

6.1.1 Finite Difference Approximations 

Finite difference methods involve dividing the region into a finite number of points 

or nodes. The derivatives in the differential equation are then replaced with an 

appropriate difference-quotient approximation at each of these points. These can 

be found by looking at the Taylor series expansion of T(x, t). 
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Taylor Series Method 

Internal Node: Recall the !-dimensional heat equation is 

oT o2T 
-=a--
ot ox2 (6.1) 

The time derivative in this equation can be found by looking at the Taylor series 

expansion of T(x, t) about tm at Xi, tm+l (that is Tt+l) 

This can be solved for for the derivative 

oTlm = Tt+i -Tr O[(b.t)] 
ot . b.t + 

i 

(6.2) 

This is known as the forward difference, alternatively if the Taylor series expansion 

is found at tm-l the backwards difference can be found 

oTlm = Tt - rr-1 O[(b.t)] 
ot . b.t + 

i 

(6.3) 

The second derivative with respect to x of T(x, t) in Equation (6.1) can be found 

by looking at the Taylor series expansion about Xi at Xi+i and Xi-l 

Tm = Tm oT Im ,6. ~ o2T Im ( b.x )2 ~ fJ3T Im ( b.x )3 O[(b. )4] 
i+l i + ox . x + 2 ox2 . 2 + 6 ox3 . 2 + x 

i i i 

r.m = r .m - oT Im b. ~ o2T Im ( b.x )2 - ~ o3T Im ( b.x )3 O[(b. )4] 
i-l i ox . x + 2 ox2 . 2 6 8x3 . 2 + x 

i i i 

adding these two equations gives 

This may now be solved to give the second derivative 

o2T Im = T[+.1 + 2rr + T/~1 O[(!J. )2] 
ox2 i (!J.x)2 + x (6.4) 

The explicit finite difference approximation to Equation (6.1) can be found by 

substituting Equations (6.3) and (6.4) into Equation (6.1) which gives 

T:m+1 -T.m ym 2rm +rm 
i i - i+l - i i-1 

!J.t (!J.x) 2 
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where terms of 0[(.6.x )2 , .6.t] have been disregarded.This equation can be rearranged 

to give an explicit finite difference formula for an internal node 

T m+l a.6.t ( m rm ym ) rm 
i = (.6.x) 2 Ti+1-2 i + i-1 + i (6.5) 

The implicit finite difference formula can be found by using the backward difference 

approximation for the time derivative. Using the Fourier number Fo = a.6.t/(.6.x )2
, 

Equation (??) becomes 

Surface Node: If the boundary condition is of the form 

k 8T = q" ox 

(6.6) 

(6.7) 

it represents a surface with heat flux. This partial derivative can be approximated 

by finding the Taylor series expansion of T(x, t) about Xm. 

T;";1 = rr + ~~I~ /;.x + ~:~1~ (!;.x)
2 + O[(!;.x)

3
] 

T[~1 = Tt - ~~I~ .6.x + ~:~1~ (.6.x)
2 

+ 0[(.6.x)
3

] 

Subtracting these gives 

T;";1 - T[". 1 = 2 ~~I~ /;.x + O[(!;.x)3
] 

solving for the derivative gives 

Substituting this into Equation (6.7) and neglecting 0[(.6.x) 2] gives 

k rr+1 - rr:.1 _ ,, 
2.6.x - q 

Solving for T[:+.1 gives 
.6.xq" 

T/~1 = 2-k- + T[~ 1 (6.8) 

At the boundary Xi is the final node and there is no node i+l this means Equa­

tion (6.8) must be substituted into Equation (6.5) giving 

T m+i a.6.t ( .6.xq" m m ) m 
; = (.6.x)2 2-k- - 2Ti + 2Ti_1 + T; (6.9) 
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A similar argument can be used at the other boundary. In the model developed 

the boundary condition at x =Xi = 0 is 

Therefore Equation (6.9) becomes 

k fJT = q" = 0 ax 

rm+i = atlt (2T.m - 2Tm) + ym 
i (tlx)2 2 i i 

and the boundary condition at x = XN = L is 

Therefore Equation (6.9) becomes 

rm+i = Fo {2Tm - 2Tm + 2w (T4 - (Tm) 4
] tlx} +Tm N N-i N k oo N N 

Heat Flow Method 

Internal Node: Alternatively the finite difference equations can be found by 

looking at the heat flow into and out of the strip surrounding a node as in Figure 6.1. 

Using the first law of thermodynamics 

[)Tim 
p6.xWc Bt i = q1 +qr (6.10) 

where qi and q2 are the heat flux from the left and right nodes respectively. The 

heat flux is proportional to the temperature gradient, which can be approximated 

by the difference in temperatures between adjacent nodes, divided by the distance 

between these nodes 6.x. The heat fluxes qi and q2 can be written as 

qi= kW(T[~~i -Tr) 
6.x 

q2 = kW(Tt+i -Tr) 
tlx 

Taking the forward difference for the time derivative 

[)Tim 
fJt . 

i 

and substitution into Equation (6.10) gives 

ym+i rm ym ym ym ym 
ptlxWc i - i =kW( i-i - i )+kW( i+i - i ) 

tlt 6.x tlx 
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i-1 i+1 

Figure 6.1: One-dimensional internal node 

i-1 

Figure 6.2: One-dimensional surface node 
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This can be rearranged to give the finite difference equation 

(6.11) 

for an internal node. 

Surface Node: The same method can also be used for a surface node where the 

heat flux from the surface is given by q". The volume which the node represents is 

1/2~xW so 

therefore 

r.m+l = Fo(2T.m - 2r.m + 2~xq") + T!11 
t i-1 i k i 

(6.12) 

6.1.2 Numerical Results 

The one dimensional equation was solved with the following values 

Thickness = L = 0.4 m 

Density= p = 1580 kg/m3 

Thermal Conductivity= k = 5 W/mI< 

Heat Capacity = c = 1670 J /kg]{ 

Emissivity= 0.4 Initial Temperature= Ti = 1112 ]{ 

Ambient Temperature = T 00 = 293 J{ 

This means the thermal diffusivity a = k/ pCP = 1.89 x 10-6 m2 
/ s. The length L 

was divided into 20 nodes so ~x = 0.02m, the solution was found fort = 20hr using 

a time step ~t = 4 s. Plotting temperature against time and position x (Figure 6.3) 

shows how the anode initially cools at the surface and how as time goes on the 

temperature within the anode decreases. It can be seen that this solution is similar 

to the analytic solution found earlier. 

The one-dimensional equation was solved for various thermal properties and anodes 

of different lengths. Results are shown in Table 6.1. It can be seen that the length 

of the anode has a large effect on the temperature both at the surface and the 

centre of the anode. The properties of the material mainly affect the temperature 

within the anode but also affect the surface temperature. The emissivity does 

not have as large an effect on the temperatures as some of the other parameters; 

it mainly affects the surface temperature. A high initial temperature cools down 

very quickly and the low initial temperature cools down quite slowly. The ambient 

temperature has little affect when it is varied from 0 °C to 40 °C. 



L k p Gp t Ti Too Ts Tc Ts Tc Ts Tc 
(1 hr) (1 hr) (10 hr) (10 hr) (20 hr) (20 hr) 

(m) (W/mK) (kg/m 3
) (kJ/kgK) (K) (K) (K) (K) (K) (K) (K) (K) 

0.4 5.0 1580 1670 0.4 1112 293 854 1112 698 931 622 765 
0.6 5.0 1580 1670 0.4 1112 293 853 1112 705 1052 656 930 
0.2 5.0 1580 1670 0.4 1112 293 854 1084 617 683 509 537 
0.1 5.0 1580 1670 0.4 1112 293 835 952 496 509 406 411 
0.4 1.0 1580 1670 0.4 1112 293 749 1112 607 1101 567 1039 
0.4 10.0 1580 1670 0.4 1112 293 896 1109 716 841 617 682 
0.4 5.0 2500 1670 0.4 1112 293 882 1112 734 1016 675 879 
0.4 5.0 500 1670 0.4 1112 293 780 1089 560 649 460 496 
0.4 5.0 1580 1670 1.0 1112 293 736 1112 584 869 513 672 
0.4 5.0 1580 1670 0.8 1112 293 764 1112 611 884 538 694 
0.4 5.0 1580 1670 0.6 1112 293 802 1112 646 903 572 723 
0.4 5.0 1580 1670 0.2 1112 293 935 1112 789 977 716 841 
0.4 5.0 1580 1670 0.4 1500 293 993 1500 785 1172 686 904 

'rj t--3 

~ 
>; !;l> 
0 O"' 
'rj - ;:t.. (1) (1) 

"'a ~ O') 

~ 
a;· ;..... 
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Pi t-; 
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~ c:;-
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~ CJ) 

0.4 5.0 1580 1670 0.4 500 293 480 500 450 482 432 457 
0.4 5.0 1580 1670 0.4 1112 303 854 1112 698 931 623 766 
0.4 5.0 1580 1670 0.4 1112 273 853 1112 696 930 621 764 

c: 'tj 

~ P" 
'< 

0 CJ) 

'< c;· 
!;l> -
!;l> 
t:::! 
0.. 
c+ 
P" 
(1) 
>; s It; e.. 
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Figure 6.3: Temperature surface for one-dimensional numerical solution 

6.2 Variable Physical and Thermal Properties 

In this section we include in the model the possibility of the thermal and physical 

properties changing with position within the anode. This means that more than 

one material ( eg carbon and bath) can be included in the model. It is also possible 

to extend this to include the thermal properties varying with temperature. 

6.2.1 Finite Difference approximations 

The heat flux between adjacent nodes can be calculated by taking the average of 

the thermal conductivity of the two nodes 

= ki-i + ki W(T[-::.i - Tr) 
qi 2 ~x 

= ki + k;+l W(Tt+i -Tr) 
q2 2 ~x 

The first law of thermodynamics can be written as 

8Tlm 
(pc)i~x1'V at i =qi + q2 
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substituting in q1 and q2 gives 

The finite difference equation may now be rewritten as 

where 
ki-1 + ki 

a i = 
2(pc)i 

2bi = ki-1 + 2ki + ki+l 
2(pc)i 

ki + ki+i 
Ci= 

2(pc)i 

45 

If the thermal properties also varied with temperature (i.e. k = k(x, T)) then at 

each time step m, rr could be used to find ki. 

6.2.2 Numerical Simulation 

The one-dimensional model was solved for a butt of total thickness of 0.4 m, while 

the bath thickness was varied from being 0.0 m to be 0.4 m. The carbon had the 

following thermal properties: 

Emissivity = 0.4 

Density= Pc = 1580 kg/m3 

and the bath had: 

Emissivity = 0.4 

Density= Pb= 2050 kg/m3 

Thermal Conductivity= kc= 5 WjmJ( 

Heat Capacity =Cc= 1670 J /kg]( 

Thermal Conductivity= kb= 0.4 W/mK 

Heat Capacity = Cb = 2287 J /kg]( 

Figure 6.4 shows the temperature profile every two hours for up to twenty hours. It 

can be seen that the surface of the bath cools down more quickly than the carbon 

surface, however the interior of the bath stays hotter for longer. This suggests that 

removing the bath from a hot anode would help speed up the cooling process. 

The calculated temperature with time of a point of depth 0.05 m into the surface 

of the carbon for a butt of thickness 0.4 m with a bath cover of thickness 0.2 m 
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Figure 6.4: Temperature profiles for butts with various bath thicknesses 
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Figure 6.5: Cooling curve of a point in carbon compared to experimental data 

is shown Figure 6.5 where this is compared with the data given in [9]. Figure 6.6 

shows the temperature change with time for a point of depth 0.05 m into the bath. 

As can be seen this model starts of reasonably well but as time goes on it starts 

to give a higher temperature for both the carbon and the bath compared with 

experimental data. 

The temperature change with time for a point of depth 0.05 m in an anode with 

the bath removed before any cooling has taken place is shown in Figure 6.7. The 

temperature profiles within both the clean and dirty anodes are shown in Figure 6.8 

which shows that, the clean anode cools at a much faster rate. 

6.3 Accuracy and Stability of Numerical Method 

The accuracy of the solution depends on the size of the grid /::,,,x and on the size of 

the time step /::,,,t. The sizes of /::,,,x and /::,,,t also affect the computation time. For the 

one dimensional problem this is time is insignificant (less than 5 s ); however this is 

more important in the higher dimensional cases as the number of nodes increases 

significantly. The stability of the numerical method used depends on the coefficient 

of T;:" in Equation ( 6.11). If this value is negative the numerical solution becomes 
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Figure 6.6: Cooling curve of a point in bath compared to experimental data 
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Figure 6.8: Temperature profiles of dirty anode (top) and clean anode (bottom) 

unstable (see (1)). For a given mesh size 6.x a maximum time step 6.t can be found 

which gives a stable solution. For an internal node the coefficient of T:;" is 

1 - 2Fo;::: 0 

Since Fo = a6.t/(6.x) 2 this can be written as 

6.t < (6.x)2 
- 2a 

For the problem solved in Section 6.1.2, 6.x = 0.01 m so for an internal node the 

maximum 6.t is 26.386 s. This can be seen in Table 6.2 in the first section where 

6.t = 26 s gives good results, but if this is increased to 6.t = 27 s the method is 

unstable. 

The results for a number of simulations using the same data as in Section 6.1.2 

were done with various mesh sizes and different sized time steps. These are shown 

in Table 6.2. It can be seen that for all grid sizes up to 6.x = 0.04 m the method 

gives similar results. When 6.x = 0.08 m the method starts to lose some accuracy, 

the temperatures varying by up to lOK from the smaller grid sizes. Changing the 

size of the time steps does make some difference but this is fairly small if the time 

step is less than the critical value for stability. 
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T bl 6 2 T t t f d t £ 'd d t' t a e empera urea sur ace an cen re or various gn an 1mes ep sizes 
tlx tlt Tc Ts Tc Ts Tc Ts Tc Ts 

(1 hr) (1 hr) (5 hr) (5 hr) (10 hr) (10 hr) (20 hr) (20 hr) 
(m) (s) (K) (K) (K) (K) (K) (K) (K) (K) 
0.01 4 851 1081 709 830 609 672 501 528 
0.01 8 851 1081 709 830 609 672 501 528 
0.01 16 851 1081 709 830 609 672 501 528 
0.01 26 851 1082 709 830 609 672 501 528 
0.01 27 unstable 
0.02 4 851 1081 709 830 609 672 501 528 
0.02 8 851 1081 709 830 609 672 501 528 
0.02 16 851 1081 709 830 609 672 501 528 
0.04 4 850 1081 709 830 609 671 501 528 
0.04 8 850 1081 709 830 609 671 501 528 
0.04 16 850 1081 709 830 609 671 501 528 
0.08 4 849 1071 707 824 608 668 501 526 
0.08 80 849 1071 707 824 608 668 501 526 
0.08 16 849 1071 707 824 608 668 501 526 

6.4 Summary 

The one-dimensional model of the problem allows for a much greater range of 

features to be incorporated into the model than the lumped system model, including 

different types of materials. The major problem with this model is the fact that 

the geometric shape of the anodes cannot be incorporated into the model; this will 

be done in Chapters 7 and 8. The results above show that although the model 

has the correct qualitative properties it does not follow the cooling data from the 

experiments. 

The model shows that the removal of bath from the butt has a large effect on the 

temperature within the butt as expected. It can also be seen that for a position 

near the surface of the carbon such as that measured in the experiment in [9], there 

is little difference in temperature between clean and dirty anodes. 
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Chapter 7 

Two-Dimensional Numerical 

Solution 

The finite difference equations can be found for both the constant and variable 

physical and thermal property cases. Various cases will be modelled including the 

same case as the analytical solution. By changing the thermal properties with 

position an anode covered in bath will be modelled. A more complicated shape 

which includes the assembly yoke (see Figure 1.3) from which the anode hangs is 

also modelled. 

7.1 Constant Physical and Thermal Properties 

7 .1.1 Finit e Difference Approximation 

The formulation of the finite difference equations in the two-dimensional case is 

similar to the one-dimensional case. The main difference is that there are four types 

of nodes: internal, surface, external corner and internal corner nodes. Different 

finite difference equations must be found for each type. 

Internal N ode 

An internal node is surrounded by four other nodes as shown in Figure 7.1. The 

two-dimensional heat equation is 

(7.1) 
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• (i-1,j-1) (i,j-1) • (i+l,j-1) 

Figure 7 .1: Two-dimensional internal node 

The finite difference equations can be found by two different methods. The first 

uses Taylor series expansions while the other uses the energy balance equation. 

Taylor Series Method: The Taylor series expansion of T(x, y, t) about tm at 

(xi,yj,tm+1), that is T[j+i, is given by 

r:n.+1 = r:n. + - Llx + O[(Llx)2
] 

[)Tim 
'·1 t,J at .. 

i ,J 

This can be solved for for the derivative 

oT m y.m_+i - r.m. 
= ' ·1 

'·
1 + O[(Llx)] ot . . Llx 

t,) 

(7.2) 

The second derivative with respect to x of T(x, y, t) in Equation (7.1) can be found 

by looking at the Taylor series expansion about Xi at Xi+l and Xi_1 : 

adding these two equations gives 

T[~1,j + T{'!:.1,j = 2T[J + ~~I~. (~x)2 + O[(Llx) 4
] 

i,J 
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This may now be solved to give the second derivative 

f)2T Im = T[f.1,j + 2T/:J + T['.:.1,j O[(L:l )2) 
8x2 . . (~x)2 + x 

t,J 

(7.3) 

Similarly the second derivative with respect toy of T(x, y, t) in Equation (7.1) can 

be found by looking at the Taylor series expansion about Yi at Yi+i and Yi-l 

T-~ = r.m _ 8T m ~ ~ 82
T m (~Y)2 _ ~ 8

3
T m (~Y)3 O[(~ )4) 

i,3 - l t,J 8y . . y + 2 8y2 . . 2 6 8y3 . . 2 + y 
tJ tJ tJ 

adding these two equations gives 

T[J+l + T/J-1 = 2T/J + ~:~Im. (~Y)2 + O[(~y) 4 ) 
t,J 

This may now be solved to give the second derivative with respect to y 

8
2
T Im = T/J+i + 2T[J + TtJ-1 O[(L:l )2) 

8y2 . . (~y)2 + y 
i,J 

(7.4) 

The explicit finite difference approximation to Equation (7.1) can be found by 

substituting Equations (7.2), (7.3) and (7.4) into Equation (7.1) which gives 

T;'.')+~~ T/J = 0 (T;'+1J -(~22+ T;".'.1,; + T;J+i -(:r T;J-1) 

If a square grid is used, that is Llx = ~y this equation can be simplified to give 

This can be rearranged to give 

r:n.+i = ~t i+1,3 t,J+i t,J i-1,J i,3-1 + r:n. 
( 

T:n . + Tm - 4Tm + T:n . + Tm ) 
i,J a ( ~x )2 i,J 

If Fo = a~t/(~x )2 then 

where F o is called the Fourier number. 
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.Energy Balance Method: The equation can alternatively be found by looking 

at the energy balance equation for the volume around each node. For the internal 

node (see Figure 7.1) the heat flow from (i - 1,j, k) is 

k Ti-i,i - Ti,i ~ 
qi= x ~x Y 

similar expressions can be found for the three other surrounding nodes. 

The energy balance 

can be written as 

C " " &Ti,i p uxuy--
&t 

k Ti-i,i - Ti,i ~ + k Ti+i,i - Ti,i ~y + k Ti,j-i - Ti,i ~x 
x ~x y x ~x Y ~y 

1:· . - T;. 
+ k t,J+i i,J i\ 

y ~y ux 

If kx = ky = k and ~x = ~y this can be written as 

pC&~;·i = k (Ti-t~zj2Ti;i + Ti7tzj
2
Ti,i + Ti,i(~zj 2Ti,i + Ti,i(~zj 2Ti,i) 

If a = k / pC this becomes 

&Ti,i _ a 
&t - ( ~x )2 (Ti-i,i + Ti,j-1 - 4Ti,i + Ti+i,i + Ti,i+i) 

If the finite difference approximation for the derivative with respect to time is used 

this becomes Equation (7.5) 

where Fo = a~t/(~x )2 is the Fourier Number. 

Surface Node 

If the node is on the surface of the anode (see Figure 7.2) there is no node (i + 1,j) 

but heat is transferred across the surface by radiation. The energy balance method 

will be used to find the finite difference equations. 

The heat transfer from the internal node (i - 1,j) is given by 

k Ti-i,i - Ti,i ~ 
qi= x ~x Y 
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Figure 7.2: Two-dimensional surface node 
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the heat transfer from the adjacent surface node (i,j - 1) is 

since the area for conduction is half that of the internal node. A similar expression 

can be found for q4 • The heat transfer across the surface is 

The volume which the node represents is !::i.x!::i.y /2, which means the energy balance 

l S 

~ Ct::i. t::i. 8Ti,j = k Ti-1,j - Ti,i t::i. + "t::i. +k Ti,j-1 - Ti,i t::i. +k Ti,j+1 - Ti,i t::i. 
2 p x y at x !::i.x y q y y 2!::i.y x 11 2!::i..y x 

If kx = ky = k and !::i.x = !::i.y this can be written as 

~pCa~.i = k (Ti-t~zj 2Ti,i + Ti,~(~:);i.i + Ti,;(~=)~i,i) + x~ 

If a = k / pC this becomes 

8T .. · a ( q" !::i.x) 
8;·

3 
= (!::i.x )2 2Ti-1,j + Ti,j-1 - 4Ti,i + Ti,i+1 + 2-k-

If the finite difference approximation for the derivative with respect to time is used 

this gives the finite difference equation for the surface node 

y.m.+1 = Fo (2T'!711 · + r.m. 1 - 4T!1'. + T!l'.+1 + 2 q" !::i.x) + r.m. (7.6) 
t,3 1- ,3 1,3- 1 13 1,3 k 1,3 

where Fo = a!::i.t/(!::i.x)2 is the Fourier Number. 

External Corner Node 

If the node is on an external corner of the anode (see Figure 7.3) there is no node 

( i + 1, j) or ( i, j + 1) but heat is transferred across the surfaces by radiation. The 

energy balance method will be used to find the finite difference equations. 

The heat transfer from the surface node (i - 1,j) is given by 

_ ~k Ti-1,j - Ti,i t::i. 
qi - 2 x !::i.x y 
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~ q 
.J 
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(i,j- 1) 

Figure 7 .3: Two-dimensional external corner node 
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since the area for conduction is half that of the internal node. A similar expression 

can be found for q3 . The heat transfer across the surface in the x-direction is 

- q~6.y 
q2- --

2 

since there is only 6:.y /2 surface area for heat to be transferred across. A similar 

expression can be found for q4 . The volume which the node represents is 6.x6.y/4, 

which means the energy balance is 

~ C 6. 6. 8Ti,i _ k Ti-1,j -Ti,i 6:. q~6:.y k Ti,j-1 - Ti,i 6.x + _q~_' 6._x 
4 p x y at - x 26.x y + 2 + y 26.y 2 

If kx = ky = k ,6.x = 6:.y and q~ = qi this can be written as 

lpca;;·j = k (Ti;(·~:);i,j + ri,~(~:);i,j +) + 1,: 
If a = k / pC this becomes 

ar.. . Q'. ( q" 6.x ) 
0;·3 

= (6:.x )2 2Ti- 1,j + 2Ti,j-1 - 4Ti,i + 4-k-

If the finite difference approximation for the derivative with respect to time is used 

the finite difference equation for the external corner node is 

y.m:+1 = Fo (2T'f1l1 · + 2T:r' 1 - 4y.m: + 4 q"6.x) + r:n. (7.7) 
t,J t- ,; t,J- t,J k t,J 

where Fo = a6.t/(6:.x )2 is the Fourier Number. 
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Figure 7.4: Two-dimensional internal corner node 

Internal Corner Node 

If the node is on an internal corner (see Figure 7.4) there is combined radiation 

and conduction from the two adjacent surface nodes and conduction from the two 

adjacent internal nodes. The energy balance method will be used to find the finite 

difference equations. The heat transfer from the internal node (i -1,j) is given by 

k Ti-1,i - Ti,i 6. 
q1 = x 6.x Y 

A similar expression can be found for q3 . The heat transfer from the surface node 

( i + 1, j) in the x direction is 

_ k Ti-1,i - Ti,i 6. q~6.y 
q2 - x 26.x y + 2 

since half of the area for heat to be transferred across is by radiation and half by 

conduction, a similar expression can be found for q4 . 

The volume which the node represents is 36.x6.y / 4, which means the energy bal-

ance is 

~ C 6. 6. aTi,i _ k Ti-1,i - Ti,i 6. k Ti+1,i - Ti,i 6. q~6.y 
4 p x y at - x 6.x y + x 26.x y + 2 

T · - T· · ~- 1 · - T:- · q" 6.x 
+k i,3-1 i,J !::,. + k i- ?,Jt::,.y i,J 6.x + _J!___

2 y 6.y x y 
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If kx = ky = k,.6.x = .6.y and q~ =qi this can be written as 

_ c~ = k t- .1 t,] + .. 1-1 •• , + . . 1 t,j + •.1+ •• 1 + +-3 81'.- · ( T,. 1 · - T.· · T,. · - T.· · T.·+1 · - T.· · T.· · 1 - T.· · ) q" 
4P 8t (.6.x)2 (.6.x)2 (2.6.x)2 2(.6.x)2 .6.x 

If a = k / pC this becomes 

81'.· · 2a ( q" .6.x ) 
8;·

1 = 3(.6.x )2 2Ti-1,j + 2Ti,j- 1 - 6Ti,i + Ti+t,i + Ti,j+i + 2-k-

If the finite difference approximation for the derivative with respect to time is used 

then the finite difference equation for the internal corner node is 

r m+1 2F ( 2Tm 2Tm rm ,.,, rm 2q".6.x ) Tm i,j = 3 0 i-1 ,j + i,j-1 - 4 i,j + J. i+t,j + i,j+l + -k- + i,j (7.8) 

where Fo = a.6.t/(.6.x )2 is the Fourier Number. 

7 .1.2 Anode with no bath or yoke 

The solution was found for a butt with constant physical and thermal properties 

throughout. This represents a butt which consists of just carbon without any bath. 

Length= L = 0.8m 

Height = 0.2m 

Density= p = l550kg/m3 

Emissivity= 0.4 

Thermal Conductivity = k = 5.5W/mI< 

Heat Capacity = c = 980kJ/kgI< 

Ambient Temperature = T 00 = 293[{ 

Initial Temperature= Ti = 1112K 

A square mesh with .6.x = 0.02 m was used, this means 10 nodes were used in the 

vertical direction and 40 horizontally. The solution was found out to a time of 

twenty hours. 

The temperature profile at four different times is shown in Figure 7.5. It can be 

seen that the surface of the anode cools more quickly as would be expected. After 

about ten hours it can be seen that the temperature is fairly uniform throughout 

the anode. The temperature of a point 0.05 m in from the edge and 0.05 m from 

the bottom of the anode (Point A in Figure 7.7) is shown in Figure 7.6. It can be 

seen that initially the temperature drops very quickly but the rate of cooling slows 

as time increases. 
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(a) 1 hour (b) 5 hours 

. •. . 
. . . . ...... · .......... :·" :.::.· ....... .. :: .:~ ... : .: .......... ·.:·.·.- ... : . . ·. . 

( c) 10 hours (cl ) 20 hours 

Figure 7.5 : Temperature profile for clean anode v,rithout steel yoke 
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Figure 7.6: Temperature of point in carbon for clean anode without steel yoke 

7.2 Variable Physical and Thermal Properties 

As in the one-dimensional case, the thermal and physical properties may vary with 

position in the anode. In the one-dimensional case this meant a layer of bath could 

be included in the model and in the two-dimensional case this can also be done. 

The anode assembly (shown in Figure 1.3) from which the anode hangs has been 

approximated in two dimensions by the shape in Figure 7. 7. The steel yoke consists 

of four stubs which have a depth of lOOmm into the carbon. Since steel has a 

high thermal conductivity compared to carbon (see values on Page 65) it would 

be expected that these stubs would help cool the centre of the butt more quickly. 

These stubs and the entire assembly can be included in the two-dimensional model. 

In the model the geometry of the assembly has been simplified to be as shown in 

Figure 7.7, although it would be possible to have a more detailed geometry. 

The shape of the carbon shown in Figure 1.2 is not square as in Figure 7.7, but 

has rounded ends . Similarly the shape of the bath is highly irregular. They have 

been approximated by rectangular-shaped areas for simplicity. 

Modelling of the boundaries between materials is an important consideration as the 

nodes are located along the boundaries of the materials. If the method of averaging 
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Figure 7.7: Two- Dimensional approximation of butt 

the thermal properties between two nodes as in the one-dimensional case is used, 

the boundary is shifted to half way between the where the boundary actually is 

and the adj acent node. An alternat ive method is to set up the equations at each 

node so that the correct thermal properties from each direction are used. 

7.2.1 Finite Difference Approximation 

There are five types of interfaces between materials in t he anode. These are shown 

in Figure 7. 7. Three of these are internal nodes, one is a surface node and one is 

an internal corner node. 

Internal Node 

The finite difference equation for the internal nodes can be written as 

where 8 = 6.t/(6.x)2
. The coefficients a; ,j, b;,j , d; ,j and e;,j are found by taking the 

average of the diffusivit ies between each node and the node T ;,j . The coefficient 

Ci, j is the sum of the other four coefficients. 
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For the three internal nodes on material interfaces shown in Figure 1.3 the coeffi­

cients are: Interface Type I: The coefficients are 

O'.c + O'.b 
a i ,j = --2--

Ci,j = 2ab + 2ac 

d . . _ O'.c + O'.b 
•,J - 2 

Interface Type II: The coefficients are 

Ci,j = Q'. 3 + 3ac 

d· . _ O'.c + O'.s 
•,J - 2 

O'.c + O'.s 

2 

Interface Type Ill: The coefficients are 

2 

b· . _ O'.c + O'.s 
•,J - 2 

Ci,j = O'.b + O'.c + 2a3 
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Surface Node 

For the surface material interface the finite difference equation is 

Interface Type IV: The coefficients are 

Internal Corner Node 

For the internal corner node 

O:'c b·· --t,J - 2 

Ci,j = O:'c + O:'b 

d· . _ O'.c + O:'b 
t,J - 2 

O:'b 
e··- -•,1 - 2 

T m+l - ~J: (2a · ·Tm + 2b· ·Tm - 4c· ·Tm+ d· .'T'. · i,j - 3 u t,J i-1,j t,J i,j-1 t,J i,j i,J .1 i+ l ,J 

q"~x) + ei,jT/;i+1 + 2- k- + Tij 

Interface Type V: The coefficients are 

O'.b 
a· · - -t,J - 2 

b· . _ O'.b + O'.s 
t,J - 2 

Ci ,j = O'.b + 2as 

O:'s d .. -_ 
t,J - 2 
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(7.9) 

(7.10) 

If these equations are used, a large range of geometric layouts can be modelled. 

For example the yoke assembly can be included or removed from the model. Some 

of these different setups are shown in the next section. 
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7 .2.2 Two-dimensional -Simulations 

The solution will be found for three different cases in addition to the previous 

configuration. They are: an anode consisting of carbon without a bath cover but 

steel rods from the yoke enter the top of the anode, an anode with a bath cover 

without the steel rods, and an anode with a bath cover and the steel rods. The 

same thermal properties as in the one-dimensional case were used. Each of the 

materials had the following properties: Carbon: 

Emissivity = 0.4 

Density= Pc= 1580 kg/m3 

Bath: 

Emissivity = 0.4 

Density= Pb= 2050 kg/m3 

Steel: 

Emissivity = 0 .4 

Density = Ps = 7753 kg /m3 

Thermal Conductivity= kc= 5 W/mK 

Heat Capacity = Cc = 1670 J / kgK 

Thermal Conductivity= kb = 0.4 W/mK 

Heat Capacity = Cb = 2287 J /kg]{ 

Thermal Conductivity= ks = 36 W/mK 

Heat Capacity =Cs = 486 J /kg!{ 

The thermal properties for carbon and bath are from [5]. The thermal properties 

for steel were given in [l]. 

Clean Anode with Yoke 

An anode with a length of 0.8 m and a thickness of 0.2 m with a steel rod 0.15 m 

wide and 0.4m long inserted into the top of the anode, as shown in Figure 7.7, 

was modelled. The steel rod represented the assembly yoke from which the anode 

hangs. 

The temperature profiles within the anode can be seen for four different times 

in Figure 7 .8. It can be seen that the rod cools down quickly compared to the 

rest of the anode. The rod causes the centre of the anode to cool more quickly. 

Comparison of Figure 7.9 and Figure 7.6 shows that the yoke has little effect on 

the temperature at a point near the surface. 
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(a ) 1 hour (b) 5 hours 

( c) 10 hours (d) 15 hours 

Figure 7.8: Temperature profile for a clean anode with steel yoke 
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Figure 7.9: Temperature of point in carbon for a clean anode with a steel yoke 

Dirty Anode without Yoke 

The carbon was taken to be 0.2 m thick with a layer of bath on top 0.2 m thick, the 

anode was 0.8 m wide. The temperature profile at four different times are shown 

in Figure 7 .10. It can be seen that the bath stays a lot hotter than the carbon. It 

also has the effect of slowing the cooling of the carbon. 

Figure 7.11 shows that the temperature the model predicts initially drops below 

the temperature in the experimental data. As the temperature decreases the model 

starts to get higher values for the temperature than the data. The lower initial 

temperatures could be due to the fact that this model assumes the anodes are 

in isolation whereas in reality they are affected by surrounding anodes. It would 

be expected that they would keep each other hotter. As the temperature drops 

heat loss due to convection could also be important; this could explain the higher 

temperatures from the model for later times. 

The temperature change with time of a point in the bath is shown in Figure 7.12, 

it can be seen that the bath does not cool as quickly as the carbon. 
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(a) 1 hour (b) 5 hours 

( c) 10 hours ( d) 20 hours 

Figure 7.10: Temperature profile in carbon for a dirty anode without steel yoke 
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Figure 7.11: Temperature of point in carbon for a dirty anode without steel yoke 
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Figure 7.12: Temperature of point in bath for a dirty anode without steel yoke 
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Figure 7.13: Temperature profile for a dirty anode with steel yoke 

Dirty Anode with Yoke 

The solution was found for an anode with a bath cover of 0.21n and a yoke vvith 

rods entering the carbon from above to a depth of 0.05 m as shown in Figure 7.7. 

The temperature profile for four different times is shown in Figure 7.13. 

The temperature of a point a depth of 0.05 m into the top of the bath and 0.05 rn 

in from the edge of the anode is shown in Figure 7.15. It can be seen from the 

temperature profiles shown in Figure 7 .13 show that the carbon cools clown more 

quickly than the bath. The effect of the steel rods can also be seen ; the centre of 

the anode cools down more quickly as heat is conducted up the rod . 
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Figure 7.14: Temperature of point in carbon for a dirty anode with steel yoke 
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7.3 Summary 

The two-dimensional model meant that it was possible to include more geometry 

into the problem than the one-dimensional case. A bath cover can be included into 

the model as can the steel rods which go through the bath and into the carbon. 

It was shown that the bath cover held its heat and the temperature of the carbon 

was hotter as a result. The steel rods had little effect on the point near the surface 

of the anode. However it can be seen that the internal temperatures around the 

rod were cooler due to heat being conducted up the rods. 

The difference in the experimental data and the model is thought to be due to 

the effect of surrounding anodes. As the temperature drops the heat loss due to 

convection may be significant. 

In the next chapter the three-dimensional finite difference equations will be found 

for a clean and a dirty anode. 
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Chapter 8 

Three-Dimensional Numerical 

Solution 

The finite difference equations for heat flows in three dimensions are found similarly 

to the one- and two-dimensional cases. In three dimensions there are eight different 

cases to be considered; these are developed in Section 8.1. The three-dimensional 

solution is initially found for a clean butt and this is then compared to that for a 

dirty butt. 

8.1 Finite Difference Equations 

There are eight different finite difference equations . These are not as obvious as in 

the one- and two-dimensional cases . 

Internal Node 

For each internal node (see Figure 8.1) the heat transfer from each of the surround­

ing nodes is proportional to the respective temperature gradients . If the distance 

between each node is small enough the heat transfer from the node ( i - 1, j, k) to 

( i, j , k) can be approximated by 

T ·k -T. · k 
k t -1 ,J , l ,J , A A 

q1 = 'x !J.x uyuz 

The heat transfer from the other surrounding node can be found similarly. 
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Figure 8.1 : Three-dimensional internal node 
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This means the heat balance equation can be written as 

oTi · k 
pC!::::.x!::::.y!::::.z--'3-' = 

at 
T1 ·k-T ·k 1'.· ·k-T ·k T· k-T ·k 

k t - ,3, i,3, A A + k i+l,3, i,3, A A + k t,3 -l , i,3, A A 
x !::::.x LJ.YL.J.Z x !::::.x L.J..YL.J.Z y !::::.y LJ.XL.J.Z 

T · 1k-T ·k T ·k -1'.·· k T ·k -1'.· ·k + ky 
1

'
3

+ '!::::.y '•3• !::::.x!::::.z + kz 
1

'
3

' -~z 1
'
3

' !::::.x!::::.y + kz 
1

'
3

' +~z 1
'
3

' !::::.x!::::.y 

If kx = ky = kz and !::::.x = !::::.y = !::::.z this can be written as 

oT · k ( 1'.· 1 · k - 1'.· · k T· 1 · k - T · k T · k - T · k 
pC at = kx i- (~x )2 i.3 , + i+ (~x )2 i,3, + i,3-(~x )2 i,3, + 

T · 1 k - T · k T· · k 1 - T · k T · k 1 - T · k) i,3+( ~x )2 i,3, + i,3, (-!::::.x )2 i,3, + i,3, t!::::.x )2 •,3, 

If a = kx / pC this becomes 

oT · k a 
- ''3-' = -- (T· · k + T k + T · k - 6T · k + T · k + T· · k + T · k ) at (!::::.x)2 t -l,3 , i,3-l, i,3, -1 i,3, i+l,3, i,3+1, i,3, +1 

If the derivative with respect to time is written as a forward finite difference ap­

proximation this becomes 

Tt3·t
1 

= Fo (T/"':.13" k + Tt3·-1 k + Tim3. k-1 - 6Tt3· k + Tim+l 3" k + Tim3·+1 k + Tt3· k+1)+Tt3· k 
1 1 1 I 1 I t t I I I I t t I l JI 

(8.1) 

where Fo = a!::::.t/(!::::.x )2 is the Fourier number. 

Internal Corner Node 

An internal corner node is shown in Figure 8.2. The volume is 7 /8!::::.x!::::.y!::::.z. The 

heat transfer from the surrounding internal nodes is the same as for the internal 

node: 
T ·k -T· ·k 

k i -l,3, i,3, A A 
qi = ~x !::::.x L.J.YL.J..Z 

but the heat transfer from the surface nodes is 

In this case there are three adjacent nodes which are internal and three which are 

on the surface. This gives the following equation: 

7 fJT · k 
-pC!::::.x!::::.y!::::.z- '-'3-' = 
8 at 
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Figure 8.2: Three-dimensional internal corner node 
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T, i · k - T- · k 3 T.- i · k - T· · k 1 k i- ,J, i,J , /:::.. /:::.. + -k i+ ,J, t,J, /:::.. !:::.. + - II/:::.. /:::.. 
x !:::..x y z 4 x !:::..x y z 4 qx y z 

T- · k-T.- ·k 3 T.- · k-T.-·k 1 + ky i,J-l, •,J, !:::..x!:::..z + -ky •,J+I,t::.. •,J, !:::..x!:::..z + -qit::.. x!:::..z 
!:::..y 4 y 4 

T- · k - T.- · k 3 T.- · k - T· · k 1 + kz i,J, -1 •,J, /:::..x/:::..y + -kz i,J, +1 •,J, /:::.. /:::.. + II/:::.. /:::.. 
l:::..z 4 l:::..z x y 4qz x y 

If kx = ky = kz and !:::..x = !:::..y = !:::.. z this can be written as 

- c i,J, = k i-1,J, i,J, + i+ ,), t,J, + i,3 - ' t,J, + 7 fJT, · k (T· · k - T· · k 3(T- i · k - T· · k) T· · i k - T- · k 
8p ot x (!:::..x) 2 4(6x) 2 (!:::..x) 2 

•,J +l , •,J, + i,J, -1 •,J, + •,J, +1 i,J, + --3(T· · k - T.- · k) T.- · k - T- · k 3(T.- · k - T· · k) ) 3q" 
4(1:::..x )2 (!:::..x) 2 4(6x)2 41:::..x 

If a = kx / pC this becomes 

fJT- " k i,J, 

at 
2a 

7(1:::..x )2 ( 4Ti-1,j,k + 4Ti,j-1,k + 4Ti,j,k-1 - 21Ti,j,k + 3Ti+1 ,j,k + 3Ti,j+1,k+ 

q"!:::..x) 3Ti,j,k+i + 3---y;;-

If the derivative with respect to time is written as a forward finite difference ap­

proximation this becomes 

Tt3·t1 = ~7 Fo (4Tt'!:.1 3· k + 4Tt3·-1 k + 4Tt3· k-1 - 21Tt3· k + 3Tt+1 3· k + 3Tt3·+1 k 
I I I I t I I I I I I I l t 

q"!:::..x) + 3T:J,k+l + 3~ + T:J,k (8.2) 

where the Fourier number is Fo = a!:::..t/(!:::..x) 2
. 

Internal Edge Node 

An internal edge node is shown in Figure 8.3 . The volume is 3/41:::..x!:::..y!:::.. z. The 

heat transfer to the two adjacent internal nodes is the same as for the internal node 

k Ti-1,j ,k - Ti,j,k !:::.. !:::.. 
qi= x !:::..x y z 

but the heat transfer to the two adjacent surface nodes is 

1 T.-1 ·k -T.- ·k 1 - k •+ ,J,. i,J, !:::.. !:::.. + fl!:::.. !:::.. 
q2 - 2 x /:::..x Y z 2qx Y z 

and the heat transfer to the two adjacent edge nodes is 

3 k Ti,j -1,k - Ti,j ,k A A 

q3 = 4 y !:::..y uxuz 
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Figure 8.3: Three-dimensional internal edge node 
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In this case there are two adjacent nodes which are internal and two which are on 

the surface and two on edges. This gives the following equation 

3 fJT,. · k 
-pC6.x6.y6.z~ = 
4 at 

T.· ' k-T."k 1 T.· ' k-T."k 1 k i-l ,3, i,3, A A + - k i+l ,3, i,3, A A + - fl A A 
x 6.x uyuz 2 x 6.x uyuz 

2
qxuyuz 

3 r. .. lk-T." k 3 r. .. k-T."k + -ky '·3- '1:,. '•3• 6.x6. z + -ky '•3+1,6. 1
'
3 ' · 6.x6. z 

4 y 4 y 
T. .. k1-T k 1 T. .. k1-T. .. k 1 

+ k i,3 , - t,J , 6. 6. + -k i,3, + t,3, !::,. !::,. + "6. 6. 
z 6.z X Y 2 z 6. z x Y 25z x y 

If kx = ky = kz and 6x = 6.y = 6. z this can be written as 

_ C - '-·3_, = k i- ,3, i,3, + i+1 ,3, i,3, + ,,3-1 , i,3, + 3 BT.· · k ( (T.· 1 · k - T. .. k) (T.· · k - T.· · k) 3T.. k - T. .. k 

4P 8t x (6.x) 2 2(6.x)2 4(6.x) 2 

i,3+1, i,3, + t,3, -1 i,3, + i,3, +1 i,3, + -3T. .. k -T·k T. .. k -T ·k T. .. k -T. .. k) q" 

4(6.x) 2 (6.x) 2 2(6x) 2 6. x 

If a = kx / pC this becomes 

fJT. .. k t,J, 

at 
a 

3
(6. x )2 (3Ti-1 ,j,k + 4Ti,j-1,k + 4Ti ,j,k-1 - 18Ti,j,k + 3Ti+i,i,k + 2Ti,j+1,k+ 

q" 6.x) 
2Ti,j,k+i + 4~ . 

If the derivative with respect to time is written as a foward finite difference ap­

proximation this becomes 

Tim3·t1 = _31 Fo (4T/~1 3. k + 3Tt3·-1 k + 4Tt3· k-1 - 18Tt3· k + 2Tt+1 3· k + 3Tt3· +1 k 
'I ! ! 1 t 1 t J t I J 1 I 

q" 6.x) 
+ 2T[J, k+I + 4~ + Ttj ,k (8.3) 

where the Fourier number is Fo = a6.t/(6.x) 2
. 

External Corner /Surface Node 

An external corner/surface node is shown in Figure 8.4. The volume is 5/86.x6.y6.z. 

The heat transfer to the adjacent internal node is the same as for the internal node: 

T · k -T · k 
k 1,3, ·-1 i,3, A A 

qs = z 6. z u x uy 

but the heat transfer to the two surface nodes is 

1 T ·k -T ·k 1 - -k 1+1 ,3,· 1,3,·1:,. !::,. + - "!::,. !::,. 
q2 - 2 x 6. x Y z 4 qx Y z 
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Figure 8.4: Three-dimensional external corner/surface node 
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and the heat transfer to the two internal edge nodes is 

3 k Ti-1 j k - Ti j k A A 
qi = 4 ·x ''t::.x '' u.yu.z 

The heat transfer to the edge node is 

1 k Ti,j,k+l - Ti,j,k !:::. 6 + 3 II!:::. !:::. 
q6 = 4 'z 6 z X Y 4qz X Y 

In this case there is one adjacent node which is internal, two which are on the 

surface, two on internal edges and one on an external edge. This gives the following 

equation 

5 c J\ J\ J\ 81i,;,k -p u.x u.yu. z-- = s at 
3 T.· 1 "k - r,. "k 1 r,. 1 "k - T.· . k 1 -k i - ,], l , ], . /:::. 6 + -k i+ ,], i,J, 6 /:::. + - II 6 f)._ 
4 x !:l.x y z 2 x 6 x y z 4 q x y z 

+ ~k Ti,j-1,k - Ti,j,k f).. !:::. + ~k Ti,j+i ,k - Ti,j,k !:::. !:::. + ~ II f).. f).. 
4 y 6.y x z 2 y 6y x z 4 qy x z 

T.· . k - r. .. k 1 r, .. k - T.· . k 3 + k t,J, ·-1 1,3, /:::. f)._ + -k t,J, +l t,J, /:::. /:::. + _ /1 /:::. f)._ 
z 6 z x y 4 z 6. z x y 4 qz x y 

If kx = ky = k2 and !:l. x = 6.y = 6 z this can be written as 

_ c ~ = k t- 1)1 t ,J, + t+ 1)1 11)1 + t,J- I t 1) 1 + 5 fJT.· · k ( 3(T:· 1 · k - T.· · k) (T 1 · k - T.· ·k) 3T.· · 1 k - T.· · k 
8p ot x 4(6.x)2 2(6.x)2 4(6 x)2 

t,J+ 1 t ,J, + t,J, - t ,], + t,J, + t,J, + --T,. . 1 k - ':[', .. k T.· . k 1 - T.· . k T,. . k 1 - T.· . k ) 5q11 

2( !:l. x )2 (6.x)2 4(6.x) 2 46 x 

If a = kx/ pC this becomes 

oT.· · k 2a at = 5(!:l. x )2 (3Ti - 1,;,k + 3Ti,;-1,k + 4Ti,i,k-1 - 15Ti,i,k + 2Ti+i,i,k + 2Ti,;+i,k+ 

q116x) 
Ti,i,k+I + ----,;:-

If the derivative with respect to time is written as a forward finite difference ap­

proximation this becomes 

where the Fourier number is Fo = a6t/(6.x)2 . 
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Figure 8.5: Three-dimensional surface node 
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Surface Node 

A surface node is shown in Figure 8.5. The volume is l / 26.x6.y6.z. The heat 

transfer to the adjacent internal node is the same as for the internal node 
T, .. k -T. .. k k t,3, ·-I 1,3, /j. /j. 

qs = z 6.z x Y 

but the heat transfer to the four surface nodes is 

- 1 k Ti+I ,j,k - Ti,j,k 6. 6. + 
qi - 2 x 6.x y z 

The heat transfer to the imaginary node out of the butt is 

In this case there is one adjacent node which is internal, four which are on the 

surface and one out of the anode. This gives the following equation 

1 c A A A aTi,j,k 
2,P uxuyuz at 

1 T · I . k - T- . k 1 T.· I . k - r, .. k -k I- ,3, 1,3, A A + -k 1+ ,3, 1,3, A A 

2 x 6.x uyu.z 2 x 6.x u yu z 

+ ~k Ti,j- 1,k - Ti ,j,k A A + ~k Ti,j+l ,k - Ti, j,k A A 

2 Y 6,y u. Xu.Z 2 y 6,y DXDZ 

T · ·k -T· · k 
+ k t,3, - 1 t.J, A A + II A A 

z 6.z uxu.y qz u.X u y 

If kx = ky = kz and 6.x = 6.y = 6.z this can be written as 

- C -1_,3_, = k 1- ,3, t ,3, + 1+I,3, 1,3, + 1,3-l , 1,3, + 1 ar,. ·k (T' 1 · k -T .. k (T.· ·k - T .. k) T... k -T.· ·k 
2p at x 2(6.x)2 2(6.x)2 2(6.x)2 

T " +I k - T, .. k T, .. k 1 - T .. k) q" 
i,J 2(,6.x )2 i ,3, + i,3, (~x )2 i,3, - + 6.x 

If Cl'. = kx / pC this becomes 

fJT- . k Cl'. 1
'
3

' = -- (T- 1 . k + T- . I k + 2r, .. k 1 - 6T . k + T.· . k + T,.. k+ at (6.x )2 1- ,3, t,3- , 1,3, - 1,3, 1+I ,;, 1,3+1, 

2--q" 6. x ) 
kx 

If the derivative with respect to t ime is writ ten as a forward finite difference ap­

proximation this becomes 

Tij11 
= Fo ( Tt~.1 ,j,k + T/]-1,k + 2T;'J,k-1 - 6T;1],k + T[::.1, j,k + T;'J+1 ,k 

q" 6.x ) m + 2-y;- + Ti,j,k (8.5) 

where the Fourier number is Fo = a6.t/(6.x)2. 
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Internal Edge/Surface Node 

An internal edge/surface node is shown in Figure 8.6 . The volume is 3/8.6.x.6.y.6.z. 

The heat transfer to the adjacent edge node is the 

3 k Ti j k - 1· - Ti j k A A 

qs = 4 z ' ' .6.z ' ' DXDY 

but the heat transfer to the two surface nodes is 

1 1'.- "k-1'.··k k 1+1,J, 1,J, .6. .6. 
qi = 2 x .6.x y z 

and the heat transfer to the two edge/surface nodes is 

1 T:1 ·k-T·k 1 _ k •+ ,], 1,J, .6. .6. + 11 .6. .6. 
q2 - 4 x .6.x Y z 4qx Y z 

The heat transfer to the imaginary node is 

In this case there are no adjacent nodes which is are internal, one which is an 

internal edge, two surface, two external edges and one which out of the anode. 

This gives the following equation 

3 c A A A 8Ti ,j,k - p L.l.XL.:J..yuz-- = 
8 at 

~ k Ti - 1,j,k - Ti ,i ,k .6. .6. + ~ k Ti+1,j,k - Ti ,j,k .6. .6. + ~ ".6. .6. 
2 x .6.x y z 4 x .6.x y z 4 qx y z 

+ ~k Ti ,j-1,k - Ti ,j,k A A + ~k Ti, j+l,k - Ti ,j,k A A + ~ II A A 

2 
y .6.y uXuZ 

4 
y .6.y uXuZ 

4 
qyuXL.l.Z 

3 T·k 1 - T ·k 3 + -
4 

kz •,J, - •,J, .6.x.6.y + -q7.6.x.6.y 
.6.z 4 

If kx = ky = kz and .6.x = .6.y = .6.z this can be written as 

_ C-1_,J_, = k 1-1,J, 1,J, + •+1,J, •,J, + •,J-1, 1,J, + 3 BT · k ( T · k - T · k (T'.· · k - T · k) 1'.· · k - T · k 

8p 8t x 2(.6.x) 2 4(.6.x) 2 2(.6.x) 2 

t,J+l, t,], + i,J, -1 i,J, + --T · k - T · k 3(T · k - T · k)) 5q" 

4( .6.x )2 4(.6.x )2 4.6.x 

If a = kx / pC this becomes 

8Ti J. k 
'' at 

2a 
3

(.6.x )2 (2Ti-1,j,k + 2Ti,j-1,k + 3Ti,j,k-1 - 9Ti,i,k + Ti+i,i,k + Ti,i+1 ,k+ 

q" .6.x) +5--
kx 
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Figure 8.6: Three-dimensional internal edge/surface node 
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If the derivative with respect to time is written as a forward finite difference ap­

proximation this becomes 

Tt 1·t1 = ~ Fo (3T/'':.11· k + 3Tt1·-1 k + 4Tt1· k-1 - 15Tim1· k + 2Tt+1 1· k + 2Tt1·+1 k 
t t 5 t 1 t t t I 1 1 1 t t I 

q116.x) + 1Ti],k+1 + 5--y;- + Tt],k (8.6) 

where the Fourier number is Fo = a6.t/(6.x)2. 

External Edge Node 

An external edge node is shown in Figure 8.7. The volume is 1/ 46.x 6.y 6. z . The 

heat transfer to the adjacent edge node is 

1 k Ti,j-1,k - Ti,j,k A A 

q3 = 4 y 6.y LJ. XLJ. Z 

but the heat transfer to the two surface nodes is 

The heat transfer to the imaginary nodes is 

In this case there are two adjacent nodes which are internal, two which are on the 

surface and two on edges. This gives the following equation 

1 aT· · k 
-pC6.x6.y6.z~ = 
4 ut 

1 T- · k - r, .. k 1 T· · k - r, .. k -k 1-l ,3, 1,3, 6. 6. + - k 1+ 1 ,3, t ,3, 6. 6. 
4 x 6.x y z 4 x 6.x y z 

+ ~k Ti,j-1,k - Ti,j,k A A + ~ II A A 

2 y 6.y u.XuZ 
2 

qxuy u z 

1 r, .. k - T- . k 1 + -k t,3, - 1 t,31 6. 6. + _ II 6. 6. 
2 z 6. z X Y 2 qz X Y 

If kx = ky = kz and 6.x = 6.y = 6.z this can be writ ten as 

- c t,3, = k t-l ,3, 1,3, + •+l,3, 1,3, + t,3- l , 1.3, + 1 fJT.· . k (3(T.· . k - r, .. k) 3(T- . k - r, .. k) r,.. k - r,. . k 
4P fJt x 4(6.x)2 4(6.x)2 2(6.x)2 

r, .. k - r, .. k ) q11 
i ,1,2(~x )2 i ,1, + 6.x 
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Figure 8.7: Three-dimensional external edge node 
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If a = kx / pC this becomes 

8TiJ k 
' ' at 

2a 
5

(.6.x )2 (3Ti-1,j,k + 3Ti,j-1,k + 4Ti,j,k-1 - l5Ti ,j,k + 2Ti+I,j,k + 2Ti,j+1,k+ 

qfl .6.x) 
Ti,j,k+i + ----,;;-

If the derivative with respect to time is written as a forward finite difference ap­

proximation this becomes 

rrJ·t 1 = ~Fo (3T[':.1 J. k + 3TrJ·-1 k + 4TimJ. k-1 - 15TimJ. k + 2rr+1 J. k + 2rrJ·+1 k 
I I 5 I I I I I f 1 I I I I J 

qfl .6.x) 
+ lTiJ,k+i +----,;;- + TiJ ,k (8.7) 

where the Fourier number is Fo = a.6.t/(.6.x )2
• 

External Corner Node 

· An external corner node is shown in Figure 8.8. The volume is l/8.6.x.6.y.6.z. The 

heat transfer from the adjacent edge node ( i - 1, j, k) is 

lk Ti-ljk-Tijk t\ t\ q1 = - x ' ' ' ' uyuz 
4 .6.x 

similar expressions can be found for q3 and q5 • The heat transfer across the surface 

in the x-direction is 
1 fl 

q2 = 4qx.6.y.6.z 

Similar expressions can be found for q4 and q6 • If 6.x = 6.y = .6.z the volume is 

l/8.6.x.6.y6. z . This gives the following energy balance equation 

1 C " " " oTi,j,k -p uxuyuz-- = 
8 at 

~k Ti-1,j,k - Ti,j,k " " + ~ fl" " + ~k Ti ,j-1 ,k - Ti,j,k " " x t\ l.J. y l.J. z q x l.J. y l.J. z y t\ l.J. x l.J. z 
4 ux 4 4 uy 

+ ~qfl .6.x.6.z + k Ti,j ,k-1 - Ti,j,k .6.x.6.y + ~qfl 6.x.6.y 
4 Y z .6. z 4 z 

If kx = ky = kz and q~ = qi = q~ and since .6.x = 6.y = 6.z this can be written as 
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Figure 8.8: Three-dimensional external corner node 
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If a = kx / pC this becomes 

8Ti,j,k a ( q" 6x) 
~ = (,0.x) 2 2Ti-1 ,j,k + 2Ti,j-1,k + 2Ti,i,k-1 - 6Ti,j,k + 6k;-

lf the derivative with respect to time is also written as a finite difference approxi­

mation this becomes 

rm.+k1 = Fo (2T".::.1 ·k+2rm._1k+2T.m k-l - 6Tm_k + 6q",0.x) + r.mk (8.8) i,J, i ,J, i,J , i,J, i,J, kx i,J, 

where the Fourier number is Fo = a6t/(6x)2. Since the heat flux is due to 

radiation 

q" = UJ' A(T; - T!) 
this can be written as 

rm.+k1 = Fo (2T~1 · k + 2Trn _1 k + 2Tm k-l - 6Tm. k t ,J, i ,J, t,J ' i,J, i,J, (8.9) 

Ea [ (T/] ,k)
4 

- T!] 6x) m 

+ 6 kx Ti,i,k 

In the model considered not all of these possibilities occur, neither the internal 

corner nor internal side nodes are required. 

8.2 Variable Physical and Thermal Properties 

As in the earlier cases the different materials within the anode have different phys­

ical and thermal properties. This means the above finite difference equations must 

be modified to allow for this. If the same method is used as in the two dimensional 

case there are different types of interfaces between materials. 

In the three-dimensional cases being modelled there are up to nine different types 

of interface. There are 5 internal interfaces, 1 external edge interface, 1 surface 

interface, 1 internal edge interface and 1 external corner/surface interface. The 

nine types of interface are shown in Figure 8.9. 

Internal Node 

The finite difference equation for the internal nodes can be written as 

TtJV = 8 ( ai,j,kTi".::.l,j,k + bi,j,kT/1J_ 1,k + Ci,j ,kTtJ,k-l + di,j,kTtj,k 

+ ei,i,kT/~ 1 ,j,k + fi,j,kT/J+i,k + 9i ,j,kTtj ,k+1) + TtJ ,k (8.10) 



CHAPTER 8. THREE-DIMENSIONAL NUMERICAL SOLUTION 91 

\\-o 

~Q 

wwooz wwooz 

Figure 8.9: Three-dimensional approximation of a quarter anode 



CHAPTER 8. THREE-DIMENSIONAL NUMERICAL SOLUTION 92 

where 8 = 6t/(6x) 2
. The coefficients ai,j,k, bi ,j,k , Ci ,j ,k, ei,j,k, fi ,j ,k and 9 i,j, k are 

found by taking the average of the diffusivities between each node and the node 

Ti ,j,k· The coefficient d; ,j,k is the sum of the other six coefficients. 

For the five internal node material interfaces shown in Figure 8.9 these are: 

Interface Type I: The internal node shown in Figure 8.1 is on the boundary 

between bath and carbon so that all the material above the node is bath and all 

below is carbon. The coefficients for Equation (8.10) are: 

2 

b·. _ ac + O'.b 
i,J,k - 2 

Ci,j,k = ac 

e;,j,k = 
2 

ac + O'.b 
fi ,j,k = 2 

Interface Type II: The internal node shown in Figure 8.1 is on the boundary 

between edge of the steel and carbon so that all the material in the quarter between 

node ( i - 1, j , k) and node ( i, j, k + 1) is steel and all the rest is carbon. The 

coefficients for Equation (8.10) are: 

ai,j,k = 
2 

b· . _ 3ac +as 
i,J, k - 4 

Ci,j,k = O'c 

ei, j,k = a c 

f 
. . _ 3ac +as 
i,J,k - 4 

ac + O'.s 
9 i ,j,k = --2--
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Interface Type III: The internal node shown in Figure 8.1 is on the boundary 

between corner of the steel and carbon so that all the material in the eighth between 

node (i-1,j, k), (i,j -1 , k) and node (i,j, k+ 1) is steel and all the rest is carbon. 

The coefficients for Equation (8.10) are: 

21ac + 3as 
a i, j,k = 4 

d· . _ 2lac + 3as 
i,J,k - 4 

gi,j ,k = 
4 

Interface Type IV: The internal node shown in Figure 8.1 is on the boundary 

between bath and carbon next to the steel. All the material in the right of the 

node is steel, to the left and below the node is carbon and to the left and above 

the node is bath. The coefficients for Equation (8.10) are: 

ac + 2as +ab 
ai,j,k = ___ 4 __ _ 

b·. _ ac + O'.b 
i,J,k - 2 

O'.b + O'.s 
Ci,j ,k = 

2 
d. . _ 3ac + 6as + 3ab 

i,J,k - 2 

a c + 2a3 +ab 
ei,j,k = 

4 

f i, j ,k =as 
ac +as 

g i,j,k = 
2 

Interface Type V : The internal node shown in Figure 8.1 is on the boundary 

between bath and carbon next to the corner of the steel. All the material between 

nodes ( i - 1, j , k) and ( i, j + 1, k) is steel, the remaining material below the node 

is carbon and above the nod'e is bath. The coefficients for Equation (8 .10) are: 

ac + 2as +ab 
ai,j,k = 

4 
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b· . _ a c +ab 
i,J,k - 2 

3ac + a 3 
Ci ,j,k = 

4 

d. . _ 9ac + 6as + 6ab 
i ,J,k - 4 

a c +ab 
e i ,j ,k = 

2 

f
. . _ ac + 2as + ab 
i,J,k - 4 

9 i, j,k = 
4 

Surface Node 

The surface node shown in Figure 8.5 must be rotated to give a vertical surface 

with a boundary between bath and carbon. All the material below the node is 

carbon and above the node is bath. 

Interface Type VI: The coefficient for Equation (8.11) are: 

a i, j,k = 
4 

b·. _ a c +ab 
i,J,k - 2 

a c 
c · . k - -i,J, - 2 

d· . _ 3ac + 3ab 
i ,J,k - 2 

a c +ab 
ei ,j ,k = 

4 
ab 

9 i, j ,k = 2 

(8.11) 
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External Edge Node 

The external edge node shown in Figure 8. 7 must be rotated to give a vertical edge 

on the boundary between carbon and bath. All the material above the node ( i, j, k) 

is bath and all below is carbon. 

Interface Type VII: The coefficient for Equation (8.12) are: 

Internal Edge Node 

ai,j,k = 
4 

b· . _ ac + O'.b 
i,J,k - 4 

ac 
c · . k- -i ,J , - 4 

d· . _ ac + O'.b 
i,J,k - 2 

O'.b 
9i,j,k = 4 

(8.12) 

The internal edge node shown in Figure 8.3 is on the boundary between carbon 

and steel. All the material between node ( i, j, k) and node ( i - 1, j, k) is steel and 

between node (i,j, k) and node (i + 1, j, k) is bath. 

(8.13) 

Interface Type VIII: The coefficient for Equation (8.13) are: 

b· . _ ab + 2as 
i,J,k - 4 

ab+ O'.s 
Ci,j,k = 

2 
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ab 
e ; ,j,k = 2 

f
. . _ O'.b + 2as 
i,J,k - 4 

O'.s 
9 i ,j,k = 2 

External Corner/Surface Node 

The external corner/ surface node shown in Figure 8.4 is on the boundary between 

carbon and steel. All the material in the quarter between node (i - 1,j, k) and 

node ( i , j - 1, k) is steel, the rest is bath. 

Interface Type IX: The coefficient for Equation (8.14) are: 

b. . _ ab + 2as 
i,J,k - 4 

d · . _ 9ab + 6as 
i,J ,k - 2 

ab 
e ;, j,k = 2 

ab 
f i ,j,k = 2 

as 
9 i ,j,k = 4 

8.3 Numerical Simulation 

(8.14) 

The three-dimensional solution should give a more detailed picture of the heat 

flow occurring as the anodes cool than the one- and two-dimensional models . The 

number of nodes required increases significantly when the three-dimensional model 

is solved. To speed up the computation time the symmetry of the problem can 

be used. If the solution is found for a quarter of the problem, symmetry can be 
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used to find the entire solution. The physical arrangement of the butt shown in 

Figure 1.3 was approximated by the quarter shown in Figure 8.9. 

Computation time for a grid size ~x = 0.04 m was approximately four minutes. 

If the grid size was halved, this would increase to about 45 minutes due to the 

increase in the number of node points. 

The same physical and thermal properties were used as in the one- and two­

dimensional cases. The results given are for the thermal properties given below. 

The thermal properties are approximations and in reality would change with the 

change in temperature of the materials. Each of the materials had the following 

properties: 

Carbon: 

Emissivity = 0.4 

Density =Pc = 1580 kg /m3 

Bath: 

Emissivity = 0.4 

Density= Pb= 2050kg/m3 

Steel: 

Emissivity = 0.4 

Density= Pb= 7753kg/m3 

Thermal Conductivity= kc= 5 W/mK 

Heat Capacity =Cc = 1670 J /kg]( 

Thermal Conductivity= kb= 0.4 W/mK 

Heat Capacity =Cb = 2287 J / kgK 

Thermal Conductivity = kb = 36 vV/mK 

Heat Capacity = cb = 486 J / kgK 

The thermal properties for carbon and bath are from [5]. The thermal properties 

for steel were given in [1]. 

8.3.1 Clean Anode 

The solution was found for an anode with a thickness of 0.2 m, a total length of 

1.4 m and a depth of 0.8 m. The steel rods had a diameter of 0.15 m, a depth of 

0.10 m into the carbon and extended 0.8 m up from the surface. The solution was 
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found for a quarter of this with ~x = 0.05 m so the number of nodes required for 

the carbon base was 6 x 11 x 19 and for the exposed rod was 21 x 5 x 5. 

The temperature profile for four different times is shown in Figure 8.10. It can 

be seen that the temperature at the surface of the anode drops quickly and the 

centre more slowly. Figure 8.11 shows a cross section through the quarter, where 

the effect of the steel rod can be seen. The temperature over time of the point A 

shown in Figure 8.91 is given in Figure 8.14. It can be seen that the clean anode 

cools more quickly than the same point in a dirty anode. 

8.3 .2 Dirty Anode 

The solution was found for the same anode as in the clean case but with a bath 

cover 0.2 m thick on top of the carbon. This makes the base of the anode 0.4 m 

thick. The number of nodes required for the base was 11 x 11 x 19 and for the 

exposed rod 16 x 5 x 5. 

The effect of the bath cover is shown in Figure 8.12, where it can be seen that the 

bath stays hotter for longer and keeps the carbon hotter. The effect of the rod can 

be seen in the cross-sections shown in Figure 8.13. 

The temperature over time of the point A shown in Figure 8.9 is given in Fig­

ure 8.14. It can be seen that the model initially predicts temperatures lower than 

those given by the experimental data but after about 6 hours the model starts to 

give temperatures higher than the experimental data. The temperature of point 

B in Figure 8.9 a point in the bath is given in Figure 8.15 it can be seen that the 

bath cools slowly compared to the carbon. This initially follows the data quite well 

but after 8 hours this also gives higher values than the experimental data. This 

could be due to convection from the anodes which becomes more significant as the 

temperature decreases. 

8.4 Summary 

The computation time required for the three-dimensional solution is significantly 

more than the one- or two-dimensional cases due to the extra number of nodes. 
1The bath layer is absent in this case 
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(a) 1 hour (b) 5 hours 

( c) 10 hours (cl ) 15 hours 

Figure 8.10: Temperature profile for a clean anode 
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(a) 1 hour (b ) 5 hours 

( c) 10 hours (d ) 15 hours 

Figure 8.11: Cross section of temperature through clean anode 
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(a) 1 hour (b) 5 hours 

(c) 10 hours (cl ) 15 hours 

Figure 8. 12: Temperature profile for a dirty anode 
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(a) 1 hour (b) 5 hours 

( c) 10 hours (cl ) 15 hours 

Figure 8.13: Cross section of temperature t hrough dirty anode 



CHAPTER 8. THREE-DIMENSIONAL NUMERICAL SOLUTION 103 

Q) 

1000 

900 

800 \ 
\ 

~ ".\ 

"§ 500 ·., 
~ ·. \ 

' 

E "· ' · ~ 400 

300 

200 

100 

2 

' 

. . . . . . . . . . . . . 

4 6 

· - · - Clean Anode 

- Dirty Anode 

- - Mean 

· · · · · Upper Quartile 

· · · · · Lower Quartile 

- ·- -.::::-..... ·· .. .. . _ 

·--,--::...·::: -_-:_ - ·- -- '...:.. ·.· - · - . ..,. _. _ , 
·· -. 

8 10 12 14 16 18 20 
Time (h) 

Figure 8.14: Temperature of point in carbon for clean and dirty anode 
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By using the symmetry of the problem the number of nodes can be reduced to a 

quarter of the nodes required for the full problem. The computation time required 

for a problem with ~x = 0/04 m so there are (11 x 11 x 19) nodes in the base and 

(16 x 5 x 5) nodes in the rod, was approximately four minutes. If the grid size is 

halved to give (21 x 21 x 37) nodes in the base and (31 x 9 x 9) nodes in the rod, 

this would increase to about 45 minutes. 

As can be seen the setting-up of the finite difference equations in the three­

dimensional model for variable material properties is quite complicated due to 

all the special cases. 

The visualisation of the results in three dimensions is difficult, since the tempera­

ture at all nodes can not be shown. The surface temperature for a quarter of the 

anode has been shown; however to see the effect of the rods, a cross-section was 

needed. 

The three-dimensional solution gives results similar to the two-dimensional model. 

The major advantage is the temperature distribution is calculated for the entire 

anode rather than only for a cross-section of it. 
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Chapter 9 

Conclusions 

9.1 Effect of Hot Cleaning of Spent Anodes 

The original question about the effect of removing the bath can now be answered. 

It has been seen that the bath cover has quite a major effect on the temperature 

of the butts. 

The rate of cooling of the anodes is just one of the factors which must be considered 

if the bath is removed while still hot. Other considerations could be safety and cost. 

What will be done with the hot bath once it is removed, as it will take time to 

cool, is also an important consideration. 

9.2 The Mathematical Model 

One-, two- and three-dimensional models have been developed; all could include 

carbon with a bath cover. The one-dimensional model could not include the steel 

rods of the assembly yoke but the two- and three-dimensional models could. 

The results obtained from the model show the cooling of a particular point within 

the spent anode quite well. It also shows the temperature profile within the anode 

at a given time. This can be shown on paper easily for the two-dimensional model 

but is more difficult for the three-dimensional model. The change of temperature 

with time can be shown on paper but is more effectively shown by making short 

animations on a computer; this has been done in MATLAB . 
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The computation time running on a DEC AlphaStation 200 4/233 for the one­

dimensional case was less than 5 s, the two-dimensional case was about 24 s. For 

three-dimensions the computation time varied from 3 minutes up to about 45 min­

utes depending on the grid size used. Obviously as the mesh size decreases the 

computation time would increase. The computation times are reasonable for a 

even for three dimensions so it is feasible to use this model. 

9 .3 Future Work 

There are several features which may be included in the model to give a more 

accurate solution. These include taking into account the heat loss due to convec­

tion especially as the temperature reduces below 350°C. Heat loss due to forced 

convection would be very difficult to model but it would be possible to calculate 

heat loss due to natural convection. 

The gap between the bath and the carbon has be assumed to be negligible but in 

reality it varies between about 0.01 m up to 0.05 m. This air gap would be expected 

to reduce the heat transfer between the carbon and the bath. If the air between 

the two surfaces is moving then there would be convection from these surfaces. If 

the air is stationary heat would be transferred by conduction and radiation . It is 

unclear how this problem would be approached. 

The model could be developed to take account of the rounded shape of the anodes 

rather than treating them as squares. However it is expected this would make little 

difference. The shape of the assembly yokes, including the round rods could also 

be included. Again it is expected this would make little difference to the overall 

results. 
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