Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Impacts of Human Disturbance Stimuli

on the Behaviour and Breeding Biology

of Subantarctic Yellow-eyed Penguins

(Megadyptes antipodes)

A thesis presented

in partial fulfilment of the requirements

for the degree of:

Master of Science

In

Conservation Biology

at Massey University, Palmerston North, New Zealand

Rebecca Kay French

2018

Abstract

Eco-tourism is increasing in popularity worldwide, particularly in previously isolated areas such as Antarctica and the subantarctic. This may be increasing the levels of human disturbance stimuli (human-related presence, objects or sounds), which can have impacts on wildlife at an individual level (behaviourally and physiologically) and at a population level. Human disturbance (the response of an animal to a disturbance stimulus) has been studied in most penguin species, showing both inter- and intra-specific differences in responses to disturbance stimuli at similar distances. The Yellow-eyed Penguin (Megadyptes antipodes) is negatively impacted by human disturbance stimuli, but very little research of any kind has been conducted on the subantarctic population. This is despite some areas within the subantarctic being regularly exposed to tourism, and the subantarctic population making up an estimated 60% of the entire species. I used an experimental approach to investigate the behavioural impacts of human disturbance stimuli on subantarctic Yellow-eyed Penguins, on Enderby Island. Human presence significantly changed their behaviour, resulting in an increased time spent vigilant and a decrease in the frequency of maintenance behaviours. By modelling the probability of disturbance at varying distances from the penguin to the human, I showed the current minimum approach distance of 5 m (with a 99% chance of disturbance) was not effective. I also quantified the breeding biology of subantarctic Yellow-eyed Penguins, and investigated the impact of human disturbance stimuli on their breeding success. There was no difference in nesting success (expressed as number of eggs, chicks and fledglings surviving per pair) between the disturbed and undisturbed site and no significant difference in the average weight and body size of fledglings at the disturbed site compared to fledglings at the undisturbed site. My results indicate that at current levels human disturbance stimuli has a behavioural impact on subantarctic Yellow-eyed Penguins, but a population-level impact was not detectable. This may be due to the low level of tourism and high degree of tourism management in the New Zealand

subantarctic, and the resulting low number of interactions between penguins and humans. Enderby Island tourism may therefore be an example of sustainable eco-tourism and successful management, although more research including multi-year studies would be needed to confirm this.

Acknowledgements

I would firstly like to say a huge thank you to my primary supervisor Phil Battley. I feel very lucky to have had such a knowledgeable, supportive and approachable mentor! Thank you for all the advice, guidance and support. I would also like to say a big thank you to my co-supervisor Louise Chilvers, for her very helpful feedback throughout the process.

This thesis would not have been possible without Chris Muller – thank you for your unwavering support, your confidence in me and all the help you gave me from beginning to end. Thank you for keeping me sane during those long months on Enderby. I am also particularly grateful for all the freezing cold evenings you spent out in the rain and wind being my 'human disturbance', after long days in the field!

I am grateful to Mel Young, Trudi Webster, Jim Fyfe, Simon Childerhouse, Tony Preston and Jo Hiscock for your assistance and advice. Thank you to Sharon Trainer and Rory Hanan for all your help at the Quarantine store. Thank you to Steve Kafka and the crew of *Evohe*, and the HMNZS Otago for safely transporting us through the Furious Fifties. Thank you to Shannon Taylor for your support, and for helping with field work. Thank you to the New Zealand Department of Conservation for logistical, funding and practical support including transport to the island, and providing essentials including food and the loan of equipment. Thanks also to the following for supplying equipment: Ecology Group Massey University, Yellow-eyed Penguin Trust and Blue Planet Marine. I am also grateful for the funding provided by a Massey University MSc Scholarship, Birds New Zealand Research Fund, and Massey University Ecology Group Scholarship.

Finally, I am very grateful to my family. A big thank you to my parents – you have been, and always will be a huge source of inspiration to me, and I am so proud to be your daughter.

iii

Table of Contents

Abstract		i
Acknowledge	ements	iii
List of Figure	S	vii
List of Tables		ix
Chapter 1:	General Introduction	1
Nature-, w	ildlife- and eco-tourism	2
Tourism m	anagement	4
Minimu	n approach distances and buffer zones	5
Visitor d	ensity	6
Antarcti	c/subantarctic tourist management	6
Study spec	ies: the Yellow-Eyed Penguin	8
Managir	ng tourism impact on mainland New Zealand Yellow-eyed Penguins	11
Study area	: the New Zealand subantarctic islands	12
Managir	ng tourism impact on subantarctic Yellow-eyed Penguins	14
Study site:	Enderby Island	15
Manage	ment of Enderby Island	17
Thesis aim:	5	
Chapter 2:	Literature Review	20
Introductio	on	21
Behavioura	al responses to disturbance stimuli	23
The risk-	disturbance hypothesis	23
Measuri	ng behaviour	24
Drawbad	cks of measuring behavioural responses	29
Physiologic	al responses to disturbance stimuli	
The phy:	siological stress response	
Measuri	ng physiological responses	32
Drawbad	cks of measuring physiological responses	35
Population	-level responses to disturbance stimuli	37
Populati	on dynamics	37
Measuri	ng population-level responses to disturbance stimuli	

Drawbacks of measuring population-level responses	44
Habituation and sensitisation	45
Disturbance by researchers	48
Are seabirds particularly vulnerable to disturbance?	49
Penguin disturbance	51
Conclusions	53
Chapter 3: The Behavioural Consequences of Human Disturbance on Suba	ntarctic Yellow-eyed
Penguins (<i>Megadyptes antipodes</i>)	
Abstract	55
Introduction	56
Methods	60
Behavioural observations of penguin-tourist interactions	61
Controlled approaches	61
Analysis	62
Results	63
Behaviour	63
Minimum approach guideline	64
Tourist behaviour	64
Discussion	67
Consequences of disturbance	67
Is habituation possible for Yellow-eyed Penguins?	69
Management implications	70
Recommendations	72
Chapter 4: Breeding Biology of Subantarctic Yellow-eyed Penguins in Area	s of High and Low
Levels of Human Disturbance	74
Abstract	75
Introduction	76
Methods	80
Analysis	83
Results	85
Discussion	91
Brood-size	92
Habitat	95
The effect of disturbance on fledging weight	96

Disturba	nce from sea lions	
Recomm	endations	
Chapter 5:	General Discussion	
Research ir	nplications	
Future rese	arch	
Conclusion		
References		
Appendix		

List of Figures

Figure 1.1. The distribution of the Yellow-eyed Penguin
Figure 1.2. The Auckland Island archipelago
Figure 1.3. The sward area above the beach of Sandy Bay, where many Yellow-eyed Penguins transit
from the sea to their nest and vice versa, and where tourists are allowed to land and walk.
The buildings are Department of Conservation research facilities, and a historic boat shed. 16
Figure 3.1. (A) New Zealand and New Zealand subantarctic islands. (B) Enderby Island. (C) Penguin
Alley on Sandy Bay, Enderby Island59
Figure 3.2. Effect of controlled approaches and tourist presence on behaviour of Yellow-eyed
Penguins. Plots show (A) time spent alert, (B) time spent preening, (C) time spent walking
and (D) transit time. Categories across the x-axes are when there is no human presence
(Control), stationary human presence (Stationary), moving human presence (Moving) and in
the presence of tourists (Tourist). Asterisk denotes significance from control. n = 208 for all
comparisons65
Figure 3.3. The probability of disturbance for Yellow-eyed Penguins as a function of approach
distance by a hymon. The fitted line is from a generalized linear mixed model, gray shading is
distance by a human. The fitted line is from a generalized linear mixed model, grey shading is
standard error; n = 212
standard error; n = 212
standard error; n = 212
standard error; n = 212
 standard error; n = 212

Figure 4.5. (a) Percentage of chicks that hatched on each date, n=61 (b) Number of chicks that died		
at 6 – 10 days, 11 – 15 days, 16 – 20 days, 36 – 40 days and 60 – 64 days old, n=11		
Figure 4.6. Percentage of fledglings found with ticks, n=125		
Figure 4.7. Principle Component Analysis of skull length and foot length. The amount of variation		
explained by each component is shown in brackets on the axes. Chicks from nests in the		
scrub are marked with a circle, chicks from the forest with a triangle, n=148		
Figure 4.8. Results of linear mixed effects models. The effect of brood-size on (a) fledging weight (kg)		
and (b) fledging body size, n=129, with standard error bars		

List of Tables

Table 1.1. Details of each tour boat expedition that landed on Enderby Island in the 2016 – 2017
season: Date, Company, Maximum number of tourists on each boat (Max Pax)18
Table 2.1. Current published literature on behavioural, physiological and population-level impacts on
wild penguins. Number of publications for each species is listed by the result - as either
habituation (defined as a reduced response to disturbance stimuli following previous
exposure), negative, or 'none detected' (where no statistically significant impact was
detected). Literature is counted more than once where multiple responses or species are
studied within one paper50
Table 4.1. Estimated age based on chick appearance, used to determine hatch dates. Based on
previous research (Darby & Seddon 1990; van Heezik & Davis 1990)
Table 4.2. Linear regression equations, p-values and R-squared values for fledging weight, skull
length and foot length at the undisturbed site (Rocky Ramp) and the disturbed site (Sandy
Bay)82
Table 4.3. Total and average number of eggs laid, chicks hatched and fledglings (chicks that survived
to mid-February) for the Rocky Ramp (RR) site (no disturbance stimulus present, n=27) and
Sandy Bay (SB) site (disturbance stimuli present, n=17) and all nests (n=49). 'All' is the total,
including 'hybrid' nests (where one parent used Rocky Ramp and one Sandy Bay, n=3) and
nests where the landing site of the parent(s) was unknown (n=2). Model results are the Z
values (degrees of freedom) and p-values of the generalised linear models for the effect of
site (with site as the predictor variable). Hybrid nests and nests where the landing site is
unknown were excluded from this analysis. Only nests with known hatch dates are displayed
in this table and were used in the model
Table 4.4. Model results from the linear mixed model Chick Size ~ Chick Weight + Brood-size +
Habitat + Overhead nest cover + Site + (1 Nest ID)
Table 4.5. Model results from the linear mixed model Chick Mass ~ Site*Overhead nest cover*Nest
habitat + Brood-size + fledging body size + (1 Nest ID)
Table A.1. Current published literature on behavioural, physiological and population-level impacts
on wild penguins. The key results of each paper are summarised under 'outcome' as either
habituation (defined as a reduced response to disturbance stimuli following previous
exposure), negative, or 'none detected' (where no statistically significant impact was

detected). Literature is listed more than once where multiple responses, species or disturbance stimuli are studied within one paper. UAVs are unmanned aerial vehicles.....126