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Abstract

There are an estimated 20 million users of the Ubuntu operating system and millions of

users of the Eclipse integrated development environment. Ubuntu and Eclipse systems

are constructed from components, called packages and bundles respectively, and can be

changed by adding or removing components to and from their systems. Over time

these systems will be continually changed to adapt to their software environment,

accommodate new user requirements, fix errors and/or prevent errors from occurring

in the future. This continual change is called the component system evolution process.

Using a developed simulation this thesis investigates the reduction of negative effects

during the component system evolution process. The primary negative effects that

are focused on are the amount of change made to the system, and the out-of-dateness

of the system. The simulation was created by modelling the evolution of component

systems and executed using a developed implementation. Various experiments that

simulate an Ubuntu system evolving over a year were conducted, and the change and

out-of-dateness of these systems measured. These experiments resulted in two novel

approaches that can be used to reduce change and out-of-dateness during evolution.

Therefore, this research could be used to reduce negative effects on millions of evolving

component systems.
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Chapter 1

Introduction

E pluribus unum – Latin for “Out of many, one”

de facto motto of the United States 1782 - 1956

The Greek philosopher Plutarch proposed in his work Life of Theseus a paradox that

is in essence the question1:

If an object has all its component parts replaced, is it the same object?

This question addresses many themes including how objects are made of components,

how they change their component parts, and what effect change has on the object in

question. Although ancient, these themes are still relevant today and this research

explores each of them in the domain of software.

How is a software system made from components? A component system can

be created by composing together software components (Szyperski, 2002). A

software component is an encapsulated unit that requires functionality supplied by

other components, in order to provide its own functionality. A component system is

valid only if every contained component has all its required functionality provided by

another component. For example, given that a text-editor component requires spell-

checker functionality, a valid system that includes the text-editor must also include a

component that provides spell-checker functionality.

How are component systems changed? A component system can be changed by

adding, removing or replacing components, however these actions must result in a

valid component system. This means that adding, removing, or replacing a single

1The actual question asked was whether Theseus’s ship, which was restored by replacing all wooden
parts, remained the same ship.
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CHAPTER 1. INTRODUCTION

component may cause a propagation of change to the component system. For example,

when adding a text-editor to a component system a component that provides spell-

checker functionality must also be added, otherwise the system will not be valid.

Additional complexity arises when changing a component system, as there may be more

than one way to change the system. Furthermore, different component systems may

have different properties and one system may be preferable to another. Therefore, when

changing a component system the resulting system should be valid and preferable. For

example, when a text-editor component is being added to a component system and

two components provide spell-checker functionality, a component system with either

spell-checker component is valid, however the component system selected should be

preferable to the other.

These complex and technical aspects of component system change can be automated.

Such automation allows users to change their component systems without performing

the tedious, error prone task of finding a preferable, valid component system. However,

when using such automated mechanisms a user must trust that the change will reflect

their preferences.

What effects does changing a component system have? Over time, a user will continually

change their system to meet their requirements and keep it up-to-date. This gradual

change is the component system evolution (CSE) process. The mechanisms by

which the systems are changed will effect the system as it evolves, particularly the

criteria by which preferable component systems are selected. However, what exactly

are the effects these mechanisms have on an evolving system is yet to be answered. This

research aims to provide answers to these questions by looking at component systems,

the mechanisms that change them, and CSE.

1.1 Motivation

Examples of popular component systems are the Ubuntu operating systems, which have

an estimated 20 million users2, and Eclipse integrated development environment (IDE),

which are used by thousands of companies and millions of users3. Ubuntu and Eclipse

systems are constructed from components, called packages and bundles respectively.

Ubuntu systems can be changed with the application apt-get (Barth et al., 2005) and

Eclipse systems can be changed with Eclipse P2 (Rapicault and Le Berre, 2010). These

allow the user to change their system by adding, removing and upgrading components.

2http://www.ubuntu.com/, accessed 16/5/2012
3http://www.eclipse.org/org/community survey/Eclipse Survey 2011 Report.pdf,

accessed 29/5/2012
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CHAPTER 1. INTRODUCTION

Repeatedly applying such changes allows the Ubuntu and Eclipse systems to evolve

through the CSE process. By studying the CSE process and understanding the effects

it has on systems, this research has the potential to impact millions of users and their

systems.

1.2 Objective

The objective of this research is to study the process of component system evolution

and its effect on component systems. The primary effects that are focused on are the

amount of change made to systems and how out-of-date the systems become over time.

In section 4.1, these two effects are argued to be a users’ primary concerns during CSE.

Through understanding this change and out-of-dateness, this research aims to inform

developers and users of the consequences their choices have on evolving systems, and

reduce these negative effects.

The objective of this research has lead to the thesis:

It is possible to reduce the negative effects of component system evolution by

altering the mechanisms by which systems are changed.

The necessary steps to validate this thesis are:

• To develop a reproducible and controllable environment in which to measure the

effects of CSE.

• To use this environment to study how systems evolve.

• To alter the mechanisms by which systems are changed and study their impact

on CSE.

• To demonstrate a reduction on change and out-of-dateness using such alterations.

Once these steps are completed, this thesis will be shown to be supported.

1.3 Research Method

To study the evolution of a single component system, all changes to that system over a

period of time must be examined. Additionally, to gain a broad and useful perspective

of CSE characteristics, the evolution of many systems must be studied. To this end,
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this research simulates the evolution of many Ubuntu systems. The reason for selecting

Ubuntu and simulation as the method of study are detailed further in this section.

1.3.1 Dataset

The Ubuntu operating system was selected as the component system to study CSE for

the following reasons:

• It has significant size and complexity which ensures that the results will not be

trivial.

• It has an active research community whose results can be used and built upon.

• It has an estimated 20 million users, potentially allowing the outcomes of this

research to have a significant impact.

• There are many open resources of information available to be collected and used

for simulation.

Another important question is “Why only Ubuntu?”, as only focusing on the evolution

of one component system may make the results from this research non-generalisable.

There are many similarities between component models (some are discussed in section

2.4) including the relationships between components and the mechanisms used to

change component systems. These similarities may make many of the contributions

from this research component system independent.

Another factor in the decision to only simulate the evolution of Ubuntu systems was the

lack of data available for other component models. Many systems, like Eclipse, do not

have their history archived as precisely as Ubuntu. This lack of available data meant

that data collection would be impractical or impossible. Therefore, the simulation of

other types of component system is not within the scope of this research, however the

simulation of further component systems is proposed as future research in section 7.2.

1.3.2 Methodology

The method selected to study CSE is to model its relevant aspects, then simulate the

evolution of many Ubuntu systems. This method was selected as a simulation provides

the necessary control over the variables of CSE to validate the thesis.

Another method that was considered when approaching this thesis was to study

the evolving systems of real users. The difficulty of this method would be finding
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participants willing to allow experimental techniques to change their (possibly mission

critical) systems. Finding enough participants to produce meaningful results would

have required time and resources that were not available to this research. Additionally,

as evolution occurs over long periods of time, problems could take months to identify

and correct, increasing the risk when using this method for this research. Therefore,

the simulation approach to validating the thesis was preferred as it has a lower cost

and less risk.

The core hurdle in creating a simulation is ensuring that the returned results are similar

enough to reality to draw meaningful conclusions, i.e. the simulation is valid:

“Validation is the process of determining whether a simulation is an

accurate representation of the system, for the particular object of the study.”

(Law, 2005)

The methodology that Law (2005) outlines was selected because it gave practical

guidance to creating and using a valid simulation. The methodology was created

after the observation that validation was often “attempted after the simulation models

had already been developed” (Law, 2005). It was also observed that non-validated

simulations can produce erroneous information that leads to bad, possibly costly

decisions being made.

This methodology has a seven step approach to creating a valid simulation:

• Step 1: Formulate the problem: The problem should be described as clearly

as possible. The core artifacts at this stage are the overall objectives and the

scope of the study.

• Step 2: Collect information/data to construct a conceptual model: The

conceptual model is a description of how the simulation and system work in

relation to the study’s objectives. It contains all variables used to configure the

simulation.

• Step 3: Validate the conceptual model: The validation of the conceptual

model is accomplished through interviews and discussions with the stakeholders

of the study.

• Step 4: Implement the conceptual model: The implementation of the

conceptual model must be executed and documented in a way that allows others

to replicate and repeat the process.

5



CHAPTER 1. INTRODUCTION

• Step 5: Validate the simulation implementation: The most definitive way

to validate a simulation is to compare its results to those from an actual system

(Law, 2005).

• Step 6: Design, conduct and analyse experiments: Experiments use the

simulation to measure effects and test hypothesises. For each of the experiments,

the configuration and number of independent runs must be defined.

• Step 7: Document and present results: This presentation is required to

promote the future re-use of the models, through describing the validation process.

The above described methodology was created for large scale industrial projects with

substantial resources available. It describes the employment and use of experts and

analysts to ensure validity. The available resources for this project are fewer than these

large scale projects, therefore some of the steps have been decreased in scope. This may

reduce the validity of the final simulation, but these restrictions have been made only

when necessary, and done so in a manner that attempts to minimise negative effects.

1.4 Contributions

As stated above, CSE is studied through simulating the evolution of Ubuntu systems

guided by the methodology outlined by Law (2005). To accomplish this study, these

research questions must be answered:

• How can CSE be modeled?

• How can a user who changes their component system be modeled?

• How can a CSE simulation be implemented?

• How can the negative effects during CSE be reduced?

In answering these questions the contributions from this research are:

1. A formal model CoSyE (Component System Evolution) that describes CSE.

2. The CUDF* language that is used to define documents that describe the

evolution of a component system.

3. SimUser (Simulated User) that models a user who changes their system.
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4. The GJSolver which is an efficient implementation that calculates the changes

made to a system as it evolves (called resolving). GJSolver was independently

validated through the MISC competition hosted by the Mancoosi project4.

5. A simulation of the evolution of Ubuntu operating systems using CoSyE,

CUDF*, SimUser and GJSolver.

6. Two methods to reduce the out-of-dateness and change during CSE.

7. The results, analysis and conclusions from experiments using the simulation.

These contributions overlap with published papers from this research:

1. An empirical study into the search space of resolving component systems (Jenson

et al., 2010a).

2. A formal framework to describe a users preferences during CSE (Jenson et al.,

2010b).

3. An empirical study into the evolution of component systems (Jenson et al., 2011).

1.5 Thesis Overview

This thesis is organised and presented in the order that resembles the steps of the above

described methodology: the problem is described (chapter 2), the models are presented

and validated (chapters 3 and 4), the implementation and validation of the simulation

are described (chapter 5), and the experiments and their results are discussed (chapter

6).

Chapter 2 explores the backgrounds of CSE and its related domains. This aims to put

CSE in historical context and to give suitable definitions to the elements of CSE.

Chapter 3 presents the CoSyE model and the CUDF* language that describe the formal

aspects of the evolution of component systems. CoSyE is used to describe the evolution

of a component system and CUDF* is used as the language to serialise CoSyE instances.

Chapter 4 presents the SimUser model which is used to describe users that request

changes to their component systems. This model includes assumptions and variables

that are necessary to simulate the evolution of Ubuntu systems. It is developed from

the results of a conducted survey. As this model relies on many assumptions that may

impact the validity of the simulation, the validation of this model is also discussed.

4http://www.mancoosi.org/, accessed 8/8/2012
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Chapter 5 describes the algorithms used to create the GJSolver implementation. The

resolving of a component system can require significant computational effort, therefore

the algorithms and implementation used are an important aspect of research. The

verification of GJSolver and validation of the simulation are also discussed in this

chapter.

Chapter 6 describes the experiments, results and analysis that are conducted using

the developed simulation. The effects examined are the changes that the systems go

through, and how out-of-date the systems become during evolution. Through these

experiments, causes of additional change and out-of-dateness are identified. These

causes are addressed with some novel changes to CSE, and through using the simulation

the impact of these changes is measured. The effects of these changes are measured

using the simulation and are shown to have benefits during CSE.

This thesis concludes in chapter 7 by describing the contributions of this research and

possible future research.
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Chapter 2

Background

In order to agree to talk, we just have to agree we are talking about roughly the

same thing.

The Feynman Lectures on Physics, Motion, Richard Feynman, 1961.

Software evolution (Lehman, 1980) is the process of repeated change made to a software

system to maintain it or to extend its functionality over the system’s lifetime. This

evolution process is necessary as any system must adapt to the changing software

environment, accommodate new user requirements, fix errors and/or prevent errors

from occurring in the future (ISO/IEC, 2006). Software maintenance and evolution

are often used interchangeably (Godfrey and German, 2008), however some differences

exist. One difference is that maintenance has connotations of a planned activity, where

evolution is the gradual refinement of a system (Lehman, 1980). That is, software

maintenance is a range of activities through which software is changed, and software

evolves as the system is repeatedly changed. This is similar to the definition given in

(Lehman, 1980).

A component system is created out of a set of components combined into a functioning

system by a composer (or assembler) (Szyperski, 2002). Apart from creating the

systems, composers are also responsible for changing their systems. This change can

be motivated by the same forces as software change, e.g. new system requirements. As

a composer makes changes to their component system over time, the system is said to

evolve.

This chapter illustrates the history and presents the state of the art of software

evolution, component systems, and CSE. Section 2.1 first describes the history and

connections between domains. Section 2.2 explores the separation of the evolution of

individual components and the evolution of component systems. The definitions of
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software components and component models used in this thesis are then presented in

section 2.3. To conclude this chapter, examples of various component models that fit

the given definitions are discussed in section 2.4.

2.1 Software Evolution and Component-Based Software

Engineering

The foundations for software evolution, software components, and component systems

were established in the late 1960s. The concept that would later become software

evolution was first described by Lehman (1969). The concept of software components

was proposed by McIlroy (1969). The operating system Unix (Raymond, 2003), whose

core philosophy is a modular system, was developed in 1969.

The domains of software engineering, software evolution and component-based software

engineering have gone through many advancements since their inceptions. This section

describes these advancements, building up to a discussion about CSE.

2.1.1 Software Evolution

Brooks (1975) states that over 90% of the cost of a system occurs after deployment in

the maintenance phase, and that any successful piece of software will inevitably need to

be maintained. This realisation, that software requires significant expense to maintain,

led researchers to study how software changed after its deployment. This is the study

of software evolution (Lehman, 1980).

In 1980, two fundamental empirical studies on the emerging domain of software

evolution were published. The first study by Lientz and Swanson (1980) explored the

activities that occur during software maintenance (later formalised in ISO/IEC 14764

(ISO/IEC, 2006));

1. Adaptive Maintenance: adapting to new system or technical requirements.

2. Perfective Maintenance: adapting to new user requirements.

3. Corrective Maintenance: fixing errors and bugs.

4. Preventive Maintenance1: adapting to prevent future problems.

1later added in taxonomies such as (IEEE, 1990)
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This study showed that around 75% of the maintenance effort was on the first two

types, and corrective maintenance took about 21% of the effort.

The second study by Lehman (1980) explored how evolution affected software. In this

study, Lehman described a set of laws that characterise software evolution:

1. Continuing Change: Software systems2 must be continually adapted, otherwise

they become progressively less satisfactory.

2. Increasing Complexity: As the system evolves its complexity increases unless work

is done to reduce it.

3. Self Regulation: The system evolves with statistically determinable trends and

invariances.

4. Conservation of Organisational Stability: The average effective activity rate to

evolve a system is invariant over its lifetime.

5. Conservation of Familiarity: As the system evolves, its incremental growth must

remain invariant to ensure users maintain mastery over the system.

6. Continuing Growth: The system must continually grow to maintain user

satisfaction.

7. Declining Quality: The quality of the system will decline unless rigorously

maintained.

8. Feedback System: The function a system performs is changed by the effect it has

on its environment.

Both the study from Lientz and Swanson (1980) and the laws from Lehman (1980)

argue that the software engineer’s objective of creating a satisfactory system is difficult,

expensive, and not always achievable. They state that the continual evolution of a

software system is necessary, and this evolution reduces quality, increases complexity,

and is costly.

From the perspective of software evolution, the software engineer’s goal is then to

create a system that can be quickly altered to adapt to a changing environment while

working to reduce the inevitable complexity caused by changing software. Towards

such goals, iterative development processes have been created, such as the spiral

development method (Boehm, 1988). This process describes the stages of development

2Lehman calls them E-type systems: software implemented in a real-world computing context
(Lehman, 1980)
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as communication, planning, modeling, construction, and deployment. These stages

are continually iterated until the software project is no longer actively maintained.

The practical problems of software evolution can be seen in the struggle with legacy

software (Bennett, 1995). Legacy software is functional software that is old and

outdated, but it has not been replaced due to its critical status, not being well

understood, or the cost of redesigning. A piece of software is described as “legacy”

if it cannot be maintained (due to its complexity or size) within an acceptable cost

(Bisbal et al., 1999). As a legacy system does not evolve, new user and technical

requirements cannot be fulfilled, and the satisfaction with the system will decrease over

time. This has led the problem of legacy software to be described as enduring (Bennett

and Rajlich, 2000).

Software evolution is still seen as a young field (Godfrey and German, 2008), as many

open questions remain unanswered. Recent empirical studies that explore the cost of

software evolution are summarised by Grubb and Takang (2003), showing that the costs

of software maintenance range from 49% to 75%, and that these costs have not fallen

since the 1970’s. To lower the cost of software evolution, various methods and tools

have been proposed. For example, agile software development methodologies (The Agile

Alliance, 2001) are defined to encourage rapid and flexible responses to change, and

refactoring tools (Fowler and Beck, 1999; Murphy-Hill and Black, 2008) have been

developed to restructure code to decrease complexity and increase maintainability.

Another way of lowering costs of the software evolution process is to create systems

from encapsulated units called software components (Szyperski, 2002).

Current explorations of the history, and state-of-the-art, of software evolution are

presented by Bennett and Rajlich (2000), Lehman and Ramil (2003), and Godfrey and

German (2008). In all these papers, the importance of software evolution is emphasised,

and the need for more knowledge about the evolution process and its properties is

discussed.

2.1.2 Component-Based Software Engineering

The concept of Component-Based Software Engineering (CBSE) was first outlined by

McIlroy (1969), by describing the idea of a software components subindustry which

created components to be used in software. This report is an expansion on an earlier

idea for pipes (McIlroy, 1964), where McIlroy described designing software to fit

together, like screwing a hose to a tap.

The reuse of code to decrease development time was originally the major perceived

benefit of using software components. Later, other benefits of constructing systems
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from modular components were identified by Parnas (1972):

• Managerial Separation: the ability to develop components in separate groups

with little communication.

• Product Flexibility : the ability to make drastic changes to one component, without

changing others.

• Comprehensibility : the ability to study the system one module at a time.

The “software component” concept was soon picked up by other researchers such as

Yourdon and Constantine (1976), who described their ideas on structured design as:

• The art of designing the components of a system and the interrelationship between

those components in the best possible way.

• The process of deciding which components are interconnected in which way to

solve some well-specified problem.

Yourdon and Constantine (1976) list the goals of structured design as efficiency,

maintainability, modifiability, generality, flexibility, and utility. These goals are aimed

to be achieved by dividing the system into functional units that can be treated

independently. Each unit corresponds to exactly one small well-defined piece of the

system, and the units relationship corresponds to a relationship between pieces of the

system.

A problem soon emerged as the number of software components grew, where the best

set of components that satisfy the requirements of the system must be selected. Prieto-

Diaz and Freeman (1987) described this as the selection problem, where a composer

can have many alternative compositions of components to select from. This increases

the effort required to use software components as each possible combination must be

examined and ranked based on how well they match the composer’s specifications.

Current research into solutions to the selection problem asks the questions of:

• How to describe a component and its attributes (Treinen and Zacchiroli, 2009a;

Xinjuan et al., 2007)?

• How to search for compositions that fit a set of requirements (Abate and DiCosmo,

2011; Kwong et al., 2010; Treinen and Zacchiroli, 2009b; de Almeida et al., 2004)?

• How to rank a particular composition (Chen et al., 2011; Aleti et al., 2009)?
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The current state of CBSE is fractured, where there are many different component

frameworks (some presented in section 2.4), each with different goals and attributes.

Additionally, the original concept of a software component subindustry has never truly

come to fruition (Szyperski, 2002). A possibility for this is the unsure definitions of what

software components are (Crnkovic et al., 2011). The hope for CBSE, as described by

Crnkovic et al. (2011), is that the technology and research will converge, and terms and

concepts in the software component domain will become standardised. This problem

is later described in section 2.3, where the software component definition in this thesis

will be discussed.

2.1.3 Unix and GNU/Linux Modular Operating Systems

The research into software components by McIlroy (1969) coincided with his help in the

development of the operating system Unix (Raymond, 2003). McIlroy had significant

impact not only on the implementation of Unix, where many of his ideas like pipes

where included, but also on the Unix philosophy. McIlroy’s Unix philosophy has been

summarised as:

“Write programs that do one thing and do it well. Write programs to work

together. Write programs to handle text streams, because that is a universal

interface.” (Salus, 1994)

This philosophy led to the first two rules (out of fifteen) of Unix (Raymond, 2003):

• Rule of Modularity : Write simple parts connected by clean interfaces.

• Rule of Composition: Design programs to be connected to other programs.

To eliminate the perceived problems of the proprietary Unix system, in 1983 Richard

Stallman created the GNU project (Stallman and Others, 1985) to implement a free

Unix-like operating system. With a kernel developed by Linus Torvalds based on

the MINIX operating system (Tanenbaum, 1989), the GNU/Linux operating system

(Torvalds and Diamond, 2002) was created. GNU/Linux is seen as a return to the

original philosophy of Unix (Gancarz, 2003), where the creation of small modular

programs that interact is central. Aligned with this philosophy, a distribution of

GNU/Linux called Debian (Barth et al., 2005) was announced in 1993. This release

came with the Debian Manifesto (Murdock, 1994) that stated that Debian would be

constructed from high quality components (or packages) which can be maintained by

experts.
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Initially, a significant amount of technical expertise was required to change the

composition of packages in a Debian system. Each package had a set of constraints

that described the systems that it would be functional in and whenever a change was

made, these constraints where required to be satisfied. Not only was satisfying these

constraints difficult, but selecting an appropriate system was also a problem (due to

the selection problem discussed earlier in section 2.1.2). For example, installing a new

package required satisfying all its constraints, and if there were multiple systems that

satisfied these constraints, one would have to be chosen.

With the release of the application apt-get in the late 1990’s, the necessary technical

knowledge to compose or change a Debian system was significantly reduced. A user

could request apt-get to change their system, and it would find, select then change to a

new composition that satisfies the request and component constraints. This automated

the search for a satisfactory solution, solving the problem which had restricted the

evolution of Debian systems prior to apt-get’s release. The apt-get package manager

and similar applications have been called the “single biggest advancement Linux has

brought to the industry” (Murdock, 2007) because it has made it “far easier to push

new innovations out into the marketplace and generally evolve the OS”. Such lowering

of the technical knowledge required to become a composer of a component system has

had other effects that are discussed in the next section.

2.2 Component Evolution vs. Component System Evolu-

tion

Originally it was assumed that developers were the composers (Parnas, 1972; Prieto-

Diaz and Freeman, 1987) of component systems. That is, developers would compose,

verify, then release a component system to users. However, with applications like

apt-get the user has started to play the role of the composer for their systems. A

user, without technical knowledge, can now change the composition of their component

system to satisfy their requirements.

The situation where the user is the composer of the system has been called system

tailoring (Mørch, 1997) and end-user assembly (Szyperski, 2002). It has been noted

that the potential of component systems have increased with this user composition

(Szyperski, 2002) as the user can craft solutions without requiring expert assistance.

However, a system is also more fragile as the quality of a system may not be verifiable

by a non-technical user.

When the user is the composer of their system, it breaks apart two important processes,
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component evolution and CSE. The developer, rather than the composer of the

component system, is now solely in charge of evolution of the components they maintain.

In this section, the differences between, and the impact of separating, component

evolution and CSE are discussed.

2.2.1 Component Evolution

Component evolution is the process by which components change over time through

continual maintenance. This maintenance requires technical knowledge of the internal

workings and structure of the component, therefore it must be accomplished by a

developer. This makes component evolution similar to software evolution as it is a

process driven by developers. A significant difference between software evolution and

component evolution occurs because a developer has limited control over the system in

which their component is used. This difference makes validating a component difficult

as testing all possible systems it can be deployed in may be practically impossible.

To allow the developer to describe valid compositions their component will be functional

in, they are typically provided a means of expressing constraints. These constraints can

describe conflicts between components, and/or dependencies on other components. For

example, if a component a requires component b to be included in the composition for

a to be functional, a is said to depend on b. Further, if a requires that component c

not be in the composition, it is said that a conflicts with c. Such constraints are used

to ensure that a component system that includes a is valid.

The developer may not have control over the evolution of components it depends on or

conflicts with. Therefore, any constraint a component has on another may only be valid

for a particular state, or range of states, of the other components. Such component

states are tagged with versions, these provide an order to the evolution of a component.

For example, a component a which is version 1, is less evolved than the component a

version 2. Further consider, a version 1 depends on b version 1, and a version 2 depends

on b version 2.

This discussion on component evolution describes some differences to software

evolution. It is given not as a complete exploration of this domain but an introduction.

A proper methodology for the development and evolution of software components is

still being sought (Szyperski, 2002). Discussions on types of evolutionary changes with

comparisons to other domains are given in (Papazoglou et al., 2011), and empirically

explored by Vasa et al. (2007).
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2.2.2 Component System Evolution

A component system is changed when its composer alters the system’s composition

of components. The system evolves over time as these changes are repeatedly made.

As described in ISO/IEC 14764 (ISO/IEC, 2006), these changes could be adaptive,

perfective, corrective or preventive. However, unlike the changes in software evolution

or component evolution, CSE can only make changes by adding or removing components

that already exist. For example, a composer could not change the system to satisfy a

requirement if no component has yet been developed to satisfy that requirement.

Changing a component system is restricted by the constraints that components use to

describe valid compositions. It would be very difficult for a non-technical user to alter

a composition without some tool support. In this research such functionality is called

Component Dependency Resolution (CDR). CDR helps the composer alter their

system by satisfying their requests for change with valid compositions. Additionally,

the returned compositions satisfy some preferences. For example, suppose a user wants

to install a new text-editor component into their system, and the selected text editor

has a dependency on a spell-checker. A preference to be up-to-date means that the

most recent version of components should be selected. A system that provides CDR

functionality would try to find a valid system that has up-to-date versions of a text-

editor and a spell-checker.

CDR functionality is currently available for Eclipse provided by the P2 provisioning

system (Rapicault and Le Berre, 2010) and the package manager apt-get for the

Debian GNU/Linux distribution (Barth et al., 2005). CDR functionality can be used

at design time to determine the required dependencies to build and test a project (as

in Apache Maven (Porter et al., 2008)), at run time to evolve or extend a component-

based system (as in Eclipse P2 (Rapicault and Le Berre, 2010)), or it can be used to

build and restructure software product lines (Savolainen et al., 2007).

CDR systems typically provide similar functionality that allow the user to install

and remove components, adding or removing a component to or from the system.

Furthermore, typically provided is an upgrade function that removes then installs a

higher version of the same component. For example, to upgrade the components in a

Debian GNU/Linux system, the command apt-get upgrade is all that is needed to

be executed. To extend the system to install a component comp the command apt-get

install comp can be executed. The simplicity that CDR provides enables users to

become composers of their component systems.

A problem arises during component system evolution when trying to measure the

evolved state of a component system. A component system is a set of components,
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where each component can have different versions. This may make a component system

impossible to version in a way similar to how individual components are versioned. For

example, a system that has version 1 of component a and version 2 of component b, is

neither more or less out-of-date than a system with version 2 of a and version 1 of b.

This can get even more complicated when considering some component models allow

multiple versions of a single component installed, e.g. is a system with version 1 and 2

of a installed less evolved that a system with only version 2 of a installed?

Component system evolution is empirically studied by Fortuna et al. (2011) who look at

the first ten releases of Debian and compare it to the evolution within biology. Methods

to change component systems are discussed in (Ryan and Newmarch, 2005) and (Luo

et al., 2004), and the mitigation of the negative effects caused by such evolution is

discussed in the paper (Stuckenholz, 2007). This thesis contributes a formal model of

component system evolution in chapter 3.

2.3 What is a Software Component?

How a “software component” is defined will impact how CSE is studied and discussed.

It is difficult to find a precise definition of a software component as the intuitive concept

may be quite different from any model or implementation (Crnkovic et al., 2011).

Finding a definition that satisfies all parties may be an impossible task. However, by

defining a software component with respect to component system evolution, this process

can be studied without the paralysis of finding a complete definition. In this thesis,

a software component is defined to have explicitly declared constraints and include

mechanisms to automatically alter a component composition. These two attributes are

seen as sufficient to allow CDR to be used, and allow a user to be the composer and

change their system.

A component describes a part or element of a larger system or process. A broad

characterisation of a component is “components can be composed together”. They

can be physical, as in electrical or mechanical components, or virtual, as in software

components. Typically, components can be used in many different contexts. For

example, a resistor component, they can be used in electrical systems from space

stations to cellphones. This concept of what a component is has led to problems in

defining the concept of a software component.

A discussion between two researchers in component software, Bertrand Meyer and

Clemens Szyperski, highlighted the difficultly of defining “software component”. They

converse across the articles Meyer (1999); Szyperski (2000b,a); Meyer (2000), discussing

18



CHAPTER 2. BACKGROUND

their definitions of what a software component is.

Szyperski defines a component (Szyperski, 2002) as having three characteristic

properties:

1. Being a unit of independent deployment.

2. Being a unit of third party composition.

3. Having no externally observable state.

Meyer’s definition of software components is enumerated as one that:

1. May be used by other software elements (clients).

2. May be used by clients without the intervention of the components’ developers.

3. Includes a specification of all dependencies (hardware and software platform,

versions, other components).

4. Includes a precise specification of the functionality it offers.

5. Is usable solely on the basis of that specification.

6. Is composable with other components.

7. Can be integrated into a system quickly and smoothly.

Others, like (Heineman and Councill, 2001), have stated that components must conform

to a component model:

“A software component is a software element that conforms to a

component model and can be independently deployed and composed

without modification according to a composition standard.”

Furthermore, they define a component model as:

“A component model defines a set of standards for component

implementation, naming, interoperability, customization, composition,

evolution, and deployment.”

Exactly what is, and what is not a software component is in dispute amongst the

community, and a definitive description of a software component is elusive (Vasa et al.,
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2007). As such, many different component models have been developed, each targeting

various domains with different functionality and technical aspects. This diversity

has inspired a classification approach (Crnkovic et al., 2011), where components and

component models are classified into a scheme. This effort highlights the difficulty in

creating an exact definition of a software component.

The problems encountered when trying to precisely define a software component may

stem from the fact that “component” is a broad concept. The problem, as observed

from the area of formal concept analysis (Ganter and Wille, 1999) by (Szyperski, 2002),

is that it is impossible to “enumerate a fixed agreeable set of features that is necessary

and sufficient for a natural concept such as component.”

However, a definition can be found, not by feature enumeration but through stating

the intention for the concept and exploring the technically inevitable consequences

(Szyperski, 2002). As the intention of this thesis is to investigate component system

evolution, the definition of software component will be with respect to this process.

2.3.1 The Definition of Software Component in this Thesis

The definition of a software component is given with respect to the evolution of a

component system using component dependency resolution. Both these areas have

already been discussed in this chapter and will be used to define the concept of“software

component”. This definition specifies the type of components and component models

this research can be applied to.

In this thesis a software component is defined as a unit of independent deployment,

and third party composition, and a component model must:

1. Require the explicit definition of component constraints that describe composi-

tions that are valid.

2. Include mechanisms in which to programmatically change a component system.

To allow CDR functionality to alter a component system, the component constraints

must be explicitly defined and computer readable, and an interface must be provided by

the component system to be changed. This definition will allow the study of component

system evolution as a user changes their system using CDR functionality.

This definition leaves many aspects of a software components undefined, as can be seen

when compared to the classification from (Crnkovic et al., 2011). Most aspects of a

component model are ignored as they are superfluous to the core topic of this research.
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This makes the definition in this research broadly applicable, while also being focused

on CSE.

The next section explores this definition of software component by discussing different

component models that conform to it.

2.4 Component Models

Given the definition of a software component in this thesis, some current component

models are described and discussed. These models come from industry (OSGi, Eclipse

Plugins, Fractal, Maven), the open source community (Debian) and academia (SOFA2,

CUDF).

For these component models to conform to the previously described definition their

components must explicitly describe their constraints and they must provide a

mechanism to alter the systems composition. The typical method in which components

from these models express their constraints is through meta-data files, and to alter

compositions some low level interface is provided. These meta-data files and interfaces

are described and discussed, as is any CDR functionality that may be provided.

To compare these component models, the example of a text editor component that

depends on a spell checker component is used. It is hoped this simple situation will

highlight the similarities and differences between the various component models.

2.4.1 OSGi

OSGi is a mature component model from the OSGi Alliance. It has implementations

from organizations like the Eclipse Foundation with their Equinox framework (McAffer

et al., 2010), and the Apache foundation with their framework Felix3.

OSGi components are referred to as bundles, each contains a meta-data file describing

the bundle’s constraints, and a set of Java packages and classes as implementation. The

OSGi framework separates the components for deployment and run-time into bundles

and services respectively. These services exist on a separate layer to the bundles, each

service is created at run-time and is represented by a Java object. This service layer can

also describe constraints through frameworks like Spring Dynamic Modules4. Under

the definition of component in this research, this makes both the bundle layer and the

service layer software component models. These layers are discussed here.

3http://felix.apache.org/ accessed 6/3/2012
4http://www.springsource.org/osgi accessed 6/3/2012
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2.4.1.1 Bundle Layer

To show how the bundle meta-data describe constraints of a component, an example is

presented in figure 2.1 where a text editor bundle depends on a spell checker.

Bundle-Name: TextEditor

Bundle-Vendor: Graham Jenson

Bundle-SymbolicName: nz.geek.textEditor

Bundle-Version: 0.0.1.alpha

Bundle-RequiredExecutionEnvironment: J2SE-1.4

Export-Package: nz.geek.textEditor;version="0.0.1.alpha"

Require-Bundle: nz.geek.fonts

Import-Package: nz.geek.spellchecker;version>"0.0.1"

Figure 2.1: Example of OSGi Meta-data

This meta-data shows the name and version of the component, as well as the exported

packages (referring to Java packages). Also presented are constraints, such as the

necessary execution environment, and the required bundles and packages in the system.

Require-Bundle describes the direct dependence on other bundles, and Import-

Package describes the dependence on packages provided by other bundles.

2.4.1.2 Service Layer

This bundle meta-data only contains information necessary for the execution of a

component. However, for the component to be functional the service layer of OSGi

is used.

The service layer is defined in the core OSGi specification (The OSGi Alliance, 2007b),

however its definition does not describe any meta-data format. To help manage services,

a number of frameworks have emerged, e.g. Spring Dynamic Modules5. OSGi’s

compendium specification (The OSGi Alliance, 2007a) also defines a service layer meta-

data format called Declarative Services (DS). To show how the DS meta-data can be

used to express constraints on the service layer, an example is presented in figure 2.2.

This meta-data includes references to implementation elements (like interfaces) that

are provided and required, and methods to interact with the services. The dependency

constraints can have cardinalities, e.g. a text editor can use multiple spell checkers.

5http://www.springsource.org/osgi accessed 6/3/2012
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<?xml version="1.0"?>

<component name="textEditor">

<implementation class="nz.geek.textEditor.TextEditorImpl"/>

<service>

<provide interface="nz.geek.textEditor.TextEditor"/>

</service>

<reference name="spellChecker"

interface="nz.geek.spellchecker.SpellChecker"

bind="setSpellChecker"

unbind="unsetSpellChecker"

cardinality="0..1"

policy="dynamic"/>

</component>

Figure 2.2: Example of OSGi Declarative Services meta-data

The service tag describes the services provided, and the reference tag expresses a

dependence on another service.

One aspect lacking in the DS meta-data is the ability to define a version range on

constraints. The version of a service is implicitly defined by the version of the bundle

that provides the service. However, this implicit version is unable to be reasoned about

by DS.

2.4.1.3 OSGi Change

The programmatic evolution of an OSGi system is defined in the interfaces created by

the OSGi alliance.6 The installation and removal of both the bundles and services from

the OSGi system are:

• To install a bundle:

org.osgi.framework.BundleContext#install

• To uninstall a bundle:

org.osgi.framework.Bundle#uninstall

• To register a service:

org.osgi.framework.BundleContext#registerService

6http://www.osgi.org/javadoc/r4v43/ accessed 6/3/2012
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• To unregister a service:

org.osgi.framework.ServiceRegistration#unregister

These methods can be used from an implemented console, allowing a user to directly

execute them to add or remove bundles.

2.4.1.4 OSGi Bundle Repostiory

To implement CDR functionality for OSGi, in RFC-0112 (The OSGi Alliance, 2006)

Peter Kriens and Richard S. Hall proposed the OSGi Bundle Repository (OBR). OBR

is an XML format that describes OSGi components, and also an application with CDR

functionality. To show how OBR describes component constraints, an example of an

OBR document is presented in figure 2.3.

<repository name=’OBR REP’ time=’123’>

<resource version=’0.0.1’ name=’nz.geek.textEditor’

uri=’nz.geek.textEditor.0.0.1.jar’>

<require optional=’false’ multiple=’false’ name=’package’

filter=’(&amp;(package=nz.geek.spellChecker)(version>=1.0.0))’>

Import package nz.geek.spellChecker ;version=1.0.0

</require>

</resource>

<resource version=’1.0.0’ name=’nz.geek.spellChecker’

uri=’nz.geek.spellChecker-1.0.0.jar’>

<capability name=’package’>

<p v=’nz.geek.spellChecker’ n=’package’/>

<p v=’1.0.0’ t=’version’ n=’version’/>

</capability>

</resource>

</repository>

Figure 2.3: Example of OSGi Bundle Repository meta-data

This meta-data format was designed so that it can merge the bundle and service meta-

data together. It also ignores many of the implementation aspects of OSGi bundles

and focuses on the constraints of the components. OBR represents only the necessary

elements from both OSGi bundle and service layers to provide CDR functionality.

OBR has been seen as a solution to simplify deployment of OSGi applications (Jung,
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2007), distribution and deployment to embedded ubiquitous systems (Jung and Chen,

2006), smart home applications (Gouin-Vallerand and Giroux, 2007) and dynamic

distribution of drivers (Kriens, 2008).

The most mature implementation of an OBR client is offered by the Apache foundation.

The client is bundled with their core OSGi framework Apache Felix. This client can be

used with any of the large public or private OBR collections of bundles. An example of

one such public repository is the Paremus repository7 which contains (as of December

2011) over 2000 bundles.

The specification of OBR does not define a method or parameters used to define

preferences when selecting a component system. Therefore, selecting systems, when

many are valid, is implementation specific. The method used by the Apache OBR8

implementation to select a system is described on its help page as:

“OBR might have to install new bundles during an update to satisfy

either new dependencies or updated dependencies that can no longer be

satisfied by existing local bundles. In response to this type of scenario,

the OBR deployment algorithm tries to favor updating existing bundles, if

possible, as opposed to installing new bundles to satisfy dependencies.”

This shows that when upgrading a system, not installing new bundles is preferred.

2.4.2 Eclipse Plugins

Eclipse is a widely used integrated development environment (IDE) and an extensible

plugin platform for creating Java applications. It is built on top of the OSGi framework,

but re-implements OSGi’s service layer with its own Eclipse plugin runtime. Therefore,

the distributed components are OSGi bundles and the run time elements are plugin

services.

These plugins are defined using extensions and extension points, where extensions

provide a service for an extension point. To show how plugin meta data is used to

define constraints, an example is presented in figure 2.4.

This plugin defines the name and version of the plugin, and using the tag requires

defines the requirements of this plugin to function. The extension-point tag defines

not only what the plugin provides, but also the required information in order to provide

it, described in a schema. This is a special feature of the Eclipse plugin framework,

7http://www.osgi.org/Repository/ accessed 6/3/2012
8http://felix.apache.org/site/apache-felix-osgi-bundle-repository.html accessed 6/12/2011
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<?xml version="1.0"?>

<plugin

name="Text Editor"

id="nz.geek.textEditor"

version="0.0.1.alpha"

provider-name="Graham Jenson">

<requires>

<import plugin="nz.geek.fonts"/>

</requires>

<runtime>

<library name="texteditor.jar"/>

</runtime>

<extension-point id="nz.geek.spellchecker"

name="Spell Checker"

schema="spellchecker.exsd"/>

</plugin>

Figure 2.4: Example of an Eclipse Plugin plugin.xml meta-data file

as other component models generally do not specify these parameters on this type of

constraint.

The schema of an extension point, as shown in figure 2.5, describes the elements to use

an extension.

In this description, this extension point requires a string that describes a Java class that

implements nz.geek.ISpellChecker. This is the only requirement for this extension

point, but other parameters of types, e.g. Boolean, integer, can be defined.

2.4.2.1 Eclipse Change

The programmatic evolution of an Eclipse system is through the use of the previously

described OSGi methods and interaction with the plugin registry.

The extensions and extension points, for an Eclipse system, can be altered in the plugin

registry. This registry contains all references to the extensions and extension points in

a system, and the methods used to add and remove these are:

• org.eclipse.core.runtime.IExtensionRegistry#addContribution, to add
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<schema xmlns="http://www.w3.org/2001/XMLSchema">

<element name="spellchecker">

<complexType>

<attribute name="spellchecker" type="string" use="required">

<annotation>

<appinfo>

<meta.attribute kind="java" basedOn=":nz.geek.ISpellChecker"/>

</appinfo>

</annotation>

</attribute>

</complexType>

</element>

</schema>

Figure 2.5: Example of an Eclipse Plugin extension point schema file

an extension and extension point described in an XML file

• org.eclipse.core.runtime.IExtensionRegistry#removeExtension, to remove

an extension

• org.eclipse.core.runtime.IExtensionRegistry#removeExtensionPoint, to

remove an extension point

2.4.2.2 Eclipse P2

Eclipse P2 (Rapicault and Le Berre, 2009, 2010) is the provisioning system for the

Eclipse IDE platform. It provides the CDR functionality to alter an Eclipse-based

component system. Eclipse P2 is mainly accessed through the Eclipse user interface,

where the user can select to update the entire system, or install a component.

Some of the preferences used by Eclipse P2 to change the system are described in

(Rapicault and Le Berre, 2009) and (Rapicault and Le Berre, 2010). The purpose of

these are to:

1. Minimise the amount of components installed that have no dependency to them.

2. Minimise the removal of already installed components.

3. Minimise the age of the installed components.

4. Minimise changing an installed component if unrelated to the request being made.
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These criteria are used to select a system if multiple possible systems are available.

2.4.3 Fractal

Fractal (Quéma et al., 2006) is a component model developed by France Telecom

R&D and INRA. It is a specification that is designed to be programming language

independent, unlike OSGi or Eclipse that both depend on Java specific elements. The

most notable aspect, and the reason for its name, is that a components can be composed

together to make a new component. This hierarchical nature of composition means that

a system of components can itself be a component.

To show how Fractal meta-data can describe component constraints, an example is

presented in figure 2.6.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC

"-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://org/objectweb/fractal/adl/xml/basic.dtd">

<definition name="textEditorComponent">

<interface name="textEditor" role = "server"

signature = "nz.geek.textEditor"/>

<interface name="spellChecker" role = "client"

signature = "nz.geek.spellChecker"/>

<content class="nz.geek.textEditorImpl"/>

</definition>

Figure 2.6: Example of a simple Fractal ADL file

This meta-data describes the component constraints as a metaphor between a client

and a server. The interface tag with the role attribute assigned to “server”, defines

the provided functionality of the component. The interface tag with the role attribute

assigned to “client” then defines the required functionality of the component.

An example of the definition of a hierarchical component can be seen in figure 2.7.

This description of a hierarchical component structure defines both the text editor

and spell checker components, as well as their constraints. The tag definition

is then used to define a composition of components that provides a service of

textEditorWithSpellChecker. To provide this, the spell checker must be bound

(described in the tag binding) to the text editor, and the text editors’ provided interface
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<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC

"-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://org/objectweb/fractal/adl/xml/basic.dtd">

<definition name="textEditorWithSpellCheckerComponent">

<interface name="textEditorWithSpellChecker" role="server"

signature="nz.geek.textEditorWSC"/>

<component name="textEditorComponent">

<interface name="textEditor" role="server"

signature="nz.geek.textEditor"/>

<interface name="spellChecker" role="client"

signature="nz.geek.spellChecker"/>

<content class="nz.geek.textEditorImpl"/>

</component>

<component name="spellCheckerComponent">

<interface name="spellChecker" role="server"

signature="nz.geek.spellChecker"/>

<content class="nz.geek.spellChecker.SpellChecker"/>

</component>

<binding client="this.textEditorWithSpellChecker"

server="textEditorComponent.textEditor"/>

<binding client="textEditorComponent.spellChecker"

server="spellCheckerComponent.spellChecker"/>

</definition>

Figure 2.7: Example of a hierarchical Fractal ADL file
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must be bound to the output interface.

2.4.3.1 Fractal Change

The programmatic evolution of a Fractal component system can differ between

implementations. To simplify this, only the Java implementation is described. In

this implementation the methods to edit the composition are9 (each interface is in the

package org.objectweb.fractal.api):

• To create a component:

factory.GenericFactory#newFcInstance.

• To add a component to a composite:

api.control.ContentController#addFcSubComponent.

• To remove a component from a composite:

control.ContentController#removeFcSubComponent.

There are two points that may make the changing a Fractal component model

particularly difficult: the hierarchical nature of Fractal, and the lack of required version

information about components and composites.

The hierarchical nature of Fractal will make it difficult to change a system. Given the

hierarchical nature of the components described, any system may provide the same

functionality with the same components in a combinatorial number of configurations.

When changing a system, not only would a new system need to be selected, but

components must be grouped to make composites. The simplest solution to this

problem is to ignore the hierarchical nature of this component model and have the

changed component system be exactly one composite with all components in it. More

difficult solutions could be created by reusing user composites, or analyzing the graph

structure to extract relationships by using algorithms like the one presented in (Dietrich

et al., 2008). This is not be explored in this research.

Another aspect that will make changing Fractal systems difficult, is the lack of

versioning information. Like OSGI-DS, this component model does not explicitly

require the version of the component and the interfaces they provide. This may lead

to problems as components and services evolve, and the dependencies on them cannot

specify which component version to depend on.

9http://fractal.ow2.org/current/doc/javadoc/fractal/ accessed 6/3/2012
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2.4.4 Maven

Maven is a build automation tool, designed to be programming language agnostic, but

it is primarily used with Java. The core component aspect of Maven is that it can

dynamically select and download files from a repository to be used to build a system.

Maven itself is built using a plugin architecture. This architecture is built to make it

easy to change and adapt the Maven application. However, the focus in this section

is on the use of Maven as a component model and not the Maven applications plugin

system.

To show how the Maven Project Object Model (POM) meta-data file is used to describe

constraints, an example given in 2.8.

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

<groupId>nz.geek</groupId>

<artifactId>textEditor</artifactId>

<version>0.0.0.alpha</version>

<dependencies>

<dependency>

<groupId>nz.geek</groupId>

<artifactId>spellChecker</artifactId>

<version>[0.0.1,1.0.0)</version>

<type>jar</type>

</dependency>

</dependencies>

</project>

Figure 2.8: Example of a Maven POM file

This model defines the component’s namespace using the groupId tag, the name

using the tag artifactId, and the version. It also defines the dependencies on other

projects through the dependency tag, where it states that it depends on the artifact

spellChecker from versions 0.0.1 to (but excluding) version 1.0.0.
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2.4.4.1 Maven Change

The use of Maven primarily during development does not exclude it from the definition

of being a component model in this study. Maven both explicitly declares constraints

and provides an interface to change its component systems. This characteristic of

Maven does mean that changing a component system is done in two stages where first

it is altered, then it is recompiled.

Another core difference from the other presented component models is that Maven

POM objects do not declare what they provide. For example, an OSGi bundle can

declare provided packages and a Fractal component declares provided interfaces. A

Maven project can only provide itself.

2.4.5 Debian Packages

Debian is a GNU/Linux-based operating system provided by the Debian Project (Barth

et al., 2005). This operating system’s most prominent feature is that it is composed of

packages, where each package is a unit of deployment with explicit constraints defined

in a control file. To show how this control file defines such constraints, two examples

are presented in figures 2.9 and 2.10.

Package: textEditorPackage

Version: 0.0.1.alpha

Depends: spellChecker

Conflicts: otherTextEditorPackage

Figure 2.9: Example of a Debian Control File for Text Editor

Package: spellCheckerPackage

Version: 1.0.0

Provides: spellChecker

Figure 2.10: Example of a Debian Control File for Spell Checker

These control files describe two packages, a text editor and spellChecker, they are

organised into key/value pairs separated by the “:” character. The text editor states

using the Depends key that it requires a spellChecker to be installed, and through the

Conflicts key states that it cannot be installed with another text editor. The spell
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checker package defines that it provides a spell checker using the Provides key. This

spell checker is of a type called a virtual package, which has some specific semantics

not described here.

One aspect that differentiates the Debian package model from the many other models, is

that it does not specify the rules of composition between components. That is, there is

no formal specification of the semantics of the communication and relationships between

packages. For instance, OSGi bundles exist in a very constrained environment that

manages their interactions, depending on another bundle has run-time implications.

For Debian, the dependence of one package on another has no prescribed run-time

effects, other than the assumption that without satisfying the dependence the package

will not be functional. The way in which a package uses or communicates with a

depended upon package is defined between the packages and not in the component

model.

2.4.5.1 dpkg

The application dpkg is the command line tool use to modify a Debian package system.

The commands to modify a Debian package system are:

• To add a package: dpkg -install <package file>.

• To remove a package: dpkg -remove <package>.

These commands define the atomic actions to change a Debian system. They can

be executed from other applications through the command line, this makes them

programming language independent and easily accessible.

2.4.5.2 apt-get

The dpkg application can only remove and add a single component at a time, it does

not satisfy the constraints of a component. There are many applications that provide

CDR functionality on Debian systems, the default and most popular solution is through

the apt-get application. This tool is built on top of dpkg, to provide an interface to

simplify and extend its functionality. The apt-get application is a command line tool,

which provides the necessary tools to efficiently allow the user to evolve their system.

apt-get follows some basic criteria when altering the system. For example, when

upgrading:
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• Under no circumstances will apt-get remove an already installed package.

• Under no circumstances will apt-get install a new package.

Note: apt-get defines removing, installing and upgrading separately, e.g. upgrading a

package named text-editor is not defined by apt-get as removing then installing a

new package.

Another application that extends apt-get’s functionality is aptitude (Burrows, 2005).

This application adds a basic user interface to apt-get and also extends functionality

in aspects like locating and removing redundant packages. Aptitude allows some of its

criteria to be user defined, for example when the flag --safe-resolver is used:

• It attempts to preserve as many of your choices as possible.

• It will never remove a package.

• It will never install a version of a package other than the package’s default

candidate version.

2.4.6 SOFA 2.0

Software Appliance (SOFA) (Hnetynka and Plasil, 2006) is a component model

developed at Charles University in Prague. A component in the SOFA framework

is defined by it’s frame, which contains the meta-data of what the component requires

and provides. Like Fractal, SOFA is a hierarchical component model, allowing for a

composite of components to be treated as a single component.

To show how SOFA meta-data describes constraints an example is presented in figure

2.11.

This meta-data describes two components, a text editor and a spell checker,

using the tag frame. The sub elements requires and provides describe the

component constraints through an externally defined interface with the name-space

sofatype://nz.geek.spellChecker.

2.4.6.1 SOFA Change

SOFA 2.0 is an extension of the SOFA framework, with new services including dynamic

reconfiguration for dynamic evolution of an architecture at run-time. Unlike other

component systems, it only allows for controlled change; many component models
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<?xml version="1.0"?>

<frame name="nz.geek.textEditor">

<requires name="spellChecker"

itf-type="sofatype://nz.geek.spellChecker"/>

</frame>

<?xml version="1.0"?>

<frame name="nz.geek.spellChecker">

<provides name="spellChecker"

itf-type="sofatype://nz.geek.spellChecker"/>

</frame>

Figure 2.11: Example of a SOFA ADL Files

allow the change of the component system on a fine grained level of adding or removing

a component. However, SOFA only allows more granular changes that conform to

specified evolution patterns. This restriction is meant to increase the manageability

and predictability of a component systems evolution.

Three evolution patterns are predefined: factory pattern, removal pattern, and service

access pattern. As its name suggests, in the factory pattern a designated component

acts as a component factory. The removal pattern serves for the destruction of a

component that was previously created. The service access pattern allows for the

access to external services. These patterns are further described in (Hnetynka and

Plasil, 2006).

2.4.7 Common Upgradeability Description Format

Many component models share similar features including:

• Each component defined with a name and version.

• Each component describing what the component provides and requires.

By abstracting these common elements into a single model, the description of how

a component system is changed can become component model independent. The

Common Upgradeability Description Format (CUDF) model is such an abstraction.

It is used to describe a request by a user to change a component system, and can be

used to calculate the resulting system. CUDF was created by the Mancoosi project10

10http://www.mancoosi.org/ accessed 8/8/2012
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to foster interest in this domain and to be used in a competition that compared CDR

functionality. Mancoosi is a European research project focused on the problems faced

by Free and Open Source Software (FOSS) systems when being changed.

The CUDF component model has no concrete component as it was designed to be an

abstract component model. This means that there are no defined semantics to execute

a CUDF component system. In this respect it is similar to the OBR component model,

as it has been created to explicitly represent the problem of changing a component

system.

To show how a CUDF document describes a changing component system, an example

is presented in figure 2.12.

package: textEditor

version: 1

depends: spellCheckerService

package: spellChecker

version: 2

provides: spellCheckerService

request:

install:textEditor

Figure 2.12: Example of a CUDF file

A CUDF file is defined using key/value pairs, where each component is defined using

the two tags package and version. This file does not only represent the components

but also the requested change with the tag request. Further definition of the syntax

and semantics of CUDF is in chapter 3, as it is used extensively throughout this study.

2.4.7.1 Mancoosi MPM

The CUDF component model was defined especially to compare CDR implementations,

and it was successful in that many implementations were created to be compared. One

such implementation, GJSolver, was contributed by this thesis and is further discussed

in chapter 5. The implementation from Mancoosi is the Modular Package Manager

(MPM) (Abate and DiCosmo, 2011). MPM was created by the Mancoosi project to

explore the possibility of using CUDF solver to evolve real systems. In the study by

Abate and DiCosmo (2011), this package manager was compared against other solvers,

such as apt-get and aptitude, and shown to be an improvement in performance. MPM
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also was the first to allow the user to completely specify the criteria by which the solver

selects a system. Further discussion of MPM criteria is given in chapter 5.

2.4.8 Comparison

Each of the presented component models provide an explicit description of their

components constraints, and a mechanism to change a component system. This means

that they are all component models w.r.t. the definition of component in this research.

The constraints in these models fall into two groups:

1. Dependencies, where one component requires another component or what it

provides.

2. Conflicts, where one component conflicts with another component or what it

provides.

Typically these constraints are between pre-defined types in the component model,

e.g. a service or a package. However, OBR, Maven, and SOFA allowed the definition

of a type of dependency. All component constraints are defined in meta-data files in

either XML, or key/value pair format. The constraints in these models have broadly

similar semantics, though a different vocabulary. A comparison of this vocabulary is

summarised in the tables 2.1 and 2.2.

Component Model Component Provides Provide/Require

OSGi Bundle Package Export/Require Import
Declarative Services Component Service Provide/Reference
OBR Resource typed Capability/Require
Eclipse Plug-in Extension-Point Extension/Requires
Fractal Component Interface Server/Client
Maven Artifact typed NA/Dependency
Debian Package Virtual-Package Provide/Depends
SOFA 2.0 Frame typed Provide/Require
CUDF Package Package Provides/Depends

Table 2.1: Summary of presented component models’ constraints. Note: typed refers to
the ability to define the type of requirement.

These component models also provide mechanisms to change a component system

with the exception of OBR, Maven, and CUDF. In OBR and CUDF, the component

systems are represented by the meta-data files themselves, therefore changing the

component system is a matter of altering the meta-data. Maven component systems are
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Component Model Constraint Description File Format

OSGi Meta-Data Key/Value pairs
Declarative Services Component Description XML
OBR Repository XML
Eclipse plugin.xml XML
Fractal ADL XML
Maven POM XML
Debian control Key/Value pairs
SOFA 2.0 ADL XML
CUDF CUDF Key/Value pairs

Table 2.2: Summary of presented component models’ constraints description formats.

Component Model Hierarchical Evolution Mechanism CDR

OSGi No Method/Command Line OBR
Declarative Services No Method OBR
OBR No NA OBR
Eclipse No Method Eclipse P2
Fractal Yes Method None
Maven No NA Maven
Debian No Command Line apt-get

SOFA 2.0 Yes Evolution Patterns None
CUDF No NA MPM

Table 2.3: Summary of presented component models’ properties.

also represented by the meta-data, though once the meta-data is changed the Maven

application must be executed to change the system.

With the exception of SOFA 2.0, all the mechanisms to alter a component system in

the remaining component models have the actions of either adding, removing and/or

replacing a component. SOFA only allows altering the system by pre-defined evolution

patterns.

Most of these models have an application with CDR functionality to assist in changing

their component systems. Fractal and SOFA are the only exceptions. This may be

due to the difficulty in evolving hierarchical component models. A comparison between

these component model properties is presented in table 2.3.

The presented comparison of these models shows that although they are aimed at

different domains, they are very similar with respect to their component constraints

and their mechanisms to change component systems. This similarity may mean that

the results from a simulation of Ubuntu may relate to these other component models.
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2.5 Summary

In this chapter, the concepts related to CSE are explored. The domains of software

evolution, CBSE and component systems are described and the important concepts,

such as software component, are defined. Various component models are described,

and it was shown that there exist no fundamental differences between these models.

Therefore, a single model can be used to describe the evolution of component systems

conforming to these various models. In the next chapter a model that formally defines

the concepts discussed in this chapter is presented. This is the first step towards creating

a simulation of CSE.
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Chapter 3

Formal Model of Component

System Evolution

We are like sailors who on the open sea must reconstruct their ship but are never

able to start afresh from the bottom.
Willard Van Orman Quine, Word and Object, 1960

In the previous chapter, component system evolution (CSE) was described as the

continual alteration of a system of components by a composer. The described

component models each defined constraints on this change to ensure the resulting

system is valid.

This chapter describes the model (CoSyE) and language (CUDF*) used to describe the

CSE process. They also enable the discussion of CSE as they formally define terms and

concepts used in this research.

The model CoSyE (Component System Evolution) aims for the qualities of a model

described by Selic (2003):

• Abstractness: A model is a reduction of reality, removing or hiding detail that

is irrelevant.

• Understandability: A model directly appeals to intuition, to convey complex

ideas with little intellectual effort.

• Accuracy: A model must provide a true to life representation of the modelled

system.

• Predictiveness: A model must be able to be used to predict the modelled

system’s non-obvious yet interesting properties.
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• Inexpensive: A model must be cheaper to construct and analyze than the

modelled system.

CoSyE describes CSE as a series of evolution steps, where each step is in response to a

user request to alter the system.

The Common Upgradeability Description Format (CUDF) (Treinen and Zacchiroli,

2009a) and the Mancoosi Optimisation Format (MOF) (Abate and DiCosmo, 2011)

have been used to describe a single change to a component system. However, for

the purpose of this thesis, these formats are insufficient due to the fact that CSE

requires many changes. To address this issue, the CUDF* language was developed as

a combination and extension of the CUDF and MOF models. A CUDF* document

can be parsed to create an instance of CoSyE, thus fully describe the evolution of a

component system.

The relationships between the models presented in this chapter are described in figure

3.1. This figure (and figures 4.1, 5.1 and 5.7) are intended to show a simple overview

of the relationships between the presented models. To interpret this figure; each box

is a model, extends is to mean inclusion and extension of semantics, instantiates

means that a model is an instance of a higher model (also denoted with the prefix :),

and parsed to describes a model transformation.

CoSyE

:CoSyE

 ins tan t ia tes

CUDF MOF

CUDF*

 ex t ends  ex t ends

:CUDF* Document
parsed  to

 ins tan t ia tes

Figure 3.1: The relationships between CUDF* and CoSyE

This chapter first defines the CoSyE model then the CUDF* language. The complete

description of parsing a CUDF* document to an instance of CoSyE is presented in

Appendix A.

3.1 CoSyE Model of Component System Evolution

This section presents the CoSyE model of component system evolution. CoSyE

describes the evolution of a component system as a series of evolution steps. Each
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step tries to satisfy a user request for change along with the constraints that ensure the

system is valid. The selected component system is optimal with respect to a preference

order.

3.1.1 Evolution Problem

The solutions to an evolution problem make up the set of valid component systems

that can be evolved to. To define this, first the basic elements of the model must be

defined, such as components and constraints.

Components are the atomic units of a component system’s evolution.

Definition 1 Let N be the set of names, where a name is a finite string of characters;

let V be the totally ordered set of versions1; a component is an element of C, where

C = N × V.

A component a is then a pair 〈n, v〉, where n is the component’s name, and v is

the component’s version. The characters a, b, c, . . . are used to denote components,

m,n, o, . . . used to denote names, and v, w, x, . . . used to denote versions.

Definition 2 A component system is a finite subset of components, e.g. α is a

component system where α ⊆finite C.

The characters α, β, γ are used to denote component systems2.

Constraints are used to describe valid systems.

Definition 3 A constraint con is a set of component systems, i.e. con ⊆ 2C.

Such constraints can be defined intentionally by specifying the necessary and sufficient

conditions for a component system to be in a constraint.

In most component models described in chapter 2, only specific types of constraints are

used, these types are:

1. Exclusion: ¬a := {α ∈ 2C | a 6∈ α} .

1Given V is ordered under ≤, ≤ is antisymmetric (v ≤ w and w ≤ v then v = w), transitive (v ≤ w
and w ≤ x then v ≤ x) and total (v ≤ w or w ≤ v)

2In hierarchical component models, such as Fractal (Quéma et al., 2006), a component system would
also be a component. That is, a component system could have elements that are themselves component
systems. This definition is not included in this model, though it may be possible for it to be modified
to include it in the future.
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2. Conflict: a→ ¬c := {α ∈ 2C | if a ∈ α then c 6∈ α} .

3. Inclusive Disjunction: a1 ∨ . . . ∨ an := {α ∈ 2C | a1 ∈ α or . . . or an ∈ α} .

4. Dependence: a→ c1∨ . . .∨ cn := {α ∈ 2C | if a1 ∈ α then c1 ∈ α or . . . or cn ∈
α} .

5. Exactly One: a1 + . . .+ an = 1 := {α ∈ 2C | |{a1, . . . , an} ∩ α| = 1} .

Note, for constraint types 3, 4 and 5 the value of n can be equal to 1.

The vocabulary used when discussing constraints is as follows:

Definition 4

1. A component system α is said to satisfy a constraint con iff α ∈ con.

2. An evolution problem EP is a finite set of constraints.

3. A solution to an evolution problem EP is a component system α that satisfies

all constraints in the evolution problem, i.e. α ∈ coni for all coni ∈ EP .

4. An evolution problem is unsatisfiable if there exists no solution to it.

Based on the definitions presented in this section, the following example illustrates how

an evolution problem can be described and solved. Assume the evolution problem EP

is defined as the set of two constraints con1 and con2, i.e. EP = {con1, con2}. The

constraint con1 is b (constraint type 3), which is defined as the set of all component

systems with b in them. The constraint con2 is a → c (constraint type 4), is defined

as the set of all component systems where if a is included, then c is included. The

component systems that satisfy both con1 and con2 are solutions to EP . Some of these

solutions are {b}, {a, b, c} and {a, b, c, d}.

3.1.1.1 Complexity of an Evolution Problem

When investigating the complexity of an evolution problem, it was observed that:

Observation 1 Finding a solution to an evolution problem is NP-complete (Cook,

1971).

This observation has been made before by Mancinelli et al. (2006) and Abate and

DiCosmo (2011). This can be shown by reducing a known NP-complete problem, called

one-in-three satisfiability, to the evolution problem. The one-in-three satisfiability

problem is defined by Schaefer (1978) as:
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Given sets S1, . . . , Sn each having at most 3 members, is there a subset T

of the members such that for each i, |T ∩ Si| = 1.

This can be reduced to an evolution problem where:

Given sets S1, . . . , Sn each containing 3 components, and constraints

con1, . . . , conn such that for each i, Si = {a, b, c} iff coni equals constraint

a + b + c = 1 (constraint type 5). A set of components α is such that

for each i, |α ∩ Si| = 1 iff α is a solution to the evolution problem

EP = {con1, . . . , conn}.

This reduction uses the “exactly one” constraint (type 5). However, if this constraint

type was not included into this formalism, the evolution problem would still be NP-

Complete, as one-in-three satisfiability can be reduced to a problem consisting of

constraint types 2 and 3.

3.1.2 Constraints and Requests

An evolution problem consists of two sets of constraints; constraints created by the user

request to change the system, and constraints required for the system to be valid. To

clarify the purpose of these constraints, they are separated into two sets.

Definition 5 The set of user requests ∆ is the set of all constraints, where each

constraint in ∆ is either:

1. an installation request of constraint type 3.

2. a remove request of constraint type 1.

3. a *grade3 request of constraint type 5.

Consider the examples of:

• an installation request a ∨ b is a request by the user to install component a or b

into the system.

• a remove request ¬a is a request by the user to remove component a from the

system.

3This referrers to either request an upgrade or a downgrade
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• a *grade request a + b = 1 is a request by the user to include either a or b, but

not both.

The *grade request uses the “exactly one” constraint (type 5) to represent both

downgrade and upgrade requests from the user. The intuition is that after upgrading

or downgrading a component, exactly one component should be included in the system

(Treinen and Zacchiroli, 2009a).

Definition 6 The set of system constraints Ω is a set of all constraints, where each

constraint in Ω is either:

1. a keep constraint of type 3.

2. a dependency constraint of type 4.

3. a conflict constraint of type 2.

Consider the examples of:

• a keep constraint a ∨ b is a system constraint to keep component a or b in the

system.

• a dependency constraint a → b ∨ c is a system constraint where if a is in the

system, then b or c must be in the system.

• a conflict constraint a → ¬b is a system constraint where if a is in the system

then b must not be in the system.

The evolution of a component system happens over time. This concept of “time” must

be introduced to the model.

Definition 7 The set T is the set of all times. T is a strict total ordered under <time,

where times ti and ti+1 in T implies ti <time ti+1

At any time, there exists only a finite set of components.

Definition 8 Ct is the finite set of components that exists at time t, Ct ⊂finite C

At any point in time, the sets of system constraints and user request constraints are

with respect to the set of components that exist at that time. That is, a constraint can

only describe systems that are composed of components that exist at a given time.
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Definition 9 Given time t, and the set of components Ct, the set of system

constraints w.r.t. time is Ωt, where Ωt = {con ∩ 2Ct | con ∈ Ω}, and the set of

user requests w.r.t. time is ∆t, where ∆t = {con ∩ 2Ct | con ∈ ∆}

Definition 10 Given a time t, a user request, δt, is a finite set of user requests at

time t, i.e. δt ⊆finite ∆t; and a set of system constraints, ωt, is a finite set of system

constraints at time t, i.e. ωt ⊆finite Ωt.

An evolution problem, EP , can be defined by combining a user request δt and a set of

system constraints ωt, such that EP = δt ∪ ωt.

An example is presented to illustrate the relationship an evolution problem has to

time. Consider the system constraint con1 that is defined as a → b ∨ d, and the user

request constraint con2 defined as a (a singleton installation constraint). The constraint

con1 can (but is not limited to) be satisfied by the component systems {}, {b}, {a, b},
{a, b, d}, and {a, d}, and the constraint con2 can (but is not limited to) be satisfied by

component systems {a}, {a, b} and {a, b, d}.

Assume that at time t, only the components a and b exist, i.e Ct = {a, b}. The set

of all component systems at time t is 2Ct = {{}, {a}, {b}, {a, b}}. Therefore, at time t

component d does not exist, it is not in Ct, nor in any component system in 2Ct .

The system constraint con′1 ∈ Ωt, is such that con′1 = con1 ∩ 2Ct = {{}, {b}, {a, b}}.
The user request constraint con′2 ∈ ∆t, is such that con′2 = con2 ∩ 2Ct = {{a}, {a, b}}.

Assume a set of system constraints ωt = {con′1}, and a user request constraints

δt = {con′2}. An evolution problem δt∪ωt, will have exactly one solution, the component

system {a, b}.

3.1.3 Component System Evolution

A component system is changed from one system to another to satisfy an evolution

problem containing a user request and system constraints. Many evolution problems

have multiple valid solutions, as evolution problems are generally under-constrained

(Le Berre and Parrain, 2008). Different solutions may have different properties, and as

a result, a user may prefer one system over another. Introducing an ordering over the

solutions addresses such user preferences.

Definition 11 Given a component system α, an evolution preference order w.r.t.

α is a strict partial order ≺α⊆ 2C × 2C.
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A strict partial order has the properties of irreflexivity (not β ≺α β), asymmetry (if

β ≺α β′ then not β′ ≺α β), and transitivity (if β ≺α β′ and β′ ≺α β′′ then β ≺α β′′).
The non-strict evolution preference order �α can be defined such that β ≺α β′ if and

only if (β �α β′ and β 6= β′).

Definition 12 Given a component system α, an evolution preference order w.r.t. α

≺α, and an evolution problem EP ; a component system β is optimal if β is a solution

to EP , and there exists no other solution to EP β′, such that β ≺α β′.

Definition 13 Given times ti−1 and ti, a component system αti−1, an evolution

preference order ≺αti−1
, a user request δti, and a set of system constraints ωti; the

evolution step function ε(αti−1 , δti ∪ωti) returns the component system αti such that:

• iff the evolution problem δti∪ωti is satisfiable, αti is an optimal solution to δti∪ωti.

• iff the evolution problem δti ∪ ωti is unsatisfiable, αti equals αti−1.

The evolution step function takes a previous system and changes it to satisfy a user’s

request and system constraints with a preferable system. If the evolution problem

is unsatisfiable, the evolution step function does not change the system and returns

the previous system αti−1 . Such a situation occurs when the user requests a change

that either conflicts with itself, or conflicts with the system constraints. For example,

consider the situation where a user requested to install components a and b, but a and b

conflict with each other. If this situation happened in reality, a report will be generated

and returned to the user explaining why the evolution problem is unsatisfiable. This

report may also include hints to the user as to how to make the request satisfiable.

If an evolution problem is unsatisfiable, it could be possible to return a component

system that maximises the number of satisfied constraints in the user request. This

approach, however, is impossible to define as the intentions of a user request are

unknown. For example, consider the situation where a user requested to install

components a and b, but a and b conflict with each other. Which component should

be selected to be installed in the system? Given the user request, this question cannot

be answered. The user may only require a if b is installed, or vice versa. Making no

assumptions about the intent of the user request is the prudent approach taken in this

model.

Definition 14 Given a series of times t0, . . . , tn, an initial component system αt0,

sets of components Ct1 , . . . , Ctn, a series of user requests δt1 , . . . , δtn, a series of system
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constraints ωt1 , . . . , ωtn, and a series of evolution preference orders ≺αt0
, . . . ,≺αtn−1

;

the evolution function ε∗ is defined as

ε∗(αt0 , 〈δt1 ∪ ωt1 , . . . , δtn ∪ ωtn〉) = ε(ε(. . . ε(αt0 , δt1 ∪ ωt1), . . .), δtn ∪ ωtn) = αtn.

This evolution function is the core definition in CoSyE as it describes the evolution

process of repeatedly changing a component system. That is, the evolution function ε∗

is the “closure” of the evolution step function ε. An instance of CoSyE will contain:

• A series of times t0, . . . , tn.

• Sets of components Ct0 , . . . ,Ctn .

• Sets of user requests δt1 , . . . , δtn .

• Sets of system constraints ωt1 , . . . , ωtn .

• Evolution preference orders ≺αt0
, . . . ,≺αtn−1

.

• Initial system αt0 .

This is enough information to calculate the system from αt1 to αtn , also known as

resolving a CoSyE instance.

The following observations can be made about the CoSyE model.

Observation 2 It is not required for an evolution step to satisfy prior user requests.

For example, if a user wants to install a text editor into the system, the user would

expect that in future the text editor will remain in the system. This property is not

explicitly stated in the model, because (as described above) it is difficult to determine

a user’s intention with a request.

A similar problem is faced by the revision function in the domain of belief revision

(Alchourrón et al., 1985). Revision functions try to preserve consistency across a set of

beliefs as new, and possibly inconsistent, information is introduced. This is similar, as a

set of previous user requests should try to remain satisfied with the component system,

as the user requests to change the system. This problem with the evolution process

is not further explored in this research, but belief revision may provide inspiration for

future research.

Observation 3 Multiple evolution steps may produce a less optimal component system

than an equivalent, single evolution step.
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This can be demonstrated by describing an instance of CoSyE. Let the evolution

preference order select solutions with the minimum number of components altered (the

symmetric difference between the solutions), i.e. β ≺α β′ iff |α∆β| > |α∆β′|. Further,

let:

• The times 0, 1 and 2.

• The set of components C0 = C1 = C2 = {a, b, c, d}.

• The system at time 0 be α0 = {}.

• A series of user requests be δ1 = {a} and δ2 = {c}.

• The set of constraints ω1 = ω2 = {a→ b ∨ c, c→ d}.

Consider the component evolution from α0 to α2:

• α0 = {}.

• α1 = ε(α0, δ1 ∪ ω1), given the preference order ≺α0 . |α0∆{a, b}| = 2 is minimal,

therefore α1 = {a, b}.

• α2 = ε(α1, δ2 ∪ ω2), given the preference order ≺α1 . |α1∆{a, b, c, d}| = 4 is

minimal, therefore α2 = {a, b, c, d}.

Further, consider the component evolution directly from α0 to α2, where δ′2 = δ1 ∪ δ2:

• α0 = {}.

• α′2 = ε(α0, δ
′
2∪ω2), given the preference order ≺α0 . |α0∆{a, c, d}| = 3 is minimal,

therefore α′2 = {a, c, d}.

In this example, the system α2 is less optimal than the system α′2 w.r.t. the order

≺α0 . This counter-intuitive result shows that the incomplete knowledge of future user

requests may effect the optimality of the evolved component system.

3.1.4 Multiple Criteria Preferences

Typically to define an evolution preference order, multiple criteria are considered. All

systems presented in chapter 2 (such as Eclipse P2, apt-get, aptitude, and MPM),

define multiple criteria that express the preferences in their systems. A multi-criteria
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framework is presented as part of CoSyE, to enable the description of evolution

preference orders.

A simple way to define the order ≺α, can be by defining a scoring function (f :

2C × 2C → R) for each criterion. These functions can then be aggregated, e.g. using

addition or multiplication (possibly with weights), and used to define ≺α. For example,

a function that returns the number of components that have changed between systems

is defined fchange(α, β) = |α∆β|. A function that returns the size of all components in

a component system is defined fsize(α, β) =
∑
c∈β

size(c), where size is a function that

takes a component and returns its size in kilobytes. The evolution preference order could

then be defined as β ≺α β′ iff fchange(α, β) + fsize(α, β) > fchange(α, β
′) + fsize(α, β

′).

Defining the evolution preference order in this manner has some drawbacks:

• Information can be lost in the conversion to real numbers, e.g. the reason why a

specific system was selected over another.

• The relationships between criteria are difficult to intuitively define, e.g. “size +

change” results in a confusing metric.

• Altering weights to express order over criteria does not convey meaningful

information about decisions or their impact. For example, stating “the size of

a system is .25 multiplied by the change of a system” does not convey what the

implications of the weighting will be.

A possibly more intuitive approach to define the evolution preference order is to create

a ranking function that measures a component system against an arbitrary range. A

criterion is then a ranking function and an order over its range. By not reducing the

problem to only real numbers, information can be retained about the selection of a

component system.

Using a lexicographic order, each criterion can then be composed together into a

composite criterion. The lexicographic composition lets an order over the preference of

criteria be defined, without having to assign arbitrary weights. This method has been

used before in the MPM (Abate and DiCosmo, 2011). It is the selected mechanism to

define the preference order in this thesis.

Definition 15 A ranking function, rankα, is a function that ranks a component

system to a range A w.r.t. a component system α, i.e. rankα : 2C → A.

The range A could be real or natural numbers, integers, versions, components, . . .
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Definition 16 A criterion is a tuple 〈rankα,≤〉, where the ranking function is defined

as rankα : 2C → A, and ≤ (whose strict order is <) is a partial order over A.

The order ≤ is a partial order; ≤ is reflexive (a ≤ a), antisymmetry (if a ≤ b and b ≤
a then a = b), and transitive (if a ≤ b and b ≤ c then a ≤ c).

The evolution preference order is described with respect to a criterion.

Definition 17 The evolution preference order ≺α can be defined with a criterion

〈rankα,≤〉, such that given component systems β and β′, iff rankα(β) is strictly less

than (<) rankα(β′) then β′ is preferred, i.e. β ≺α β′ iff rankα(β) < rankα(β′).

Definition 18 The lexicographic composition of multiple criteria into a single

criterion is defined with the operator ⊕. Given the component system α, and the two

criteria crit1 = 〈rank1α,≤1〉 and crit2 = 〈rank1α,≤2〉, where the range of rank1α is

A1, and the range of rank2α is A2. The lexicographical composition of crit1 and crit2,

crit1 ⊕ crit2, returns the tuple 〈rankLα ,≤L〉. The range of rankLα is A1 × A2, and

rankLα(β) = 〈rank1α(β), rank2α(β)〉. The order ≤L (whose strict order is <L) is over

A1 ×A2, such that (a, b) ≤L (a′, b′) iff a <1 a
′ or (a = a′ and b ≤2 b

′).

The lexicographic composition of two criteria results in a criterion. That is, by

using the composition ⊕, two criteria are lexicographically composed into a tuple

〈rankLα ,≤L〉. The order ≤L is a partial order over the range of rankLα . Therefore,

the tuple 〈rankLα ,≤L〉 is a criterion. This means that any number of criteria can be

composed together using ⊕, and resulting criterion can then be used to define the

evolution preference order ≺α

3.2 CUDF* Language

For CoSyE to be of use to study CSE, a language to describe CSE problems is required.

As mentioned already, this new language is called CUDF* which extends and combines

the Common Upgradeability Description Format (CUDF)4 (Treinen and Zacchiroli,

2009a) and the Mancoosi Optimisation Format (MOF)5. To describe CUDF*, this

section first describes CUDF and MOF. Then CUDF* is presented, and the description

of how CUDF* is parsed to create a CoSyE instance is given (for the full description

refer to appendix A).

4This specification was previously discussed in section 2.4, with an example shown in figure 2.12.
5http://www.mancoosi.org/misc-2011/criteria/ accessed 6/3/2012
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3.2.1 CUDF

CUDF was designed by Mancoosi for the Mancoosi International Solver Competition

(MISC). Mancoosi is a research project committed to the improvement of the process

of evolving Free and Open Source Software (FOSS) distributions. A contribution of

Mancoosi was to hold the MISC that compared solvers of CUDF problems. MISC

was held to encourage researchers and practitioners into researching change made to

component systems.

An issue faced by Mancoosi when organising MISC was that no common format existed

to describe evolution problems. To address this issue, the CUDF language (Treinen

and Zacchiroli, 2009a) was defined. This language allows the abstraction of evolution

problems and the benchmarking of applications that find their solutions.

3.2.1.1 CUDF Language

This section describes the CUDF format. The goal of this description is to provide

a general overview of CUDF rather than its complete specification. Some aspects

of CUDF (e.g. the formal type system) are not taken into account as a complete

redefinition of the original language is not the goal of this section.

A CUDF document is a single plain text file that represents all information necessary

to define an evolution problem. A CUDF document also contains the description of the

set of components that make a component system. An example of a CUDF document

is presented in section 2.4.

As shown in figure 3.2, a CUDF document is separated into three sections:

• preamble stanza: defines the additional types used in the CUDF document.

• package description stanzas: typically the bulk of a CUDF document, this

defines the set of components (using the FOSS term package).

• request stanza: this defines the requested change that should be made to the

system.

Every stanza begins with a key of its type (preamble, package, request), followed by

several lines ending in an empty line. Each line in a stanza defines a property using a

key/value pair separated by the delimiter “:”. This structure is presented in figure 3.3
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preamble

package description1

package description2

. . .

package descriptioni

request

Figure 3.2: Structure of the CUDF stanzas

stanza : value

key_1 : value_1

...

key_n : value_n

Figure 3.3: Structure of a CUDF stanza

3.2.1.2 Package Description

The package description stanza starts with the package key followed by the value of

package name, a non-empty string. The package description stanzas define the set of

components Ct1 , the set of system constraints ωt1 , and the component system αt0 . The

only mandatory property of this stanza is defined with the key version: whose value

is a positive integer representing the version of the package. The pair 〈name, version〉
of a package is unique, there can exist at most one package description for a given name

and version.

Some relevant properties for a package are defined by the keys:

• installed: this Boolean property states whether the package is initially installed

in the component system. The CUDF document describes all packages, installed

and not. The set of packages with the property installed: true are included

in the component system αt0 .

• keep: the value of this property is mapped to a keep constraint, as defined in

section 3.1.2. Some possible values are:

– version: keep this particular version of the package installed

– package: keep at least one version of this package installed

• provides: this is a list of names of features or services that this package provides

separated by the delimiter “,”. e.g. provides: n, m means this package provides

the features with names n and m. Each feature name can be accompanied by a

version, to state what particular version is provided, e.g. n=10 means feature n
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version 10 is provided. When no version is specified for a feature, all versions of

that feature are provided.

• depends: the value of this property is mapped to a set of dependency constraints,

as defined in section 3.1.2. The value is a list of lists of package formula, first

separated by the delimiter“,” then delimiter“|”. It is a conjunction of disjunctions

(conjunctive normal form), with each formula defining a set of packages. A

package is defined using a name of either a package or feature n and optionally

an operator and version of the form n = v, n != v, n > v, n < v, n >= v, or

n <= v. For example, depends: n , m | o < 10 means the package depends

on packages (or features) with “name n”, and packages (or features) with “(name

m OR name o of version less than 10)”.

• conflicts: the value of this property is mapped to a set of conflict constraints, as

defined in section 3.1.2. The value is a list of package formula as defined above

separated by the delimiter “,”. For example, conflicts: n , m > 2 means this

package conflicts with all packages (or features) with “name n AND name m with

version greater than 2”. A caveat is that a component cannot conflict with itself.

An example of a package description stanza is given in figure 3.4.

package: textEditor

version: 1

installed: true

depends: spellCheckerService

Figure 3.4: Example of Package Description Stanza

This package description stanza describes a package textEditor that is version 1. This

package is installed in the initial system, and depends on a package or feature named

spellCheckerService.

3.2.1.3 Preamble

The preamble stanza starts with the key preamble: (no value is necessary for this key).

The main function of the preamble is to provide the description of additional properties

and their types, that can be used by package descriptions. This is the mechanism which

allows the extension the CUDF language.

Extension properties are described in the value to key property. This value is a list of

properties that describe a name of the property, the type of the property and optionally
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the properties default value. Each property is separated by the delimiter “,”, the name

is separated from the version by “:”, and the default value is wrapped in “[” and “]” and

separated from the version by “=”.

For example, property: size: int, bugs: int = [0] defines the integer property

of size, and the integer property of bugs with the default value 0. An example where

these extended properties are used in a package description stanza is shown in figure

3.5.

preamble:

property: size: int, bugs: int = [0]

package: textEditor

version: 1

bugs: 10

size: 2

depends: spellCheckerService

Figure 3.5: Example of preamble stanza demonstrating the extendable CUDF language

3.2.1.4 Request

The request stanza starts with the request: key (no value is required for this key). This

stanza is mapped to the user request δt1 . The request stanza contains three properties

that define the user request to change the system. Each value is a list of package

formula separated by the delimiter “,”. The keys and values are:

• install key, whose value is mapped to a set of installation requests, as described

in section 3.1.2. For example, install: n, m >= 2 means install component

with name n, and to install component with name m and with version two or

greater.

• remove key, whose value is mapped to a set of remove requests, as described in

section 3.1.2. For example, remove: n , m = 2 means remove all components

with name n and component m of version two.

• upgrade key, whose value is mapped to a set of upgrade requests, as described

in section 3.1.2. For example, upgrade: n means to remove all packages of name

n and install one package of equal or greater versions to that of the maximum

version of n currently installed.
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request:

install: n > 2

remove: m

upgrade: o

Figure 3.6: Example of CUDF request stanza

In figure 3.6, an example of the request stanza is given. In this example, a component

of name n and with version greater than 2 is requested to be installed; all components

of name m are requested to be removed; and components of name o are requested to be

upgraded.

The CUDF request to upgrade a component is the most complex request due to the

following requirements:

1. exactly one component with the selected name can be installed.

2. exactly one component’s version must be greater than, or equal to, the currently

installed greatest version of a component with that name.

For example, if a system has components a1 = 〈n, 1〉 and a2 = 〈n, 2〉 installed and it is

requested to upgrade components with name n. Component a1 must be removed, and

either a2 can remain, or a2 can be removed and a higher version of a component with

name n can be installed.

3.2.2 CUDF Example

An example of a CUDF document is presented in figure 3.7, it demonstrates how to

define a set of components Ct1 , a system αt0 , a set of system constraints ωt1 , and a user

request δt1 .

The preamble from the example CUDF document presented defines the addition of

one property size of type int whose default value is 0. This extension allows any

component in the document to define its size.

The set of components in the example CUDF document are defined from the

package stanzas, such that Ct1 = {〈"syslib", 1〉, 〈"syslib", 2〉, 〈"textEditor", 1〉,
〈"spellChecker", 1〉, 〈"tpspeller", 1〉}. For brevity’s sake, these components are

defined as: 〈"syslib", 1〉 = syslib1, 〈"syslib", 2〉 = syslib2, 〈"textEditor", 1〉 =

textEditor1, 〈"spellChecker", 1〉 = spellChecker1, 〈"tpspeller", 1〉 = tpspeller1.

The component system αt0 includes all components whose installed property equals
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preamble:

property: size: int = [0]

package: syslib

version: 1

installed: true

package: syslib

version: 2

conflicts: syslib

package: textEditor

version: 1

depends: spellChecker | spellCheckerService, syslib > 1

package spellChecker

version: 1

size: 1

package: tpspeller

version: 1

provides: spellCheckerService

size: 2

request:

install:textEditor

Figure 3.7: Example of a CUDF document

true (it defaults to false), αt0 = {syslib1}.

The system constraints ωt1 can be extracted from the example CUDF document. These

are defined by the depends property of textEditor1, and the conflicts property of

syslib2.

textEditor1 depends on spellChecker or spellCheckerService AND syslib

greater than version 1. The first dependency is on components that are named

spellChecker or spellCheckerService, or provide a feature named spellChecker or

spellCheckerService. Components that satisfy this criteria are spellChecker1 and

tpspeller1. This results in the dependency constraint textEditor1 → spellChecker1 ∨
tpspeller1.

The second dependency is on components that are named syslib greater than

version 1, or provide a feature named syslib with version greater than 1. The

only component that satisfies this dependency is syslib2, resulting in the dependency
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constraint textEditor1 → syslib2.

syslib2 conflicts with components of name syslib, that is not itself. The only

component that satisfies this conflict is syslib1, resulting in the conflict constraint

syslib2 → ¬syslib1.

The set of system constraints ωt1 in the example CUDF document is {textEditor1 →
spellChecker1 ∨ tpspeller1, textEditor1 → syslib2, syslib2 → ¬syslib1}.

The user request δt1 is defined by the example CUDF documents request stanza.

The request is to install a package named textEditor. The only component that

satisfies this description is textEditor1, which results in the install request textEditor1.

Therefore, δt1 = {textEditor1}.

The evolution problem δt1 ∪ ωt1 can be found by looking at the constraints defined

by each package description and the request. Firstly, the request constraints ensures

that textEditor1 must be installed. If textEditor1 is installed then the system library

component syslib2 must be installed, given textEditor1 → syslib2. As syslib2 conflicts

with syslib1, syslib1 must not be installed. spellChecker1 or tpspeller1 must be

installed, given textEditor1 → spellChecker1 ∨ tpspeller1.

The three possible solutions to this evolution problem are;

• α1
t1 = {syslib2, textEditor1, spellChecker1},

• α2
t1 = {syslib2, textEditor1, tpspeller1},

• α3
t1 = {syslib2, textEditor1, spellChecker1, tpspeller1}

3.2.3 Mancoosi Optimisation Format

MOF is a format defined by Mancoosi to express the lexicographic order of criteria.

The definition of what the criteria are is external to MOF. A criterion is directly defined

in CoSyE and MOF is only used to define the lexicographic order.

A MOF string is a list of lexicographically ordered criterion names separated by

the delimiter “,”. Each criterion name is mapped to a criterion in CoSyE. A MOF

string is therefore mapped to an evolution preference order by using the lexicographic

composition of criteria defined in the string.

An example is presented to show how a MOF string can be used to create an evolution

preference order. This preference order is then applied to the example presented in

section 3.2.2 to find the optimal solution.
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A criterion is defined to minimise the change to a component system during evolution.

This criterion’s name is -changed in MOF, and is defined as critchange = 〈rankchangeαt0
,≤

〉, where rankchangeαt0
(β) = |αt0∆β|.

Another criterion is defined to minimise the total size of the component system. This

criterion’s name is -size in MOF, and is defined as critsize = 〈ranksizeαt0
,≤〉, where

ranksizeαt0
(β) =

∑
c∈β c.size.

The MOF string -change,-size defines the lexicographically composed criteria

critchange⊕critsize which equals 〈rankLαt0
,≤L〉 (as shown in definition 18). This criterion

can be used to create an evolution preference order ≺αt0
(as described in definition 17).

In the previous example, the component system αt0 was {syslib1}, and there were three

possible solutions:

• α1
t1 = {syslib2, textEditor1, spellChecker1},

• α2
t1 = {syslib2, textEditor1, tpspeller1},

• α3
t1 = {syslib2, textEditor1, spellChecker1, tpspeller1}

This rank function rankLαt0
applied to the possible solutions returns pairs of (rankchangeαt0

,

ranksizeαt0
):

• rankLαt0
(α1

t1) = r1 = (4, 1), i.e. change is 4 and size is 1.

• rankLαt0
(α2

t1) = r2 = (4, 2), i.e. change is 4 and size is 2.

• rankLαt0
(α3

t1) = r3 = (5, 3), i.e. change is 5 and size is 3.

The order of these ranks over ≤L is then r3 ≤L r2 ≤L r1. The order of optimality

(≺αt0
) over the possible solutions is α3

t1 ≺αt0
α2
t1 , α3

t1 ≺αt0
α1
t1 , and α2

t1 ≺αt0
α1
t1 . This

makes α1
t1 an optimal solution, as no other solutions is greater w.r.t. ≺αt0

. Therefore,

given the CUDF document in figure 3.7 and MOF criteria -change,-size the resolved

system is {syslib2, textEditor1, spellChecker1}.

3.2.4 CUDF*

CUDF* is an extension of both CUDF and MOF, created to define a single document

that can be mapped to an instance of CoSyE. The differences between CUDF and

CUDF* are:
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• In CUDF* each package description stanza must define the time that the

component first existed.

• In CUDF* the preamble defines the time t0.

• In CUDF* there can be multiple requests stanza’s, where each request stanza

must define a time ti, and MOF criteria string such that the request stanza maps

to the request δti to ≺αti−1
.

• In CUDF* an upgrade request with value * attempts to upgrade all installed

components.

By defining when each package first existed, the set of components Cti can be found for

any arbitrary time ti. Additionally, the system constraints ωti can also be extracted.

The overall structure of a CUDF* document where the preamble defines t0, and there

are multiple requests each defining a time is presented in figure 3.8.

preamblet0
package description1

package description2

. . .

package descriptioni

requestt1
requestt2

. . .

requesttj

Figure 3.8: Structure of the CUDF* stanzas

With these extensions, a CUDF* document is able to define the necessary elements in

an instance of CoSyE. A full description of the process of parsing a CUDF* document

to a CoSyE instance can be found in appendix A.

3.2.5 CUDF* Example

An example of a CUDF* document is presented in figure 3.9 that is similar to the

example presented in 3.7. This example is designed to demonstrate the differences

between CUDF, MOF and CUDF*.

Parsing this CUDF* document results in:

• The initial component system αt0 which is the set {syslib1} (the same from the

previous example).
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preamble: 100

property: size: int = [0]

package: syslib

version: 1

time: 50

installed: true

package: syslib

version: 2

time: 150

conflicts: syslib

package: textEditor

version: 1

time: 150

depends: spellChecker | spellCheckerService, syslib > 1

package spellChecker

version: 1

time: 150

size: 1

package: tpspeller

version: 1

time: 250

provides: spellCheckerService

size: 2

request: 200, -change,-size

install:textEditor

request: 300, -size,-change

install: textEditor, tpspeller

Figure 3.9: Example of a CUDF* document
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• The times are natural numbers, where t0 is defined in the preamble as t0 = 100,

and t1 and t2 are defined in the requests as t1 = 200 and t2 = 300.

• The set of components Cti is the set of components that existed at time ti:

– Ct0 = {syslib1}

– Ct1 = {syslib1, syslib2, textEditor1, spellChecker1}

– Ct2 = {syslib1, syslib2, textEditor1, spellChecker1, tpspeller1}

• The system constraints ωti are constructed from the set of components Cti :

– ωt1 = {textEditor1 → spellChecker1, textEditor1 → syslib2, syslib2 →
¬syslib1}

– ωt2 = {textEditor1 → spellChecker1 ∨ tpspeller1,textEditor1 → syslib2,

syslib2 → ¬syslib1}.

• The requests are installation requests:

– δt1 = {textEditor1}

– δt2 = {textEditor1, tpspeller1}.

• The preference orders are extracted from the MOF criteria in each request. These

criteria are defined in section 3.2.3..

– the MOF string -change,-size maps to critchange ⊕ critsize which is used

to define ≺αt0

– the MOF string -size,-change maps to critsize ⊕ critchange which is used

to define ≺αt1

Considering the evolution from αt0 to αt1 , the only component system that satisfies

the evolution problem δt1 ∪ ωt1 is {syslib2, textEditor1, spellChecker1}. Therefore,

αt1 = {syslib2, textEditor1, spellChecker1}.

Considering the evolution from αt1 to αt2 , there exist two component systems that

satisfy the evolution problem δt2 ∪ ωt2 :

• s1 = {syslib2, textEditor1, tpspeller1},

• s2 = {syslib2, textEditor1, spellChecker1, tpspeller1}

The evolution preference order ≺αt1
describes an order in which the minimum

size of the system is the most significant attribute. As the system s1 has size
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2, and the system s2 has size 3, the optimal solution is s1. Therefore, αt2 =

{syslib2, textEditor1, tpspeller1}.

This CUDF* document therefore describes the evolution of a component system from

{syslib1}, to {syslib2, textEditor1, spellChecker1}, then to {syslib2, textEditor1, tpspeller1}.

This example demonstrates how a CUDF* document can be used to describe the

evolution of a component system.

3.3 Summary

This chapter described the CoSyE model and the CUDF* language. These are used to

describe the evolution of a component systems as a series of change requests made to

the system by a user. These changes are subject to constraints that must be satisfied in

order to result in a valid system. These describe the evolution of a system and not the

user that requests changes to the system. The following chapter defines the SimUser

model that describes the user, their system, and the changes they make.
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Chapter 4

User Model

All parts should go together without forcing. You must remember that the parts

you are reassembling were disassembled by you. Therefore, if you can’t get them

together again, there must be a reason. By all means, do not use a hammer.

IBM maintenance manual, 1925

In the previous chapter, CUDF* documents were used to describe the evolution of

component systems through a user’s repeated requests to change. Given that a goal of

this research is to simulate the evolution of component systems, it is necessary to model

realistic users. For this purpose the SimUser (Simulated User) model was developed.

This model describes how a user would change systems, and it can be used to create

CUDF* documents. These relationships are described in figure 4.1.

CUDF*

:CUDF* Document

 ins tan t ia tes

:SimUser
 c rea tes

SimUser

 ins tan t ia tes

Figure 4.1: Relationships between the SimUser model and CUDF*

The SimUser model was developed using the results of a survey conducted to determine

how users change their component systems. This survey is described in section 4.1.

SimUser contains variables to create a realistic scenario of CSE, e.g. a variable that

describes the probability a user will upgrade their system on a given day. In addition

it contains assumptions (e.g. the probability a package will be selected to be installed)

made in the simulation. SimUser is presented in section 4.2 and the variables and

assumptions for the simulation are discussed.
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In order to define parts of SimUser it was necessary to collect and convert data into

usable formats. The sources this data was collected from and the methods used to

convert it are described in section 4.3.

This chapter concludes in section 4.4 with a discussion over the validity of SimUser,

focusing on the differences from the reality of CSE. These differences are important to

explore, as they may reduce the validity of the results from the simulation.

4.1 User Survey

To explore the user’s role in CSE and to construct the SimUser model, a survey was

conducted on users of component systems. This survey targeted users of GNU/Linux

distributions (specifically Ubuntu) and server administrators through the online forum

reddit1. It was completed by 59 users, who answered questions about their background,

the systems they use, and the ways they change their systems. Typically the way in

which GNU/Linux systems are changed is through interaction with package manager

applications. Therefore, the questions were primarily about this interaction.

In this section, a description of the survey and an analysis of responses are given.

The results from this survey are used to describe and categorise the motivations and

behaviours of users when changing their component systems.

4.1.1 Questions

The survey consisted of two groups of questions: questions that identified the type of

user and questions that described their interactions with package managers. These were

asked in order to understand the user and how and why they changed their systems.

The set of questions used to identify the user were:

• How experienced with package managers are you (based on scale of 1 to 5 where

1 is no experience and 5 is highly experienced)?

• What system are you using?

• What package manager are you using?

These can be used to categorise the type of user and weigh their answers for credibility

based on their self rated experience.

The set of questions that asked about the use of package managers were:

1http://reddit.com accessed 6/3/2012
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• After you install a new system, what are your first interactions with the package

manager?

• Describe your day to day interactions with the package manager?

• At what frequency are your typical interactions with the package manager?

These questions were focused on identifying the types and times the user’s interacted

with their package manager. To answer these questions the user could input free text.

4.1.2 Results

As was already mentioned earlier, the survey was completed by 59 respondents. The

majority of these (29) were Debian-based operating systems users. Among these

users apt-get was the most popular package manager. The other respondents used

a variety of other GNU/Linux distributions and their package managers. These

package managers provide similar functionality to apt-get, a comparison can be seen

at http://distrowatch.com/dwres.php?resource=package-management2.

The mean of the respondents self-ranked experience was 3.9/5. While this can be

considered a subjective measure, it is expected that the respondents were confident in

their answers.

The respondents’ answers to the questions about the types and the frequency of

interactions with their package managers have been summarised in table 4.1.

Request Set-up Daily Weekly Monthly

Upgrade 45 27 16 0
Install 49 6 17 3
Remove 6 4 1 0

Table 4.1: Summary of the survey respondents types and frequencies of interactions with
their package managers.

Based on this table, the vast majority of respondents upgrade and install new

components when they first set-up their system. This also shows that most users

upgrade their system daily, and many install packages weekly. Additionally, this shows

that users do not often remove packages.

2accessed 7/8/2012
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4.1.3 Progressive vs. Conservative Users

One goal of this survey was to identify motivations of users’ to change their systems.

Based on the responses the users attitudes towards changing their systems are affected

by the following risks:

• the potential risk of changing the system and introducing new problems.

• the potential risk of becoming out-of-date, having less functionality, and having

old problems persist.

The behaviours of these users can be described with two user stereotypes, conservative

and progressive. These terms come from the domain of politics where conservatism

philosophy that emphasises minimal and gradual change in society, which is contrasted

by progressivism philosophy that promotes change and reform (Online Oxford English

Dictionary, 2010).

Most users in the survey are partially motivated by both risks, e.g. a user’s response

that expresses a slight conservative attitude:

“In production I rarely remove packages ([it is] easier to leave software

as-is than risk breaking stuff).”

This quote shows that this respondent is less likely to change their system, even though

it may be beneficial.

Another example of a user’s response that expresses a progressive attitude:

“I update my packages whenever I log in each day”

The reason this user upgrades their system every day is likely to ensure that packages do

not become out-of-date. This behaviour may increase the functionality of their system

and allow bugs in packages to be fixed, though it has the cost of additional change.

Both of these stereotypes have extremes. One such extreme is when a user tries

to eliminate all of the risks associated with being out-of-date. For example, a user

responded in the survey with an extreme progressive attitude:

“I do run an unstable system all the time, I help mitigate this with some

redundancy in my most frequently used components, using packages which

perform the same function, but have different dependencies, since it’s less
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likely to have multiple packages break at the same time. If something is

rather buggy for me, I tend to update on a more frequent basis to check for

the next stable point to jump into.”

This user has components in their system that have not been thoroughly tested

(described as unstable packages). To lower the risk that such packages have on the

function of the system, this user has redundant functionality installed. This way the

user tries to ensure that potential problems will not be too severe. The system of this

user will never be out-of-date, but will be changed frequently.

An example of a very conservative user’s response on the frequency with which they

interact with the package manager:

“As little as possible. I like build my box into whatever I’ll need in

the first couple of weeks after an install. Following the configuration and

construction, only the occasional upgrade is necessary. Unless, of course, I

receive a security notice about something.”

After the setting up of a system, this user will not change it unless there is a direct

security risk. This lack of change will result in the system quickly becoming out-of-date.

The “progressive” and “conservative” terminology is useful to describe different types of

users and their motivations. It is used further when describing the simulated users in

chapter 6.

4.2 SimUser model

The SimUser model consists of:

• a set of variables that describe the user’s behaviour when changing their

component system.

• a set of assumptions used by the simulation.

This section presents the variables and assumptions of SimUser, and how an instance

of this model can be used to create a CUDF* document.

4.2.1 Variables and Assumptions

The SimUser entity consists of the following variables:
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• u is the probability a user requests to upgrade the system per day.

• i is the probability a user requests to install any component per day.

• U is the MOF criteria used to select an optimal system for an upgrade request.

• I is the MOF criteria used to select an optimal system for an install request.

An instance of SimUser is an assignment to these variables.

The variable u is the probability per day that a user will upgrade their system, and the

variable i is the probability a user will request to install a component. The reason for

selecting the “per day” resolution came from the user survey responses where typically

the most frequent a user interacted with a package manager was daily. The I and U

criteria to install a component and upgrade a system are represented in MOF. These

criteria can be based on package manager criteria from currently installed applications

like apt-get or on novel criteria.

The assumptions made in the SimUser model are:

• The starting time of the evolution t0 is October 30th 2009.

• The initial component system αt0 is Ubuntu 9.10 (i386) released October 29th

2009.

• The user interacts with the system over a year (365 days).

• The available components to the evolving system are located at the central

Ubuntu repository.

• Each component name has a probability that a user will select to install it.

The reason for selecting Ubuntu as the system to simulate is discussed in chapter 1.

The time frame, October 2009 to 2010, was selected to start at the release of Ubuntu

9.10 until the release of Ubuntu 10.10. A year was selected as 30/59 respondents of the

survey stated that their systems are less than or about one year old. The Ubuntu system

has 6 monthly releases, therefore the simulation will be over the release of Ubuntu 10.04

in April 2010.

The Ubuntu central repository is the core location for where packages are distributed

to Ubuntu systems. Using this as the set of packages because it is the default choice of

newly installed Ubuntu systems.

Typically a user would not select a specific version of a package to be installed but

select the package name and let the package manager install the most preferred version
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(typically the most recent version). Additionally, a user would select a package name to

install a package for a purpose, to fulfil some requirement of their system. As different

users have different requirements, a user would more likely select some packages names

over others. However, this model assumes that all users will equally likely install the

same packages, which is incorrect. The impact on the validity of SimUser caused by

such assumptions is further discussed in section 4.4.

4.2.2 CUDF* Document Creation

The process used to create a CUDF* document from a SimUser instance attempts to

create a description of how such a user would change their system. The first part of

this process is to represent the initial system Ubuntu 9.10 and the Ubuntu repository as

a CUDF* document template. This template is a complete CUDF* document except

that it contains no requests. By adding requests to this template the evolution of a

component system can be described. How an Ubuntu 9.10 system and the Ubuntu

repository are used to create the CUDF* template document is described in section

4.3.

Given this template and a SimUser instance the process to create a CUDF* document

is described in figure 4.2.

createCUDF*(template, u, i, U, I):
for day in 1 to 365:

if random-probability() > u:
addUpgradeRequest(template,t0 + day,U)

if random-probability() > i:
cn = weighted selection without replacement from component names

addInstallRequest(template, cn, t0 + day + 10 minutes,I)

Figure 4.2: The process to create a CUDF* document from a SimUser instance.

This process takes the CUDF* template and the variables from a SimUser instance

and adds requests to the template to create a complete CUDF* document. Such a

document describes the realistic evolution of an Ubuntu system.

The main loop iterates over the 365 days in which the simulation occurs. Each day the

“user” randomly selects to upgrade their system and/or install a component.

The function random-probability() is defined to return a uniformly distributed

random value between 0 and 1. This function is used to randomly select what requests

the user will make on a given day.
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If a user requests to upgrade their system, the function addUpgradeRequest adds an

upgrade request to the CUDF template at time initial time t0 plus the number of

elapsed days. This request uses the MOF criteria U to find an optimal system. If the

user requests to install a component, a component to be installed must first be selected.

This selection is:

• Weighted : names with a higher weight are more likely to be requested to be

installed.

• Without replacement : a user cannot select to install the same component name

more than once.

The function addInstallRequest adds an install request to the CUDF template ten

minutes after the initial time t0 plus the number of elapsed days. Adding ten minutes

ensures that if a user selects to upgrade and install a component, then the installation

request will occur after the upgrade request. The install request will use the criteria I

from the user model.

The discussion over the validity of the resulting CUDF* documents is presented in

section 4.4.

4.3 SimUser Data Collection and Conversion

In order to create CUDF* documents from SimUser instances, data about the Ubuntu

system must be collected and converted into useful formats. The collected data and

their sources are:

1. The set of Ubuntu packages and the times they became available, collected from

the Ubuntu repository.

2. The initial component system Ubuntu 9.10 collected from a virtual install.

3. The probabilities different component names will be selected to be installed,

from the app-install-data package and weighted using the Ubuntu popularity

contest3.

This section describes the data collection and conversion to create SimUser.

3http://popcon.ubuntu.com/ accessed 6/3/2012
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4.3.1 Collecting the Components

The Ubuntu repository located at http://archive.ubuntu.com/ is the default location

that Ubuntu packages are distributed from. This repository contains a history of all

packages that have ever been included with the precise minute that the package was

uploaded.

To collect these packages and information from the repository first the repository’s web

site was parsed and all the packages were downloaded. These Debian/Ubuntu packages

are compressed with meta-information, code and binary files.

Second, each package was decompressed and the main meta-data file, the control file,

was extracted. This control file was tagged with the upload time of the package to the

Ubuntu Repository.

Third, all control files that did not have the key architecture include the value i386

or all where removed. This removes any package that would not work on the simulated

Ubuntu system due to architecture incompatibility.

Fourth, the control files are converted into a single CUDF* document. The conversion

from Debian control files to a CUDF document is described by Abate et al. (2010).

This report describes the handling of virtual packages and the conversion of versions.

This process is followed to create the CUDF* template with the exceptions that:

• apt-pinning priorities that force the use of only particular versions of a package

are ignored.

• If a package has the value require for key priority, the CUDF* package is given

the property keep: package to ensure the package remains between requests.

• In the preamble the time t0 is added.

• Each CUDF package has the key time added with the tagged time of their control

file.

• A self conflict is not added to each package to simulate the restraint that only

one version of each package is allowed to be installed.

The final difference is significant as it differs from how real Ubuntu systems evolve and

could invalidate the simulations results. However, the restriction for these systems to

only allow one version to be installed is an interesting point of study. By allowing

multiple packages to be installed means that this specific constraint can be studied.

For example, questions like “how often does an install request require the installation
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of multiple packages?” or “how much does does this restriction effect the evolution of

Ubuntu systems?” can be answered by not enforcing this restriction. It is still preferable

for a user to not have multiple versions of a package. Therefore, this restriction can

be “softly” enforced through using a criterion to minimise the number of packages with

multiple versions. Such a criterion is defined in section 5.2.3 and it is shown in chapter

6 that this alteration has almost no impact on the simulation.

4.3.2 Probability a component will be selected

Different users will likely select different components to install. For example, a user who

is a graphic designer will more likely select graphics editor tools to be installed, and less

likely select programming tools. To simulate each user with their individual preferences

of what they would install is impractical. For this simulation each component name’s

probability to be installed will be the same for all users.

To define the probability a user will select a component to install, the problem is broken

into two questions:

1. What component would a user select to install?

2. How often are these components selected to be installed?

There are many packages in the Ubuntu repository that a user would not likely select

for install. Packages that provide libraries, background daemons, interfaces between

services are usually installed because other packages depend on them, not because a

user selected to install them. What packages would a user select to install and how

likely they will be selected are therefore important questions. By looking at current

systems and what packages they have installed, the probability that these packages are

selected to be installed can be estimated. These questions are answered using data

from the package app-install-package and the Ubuntu popularity contest.

The package app-install-package contains a list of 2399 packages4 with meta-data

like icons and descriptions. This data is used by other applications, like the Ubuntu

Software Center, to provide a list of packages the user may wish to install. Some of

these packages are installed by default in Ubuntu systems, and some are not available

in the Ubuntu repository. After filtering out such packages from the provided list there

remain 2087 packages that the user may select to install in their system.

The probability a package from the app-install-package list is selected to be installed

can be calculated using the Ubuntu popularity contest. The Ubuntu popularity contest

4as of May 24th 2011

74



CHAPTER 4. USER MODEL

is a broad data-set of information of the popularity of Ubuntu packages. Each week an

automated survey is submitted by nearly two million users, that contains information

on what packages a user has installed. The results from this survey are processed

and the number of systems that have a package installed is presented in the Ubuntu

popularity contest. By dividing the the number of systems each package from the app-

install-data packages by the total survey respondents, the probability a package is

selected to be installed is estimated.

4.4 SimUser Validation

The validation of SimUser has been accomplished through:

• Discussions with project supervisors and other stakeholders.

• Comparing SimUser to the responses from the user survey.

• Compare generated CUDF* documents with apt-get logs collected from 19

respondents of the survey5.

• Creating a virtual Ubuntu 11.10 system to study its perspective of the Ubuntu

repository changing over the month of November 2011.

Using these methods differences between the simulation and the reality of CSE can

be identified and discussed. These differences largely come from the randomness in

SimUser, e.g. randomly selecting packages to install, and from the limitations of the

model, e.g. the limited types of request. Additional differences exist in the way in

which SimUser uses the Ubuntu repository. This section discusses these differences and

their impacts on the validity of SimUser.

4.4.1 Randomness of SimUser

When generating a CUDF* document, each simulated day there are three points of

randomness in SimUser:

1. The probability a user requests to upgrade their system, u.

2. The probability a user requests to install a component, i.

3. If the user requests to install, what package is selected to be installed.

5Comparing these logs to the resulting simulated systems is described in section 5.5
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In reality, a user’s request to upgrade the system or install a component are not random.

These requests are reasoned about using gathered information, preferences and external

constraints. Even the most insignificant aspect of a user may impact requests, e.g. the

favourite colour of a user may impact their choices of components to install. To model

a user completely would be difficult, if not impossible, and would require significant

effort. SimUser instead simulates the user with random behaviour. The impact on

validity of the randomness of these behaviours is discussed here.

The variables u and i introduce randomness into the simulation that does not exist in

the evolution of real component systems. For example, a user who upgrades their system

each work day (Monday to Friday) would have a probability to upgrade their system

as 5/7. Describing such a user with SimUser and then generating a CUDF* document

may create a situation where they will upgrade their system on a Saturday. This is

because users will not randomly select days to request changes, they have constraints

(like the work week) and preferences that are not expressed in this model.

The most significant randomness in SimUser comes from the selection of components

to be installed. This randomness causes many differences to the reality of CSE:

• A real user would typically not randomly select a component to be installed. A

user would likely research a component before deciding to install.

• Each user would have different preferences of which components to install, e.g. a

software developer will prefer components to aid in software development.

• Installing one package may change the preference of installing another, e.g.

installing of browser firefox would decrease the probability to install another

browser such as chromium.

To address these issues would require a more data to be collected and the modifications

would make SimUser significantly more complex. The reduced effort and cost during

data collection and the simplicity of the model was decided to take priority in this

matter.

To mitigate the randomness in SimUser many CUDF* documents will be created from

a single SimUser instance, then simulated. The results from these simulations can then

be aggregated and analysed. Additionally, any conclusions derived from the results will

be tempered by being aware of the randomness in SimUser.

An important caveat to note is that there exist two assignments to the variables u and

i that result in users that are not at all random:

1. Control user: u = 0 and i = 0
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2. Always Upgrade user: u = 1 and i = 0

The “Control” user never requests to change their system, therefore their system will

always be the initial system and never evolve. The “Always Upgrade” user will update

every day, and given two users that have the same upgrade criteria U , their systems

will evolve identically. These effects of these two users are further discussed in chapter

6.

4.4.2 Limitations of SimUser

The limitations that SimUser has are:

• The initial set-up of the system by the user (as described in the user survey) is

not included.

• Some types of requests are not included, notably remove requests.

• Cannot request to install many components on the same day, or at the same time.

• The list of packages that can be installed (from app-install-data) does not

include many commonly installed packages.

Each of these points will be addressed in order.

The initial set-up of a system, which is performed by many respondents of the user

survey, is not included in SimUser. This set-up includes upgrading their system,

installing and removing components. The initial upgrade is superfluous in the

simulation as the initial system is already uptodate. The initial installation and removal

of components is not simulated as it will create different starting systems for different

users, making comparison between users more difficult.

In a real Ubuntu system, a user may request many different types of action, e.g. the

remove component request. Respondents to the user survey stated they request to

remove a component infrequently, this is supported by the data in the user logs. This

is the justification for the exclusion from the SimUser.

A user may want to install many components during a single day. This can be

accomplished with one request to install many components or many requests to

install single components. Both these situations commonly occur in the submitted

user logs. For example, apt-get install ia32-libs ia32-libs-gtk libqt4-core

libqt4-gui is a single request to install multiple components, and apt-get install

autoconf and apt-get install checkinstall are two requests performed on the
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same day. Given the significant randomness in selecting a component to be installed,

introducing either of these situations into SimUser would only make results less valid.

For this reason, a user requesting to install many components on a single day is not

simulated.

In reality, a user often requests to install packages that are not included in the list

from the app-install-data package. An example of this extracted from the user logs

is apt-get install build-essential6, this package cannot be installed during the

simulation as it is not in the list from app-install-data. Much effort that went into

creating SimUser was directed at finding a list of the most commonly installed packages.

However, the core problem is that there exists very little information on what packages

users commonly request to be installed. This problem is seen as a possible future

research that is described in chapter 7.

4.4.3 Perspective of the Ubuntu Repository

In a real Ubuntu system only a subset of the packages in the Ubuntu repository is

visible to the package manager. This “view” of the repository is the set of packages

considered when resolving a request. This is different to CoSyE and SimUser, where

every request can consider all components that exist at the time of the request.

To study the difference this view of the repository has to the simulation a virtual Ubuntu

11.10 system was created, and each day in the month of November 2011 the subset of

components in its view of Ubuntu repository was stored. This system used only the

default “view” of the Ubuntu repository. This “view” is compared to the changes in the

repository of components over the month November 2009 in the SimUser repository.

The SimUser repository contains about 90,000 different package names, where the

virtual “view” contained only about 40,000. This difference is made up mostly of

deprecated packages, i.e. packages that are no longer actively maintained. It is also

made up of packages that are have not yet been validated and put into the main “view”,

e.g. experimental packages. This causes the mean amount of packages that have a new

version added to the repository to be much higher in the SimUser repository, 126

packages per day compared to the virtual systems view of 37 packages per day.

The most significant difference though is the amount of removed packages from the

“view”. The mean amount of packages removed per day from the view of the Ubuntu

repository is eight, where the SimUser repository never removes a package. This removal

of packages reduces the complexity of the problem, though it also means that a real

6build-essential contains tools to build Debian packages
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Ubuntu system may not have all information available when satisfying user requests.

The reason a “view” of the repository was not used in the simulation is due to the fact

that no data-source could be found that saved the set of packages that could be viewed

in the Ubuntu repository at a particular time. This lack of data lead to the decision

that all components should be used.

4.5 Summary

This chapter presented the SimUser model which is used to describe how a realistic

user requests changes to their system. This model was partially created from a survey,

whose results were presented and discussed. The variables that make up the SimUser

and the process used to create CUDF* documents were then described. The data that

was used to create the SimUser was then described with the processes to collect and

convert it. The validation of SimUser was then described, and the differences to the

reality of CSE discussed. By exploring the differences to the reality of CSE the results

from a simulation can be more accurately interpreted.

Although the SimUser model can be used to create a description of the evolution of

a component system, it may require significant calculation to find how exactly the

component system evolves. The constraints of each request must be satisfied, and the

optimal system w.r.t. the criteria must be found. The following chapter presents the

mapping of an instance of CoSyE to a series of problems and the algorithms to solve

such problems. These algorithms are implemented in GJSolver, which is the final piece

required to simulate CSE.

79



CHAPTER 4. USER MODEL

80



Chapter 5

Resolving CoSyE Instances

What I cannot create, I do not understand.

Richard Feynman, 1988

The CoSyE model, presented in chapter 3, describes the evolution of a component

system as a series of evolution steps. In this model, each evolution step alters the

component system to satisfy a user’s request to change it. Calculation of all the systems

that occur as a result of these requests is described as resolving a CoSyE instance.

Resolving a CoSyE instance can require significant computational effort due to the

complexity of finding a satisfactory system for each request. Therefore efficient problem

representations and algorithms are required. One way to resolve a CoSyE instance is to

map each evolution step to a Boolean Lexicographic Optimization (BLO) problem (Joao

et al., 2011). BLO problems consist of finding an assignment to Boolean variables that

satisfies a set of constraints and is optimal with respect to lexicographically ordered

criteria. The constraints can be clauses and linear inequalities defined using a SAT

formula extended with pseudo-Boolean (PB) constraints (SAT+PB) (Dixon, 2004).

Each criterion is defined to either maximise or minimise a PB function. Section 5.1

describes the BLO problem and its mapping to an evolution step from a CoSyE instance.

These relationships are presented in figure 5.1.

The algorithm employed to solve BLO problems is the lexicographic-iterative-

strengthening (LIS) algorithm. This algorithm uses the Davis-Putnam-Logemann-

Loveland (DPLL) (Davis and Putnam, 1960; Davis et al., 1962) algorithm to find

solutions to SAT+PB problems and the iterative strengthening (Calistri-Yeh, 1994; Le

Berre and Parrain, 2010) algorithm to optimise finding a solution. The LIS algorithm

is similar to the “iterative pseudo-Boolean solving” algorithm presented by Joao et al.

(2011). The main difference is that LIS specifies implementation details like using the
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SAT problem
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Figure 5.1: The relationships between the BLO problem and the CoSyE model

iterative-strengthening algorithm. Section 5.3 describes LIS and the other algorithms

used to resolve a CoSyE instance.

Some criteria that can be used by the LIS algorithm are also presented in this chapter.

These criteria are mapped to MOF strings and CoSyE criteria. The criteria can be

grouped into two general areas minimising change and minimising how out-of-date a

system is. The presented criteria that minimise change were defined by Mancoosi and

the criterion to minimise the out-of-dateness was defined by Rapicault and Le Berre

(2010). These criteria are presented in section 5.2.

This chapter also describes the implementation of GJSolver that takes a CUDF*

document, parses it into a CoSyE instance (as described in appendix A), then resolves

it using the LIS algorithm. The validation of GJSolver is through the Mancoosi

International Solver Competition (MISC)1. Section 5.4 discusses GJSolver and its

validation.

The validation of the simulation that uses GJSolver and SimUser is described in section

5.5. The results from the simulation are compared to a virtual Ubuntu system and to

the collected user apt-get logs. This is an important step in developing a simulation

as it ensures that the simulation is an accurate representation of reality.

5.1 Boolean Lexicographic Optimization Problem

A BLO problem consists of trying to find an assignment to a set of Boolean variables

that:

1http://www.mancoosi.org/misc-2011/criteria/ accessed 6/3/2012
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• Satisfies a set of constraints.

• Is an optimal assignment with respect to lexicographic criteria.

In this thesis, the constraints in the BLO problem are Boolean disjunctions (clauses) and

pseudo-Boolean (PB) constraints (a SAT+PB problem), and each criterion is defined

to maximise or minimise a PB function. By mapping the constraints from an evolution

problem and the criteria from an evolution preference order, a single evolution step can

be mapped to a BLO problem.

For example, if component a depends on b, all systems with a must include b. This

constraint can be mapped to a Boolean disjunction ¬a∨b, were all assignments where a

is true, b must also be true. Furthermore, if there was a preference to have component

a in the system a function could be defined to return 1 when variable a is true and 0

when it is false. The preference to have a in the system is expressed by maximising

this function when searching for assignments.

This section defines both SAT+PB formula and PB criteria, and describes the mapping

from a CoSyE instance’s evolution step to a BLO problem.

5.1.1 Boolean Satisfiability Problem (SAT)

Boolean satisfiability (SAT) is the problem of determining if the variables in a Boolean

equation can be assigned in such a way that the equation returns true. SAT was

the first identified NP-Complete problem (Cook, 1971), meaning there is no known

algorithm that efficiently solves all instances of SAT problems. The fundamental

difficulty of SAT problems, combined with the ability to map many problems to SAT,

has spawned a community2 dedicated to creating, enhancing, and testing various SAT

solver implementations. SAT solvers have been used in various domains to address

problems such as electronic design automation (Marques-Silva and Sakallah, 2000),

model verification (Dennis et al., 2006), and component system evolution (Rapicault

and Le Berre, 2010).

A common representation of a SAT formula is in Conjunctive Normal Form (CNF).

CNF is defined as a conjunction of clauses, where each clause is a disjunction of literals,

e.g. (a ∨ b) ∧ (¬b ∨ c).

A SAT problem in CNF is defined as:

Definition 19

2http://www.satcompetition.org/ accessed 6/3/2012
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1. A set of variables V .

2. A literal is a variable v or its negation ¬v.

3. Given a set of literals P , ¬P := {¬v | v ∈ P}, also a literal ¬¬v is v.

4. A clause is a set of literals.

5. A formula is a set of clauses .

6. A SAT problem is a set of variables V and a formula F .

7. A set of literals is consistent if for any variable v, the set of literals does not

contain both v and its negation ¬v.

8. A clause C is satisfied by a set of literals P if there exists a literal in C that is

also in P .

9. A solution to a formula F is a consistent set of literals P , such that for every

clause C in F , C is satisfied by P .

10. A partial solution to F is a subset of any solution, i.e. given P is a solution,

P ′ is a partial solution iff P ′ ⊆ P .

11. A SAT problem is satisfiable if there exists a set of literals P that is a solution

to F , otherwise the SAT problem is unsatisfiable.

For example, consider a SAT problem where V = {a, b, c} and F = {C1, C2}, where

clauses C1 = {a, b} and C2 = {¬b, c}. A solution for this problem could be {a,¬b, c} as

a ∈ C1 and ¬b ∈ C2. However, {a,¬b, b} is not a solution because it is not consistent,

and {a, b,¬c} is not a solution because it does not contain a literal in C2.

5.1.1.1 Pseudo-Boolean Extension of SAT to SAT+PB

A typical extension of the SAT problem is the inclusion of pseudo-Boolean constraints

(Dixon, 2004) into SAT formula. This extends the SAT problem to a SAT+PB

problem. Such an extension allows the a direct mapping of constraints from an

evolution problem. For example, an Exactly One(3.1.1) constraint a+ b+ c = 1 could

be represented by four SAT clauses ({a, b, c},{¬a,¬b},{¬a,¬c}),{¬b,¬c}) or one PB

constraint. Allowing PB constraints has been shown to increase the efficiency of finding

a satisfiable solution (Dixon, 2004). Additionally, satisfying PB constraints may only

require minor amendments to existing algorithms (some such amendments are described

by Sheini and Sakallah (2006)).
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Definition 20 Given a tuple of literals 〈l1, . . . , ln〉 and a tuple of integers 〈a1, . . . , an〉,
a pseudo-Boolean function takes a set of literals P , and returns an integer such

that:

f(P ) =
n∑
i=0

fi(P ) where fi(P ) =

ai li ∈ P

0 li 6∈ P

For example, consider the pseudo-Boolean function f defined with a tuple of literals

〈x1,¬x2〉 and a tuple of integers 〈1, 3〉. The value of f({x1}) will equal 1, f({¬x2})
will equal 3, and f({x1,¬x2}) equals 4.

A pseudo-Boolean constraint is a relation between a PB function and an integer, e.g.

f(P ) ≤ 3.

Definition 21 A pseudo-Boolean constraint is a tuple consisting of a pseudo-

Boolean function f , a relationship R in {≥, >,≤, <,=}, and a positive integer k, a

PB constraint is 〈f,R, k〉. Such a constraint is satisfied by a set of literals P iff f(P )

R k3.

For example, the pseudo-Boolean function f described in the above example can be

combined with a relation > and integer 2 to create the constraint 〈f,>, 2〉. This

constraint will be satisfied by the set of literals P1 = {x1,¬x2} as f(P1) = 4 and

4 > 2, but not with the set of literals P2 = {x1, x2} as f(P2) = 1 and 1 6> 2.

A SAT problem can be extended to include pseudo-Boolean constraints by first

including definitions 20 and 21. Secondly, by modifying definition 19. Specifically,

what a SAT formula can contain and what a solution to a SAT problem is:

5′. A formula is a set of clauses and pseudo-Boolean constraints

9′. A solution to a formula F is a consistent set of literals P , such that for every

clause C in F , C is satisfied by P , and for every pseudo-Boolean constraint pb in

F , pb is satisfied by P .

To illustrate how the modified definition from SAT to SAT+PB problem works, consider

a SAT+PB problem where V = {a, b, c} and F = {C1, C2, 〈f,<, 2〉}. Clauses C1 = {a, b}
and C2 = {¬b, c}, and the function f is defined with the tuple of literals 〈a, b〉 and a tuple

of integers 〈1, 3〉. A solution for this problem could be {a,¬b,¬c} as a ∈ C1, ¬b ∈ C2,
and f({a,¬b,¬c}) < 2. However, {¬a, b, c} is not a solution because f({¬a, b, c}) 6< 2.

3If R is > then f(P ) > k
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5.1.2 Boolean Lexicographic Optimization

In order to create a BLO problem, some criteria used to define what properties an

optimal solution have are required. A pseudo-Boolean criterion is defined to either

maximise of minimise the value of a PB function. By composing such criteria together

into a list in order of lexicographic preference, an optimal solution to a BLO problem

can be defined.

Definition 22 A pseudo-Boolean criterion crit is a tuple consisting of a pseudo-

Boolean function f , a relation over integers R that is either < or >, and a SAT+PB

formula I, i.e. crit = 〈f,R, I〉.

The formula I is used to define auxiliary variables. Such variables are used to express

aspects of the problem that are not directly defined in the problems formula.

To describe the use of I, an example is presented where a user wants to minimise the

number different software licences in a component system (to potentially lower legal

fees). This criterion require auxiliary variables l1, . . . , ln, where each variable represents

a licence included in the system. In this example, components a and b are the only

components with licence l1. This means that an iff assignment includes either a or b it

must also include l1, i.e. l1 ⇔ a∨ b. To ensure this constraint is satisfied, the formula I

is defined to include and expansion into the SAT constraints of l1 ⇔ a ∨ b ({¬l1, a, b},
{¬a, l1} and {b,¬l1}). A PB function f is constructed using the literals 〈l1, . . . , ln〉 and

integers 〈11, . . . , 1n〉. The criterion to minimise the number of licences is defined as

〈f,>, I〉.

BLO uses a list of PB criteria ordered by lexicographic preference to find an optimal

solution. That is, the most preferred criterion to optimise is at the start of the list,

and the least at the end. The lexicographic order is defined : (a, b) is lexicographically

better than (a′, b′) iff a is better than a′ or (a equals a′ and b is better than b′). These

terms are translated to the BLO domain.

Definition 23 Given a SAT+PB formula F , a pseudo-Boolean criteria 〈f,R, I〉, and

two sets of literals P and P ′,

• P and P ′ are equal w.r.t. 〈f,R, I〉 iff P and P ′ are solutions to F ∪ I and

f(P ) = f(P ′).

• P is better than P ′ w.r.t. 〈f,R, I〉 iff P and P ′ are solutions to F ∪ I and f(P ′)

R f(P ).
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Note that both P and P ′ must be solutions to the formula F ∪I, not just the formula F .

This is done to ensure that the auxiliary variables required by the criteria are available.

Also note the relation R that is either < or >, is therefore used to either maximise or

minimise the PB function.

These definitions are used to define the lexicographic order:

Definition 24 Given a formula F , a tuple of PB criteria 〈crit1, . . . , critn〉, and two sets

of literals P and P ′, P is lexicographically better than P ′ w.r.t. to 〈crit1, . . . , critn〉
iff there exists an i between 1 and n where for all j < i, P is equal to P ′ w.r.t. to critj

and P is better than P ′ w.r.t. criti.

This means that for a solution to be lexicographically better than another, it must be

better w.r.t. to a PB criterion and at least equal to all criteria that are before it in the

tuple of criteria.

This lexicographic order is then used to define an optimal solution of a BLO problem:

Definition 25 Given a formula F and lexicographically ordered PB criteria 〈crit1, . . . , critn〉
an optimal solution is a solution P to F where no other solution P ′ to F exists such

that P ′ is lexicographically greater than P w.r.t. to 〈crit1, . . . , critn〉.

This means that given a BLO problem that consists of:

• A tuple of PB criteria 〈crit1, . . . , critn〉.

• A SAT+PB formula F .

A solution to BLO problem is the optimal solution to F w.r.t. to its PB criteria.

5.1.3 Mapping CoSyE Instance to BLO Problems

Following from the definition of CoSyE in section 3.1, an instance of CoSyE consists of

a series of evolution steps at time ti, where i is from 1 to n. Each step consists of:

• a time ti

• the set of components Cti

• an evolution problem δti ∪ ωti

• an evolution preference order ≺αti−1
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• a previous system αti−1 .

To resolve a CoSyE instance each step is mapped to a BLO problem which consists of

a SAT+PB formula F and PB criteria 〈crit1, . . . , critn〉.

The set of components Cti are variables in the problem, i.e Cti ⊆ Vti . The reason for

this direct use of components as variables, as opposed to mapping, is that it allows PB

criteria to use properties of a component, e.g. a components name. Not all variables in

the problem are components, as auxiliary variables may be required. Each component

variable can then describe two literals, either itself or its negation (definition 19). A

set of such literals are used to describe component systems.

Definition 26 A component system αti−1 is mapped to a set of literals where αti−1 :=

αti−1 ∪ {¬c | c ∈ Cti and c 6∈ αti−1}.

A component system αti−1 is mapped to a set of literals that are positive if they are in

the system or negative if they are not.

The reverse mapping, from a set of literals to a component system, is:

Definition 27 A set of literals P is mapped to a component system β such that

β := {c | c ∈ Ct and x ∈ P}

A component system is the set of components that are not negative in the set of literals.

Note: the mapping from a set of literals to a component system is surjective, and the

mapping from a component system to a set of literals is injective.

The evolution problem δti∪ωti is mapped to the formula F by mapping each constraint

type to a SAT clause or PB constraint:

1. Exclusion: ¬a is mapped to the clause {¬a}

2. Conflict: a→ ¬c is mapped to the clause {¬a,¬c}

3. Inclusive Disjunction: a1 ∨ . . . ∨ an is mapped to the clause {a1, . . . , an}

4. Dependence: a→ c1 ∨ . . . ∨ cn is mapped to the clause {¬a, c1, . . . , cn}

5. Exactly One: a1 + . . . + an = 1 is mapped to a pseudo-Boolean constraint

〈f,=, 1〉, where f is defined with the tuple of literals 〈a1, . . . , an〉 and the tuple

of natural numbers 〈11, . . . , 1n〉.
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5.1.4 Evolution Preference Order Mapping

The evolution preference order ≺αti−1
(as defined in chapter 3) defined with a

lexicographic composition of criteria crit1⊕ . . .⊕ critn can be mapped to a tuple of PB

criteria 〈crit1, . . . , critn〉 by mapping each criterion criti to a PB criterion criti.

A criterion 〈rankα,≤〉 maps to a PB criteria 〈f,R, I〉 iff:

• R equals the strict order of ≤, i.e. if ≤, R is < and if ≥, R is >.

• Given a solution P to formula I, and P maps to the component system β,

f(P ) = rankα(β).

To map an evolution preference order to the PB criteria, it must be defined with the

lexicographically composed criteria. To map a CoSyE criterion to a PB criterion, it

must satisfy the above constraints. This means that:

• Not all evolution preference orders can be described with lexicographically ordered

PB criteria.

• Not all CoSyE criteria can be mapped to PB criteria.

Therefore, the mapping from evolution preference orders to PB criteria is a partial

mapping.

The partial mapping from CoSyE criteria to PB criteria is not presented here. This is

because many of the CoSyE criteria that can be defined are not useful, e.g. a criteria

that maximises the number of components whose name starts with the letter a. Only

specific criteria are mapped to PB criteria, these are presented in the next section.

To further illustrate the mapping from a CoSyE criteria to a PB criteria, an example

is presented. Consider two components a and b, a criterion 〈rankα, <〉 whose ranking

function is defined as:

rankα(β) =

1 a ∈ β or b ∈ β

0 otherwise

This criterion expresses the preference of having either components a or b (or both) in

the system.

Further consider the pseudo-Boolean criterion 〈f,<, I〉. The auxiliary variable x is

defined such that x⇔ a∨b. This variable must be converted to the set of CNF clauses,

and included in I, i.e. I = {{¬x, a, b}, {¬a, x}, {¬b, x}}. The PB function f is defined

with the tuple of literals 〈x〉 and natural numbers 〈1〉.
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The criterion 〈rankα,≤〉 maps to 〈f,<, I〉, as the strict order ≤ from the criterion

equals the order < in the PB criterion. Given a solution P to I, where P maps to the

component system β, f(P ) = rankα(β). This is shown in table 5.1.

P β rankα(β) f(P )

{¬a,¬b,¬x} {} 0 0
{¬a, b, x} {b} 1 1
{a,¬b, x} {a} 1 1
{a, b, x} {a, b} 1 1

Table 5.1: Example of the mapping from CoSyE criterion to a PB criterion.

The above example describes how a CoSyE criterion can be mapped to a PB criterion.

In the following section, some specific criteria are presented and mapped.

5.2 Criteria

This section presents a selection of CoSyE criteria and given the mapping to PB criteria

and MOF (for a full description see appendix B). These criteria are presented in three

categories, minimising change to the system, minimising the out-of-dateness of the

system and minimising the number of versions of packages installed. The minimising

change criteria were developed by Mancoosi for MISC4 and the criterion used to

minimise the out-of-dateness was developed for Eclipse P2 solver (Rapicault and Le

Berre, 2010).

5.2.1 Change Criteria

Simple definitions of criteria to minimise change can often have negative effects during

CSE. For example, the most direct measurement of change of a component system is the

measurement of the total changed components. This is defined as a CoSyE criterion:

Definition 28 The changed components criteria is defined as critcompsChanged =

〈rankcompsChangedα ,≤〉, where rankcompsChangedα (β) = |α∆β|.

That is, the number of components in the symmetric difference between component

systems is the minimised with this criterion. This criterion’s measurements are a

coarse representation of the risks of changing a system. For example, a component

being replaced by another version of itself is intuitively less risky than it being replaced

4http://www.mancoosi.org/misc-2011/criteria/ accessed 6/3/2012
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with an entirely different component. Yet using the critcompsChanged criterion, these

would be seen as equivalent changes.

To define a change criterion that takes into account changing between components of

the same name, is less risky, a components name can be considered. For this purpose

the function V is defined:

Definition 29 The function V : 2C × N → 2C takes a set of components α and a

component name n, and returns a set of components with name n that are in α, i.e.

V (α, n) = {〈n′, v〉 | 〈n′, v〉 ∈ α and n′ = n}

This function can be used to define a criterion that considers the name of a component:

Definition 30 The change criterion is defined as critchange = 〈rankchangeα ,≤〉, where

rankchangeα (β) = |{n | n ∈ N and V (α, n) 6= V (β, n)}|.

This criterion can be altered to also consider new and removed component names:

Definition 31 The new criterion is defined as critnew = 〈ranknewα ,≤〉, where

ranknewα (β) = |{n | n ∈ N and V (α, n) = ∅ and V (β, n) 6= ∅}|.

Definition 32 The removed criterion is defined as critremoved = 〈rankremovedα ,≤〉,
where rankremovedα (β) = |{n | n ∈ N and V (α, n) 6= ∅ and V (β, n) = ∅}|.

The change, new and remove criteria were taken directly from the MISC competitions

definition of criteria.

The mapping between these criteria, PB criteria and MOF are presented in table 5.2.

A full description of the mapping is presented in appendix B.

MOF name CoSyE criterion PB criterion

-changed critchange = 〈rankchangeα ,≤〉 〈fchange, <, Ichange〉
-removed critremoved = 〈rankremovedα ,≤〉 〈fremoved, <, Iremoved〉
-new critnew = 〈ranknewα ,≤〉 〈fnew, <, Inew〉

Table 5.2: Mapping of the change, removed and new criteria between MOF, CoSyE and
PB

5.2.2 Out-of-date Criteria

When changing a component system it is a good idea to select more recent versions

of components, as they keep the system from becoming out-of-date. However, it is a
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difficult task to define an appropriate measurement of how out-of-date a component

system is. This difficulty comes from two properties of component versions must be

considered:

• A version of a component can only be compared to version of another component

with the same name, i.e. given two components 〈n, v〉 and 〈n′, v′〉 comparing v

and v′ is only useful if n = n′.

• The sum of versions is not a useful metric as two lesser versions will not be better

than one greater version, e.g. given components 〈n, 2〉, 〈n, 3〉 and 〈n, 4〉, a system

with only 〈n, 2〉 and 〈n, 3〉 is not better than a system with just 〈n, 4〉.

Not considering these properties when defining criteria could lead to significant

problems.

A useful criterion has been defined in Eclipse P2 that minimises a measurement of

the out-of-dateness of a component name. This measure of out-of-dateness counts the

amount of components that is a greater version than a component currently installed.

It is defined as:

Definition 33 The function uptodatedistance takes a component 〈n, v〉 and a set of

components Ct and returns the number of components with the same name and a greater

version, i.e. uptodatedistance(〈n, v〉,Ct) = |{〈n, v′〉 | 〈n, v′〉 ∈ Ct and v′ > v}|

A criterion using this measure can then be defined:

Definition 34 Given the set of components Ct, the uptodate distance criterion is

defined as critutdd = 〈rankutddα ,≥〉, where rankutddα (β) =
∑

c∈β uptodatedistance(c,Ct).

That is, the measure to be minimised is the number of components that have the

same name, and are a greater version than a component that is currently installed.

This measure depends on the release of new versions to measure out-of-dateness, and

it assumes that components are maintained. If a component is not maintained, and

versions are never released, the component will be measured to never go out-of-date.

Conversely, if a components developer releases versions very quickly, the component

will become quickly out-of-date. These problems can be solved through community

effort to maintain and release components, as is attempted for Debian systems (Barth

et al., 2005).

The mapping between this criterion, MOF and the PB criteria is presented in table 5.3,

with a full description in appendix B.
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MOF CoSyE criterion PB criterion
-uptodatedistance critutdd = 〈rankutddα ,≥〉 〈futdd, <, Iutdd〉

Table 5.3: Mapping of the up-to-date distance criterion between MOF, CoSyE and PB

5.2.3 One Version per Package Criteria

As discussed in the previous chapter, the restriction that Ubuntu systems must have

only one version of each package installed is not enforced by the component constraints.

This restriction can however be encouraged by defining a criterion that minimises the

amount of packages with multiple versions.

Definition 35 Given the set of components Ct, the One Version per Package

criterion is defined as critovpp = 〈rankovppα ,≥〉, where rankovppα (β) =
∑

n∈N |V (β, n)| >
1.

That is, this criteria minimises the number of package names that have more than one

version installed.

The mapping between this criterion, MOF and the PB criteria is presented in table 5.4

with a full description in appendix B.

MOF CoSyE criterion PB criterion
-ovpp critovpp = 〈rankovppα ,≥〉 〈fovpp, <, Iovpp〉

Table 5.4: Mapping of the one version per package criterion between MOF, CoSyE and
PB

5.3 Solving a BLO Problem

The efficient solving of BLO problems will allow the efficient resolving of CoSyE

instances. This section describes the lexicographic-iterative-strengthening-algorithm

(LIS) to solve BLO problems. This algorithm uses the DPLL algorithm (Davis and

Putnam, 1960; Davis et al., 1962) to find a solution to a SAT+PB formula, and the

iterative strengthening algorithm (Calistri-Yeh, 1994; Le Berre and Parrain, 2010) to

find an optimal solution to a SAT+PB problem given a single PB criterion. This section

also describes how a CoSyE instance is resolved by mapping to BLO problems. The

algorithms presented in this section are described to give an overview of how BLO

problems are solved.

93



CHAPTER 5. RESOLVING COSYE INSTANCES

5.3.1 Davis-Putnam-Logemann-Loveland Algorithm for SAT Solvers

The Davis-Putnam-Logemann-Loveland (DPLL) algorithm (Davis and Putnam, 1960;

Davis et al., 1962) is a complete (meaning it will find a solution if one exists),

backtracking-based search algorithm for solving SAT and SAT+PB problems.

DPLL takes a formula F and a set of literals P (described as a partial assignment), and

returns a solution to F if P is a partial solution, otherwise returning UNSATISIFABLE.

When DPLL is called without a value P , P is defaulted to equal the empty set. By

first calling DPLL with P as the empty set, then adding literals to P and recursively

calling itself; the DPLL function searches for a solution to the formula. The DPLL

algorithm in defined in figure 5.2 (a slight modification of the algorithm presented in

(Dixon, 2004)):

function DPLL(F , P):
P = unit-propagate(F , P)
if P is not consistent:

then return UNSATISIFABLE;

if P is a solution to F:
then return P;

l = decide(P );
answer = DPLL(F , P ∪ {l})
if answer != UNSATISIFABLE

return answer

else

return DPLL(F , P ∪ {¬ l});

Figure 5.2: The DPLL algorithm

DPLL first calls the unit-propagation function (further described later in this section)

which derives literals that must be in P if it is a solution. Next DPLL checks whether

P is inconsistent, which means it is not a partial assignment. Then DPLL checks if P

is a solution to F , if it is then P is returned. The decide function (further described

later in this section) returns a literal l that is not, nor whose negation is in P . The

literal l is added to P , which is then checked to be a partial solution by recursively

calling DPLL. If P with l is a solution then the found solution is returned, otherwise the

search continues by adding ¬l to P and checking if it is a partial solution by calling

DPLL.
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5.3.1.1 Unit Propagation

The first line in the DPLL algorithm calls the unit-propagation function. This

function uses the clauses in the formula, and the partial assignment to identify and

add literals to P that must be included if P is to be a partial solution.

Definition 36 Given a partial assignment P , a clause C is called unit iff C is not

satisfied by P , and P contains all but one of the literals in ¬C. The literal whose

negation is not in P is called a unit literal.

For example, a clause {a, b, c} is unit if the partial assignment contains ¬b and ¬c but

neither a or ¬a. The literal a is then a unit literal.

For a formula to be satisfiable given partial assignment, each unit literal must be

included in the partial assignment, because if their negation is included the clause

is not satisfied by the partial assignment. For example, given a formula {C}, where

C = {a, b}; given the assignment {¬a} the clause C is unit and unit literal is b. If ¬b
were in the partial assignment, C would not be satisfied by P . Therefore, b must be in

P for C to be satisfied.

The process of unit propagation is defined in figure 5.3.

unit-propagate(F , P):
while P is consistent and there exists a C ∈ F that given P is unit:

l = unit literal in C
P = P ∪ {l}

return P

Figure 5.3: The Unit Propagation algorithm

5.3.1.2 Decide

The function decide takes a partial assignmnet P and returns a literal l such that

l 6∈ P and ¬l 6∈ P . That is, if l = decide(P ), then {l} 6∈ P and {¬l} 6∈ P . This

literal is the point which the algorithm branches. This decide function greatly impacts

the efficiency of DPLL, as selecting literals that are in a solution (if one exists) would

quickly find a result.
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5.3.1.3 DPLL Advancements

Though the DPLL algorithm is the basis of many modern SAT solvers, the actual

implementations have been altered to increase efficiency. Some of these improvements

are:

• Conflict learning (Stallman and Sussman, 1976; Sörensson et al., 2009) is a

technique to cache previously tried sets of assignments in order to stop re-solving

the same sub-problems.

• Backjumping (Gaschnig, 1979) is the technique which determines how far to up

the search tree to backtrack when a conflict is found. The higher up the tree the

search “jumps” to, the more of the search space is reduced.

• More efficient unit-propagation through watched literals (Madigan et al., 2001;

Moskewicz et al., 2001).

These advancements have significantly increased the efficiency of current SAT solvers.

5.3.2 Iterative Strengthening

The iterative strengthening algorithm (Calistri-Yeh, 1994; Le Berre and Parrain, 2010)

is an anytime algorithm using constraint satisfaction to iteratively find better solutions

to a SAT+PB formula usings a PB criterion. This algorithm can be used to find optimal

solutions to an evolution problem, given a pseudo-Boolean criterion. This is done by

first finding a solution, then iteratively adding constraints (created using the criterion)

to ensure the next solution found will be better than the previous solution. This is the

strengthening process. Strengthening continues until either the strengthened formula

is found to be unsatisfiable, or the algorithm is interrupted, at which point the best

solution currently found is returned. This algorithm is defined in figure 5.4.

The first action in the iterative-strengthening is to include the formula I that

defines auxiliary variables used by the criterion. This ensures that any solution returned

by DPLL is also a solution to I.

The next action is to check if the formula is satisfiable. This is accomplished by

passing the formula to the DPLL function, and assigning its output to the variable

answer. If the output from DPLL is UNSATISIFABLE, then the algorithm stops and

returns UNSATISIFABLE, as there are no solutions.

The main loop of this algorithm is then defined. The first action in this loop is to
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iterative-strengthening(F,〈 f, R, I 〉):
F = F ∪ I
answer = DPLL(F)
if answer = UNSATISIFABLE:

return UNSATISIFABLE

do:

M = answer
J = strengthen(M,〈 f, R, I 〉)
F = F ∪ J
answer = DPLL(F)

while not (interrupted() or answer == UNSATISIFABLE)

return M

Figure 5.4: The Iterative Strengthening algorithm

assign the contents of the variable answer to the variable M . The variable M is a set

of literals, used as a store of the currently best found solution.

The function strengthen is then called to create a formula J . The formula J ensures

that the answer returned by DPLL(F ∪ J) is either:

• a better solution (w.r.t. the criterion) than the currently best found solution M .

• UNSATISIFABLE showing that no better solution exists.

Definition 37 Given a set of literals M , and a criterion 〈f,R, I〉, the function

strengthen returns a formula J consisting of a single pseudo-Boolean constraint

〈f,R, f(M)〉, i.e. J = {〈f,R, f(M)〉}.

That is, strengthen returns a formula J , that ensures any solution P , to the formula

F ∪ J , must have a better (w.r.t. R) value of f(P ) than the previously best solutions

value of f(M).

The next steps are then to add the formula J to F , then search for a new solution using

DPLL.

The main loop will end if either the interrupted function returns true, or the DPLL

function returns UNSATISIFABLE. The interrupted method is typically defined to

return false until some external input (like a user stopping the algorithm or a timer

running out) is encountered. The interrupted method has the additional responsibility

of stopping the DPLL function, so that if at any point interrupted returns true the

DPLL function immediately returns. When the main loop ends, the currently best found

solution M is returned.
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5.3.3 Lexicographic Optimisation

The iterative strengthening algorithm can be used find lexicographically optimal

solutions to a tuple of criteria by iteratively strengthening each criteria in order. This

lexicographic-iterative-strengthening algorithm is presented in figure 5.5.

lexicographic-iterative-strengthening(F,〈crit1, . . . , critn〉):
answer = DPLL(F)
if answer = UNSATISIFABLE:

return UNSATISIFABLE

i = 0

M = answer
do:

i = i + 1
M = iterative-strengthening(F,criti)
K = lock(M,criti)
F = F ∪ K

while not (interrupted() or i == n)
return M

Figure 5.5: The Lexicographic Iterative Strengthening algorithm

The first action of the lexicographic-iterative-strengthening algorithm is to

check if the formula is satisfiable using the DPLL algorithm. If it is unsatisfiable, this

algorithm returns UNSATISIFABLE.

The variable i is then defined, this variable is a counter used to select the criterion to

be strengthened. Also, M is assigned to be the set of literals answer, and is used to

store the currently best found solution.

The main loop of this algorithm is then defined. This loop first increments the counter

i, to select the appropriate criterion to be strengthened.

The iterative-strengthening algorithm is called to find an optimal solution to F

given the criterion criti. As the formula F is known at this point in the algorithm

to be satisfiable, the only possible returned value from iterative-strengthening is

a solution that is no worse than M . This means that the returned value could be

equivalent to the previously defined solution, if there exists no better solution than

what has already been found.

The function lock is then called to return a formula K. The formula K ensures that

when DPLL(F ∪K) the solution returned that is not worse (w.r.t. the criterion criti)

than the solution M .
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Definition 38 Given a set of literals M , and a criterion 〈f,R, I〉, the function lock

returns a formula consisting of a single pseudo-Boolean constraint 〈f,=, f(M)〉, i.e.

K = {〈f,=, f(M)〉}.

That is, lock returns a formula K, that ensures any solution P , to the formula F ∪K,

must have the best value of f found so far. Note, the formula K does not effect the

satisfiability of F , as M is still a valid solution to F ∪K. The formula K is then added

to the formula F , i.e. F = F ∪K,

The main loop will iterate until either all the criteria have been optimised, or the

function is interrupted. When the loop ends, the currently best found solution M will

be returned.

Some enhancements to the implementation of the lexicographic iterative strengthening

algorithm can be made. For example, when the iterative-strengthening is called,

it is known that F is satisfiable. Therefore, checking its satisfiability again within the

iterative-strengthening function is not necessary.

The lexicographic iterative strengthening algorithm is an anytime algorithm. It has

been designed to return a solution to a BLO problem, even if it is interrupted. The

reason for this anytime behaviour is that BLO problems can take an impractical amount

of time to solve. It is therefore practically necessary to limit the time this algorithm

searches for an optimal solution, and interrupt it when this time limit is reached. The

effects of this anytime behaviour is discussed in section 6.1.2.

5.3.4 Resolving a CoSyE instance

Resolving a CoSyE instance involves finding the series of component systems

αt1 , . . . , αtn . To do this, each evolution step starting at t1 and ending at tn is mapped to

an BLO problem and solved using the lexicographic-iterative-strengthening algorithm.

This resolver algorithm is presented in figure 5.6.

In this algorithm, the systems are calculated starting at time t1 and stopping at time

tn. For each evolution step at time ti is mapped to a SAT + PB formula F and PB

criteria 〈crit1, . . . , critn〉. The algorithm lexicographic-iterative-strengthening is

then used to find an optimal solution to F with respect to the PB criteria, and return

answer. Either answer equals UNSATISFIABLE at which point the system αti is assigned

as the previous system αti−1 (according to definition 13). Otherwise, answer is a set of

literals that can be mapped back to the component system αti . This algorithm, once

completed, returns the set of component systems αt1 , . . . , αtn that resolve the CoSyE

instance.
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resolver:

for ti in t1 . . . , tn:
F and 〈crit1, . . . , critn〉 mapped from evolution step at ti
answer = lexicographic-iterative-strengthening(F,〈crit1, . . . , critn〉)
if answer equals UNSATISFIABLE:

αti = αti−1

else:

αti mapped from answer
return αt1 , . . . , αtn

Figure 5.6: The algorithm to resolve a CoSyE instance

5.4 GJSolver

GJSolver5 is the implementation of the process from a CUDF* document6 to a resolved

CoSyE instance. GJSolver grew through the course of this research to satisfy the need

for an implementation to study CSE. This implementation takes a CUDF* document,

parses it to an instance of CoSyE, which is then resolved by BLO.

This process is described in figure 5.7.

GJSolver

:CoSyE BLO
mapped  to

:CUDF*
parsed  to

Figure 5.7: The relationships within the GJSolver implementation

In this section the implementation and the validation of GJSolver are discussed.

5.4.1 GJSolver Implementation

The first decision made about the design of GJSolver was to base it on another similar

implementation, Eclipse P2 (Rapicault and Le Berre, 2009, 2010). Basing the design

on an existing implementation allowed the reuse of tools, and most importantly the

reduction in risks during implementation. The basis of GJSolver on Eclipse P2 lead to

the following choices:

• Java as the main implementation language.

5named after the author Graham Jenson and located at
https://github.com/grahamjenson/ComponentSystemEvolutionSimulation/tree/master/GJSolver

6in practicality it takes a compressed format, as many CUDF* documents replicate information
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• SAT4J as the core SAT+PB solver.

• Optimisation using PB criteria.

Given Eclipse P2 is designed especially for the OSGi and Eclipse component model and

GJSolver is designed for CUDF*, not all of P2 could be reused. Some of the differences

between Eclipse P2 and GJSolver are:

• No OSGi or Eclipse specific code in GJSolver.

• The internal representation of components is not based on OSGi.

Another important difference between Eclipse P2 and GJSolver is that P2 uses an

aggregated PB function (Joao et al., 2011) that combines all the PB criteria into a

single criterion. P2 then uses this aggregated criterion with the iterative-strengthening

algorithm (further described by Rapicault and Le Berre (2010)) to find an optimal

solution to BLO problems. How P2’s optimisation approach compares to GJSolver’s is

not measured, though a general comparison is presented in Joao et al. (2011).

5.4.1.1 SAT4J

Given the use of SAT4J in GJSolver, a brief background of its development is presented

here.

MiniSAT presented in (Niklas Een, 2004), is a simple SAT solver implementation

written in C, and designed for speed and extensibility. It uses the DPLL-based conflict

driven algorithm as discussed in section 5.2. This solver has become popular and is

the basis of many other SAT solvers due to its open source distribution. This has also

lead to a track in the 2011 SAT competitions7 that deals with only altering MiniSAT

to increase performance. This means that MiniSAT has been repeatedly validated for

performance by third parties across many different SAT problems.

SAT4J (Le Berre and Parrain, 2010) is a re-implementation, and extension, of MiniSAT

in the Java programming language. SAT4J has been extended to efficiently solve a

variety of related problems to SAT, including SAT+PB problems. Due to the easily

modifiable and transparent implementation of SAT4J, it has been able to be adapted

to be used in various domains.

7http://www.satcompetition.org/2011/ accessed 6/3/2012
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5.4.2 Validation of GJSolver

The MISC competition, organised by Mancoosi, is a competition to compare CUDF

solvers by asking them to correctly parse and resolve hundreds of CUDF problems, and

return optimal solutions with respect to various criteria. MISC was created to promote

interest in the problem of changing component systems.

By viewing a CUDF problem as a single evolutionary step in a CUDF* problem,

GJSolver was modified to also solve CUDF problems. Using such a modification,

GJSolver could then be entered into the Mancoosi International Solver Competition

(MISC) competition. GJSolver was entered twice into MISC, firstly in a MISC Live

event, which is an interim competition held during 2011; secondly at the MISC 2011

event8, which is the main competition.

GJSolver was slightly modified to be entered into the MISC competition. The main

modification is encountered when the evolution problem is unsatisfiable. In the

evolution step definition (13) the component system αti−1 is returned if the evolution

problem is unsatisfiable. However, in this case, MISC requires that a file with only the

text FAIL is written to state that no solution was found. This is to correctly score a

solver returning an incorrect solution to an evolution problem, and a solver finding a

problem unsatisfiable.

5.4.2.1 Mancoosi International Solver Competition

To enter GJSolver into MISC the interface and standards defined for this competition

must be followed. How the entered solvers are executed, what environment they are

executed in, and the output required are all important aspects.

The way in which the entered solvers are executed is standardised to allow the

automation of the competition. This standard requires the entered solvers to be able

to be executed on the command line with three arguments, cudfin, cudfout and

criteria. These arguments are defined as:

• cudfin: is a relative path to a CUDF document (as specified in section 3.2) that

describes the problem to be solver.

• cudfout: is a relative path to a non-existent file, which is created by the solver

to output the solution.

8The results for MISC 2011 were announced at the Workshop on Logics for Component
Configuration9.
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• criteria: is a Mancoosi optimisation format (as described in section 3.2.3)

description of the criteria to select an optimal solution.

The format of the output file, located at the path defined with cudfout argument, is a

list of packages serialised as a list of stanzas with package and version properties.

The environment in which the solver is executed is a virtual machine running a

GNU/Linux system in a x86 architecture with 1GB of RAM. It contains a Java runtime

environment, allowing the use of Java as a primary language. The time in which the

solver is allowed to run is five minutes, after this time the solver will be forcibly stopped.

This time limit ensures that the competition can be run in an practical time frame.

5.4.2.2 Tracks and Scoring

The MISC 2011 competition is broken down into three possible tracks, where each track

is defined by the criteria used. The first basic track, is “paranoid”, the second more

advanced track is“trendy”, and third track is“user”. Both“paranoid”and“trendy”have

pre-defined criteria, e.g. the “paranoid” tracks criteria in MOF is -removed,-changed.

The “user” track creates unknown criteria from a set of pre-defined criteria, so that

the exact optimisation criteria is unknown before the competition. This means that

“paranoid” and “trendy” can have solvers tailored to their specific criteria, where the

“user” track cannot. The exact criteria that is used for these tracks can be found on

the MISC website10.

For each track, a set of solvers is entered. Each track has a set of evolution problems

defined in CUDF. The solvers for each track are then called to return optimal solutions

for all problems given the tracks criteria.

As MISC competitions were created to compare various solvers, a scoring system was

developed. When a solver is given a CUDF problem and some criteria, the returned

solution falls into one of three classes:

• a real solution is any solution to the CUDF problem.

• no solution occurs when a solver finished without returning a solution. This can

happen because of error, timeout, or there not being a satisfiable solution.

• an incorrect solution occurs when the solver returns an answer that is not a

solution to the CUDF problem.

10http://www.mancoosi.org/misc-2011/criteria/ accessed 12/5/2012
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Given m is the number of solvers that entered into the track, the scoring of a solvers

solution to an individual CUDF problem is as follows:

• a real solution is given 1 point, with an additional 1 point for every solver that

found a better solution.

• for no solution 2×m points are given

• for an incorrect solution 3×m points are given.

This means, if a solver returns an optimal solution to a CUDF problem, it will receive

1 point. However, if other better solutions are returned, then the solver could be given

up to m points.

For each track, all solvers in that track are assigned points based on their solutions to

all problems in that track. For a given track a solvers points are summed to give a final

score. If more than one solver has the same amount of points at the end of a track,

then the time it took for them to find each solution is summed. This total time value

is used as the tie breaker.

5.4.2.3 MISC Live

The MISC Live was entered when GJSolver was only partially implemented. Therefore,

the only track that was possible to enter was the “paranoid” track. The results for

this track11 where promising, though some improvements were necessary. GJSolver’s

deficiencies were identified and corrected.

5.4.2.4 MISC

The main validation of GJSolver was through the MISC 2011 event. In this event

GJSolver was entered into all tracks of this event. The “paranoid” track had a total of

5 solvers, the “trendy” track had a total of 6 solvers, and the “user” track had a total

of 4 solvers. Each track was also entered by the solver which GJSolver is based on,

Eclipse P2, and another efficient solver aspuncud. These two solvers will form the basis

of GJSolver’s comparison.

The scores and the times for each of the track compared to that from Eclipse P2 and

aspuncud are in table 5.5.

11http://mancoosi.org/misc-live/20101126/paranoid/ accessed 6/3/2012
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Track # of Problems GJSolver P2 aspuncud

paranoid 129 (190 : 5,294) (181 : 4,646) (147 : 1,035)

trendy 129 (197 : 13,073) (232 : 13,435) (151 : 1,767)

user 400 (656 : 73,522) (1392 : 87,956) (1215 : 39,905)

Table 5.5: Results from MISC 2011, (score (less is better) : time in seconds)

The winner for both “paranoid” and “trendy” tracks was the aspuncud solver. The

winner for the “user” track was GJSolver that got nearly half the points of second place

aspuncud, but took nearly twice the time.

5.4.2.5 Analysis

The results from the MISC competition show:

• During the competition GJSolver had very consistent results. These results

allowed it to compete with the other solvers, and win the “user” track.

• No CUDF problem in the competition was incorrectly solved by GJSolver. This

could be used to argue that the parsing of CUDF to CoSyE, mapping to BLO

problems, and the implementations of the algorithms are correct.

• When compared to the similar implementation of Eclipse P2, GJSolver produces

similar results, in a similar time. As GJSolver was based on Eclipse P2, this is

seen as a validation that the differences between the two are not detrimental, and

possibly improvements.

Given these reasons GJSolver is seen as a valid implementation that can accurately

resolve CUDF* documents.

5.5 Simulation Validation

SimUser can be used to generate CUDF* documents that GJSolver can then resolve.

The result of this resolution is a series of systems that completely describe the evolution

of a component system. This process, from SimUser to resolved component systems, is

used to simulate CSE.

Above, GJSolver was validated to show that it correctly returns component systems.

However, it is unsure that these component systems accurately describe the CSE

process. This section discusses the validation of the simulation comparing its output

to:
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• the apt-get logs collected from 19 respondents of the survey.

• a virtual Ubuntu 11.10 system that upgrades everyday over the month of

November 2011.

Both of these comparisons are against systems that use apt-get to alter their systems.

To accurately compare the evolution these systems to the simulated systems, the criteria

used by apt-get to upgrade and install systems must be defined in MOF.

To upgrade a system the apt-get manual12 states the following:

upgrade is used to install the newest versions of all packages currently

installed on the system [. . . ] under no circumstances are currently installed

packages removed, or packages not already installed retrieved and installed.

To represent the apt-get upgrade criteria in MOF -removed,-new,-uptodatedistance13

is used. The hard constraints in apt-get to never remove or install new packages are

softened when using this criteria. However, they have been made more important in

the lexicographical order to encourage the GJSolver to not remove or add packages.

When installing a package it is assumed that apt-get will try to select the most recent

version component while minimising change. This has lead to using the MOF criteria

-ovpp,-removed,-changed,-uptodatedistance to represent the apt-get criteria for

installing a component. The first criterion -ovpp minimises the number of package

with more than one package installed. -removed is the second criterion, as removing

a package from a system is seen as more risky than installing a new package. The

final two criteria describe that minimising change to the system is more important that

installing a more recent version of a component.

5.5.1 Comparison to apt-get Logs

The respondents to the user survey (as discussed in chapter 4) submitted 19 logs that

record their use of apt-get. These logs were parsed and the requests the users made to

install components where studied. Particularly the change that each request to install

had on their system. These results were compared to the simulation by selecting the

200 most likely packages to be installed, and installing them on the first day of the

simulation. The results are presented in table 5.6.

12http://linux.die.net/man/8/apt-get
13the criterion -ovpp is not necessary in the upgrade criteria as only allowing one package to be

installed is a hard constraint of the upgrade request
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Total Requests % of 1 IP Mean IP STD. IP

Simulated Installs 200 11% 7.31 9.41
apt-get logs 1519 35.3% 9.04 23.33

Table 5.6: A comparison of the installed packages (IP) between the install requests from
the collected apt-get logs and the 200 most likely packages to be installed in the simulation

The submitted apt-get logs have 1519 requests for installation to be analysed,

compared to the 200 from the simulation. These results show that although they both

have a similar mean amount of new packages installed into their systems, the requests

from the logs are much more varied than that from the simulation. Over a third of the

installs from the logs only required the installation of one package. Additionally, the

standard deviation is much higher in the logs, showing the users install packages that

cause much greater change as well. For example, one log recorded the request to install

kubuntu-desktop that required over 100 new packages to be installed.

This much greater variation in the possible packages that users can install was described

in section 4.4. This variation must be taken into account when drawing conclusions

from the simulations results.

5.5.2 Comparison to Virtual System

To compare the simulations upgrade requests to that from the a real system, a virtual

Ubuntu 11.10 system that upgrades everyday over the month of November 2011 was

created. The results from this system were compared to the simulation of a user that

upgrades everyday over the first month (November 2009) of the simulation. The results

of these are presented in table 5.7.

System Size 0 UP Mean UP STD. UP

Simulated System 1270 12 4.2 7.3
Virtual Ubuntu System 1338 12 5.8 9.7

Table 5.7: A comparison of the upgraded packages (UP) between the upgrade requests
from the virtual Ubuntu system and the simulation

The virtual Ubuntu System and the simulated system have very similar amount of

updated packages, for example both systems had 12 days where their upgrade requests

where not necessary. The virtual system has slightly more updated packages over the

month, this could be attributed to the increased size of the system, or an increase in

package maintenance of Ubuntu from 2009 to 2011.
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5.6 Summary

This chapter described how the evolution steps from a CoSyE instance can be mapped

to BLO problems. The algorithms used to solve a BLO problem where also discussed.

The implementation GJSolver was presented. GJSolver takes a CUDF* document,

parses it to a CoSyE instance, and resolves it by mapping it to BLO problems and

solving them. GJSolver was validated through the MISC competition, and was shown

to perform well when compared against other solvers. The following chapter presents

the experiments that use the developed simulation to answer questions about CSE.
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Chapter 6

Experiments, Results and

Analysis

Experiment is the sole judge of scientific truth.

The Feynman Lectures on Physics, Introduction, Richard Feynman, 1961.

Previously the models and the implementation used to simulate CSE have been

described. The SimUser model is used to create CUDF* documents given the

probabilities a user will request to upgrade and install components, and the criteria used

to accomplish these requests. These documents describe the evolution of an Ubuntu

system for a year starting on October 30th 2009. GJSolver can be used to resolve the

exact evolution of the system described by such a document. This process of describing

a user in SimUser, generating CUDF* documents, then resolving the evolution is used

to explore CSE.

This chapter presents experiments and results to study the effects of CSE. The specific

effects that are focused on are the change made to the system, and the out-of-dateness

of the system during evolution. This exploration is accomplished through trying to

answer the questions:

1. What consequences do a user’s choices have on their system (i.e. their

probabilities to upgrade u and install i) when using the apt-get criteria?

2. Can the out-of-dateness of a system be reduced?

3. Can the total change of a system be reduced?

4. How do the systems of realistic users evolve?
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This chapter presents experiments intended to answer these questions in the order they

were asked. To ensure that these experiments can be conducted within a practical

time, the resolution is limited to a time-limit of two minutes. When this is reached

the anytime algorithm employed by GJSolver is interrupted. When this occurs it does

not mean that the returned solution is not optimal1, it just means that it is uncertain

whether or not the returned solution is optimal.

6.1 Users Choices to Upgrade and Install

How often a user decides to upgrade their system or install a component will effect how

their system evolves. This section attempts to quantify the effects on change and out-

of-dateness that these actions have on the users systems. These experiments simulate

users by altering the probabilities that a user will install a component i and upgrade

their system u. The criteria to install I and upgrade U are assigned to the criteria

used by apt-get as described in section 5.5. apt-get’s U criteria is -removed,-new,-

uptodatedistance, and I criteria is -ovpp,-removed,-changed,-uptodatedistance.

6.1.1 Boundary Cases

The first experiment assigns values to i and u that describe the boundary cases. The

users that are defined for this experiment are described in table 6.1. In addition to

User Name # simulated u i

Control 1 0 0
Always Upgrade 1 1 0
Always Install 30 0 1
Always Upgrade&Install 30 1 1

Table 6.1: Configuration of users that are the boundary cases in the simulation.

the values for u and i, this table also states the number of simulations that were run

for each user. For example, the “Always Install” user had 30 simulations run, that

is 30 CUDF* documents were created and resolved. The number of simulations run

for each user is a trade-off between time to complete the simulations and accuracy of

results. This number was chosen based on the randomness of each user (as described

in section 4.4.1) as well as the experience gained when developing the simulation as

to the variability of the results. The “Always Upgrade” and “Control” users have no

randomness therefore only one user is required to be simulated.

1In MISC GJSolver was interrupted many times and most times returned the optimal solution
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6.1.1.1 Results and Analysis

The first of the effects that will be explored is the out-of-dateness for each of the

simulated users. This is measured using the up-to-date distance (UTTD) function, as

described in section 5.2. This measurement is the number of components that are not

installed and have a greater version than a component currently installed. A problem

that exists with this measurement is that it does not take into account the size of

a system. As a system’s size increases, the UTTD will grow as there will be more

components that become out-of-date. To normalise this effect the measurement UTTD

per component (UTTDpC) is defined as the UTTD divided by the number of installed

components. The UTTDpC of each simulated user is presented in figure 6.1.

Figure 6.1: The UTTDpC of the simulated boundary case users.

This figure shows that all systems eventually become out-of-date. This is due to

constraints in components that cannot be removed that restrict change. It is also

partially due to the apt-get upgrade criteria minimising new components to be

installed. This stops a component upgrading if it requires a component that is not

installed in the system. Section 6.2 presents experiments where changing this criteria

removes this barrier to new components.

This figure also shows that users which do not upgrade, the “Control” and “Always
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Install” users, become nearly three times more out-of-date than users that upgrade.

The speed at which systems become out-of-date increases over the months between

March and May 2010. The reason for this is likely due to the increased development

effort because of the Ubuntu 10.04 release in April 2010. The users that upgrade are

less affected by this release as they are installing newer component versions.

The rate of change of the “Control” users UTTDpC is the rate at which components

evolve. This is because the faster versions of a component are released, the more

the “Control” user becomes out-of-date. As this user will never upgrade its UTTD is

increased by one for every new component release.

The effect of the normalisation of UTTD can also be seen in this figure. The “Control”

and “Always Install” users, and the “Always Upgrade” and “Always Upgrade&Install”

users have similar UTTDpC over the year. This normalisation means that the install

variable i has little effect on the UTTDpC of a component system.

The next effect measured is how much change each simulated system went through

during evolution. To measure change the “change” function as described in section 5.2

is used. The total change, i.e. the sum of all change a system has to date, is presented

in figure 6.2.

Figure 6.2: The total change of the simulated boundary case users.

As was predicted above, this figure shows that there is an increase in change during
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the release of Ubuntu 10.04 for users that upgrade their systems. During the months of

March, April and May of 2010 the “Always Upgrade” user had a mean of 266 changes

per month. All other months they had a mean of 105 changes per month. This is

a more than 250% increase in change over the months of the release. This increased

change cannot be seen in the “Always Install” users as they will not change in response

to newer versions.

The effect of reuse of components can be most seen when examining the“Always Install”

users. Initially, these user’s systems change quickly, then after a month the rate of

change decreases. This is measured by looking at the mean change per day; during

the first month 4.9 components are changed per day, where in the final 11 months 3.0

components are changed per day. After further investigation this reduction in change is

explained due to the common reuse of a few components like libaudio2 and libqt3-

mt. Many components depend on these components, and are therefore often installed

in the first month. After this installation they are no longer required to be added so the

future change is reduced. If this reuse did not exist, the rate of change would remain

near 4.9 components per day, resulting in an estimated total change of 1788.5 over a

year. Reuse then saves an estimated 650 changes over the year.

The “Always Upgrade&Install” users changes more than the combined amount

of “Always Upgrade” and “Always Install” changes. The total change of the

“Always Upgrade” user is 1655, the “Always Install” user is 1137 and the “Always

Upgrade&Install” user is 3482. This shows that a user that upgrades and installs

changes more than 700 components than the combined amount changed by just

installing and just upgrading. The additional change is due to the installed components

increasing the amount of components to be upgraded.

6.1.2 Failures

These initial experiments are the most extreme users that can be simulated. This means

phenomena that occur rarely are most observable in these simulations. For this reason,

these simulations were chosen to be closely inspected for various failures.

Two types of failure were observed in the results of these simulations:

1. Hard Failure: Where a request has no solution, therefore no change is made to

the system.

2. Soft Failure: The request is satisfied, however the search was interrupted and

the best solution found at that time was returned.
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Additionally, a notable hard failure was observed, the Multi-component Failure

occurs when multiple components must be installed to satisfy a request.

All these failures are directly caused by, or are a result of an install request. The failures

and the rates they occur are therefore a product of the selection of components to be

installed. The validity of this aspect of the simulation is discussed in section 4.4.

6.1.2.1 Hard Failures

Hard failures where observed to occur in 12 of the “Always Install” users, 12 of the

“Always Upgrade&Install” users, and never in the “Always Upgrade” user. Only 40

requests hard failed over these 24 simulated users with hard failures. All hard failures,

except those that are multi-component failures, were failed install requests. Given each

“Always Install” user has 365 requests and each “Always Upgrade&Install” user has 730

requests, and 30 users of each type were simulated, the chance for a request to fail is just

over 0.12%. The chance for a hard failure to occur is extremely low in this simulation.

Due to the rarity of these hard failures, the specific reasons for hard failures are not

further explored.

An interesting failure occurred when the situation arose that installing the package

chromium-browser required two versions of the package libc6 to be installed. This

lead to the following upgrade request to be unsatisfiable, and the following install

request to remove chromium-browser and upgrade to the newest version of libc6.

This instance, although rare, shows the case that at some points the hard constraint

that Debian enforces to have only one version of each component installed, can restrict

the user.

6.1.2.2 Soft Failures

Soft failures are called “soft” because the request that causes them succeeds, however

the search failed to finish. This occurs when the time-limit of two minutes is reached,

and the any-time algorithm is interrupted. Of the 33215 requests during the simulation

of the users defined in table 6.1, only 900 requests suffered soft failures. This is less than

3%. After looking at the results returned by these 900 requests, only 8 were determined

to be detrimental to the simulation. Each of these 8 requests caused more than 100

components in the system to be removed in order to be satisfied. This is due to the

criterion -removed not being fully optimised before being interrupted. There are two

interesting points that were observed with these 8 requests:

1. seven of them occurred during the Ubuntu 10.04 release month of April 2010.

114



CHAPTER 6. EXPERIMENTS, RESULTS AND ANALYSIS

The remainder of the 892 soft failures are evenly distributed over the year.

2. five times the component that was requested to be installed was removed by the

following requests.

The first point implies that these detrimental soft-failures occur because of the increased

release of components during the Ubuntu release. The second point implies that the

components themselves are over constrained and thus removed in future systems. The

effect of these detrimental soft failures can be seen in figure 6.2 where the standard

deviation of change for both “Always Install” and “Always Upgrade&Install” users

increases after the Ubuntu 10.04 release. Given that only 8 such failures occurred,

this is seen as a minor impact on the validity of the simulation. These failures may

be reduced or removed by increasing the time before the algorithm is interrupted, or

by using more powerful hardware to perform the simulations. In all other experiments

detrimental soft failures are searched for, however none were found.

6.1.3 Upgrade Probability Effects

The effect of a user upgrading their system can be measured by altering the probability

they upgrade. The users simulated are described in table 6.2. These users are compared

User Name # simulated u i

Upgrade once a month 10 0.03 (1/30) 0
Upgrade twice a month 10 0.06 (1/15) 0
Upgrade once a week 10 0.14 (1/7) 0
Upgrade twice a week 10 0.29 (1/3.5) 0

Table 6.2: Configuration of users with variable probability to upgrade.

to the “Always Upgrade” user described in table 6.1. The up-to-date distance per

component for these users is compared in figure 6.3. This figure shows that upgrading

less frequently has it’s greatest effect over the release of the Ubuntu 10.04. This is

most noticeable in the “Upgrade once a month” users. The increased release of newer

versions of components makes systems that do not frequently upgrade quickly become

out of date.

The mean UTTDpC of the simulated users plotted against their frequency (1/u) of

upgrading is presented in figure 6.4. The figure shows the mean UTTDpC of “Always

Upgrade” is 0.258 and the “Upgrade twice a week” users’ mean is 0.267. This is a

difference of 0.009 UTTDpC. This difference can be illustrated with an example: given

a system of 1000 components and a user that upgrades twice a week, they will have on

average 9 components more out-of-date than if they upgraded every day. This figure
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Figure 6.3: The UTTDpC of the variable upgrade users.

Figure 6.4: The mean UTTDpC against of the frequency a user upgrades (1/u)
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also shows the diminishing return when increasing the amount a user upgrades. As a

user upgrades more frequently, the amount of out-of-dateness their system is reduced.

So the difference in UTTDpC between upgrading monthly compared to twice a month

is far greater than upgrading weekly compared to twice a week.

The total change of these users is presented in figure 6.5. This figure shows that

Figure 6.5: The mean total change of the variable upgrade users.

upgrading causes significantly more change in the system than installing. The total

change of a “Upgrade once a month” user has a greater total change than a “Always

Install” user.

This figure also shows that upgrading less frequently requires less change. This is in part

due to the fact that updating once a month means that the majority of the month there

is no change. However, under further analysis another effect was noticed that reduced

change of the users that upgraded less frequently. This occurs when many versions of

a component is released in quick succession, making upgrading to each interim version

not required. For example, if a component releases two versions within a week, a user

who upgrades every day will upgrade twice and a user that upgrades at the end of the

week will only upgrade once.

The amount of change this effect causes can be found out by looking at the “Always

Upgrade” user. This user upgraded the same component within seven days on 23
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different occasions. This may seem like an insignificant amount of change, especially

since the “Always Upgrade” user changes over 1500 components during the year.

However, these changes may introduce bugs and are an unnecessary risk to the users

system. Additionally, as a user installs more components this will likely increase the

amount this type of change occurs.

By updating less frequently the change caused by rapid releasing the components is

reduced. However, this reduction is by chance alone. For example, if a user upgrades

once a month then they will likely miss many of the rapid releases that happened

during the month. A user that upgrades during such a release will have a component

(potentially with bugs) until they upgrade again in a month.

To actively reduce this type of change, a novel criterion is presented in section 6.3.

6.1.4 Install Probability Effects

By altering the probability which a user installs a component into their system, the

effect this has on change can be studied2. The users studied are described in table 6.3.

These users are compared to the “Always Install” users described in table 6.1.

User Name # simulated u i

Install once a month 30 0 0.03 (1/30)
Install twice a month 30 0 0.06 (1/15)
Install once a week 30 0 0.14 (1/7)
Install twice a week 30 0 0.29 (1/3.5)

Table 6.3: Configuration of users with variable probability to install a component.

The total change of these users is presented in figure 6.6. This figure shows the range of

possible change given the probability to install a component. It also shows the change

is inversely proportional to the frequency of installing, i.e. “Install twice a week” users

change twice as much as “Install once a week” users.

The results from these simulations are entirely dependent on the selection of components

to install. A discussion of the validity of this selection is given in section 4.4.1.

2As discussed before, the probability to install will have little effect on UTTDpC. Therefore, out-
of-dateness is not studied here.
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Figure 6.6: The mean total change of the variable install users

6.2 Reduction of Out-of-dateness During Evolution

In the previous section the criteria used during evolution were the criteria used by

apt-get. This criteria limits the up-to-dateness of the system by prioritising the

minimisation of installing new components. Altering this criteria from -removed,-

new,-uptodatedistance to -removed,-uptodatedistance,-new will let progressive

users fully upgrade their system, as they prioritize up-to-dateness over change. The

simulated user is described in table 6.4. This user has the upgrade criteria U assigned

User Name # simulated u i

Progressive Always Upgrade 1 1 0

Table 6.4: Configuration of progressive user that always upgrades.

to -removed,-uptodatedistance,-new. It is compared to the “Always Upgrade”

user that is the same except its upgrade criteria U is assigned -removed,-new,-

uptodatedistance.

Figure 6.7 presents the UTTDpC of these users.

This figure shows that the progressive criteria reduces the out-of-dateness of the

systems. The final UTTDpC for the “Always Upgrade” user is 0.72 compared to 0.48
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Figure 6.7: The UTTDpC of the simulated progressive user.

of the “Progressive Always Upgrade” user. That is, a user who upgrades with the

progressive criteira will have a system that is 24% less out-of-date.

The UTTDpC of these systems is most differentiated during the release of Ubuntu 10.04.

At this time new versions of components are being released quickly. The “Progressive

Always Upgrade” user can upgrade these components if they require new components

to be installed where the “Always Upgrade” user cannot.

These are promising results, showing that it is possible to reduce the out-of-dateness of

a system. However, this comes at the cost of increased change. This additional change

comes from the 90 new components that the progressive change installs. These new

components are also upgraded 258 times throughout the year. The total additional

change when using a progressive user is therefore 348 changes over a year.

When a user upgrades their system with the progressive upgrade criteria at the end of

the year their system is 24% less out-of-date at the cost of an additional 348 changes.

Users that prefer to have an up-to-date system may favour this criteria over the apt-get

criteria. This criteria is further simulated in section 6.4.
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6.3 Reduction of Change During Evolution

Releasing multiple versions of a component in a small amount of time can cause

unnecessary change to a system. To reduce this change a criterion is defined that

does not upgrade to a component until it has become stable. A component is stable

if no better version is released within a certain amount of time after its release. The

stable function is defined to return true if a component is stable.

Definition 39 The function stable takes a component c, a number of days d, and the

current time t and returns true iff:

1. the component was not released within d days of time t.

2. no component was released within d days after c was released that has the same

name and a greater version than c.

The first part of the definition ensures that the function waits d days before returning

that the component is stable. The second part ensures that if a better version is released

within d days, the component is returned as not stable.

A criterion using this function can then be defined:

Definition 40 Given the set of components Ct and number of days d, the unstable

criterion is defined as critus = 〈rankusα ,≥〉, where

rankusα (β) =
∑

c∈β where c is not stable(c, d, t)

That is the ranking function rankusα (β) returns the number of unstable components in

the system β. The criterion is defined to minimise this function.

The mapping between this criterion, MOF and the PB criteria is presented in table

6.5, with a full description in appendix B. In this mapping the amount of days d is left

MOF CoSyE criterion PB criterion
-unstable(d) critus = 〈rankusα ,≥〉 〈fus, <, Ius〉

Table 6.5: Mapping of the unstable criterion between MOF, CoSyE and PB

undefined, allowing a range of different values to be simulated.

The users simulated are described in table 6.6. These users are compared to the“Always

Upgrade” user described in table 6.1.

The UTTDpC of these simulated users are presented in figure 6.8.
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User Name # simulated u d

7 Days US Upgrade 1 1 7
14 Days US Upgrade 1 1 14
21 Days US Upgrade 1 1 21
28 Days US Upgrade 1 1 28

Table 6.6: Configuration of users using the unstable criterion where U is -removed,-

new,-unstable(d),-uptodatedistance

Figure 6.8: The UTTDpC of the simulated users using the unstable criterion

This figure shows the cost of using this criterion, which is that the system is d days

out-of-date while the criterion waits for the components to stabilise. The difference

between the mean UTTDpC of the “Always Upgrade” user and the user “7 Days US

Upgrade” is 0.025 UTTDpC. This increases linearly with the other users; “14 Days US

Upgrade” is 0.05, “21 Days US Upgrade” is 0.078, and “28 Days US Upgrade” is 0.104.

The cost of waiting for the components to become stable is 0.0036 UTTDpC per day.

The reduction in change for these users is described in table 6.7. This is measured by

subtracting the total change of the “Always Upgrade” user d days before the end of the

simulation from the total change of the “d Days US Upgrade” user. This calculation

takes into account the delay in upgrading caused when waiting for components to

become stable. This table also includes the estimate from the “Always Upgrade” user.

This is a total of the amount of occurrences the “Always Upgrade” user upgraded the
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same component within d days.

User Name Reduction in change “Always Upgrade” estimate

7 Days US Upgrade 23 23
14 Days US Upgrade 29 31
21 Days US Upgrade 41 46
28 Days US Upgrade 59 68

Table 6.7: Reduced change compared to the estimated reduced change of using the
unstable criterion.

This table shows that the reduction in change grows quickly. However, as the amount

of days that is waited for a component to become stable is increased, this criterion may

start to detrimentally effect a component system by being excessively out-of-date.

Another aspect this table shows is the estimate of this change from the “Always

Upgrade” user. This estimate differs from the actual reduction of the unstable criterion

because of components waiting to become stable at the end of the simulation. This

estimate is later used to determine the amount of change that could be reduced. Using

this estimate to calculate the potential saved change is preferred, as simulation is an

expensive task and with such an accurate estimator, it is deemed unnecessary.

6.4 Realistic Evolution

During the previous experiments the probabilities a user upgrades and installs have

been assigned values that may not be “realistic”. This section presents the experiment

where these variables are assigned values extracted from submitted user’s apt-get

logs. Four users are defined, “High Install”, “High Upgrade”, “Medium Change” and

“Low change”. These users are then assigned the apt-get criteria, and the “Progressive

Upgrade” criteria and simulated. Using the estimate described in the previous section,

the potential reduction in change for these users if they used the unstable criterion is

measured.

This section first describes the method used to extract the information from the apt-

get logs and define the users variables. The results from the simulation of these users

is then discussed and analysed.
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6.4.1 Extracting Information from the User Submitted Logs

As previously discussed in chapter 4, during the conducted survey users where asked

to submit their apt-get logs. Nineteen logs were submitted from users using apt-get

on either Debian or Ubuntu systems. The length of time these logs record range over

a period between 23 and 277 days long. In section 5.5 these logs were used to validate

the simulation’s output. This section describes how these logs are parsed to measure

the probability a user upgrades and installs a component. Through using the k-means

clustering algorithm, four general users are extracted and described.

To give an example of the information included in an apt-get log, an extract is shown

in figure 6.9.

...

Start-Date: 2010-12-21 11:32:28

Install: libnet-daemon-perl (0.43-1), ...

Upgrade: mysql-common (5.1.41-3ubuntu12.6, 5.1.41-3ubuntu12.8), ...

End-Date: 2010-12-21 11:33:03

...

Figure 6.9: An extract of an apt-get log file

These logs describe the changes made to the system by apt-get, and not necessarily

what the user requested to cause the change. However, using the constraints that apt-

get employs to make changes, the user request can be calculated. These constraints

are:

• apt-get will never install or remove a component if the system is upgraded.

• apt-get will only install a package if one has been selected to be installed.

Using these constraints each log is processed and the dates a user upgraded or installed

a component are extracted. With this information the probability that a user upgrades

or installs a component on a given day is calculated. The k-means algorithm (where

k = 4) is used to cluster and find the center points for four types of users. The results

of this process are presented in figure 6.10 and table 6.8 .
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Figure 6.10: The upgrade and install probabilities of the submitted apt-get logs and the
“realistic” users

User Name u i

High Install (HI) 0.422 0.764
Medium Change (MC) 0.222 0.259
High Upgrade (HU) 0.561 0.192
Low Change (LC) 0.186 0.086

Table 6.8: Configuration of “realistic” users extracted from the submitted apt-get logs

6.4.2 Simulation of Realistic Users

Above some realistic users are created by extracting information from user sub-

mitted logs. These users are simulated using the apt-get upgrade criteria -

removed,-new,-uptodatedistance and the progressive upgrade criteria -removed,-

uptodatedistance,-new. The progressive users’ names are prefixed with “Pro. Up-

grade” where the users using the apt-get criteria are not changed.

The UTTDpC of these users are presented in figure 6.11 and table 6.9.

This figure shows that using the apt-get upgrade criteria results in a system that after

a year of simulation is about 0.8 UTTDpC out of date for all users. The only noticeable

difference between these users is that“High Install”users’ systems take longer to become
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Figure 6.11: The UTTDpC for the simulated “realistic” users. Top: the apt-get criteria
users. Bottom: the progressive users.
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User Name apt-get criteria Progressive criteria % Less UTTDpC

High Install (HI) 0.798 0.433 46%
Medium Change (MC) 0.795 0.633 20%
High Upgrade (HU) 0.826 0.418 49%
Low Change (LC) 0.773 0.620 24%

Table 6.9: The mean final UTTDpC of the simulated “realistic” users using apt-get and
progressive criteria

up-to-date after the Ubuntu 10.04 release.

The users “Pro. Upgrade High Install” and “Pro. Upgrade High Update” benefit the

most from using the progressive upgrade criteria. These two users are about 0.42

UTTDpC at the end of the simulations. This is compared to the other two progressive

users who are about 0.62 UTTDpC out-of-date. These results show that using the

progressive criteria has the most benefit for users that upgrade the most.

The total changes of these users are presented in figure 6.12 and table 6.10.

User Name apt-get criteria Progressive criteria % Added Change

High Install (HI) 3176 4043 27%
Medium Change (MC) 2291 2660 16%
High Upgrade (HU) 2123 2842 34%
Low Change (LC) 1903 2212 16%

Table 6.10: The mean total change of the simulated “realistic” users using apt-get and
progressive criteria

This figure shows the additional change required when using the progressive criteria. In

this figure it can be seen that the total change of“High Install”users for both criteria are

significantly more than the other users. Additionally it shows that the “High Upgrade”

user’s total change is significantly increased when using the progressive criteria. This

can be seen in the final months of the simulation where the rate of change increases

due to the upcoming release of Ubuntu 10.10.

The reduced change when using the unstable criterion can be estimated for each of

these users. This is accomplished by counting the amount of times each user upgrades

the same component within d days. These results are presented in table 6.11.

This table shows that the “High Install” and “High Upgrade” users will have the most

benefit using the unstable criterion. This is likely due to their high probability they

upgrade their systems. However, users that upgrade less frequently, e.g. the “Low

Change” users, are less likely to be concerned with their systems out-of-dateness and

may prefer a higher value for d. This would increase the benefit for these users as well.
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Figure 6.12: The mean total change for the simulated“realistic”users. Top: the apt-get

criteria users. Bottom: the progressive users.
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User Name d = 7 d = 14 d = 21 d = 28

HI 24.58 43.24 67.22 93.88
HU 19.08 31.32 48.4 70.52
MC 11.54 26.98 45.14 65.1
LC 8.5 22.54 38.48 53.56
Pro. HI 30.72 57.0 85.52 117.52
Pro. HU 32.02 56.2 79.62 110.1
Pro. MC 14.9 30.28 48.28 67.66
Pro. LC 12.4 24.84 41.3 59.4

Table 6.11: The mean estimated reduced change when using the unstable criterion for the
simulated “realistic” users using apt-get and progressive criteria

6.5 Answers

The above performed experiments were conducted in order to answer the questions:

1. What consequences do a user’s choices have on their system?

2. Can the out-of-dateness of a system be reduced?

3. Can the change of a system be reduced?

4. How do the systems of realistic users evolve?

These questions are addressed here.

6.5.1 User Choices

The notable consequences of a user’s requests to change their system were measured

through the experiments in section 6.1. These experiments simulated users using the

apt-get criteria to alter systems. These consequences are summarised as:

• A system will always become more out-of-date partially due to the criteria of

apt-get stopping the installation of new packages to enable the upgrading of

components.

• The majority of change during evolution is caused by a user upgrading. Installing

new components increases the amount of change when upgrading.

• Systems become out-of-date at the rate at which components evolve. Components

evolve at a higher rate during release cycles.
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• Reuse decreases the rate of change during CSE. This is due to the two effects;

reuse decreases the installation rate of components and this decreases the amount

of components necessary to be upgraded.

• There were two types of failures observed to occur:

– Hard failures: where the constraints of a request could not be satisfied.

These occurred 0.12% during the simulation.

– Soft failures: where the constraints were satisfied, though the returned

solution was possibly not optimal. These occurred in 3% of the requests,

though only 1% of these were determined to be detrimental to the system.

Such detrimental soft failures occur more frequently during release cycles

when components are evolving at a higher rate.

• Increasing the frequency of upgrading has depreciating returns on reducing a

systems out-of-dateness. It may also increase change due to components being

repeatedly upgraded if they quickly release multiple versions.

6.5.2 Reduce Out-of-dateness

As noted above, a system becomes out-of-date partially due to the apt-get criteria not

allowing new components to be installed. To remove this restriction the order of the

apt-get criteria was altered to the “progressive” criteria. Using this criteria to upgrade

a system every day was shown to decrease the out-of-dateness by 24% at the cost of

increasing change by 21%. This additional change was due to the new components

being installed and upgraded during the simulation.

6.5.3 Reduce Change

Some of the change caused when upgrading a system was due to rapidly released

components being repeatedly upgraded. For a user that upgrades every day, there

were 23 occasions were a component being upgraded twice within a week. This is

unnecessary change that introduces risk into a system. The unstable criterion was

defined to reduce this change by waiting for a component to become stable over a

period of days. The cost of using the unstable criterion was the system remains out-

of-date by the number of days waited for components to become stable. However,

through using the unstable criterion waiting a week for components to become stable

all 23 instances of this unnecessary change were removed.
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6.5.4 Real Users

To simulate realistic users the probability a user upgrades and installs were extracted

from user’s submitted logs. Using the k-means algorithm four stereotypes of user were

created; ‘High Install”, “High Upgrade”, “Medium Change” and “Low change”. These

users were simulated using the apt-get criteria and the progressive criteria, and the

lowered change from using the unstable criterion was estimated. This has shown that

the greatest benefits for using the progressive criteria and the unstable criterion is for

the “High Install” and “High Upgrade” users. This is due to their higher frequency they

upgrade their systems.

6.6 Summary

This chapter presented a series of experiments that simulated various users to study

CSE. These experiments explored the consequences of users changing their systems,

and the novel proposed progressive and unstable criteria. The next chapter describes

the conclusions, the related work, and the potential future research of CSE.
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Conclusion

This research has investigated the evolution of component systems using a developed

simulation. To build this simulation, first the background of software evolution,

component-based software engineering and component systems were explored (chapter

2). The models CoSyE (chapter 3) and SimUser (chapter 4) were then developed to

describe a component system evolving through repetitive change and the user that

requests the changes. GJSolver (chapter 5) was then created to calculate the exact

changes made to a system during evolution. The verification and validation of these

artifacts were discussed, in accordance with the methodology (Law, 2005).

Experiments were defined that use these artifacts to simulate the evolution of many

different systems. The primary focus of these experiments was to measure and reduce

the out-of-dateness and changes made to the systems during evolution. The experiments

have provided empirical evidence:

• Upgrading a system causes the majority of change and installing new components

only adds to this change by increasing the number of components to be upgraded.

• Upgrading frequently (i.e. once a day) is unnecessary as it has little impact on

the out-of-dateness of systems. However, during periods where new component

versions are released quickly, e.g. during Ubuntu releases, it is important to

upgrade frequently.

• Regular updates cannot ensure that a component system stays up-to-date. This is

in part due to the criteria used by apt-get that restricts adding new components

when upgrading.

• Frequently upgrading a system may cause additional change when many versions

of a component are released quickly, forcing it to be upgraded multiple times.
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This research also provides empirical evidence and quantitative measurements of the

benefit of reuse, especially during CSE. The main benefit during CSE is the reduced

change due to lowering the amount of components to be installed, that in turn lowers

the amount of components that are upgraded. Reuse was estimated to save 650 changes

on a system during the year.

To reduce the out-of-dateness of systems during evolution, the progressive criteria was

proposed. This criteria allows new components to be installed to enable the upgrading

of components. This alteration was shown to be most effective for users that upgrade

frequently. It was shown to decrease the out-of-dateness of a system by as much as 49%

at the cost of increasing change by 34%. For users that prefer up-to-date systems, this

trade-off might be favourable for their system.

To reduce the change made to a system during CSE the unstable criterion was proposed.

This criterion waits for a period of days for a component to cease releasing newer version

and become stable. By using this criterion and waiting a week for a component to

become stable before upgrading it, it was estimated to save some types of users more

than 30 changes over a year. These changes could introduce bugs into the system and

are seen as unnecessary. Using this criterion comes at the cost of the system always

being out-of-date by the number of days that are waited for components to become

stable. For users that prefer to reduce change to their systems, this may be a tolerable

trade-off.

The remainder of this chapter will examine the proposed thesis in chapter 1, the

potential future research, and provide a closing remark.

7.1 Thesis Validation

This research started with the thesis:

It is possible to reduce the negative effects of component system evolution by

altering the mechanisms by which systems are changed.

The steps taken to validate this thesis were:

• To develop a reproducible and controllable environment in which to measure the

effects of CSE.

• To use this environment to study how systems evolve.
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• To alter the mechanisms by which systems are changed and study their impact

on CSE.

• To demonstrate a reduction on change and out-of-dateness using such alterations.

To address these steps:

• A simulation was developed.

• It was used to study CSE through simulating the evolution of many Ubuntu

systems.

• The novel unstable criterion and progressive criteria were proposed and their

impacts on CSE studied.

• The unstable criterion and progressive criteria were then simulated to approx-

imate the evolution of real component systems and they were demonstrated to

reduce change and out-of-dateness.

It is therefore possible to conclude that the thesis is supported.

7.2 Future Research

The largest area of future research is in the simulation of additional systems, such

as Eclipse, so they can be studied as they evolve. Through such simulation the

conclusions of this research can be shown to be either invariant between component

systems or to be Ubuntu-specific. The core hurdle of accomplishing this is that much

of the collected information in this study does not exist for other component models.

Component models like Eclipse do not have their history archived as precisely as

Ubuntu. Information, like the Ubuntu repository, does not exist or does not contain

the detailed information for other component models. Resources of information are

available, but can be incomplete. For example, the Usage Data Collector1 for the

Eclipse project (similar to the Ubuntu Popcon) collected information on popular Eclipse

components. However, this project was shut down as it was deemed not to have a

significant return on investment.

Another area of research involves altering and extending the CoSyE and SimUser

models to more precisely describe CSE. An aspect of CSE that is not included in

CoSyE is that a component system may only view a certain subset of components that

1http://www.eclipse.org/epp/usagedata/faq.php
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exist. This is described in section 4.4 as the view Ubuntu has of its repository. The

SimUser has many aspects that could be added to make the simulated users closer to

reality. Constraints such as only upgrading during the work week, or additional types

of request like removal of components that are no longer required, could create more

valid simulations.

The development of criteria that use other properties of components, could be used to

more accurately represent the user’s preferences. Such properties could be collected

from additional sources, e.g. component meta-data, component contracts (Watkins

et al., 1999), repositories (Guo and Luqi, 2000), composition testing (Li et al., 2008).

These could be used to create criteria that optimise for size, reliability, licence, even

validity. Such criteria could be simulated and their effect, positive or negative, could

be measured using the simulation developed in this research.

The part of the simulation that has the most room for improvement is the selection

of the requests made by the user. This is when they select to upgrade, when they

select to install, and what components they select to install. By studying real users

changing their systems, either through collecting more apt-get logs or through direct

observation, a more valid simulation could be created.

Comparing the results from the simulations to the evolution of real systems would be

able to validate the conclusions drawn from the simulation. This could be accomplished

using the MPM solver (Abate and DiCosmo, 2011) from Mancoosi. This solver has

already been proposed for the modification of real systems. Through modification or

extension of MPM, the proposed criteria could be used to evolve real Ubuntu systems.

Such a study would require significant resources, but its results and conclusions would

be worthwhile as they could provide a direct benefit to a very large number of users.

7.3 Closing Remark

This research has given an understanding of how component systems evolve and can

be used to provide users and developers with insights into the effects of their choices.

Additionally, this research has proposed two novel ways to reduce negative effects during

CSE and the tools in with which to measure the effectiveness of these techniques. This

research, therefore, has the potential of impacting the millions of Ubuntu and Eclipse

systems that are currently evolving.
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CUDF* Parsing to CoSyE

Instance

In this section, the parsing of a CUDF* document (presented in section 3.1) to a CoSyE

instance is described.

The package stanzas in the document define the sets of components Ct1 , . . . , Ctn ,

the initial component system αt0 , and the sets of system constraints ωt1 , . . . , ωtn .

The preamble stanza describes the time t0, the request stanzas define a series of

times t1, . . . , tn, sets of user requests δt1 , . . . , δtn , and the evolution preference orders

≺αt0
, . . . ,≺αtn−1

.

A.1 CUDF* BNF Grammar

The CUDF* language is described in the EBNF grammar presented in figure A.1. This

is an extension of the CUDF EBNF grammar given by Mancoosi1 combined with the

MOF EBNF grammar. The notable differences between CUDF and CUDF* is that

there can be multiple requests, where each request defines a time and a MOF criteria.

Other differences are that the premable defines a time value, and each component must

also define a time value.

1http://www.mancoosi.org/cudf/ebnf/ visited 26/3/2012
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(* Top Level Elements *)

<cudf> ::= <preamble> <packagedescription>* <request>*

<preamble> ::= "preamble:" <time> "\n" <stanza>

<packagedescription> ::= "package:" <name> "\n"

"version:" <nat> "\n"

"time:" <time> "\n" <stanza>

<request> ::= "request:" <time>, <criteria> "\n" <stanza>

(* Structure *)

<stanza> ::= [<property> "\n"]* "\n"

<property> ::= <key> ":" <value>

<key> ::= <ident>

<value> ::= <bool> | <int> | <nat> | <string> | <name> | <ident>

| <vpkgformula> | <vpkglist> | <veqpkglist> | <typedecls>

(* Types of Package Formula *)

<vpkgformula> ::= <orformula> ("," <orformula>)* | ""

<orformula> ::= <vpkg> ("|" <vpkg>)*

<vpkglist> ::= <vpkg> ("," <vpkg>)* | ""

<vpkg> ::= <name> (<relop> <version>)?

<relop> ::= "=" | "!=" | ">=" | ">" | "<=" | "<"

<veqpkglist> ::= <veqpkg> ("," <veqpkg>)* | ""

<veqpkg> ::= <name> ("=" <version>)?

(* Preamble Type Declarations *)

<typedecls> ::= <typedecl> ("," <typedecl>)*

<typedecl> ::= ident ":" type ("=" "["<nat>"]")?

<type> ::= "int"

(* Bottom Level Types *)

<name> ::= ["A"-"Z" | "a"-"z" | "0"-"9" | "-"

| "+" | "." | "/" | "@" | "(" ")" | "%"]+

<ident> ::= ["a"-"z"][""a"-"z" | "0"-"9"]+

<nat> ::= ["0"-"9"]+

<bool> ::= "true" | "false"

<int> ::= ("+"|"-")? ["0"-"9"]+

<string> ::= [^"\n"| ^"\n"]* (*Unicode string with no CR or LF*)

<time> ::= <nat>

(* MOF *)

<criteria> ::= <criterion> ("," <criterion>)*

<criterion> ::= <string>

Figure A.1: CUDF* BNF Grammar
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A.2 Additional Stanza Constraints

In figure A.1, a CUDF* document is described as a preamble, a list of package

descriptions, and a list of requests. The preamble is a stanza started with the text

preamble:. A package description is a stanza started with the text package: followed

by a package name, a package version, and a time. A request is a stanza started with

the text request:, followed by a time and a MOF criteria string.

This grammar does not list all the constraints for each stanza, and each property. For

example, the property with key installed can only be in a package description, and

can only have a <bool> value. Each stanza type (preamble, package description or

request) can consist of different properties, where each properties value can be of a

different type. In tables A.1, A.2 and A.3, the allowed properties for the preamble, a

package description, and the request are described respectively.

Property Name Value Type Default Value

property <typedecl> ""

Table A.1: CUDF* Preamble properties

Property Name Value Type Default Value

depends <vpkgformula> ""

conflicts <vpkglist> ""

provides <veqpkglist> ""

installed <bool> "false"

keep <ident> either "version", "package", or "none" "none"

Table A.2: CUDF* Package Description properties

Property Name Value Type Default Value

install <vpkglist> ""

remove <vpkglist> ""

upgrade <vpkglist> | "*" ""

Table A.3: CUDF* Request properties

In addition to the properties allowed in the package description, as presented in table

A.2, extra properties can be defined in the preamble’s property property. This is

described in section 3.2.1.3, and restricted to only defining new <int> typed properties.
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A.3 Parsing

How a CUDF* represented and parsed to create the CoSyE instance is described in

this section.

Definition 41 A CUDF* document is a tuple containing a preamble stanza

(preamble), a set of package description stanzas (PD), and set of request stanzas

(REQUESTS), i.e. 〈premable, PD,REQUESTS〉.

Each stanza can be seen as a function:

Definition 42 A stanza is a function that takes a key key, and returns a value value,

s(key) =value.

This function is abbreviated to use the infix notation ., i.e. s.key=value. For a

package description stanza pd, pd.name returns the <name> value, pd.version returns

the <nat> value, and pd.time returns the time value. For a request stanza r, r.time

returns the time value, and r.criteria returns the criteria value. For the preamble

stanza premable, premable.time returns the time value.

The set of times T is the set of natural numbers N, totally ordered under ≤. The set

of names N is the set of strings that match the regular expressions of <name> in figure

A.1. The set of versions V is the set of natural numbers N, totally ordered under ≤.

The first definition is to define the series of times.

Definition 43 Given a CUDF* document 〈premable, PD,REQUESTS〉, t0 is de-

fined as premable.time, and t1, . . . , tn are defined as r1.time, . . . , rn.time where

REQUESTS = {r1, . . . , rn}.

A.4 Components

The sets of components Ct0 , . . . , Ctn , and component system αt0 are defined given a

CUDF* document.

Definition 44 The function pd2c is defined to take a package description stanza pd,

and return a component, pd2c(pd) = 〈pd.name, pd.version 〉.

The infix notation . can also be used to abbreviate component properties, e.g. for a

package description pd, and component c = vpd2c(pd), pd.name = c.name.
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Definition 45 Given a CUDF* document 〈premable, PD,REQUESTS〉, a set of

components Ct is defined as the set of package descriptions mapped using the function

pd2c, whose time value is less than or equal to t, i.e. Ct = {pd2c(pd) | pd ∈
PD and pd.time≤ t}

Ct is then a “slice” of the components that existed at time t. The sets of components

Ct0 , . . . , Ctn are defined as slices of the set of components given the times t0, . . . , tn.

Definition 46 Given a CUDF* document 〈premable, PD,REQUESTS〉, and set of

components Ct0, the initial component system αt0 is the set of components in Ct0 whose

installed property equals true, i.e. αt0 = {c | c ∈ Ct0 and c.installed = "true" }

A.5 Features

CUDF* specifies an additional aspect to system constraints, that of a feature (this can

also be described as a service, or a virtual package). Each component can provide

a many features, more over, a component can provide many versions of a feature.

Therefore, a component provides a set of features, where each feature has a name, and

a set of versions.

Definition 47 A feature f is a pair consisting of a name n ∈ N and a set of versions

V ⊆ V , i.e. f = 〈n, V 〉

The features provided by a component are defined in the property with key provides,

which is of the type <veqpkglist>. This type is a list of <veqpkg>, either of the form

<name> or <name> "=" <version>.

• <name> := (<name>,V)

• <name> = <version> := (<fname>, {<version>})

That is, a <veqpkg> which does not define a version, is defined as a feature that provides

all versions. A <veqpkg> the defines a version, is defined as a feature that provides a

singleton set of that version.

Definition 48 The function providedFeatures is defined to take a component c, and

return the set of features that component provides, providedFeatures(c) = the set of

features mapped from the c.provides value.
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For example, a component a is defined such that a.provides = "n = 10, m"; the

function providedFeatures(a) returns the set of features {("n", {10}), ("m",V)}.

A.6 Package formula

A package formula, of type <vpkg>, is a query for a set of components from a CUDF*

document. This formula is the mechanism that defines all constraints and requests in

the CUDF specification.

Each <vpkg> is of the form “<name>” or “<name> <relop> <version>”.

Definition 49 A package formula pf is a triple, name n, version v, and relation r,

pf = 〈n, v, r〉.

The syntax of <relop> is parsed to a mathematical relation with the function relop:

relop = { "=" → =, "!=" →6=, ">=" → ≥, ">" → >, "<=" → ≤, "<" → <}.

• <name> := 〈<name>, 0, >〉

• <name> <relop> <version> := 〈<name>, <version>, relop(<relop>)〉

That is, a <vpkg> that does not define a relation or version, is defined as a package

formula that is greater than zero.

Definition 50 A component c = 〈n, v〉 satisfies a package formula 〈m,w, r〉 iff

(n = m and v r w), or (∃(o, V ) ∈ providedFeatures(c) where o = n and ∃x ∈ V

such that v r x).

That is, a component satisfies a package formula if it has the same name, and its version

relates to the package formula version; or the component provides a feature with the

same name that contains a version that relates to package formula version.

Definition 51 Given a set of components Cti, the function packagesThatSatisfy

takes a package formula pf and returns all components in Cti that satisfy it, i.e.

packagesThatSatisfy(pf) = {c | c ∈ Cti and c satisfies pf}
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A.6.1 Sets of Package Formula

The elements <orformula> and <vpkglist> are both lists of <vpkg>’s. The element

<vpkgformula> is a list of <orformula>’s, therefore is a list of lists of <vpkg>’s.

The mapping of these elements is trivial:

• <orformula> := a set of package formula.

• <vpkglist> := a set of package formula.

• <vpkgformula> := a set of sets of package formula.

Definition 52 Given a set of components Cti, the function allPackagesThatSatisfy

takes a set of package formula pkgflist and returns all components in Cti that

satisfy any package formula in the set, i.e. allPackagesThatSatisfy(pkgflist) =⋃
pf∈pkgflist

packagesThatSatisfy(pf)

A.7 System Constraints

Given a CUDF* document, there are three sets of constraints that make up a set of

system constraints ωti , each containing a different constraint type:

• keep constraints ωkeepti
are extracted from the values of keep properties of

components in αti−1 .

• dependency constraints ωdepti
are extracted from the values of depends properties

of components in Cti .

• conflict constraints ωconti are extracted from the conflicts properties of

components in Cti .

A set of system constraints ωti is the union of these, ωti = ωkeepti
∪ωdepti

∪ωconti . Therefore,

the sets of system constraints ωt1 , . . . , ωtn can be defined from a CUDF* document.

A.7.1 Keep Constraints

Given a CUDF* document, a set of keep constraints is ωkeepti
. These constraints are

extracted from the property with the key keep in the components in αti−1 .

The values of the property with key keep can be either none, version, or package. If

the value is none, then no constraints are generated.
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Definition 53 The function keep takes a component c, and returns a set of keep

constraints, such that

• if c.keep equals "none": keep(c) = ∅

• if c.keep equals "version": keep(c) = {c}

• if c.keep equals "package": keep(c) = {a1 ∨ . . . ∨ an} where {a1, . . . , an} = {b |
b ∈ Cti and b.name = c.name }

That is, the function keep takes a component c and to return a set of keep constraints

where

• if the value of c.keep equals "none" then no constraints are required.

• if the value of c.keep equals "version", the set of constraints ensures that the

component c will be kept in the system.

• if the value of c.keep equals "package", the constraint ensures that at least one

component with the same name as c will be kept in the system.

The set of all keep constraints can be defined as:

Definition 54 Given the component system αti−1, ωkeepti
=

⋃
c∈αti−1

keep(c).

A.7.2 Dependency Constraint

Given a CUDF* document, the set of dependency constraints is ωdepti
. These constraints

are extracted from the property depends in the components in the set Cti . The value

of the property with key depends is a <vpkgformula> which is mapped to a set of sets

of package formula.

Definition 55 Given a CUDF* document, the function dependsOn takes a component

a and a set of package formula pkgflist and returns a set with a single dependency

constraint, such that dependsOn(a, pkgflist) returns {a → c1 ∨ . . . cn} where

{c1, . . . , cn} = allPackagesThatSatisfy(pkgflist).

That is, dependsOn(a, pkgflist) creates the dependency constraint where a depends

on the disjunction of the union of all components that satisfy a package formula set.
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Definition 56 Given a CUDF* document, the function depends takes a component

a, and returns a set of dependency constraints, such that depends(a) returns⋃
pkgflst∈listpkgflist

dependsOn(a, pkgflst), where listpkgflist is mapped from the value

a.depends.

That is, depends returns the set of all dependency constraints for a component from

its depends property.

The set of all dependency constraints can be defined as:

Definition 57 Given the set of components Cti, ω
dep
ti

=
⋃

a∈Cti

depends(a).

A.7.3 Conflict Constraint

Given a CUDF* document, the set of conflict constraints is ωconti . These constraints are

extracted from the property conflicts in the components in the set Cti . The value of

the property with key conflicts is a <vpkglist> mapped to a set of package formula.

Definition 58 Given a CUDF* document, the function conflicts takes a component

a, and returns a set of conflict constraints, such that conflicts(a) returns {a → ¬c |
c ∈ allPackagesThatSatisfy(pkgflist) and c 6= a}, where pkgflist is mapped from

the value a.conflicts.

That is, the component a conflicts with any component that satisfies a package formula

in its conflict property, with the exception is that a component cannot conflict with

itself.

The set of all conflict constraints can be defined as:

Definition 59 Given the set of components Cti, ωconti =
⋃

a∈Cti

conflicts(a).

A.8 Request

Given a CUDF* document, there are three sets of constraints that make up a set of

request constraints δti , each containing a different user request type:

• the set of installation request constraints δinsti is extracted from value r.install

where r is the request stanza such that r.time = ti.
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• the set of remove request constraints δremti is extracted from the value r.remove

where r is the request stanza such that r.time = ti.

• the set of upgrade constraints δupgti
is extracted from the value r.upgrade where

r is the request stanza such that r.time = ti.

A set of user request constraints δti is the union of these, δti = δinsti ∪ δ
rem
ti ∪ δupgti

.

Therefore, the sets of requests δt1 , . . . , δtn can be defined from a CUDF* document.

A.8.1 Install

Given a CUDF* document, δinsti is extracted from value r.install where r is the request

stanza such that r.time = ti. The value r.install is of type <vpkglist> which can

be mapped to a set of package formula.

Definition 60 Given a CUDF* document, the function install takes a package formula

pf and returns a set containing one install request constraint, such that install(pf) =

{a1 ∨ . . . ∨ an} where {a1, . . . , an} = packagesThatSatisfy(pf).

Definition 61 Given a CUDF* document, a set of install request constraints δinsti =⋃
pf∈pkgflist

install(pf), where pkgflist is the set of package formula mapped from value

r.install where r is the request stanza such that r.time = ti.

A.8.2 Remove

Given a CUDF* document, δremti is extracted from value r.remove where r is the request

stanza such that r.time = ti. The value of r.remove is of type <vpkglist> which can

be mapped to a set of package formula.

Definition 62 Given a CUDF* document, a set of remove request constraints δremti

equals {¬a | a ∈ allPackagesThatSatisfy(pkgflist)}, where pkgflist is the set of

package formula mapped from value r.remove where r is the request stanza such that

r.time = ti.

A.8.3 Upgrade

Given a CUDF* document, the set of upgrade requests δupgti
is extracted from the value

request.upgrade. If the value r.upgrade is of type <vpkglist>, it can be mapped to
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a set of package formula. If the value of r.upgrade is equal to *, it can be mapped to

a set of package formula where {〈n, 0, >〉 | 〈n, v〉 ∈ αti−1}. That is, if the upgrade is

requested to upgrade *, then the request is to upgrade all packages currently installed.

Given a package formula, 〈n, v, op〉, an upgrade request contains two constraints:

1. only one component with the name n can be in the evolved system, this is

constraint type 5.

2. the component with name n should be have a greater than, or equal to, version

than the component with name n with the greatest version in αti−1 .

The first upgrade constraint:

Definition 63 Given a CUDF* document, the function upgrade1 takes a component

name n and returns an upgrade request constraint, upgrade1(n) = a1 + . . . + ai = 1

where {a1, . . . , ai} = packagesThatSatisfy(〈n, 0, >〉).

That is, upgrade1 returns the constraint that ensures exactly one version of a component

with name n will be in the evolved system.

The utility function maxversion is required:

Definition 64 Given a CUDF* document with component system αti−1, the function

maxversion takes a name n and returns the highest version of a component in αti−1

with name n, maxversion(n) = v | 〈n, v〉 ∈ αti−1 and there is no other component

〈n, v′〉 ∈ αti−1 where v < v′.

The second upgrade constraint:

Definition 65 Given a CUDF* document, the function upgrade2 takes a package

formula and returns an upgrade constraint, upgrade2(n) = a1 + . . . + ai = 1 where

{a1, . . . , ai} = packagesThatSatisfy(〈n,maxversion(n),≥〉).

That is, upgrade2 returns the constraint that the version of the component with name

n in the evolved system, must be greater than the maxversion can be in the evolved

system.

Definition 66 Given a CUDF* document, a set of upgrade request constraints δupgti

equals
⋃

〈n,v,op〉∈pkgflist
{upgrade1(n), upgrade2(n)}, where pkgflist is the set of package

formula mapped from value r.upgrade where r is the request stanza such that r.time

= ti.
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A.9 Criteria

Given a CUDF* document, an evolutionary preference order ≺αti−1
is extracted from

the value r.criteria where r is the request stanza such that r.time = ti. The value

r.criteria is a list of criterion separated by the delimiter “,” that can be mapped

to a tuple of strings 〈criterion1, . . . , criterionn〉.

Definition 67 A partial function critmap is defined such that it takes a string

criterionj and returns a criterion (from CoSyE) 〈rankjα,≤j〉, i.e. critmap(criterionj) =

〈rankjα,≤j〉.

A single lexicographic criterion 〈rankLα ,≤L〉 is defined using ⊕ as critmap(criterion1)⊕
. . .⊕ critmap(criterionn). 〈rankLα ,≤L〉 is used to create the evolution optimality order

≺αti−1
as described in definition 17.

This can be used to define the optimality orders ≺αt0
, . . . ,≺αtn−1

.
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Appendix B

Full Criteria Mapping

In this appendix a mapping between the CoSyE criteria and PB criteria in table B.1 is

presented.

Some utility functions are defined:

Definition 68 The function V : 2C×N takes a set of components α and a component

name n, and returns a set of components with name n that are in α, i.e. V (α, n) =

{〈n′, v〉 | 〈n′, v〉 ∈ α and n′ = n}

Definition 69 The function uptodatedistance takes a component 〈n, v〉 and a set of

components Ct and returns the number of components with the same name and a greater

version, i.e. uptodatedistance(〈n, v〉,Ct) = |{〈n, v′〉 | 〈n, v′〉 ∈ Ct and v′ > v}|

Definition 70 The set of names Nt is the set of all names of components in Ct.

MOF CoSyE criterion PB criterion

-changed critchange = 〈rankchangeα ,≤〉 〈fchange, <, Ichanged〉
-removed critremoved = 〈rankremovedα ,≤〉 〈fremoved, <, Iremoved〉
-new critnew = 〈ranknewα ,≤〉 〈fnew, <, Inew〉
-ovpp critovpp = 〈rankovppα ,≥〉 〈fovpp, <, Iovpp〉

-uptodatedistance critutdd = 〈rankutddα ,≥〉 〈futdd, <, Iutdd〉
-unstable(d) critus = 〈rankusα ,≥〉 〈fus, <, Ius〉

Table B.1: Mapping of the change, removed, new, one version per package, up-to-date
distance and unstable criteria between MOF, CoSyE and PB
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B.1 -changed

The change criterion is defined:

Definition 71 The change criterion is defined as critchange = 〈rankchangeα ,≤〉, where

rankchangeα (β) = |{n | n ∈ N and V (α, n) 6= V (β, n)}|.

Definition 72 Given a name n, a component system α, and the set of components

Ct, the auxiliary variable xn is defined with the set of literals {l1, . . . , li} = V (α, n) ∪
¬V (Ct/α, n) such that xn ⇔ l1 ∧ . . .∧ li. This xn can be converted into the set of CNF

clauses Jn = {{¬xn, l1}, . . . , {¬xn, ln}, {xn,¬l1, . . . ,¬li}}.

That is, xn is true only if all components with name n that are installed stay installed

and if not installed stay not installed.

Definition 73 Given a set of names Nt, the PB criterion is defined as 〈fchange, <
, Ichanged〉 where fchange is defined with the literals 〈¬xn1 , . . . ,¬xni〉 where 〈n1, . . . , ni〉 =

Nt, and integers 〈11, . . . , 1i〉. The formula Ichanged then equals Jn1 ∪ . . . ∪ Jni.

The PB criterion minimises the sum of names that have changed.

B.2 -removed

The removed criterion is defined:

Definition 74 The removed criterion is defined as critremoved = 〈rankremovedα ,≤〉,
where rankremovedα (β) = |{n | n ∈ N and V (α, n) 6= ∅ and V (β, n) = ∅}|.

Definition 75 Given a name n and the set of components Ct, the auxiliary variable

xn is defined given the set of literals {l1, . . . , li} = V (Ct, n) such that xn ⇔
l1 ∨ . . . ∨ li. This xn can be converted into the set of CNF clauses Jn =

{{xn,¬l1}, . . . , {xn,¬ln}, {¬xn, l1, . . . , li}}.

That is, xn is true only if the name n is in the solution.

Definition 76 Given a set of names in the system α is Nα, the PB criterion is defined

as 〈fremoved, <, Iremoved〉 where fremoved is defined with the literals 〈¬xn1 , . . . ,¬xni〉
where 〈n1, . . . , ni〉 = Nα, and integers 〈11, . . . , 1i〉. The formula Iremoved then equals

Jn1 ∪ . . . ∪ Jni.
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That is, the PB function sums the total number of names that have been removed from

α.

B.3 -new

The new criterion is defined:

Definition 77 The new criterion is defined as critnew = 〈ranknewα ,≤〉, where

ranknewα (β) = |{n | n ∈ N where V (α, n) = ∅ and V (β, n) 6= ∅}|.

The new criteria use the same definition of axillary variables from the removed criterion

in definition 75.

Definition 78 Given a set of names that are not in the system α is N6∈α, the PB

criterion is defined as 〈fremoved, <, Iremoved〉 where fnew is defined with the literals

〈xn1 , . . . , xni〉 where 〈n1, . . . , ni〉 = N6∈α, and integers 〈11, . . . , 1i〉. The formula Inew

then equals Jn1 ∪ . . . ∪ Jni.

That is, the PB function sums the total number of names that have been added to α.

B.4 -uptodatedistance

The UTTD criteria is defined:

Definition 79 Given the set of components Ct, the uptodate distance criterion is

defined as critutdd = 〈rankutddα ,≥〉, where rankutddα (β) =
∑

c∈β uptodatedistance(c,Ct).

No axillary variables are required for this criteria.

Definition 80 Given the set of components Ct the PB criterion is defined as

〈futdd, <, Iutdd〉 where futdd is defined with the literals {l1, . . . , li} = Ct, and integers

〈uptodatedistance(l1,Ct), . . . , uptodatedistance(li,Ct)〉. The formula Iutdd then equals

∅.

That is, the sum of the uptodatedistance for each component that is installed in the

system (where the literal is positive) is the returned value of futdd.
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B.5 -ovpp

The one version per package criterion is defined as:

Definition 81 Given the set of components Ct, the One Version per Package

criterion is defined as critovpp = 〈rankovppα ,≥〉, where rankovppα (β) =
∑

n∈N |V (β, n)| >
1.

This criteria is defined to minimise the number of components with more than one

version installed.

Definition 82 Given a name n and the set of components Ct, the auxiliary variable

xn is defined given the set of literals {l1, . . . , li} = V (Ct, n) such that xn is true iff two

or more of the literals l1, . . . , li are true. This xn is defined using the PB constraint

where the PB function is defined with literals 〈l1, . . . , li〉 tuple of integers 〈11, . . . , 1i〉,
the relationship is > and the integer k = 1.

That is, xn is true only if their are two components, both with name n installed.

Definition 83 Given the set of names Nt, the PB criterion is defined as 〈fovpp, <
, Iovpp〉 where fovpp is defined with the literals 〈xn1 , . . . , xni〉 where 〈n1, . . . , ni〉 = Nt,
and integers 〈11, . . . , 1i〉. The formula Iovpp then equals Jn1 ∪ . . . ∪ Jni.

B.6 -unstable(d)

The unstable criterion uses the stable function, from definition 39, to minimise the

number of unstable components.

Definition 84 Given a number of days d, a set of components Ct, and the function

stable(c, d, t) is modified to return 1 instead of true and 0 instead of false, the

unstable PB criterion is defined as 〈fus, <, Ius〉 where fus is defined with the literals

{l1, . . . , li} = Ct, and integers 〈stable(l1, d, t), . . . , stable(li, d, t)〉. The formula Ius

equals ∅.

152



Bibliography

P Abate and R DiCosmo. MPM: a modular package manager. In Proc. CBSE’2011,

2011.

P. Abate, A. Guerreiro, S. Laurière, R. Treinen, and S. Zacchiroli. Extension of an

existing package manager to produce traces of ugradeability problems in CUDF

format. Technical report, The Mancoosi Project, 2010.

C.E. Alchourrón, P. Gärdenfors, and D. Makinson. On the logic of theory change:

Partial meet contraction and revision functions. Journal of symbolic logic, 50(2):

510–530, 1985. ISSN 0022-4812.

A. Aleti, L. Grunske, I. Meedeniya, and I. Moser. Let the Ants Deploy Your Software:

an ACO Based Deployment Optimisation Strategy. In Proc. ASE’2009, pages 505–

509. IEEE Press, 2009.
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