Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

ENDOGENOUS METABOLISM OF NOCARDIA CORALLINA

-

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Biochemistry at Massey University.

John Gray Robertson

1968

and Frid. Microsoft

.

ACKNOWLEDGEMENTS

I wish to thank Professor R.D. Batt for his supervision and for creating the opportunity for carrying out this research.

I also wish to thank :-

The Department of Scientific and Industrial Research for granting me leave on full salary.

Mrs Pamela Lyttleton (Massey University), Mr. K.I. Williamson (Plant Chemistry Division, D.S.I.R.) and Mr. A.S. Craig for preparing the electron micrographs.

Dr. R. Hodges (Massey University) for mass spectrometric analyses.

Dr. N.A. Doughty (Canterbury University) for deriving the formulae for determining cell viability.

Dr. Ruth Gordon (Rutgers, U.S.A.) for confirming the identity of N. corallina.

Members of the staff of Plant Chemistry Division, especially Dr. R.T.J. Clarke, and Mr. T.D. Thomas (Dairy Research Institute) for advice and helpful discussions.

Miss Karen Sole for technical assistance.

Miss Margaret Soulsby for photographs, Miss Wendy Humphries for assistance with statistical analyses and especially Miss Cynthia Owen, the D.S.I.R. librarian.

Mrs Gail Peterson for typing, and Dr. P.J. Peterson for checking the final script.

Finally I wish to express my gratitude to my wife for her patience and assistance throughout the course of the study.

ABSTRACT

The endogenous metabolism of the soil microorganism <u>N. corallina</u> has been studied with special reference to physiological and structural changes in starvation conditions.

When <u>N. corallina</u> was grown on the surface of nutrient agar growth was characterised by the development of branched hyphae $8-12 \mu$. long, while in liquid medium bacilli approximately + μ . long were produced. Clumping of cells in liquid medium was reduced by growing the organism in cleated flasks on a rotary shaker.

For studies of endogenous metabolism and survival, suspensions of N. corallina were prepared from cultures harvested at full growth and resustended in phosphate buffer containing magnesium ions. Analyses of total and viable cell counts were affected by clustering of cells and detergents were used to reduce the size of clusters. The cell viability, was estimated using formulae, from the cluster viability and cluster size distribution which were determined using the slide culture technique. The viability of starved cells fell from 99% to 90% over a period of 7 days and subsequently to 50% after a further period of 13 days. A rise in total cell count of 13% was recorded over a 5 day period of starvation. During the first 48 hr. of starvation the bacterial dry wt. fell by 30-40%, and at the same time the initial Q_{0_2} of approximately 10 fell to a value of approximately one. The initial fall in dry wt. was due largely to a decrease in the level of cell polysaccharide from 25% to 5-10% of the cell dry wt. Following this drop in polysaccharide, ammonia was released at a relatively constant rate and at the same time there was a fall in the level of cell protein.

i.

There was a fall in the levels of intracellular free nitrogenous compounds at the onset of starvation but no corresponding release of these substances into the supernatant occurred. Ribonucleic acid appeared to be broken down during starvation. The contribution of the individual cell fractions to the total fall in dry wt. on prolonged starvation were; polysaccharide, 40%; protein, 25%; RNA, 6% and total fatty acids, 5%. The decrease in viability of starved organisms could not be directly correlated with the utilization of any of these cellular components.

Hydrolysis of the total unbound lipid which constituted 15% of the cell dry wt. yielded trehalose, mannose, inositol and glycerol as the water soluble components. Triglycerides were isolated from the total lipids by silicic acid column and thin-layer chromatography. Evidence from thin-layer chromatograms indicated that triglycerides were not major constituents of the total lipids. Incubation of <u>N. corallina</u> with $U-{}^{14}C$ -palmitate resulted in a large proportion of the radioactivity being incorporated into the triglycerides.

Total fatty acids constituted approximately 12% of the cell dry wt. and contained 3 fractions: (a) $C_{10}-C_{20}$ fatty acids, (b) nocardic acids and (c) a minor unidentified fraction which was more polar than the nocardic acids. Trimethylsilyl derivatives of the methyl nocardates were separated by gas chromatography on the basis of molecular wt. Mass spectrometry of methyl nocardates and TMS derivatives, indicated that the structures of the nocardic acids could vary in 3 ways: in carbon number from $C_{36}-C_{48}$, in degree of saturation (saturated, monounsaturated and diunsaturated acids occurred), and in their isomeric configurations.

ii.

Studies on <u>N. corallina</u> using both light and electron microscopy showed clearly the pleomorphic nature of the organism. Parts of the cell surface were covered with fibrous material which appeared to be distinct from the cell wall. Cell division occurred by the formation of septa which were generally associated with extensive cytoplasmic membrane systems. Polyphosphate granules, ribosomes and either polyribosomes or glycogen granules appeared in the cytoplasm during growth. Use of the freeze-etch technique illustrated the granular nature of the cytoplasm, cell wall and membrane surfaces. Starvation of the cells appeared to be associated with (a) a thickening of the cell wall, (b) an increase of the amount of fibrous material per cell, (c) an increase in the size of the polyphosphate granules and (d) the disappearance of large cytoplasmic granules.

Possible implications of the present findings have been considered in relation to previous investigations with this organism and to studies of the endogenous metabolism and survival characteristics of other microbial species.

iii.

CONTENTS

		SECTION I	rage
Chapter 1	INTRODUCT	ION	1
	Endogenou	s Metabolism of Microorganisms with Special	
	Reference	to Nocardia corallina	1
	The Genus	Nocardia	4
	The Speci	es <u>N. corallina</u>	6
	The Chemi	cal Composition of Nocardia Species	9
	Endogenou	s Metabolism and Bacterial Survival	11
	(a)	The effect of the environment on the	12
		chemical composition of microorganisms	
	())	Studies relating endogenous metabolism to	
		survival capacity	15
	(c)	Factors affecting the survival of	
		microorganisms	17
	(d)	The functional importance of endogenous	
		metabolism	19
Chapter 2	THE AIM O	F THE PRESENT INVESTIGATION	21

SECTION II

.

.

EXPERIMENTAL

Chapter 1	METHODS	23
	Bacteriological Procedures	23
	Organism	23
	Growth in Liquid Medium	23
	Special Growth Flasks	24

Chapter 1	Preparation and Incubation of Cell Suspensions	25
	Total Cell Counts	26
	Viable Counts	26
	Formulae for Estimating Cell Viability from	
	Cluster Viability	28
	Photography of Cells on Agar Slides	29
	Analytical Methods	29
	Spectrophotometric Equipment	29
	Dry Weight	29
	Respiratory Quotients	31
	Oxygen Partial Pressure Estimations	31
	Total Unbound Lipids	32
	Triglycerides	32
	Ester determination	32
	Glycerol determination	32
	Alkaline hydrolysis	33
	Total Fatty Acids	33
	Alkaline hydrolysis of total cells	33
	Acid hydrolysis of total cells	33
	Estimation by weight	33
	Estimation by chromate oxidation	34
	Total Nitrogen	34
	Protein	34
	Cellular protein	34
	Protein in solution	35
	Amino Acids	36
	Estimation	36
	Extraction of intracellular amino acids	36

•

page

		page
Chapter 1	Ammonia	37
	Total Carbohydrates	37
	Total hexose	37
	Total reducing sugar	37
	Ribose	38
	Deoxyribose	39
	RNA	39
	Preparative Methods	+0
	Freeze Dried Cells	40
	Organic Solvents	40
	Potassium Palmitate Solutions	41
	Methylation of Fatty Acids	41
	Silylation of Eydroxy Esters	41
	Chromatography	42
	Paper Chromatography of Polyols and Sugars	42
	Preparation of samples	42
	Analysis of sugars in perchloric acid solutions	
	obtained during RNA estimations	42
	Solvent systems and detection of components	42
	Silicic Acid Column Chromatography	43
	Total unbound lipids	43
	Total fatty acids	43
	Thin-Layer Chromatography	44
	Preparation of thin-layer plates	44
	Application of samples	45
	Solvent systems	45
	Identification and isolation of components	45
	Autoradiography of thin-layer plates	46

.

page 46 Chapter 1 Gas Chromatography Gas chromatography of methyl esters of fatty acids derived from triglycerides 46 46 Silyloxy derivatives of methyl nocardates 47 Pyrolysis of methyl nocardates 48 GROWTH CHARACTERISTICS OF N. CORALLINA Chapter 2 48 Development of a Defined Medium 48 Aeration Efficiency of Culture Flasks 49 Oxygen Demand in Liquid Cultures 51 Clumping of Cultures Culture Pigmentation 51 Variations in the Size of Individual Cells 52 Clusters in Suspensions of N. corallina, Their Effect on Total and Viable Cell Counts 53 The Effect of Detergents on Cluster Size 53 Growth of N. corallina on Agar Slides 55 55 Summary Chapter 3 TRIGLYCERIDES IN N. CORALLINA 56 56 Extraction and Fractionation of Total Lipids 57 Thin-Layer Chromatography of Lipids of N. corallina Identification of Triglycerides in the Lipids of 58 N. corallina The Incorporation of U-¹⁴C Palmitic Acid into the Triglyceride Fraction 60 62 Summary

Chapter 4	FATTY ACIDS IN N. CORALLINA	63
÷.,	Extraction, Fractionation and Identification	
	of Fatty Acids from N. corallina .	64
	Silylation of Methyl Nocardates	67
	Gas Chromatography of the TMS Derivatives of	
	Methyl Nocardates	67
	Mass Spectrometry of the TMS Derivatives of	
	Methyl Nocardates	68
	Pyrolysis of Nocardic Acids	69
	Oxidation of Nocardic Acids	70
	Fractionation of Methyl Nocardates on Silver Nitrate	
	Impregnated Plates	71
	Summary	72

Chapter 5	VARIATIONS IN DRY WEIGHT, TOTAL AND VIABLE COUNTS AND	
	RESPIRATORY ACTIVITY IN STARVED SUSPENSIONS OF	
	N. CORALLINA	73
	Variations in Viable and Total Cell Counts and in	
	Dry Weight	74
	Respiration Rates for Cell Suspensions of <u>N. corallina</u>	76
	Respiration Experiments with Acetate Grown Cells	77
	Respiration Experiments with Cells Incubated with	
	Palmitate	77
	Summary	78

page

۱

Chapter 6	CHANGES IN THE LEVELS OF LIPID, CARBOHYDRATE AND	
	PROTEIN IN STARVED SUSPENSIONS OF N. CORALLINA	79
	Lipid Content of Cells of N. corallina	'79
	Fatty Acid Levels in N. corallina	80
	Total Nitrogen, Ammonia, Protein and Carbohydrate	
	Levels Related to Changes in Dry Weight	81
	Changes in Levels of Total Fatty Acids, Proteins,	
	Carbohydrate, Dry Weight and Cluster Viability	
	During Endogenous Incubation	82
	Changes in Levels of Total Fatty Acids and Correlation	
	of Protein Breakdown with Ammonia Production	83
	Correlation of Ereakdown of Cellular Carbohydrate with	
	Production of Ammonia	84
	Summary	85
Chapter 7	CHANGES IN THE LEVEL OF RNA IN STARVED SUSPENSIONS	
Chapter 7	CHANGES IN THE LEVEL OF RNA IN STARVED SUSPENSIONS OF <u>N. CCRALLINA</u>	87
Chapter 7		87 87
Chapter 7	OF N. CCRALLINA	
Chapter 7	OF <u>N. CCRALLINA</u> Phosphate Buffer Supernatants	87
Chapter 7	OF <u>N. CCRALLINA</u> Phosphate Buffer Supernatants 0.2N HClO ₄ Fraction	87 88
Chapter 7	OF <u>N. CCRALLINA</u> Phosphate Buffer Supernatants 0.2N HClO ₄ Fraction 0.1N HClO ₄ Fraction	87 88
Chapter 7	OF <u>N. CORALLINA</u> Phosphate Buffer Supernatants 0.2N HClO ₄ Fraction 0.1N HClO ₄ Fraction Levels of RNA in Cell Suspensions Incubated Under	87 88 90
Chapter 7	OF <u>N. CORALLINA</u> Phosphate Buffer Supernatants 0.2N HClO ₄ Fraction 0.1N HClO ₄ Fraction Levels of RNA in Cell Suspensions Incubated Under Endogenous Conditions	87 88 90 91
Chapter 7 Chapter 8	OF <u>N. CORALLINA</u> Phosphate Buffer Supernatants 0.2N HClO ₄ Fraction 0.1N HClO ₄ Fraction Levels of RNA in Cell Suspensions Incubated Under Endogenous Conditions	87 88 90 91
	OF <u>N. CCRALLINA</u> Phosphate Buffer Supernatants 0.2N HClO ₄ Fraction 0.1N HClO ₄ Fraction Levels of RNA in Cell Suspensions Incubated Under Endogenous Conditions <u>Summary</u>	87 88 90 91 92

Chapter 8 General Morphology and Growth Characteristics

in Liquid Medium	95
Cell Coat	97
Cell Wall	100
Cytoplasmic Membrane	100
Intracytoplasmic Membrane Systems	101
Cytoplasm	102
Folyphosphate Granules	103
Nuclear Material	105
Cell Division	105
Summary	106

SECTION III

DISCUSSION 10	8
Growth Characteristics of N. corallina 10	8
Lipid Studies 11	0
Changes in Viability, Total Cell Counts, Dry Weight	
and Respiratory Activity in Starved Cell	
Suspensions 11	12
Changes in Levels of Intracellular Components During	
Endogenous Metabolism 11	4
Correlation Between Cell Survival and Endogenous	
Metabolism 11	17
REFERENCES	
APPENDIX I. Culture media.	
APPENDIX II. Derivation of formulae for estimating	
cell viability from cluster viability and cluster	
size distribution.	