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Abstract

In any population of cells, individual cells grow for some period of time and then divide
into two or more parts, called daughters. Tb describe this process mathematically, we
need to specify functions describing the growth rate, size at division, and proportions into
which each cell divides. In this thesis, it is assumed that the growth rate of a cell can be
determined precisely from its size, but that both its size at division and the proportions
into which it divides may be described stochastically, by probability density functions
whose parameters are dependent on cell size and age (or birth-size). Special cases are also
considered where all cells with the same birth-size divide at the same size, or where all
cells divide exactly in half.

We consider a population of cells growing and dividing steadily, such that the total cell
population is increasing, but the proportion of cells in any size class remains constant. In
Chapter 1, equations are derived which need to be solved in order to deduce the shape of
the steady size distribution (or steady size/age or size/birth-size distributions) from any
given growth rate and probability distributions describing the division rate and division
proportions. In the general case, a Fredholm-type integral equation is obtained, but if the
probability of cell division depends on cell size only (i.e. not age or birth-size), and all cells
divide into equal-sized daughters, then we obtain a functional differential equation.

In two special cases, the resulting equations simplify considerably, and it is these cases
which are explored further in this thesis. The first is where the probability of a cell
dividing in any instant of time is a constant, independent of cell age or size. In Chapter 2,
the functional differential equation resulting when cells divide into equal-sized daughters
is solved for the special case where the growth rate is constant, and in an appendix the case
where the growth rate is described by a power law is dealt with. The second case which
simplifies is where the time-independent part of the growth rate of a cell is proportional
to cell size. This case is particularly important, as it is a good first-order approximation
to the real cell growth rate in some structured tissues, and in some bacteria. The special
case in which this leads to a functional differential equation is discussed in Chapter 3, and
the integral equation arising in the general case is dealt with in Chapter 4. Finally, the
conditions under which the integral operator in Chapter 4 will be both square-integrable
and non-factorable are discussed in Chapter 5. It is shown that if these conditions are
satisfied then a unique, stable, steady size distribution will exist.
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