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ABSTRACT

Direct osmotic concentration (DOC) is a novel continuous membrane process. Two
co-current streams, separated by a semi-permeable membrane, are recycled through a
DOC module. The turbulent-flow dilute juice stream is concentrated by osmotically
extracting water across the membrane into a laminar-flow, concentrated osmotic agent
(OA) stream. The semi-permeable membrane is asymmetric, with a non-porous active
layer (15 um) and a porous support layer (150 pm). Membrane solute rejection was

greater than 99%. Normal operation orients the active layer towards the juice stream.

For this study, water (osmotic pressure = 0) was used in the juice channel. The
relationship between water flux rate and the osmotic pressure of the bulk OA stream was
asymptotic, reaching a maximum flux of 1.75 x 10” kg m s, when using fructose OA

at 15 MPa osmotic pressure and 20°C.

Flux rates doubled when NaCl replaced fructose as OA. A doubling in temperature to
40°C resulted in a 50% increase in flux rate. OA solution properties, particularly

viscosity and factors affecting diffusion coefficients had a strong influence on flux rates.

When the membrane was reversed, with the active layer facing the O A channel and the
support layer filled only with water, flux rates were 40 to 60% higher than the normal

orientation.

There were three resistances to water flow associated with: osmosis across the membrane
active layer (R,); diffusion and porous flow across the support layer (R,), and; diffusion
across the boundary layer in the OA channel (R;). For fructose OA at 0.50
g (g solution)™ (osmotic pressure = 15 MPa), R, contributed 9% of the total resistance
to water flux in the DOC module, R, contributed 64% and R; contributed 27%. For an
iso-osmotic concentration of NaCl OA (0.15 g (g solution) ') the relative resistances
were: R, = 17%, R, = 44% and R, = 39%. It was clear that the water flux from the
dilute to concentrated stream was more strongly influenced by the support membrane
and OA solution properties than the active semi-permeable membrane itself. This
accounted for the asymptotic relationship between bulk OA stream properties and flux

rate.

The mathematical model successfully incorporated these resistances and solution

properties. Data calculated using this model agreed well with experimental results.
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