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Abstract

Emerging and re-emerging infectious diseases (ERID) are capable of generating sizable economic 

loss, and causing loss of life and social instability.  To prevent and mitigate the negative impacts of 

ERID, it is imperative to have a sensitive surveillance system for early disease detection.  

Furthermore, from the economic perspective, resources are always scarce and have opportunity cost, 

so investment in surveillance programs has to demonstrate that it can maximize the utility of available 

resources. The thesis was focused on development and application of a software toolbox, Human and 

Animal Disease Response Program (HandiResponse), designed for (i) visualizing the disease risk 

landscape and representing spatial variation in the expected occurrence of a zoonotic disease both 

quantitatively and visually; (ii) evaluating economic benefit and costs of a single surveillance activity 

or a multi-component portfolio; (iii) identifying optimal use of resources for surveillance.  It 

comprises four modules: (i) risk map development – HandiMap; (ii) surveillance portfolio 

development – HandiSurv; (iii) economic impact assessment – HandiEcon and (iv) surveillance 

optimization – OptiSurv.

The modules developed were tested on a number of data sets from various countries.  The experience 

demonstrated that using satellite-derived data in combination with national statistical data to produce 

a disease risk map improved spatial prediction of avian influenza H5N1 outbreaks in southern 

Vietnam.  Development of a risk map from satellite data for Crimean Congo Haemorrhagic Fever for 

Mongolia guided a field surveillance program which provided the first evidence that this disease is 

present in both animals and people in Mongolia.  Finally an invented disease affecting pigs and people 

was used to investigate the likely consequences of an incursion of such a novel disease into Australia,

involving both domestic and feral pigs and transferring to people.  Risk-based and classical disease 

surveillance options were then tested for disease detection, and modelling work confirmed that a 

portfolio consisting of different options was the most technically and economically appropriate.

HandiResponse is a practical tool that could promote the implementation of risk-based surveillance 

approaches, and improve both technical and economic efficiency of surveillance programs for 

infectious diseases, particularly those affecting both people and animals.  
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CHAPTER 1

1. Introduction
The research described in this thesis originated from my involvement in helping the affected countries 

and regions in implementing their responses to a number of major zoonotic diseases outbreaks and 

even epidemics.  The first even was Severe Acute Respiratory Syndrome (SARS), for which I 

provided technical input when I worked at the Beijing Office of the World Bank. Subsequently I was 

responsible for managing the World Bank’s Operations in China and Mongolia in response to the 

avian influenza H5N1 pandemic, and advised on the similar projects in India and Vietnam.  I have 

also been involved in the research and control programs for HIV/AIDS early years in my career and 

then recently.  These experiences led me to the view that it was necessary to have a mechanism or 

tools by which countries that were at risk of becoming infected (but which had limited expertise and 

resources) could design and implement appropriate surveillance and disease mitigation strategies.

Such a perception was reinforced by my experience in spending much of the last year in Monrovia, to 

manage the World Bank’s support to the national Ebola response in Liberia, and subsequently 

working on the design of a project to enhance disease surveillance capability in the West Africa

Region.

The need for a comprehensive epidemiological and economic approach to both disease detection and 

subsequent control is imperative.  However, the challenges for addressing both objectives at the same 

time, illustrated by Howe and his colleagues, are formidable (Howe, Häsler, & Stärk, 2013). It is 

beyond the scope of this PhD project to address all of them at once.  Hence, in this thesis, I chose to 

focus only on the design and evaluation of a structured approach for assessing and identifying 

country-specific risk-based surveillance systems to detect an incursion of an emerging infectious 

disease in a given country.

The literature review in Chapter 2 demonstrates that there have been significant advances in the 

design of risk-based surveillance approaches. Unfortunately, there are few field experiences from 

developing countries. Such a dilemma calls for the development of a generic set of tools to facilitate 

the design of best-fit surveillance approaches for any emerging infectious diseases in any country.

The thesis hereafter documents the development of a novel toolbox called Human and Animal 

Disease Response (HandiResponse) in order to bridge the gap between theory and practice of risk-
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based surveillance approaches. The surveillance toolbox comprises the following four components: 

(i) HandiMap; (ii) HandiSurv; (iii) HandiEcon and (iv) OptiSurv, described in Chapters 3 and 4 of the 

thesis.

The first step in designing a risk-based surveillance approach that takes account of spatial variation in 

the probability of disease occurrence is to integrate and present the various risk factors proven or 

hypothesized to be responsible for or correlated with for disease occurrence.  HandiMap was 

developed to produce an integrated risk landscape by combining a sub-set of global remote-sensed 

and national spatial data sets.  In Chapter 5, three alternative risk maps were developed by using 

HandiMap, based on different epidemiological assumptions, to test the degree to which modelling 

H5N1 on these risk landscapes could improve the accuracy of spatial prediction of the disease 

outbreak in comparison with modelling on a “flat” risk landscape that took none of these factors into 

account.

In Chapter 6, I use a risk landscape approach to identify areas of Mongolia that are at either high or 

low risk of possible presence of Crimean Congo Haemorrhagic Fever (CCHF).  Mongolia was 

considered free of the disease, although it occurs in neighbouring countries.  As part of the disease 

investigation work undertaken by Mongolian scientists through an emerging diseases project that I

managed, targeted cross-sectional surveys were undertaken, and serological evidence of CCHF virus 

circulation was found in both people and animals in epidemiologically determined high risk areas, but 

not in a low risk area.  Thus the risk landscaping approach was of practical value in guiding 

surveillance activities, leading to the discovery that this disease was already present in Mongolia, but 

unrecognized. 

The next step was to use risk data to develop an epidemiologically and economically appropriate 

combination of surveillance methods to detect a disease incursion in a country where the disease of 

concern would involve domestic animals, wild animals and people.  No suitably comprehensive data 

set was available for an Asian country.  Comprehensive spatial data was available on commercial and 

non-commercial pig herds in Australia and adequate evidence was available on movements within the 

industry.  Spatial mapping of habitat suitability for feral pigs was also available for Australia, so in 

Chapter 7 this habitat map was used to establish a spatially defined population of feral pig families, 

which could interact with owned pigs in determining the spread of an invented zoonosis, called 

Austeria.  The spread of the disease following a point incursion was simulated on this landscape, and 

eight alternative surveillance components were tested in a spatial modelling process for their ability to 

detect the incursion promptly and cost-effectively, each component having three levels of 

investigation intensity and three levels of detection sensitivity. 
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In Chapter 8, the findings from this modelling process are used in combination with economic data on 

the hypothesized effects of the disease on pig production and human health, to compare 100 million 

possible surveillance portfolios which could be put together from the 72 surveillance components and 

sub-components, and use the OptiSurv procedure that forms part of HandiResponse to identify the 

portfolios which best combine both prompt detection and cost-effective operation to detect the disease 

incursion.  

In Chapter 9, the degree to which the project goals were achieved is assessed, and consideration is 

given to the next steps required to move from this “proof of concept” phase to a more comprehensive 

system which can be used by individual countries and the global community to detect and manage 

future emerging diseases.

1.1. References
Howe, K., B. Häsler, et al. (2013). "Economic principles for resource allocation decisions at national 

level to mitigate the effects of disease in farm animal populations." Epidemiology and 
infection 141(01): 91-101.
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CHAPTER 2

2. Review of Risk-based Surveillance for Infectious 

Diseases

2.1. Introduction
The emergence and spread of a series of major infectious diseases of zoonotic origin over recent years 

has led to a resurgence of interest in developing improved methods of responding to such problems, 

because they have major ramifications not just on health of people and animals, but also on economic 

growth, national development, social stability, and international movement of people and products 

(Calain, 2007; Gubler, 1998; Jones, Patel et al., 2008; McInnes & Lee, 2006; McMichael, 2004; 

States, 2000; UNDG, 2015). Infectious diseases have secondary effects on various aspects of social 

and economic life such as fertility, savings, investment, crop choices, food supply, human rights in 

terms of access to care and schooling, health care, migration decision, as well as animal welfare and 

product marketability (Piot, Muyembe, & Edmunds, 2014; Sachs & Malaney, 2002; Volkova, Bessell

et al., 2011). The impact of infectious diseases is likely to grow in the future as a result of changing 

climatic conditions, with vector-borne diseases already widely distributed and causing serious health 

effects (Gubler, 2012) and economic effects (Gallup & Sachs, 2001), but expected to increase in 

geographical distribution, with newly important vector-borne diseases such as Zika virus adding to the 

challenges. The Ebola outbreak in West Africa during 2014 and 2015 caused economic stagnation and 

even recession in the three most severely affected countries. Other infectious diseases have also been 

expanding their geographic coverage (Anderson, Cunningham et al., 2004; Barrett, Kuzawa et al.,

1998; Gubler, 2007; Kilpatrick, Chmura et al., 2006; Marano, Arguin, & Pappaioanou, 2007).

Surveillance is an essential public and animal health practice and one of the essential steps to 

counteract the increasing tide from infectious diseases (Abdullah, 2007; Bettcher, Sapirie, & Goon, 

1997; Heymann & Rodier, 2001). Although there are varied definitions of surveillance for human and 

animal diseases, the common objectives of disease surveillance include:

systematic monitoring of disease occurrence by population, place, and time; 

detection of unusual occurrence of disease or unusual epidemiological patterns; 

outbreak investigation and intensive follow-up to identify risk factors and potential points for 
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intervention; and 

implementing interventions and evaluating their effectiveness (Langmuir, 1963; Raska, 1966; 

Thacker & Berkelman, 1988; WHO, 2008).

In addition, surveillance has been used for documenting the health status of exported animals and 

animal products to demonstrate that they are free from diseases of trade concern (Kuiken, Leighton et 

al., 2005).

Despite its importance, implementation of infectious disease surveillance at national and global levels 

suffers from a number of political, technical and operational challenges resulting in divergence in 

methods and effectiveness of disease surveillance practices between developed and developing 

economies (McInnes & Lee, 2006). Some of the frequently cited deficiencies include: (i) inadequate 

collaboration between human and animal health personnel (Tsai, Scott et al., 2009); (ii) disincentives 

associated with disease outbreaks; cost and time needed for surveillance (Alban, Pozio et al., 2011; 

Alleweldt, Upton et al., 2009; FAO, OIE et al. 2008; Wagner, Moore, & Aryel, 2011); (iii) inadequate 

capability in terms of insufficient health workforce and lacking of adoption of a multi-disciplinary 

approach (Barbiero, 2014; Gubler, 2012; Witt, Richards et al., 2011); (iv) data issues such as 

inaccessibility or poor integration of data sources (Woolhouse, 2011) and (v) deficiencies in IT and 

laboratory infrastructure (Tsai, Scott et al., 2009). The points mentioned above highlight the need and 

urgency for development and utilization of accessible and accountable surveillance approaches which 

have both high technical efficiency and high economic benefit. 

Risk-based surveillance (RBS) is a relatively recently adopted approach which can potentially 

contribute significantly to satisfying these requirements. It has been used for human and animal 

disease surveillance, food safety and environmental contamination monitoring (Chon, Ohandja, & 

Voulvoulis, 2012; Gkogka, Reij et al., 2011; Stark, Regula et al., 2006).

This review aims to review risk-based surveillance practices and their utility, identify enabling factors 

as well as the challenges for promoting RBS. It will also recommend potential enhancements that 

would make RBS more widely available and practical to apply in resource-poor countries, and outline 

research needed to achieve this objective. This will then lead into the remainder of the thesis, which 

describes research on this theme. 

2.2. Methods
2.2.1.Literature search strategy

The search included the following topics:

A. infectious disease or communicable disease surveillance or public health surveillance or 

bio-surveillance or early warning or disease reporting; 
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B. risk-based approach or optimization or cost effectiveness or prioritization or targeted or 

sentinel surveillance; 

C. social network analysis. 

Searching queries were “A AND B; “A AND C”. This search included an iterative process to refine 

the search strategy by testing several search terms and incorporating new search terms when new 

relevant citations were identified. The databases searched included Web of Science, MEDLINE, 

Current Contents Connect, Biological Abstracts, Centre for Agriculture and Bioscience International 

(CABI) database and Food Science and Technology Abstracts (FSTA).

Besides, additional relevant articles have been added on the list for review after citation cross checks 

by using Google scholar searching engine (up to 15 pages).

2.2.2.Inclusion criteria

Refinements of the search strategy included focusing on infectious disease, tropical medicine, social 

sciences, mathematics, medical informatics, veterinary sciences, zoology, and entomology. Only 

publications in English published since 1980 and with access to full document were included in the 

review. The hard criterion used for final inclusion is containing descriptions on risk-based approach 

for surveillance.

2.3. Results
2.3.1.General information on the review

65,738 hits met the initial inclusion criteria. By reviewing the topic, 491 publications were selected 

for further content review. Of them, 280 were included in the final review and analysis according to 

their content.

The early use of a risk-based approach for infectious disease surveillance could be dated back to early 

1980s involving risk mapping and social network analysis to identify high risk groups for HIV 

surveillance (Klovdahl, 1985; Shannon, 1981). The other two early studies were about using a 

scenario tree approach for demonstration of freedom from disease and sentinel surveillance of HIV-1

among pregnant women (Kigadye, Klokke et al., 1993; Sergeant, Cameron et al. 1990). The number 

of publications relevant to RBS have been increasing over the years, particularly since 2005 (Figure 

2-1). A majority of publications on RBS included in this review were from Web of Science and 

Google Scholar (Figure 2-2). By origin of publications, Europe contributed 32 percent, following by 

North America (20%). Only 15 percent of reviewed publications were from developing countries 

(Figure 2-3). Out of 280 reviewed, seventy percent were on risk-based sampling, thirteen percent on 

risk-based requirement and twelve percent on risk-based prioritization. 
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Figure 2-1. Publications on RBS by year Figure 2-2. Publications on RBS by source
Note: CABI, Current Contents Connect, Biological Abstracts, Centre for Agriculture and Bioscience 
International; FSTA, Food Science and Technology Abstracts; GS, Google Scholar; WOS, Web of Science.

Figure 2-3. Publications on RBS by continent
Note: LA, Latin America; NA, North Africa.

Figure 2-4. Publications on RBS by approach
Note: RBS, risk-based surveillance. X-axis represents 
the number of the peer reviewed articles.

258 publications clearly indicated on what health issues they were focused. Thirty three percent were 

on human infectious diseases, 32% on animal infectious diseases and 26% on zoonoses. Other health 

topics covered include food safety, wildlife disease, anti-microbial resistance, environmental pollution 

as well as vectors for infectious diseases (Figure 2-5).

Figure 2-5. Focus of Risk-based Surveillance
Note: AID, animal infectious disease; AMR, anti-microbial resistence; Env, environment; HID, human 
infectious disease. X-axis represents the number of the peer reviewed articles. 
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2.3.2.Definition and objectives of risk-based surveillance

For risk-based approach, risk is the probability of occurrence and severity of consequences caused by 

a hazard (Stark, Regula et al. 2006). Some key definitions for RBS include: 

1. A surveillance program in the design of which exposure and risk assessment methods have 

been applied together with traditional design approaches in order to assure appropriate and 

cost-effective data collection (Stark, Regula et al., 2006).

2. Use of information about the probability of occurrence and the magnitude of the biological 

and/or economic consequence of health hazards to plan, design and/or interpret the results 

obtained from surveillance (Hoinville, Ronello, & Alban, 2011).

3. The application of qualitative and quantitative methods to increase surveillance efficiency by 

directing surveillance activity to:

the population of interest based on exposure to factors that may predispose it to disease or 

infection, or 

subpopulations where due to host factors, the disease or infection is most likely to be found, or 

prioritizing populations where the consequences of disease or infection could be severe. 

A common thread shared by these definitions is the emphasis on prioritization by using risk-based 

approach in order to achieve either higher technical or economic efficiency of surveillance program.

The rationale underpinning the risk-based strategies is that higher risks merit higher priority for 

surveillance resources as such investments would yield higher benefit (Stark, Regula et al. 2006).

2.3.3.Typology of RBS

Considerable heterogeneity exists in the approach and methodology for risk-based surveillance (Reist, 

Jemmi, & Staerk, 2012). At least three types of RBS were summarized by Stark et al. They are hazard 

selection, selection of population strata and sample size calculation (Stark et al., 2006). Hoinville et 

al. have further elaborated RBS practices into four groups: risk-based prioritization, risk-based 

requirement, risk-based sampling and risk-based analysis (Hoinville, Alban et al. 2013).

There are two prominent RBS variants: the first one is targeted surveillance, which is defined more 

generally as surveillance focusing on sampling high-risk populations. Some scholars recommended to 

reclassify it as risk-based sampling (Hoinville, Alban et al. 2013). The second one is sentinel 

surveillance, that focuses on specific high risk subpopulations, or animals instead of any human 

populations, to obtain timely information in a relatively inexpensive manner rather than to derive

precise estimates of prevalence or incidence in the general population (McCluskey, 2003b).

This review results were presented by following the categorization method proposed by Hoinville, et 

al.



10

2.3.3.1. Risk-based prioritization

Risk-based prioritization is defined as an approach for determining which hazards should be selected 

for surveillance, based on information about the probability and the extent of (biologic and/or 

economic) consequences of their occurrence (Hoinville, Alban et al. 2013).

There are about 1,415 known species of pathogens that cause human infectious diseases (Pedley & 

Pond, 2003; L. H. Taylor, Latham, & Mark, 2001). Their occurrence varies in magnitude, severity and 

change with time. Prioritization among them is motivated by the need to ensure that scarce resources 

could be used on the most important ones to attain the highest benefit in improving health and welfare 

of human and animals.

Multi-attribute decision making (MADM) is one of the most commonly used disease prioritization 

methods. This structured approach ranks or groups alternatives from a finite set of discrete decision

alternatives based on comparisons by using predefined criteria. In the case of disease prioritization, 

disease prevalence and disease incidence, case fatality, disease adjusted life year (DALY) and 

preventability, etc. are some of the criteria that have been applied. Criterion weights are described

separately by evaluating the trade-offs that decision-makers are prepared to make between them 

(Brookes, Vilas, & Ward, 2015). MADM generally involves the following four distinctive steps: 

1. structuring the decision problem; 

2. assessing possible impact of diseases; 

3. ; and 

4. evaluating and comparing disease priorities. 

The outcome is that diseases will be ranked according to the weighted score of the summed products 

of a subjective weight and an objective/subject measurement by each criterion for each disease 

(Brookes, Hernández-Jover et al. 2015).

MADM usually is conducted by enlisting a group of topic experts/key informants and using Delphi 

method to elicit their judgements (Cediel, Villamil et al., 2013). Analytic Hierarchy Process (AHP) 

has been used to help weight elicitation (Kadohira, Hill et al., 2015; Ricci, Capello et al., 2013). The 

consistency between the two rounds of assessments by the experts could be checked by Spearman 

rank correlation coefficient (Brookes, Hernández-Jover et al. 2015) and validity of the approach can 

be tested through sensitivity analysis (Ricci et al., 2013). Two highlights emphasized by the users of 

such an approach are transparency and reproducibility (Rushdy & O'Mahony, 1998).

For human disease, a typical example of MADM is the weighted score system for prioritizing 

infectious diseases for surveillance purpose developed by Krause (Krause, 2008b). The system 

included twelve criteria under the four categories: (a) burden of disease (b) epidemiological dynamic; 
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(c) information need and (d) health gain opportunity. Such a method was developed based upon 

reviewing earlier works (Doherty, 2000; WHO, 2003; Weinberg, Grimaud, & Newton, 1999). Score 

for a disease is calculated by using linear weighted sum. The detailed process of such an approach is 

illustrated in Figure 2-6.

Figure 2-6. Algorithm for Prioritization of Disease Surveillance
Note: Krause, G. (2008). Prioritization of infectious diseases in public health-call for comments.

For animal infectious disease, risk estimation is based on the probability of occurrence and severity of

consequences. The final risk score can be quantified by using the following formulae: = weighted POE × weighted LOS × weighted COS
Where POE stands for probability of exposure, LOS, likelihood of spread and COS, consequence of 

spread. Standardization is sometimes used to make sure the scores are comparable when numbers of 

criteria are different (McKenzie, Simpson, & Langstaff, 2007; Stebler, Schuepbach-Regula et al., 

2015).

MADM has been used for priority setting for surveillance of human and animal infectious diseases 

(Balabanova, Gilsdorf et al., 2011; Cardoen, Van Huffel et al., 2009; Ciliberti, Gavier-Widen et 

al.,2015; Cox, Revie, & Sanchez, 2012; Doherty, 2000; East, Wicks et al., 2013; Gilsdorf & Krause, 

2011; Gustafson, Klotins et al., 2010; McKenzie, Simpson & Langstaff et al., 2007; Paige, Chaudry, 

& Pell, 1999; Robinson, Burgman, & Cannon, 2011; Weinberg, Grimaud & Newton, 1999), food 

safety (Presi, Stärk et al., 2009; Ricci, Capello et al., 2013; Tavernier, Dewulf et al., 2011),

environmental pollution (Chon, Ohandja & Voulvoulis, 2012), as well as disease prioritization related

to climate change (Akin, Martens, & Huynen, 2015; Cox, Revie & Sanchez, 2012), international trade 
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(Brookes, Hernández-Jover et al., 2014), tourism (Economopoulou, Kinross et al., 2014) as well as 

concerns over bioterrorism (Ryan, 2008).

One limitation related to MADM is how to demonstrate the validity of such an approach. Such an 

issue arises because of a number of reasons. Firstly, there is uncertainty and variability associated

with disease impacts. One solution is to conduct sensitivity analysis to assess the robustness of 

prioritization results due to variability in inputs and heterogeneity in preferences for the importance of 

criteria among evaluators, decision makers, or stakeholders (Cediel, Villamil et al., 2013). This can be 

dealt with by using objective metrics to represent disease impacts such as incidence, disability 

adjusted life years, etc. Probabilistic inversion and conjoint analysis were suggested to be used for 

deriving criterion weights. Conjoint analysis quantifies the variation among decision making 

participants to allow generalization of the results to the wider population (Ng & Sargeant, 2013).

Probabilistic inversion is a statistical method to infer weights for criteria from a large number of 

participants (Brookes, Hernández-Jover et al., 2014; Neslo & Cooke, 2011). A disadvantage of 

probabilistic inversion and conjoint analysis is that they rely on statistical methods to produce valid 

results, hence potentially require large numbers of participants (Brookes et al., 2015). Thirdly, 

diseases are constantly changing and so is the decision makers’ preference on criteria. Hence, it is 

recommended that disease prioritization be updated periodically (Brookes, Vilas & Ward, 2015).

2.3.3.2. Risk-based sampling

Risk-based sampling is defined as designing a sampling strategy to reduce the cost or enhance the 

accuracy of surveillance by preferentially sampling strata (e.g. age groups or geographical areas) 

within the target population that are more likely to be exposed, affected, detected, become affected, 

transmit infection, or cause other consequences (Hoinville, Alban et al., 2013).

Information on relative risk, which is key for RBS approaches, can be generated through conventional 

epidemiological investigations such as case control studies, and cohort studies (Calvo-Artavia,

Nielsen et al., 2013; Kung, Morris et al., 2007; Winkelstein, Lyman et al., 1987). For this review, the 

attention was focused on some novel approaches for generating information on relative importance for 

different strata of disease under study that are described below. 

Social network analysis (SNA)

Infectious disease transmission involves direct interaction(s) between an infected host and a 

susceptible individual except in certain situations that infectious diseases can be transmitted by certain 

vector (e.g. mosquitos) or via airborne, or contaminated environment (Klovdahl, 1985). Contacts 

between individuals, either homogeneous or heterogeneous, can be represented by different network 

topologies. Simulation studies demonstrate that epidemic size and mean time to maximum size vary 

between different network topologies (Christley, Pinchbeck et al., 2005; Fevre, Bronsvoort et al., 

2006; Levin, Grenfell et al., 1997; Shirley & Rushton, 2005). Analyzing geographic connections or 
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functional interactions among a social network can aid in understanding the nature and spread of a 

disease so as to inform decision making on disease management (Klovdahl, 1985; Smieszek, Fiebig, 

& Scholz, 2009).

Carroll et al. defined social network as a graphical representation of social relations or exposures 

consisting of nodes (individuals within the network) and ties/link (relationships between individuals) 

(Carroll, Au et al. 2014). SNA is a strategy for investigating social structures through the use of 

network and graph theories (Otte & Rousseau, 2002; Wasserman & Faust, 1994). Analysis based 

upon graphic theory has gained increasing popularity (Fiebig, 2011).

The major steps of a comprehensive SNA practice comprise: data collection and preparation, building 

a network and analysis and testing hypotheses. This is shown in the illustration published by Farine, et 

al (Figure 2-7) (Farine & Whitehead, 2015).
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For visualization or sociogram development, social network analysis uses shape, colour, direction and 

position to convey information on features of individuals and groups, clusters or paths. About 30 free or 

commercial software programs have been developed to facilitate and standardize social network 

analysis. By comparing functionality, support and user friendliness, UCInet and NetMiner have been 

highly recommended for social network analysis (Huisman & Van Duijn, 2005)

Metrics commonly used for social network analysis include: 

relative degree, closeness and betweenness centrality of nodes (Ortiz-Pelaez, Pfeiffer et al., 2006);

components such as strong component or weak component (Grange, Van Andel et al., 2014; 

Newman, 2003; Rautureau, Dufour, & Durand, 2011; Robinson & Christley, 2007);

ingoing and outgoing infection chains (Noremark, Hakansson et al., 2011) and 

clustering coefficient (Grange, Van Andel et al., 2014; Ribeiro-Lima, Enns et al., 2015).

SNA typically represents interactions on static networks. However, the social network could be 

subdivided to represent contacts or movements occurring during different time periods. Using temporal 

variation including seasonality of centrality measures were practiced to inform disease surveillance 

(Hamede, Bashford et al., 2009; Noremark, Hakansson et al., 2011; Sanchez-Matamoros, Martinez-

Lopez et al., 2013).

A majority of SNA related publications in the human health sector have been on identification of high 

risk contacts (Christley, Pinchbeck et al., 2005; Eames, Tilston et al., 2012; Klovdahl, 1985; Morris, 

Zavisca, & Dean, 1995) and associated behaviours (Eames & Keeling, 2002), etc. Evidence on the 

differences of these measured parameters by subpopulation has been used to improve disease 

surveillance activities. Use of SNA in preventive veterinary medicine has been increasing over the 

years (Brooks-Pollock, Roberts, & Keeling, 2014; Cumming, Hockey et al., 2008; Dubé, Ribble et al., 

2009; Fevre, Bronsvoort et al., 2006; Ortiz-Pelaez, Pfeiffer et al., 2006; Ribeiro-Lima, Enns et al., 2015; 

Wiratsudakul, Paul et al., 2014).

Using SNA for poultry movements, Martin, et al identified that the values of mean degree and k-

neighbours of nodes (poultry farms) in Highly Pathogenic Avian Influenza (HPAI) H5N1 infected 

counties were significantly higher than those in non-infected counties in southern China. Besides, HPAI 

infected live bird markets had higher mean degree and k-neighbours of nodes with other infected 

markets compared with the same parameters for uninfected markets (Martin, Zhou, et al., 2011). The 

study confirmed the epidemiological importance of live bird markets in disease transmission such that 

they should be targeted for HPAI surveillance. Ribeiro-Lima, et al. analyzed four years’ of cattle 

movements in the bovine tuberculosis (bTB) accredited areas in Minnesota, USA. Based upon the data 

from SNA, they calculated a risk score for each farm and categorized them into high, medium and low 

risk groups. The study discovered that the higher risk group, although only 14 percent of the all farms, 
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corresponded to 80 percent of the cumulative risk for the farms in the bTB area (Ribeiro-Lima, Enns et 

al., 2015). Use of SNA to identify high risk movements was also documented in other studies 

(Cumming, Hockey et al., 2008; Fevre, Bronsvoort et al., 2006; Fiebig, 2011; Martinez-Lopez, Perez, & 

Sanchez-Vizcaino, 2009; Ortiz-Pelaez, Pfeiffer et al., 2006; Sanchez-Matamoros, Martinez-Lopez et al., 

2013; Van Kerkhove, Vong et al., 2009).

Some critical assumptions for a credible SNA identified by the review are:

SNA assumes that the network underlying the study is a complete one in that all the possible 

contacts and relations between members in the network are included, hence transmission occurs 

only due to existing links in the network (Ortiz-Pelaez & Pfeiffer, 2008). However, a closed 

population (complete network) is a rare situation (Christley, Pinchbeck et al., 2005);

SNA assumes the observed network represents the real world network. This may also not be true. 

Such an issue will be further discussed later. However, the more the credible data available on the 

network under study, the better the observed network will resemble the real one. 

A quite small number of publications have focused on how to improve the quality of SNA analysis. For 

instance, checking the validity of the SNA results, using bootstrapping or jackknifing was suggested to

estimate the confidence intervals around network measurements (Lusseau, Whitehead, & Gero, 2008; 

Whitehead, 2008). To make sure the observed network mirrors the real network (defined as a 

correlation between the edges of the real and the observed network of at least 0.8), Whitehead provided

a guideline for estimating the sample size. For instance, a network that is moderately socially 

differentiated, where the coefficient of variation (CV) of edge weights of the real network is 

approximately 0.2, requires a mean of about 50 identifications per pair of connected nodes. This 

decreases as the network becomes more strongly differentiated, for example as relationships become 

less mixed and start to resemble pairs forming territories (Whitehead, 2008). Besides, based upon a 

simulation study, Franks, Ruxton and James suggested that increasing the frequency of studies, rather

than increasing the proportion of individuals sampled in each study generates a more robust network

when the social network under investigation is stable (Franks, Ruxton, & James, 2010).

Data quality and availability could present a challenge for SNA in the ways are illustrated below:

Complete and reliable data on disease relevant contacts and movements might be unavailable, in 

particular in the early phases of a disease outbreak. This points out such pieces of information need 

to be collected systematically in advance of a disease outbreak and updated regularly. Development 

of templates to collect field intelligence in a structured way during outbreak investigations could 

also be an option (Ortiz-Pelaez & Pfeiffer, 2008).

New sources and modalities for social network information collection need to be tapped. For 

instance, technological advances in human (mobile phone tracking, wearable sensors) and animal 
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tracking (proximity loggers, FRID tags) are rapidly increasing the amount of data collected (Eagle, 

Pentland, & Lazer, 2009; Isella, Romano et al., 2011; J. Krause, Krause et al., 2013).

The information on social networks usually are collected over a short period of time and represent 

snapshots of interactions between network members, while the dynamics of any given networks is 

constantly changing. How to best use such information to understand the disease spread over 

periods of months or years is still an unanswered question (Bansal, Read et al., 2010);

Data on networks are self-reported in most cases, which might suffer from recall bias and missing 

information (Smieszek, Burri et al., 2012). To overcome these issues, internet based surveys, 

automated data collection, electronic self-administered questionnaires were suggested and practiced 

(Eames, Tilston et al., 2012; Prah, Copas et al., 2013; Salathé, Kazandjieva et al., 2010).

Last but not least, the large size of some databases and the subsequent high volume of data could 

overwhelm currently available SNA software. One practical suggestion is to aggregate detailed data 

into a larger epidemiological unit that serves a node (Ortiz-Pelaez, Pfeiffer et al., 2006).

Disease mapping

Spatial epidemiology focuses on at least four issues: (i) disease mapping, (ii) disease clustering; (iii) 

geographical correlation analysis and (iv) testing hypothesis (Berke, 2004; Carroll, Au et al., 2014).

Disease mapping is often an exploratory analysis used to get an impression of the spatial distribution of 

a disease or its corresponding risk factors (Abrial, Calavas et al., 2003; Berke, 2004; Craig, Sharp et al.,

2007; Cringoli, Rinaldi et al., 2005; Lawson, Biggeri et al., 1999; Mak, Morshed, & Henry, 2010; Noor,

Kinyoki et al., 2014; Samat & Ma'arof, 2014; Shannon, 1981).

With the development of openly accessible remote sensing (RS) data, geographic information system

(GIS) techniques and spatial statistics, risk surfaces containing information on the relative importance 

and the clustering of disease occurrence, at-risk populations, disease risk factors, vectors, reservoirs and 

environmental determinants can be projected as continuous maps either dynamically or statically

(Abrial, Calavas et al., 2003; Fuller, Trevon et al., 2011; Grenfell, Bjørnstad, & Kappey, 2001; Hay,

Guerra et al., 2009; Keeling, Woolhouse et al., 2001; Kitron, 2000). Disease maps can be produced in 

different granularities so that global, regional, country and even village level surveillance activities can 

be informed (Craig, Sharp et al., 2007; Gemperli, Sogoba et al., 2006; Hay, George et al., 2013; Noor,

Kinyoki et al., 2014; Ribeiro, Seulu, et al., 1996).

Risk maps have been used to inform or refine RBS approaches; for example, monthly risk maps for 

bluetongue (BT) were developed in Switzerland by combining two components: (i) the monthly 

Culicoides vector habitat suitability maps which were based on temperature, humidity and altitude 

environmental descriptors, and (ii) monthly R0 (basic production rate) maps (Racloz, Venter et al.,

2008). The risk maps identified high risk locations and high risk months during a year and the
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information generated from these maps was used for guiding the national targeted sentinel BT 

surveillance in the country (Racloz, Venter et al., 2008).

Martin et al. demonstrated the cyclic process between risk mapping and risk-based surveillance in a 

study on HPAI H5N1 in China. Reported poultry HPAI H5N1 outbreaks or evidence on existence of 

HPAI H5N1 virus at bird markets were used as dependent variables. Seven explanatory variables were 

selected based upon literature review. They used bootstrapped logistic regression and boosted 

regression trees (BRT) to estimate the relationship between disease/infection status and the selected risk 

factors and environmental descriptors. The risk maps turned out to have high prediction power. The 

study revealed that distribution of HPAI H5N1 risk in China appeared more limited geographically than 

previously assessed. This information could be used for a better targeted surveillance program (Martin, 

Pfeiffer, et al., 2011). A similar approach of combining geographic information system (GIS) 

techniques and statistical methods was used for understanding the relationship between environmental 

descriptors such as temperature, Normalized Difference Vegetation Index (NDVI) and precipitation 

with human Monkey Pox virus disease. The study discovered that proximity to dense forest and the

habitat preferred by rope squirrels were two key risk factors for the occurrence of human Monkey Pox 

cases in Sankuru district in Democratic Republic of Congo. The risk of contracting the disease was

significantly greater near sites predicted to be suitable habitat for squirrels (OR = 1.32; 95% CI 1.08–

1.63). Semi-deciduous rainforests with oil-palm, the rope squirrel’s main food source, was 

recommended as the basis for prioritizing surveillance for Monkey Pox disease (Fuller, Trevon et al., 

2011).

Hay et al. summarized a disease mapping process using GIS and statistical methods in the following 

steps: 

1. to define the definitive extent of the disease with the data on disease occurrence 

collected from various sources such as literature, internet, Gen Bank, etc.; 

2. to infer pseudo-absence points with the definitive extent and occurrence point 

data; 

3. to use statistical techniques to characterize points of presence and pseudo-

absence against the range of explanatory variables; and 

4. to predict the probability that the disease occurs at each location and thereby 

generate a risk map with a quantified measure of uncertainty by using the 

relationships between points of presence and pseudo-absence and explanatory 

variables (Figure 2-8) (Hay, George et al., 2013).
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Figure 2-8. A schematic overview of the process of predicting spatial disease risk
Note: Hay, S. I., D. B. George, et al. (2013). "Big Data Opportunities for Global Infectious Disease 
Surveillance." Plos Medicine 10(4).

Risk mapping can provide early warning of an increase in disease cases or an outbreak. By using cubic 

spline function to assess a non-linear exposure and response association between weather predictors and 

dengue cases, Hii et al. estimated relative risks of dengue cases as the function of weekly mean 

temperature and cumulative rainfall. The study ascertained that increase in weekly mean temperature 

and cumulative rainfall precedes the increase in reported dengue cases by 4 to 20 and 8 to 20 weeks

respectively (Hii, Rocklov et al., 2012). Similarly, another study using sea surface temperature and
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NDVI as the predictor variables for early warning of Rift Valley Fever, the incidence of Rift Valley 

Fever outbreak could be forecast up to 5 months in advance (Linthicum, Anyamba et al., 1999).

Using environmental or climatological descriptors for disease risk mapping has gained popularity. This 

is particularly true for mapping vector borne diseases (Beck, Lobitz, & Wood, 2000; Kalluri, Gilruth et 

al., 2007; Rogers, 2006;  Rogers, Randolph et al., 2002; Rogers, Tucker, & Myers, 2002). Most mapped 

vectors include mosquitos, ticks, black flies, tsetse flies and sandflies (Table 2-1). Further, availability 

of environmental satellite data for mapping infectious diseases was reviewed and summarized by Hay, 

et al. (Hay, Tatem et al., 2006).

Table 2-1. Key vectors, relevant environmental/climatological predictors and diseases
Vector Environmental/climatological descriptors Examples of VBDs

Mosquito

NDVI, NDVI variability, leaf area index

Temperature 

Elevation

Distance to waterways

Rainfall, sea surface temperature variations, cold 

cloud duration

Rift valley fever

Dengue fever

Malaria

West Nile virus

Yellow fever

Tick

NDVI, land cover 

Temperature 

Elevation

Rainfall 

Lyme disease

Crimean-Congo Hemorrhagic 

Fever

Black fly Land cover Onchocerciasis

Tsetse 
fly

NDVI

Land surface temperature

Cold cloud duration;

Elevation

Sleeping sickness

Sandfly NDVI Visceral Leishmaniasis

Rodent 

NDVI

Rainfall

Temperature

Elevation

Lassa fever

Plague

Source: Kalluri, Satya, et al. "Surveillance of arthropod vector-borne infectious diseases using remote sensing 
techniques: a review." PLoS Pathog 3.10 (2007): 1361-1371; Fichet-Calvet, Elisabeth, and David John Rogers. 
"Risk maps of Lassa fever in West Africa." PLoS Negl Trop Dis 3.3 (2009): e388.

In a review, Eisen introduced four groups of spatial and space-time risk models for risk mapping, 

including:
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kriging for producing smooth interpolated maps for dependent variables; 

generalized linear models (GLM) to identify environmental or socioeconomic predictors for risk of 

exposure to disease and develop continuous spatial surfaces that present estimates of risk for 

exposure to vectors or pathogens. The results can be used to guide disease surveillance, prevention 

and control. Other models include generalized additive models and Bayesian approaches. Using 

these models, risk surface can be extrapolated to non-surveyed locations with ecological and 

climatic characteristics similar to those of the model development area; 

presence-only machine learning (rule-based) algorithms or dynamic simulation models. Examples 

include genetic algorithm for rule-set prediction (GARP) (Stockwell, 1999), MAXENT (Phillips, 

Anderson, & Schapire, 2006) and a machine learning algorithm based on maximum entropy and 

simulation models such as CLIMEX (Sutherst, Maywald, & Kriticos, 2007). Comparison of these 

models was discussed briefly. For instance, it was claimed that surface developed by using GARP

may be useful for identifying new areas where diseases are likely to emerge, while surface 

produced by generalized linear model is better for guiding resource allocation to surveillance, 

prevention and control; 

space-time risk models. These models are useful to detect changing risk patterns hence their outputs 

may be suitable for early-warning systems. Commonly used methods include space-time 

permutation scan statistics (e.g., SaTScan), Knox tests, generalized additive mixed models and 

Bayesian hierarchical regression models. All these models highlight the importance of quality 

environmental, biological and epidemiological data, the most important prerequisite for a good 

modelling work (Eisen & Eisen, 2011).

Despite the fact that infectious disease risk maps would be valuable to policy makers prioritizing 

limited resources, out of 355 infectious diseases of clinical significance, only 4% of them have been 

mapped comprehensively (Hay, Battle et al., 2013). Obstacles responsible for the gaps frequently 

mentioned include: 

laborious steps in primary data acquisition, processing and positioning, 

the lack of collaboration between RS scientists and biologists; 

unavailability of sophisticated, statistical GIS; 

challenges in selection of best model(Robertson, Nelson et al., 2010);

unavailability of georeferenced and spatially explicit disease data; (vi) inaccessibility to high 

resolution and low cost imagery; 

data inconsistencies in spatial, spectral, and temporal resolutions among satellite sensors as well as 

data heterogeneity (Gao, Mioc et al., 2008; Herbreteau, Salem et al., 2007; Kalluri, Gilruth et al., 

2007); and 

challenges in developing methods to identify the appropriate data resolutions and to integrate these 
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data into spatial units that are relevant to disease transmission (Rogers & Randolph, 2003).

Another issue identified is related to validity and veracity of maps produced. Risk map is the outcome 

of modelling disease transmission based on spatial and temporal data (Kitron, 2000). It attempts to 

represent ecological, biological, behavioural processes influenced by host, pathogen and the 

surrounding environment (Karesh, Dobson et al., 2012; Slingenbergh, Gilbert et al., 2004; Wilcox & 

Gubler, 2005). Such a process may misrepresent the dynamic process for any given disease if, for 

example, (i) the input data are outdated, or simply wrong; (ii) the explanatory variables being used are 

selected wrongly; (iii) the epidemiological assumption underlying the risk map is wrong (Hirzel, 

Hausser et al., 2002; Rogers, 2006; Rogers & Randolph, 2003; Wood, Beck et al., 1991; Woolhouse, 

2011). Besides, a pathogen or a disease will not occupy all suitable habitats. Hence even with the power 

combining GIS, RS, computer technology and statistical tools, risk maps developed by using disease 

risk factors and their surrogates, individually or collectively could only estimate the likelihood of 

disease introduction or spread at a geographic location and a time period. To improve the predictability 

of any risk map, validation with disease presence and absence data is imperative. This can be done 

through ground truthing, facilitated by checking the agreement between the predictions and 

observations or historical records by statistical methods such Area Under Curve (AUC) of Receiver 

Operating Characteristic (ROC) and Kappa statistic (Brownstein, Skelly et al., 2005; Glass, Cheek et 

al., 2000; Paul, Held, & Toschke, 2008; Sumption, Rweyemamu, & Wint, 2008; Yang, Vounatsou et 

al., 2005). Besides, constant updating data of the risk maps is essential.

Up to now, a majority of the disease risk maps developed have been static ones. Such a situation may 

be changed in the near future. With the availability of big data and improvement in GIS and RS 

techniques, Hay, et al envisioned that evolving or even real time disease risk maps could become a 

reality (Hay, George et al., 2013). Big Data is a term used to describe information assemblages having 

either big volume, high frequency of update (velocity) or diversity (variety) (Najjar, 2014). Big data can 

be health outcomes or information on environmental, climatological descriptors generated from 

satellites. 

Systematic combination of risk mapping and prospective surveillance encompassing epidemiological, 

environmental and socio-economic data is a new concept which has only been sporadically investigated

and deserves greater attention in the future (Aagaard-Hansen, Sorensen, & Chaignat, 2009).

Sentinel surveillance

Sentinel surveillance is one form of surveillance in which activities focus on specific subpopulations to 

enhance detection of disease and/or improve the cost-effectiveness of surveillance (McCluskey, 2003b).

Sentinel surveillance can be defined as a risk-based approach because sentinels are: (i) more likely to be 

exposed to a disease pathogen; (ii) more likely to be highly susceptible or vulnerable to the 

disease/vector and (iii) the disease is preferably more detectable in sentinels than in other susceptible 
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species (McCluskey, 2003a; Racloz, Griot, & Stärk, 2006). For instance, the most at risk populations 

such as injecting drug users, female sex workers as well pregnant women were recruited as the sentinels 

for HIV surveillance to understand the disease spread (Celentano, Akarasewi et al., 1994; Chen, Wang

et al., 2012; Kigadye, Klokke et al., 1993). School age students, as sentinels, were monitored for human 

influenza outbreak and other emerging infectious diseases (Lenaway & Ambler, 1995; Soh, Cook et al., 

2012). Sentinel herds in high risk areas were used for surveillance on infectious diseases, like 

bluetongue disease and birds for West Nile Virus surveillance, for early detection of these disease 

incursion (Carney, Ahearn et al., 2011; Chaintoutis, Dovas et al., 2015; Komar, 2001; Mostashari, 

Kulldorff et al., 2003; Racloz, Griot & Stärk et al., 2006; Roberts & Foppa, 2006). Sentinels were also 

used to study epidemiology of disease (McCluskey, 2003b). Besides, through modelling work, 

Smieszek and Salathe suggested simple proxies such as collocation ranking method, based on 

information collected via wireless wearable sensors, which may effectively identify subpopulations 

suitable as sentinels for human influenza early warning and surveillance (Smieszek and Salathé 2013).

Apart from being used for monitoring the spread of existing diseases in terms of direction, scale and 

changes in the prevalence or incidence (L'Herminez & Mbizvo, 1997; Reintjes & Wiessing, 2007; 

Richard, Vidondo, & Mäusezahl, 2008), environmental health hazards (Rabinowitz, Peter et al., 2005; 

Van der Schalie, Gardner et al., 1999), antibiotic and antiviral resistance (Schwarcz, Zenilman et al., 

1990), sentinel surveillance has also been employed for evaluating efficacy of disease mitigation 

strategies such as vaccination programs (Janjua, Skowronski et al., 2012; Skowronski, Janjua et al., 

2013; Skowronski, De Serres et al., 2009; Suarez, 2005) and as an early warning system for emergence 

of disease (Kulasekera, Kramer et al., 2001; McCluskey, 2003b; Snow, Newson et al., 2007). Specific 

cohort (can be human, animals and disease vectors) in pre-defined location within a geographic area, 

such as farm and health facility have been used as sentinels in surveillance systems (Celentano,

Akarasewi et al., 1994; Doherr, Heim et al., 2001; Komar, 2001; Soh, Cook et al., 2012).

A framework for assessing the utility of potential animal sentinels for surveillance purpose was 

developed by Halliday, et al. The framework comprises the following three components: 

the sentinel response to the pathogen; 

the relationship between sentinel and target populations and 

routes of transmission to both target and sentinel populations. 

Further details of the framework are illustrated by Figure 2-9. Using HPAI H5N1 as an example, they 

demonstrated how to use the framework to identify domestic chickens and ducks as the sentinels in a 

country with underdeveloped disease surveillance and reporting structure (Halliday, Meredith et al., 

2007). The process was transparent and informed by the existing evidence.
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Figure 2-9. The Sentinel Framework in Context
Source: Halliday, J. E., A. L. Meredith, et al. (2007). "A framework for evaluating animals as sentinels for 
infectious disease surveillance." Journal of the Royal Society Interface 4(16): 973-984.

Other explanations on sentinel selection include:

the pathogen must be a known one, i.e. animal sentinels cannot provide the solution to the question 

of how to carry out surveillance for pathogens that are currently unknown; 

minimally, a sentinel and its represented target population must be spatial associated. Besides, the 

sentinel and target population may also be epidemiologically linked such that the sentinel may act 

as a source of infection for the target population, as is the case with arthropod vector surveillance; 

early warning sentinels are those used to provide a predictive signal of risk to the target population. 

In most cases, early warning sentinels are highly visible and develop a very obvious response to the 

pathogen. The disease sets on earlier in sentinels than in a target population. In addition, data 

provided by sentinels with these qualities can be more rapidly processed, analysed and acted upon; 

and 

sentinels can also be used retrospectively to provide evidence of the timing of pathogen 

introduction and spread through a target population (Halliday, Meredith et al., 2007).
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Other approaches

Benschop, et al. used time series analysis methods to identify seasonality or other temporal 

autocorrelation of Salmonella sero-prevalence data collected over more than 10 years. Lagged scatter-

plots, autocorrelation (ACF) plots and partial autocorrelation (PACF) plots were used to identify 

temporal autocorrelation in the aggregated weekly data, and an autoregressive integrated moving-

average (ARIMA) process was used for predictive modelling. The study confirmed a declining trend in 

Salmonella sero-prevalence over the years, no seasonality in sero-prevalence, and no need for more 

frequent sampling at the farm level at intervals of less than every 10 weeks (Benschop, Stevenson et al.,

2008). In another study, using mixed effects logistic regression model, Benschop et al. identified west 

of Denmark experienced the highest risk for Salmonella (Benschop, Spencer et al., 2010). She and 

others further developed a zero-inflated binomial model to predict which farms were most at risk. They 

concluded an improved risk-based surveillance strategy informed by the model, though less sensitive, 

could result in significant cost savings (Benschop, Spencer et al., 2010).

There exist a vast and growing suite of methods for outbreak detection and identification of temporal-

spatial aberrations of diseases occurrence. The methods can be classified into either testing-based or 

model-based approaches. A list of criteria have been proposed by Robertson, et al. for selection of a 

suitable method (Table 2-2) (Robertson, Nelson et al., 2010).

Table 2-2. Contextual factors for evaluation of methods for space-time analysis of disease 
surveillance

Factor Description
Scale The spatial and temporal extent (e.g., local, national, regional, global)
Scope The intended target of the system (e.g., single disease/multiple disease, 

single host/multiple host, known pathogens/unknown pathogens)
Function The objective(s) of the systems (outbreak detection, outbreak 

characterization, outbreak control, case detection, situational awareness, 
biosecurity and preparedness

Disease characteristics Is the pathogen infectious? Is this a chronic disease? How does it spread? 
What is known about the epidemiology of the pathogen?

Technical The level of technological sophistication in the design of the system and its 
users (data type and quality, algorithm performance, computing 
infrastructure and/or reliability, user expertise)

Source: Robertson, Colin, et al. "Review of methods for space–time disease surveillance." Spatial and Spatio-
temporal Epidemiology 1.2 (2010): 105-116.

2.3.3.3. Risk-based requirement

Risk-based requirement is defined as using prior or additional information about the probability of 

hazard occurrence to revise the surveillance intensity required to achieve the stated surveillance purpose

(Hoinville, Alban et al. 2013).
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A number of approaches for risk-based requirement were identified by this review. They have been 

used either for demonstration of freedom from a disease or estimation of prevalence of disease, or 

disease outbreak early warning. The statistical theories behind the design and analyses of these methods

are different (Cameron & Baldock, 1998; Heckathorn, 1997; Martin, Cameron, et al., 2007a; Prattley,

Morris et al., 2007; Raymond, Ick, et al., 2007).

Scenario tree modelling

In animal health, a significant proportion of risk-based surveillance practices have been focused on 

demonstration of disease freedom although it can also be used for disease early warning and monitoring 

disease prevalence (Cameron, 2012). For risk-based approaches, scenario tree modelling approach is 

often used to estimate sample size and surveillance system sensitivity. A typical scenario tree model is 

an inverted tree structure that visualizes the surveillance system components (SSC). It also details all 

steps along the surveillance process through “nodes, limbs/branch and direction” and the 

interrelationships of all factors affecting a given SSC outcome (Figure 2-10) (Martin, Cameron et al., 

2007a; Martin, Cameron, & Greiner, 2007b).

Figure 2-10. Stylized scenario tree 
Source: Martin, P. A. J., A. R. Cameron, and M. Greiner. "Demonstrating freedom from disease using multiple 
complex data sources: 1: A new methodology based on scenario trees." Preventive Veterinary Medicine 79.2 
(2007): 71-97.

The methodology of stochastic scenario tree modelling for facilitating implementation of risk-based

surveillance to demonstrate freedom from disease was initially introduced by Martin and his colleagues. 

Methods on where to find the information for parameterizing the needed inputs the model and the 

formula for estimating sensitivity of SSC and the sensitivity of whole system, probability of disease 
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freedom were proposed (Martin, Cameron et al., 2007a; Martin, Cameron & Greiner et al., 2007b).

Using this methodology, Martin et al. demonstrated probabilities that the population was free from CSF 

at each of the design prevalence of 0.001, 0.005 and 0.01, after a year of accumulated negative 

surveillance data, were 0.91, 1.00 and 1.00; targeting adults and herds from South Jutland was 

estimated to give approximately 1.9, 1.6 and 1.4 times higher the surveillance sensitivity that that of a

proportionally representative sampling program for three among-herd design prevalence levels.

Building upon the works by Martin and others, to standardize the approach of scenario tree modelling 

for substantiating freedom from disease, Vanderstichel et al. proposed an approach with suggestions on 

the defined inputs, outputs and validation methods for implementing scenario tree modelling (Figure 

2-11). They then used the approach to demonstrate market hogs in Canada was free from Trichinella.

The team claimed that a standardized approach could increase transparency in comparing countries 

freedom claims based on the model output such as probability of freedom. It would also be helpful

when comparing different studies to identify similarities and differences between them (Vanderstichel, 

Christensen et al. 2013). This approach was adopted by others (Christensen, El Allaki, & Vallières,

2014).

Figure 2-11. Standardized approach for demonstration of freedom from disease by using scenario 
tree modelling
Source: adapted from Vanderstichel, Raphaël, et al. "Standards for reporting surveillance information in freedom 
from infection models by example of Trichinella in Canadian market hogs." Preventive veterinary medicine 111.1 
(2013): 176-180.

A risk-based surveillance program was designed for Trichinella in Denmark by Alban, et al. The 

program targets all out-door reared pigs as well as all sows and boars. Using scenario tree modelling, 

Alban, et al. simulated the effect of implementing this risk-based surveillance. They concluded that the 

RBS could reduce the total number of pigs surveyed from 23 million to 610,000 a year while the 
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probability of freedom from Trichinella in Denmark remains as high as 95% and above even under the 

worst case scenario of low surveillance system sensitivity (Alban, Boes et al., 2008).

Blickenstorfer et al. confirmed that the surveillance approach combining a surveillance component by 

random sampling strategy with a risk-based surveillance component was more effective in 

demonstrating freedom from two diseases respectively than pure random sampling approach 

(Blickenstorfer, Schwermer et al., 2011). Since risk factor for any given farms could change over time, 

they recommended risk factors and their relative risks be reviewed in regular time intervals. The similar 

suggestion was also made by others (Christensen, El Allaki et al. 2014).

Key assumptions for implementation of scenario tree modelling were summarized as follows: (i) all 

final results (i.e. after completion of any diagnostic follow-up) from the surveillance system are 

consistent with country or zone freedom from disease; (ii) specificity of surveillance system is 100 

percent; (iii) all units under the same surveillance system component (SSC) need to be considered 

independently of each other with regard to probability of being infected hence the units processed under 

a given surveillance system component are representative of the population (Martin, Cameron et al., 

2007a).

A number of online software programs have been developed for the implementation of scenario tree 

modelling. These at least include the one developed by Sergeant, et al. (Sergeant, Cameron, et al., 2009)

and the one developed by AusVet1.

The review has revealed that implementation of scenario tree modelling is a data intensive process, 

heavily relying on historical data which might be challenging for certain diseases or data paucity 

countries. For some inputs, estimation has to rely on experts’ opinion (Alban, Boes et al., 2008; 

Christensen, Stryhn et al., 2011; Martin, Cameron et al., 2007a).

Discounting historical evidence

One particular interest for risk-based surveillance community is on how to use historical information 

from repeated surveys and information on risk related to importation to refine risk-based surveillance. 

The rationale behind such thinking is that those information should be valued and taken into 

consideration to refine confidence on freedom from disease and sample size for demonstration of 

freedom from disease. All the discussions around this topic can be traced back to the early works by 

Cannon (Cannon, 2001).

In a study, Hardon et al. detailed a five steps’ procedure for estimation of probability of freedom from a 

disease based upon the historical information and calculation of sample size: (i) estimation of the 

1 http://freedom.ausvet.com.au/content.php?page=build
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probability of disease freedom from the previous survey; (ii) estimation of probability of disease 

introduction though animal importation for the time period between the previous and the follow up 

surveys through risk assessment; (iii) calculation of adjusted probability of disease free; (iv) calculation 

of the required confidence level for the follow up survey; and (v) calculation of the required sample size 

for the follow up survey. They then used the methodology to estimate the sample size for the 

surveillance on enzootic bovine leucosis (EBL) and Brucella melitensis in sheep and in goats

respectively in Switzerland. They concluded that the sample size for the documentation of freedom 

from EBL and Brucella melitensis in sheep and in goats could be reduced from 2,325 to 415 cattle 

herds, from 2,325 to 838 sheep herds and from 1,975 to 761 goat herds respectively (Hadorn, 

Rufenacht, et al., 2002). The formulae for calculating adjusted probability of disease freedom is 

illustrated below, where PFPS stands for probability of disease freedom in the previous survey, m 

stands the total number of countries exporting animals to Switzerland, p(imp-) is the probability of no

infected animals is imported (defined by not to exceed the threshold for disease freedom) at the time of 

current survey.

PFPSadj = × ( )
Martin et al. proposed a method called temporal discounting of past surveillance data. He and the 

colleagues proposed to use a Bayes’ formulae to update the prior estimation of the confidence that the 

population is not infected with the new evidence (see the formulae below, PriorPinftp stands for 

probability that the population was infected in the previous time period; SSetp, surveillance system 

sensitivity for the current time period; PostFfreetp, the adjusted probability of free from disease) 

(Martin, Cameron et al., 2007a; Martin, Cameron et al., 2007b). This approach has been widely used for 

demonstration of disease freedom for various diseases and in different countries (Christensen, Stryhn et

al., 2011; Frossling, Agren, et al., 2009; Goutard, Roger et al., 2007; Flavie L. Goutard et al., 2012; 

Murphy, Wahlström et al., 2012; Wahlström, Frössling et al., 2010; Welby, Meroc et al., 2013).

= 11   
Schwermer et al. combined the two above approaches by taking into consideration of loss of confidence 

due to reduced time value of historic information and loss of confidence due to import risk and 

developed a method for estimation of probability of freedom from a disease. This approach results in 

further reduction in sample size for demonstration of freedom from disease (Schwermer, Reding, & 

Hadorn, 2009).
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Alban et al. proposed a standardized risk-based surveillance strategy for Trichinella surveillance in 

Europe in order to reduce the cost spent on the Trichinella surveillance programs in Europe. Based 

upon risk analysis, they categorized the member states into three classes according to historical 

epidemiological status. Farm type, species and number of samples were proposed accordingly for 

surveillance purpose for each of the three classes (Alban, Pozio et al., 2011) (Table 2-3). One of the 

rationales behind this framework is that in case historical data are used, the sample size can be reduced 

while probability of freedom from disease would remain at the similar level. 

Table 2-3. Suggested framework for simplified sampling scheme for Trichinella in European 
Union
Class Farm Type Species and sampling

1

Controlled housing

Non-controlled housing

All Trichinella-susceptible animals destined for human 

consumption; 

All sows and boars, horse farmed 

Wildlife testing optional unless meat for human 

consumption

2

Controlled housing

Non-controlled housing

Fattening pigs: proportionate sampling for fattening pigs 

s for 

controlled housing; all fattening pigs for non-controlled 

housing

All sows and boars, horse farmed or hunted wild boar

Other wildlife: mandatory if move into class 3b (all pigs) 

anticipated, otherwise optional

3

Non-controlled housing Fattening pigs

All sows and boars, horse farmed or hunted wild boar

Other wildlife: optional or proportion to demonstrate a 

low level in wildlife <0.1%

Source: Alban, L., et al. "Towards a standardized surveillance for Trichinella in the European Union." Preventive 
veterinary medicine 99.2 (2011): 148-160.

Respondent driven sampling and Time-location sampling (TLS)

These two methods are probability sampling approaches that have been increasingly used for 

investigation and surveillance in hard to reach or hidden populations for HIV/AIDS. 

Respondent-driven samplng (RDS) is a relatively new sampling and sample size calculation method. It 

was firstly used for studying HIV-related risk behaviors among injecting drug users and then expanded 

to surveillance among other most at-risk populations for HIV (Heckathorn, 1997; Wattana, van 
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Griensven et al., 2007). Subjects of RDS are recruited via snowballing, which means the current sample 

members recruit future sample members. Sampling process starts with the selection of a set of people

(seeds) in the target population. After participating in the study, these seeds are each provided with a 

fixed number of unique recruitment coupons that they use to recruit other people they know in the 

target population. After participating in the study, these new sample members again are provided with

recruitment coupons for recruiting others. The sampling continues in this way, with subjects recruiting 

more subjects, until the desired sample size is reached. Through RDS, unbiased estimates of the 

prevalence of certain traits in these populations are able to be achieved (Volz & Heckathorn, 2008). A

RDS has to meet four criteria: (i) documentation of who recruited whom must be tracked, generally 

through a coupon system; (ii) recruitment must be rationed with generally no more than three coupons

allotted per ‘seed’, (iii) information on personal network size must be gathered and recorded; and (iv) 

recruiters and recruits must know one another (i.e. have a preexisting relationship)(Magnani, Sabin et 

al., 2005).

Software program and user manual for RDS implementation have been developed to facilitate 

utilization of this methodology (Spiller, Cameron, & Heckathorn, 2012). So far, RDS has only been 

used for HIV/AIDS related studies. Despite many years’ use and having become a gold standard for 

HIV surveillance among most at-risk populations (MARPs), further standardization in utilization seems 

needed (Malekinejad, Johnston et al., 2008).

In human health sector, TLS has been used to investigate target populations when they congregate at 

certain physical or virtual locations (Ferreira, De Oliveira et al., 2008; Magnani, Sabin et al., 2005; 

Wei, McFarland et al., 2012). As locations may structure social and sexual networks, data on these 

locations may help to rule out particular network structures and estimate population composition

(Karon & Wejnert, 2012). While only a fraction of venues are sampled, it may be possible to get 

indirect insights into other venues through reports by individuals who visit multiple venues. When TLS 

is implemented, sites for congregation are enumerated in a preliminary ethnographic mapping or pre-

surveillance assessment exercise; the list of sites so developed is used as a sampling frame from which 

a probability sample of sites will be chosen. Data are gathered from either all or a sample of subgroup 

members found at the site during a pre-defined time interval Two pre-conditions for a sound TLS are: 

(i) all or a very high percentage of sites where subgroup members congregate are identified so that they

can be included in the sampling frame, and (ii) all or a very high percentage of subgroup members visit 

such sites at least periodically. However such conditions are not always satisfied hence TLS suffers 

from potentially unacceptable levels of bias (Magnani, Sabin et al., 2005).

In one study, Wei, et al compared the two methods for studying black men who have sex with men.

They found that prevalence of HIV and unrecognized infections were slightly higher among RDS 

participants who were less likely to have a main partner, but more likely to have a female partner and 
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have both male and female partners, and reported greater methamphetamine, crack and heroin use. In 

other words, RDS reached the riskier subgroups of this population (Wei, McFarland et al., 2012).

Portfolio theory

Prattley et al. demonstrated how to use portfolio theory to allocating number of samples to be tested by 

location and by temporal duration based upon the comprehensive risk score per location and per period 

and the associated uncertainty. The study illustrated that both historical data and expert opinion could 

be incorporated into the risk assessments that should be updated from time to time, so that a dynamic 

risk landscape could be constructed to map the risk of disease as it may change over time across the 

area of concern (Prattley, Morris et al., 2007).

Weighted Surveillance Approach

Walsh, et al used a weighted approach for Chronic Wasting Disease (CWD) surveillance in USA. The 

animals under surveillance were grouped into eight demographic strata different in age, sex, etc. For 

calculating sample size for each stratum, a weight system was used. Strata with higher CWD prevalence 

and low inclusion probability receive higher weights, which meant a higher number of individuals 

would be sampled from them. The weight of a stratum is actually the risk ratio or odd ratio between it 

and the stratum with the lowest CWD prevalence. The authors simulated the effects of increase 

proportion of samples collected from high risk strata and concluded that by implementing the weighted 

surveillance system, fewer samples would need to be collected and examined while maintaining or 

improving current surveillance standards (in terms of time needed for detection of first CWD) (Walsh 

& Miller, 2010).

Other relevant discussions on risk-based requirement

Cameron discussed when to use the comprehensive concept of risk, in terms of likelihood of 

introduction, exposure, and consequence of exposure account in RBS approaches. His suggestions are 

summarized in Table 2-4.

Table 2-4. Summary on when likelihood and consequence need to be used for different RBS

Type of RBS likelihood
consequence

Freedom from disease Early detection
Risk prioritization Yes Yes Yes
Risk sampling Yes No Yes
Sampling within stratum No No No
Note: RBS stands for risk-based surveillance 
Source: Cameron, A. R. "The consequences of risk-based surveillance: Developing output-based standards for
surveillance to demonstrate freedom from disease." Preventive veterinary medicine 105.4 (2012): 280-286.

The review found that many risk-based sampling based upon scenario tree models tend to 

agree on that although individuals from different risk stratum should be sampled in 
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correspondence to their risk levels, individuals within each risk stratum sampled randomly 

since risk level within the risk stratum is assumed the same (Cameron, 2012). Although such an

assumption help simplifying sampling process, the rationale for such an approximation has not 

been discussed. 

Diagnostic test performance has been assumed to be perfect in most studies using scenario tree 

modelling methodology. Such an assumption may not be true in the real world. To address 

imperfect test, a simple modification of the approximate formulae considering test sensitivity 

has been developed by MacDiarmid based upon the approximation method of Cannon and Roe

(Cannon & Roe, 1982; MacDiarmid, 1988). In the formulae below, P denotes probability of x

positive sample; n, sample size; p, designed prevalence; Se, test sensitivity; Sp, test specificity.

= [ + (1 )(1 )] [ (1 ) + (1 ) ]
2.3.3.4. Risk-based analysis

The definition of risk-based analysis is using prior or additional information about the probability of 

hazard occurrence (including contextual information and prior likelihood of disease), to revise 

conclusions about disease status (Hoinville, Alban et al., 2013).

Gustafson, et al developed a decision framework for estimating disease probability by combining 

evidence streams. This evidence aggregation model is based on the odds form of Bayes’ theorem. In the 

study, disease risk score elicited from experts, used for estimating the predicted occurrence of risk 

factors among the disease affected versus unaffected watersheds, was combined with surveillance data 

to produce a risk adjusted posterior probability of the disease for a given watersheds. The method 

provides a flexible framework for iterative revision of disease freedom status as knowledge and data 

evolve (Gustafson, Klotins et al., 2010).

2.4. Discussion: key observations on RBS 
2.4.1.Key assumptions for RBS

The underlying principle of RBS is that by focusing surveillance resources on sub-populations in which 

disease is more likely to occur, the cost of obtaining the required information will be reduced, or the 

value of the information will be increased, or both. There is also an implicit assumption that there will 

be little or no reduction in effectiveness of surveillance if this approach replaces part or all of the prior 

investment in classical surveillance techniques. RBS is only effective if these assumptions are 
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sufficiently met. Failure to meet important assumptions may result in inaccurate identification of risk 

strata, which could reduce the technical and economic benefits of RBS. The key assumptions or 

prerequisites for each individual methodology have been documented in the previous sections. 

2.4.2.Benefits from RBS

Benefits from implementation of risk-based approaches identified from the review include: (i) 

improvement in technical efficiency of the surveillance system; (ii) improving economic efficiency and

(iii) improved feasibility of surveillance program implementation. 

Improvement in technical efficiency

Compared to conventional surveillance using probability sampling, pure or even partial risk-based

approaches could: reduce the number of samples to be tested while maintaining the same level of 

confidence, improve the probability of providing sufficient evidence for freedom from a disease, 

shorten the time for disease outbreak detection and improve overall surveillance system sensitivity, or 

sensitivity ratio (Table 2-5). 

Table 2-5. Summary on technical efficiency improvement by RBS 
TE* measurement Some of selected references

Sample size (Blickenstorfer, Schwerme et al., 2011; Hadorn, Rufenacht et al., 
2002; Presi, Staerk et al., 2008; Reist, Jemmi & Staerk, 2012; 
Schwermer, Reding et al., 2009; Walsh & Miller, 2010; Willeberg, 
Nielsen, & Salman, 2012)

Probability of disease free (Alba, Casal et al., 2010; Hadorn, Racloz et al., 2009; Reist, Jemmi & 
Staerk, 2012; Tavornpanich, Gardner et al., 2006)

Time for disease detection (Carney, Ahearn et al., 2011; Chaintoutis, Dovas et al., 2015; Healy
Reisen et al., 2015; Hii, Rocklov et al., 2012; Komar, 2001; 
Kulasekera, Kramer et al., 2001; Mostashari, Kulldorff et al., 2003; 
Racloz, Griot & Staerk et al., 2006; Roberts & Foppa, 2006)

Surveillance system 
sensitivity, sensitivity ratio**

(Alba, Casal et al., 2010; Calvo-Artavia, Nielsen, & Alban, 2013; 
Flavie L. Goutard et al., 2012; Knight-Jones, Hauser et al., 2010)

Note: *TE, technical efficiency; ** Sensitivity ratio means surveillance system component sensitivity divided by 
the reference surveillance component sensitivity.

Improvement in economic efficiency

RBS approaches outperform conventional surveillance approaches by lesser surveillance cost, higher 

cost effectiveness, lower cost effectiveness ratio, or higher effectiveness ratio (Table 2-6). 
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Table 2-6. Summary on economic efficiency improvement by RBS 
EE* measurement Some selected reference

Reduced surveillance cost, cost saving** (Reist, Jemmi & Staerk, 2012; Tavornpanich, Gardner
et al., 2006; Walsh & Miller, 2010)

Lower cost-effectiveness ratio 1 (Knight-Jones, Hauser et al., 2010)
Higher cost-effectiveness 2 (Healy, Reisen et al., 2015)
Effectiveness ratio3 (Calvo-Artavia, Nielson & Alban, 2013)
Net economic effect (Calvo-Artavia, Nielson & Alban., 2013)
Note: *EE, economic efficiency; **compared to the cost of conventional surveillance by using random sampling;
1, cost divided by surveillance component sensitivity; 2, number of positive results per US$1,000 spent; 3, net 
economic effect divided by change of surveillance system sensitivity. 

Improved feasibility of surveillance implementation

As mentioned earlier, RBS can significantly reduce the number of samples to be collected, which would 

reduce complexity and burden in implementing surveillance strategies. Again, in the study on bovine 

cysticercosis surveillance in Denmark, Calvo-Artavia et al. illustrated that a gender (risk factor) based 

sampling approach would be easier and more accurate for implementation compared to using other risk 

factors while the level of technical performance is comparable to those using other risk-based

surveillance scenarios (Calvo-Artavia, Nielson & Alban, 2013). Using animal sentinels such as dead 

birds for West Nile virus disease surveillance is operationally less challenging than other surveillance 

approaches (Komar, 2001).

2.4.3.Challenges related to RBS

Political hurdles

Probability for detection of positive samples is possibly higher by using risk-based surveillance 

approaches than that by using non-risk-based surveillance. This may lead to trade restrictions and other 

negative consequences (Stark, Regula et al., 2006; Tsai, Scott et al., 2009). In addition, implementation 

of risk-based surveillance does not mean it is inexpensive. For instance, social network approach for 

identifying individuals, sub-populations and potential hotspots can be highly resource and labor 

intensive (Bolton, McCaw et al., 2012; Smieszek & Salathé, 2013). However setting incentives can 

encourage RBS. For instance, EU granted regions or countries having a negligible risk of Trichinella in 

domestic swine a reduced surveillance and testing approach for the disease in swine carcasses (Alban

Boes et al., 2008; Alban, Pozio et al., 2011). Furthermore, RBS can be technically sophisticated and 

might not be intuitively straightforward to decision makers, thus communication on the results to them 

and winning their support could be challenging (Reist, Jemmi & Staerk, 2012).

To practice risk-based approaches for surveillance requires a mindset change and harmonization of 

surveillance approaches across countries (L. Alban et al., 2011; Pozio et al., 2010). Countries or a 

region need to set up a proper legal framework to allow focusing on outcome based standards for 
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surveillance (Martin, Cameron & Greiner, 2007b) and allow flexibility in surveillance system design 

(Cameron, 2012).

Validation and veracity

A variety of methods have been implemented to make sure RBS approaches are valid as well as 

accurate. For instance, sensitivity analysis has been widely used to assess the robustness of the findings 

from a given RBS approach. Spearman rank correlation coefficient was calculated to check the 

agreement between two rounds of assessment results given by the assessors participating in MADM. 

Cohen Kappa and AUC, etc. were used for assessing the agreement between expected and observed risk 

surfaces. Veracity of risk maps was recommended to be checked by ground-truthing. Diseases evolve 

over time, so do the risk factors, this necessitates the inputs and outcomes of RBS approaches to be 

reviewed on regular basis. 

Standardization

The review has identified standardization efforts for: MADM for risk prioritization, social network 

analysis, respondent driven sampling, scenario tree modelling, as well disease risk mapping. 

Standardization takes forms of development and promotion of a common framework, guidelines as well 

as development of software programs. The arguments for standardization include transparency and 

easier cross comparison so that similarities and differences can be identified and discussed. However, 

one comment on standardization cautions people that the desire to harmonize surveillance programs via 

standardization between countries can impede the evolution of efficient risk-based surveillance 

strategies tailored to national risks (Stark, Regula et al., 2006).

Data issues

RBS can be data intensive. The design and implementation of a risk-based approach for surveillance

requires: quality baseline information, often years of prior data on difference in occurrence of disease 

between population strata and risk factors and their influence over disease occurrence (Alba, Casal et 

al., 2010; Carroll, Au et al., 2014; Christensen, El Allaki et al., 2014; Hadorn, Racloz et al., 2009).

These entail that information on disease, hosts, risk factors/drivers have to be generated, updated and 

curated. All these challenges exacerbate the issue of data scarcity in developing countries. For instance, 

few developing countries have an animal movement registry. While multi-temporal satellite data are 

available for an extended time period, the availability of georeferenced and spatially explicit disease 

data for the same temporal period is still less common, especially in developing countries. Generating 

data often requires good research and technical capacities (Paul, Held et al., 2008). These challenges 

may explain partially why a majority of risk-based surveillance activities have been implemented in 

developed economies.

Risk stratification based upon historical data may only represent historical reality. Caution has to be 

applied since risk factors may change overtime especially in the case of detecting emerging infectious 
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diseases, which requires constant re-evaluation of the assumptions underlying the risk-based 

surveillance approach. For instance, animal movement has to be generated during or right before 

disease incursion and spread, or in another words, in an epidemiological relevant time window 

(Benschop, Stevenson et al., 2008; Ortiz-Pelaez & Pfeiffer, 2008).

Even though data exist, data ownership and accessibility may also present a challenge between different 

sectors, geographic areas within a country and particularly between countries. Political support, proper 

governance framework, comparability of data and information infrastructure are all in play to support 

effective data sharing and access (Weinberg, Waterman et al., 2003).

Availability of remotely sensed data has been improved greatly (Hay, Tatem et al., 2006). However 

transformation or conversion of the remotely sensed data on environmental variables is essential to 

convert the raw data into epidemiologically meaningful values. Besides, such datasets should be made 

available to epidemiologists in real-time (if possible automation) and in a format that they can readily 

use as inputs for their modelling (Eisen & Eisen, 2011; Hay, Battle et al., 2013).

Certain data that are useful for RBS are sensitive and private. For instance, questions about sexual 

mixing behavior are inherently personal, and questions about physical contacts may be considered 

intrusive in some communities (Eames, Bansal et al., 2015). In disease mapping, a common 

consideration cited is how to protect privacy of public health data (Gao, Mioc et al., 2009; Geanuracos, 

Weiss et al., 2007).

A number of approaches have been proposed to deal with data related issues. These include, for 

example: crowdsourcing (Boulos, Resch et al., 2011; Eames, Tilston et al., 2012; Prah, Copas et al., 

2013; Salathé, Kazandjieva et al., 2010), experts’ opinion (Presi, Staerk et al., 2008), new forms of data, 

and open data sources such as remote sensing and data from proximity logger and animal tracking 

devices. 

2.4.4.Evolution in risk-based disease surveillance 

Output based surveillance

Methods for design and analysis of surveillance for human and animal diseases have been continuously 

evolving over years. Output based surveillance such as scenario tree modelling, risk-based surveillance,

etc. were introduced relatively recently (Heckathorn, 1997; Martin Cameron et al., 2007a). These 

techniques capture the effects of differentiating surveillance efforts within population strata with 

different risk levels of infection or disease occurrence. When they are correctly used, they can achieve 

improved technical and economic efficiency in disease detection.
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It was common to see that approaches, methods and even laboratory procedures are specified in detail 

by technical agencies such as World Health organization, Food and Agriculture Organization for a 

given disease (FAO, 2006; WHO, 2004). Such an approach focusing on controlling surveillance inputs 

and process intended to standardize surveillance so as the capacity building and quality assurance could 

be implemented easier and results from different countries could be compared and understood with less 

difficulty. Output based surveillance approach gain its popularity in recent years because of increased 

attention to emerging infectious diseases and public health emergencies. 

Output based surveillance approach has also undergone evolution over the years.  For instance, 

Cameron summarized output based surveillance approaches for demonstrating freedom from infection 

either as part of a control program or confirmation of successful eradication into three components

(Table 2-7).

Table 2-7. Development of output based surveillance for demonstration of freedom from disease
Component Description References
1: Sensitivity SSe = 1 (1 × ) , at a design 

prevalence, flexibility is allowed in selection 
of approaches different in sensitivity and 
sample size to achieve the same level of 
surveillance system sensitivity; Scenario tree modelling allows using different 
methods for different strata

(Martin, Cameron et al., 2007a)

2: Probability of 
freedom

( ) = ( )( ) ( )×( ) allows 

integration of multiple sources of surveillance 
evidence, including historical evidence and 
bio security levels of herds

(Cannon, 2002)

3: Expected
cost of error

The probability of error: probability of 
residual undetected infection or Pr(free)
multiplied by the consequences (expressed in 
monetary
or other terms)

No reference (at the concept 
stage, has not be practiced)

Source: Cameron, A. R. "The consequences of risk-based surveillance: Developing output-based standards for 
surveillance to demonstrate freedom from disease." Preventive veterinary medicine 105.4 (2012): 280-286.

Embracing big data 

There has been no consensual definition of big data.  However, big data usually have at least one or 

several following elements: (i) size: the volume of the datasets is a critical factor; (ii) complexity: the 

structure, behaviour and permutations of the datasets is a critical factor; (iii) technologies: the tools and 

techniques that are used to process a sizable or complex dataset is a critical factor. There is an 

increasing number of systems employing big data for prediction, early warning and real time reporting 

of infectious disease and other forms of public health events.  Examples of such systems include Global 
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Public Health Intelligence Network (GPHIN), ProMED-mail, Google Flu Trends, HealthMap, Argus, 

etc. (Blench, 2008; Brownstein & Freifeld, 2007; Brownstein, Freifeld et al., 2009; Carneiro & 

Mylonakis, 2009). 

For the development of risk surfaces for various diseases, Hay, et al envisioned that dynamic infectious 

disease risk maps would be available in the future with the advent of novel online data sources, such as 

social media, combined with epidemiologically relevant environmental information and the advances in 

machine learning and the use of crowd sourcing (Hay, George et al., 2013). To transform the 

unstructured big data from different sources into epidemiologically meaningful information and to

control noise entails better IT infrastructure, system interoperability, crowdsourcing for data analysis,

collaboration among epidemiologists, computer scientists as well as GIS specialists, etc. (Hay, George

et al., 2013; Rogers & Randolph, 2003; Stark, Regula et al., 2006).

One health approach

One Health is defined as the collaborative effort of multiple disciplines, working locally, nationally and 

globally, to reach optimal health for humans, animals, and the environment (Lewis, 2008). About sixty 

percent of 1,415 known human infectious diseases are zoonoses (Taylor, Latham et al., 2001). Human 

or animal health is the downstream event of social, economic and environmental determinants 

(Kawachi & Wamala, 2006; Marano, Arguin & Pappaioanouet, 2007; Marmot & Wilkinson, 2005; 

Patz, Daszak et al., 2004; Richmond, Elliott et al., 2005; Zinsstag, Schelling et al. 2011).

The review identified more than one fourth of the publications on risk-based surveillance focused on 

zoonoses, an additional 3 percent on food safety and 2 percent on antimicrobial resistance. As 

illustrated in a previous section, surveillance on disease occurrence among sentinel animals could 

provide early warning or predict occurrence of the same disease among a human population

(Mostashari, Farzad, et al., 2003). On the other hand, reporting of human cases often acts as sentinels 

for the same disease outbreaks among animals (Minh, Schauer, 2009). To understand the relationship 

between infectious disease occurrence and its social, environmental and economic determinants 

requires expertise from different disciplines and the collaboration from animal, human, environment 

health sectors as well as those working on wildlife.

2.5. Conclusion 
The increasing tide of globalization and interconnectedness of human and animal populations 

throughout the world have increased the risks for infectious disease spread and the potential for 

significantly greater impacts (Jones, Patel et al., 2008). The key international organizations responsible 

for global health of human and animal populations have developed regulations, agreements and 

standards to mitigate these risks, such as the International Health Regulations (2005) produced by the 
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World Health Organization (WHO) and the Sanitary and Phytosanitary Measures (SPS Agreement)

produced by the World Trade Organization (WTO) which mandate member states to improve and 

maintain high standards in disease vigilance and related capacities (Gostin, 2005; Reist et al., 2012).

Respective standards have been developed by WHO, the Codex Alimentarius Commission (CAC), the 

World Organization for Animal Health (OIE) and the International Plant Protection Convention (IPPC).

Disease surveillance is an essential component in dealing with infectious diseases and surveillance 

programs need to be technically efficient, operationally effective and economically beneficial to ensure 

optimal use of the resources that are available for controlling disease across the globe. 

This review concludes that: 

the value of risk-based surveillance has been exemplified by the increase in applications of the 

approach over time (Rodríguez-Prieto, Vicente-Rubiano et al., 2014).

A variety of RBS approaches have been used for a wide range of animal and human health issues 

for demonstration of disease freedom, disease early warning, disease control, as well as 

understanding of disease/hazard trends. 

It is evident that compared to the conventional surveillance approaches, RBS can improve technical 

efficiency, reduce cost for surveillance, advance disease detection, and achieve higher net economic 

benefit. In some cases, RBS approaches are easier to implement. 

A number of challenges have been revealed and summarized by the review. Among them, political 

hurdles, paucity of data, the lack of standardization/harmonization of approaches and requirements for 

high technical epidemiological expertise are the major ones. These challenges have limited the effective 

utilization of RBS in resource-poor settings. 

The experiences so far in applying RBS show that there is now a need for a more integrated approach to 

disease surveillance - involving coordinated investigation of both animal and human populations, 

greater integration of different RBS approaches, increased use of new sources of data, and development 

of improved software tools that facilitate the design and implementation of RBS. Such developments 

will further enhance the global value of RBS, particularly for application in resource-poor countries. 
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CHAPTER 3

3. From Science to Application: Development of a 

User-friendly Program to Facilitate Risk-based

Approaches for Disease Surveillance -

HandiResponse

3.1. Abstract
Background: The increasing disease burden from emerging infectious diseases and their impacts calls 

for more effective surveillance approaches. Risk-based surveillance and integration of multiple forms of 

surveillance are prominent in current suggestions on how to enhance disease surveillance strategies.

However, quite a number of constraints prevent countries, especially resource poor ones, from adopting 

them.

Method: Based upon the results from literature review, the architecture of a disease surveillance

planning tool was designed. All modules are developed in a way that outputs from the modules in the 

upstream are used as the inputs for the modules in the downstream.  

Results: Human and Animal Disease Response Program (HandiReponse) has been designed to help 

assess and improve disease surveillance programs. The program includes four modules: (i) risk map 

development – HandiMap; (ii) surveillance portfolio development – HandiSurv; (iii) economic impact 

assessment – HandiEcon and (iv) surveillance optimization – OptiSurv. The conceptual framework, 

objectives and structure of the program are described, and examples given of its application.

Conclusion: HandiResponse, combining risk mapping, infectious disease modelling, surveillance 

program planning and optimization in one package, which can potentially facilitate effective

communication between technical staff and policy makers on disease surveillance and improve 

technical and economic efficiency of the programs for disease surveillance, in particular, those in 

developing world. Its performance await to be tested and user friendliness to be improved.
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3.2. Introduction
Risk-based surveillance has gained in popularity in recent years, and represents an important 

development for modern disease surveillance (Qing et al., 2003; Stark et al., 2006). Risk-based

surveillance programs have been promoted as potentially outperforming the traditional non-risk-based

ones in terms of improved system efficacy by reduction of sample size for demonstration of disease 

freedom, quicker and more accurate detection of disease presence, and improved probability of 

detection of rare diseases (Hadorn, Rufenacht et al., 2002; Schwermer, Reding, Hadorn et al., 2009; 

Willeberg et al., 2012). They could also achieve higher benefit-cost ratio or cost saving (Alba et al.,

2010; F. F. Calvo-Artavia et al., 2013; Catherine G. Geanuracos et al., 2007; Presi et al., 2008; Reist et 

al., 2012; Tavornpanich et al., 2006) and detect outbreaks of infectious diseases earlier (Kahn, 2006; 

Kuiken et al., 2005; Kulasekera et al., 2001; Racloz, Venter et al.,2008). However, planning and design 

of a risk-based approach for surveillance can be challenging for a number of reasons. The approaches 

adopted need to overcome policy constraints (Cameron, 2012; Martin, Cameron et al., 2007a; Qing,

Saijo et al., 2003; Stark, Regula et al., 2006; Tsai, Scott et al., 2009; Weinberg, Waterman et al., 2003),

require access to intensive and up to date data (Alba, Casal et al., 2010; Carroll, Au et al., 2014; 

Christensen, Stryhn et al., 2014; Kalluri, Gilruth et al., 2007; Ortiz-Pelaez, Pfeiffer et al., 2006) and 

need adequate epidemiological and research capacity (Kalluri et al., 2007). Implementing the approach 

may also be expensive (Smieszek & Salathé, 2013). These challenges are more prominent in resource-

constrained countries. Hence, most of the risk-based surveillance activities have so far been 

implemented in developed economies, whereas they could provide greater benefit if applied in 

resource-constrained countries. However these countries do not have the same level of expertise to 

apply risk-based methods.

A generic management tool has been developed in order to help assess and improve national disease 

surveillance programs and the utilization of a risk-based approach - in particular, developing and under-

developed countries. The system is called Human and Animal Disease Response System 

(HandiRepsonse). In the following sections, the conceptual framework, objectives and structure of the 

program will be described.

3.3. Materials and methods
3.3.1.Program description

3.3.1.1. Conceptual framework

Risk of disease can be defined as the interaction between the probability of disease occurrence and the 

severity of its consequences (North, 1995). A risk factor is an environmental, behavioral or biological 

factor that directly increases the probability of a disease occurring (Beck, 1998). Rarely does an 

emerging infectious disease occur evenly in either spatial or temporal terms, or across population 
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groups (Stark, Regula et al. 2006). Identification of location, time/season and population at most risk 

could possibly enable effective use of resources for disease prevention and mitigation. With the 

advances having taken place in the fields of computer science, remote sensing technologies, geographic 

information systems, geographic positioning systems, and decision making sciences, the effects of 

different risk factors can be better gauged and visualized. Such information could help predict 

infectious disease with sufficient lead time to allow an effective government response to prevent an 

incursion, or to deal with it effectively after it is introduced (Woolhouse, 2011).

The HandiResponse program employs a sequence of components to develop a “risk landscape” for 

potential occurrence of a disease of concern, then models the spatial and temporal spread of this disease 

on the risk landscape, and then uses this model to test the effect of potential surveillance measures.

Finally it conducts an optimization procedure to choose a mix of surveillance methods which is 

expected to be both epidemiologically and economically efficient in detecting an incursion of the 

disease. Later the program is intended to broaden the range of situations in which it can be used, but an 

incursion provides a suitable initial case study to test the concept.

HandiResponse uses HandiSpread, a spatial and stochastic simulation modelling program for modelling 

zoonotic diseases on a user-defined risk landscape, rather than a uniform surface. It was developed from 

the earlier InterSpread Plus 2 by EpiSoft Company, by adding the capacity to transmit disease to the 

human population as well as spread within domestic animal and wildlife populations, to create an 

epidemiological model for a particular disease under study.

Risk assessment and mapping jointly provide the critical first step of producing a risk landscape (map).

The disease is then modelled on this risk landscape, and various surveillance methods are tested for 

their capacity to detect the disease. These results are then used in a further analysis to assess the effect 

of various potential surveillance approaches on speed of disease detection and cost-effectiveness of a 

surveillance portfolio consisting of one or more surveillance methods. The reduction in potential 

consequences measured in economic terms (including less effect on human health), together with the 

cost for each surveillance approach, are jointly used to construct an optimal surveillance portfolio.

As the name suggests, HandiResponse has been designed with the capacity for managing surveillance 

program for infectious zoonotic diseases affecting both animals and people.

3.3.1.2. Objectives 

The specific objectives of HandiResponse are (i) to visualize the disease risk landscape and identify 

hotspots where the infectious disease under study is likely to spread most rapidly and hence could be 

2HandiSpread, Massey University EpiCentre, Palmerston North, New Zealand. Available at 
http://www.interspreadplus.com, accessed on August 14, 2014. 



62

detected by surveillance; (ii) to evaluate economic benefit and costs of each surveillance activity, and 

their combined effects as components of a portfolio; (iii) to define optimal use of resource for 

surveillance through selection of an optimal surveillance portfolio (a set of surveillance components 

and sub-components) across predefined risk categories such as geographic area, species, sectors, types 

of stakeholders, etc. In this chapter the design concepts of HandiResponse will be described, then in the 

next Chapter the implementation of the concepts will be demonstrated.

3.3.1.3. Structure

The program comprises four modules (Figure 3-1): (i) risk landscape development – HandiMap; (ii) 

surveillance method planning – HandiSurv; (iii) economic impact assessment – HandiEcon and (iv) 

surveillance optimization – OptiSurv. The lines with arrow in the figure indicate the direction of 

information flow and linkage between different modules. Besides, HandiResponse has to use the 

disease model HandiSpread to conduct effect evaluation of different surveillance options, which is a 

critical step for surveillance optimization.  

HandiMap Module

This module provides an assessment and mapping tool for estimating and presenting the spatial 

variation in risk of spread of the disease under study across the defined geographical area by geographic 

unit. The module will allow a participatory process for identifying key risk factors (and where 

necessary their environmental or other proxies) and presenting them.

The outputs of the module are (i) risk maps called “risk landscapes” that display the “height” of the risk 

at each location, and can be single risk factor maps or a combined risk map. These maps can be either in 

kernel smoothed format or raster format; (ii) a risk score file which transfers the “risk height’ 

information to HandiSpread, for use in adjusting the susceptibility of particular locations to occurrence 

of the disease, and hence allows HandiSpread to take account of risk level in representing transmission 

of the disease. A process has been designed for guiding the users through the disease risk mapping 

process in a stepwise approach (Table 3-1).

Figure 3-1. Structure of HandiResponse and linkage between different modules
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HandiSurv Module

The module is designed for planning surveillance components and sub-components defined by a 

program user for a disease and estimating their respective effects on disease detection.

This requires appropriate terminology. For this PhD project, we have defined and used the following 

technical terms related to disease surveillance. 

A surveillance portfolio is a set of disease detection activities carried out in a coordinated fashion. It 

consists of one or usually multiple surveillance components, which are specific surveillance 

activities defined with regard to method of disease detection, target population and spatial coverage.

A surveillance component applies one option selected from multiple surveillance sub-components,

which usually have at least two dimensions – surveillance intensity, which is the level of effort put 

into the investigation process, and detection sensitivity, which is the sensitivity of the diagnostic 

procedure used in the investigation process. Compliance is the third dimension where appropriate. In 

the example used in Chapters 7 and 8, there are three levels each of surveillance intensity and 

detection sensitivity, and hence nine combinations of sub-components under each surveillance 

component. Because of the nature of the surveillance activity there is no compliance sub-component 

in this case. One of the nine combinations is chosen to be used in the surveillance activity. It would be 

possible to define sub-components differently if required for a particular situation. An algorithm for 

surveillance planning and some key terminologies used to describe the composition of a surveillance 

program are all summarized in Figure 3-2. By the end of the process, subject for surveillance (human, 

animal or vector, etc.), event for surveillance (syndrome, disease, evidence of infection, etc.), 

location, method and associated intensity, detection sensitivity and compliance will be defined.

Besides, the technical specifications for each subcomponent which needs to be defined are 

documented in Table 3-2.

The above mentioned terms will be used for defining a surveillance program for a given disease.  

They need to be parameterized within HandiSurv and input into HandiSpread to estimate their 

respective effects on disease detection.  The effect on disease detection of each individual surveillance 

subcomponent is estimated separately.   
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Figure 3-2. Algorithm for constructing a surveillance portfolio

Table 3-2. Key Parameters Used for Estimating Performance of Surveillance Subcomponent
Parameter Explanation Category
Selection probability Probability that a surveillance unit will be eligible for 

being selected under a surveillance subcomponent
Intensity

Sensitivity the probability that an event will be correctly detected by 
a surveillance subcomponent

Sensitivity

Visit delay Probability of a surveillance unit to be visited as a 
function of the number of days after it has been put on 
surveillance list

Intensity

Visit frequency The number of time periods (e.g. days) between visits Intensity
Visit duration The number of time periods (e.g. days) a surveillance unit 

is on surveillance
Intensity

Delay to detection The number of time periods (e.g. days) between a visit to 
a surveillance unit to when it is detected

Compliance

Probability of 
reporting

The probability that a surveillance event will be reported Compliance

Probability of 
detection 

Probability of a surveillance unit to be detected per unit 
time (eg. 1 day)

Sensitivity
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These technical specifications will be the inputs used in HandiSpread® for estimating impacts of any 

given surveillance component introduced in the disease model. The default number set for separately 

seeded replicates of the simulation model is 99. The number of 99 is selected because more than 20 

years’ experience in using InterSpread Plus suggests such a number of iterations reliably gives results 

and further increase in iterations provides few marginal benefit in improving modelling results and its 

associated confidence intervals.  Besides, and the number of 99 is chosen so that there is a single 

median replicate for any variable of interest. The key statistics which need to be reported out of the 

simulation include a list of the infected properties, the number of animals and people associated with 

each of the infected properties, and the day on which the disease is detected in each iteration. Each 

model is run for 365 days or any predefined time period, and the proportion of iterations in which the 

disease is not detected by the chosen surveillance activities is reported. Further information on 

HandiSpread and the process of using it for disease modelling is provided in Chapter 5, where the 

software is used for the first time, and in Chapter 7 where it is used for a second part of the research.

HandiEcon Module

HandiEcon is designed for benefit and cost estimation for any given interventions such as 

surveillance. The outputs of the module will be cost for each surveillance component and selected 

subcomponent, gross benefit and net benefit of applying a given surveillance program. Gross benefit 

for any given surveillance component is defined as the difference between the economic effect of an 

undetected disease outbreak over 365 days and the economic effect of the outbreak up to the point of 

detection by the surveillance activity. The net benefit is defined as gross benefit minus the cost for 

any given surveillance program by the time of detection. A budgeting model has been developed to 

estimate productivity impact because of disease. The consequences of human disease are estimated in 

two steps: disease burden is estimated by using WHO Disability Adjusted Life Year (DALY) 

template; the DALY loss is then converted into economic loss by using the human capital approach.

In addition, direct costs of medical care and related expenses for affected people are calculated. All 

estimation templates are in MS-Excel format. 

OptiSurv Module

OptiSurv is an optimization program which can be used to search for top-ranked surveillance 

portfolios using predefined criteria, be it high technical efficiency, high economic efficiency, high 

speed of detection of the disease or other criteria. This module helps to answer key questions such as 

where (geographic location, stage in the market chain, etc.) and what (species, surveillance method, 

etc.) to spend surveillance resources on. It is in MS-Excel format.

The OptiSurv workbook has three data sheets (Strategies, FarmCosts and DayDetected) that contain 

the data about the simulated epidemic and surveillance, a Summary sheet that records your progress in 
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setting up an optimization, the Compare sheet that let you compare five portfolios, and the Best sheet 

that shows the results of the optimization.

Important set of inputs needed for this module include: (i) a list of possible surveillance components 

and subcomponents that are under consideration to be implemented. (ii) the metrics generated from 

each of the 99 simulation replicates such as number of days that the particular surveillance component 

runs until it detects the disease, the number of herds or other population units infected up to the time 

of disease detection, the cost of surveillance as well as gross and net benefit of detecting the disease 

compared with an undetected equivalent outbreak where no surveillance was conducted.

OptiSurv calculates the necessary statistics for each portfolio and uses a search algorithm to identify 

the top ranked surveillance portfolios according to the particular decision rule that has been set.

OptiSurv evaluates each possible portfolio according to the decision rule, and excludes clearly 

suboptimal clusters of portfolios as it narrows its search to produce a ranked list of the portfolios 

which best satisfy the decision rule.

3.3.2.Program flow

As illustrated in Figure 3-1, the program starts with HandiMap, which produces risk maps and 

generates a risk file with a score for each spatial unit of epidemiological importance. The information 

on risk scores is then fed into HandiSpread to develop a temporal and spatial model representing the 

spread of the disease of concern following an incursion - in the first instance without any detection 

methods in place, so the disease remains unidentified. To represent the natural variation in spread 

pattern of the disease from the same incursion point, 99 replicate epidemics are simulated, with 

different random number seeds, so that biological variability within the same parameter settings is 

represented. The structure of HandiSpread allows the same 99 replicate epidemics to be run as many 

times as needed, with exactly the same disease behaviour, but with separately seeded surveillance 

strategies applied to the disease so that surveillance strategies can be compared on equal terms. The 

model is used to assess the detection effectiveness of each surveillance component/subcomponent 

combination. The metrics generated from the simulation are transferred into HandiEcon for estimation 

of the economic effect of each surveillance component/sub-component combination. Finally, the 

statistics produced by HandiSpread and HandiEcon are used by OptiSurv to identify optimal 

surveillance portfolios from within all the combinations available.

3.4. Implementation
In Chapter 3 the software tools are illustrated, showing the way in which they have been used to 

implement the approach described in this Chapter. Then in Chapters 4 to 8 practical applications of 
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the various tools to stages of the HandiResponse surveillance design process are illustrated with 

available data sets.

3.5. Discussion
3.5.1.Program design

The program has been designed to provide for a consensus-building process that allows participatory 

decision making about surveillance for diseases of national concern. The investigation team can, for 

instance, debate the selection of risk factors and the weight to be given to each individual risk 

factor/layer across different risk factors. The products of the program include a risk map, and a 

selection of optimal surveillance portfolios linked to alternative decision rules which are suited to 

different disease situations. It provides a transparent, reproducible process and is a policy-ready tool.

It has the potential to win support from Ministers and key stakeholders, whose commitment is crucial 

for financing and implementation of effective surveillance and control measures.

HandiResponse has been designed for studying emerging zoonotic infectious diseases, although it has 

the potential to be broadened to cover other diseases. The rationale for focusing on emerging zoonotic 

diseases and development of such a disease management program comprises:

the importance of emerging zoonotic diseases and the potential socio-economic impacts - in 

particular, the effects on human populations caused by these diseases such as HPAI, Ebola 

Hemorrhagic Fever; and

the challenges in predicting and managing these diseases. For instance, in the early phase of an 

emerging zoonotic disease outbreak, perhaps little is known about the epidemiology of the 

disease. Besides, many of the countries that are most at risk from such diseases do not have the 

skilled people to provide a sound assessment on what action is needed, how best to assess the 

potential impact of the disease to the country and what immediate response is appropriate 

(Agyepong, 2014). A software tool, such as HandiResponse, could be used to facilitate decision-

making on how to respond to such risk situations and support resource-poor countries in 

mounting an appropriate response.

A spatial and temporal model representing the particular disease under study is critical for the 

development of technically and economically efficient surveillance portfolios and other appropriate 

disease mitigation measures. This is achieved by HandiSpread, a modified version of InterSpread 

Plus. HandiSpread is able to model a disease affecting animal populations, with spillover into human 

populations, but no significant human-to-human spread (such as avian influenza H5N1). It could be 

linked to models which deal specifically with transmission within human populations, for diseases 

which spillover into human populations and may then cause continuing human-to-human spread (such 

as Ebola haemorrhagic fever).
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The program operates within HandiView, a platform for data management in health events which 

involve people and/or animals. Different computer programming languages have been used for the 

development of HandiResponse to maximize its functionality and user friendliness: C# was used for 

the webserver design, Java Script for the development of web interface, R for the development of 

HandiResponse report template and Visual Basic for OptiSurv module. 

3.5.2.Risk mapping

3.5.2.1. Definition, typology and development

Risk mapping has a number of definitions and connotations. For disaster management, risk mapping 

is a process of identifying high-risk areas, done by relating the nature of a hazard, such as an 

earthquake, to the terrain and to the probability that an event will occur at a particular location. In 

public health, disease mapping refers to the geographical distribution of a disease within a population 

(Andrew, 2001; Lawson, Williams, & Williams, 2001). It is considered as an exploratory method of

analysis used to get an impression of the spatial distribution of a disease and/or the corresponding 

risks. Risk maps can also be outcomes of models of disease transmission based on spatial and 

temporal data. These models incorporate, to varying degrees, epidemiological, entomological, 

climatic and environmental information (Kitron, 2000). Kitron elaborated that as a major method of 

spatial epidemiology, disease risk mapping could help test a hypothesis, identify gaps in our 

knowledge, provide a direction for surveillance and control efforts, or evaluate the actual or potential 

effectiveness of an intervention. There are varied examples of using risk maps for identifying which 

geographic locations are most suitable for disease events to occur or sustain, based upon assessment 

of relevant biotic and abiotic risk factors, or else of information derived directly from past disease 

incidents (Clements, Pfeiffer et al., 2007; Fichet-Calvet & Rogers, 2009; Glass, Cheek et al., 1995; 

Pigott, Bhatt et al., 2014; Snow, Craig et al., 1999).

Risk maps can be categorized in varied ways, which are summarized in Table 3-3 (Kitron, 2000; 
Myers, Rogers et al., 2000; Ostfeld, Glass, & Keesing, 2005).
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Table 3-3. Typology of risk map
Criteria Typology

Nature of map
•Empirical 
•Model based: (statistical or biological process-based) 
•Knowledge based

What is mapped 
•Disease or pathogen 
•Risk factors or their covariates: abiotic and biotic factors such as 
environmental factors, vectors, reservoirs

When is mapped for

•Retrospective, historical pattern; 
•Prospective: abiotic variables showing the greatest degree of spatial 
concordance with vector distribution are assumed to be causative and 
are used to predict current distributions of vectors in unstudied areas or 
future distributions

•Real-time: risk maps being updated, as frequently as new occurrence 
data are assimilated

How is mapped

•Static: snapshot of distributions of arthropod vectors, vertebrate 
reservoirs, or actual cases of disease in the host 

•Dynamic: analyzing what factors govern the spatial pattern and rate of 
spread of disease temporally or spatially; analyzing travelling ‘waves’ 
of epidemics

How is presented
•Dot map for point (or case-event) data
•Raster map, choropleth maps for regional data 
•Isopleth maps for geostatistical data

How is used
•Testing hypothesis
•Designing surveillance and interventions
•Evaluation of impacts of disease and impacts of control programs

Although infectious diseases, in particular, zoonotic diseases, have their favourable habitats 

(ecological niches) (Hogerwerf, Wallace et al., 2010; Kurtenbach, Hanincová et al., 2006; 

Vandermeer, 1972), to define or predict their precise spatial and temporal distribution is challenging.

The ideal risk map is actually the outcome of modelling disease transmission and accurately 

representing the ecological, biological and behavioral processes influenced by host, pathogen and 

surrounding environmental and climatic factors (Slingenbergh, 2004; Karesh, Dobson et al., 2012; 

Wilcox & Gubler, 2005). Such a process may misrepresent the dynamic process for any given disease 

if (i) the input data are out-of-date, or simply wrong; (ii) the explanatory variables used are 

inappropriate; (iii) the model itself is wrong (Hirzel, Hausser et al., 2002; D. J. Rogers & Randolph, 

2003; Woolhouse, 2011). In addition, an organism or disease will not occupy all suitable habitats.

Hence even by combining geographical information systems, remote sensing, computer technology 

and statistical tools, risk maps developed by using disease risk factors and their surrogates, 

individually or collectively can only be the analyst’s best estimate of the likelihood of disease spread 

at a geographic location, and in some cases may only be relevant to a particular time period or season.
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Risk maps therefore need reinforcement and validation by undertaking appropriately targeted 

surveillance to support or challenge the map.

3.5.2.2. Data sources for risk mapping

Data and information used for risk map development are usually generated in three ways: empirical 

investigation, experts’ estimation and remotely sensed data (Stevens & Pfeiffer, 2011). Risk mapping 

can be data intensive and sometimes having adequate data from national sources for risk mapping 

turns out to be beyond the capacity of resource-poor countries, especially when a novel infectious 

disease is implicated. Utilization of global or regional remotely sensed data as the proxies or 

surrogates for risk factors presents the most promising and feasible option under these circumstances. 

Nowadays, an ever-increasing range of remotely sensed environmental data sets relevant to diseases 

can be accessed in the public domain or at minimal cost, and with steadily improving spatial and data 

scale resolution. There are some major advantages for using remotely sensed data/information: (i) free 

or low cost; (ii) standardized and of good quality so that system errors can be possibly minimized3;

(iii) less chance for being modified or manipulated as a result of data protection, confidentiality 

legislation, politics or security reasons; (iv) the data can be used for any user-defined geographic areas 

without being limited by national borders; (v) the range of measured and derived variables now 

available goes far beyond the simple variables initially reported from the early satellites, and the range 

is growing rapidly. Remote-sensed data is particularly useful when predicting and analyzing disease 

hotspots and spread across national boundaries. However, using proxy abiotic and biotic environment 

factors to represent or predict disease risk or incidence is not guaranteed to be free from problems.

This is especially likely when no attempt is made to validate these derived layers through field 

observations (ground truthing) or the verification process has been only focused on presence data of a 

disease and its associated risk factors (Rogers & Randolph, 2003).

To facilitate risk mapping, HandiResponse groups emerging zoonoses into different “epitypes” 

according to the mode of transmission (Table 3-4), following WHO’s recommendations (WHO & 

FAO, 1967). The rationale behind this is that diseases classified under the same epitype are likely to 

have a similar set of risk factors and risk proxies, because they have similar transmission mechanisms.

3 http://www.fao.org/geonetwork/srv/en/main.home
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Table 3-4. Epitypes of Zoonoses
Epitype and Definition Example

Direct Zoonoses: diseases are transmitted from an 
infected vertebrate host to another host by direct 
contact, fomite or mechanical vector. The pathogen 
does not undergo developmental change or 
propagation during the transmission. 

This group of zoonoses can be further categorized 
as:

Limited environmental influence on direct 
transmission host to host
Strong environmental influence on direct 
transmission host to host
Transmission heavily reliant on fomites as 
intermediates in transmission
Food borne
Transmission by mechanical vector 
Transmission by biological vector, but the 
vector stage does not involve a different 
replication process for the agent (facultative 
vector)

Rabies 

Avian Influenza 

Brucellosis

BSE, E.coli (O157), Hepatitis A, E
Salmonella spp. by Musca domestica
Crimean Congo Haemorrhagic Fever,
Lyme disease

Cyclozoonoses: are zoonotic diseases which 
require more than one vertebrate host but no 
invertebrate host is needed. 

Echinococcosis

Metazoonoses: are zoonotic diseases which require 
an invertebrate host in which the pathogen must go 
through a different stage before it can infect a 
vertebrate host (obligate vector).

Leishmaniasis

Saprozoonoses: are diseases transferred through a 
non-animal reservoir, such as a plant, or through 
the abiotic environment, such as through water or 
soil

Anthrax

It is important to abide by the rule of parsimony or non-redundancy for the selection of risk factors 

and their proxies for a given disease when mapping a disease. This means a minimum set of relevant 

risk factors and proxies that are either un-correlated or have a low level of correlation would be 

selected for a given disease risk mapping. Further criteria for the selection of risk factors and their 

proxies include (i) epidemiological relevance: the selected factors need to be epidemiological 

relevant, either based on evidence or informed by experts’ opinion; (ii) completeness: all the relevant 

risk components, factors/proxies are included; (iii) measurability: a numeric value can be assigned to 

a risk factor/proxy selected (Malczewski, 2002). A summary of possible risk layers is illustrated in 

Table 3-5 (Molesworth, Thomson et al., 2002).
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Table 3-5. Categorization of risk factors related to emerging infectious diseases
Mechanism Component Example Factor/Proxy

Susceptibility

Human

Density
Sub group: age; percent of rural population, or poor 
population, etc.
Co-location and mixing of different susceptible species
Existence of preventive measures such as vaccination

Animal(s) Density
Sub-group: age, sex

Vector Density 

Exposure to 
pathogen(s)

Movement Movement of hosts and contaminated products
Distance to road, waterway, or road density, etc.

Pathogen viability
Environment

Temperature
Altitude
Other environment factors such as % of cropland, 
forest/shrub land/grassland, rice paddy 

Climate Rainfall

3.5.2.3. Risk factor scoring, standardization and weight elicitation 

HandiMap employs weighted summation (WSum) approach for integrating data on all selected risk 

factor layers for risk map development. WSum is a Multicriteria Decision Analysis (MCDA) method 

that has been widely used. It can be implemented within a GIS environment and is fairly 

unchallenging for decision makers to understand. One typical example of such an approach is the 

Weighted Linear Combination (WLC) (Jiang and Eastman 2000; Ayalew, Yamagishi et al. 2004; 

Malczewski, 2006; Malczewski, 2011; Shahabi, Keihanfard et al. 2014). WSum is very suitable for 

participatory and transparent decision process. Some GIS systems such as IDRISI have built-in 

routines for WLC. Two of the most frequently cited weaknesses of the method include (i) trade-off or 

substitutability which means a low score on one risk factor can be compensated by a high score on 

another and (ii) requirement of independence between selected risk factors which may be difficult to 

be fulfilled (Drobne & Lisec, 2009).

3.5.2.4. Standardization

When using environmental, climatological or other data to represent or estimate disease risk, the raw 

metrics of each risk layer need to be converted to risk scores representing the probability of a disease 

occurrence. Besides, the measured values on all risk layers need to be transformed into a mutually 

compatible scale through standardization. HandiResponse accommodates flexible approaches for 

standardization. Users can choose linear scale transformation methods such as maximum 

function approach. An underlying relationship between particular variables and disease risk needs to 

be assumed. Selection of an appropriate function that relates the variable to disease risk could be 
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informed by literature review, empirical studies or expert’s opinion. A sample of selected risk factors

and their proposed relationship with HPAI is provided in Table 3-6 (Gilbert & Pfeiffer, 2012). This 

information will be used in Chapter 5. It is worth noting that the same risk factor might be proposed 

by different authors as positively or negatively associated with the disease under study. Besides, 

caution needs to be practiced when extrapolating findings from one geographical/ecological setting to 

another.

Table 3-6. Selected key risk factors, environmental predictors and their proposed relationship 
with HPAI H5N1 outbreaks in South East Asia

Risk Factors Relationship References

Density of ducks
positive, particularly the density 
of free grazing ducks

(Sturm-Ramirez, Hulse-Post et al. 
2005; Hulse-Post, Sturm-Ramirez et 
al. 2005; Gilbert, Chaitaweesup et 
al. 2006; Pfeiffer Minh et al. 2007; 
Tiensin, Ahmed et al. 2009; 
Hogerwerf, Wallace et al. 2010; 
Gilbert, Newman et al. 2010)

Proportion of land 
used for rice/rice 
cropping density

Positive association with duck 
density; Negative association 
with chicken density

(Tiensin, Chaitaweesup et al. 2005; 
Gilbert, Chaitaweesup et al. 2006; 
Edan & Bourgeois, 2006; Pfeiffer,
Minh et al. 2007; Gilbert, Xiao et 
al. 2008; Paul, Tavornpanich et al. 
2010; Hogerwerf, Wallace et al. 
2010; Loth, Gilbert et al. 2011; 
Gilbert, Xiao et al. 2007)

Distance to highway

positive association with poultry 
farming/trading; elevated risk is 
associated the distance within 10 
km to any highways

(Gautheir-Clerc, Lebarbenchon et 
al. 2007; Vannier, 2007; Ward,
Maftei et al. 2008; Paul,
Tavornpanich et al. 2010; Cao, Xu
et al. 2010; Ge, Haining et al. 2012)

Elevation

positive or negative association 
with rice cropping, duck density; 
low elevation is positively 
associated with occurrence of 
HPAI in wild birds

(Gilbert, Chaitaweesup et al. 2006; 
Pfeiffer, Minh et al. 2007; Gilbert,
Xiao et al. 2008; Tiensin, Ahmed et 
al. 2009; Paul, Tavornpanich et al. 
2011; Si, Wang et al. 2010; 
Takekawa, Newman et al. 2010;
Loth, Gilbert et al. 2011)

Density of human 
population

positive (rural pop) or negative 
(city); medium density is 
positively associated with 
elevated HPAI risk

(Gilbert, Chaitaweesup et al. 2006, 
2008; Tiensin, Ahmed et al. 2009; 
Loth, Gilbert et al. 2011, Yuniana,
de Vlas et al. 2010; Paul,
Tavornpanich et al. 2010; 
Hogerwerf, Wallace et al. 2010; 
Martin, Pfeiffer et al. 2011)



75

3.5.2.5. Weight elicitation

The effect of selected risk factors and their proxies on disease occurrence varies. Some risk factors are 

epidemiologically more important than others, a small change in value of them (steep slope) could 

cause a substantial decrease or increase in disease occurrence. This means such factors carry more 

weight than others.

A variety of subjective, objective and integrated weight elicitation methods exist (Drobne & Lisec, 

2009; Ma, Fan, & Huang, 1999; Roszkowska, 2013). There has been no “best method” but only the 

“most suitable” one for weight elicitation. It is critical to test the reliability and validity of the chosen 

method(s) by conducting sensitivity analysis (Bertsch & Geldermann, 2008). A number of commonly 

used ones include (i) ranking methods such as rank order centroid (ROC) (Stillwell, Seaver, & 

Edwards, 1981); (ii) rating methods such as direct rating (DR) and point allocation (PA) (Bottomley, 

Doyle, & Green, 2000; Doyle, Green, & Bottomley, 1997) ; (iii) pairwise comparison methods such 

as analytical hierarchy process (AHP) (Buede, 1992; Saaty, 1986, 1987, 1990, 2013); (iv) trade-off 

analysis methods such as swing weights technique (Edwards & Barron, 1994) and (v) objective 

methods such as entropy and standardized deviation method (Diakoulaki, Mavrotas, & Papayannakis, 

1995; Yoon & Hwang, 1995). AHP will be used in Chapter 4 for facilitating weight elicitation in 

studying HPAI (H5N1) in Vietnam and in Chapter 5 for studying Crimean Congo Haemorrhagic 

Fever (CCHF). The advantages of using such an approach include (i) it allows a transparent and 

participatory process; (ii) the method incorporates consistency check and (iii) it is an appropriate 

method to be used in conjunction with GIS. Besides, a number of free or commercial software 

products to apply AHP are available to facilitate implementation of such an approach (Ossadnik & 

Lange, 1999). The AHPVEC function in SAS/IML® can also perform AHP (Alexander, 2012). In the 

study on HPAIV H5N1 in southern Vietnam, we attempted different methods and the results are 

presented below (Figure 3-3).

Figure 3-3. Results of weight elicitation by different methods
Note: Y-axis is weight value with a range from 0 to 1. The higher the weight, the larger the value; ROC stands 
for Rank Order Centroid; AHP stands for Analytical Hierarchy Process. 
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In HandiResponse, weight elicitation is implemented in two steps: (i) weight is assigned to risk 

components/groups; (ii) weight is assigned to risk factors. Such a hierarchical arrangement has been 

used because it is particularly useful to handle complexity and when dealing with a large number of 

risk factors (Figure 3-4).

Step 1

Step 2

Figure 3-4. Example: AHP result of weight elicitation by risk component and layer for HPAI in 
southern Vietnam

3.5.3.Models for disease introduction and spread

Developing a best fit spatial and temporal model is essential for studying disease behaviour hence 

identifying and estimating surveillance and other disease control strategies. Models have been long 

used for representing disease behaviours predictively, retrospectively and in real time (Garner

Lebarbenchon, & Thomas 2007; Taylor, 2003). The models for representing the relationship between 

risk (or risk surrogate) and disease generally fall into two categories. The first is the statistical 

approach (which is based on an assumption that a statistical relationship exists between past case 

counts and risk factors, plus environmental predictors) (Martin, Pfeiffer, et al., 2011; Randolph, 

2001). This approach is typically applied by deterministic mathematical modelling. On the other hand, 

the biological process-based approach attempts to capture the biology of transmission processes 

(Focks, Daniels et al., 1995), and typically uses stochastic simulation. Using the statistical approach 

for prediction of future disease occurrence or extrapolation to unstudied areas makes the assumption 

that the disease in the future or in the unstudied areas behaves the same as in the previously 

investigated situations. Whereas using the biological approach requires details on all the important 

parameters, and on the relationships between them and disease occurrence.

Which model to choose is a technical as well as a practical question. In the absence of full knowledge 

of transmission pathways for a disease, the statistical approach can be used as a temporary substitute 

for the biological process-based approach (Myers, Rogers et al., 2000).
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For modelling the HPAI H5N1 outbreak in South Vietnam, we have used HandiSpread, a stochastic 

disease modelling program which uses the biological process-based approach.

3.5.4.Optimization of surveillance program 

Surveillance is an important first step for disease control. Achieving higher level of efficiency and 

accountability is the ultimate goal for all disease surveillance and control programs. Presenting the 

economic case for a surveillance program could be a way to break the vicious cycle such as chronic 

under-funding and suboptimal performance of the system. For governments and increasingly for 

private sector organizations which commission and allocate resources for surveillance activities, one 

of the key objectives is to achieve best performance within a given allocation, or the lowest 

investment required to achieve predefined objectives.

Several useful studies have attempted to develop methods for optimizing technical performance of 

surveillance systems. For instance, by using a stochastic scenario tree model of the vector-borne 

disease bluetongue, Hadorn et al. simulated the sensitivity (median and 95% confidence interval) of 

each individual surveillance system component, and combined surveillance strategies. The 

comparative cost effectiveness study revealed that the surveillance approach combining passive 

clinical surveillance in cattle and sheep and targeted bulk milk testing in cattle herds located in high-

risk areas could achieve the highest sensitivity, though with a slightly increased cost (Hadorn, Racloz

et al., 2009). The same approach was also used for opimizing the HPAI H5N1 surveillance program in 

Thailand (Goutard, Tavornpanich et al., 2012). However, these studies failed to factor in the economic 

impacts of the disease due to productivity loss and possible animal trade bans, etc., in deciding on 

optimal surveillance options. Prattley et al. explored a novel method for optimizing resource 

allocation for risk-based surveillance program in New Zealand. By using portfolio theory, they 

demonstrated how to allocate available resources among the surveillance programs for different exotic 

diseases, and allocate (surveillance) resource by region and month according perceived relative risk 

levels. Their argument was that if a particular disease spread unevenly by space, population and time, 

higher risk strata would deserve more resource allocation because of “high return on investment”.

However, higher standard deviation of return was associated with high risk strata. Two variants of 

portfolio theory, risk aversion (safety first model) or risk taking (single index model to achieve 

efficiency frontier) were explored. The study revealed that both risk-based approaches, in particular, 

the safety first approach, would perform better than the conventional proportional sampling approach 

(Prattley, Morris et al., 2007). Such a method is useful when only a single surveillance component is 

to be implemented. However in the real world, a disease surveillance program seldom comprises only 

one component. Other useful surveillance optimization measures practiced for early disease/event 

detection include using maximum coverage model for searching surveillance sites, or implementing 

different searching or analytical algorithms for aberration detection, and stratifying data and adding 
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new data sources (Hutwagner, Browne et al., 2005; Polgreen, Chen et al., 2009; Scarpino, Dimitrov, 

& Meyers, 2012; Sparks, 2013; Wang, Zeng et al., 2010; Zhang, Jamal et al., 2011).

Unfortunately, few surveillance evaluation activities have been implemented by focusing on cost 

effectiveness and cost/benefit even though they are highly recommended (Drewe, Hoinville et al.,

2012; German, Lee et al., 2001; Hoinville, Alban et al., 2013). There has been no strategy like 

OptiSurv that incoporates the concept of multi-criteria decision making, not only identifying the best 

surveillance portfolios with the earliest detection of disease but also the most economically efficient 

ones, which maximize net economic benefit of the surveillance activity.

3.6. Conclusion
HandiResponse, combining risk mapping, infectious disease modelling, surveillance program 

planning and optimization in one package, has been designed to support disease surveillance 

activities, particularly for emerging or globally spreading diseases in the first instance. It can 

potentially facilitate effective communication between technical staff and policy makers on disease 

surveillance and improve technical and economic efficiency of the programs for disease surveillance, 

in particular, those in developing world. Subsequent chapters will demonstrate its operation, and 

provide examples of its use.



79

3.7. References
Agyepong, L. (2014). "A systems view and lessons from the ongoing Ebola Virus Disease (EVD) 

outbreak in West Africa." Ghana medical journal 48(3): 168-172.

Alba, A., J. Casal, S. Napp and P. Martin (2010). "Assessment of different surveillance systems for 

avian influenza in commercial poultry in Catalonia (North-Eastern Spain)." Preventive 

Veterinary Medicine 97(2): 107-118.

Alexander, M. (2012). "Decision-Making using the Analytic Hierarchy Process (AHP) and 

SAS/IML'." Available from (Last checked 28th July 2014).

Andrew, B., Lawson, Fiona, L.R., Williams (2001). An introductory guide to disease mapping. West 

Sussex, UK, John Wiley and Sons Ltd.

Bertsch, V. and J. Geldermann (2008). "Preference elicitation and sensitivity analysis in multicriteria 

group decision support for industrial risk and emergency management." International 

Journal of Emergency Management 5(1-2): 7-24.

Bottomley, P. A., J. R. Doyle and R. H. Green (2000). "Testing the reliability of weight elicitation 

methods: direct rating versus point allocation." Journal of Marketing Research 37(4): 508-

513.

Buede, D. M. (1992). "Software Review-Three Packages for AHP: Criterium, Expert Choice and 

HIPRE 3 +." Journal of Multi-Criteria Decision Analysis 1: 119-121.

Calvo-Artavia, F. F., L. R. Nielsen and L. Alban (2013). "Epidemiologic and economic evaluation of 

risk-based meat inspection for bovine cysticercosis in Danish cattle." Preventive 

Veterinary Medicine 108(4): 253-261.

Cameron, A. R. (2012). "The consequences of risk-based surveillance: Developing output-based 

standards for surveillance to demonstrate freedom from disease." Preventive Veterinary 

Medicine 105(4): 280-286.

Cao, C., M. Xu, C. Chang, Y. Xue, S. Zhong, L. Fang, W. Cao, H. Zhang, M. Gao and Q. He (2010). 

"Risk analysis for the highly pathogenic avian influenza in Mainland China using meta-

modeling." Chinese Science Bulletin 55(36): 4168-4178.

Carroll, L. N., A. P. Au, L. T. Detwiler, T.-c. Fu, I. S. Painter and N. F. Abernethy (2014). 

"Visualization and analytics tools for infectious disease epidemiology: A systematic 

review." Journal of biomedical informatics 51: 287-298.

Christensen, J., F. El Allaki and A. Vallières (2014). "Adapting a scenario tree model for freedom 

from disease as surveillance progresses: the Canadian notifiable avian influenza model." 

Preventive Veterinary Medicine 114(2): 132-144.

Clements, A. C. A., D. U. Pfeiffer, V. Martin, C. Pittiglio, N. Best and Y. Thiongane (2007). "Spatial 

risk assessment of Rift Valley fever in Senegal." Vector-Borne and Zoonotic Diseases

7(2): 203-216.



80

Diakoulaki, D., G. Mavrotas and L. Papayannakis (1995). "Determining objective weights in multiple 

criteria problems: the CRITIC method." Computers & Operations Research 22(7): 763-

770.

Doyle, J. R., R. H. Green and P. A. Bottomley (1997). "Judging relative importance: direct rating and 

point allocation are not equivalent." Organizational behavior and human decision 

processes 70(1): 65-72.

Drewe, J., L. Hoinville, A. Cook, T. Floyd and K. Stärk (2012). "Evaluation of animal and public 

health surveillance systems: a systematic review." Epidemiology and infection 140(04): 

575-590.

Drobne, S. and A. Lisec (2009). "Multi-attribute decision analysis in GIS: weighted linear 

combination and ordered weighted averaging." Informatica 33(4).

Edan, M. and N. Bourgeois (2006). "Review of free-range duck farming systems in Northern Vietnam 

and assessment of their implication in the spreading of the highly pathogenic (H5N1) 

strain of avian influenza (HPAI)." Lyon, France: Agronomes et Veterinaires sans 

Frontieres.

Edwards, W. and F. H. Barron (1994). "SMARTS and SMARTER: Improved simple methods for 

multiattribute utility measurement." Organizational behavior and human decision 

processes 60(3): 306-325.

Fichet-Calvet, E. and D. J. Rogers (2009). "Risk Maps of Lassa Fever in West Africa." Plos 

Neglected Tropical Diseases 3(3).

Focks, D. A., E. Daniels, D. G. Haile and J. E. Keesling (1995). "A simulation model of the 

epidemiology of urban dengue fever: literature analysis, model development, preliminary 

validation, and samples of simulation results." American Journal of Tropical Medicine 

and Hygiene 53(5): 489-506.

Garner, M. G., C. Dubé, M. A. Stevenson, R. L. Sanson, C. Estrada and J. Griffin (2007). "Evaluating 

alternative approaches to managing animal disease outbreaks–the role of modelling in 

policy formulation." Vet. ital 43(2): 285-298.

Gauthier-Clerc, M., C. Lebarbenchon and F. Thomas (2007). "Recent expansion of highly pathogenic 

avian influenza H5N1: a critical review." Ibis 149(2): 202-214.

Ge, E., R. Haining, C. P. Li, Z. Yu, M. Y. Waye, K. H. Chu and Y. Leung (2012). "Using knowledge 

fusion to analyze avian influenza H5N1 in East and Southeast Asia."

Geanuracos, C. G., S. D. Cunningham, G. Weiss, D. Forte, L. M. H. Reid and J. M. Ellen (2007). 

"Use of geographic information systems for planning HIV prevention interventions for 

high-risk youths." American Journal of Public Health 97(11): 1974-1981.

German, R. R., L. Lee, J. Horan, R. Milstein, C. Pertowski and M. Waller (2001). "Updated 

guidelines for evaluating public health surveillance systems." MMWR Recomm Rep

50(1-35).



81

Gilbert, M., P. Chaitaweesup, T. Parakamawongsa, S. Premashthira, T. Tiensin, W. Kalpravidh, H. 

Wagner and J. Slingenbergh (2006). "Free-grazing ducks and highly pathogenic avian 

influenza, Thailand." Emerging infectious diseases 12(2): 227-234.

Gilbert, M., S. H. Newman, J. Y. Takekawa, L. Loth, C. Biradar, D. J. Prosser, S. Balachandran, M. 

V. S. Rao, T. Mundkur and B. Yan (2010). "Flying over an infected landscape: 

distribution of highly pathogenic avian influenza H5N1 risk in South Asia and satellite 

tracking of wild waterfowl." EcoHealth 7(4): 448-458.

Gilbert, M. and D. U. Pfeiffer (2012). "Risk factor modelling of the spatio-temporal patterns of highly 

pathogenic avian influenza (HPAIV) H5N1: a review." Spatial and spatio-temporal 

epidemiology 3(3): 173-183.

Gilbert, M., X. Xiao, P. Chaitaweesub, W. Kalpravidh, S. Premashthira, S. Boles and J. Slingenbergh 

(2007). "Avian influenza, domestic ducks and rice agriculture in Thailand." Agriculture, 

ecosystems & environment 119(3): 409-415.

Gilbert, M., X. Xiao, D. U. Pfeiffer, M. Epprecht, S. Boles, C. Czarnecki, P. Chaitaweesub, W. 

Kalpravidh, P. Q. Minh and M. J. Otte (2008). "Mapping H5N1 highly pathogenic avian 

influenza risk in Southeast Asia." Proceedings of the National Academy of Sciences 

105(12): 4769-4774.

Glass, G. E., B. S. Schwartz, J. M. Morgan III, D. T. Johnson, P. M. Noy and E. Israel (1995). 

"Environmental risk factors for Lyme disease identified with geographic information 

systems." American Journal of Public Health 85(7): 944-948.

Goutard, F. L., M. Paul, S. Tavornpanich, I. Houisse, K. Chanachai, W. Thanapongtharm, A.

Cameron, K. D. Stärk and F. Roger (2012). "Optimizing early detection of avian influenza 

H5N1 in backyard and free-range poultry production systems in Thailand." Preventive 

veterinary medicine 105(3): 223-234.

Hadorn, D. C., V. Racloz, H. Schwermer and K. D. Stärk (2009). "Establishing a cost-effective 

national surveillance system for Bluetongue using scenario tree modelling." Veterinary 

research 40(6): 1-14.

Hadorn, D. C., J. Rufenacht, R. Hauser and K. D. C. Stark (2002). "Risk-based design of repeated 

surveys for the documentation of freedom from non-highly contagious diseases." 

Preventive Veterinary Medicine 56(3): 179-192.

Hirzel, A. H., J. Hausser, D. Chessel and N. Perrin (2002). "Ecological-niche factor analysis: how to 

compute habitat-suitability maps without absence data?" Ecology 83(7): 2027-2036.

Hogerwerf, L., R. G. Wallace, D. Ottaviani, J. Slingenbergh, D. Prosser, L. Bergmann and M. Gilbert 

(2010). "Persistence of highly pathogenic avian influenza H5N1 virus defined by agro-

ecological niche." EcoHealth 7(2): 213-225.



82

Hoinville, L., L. Alban, J. Drewe, J. Gibbens, L. Gustafson, B. Häsler, C. Saegerman, M. Salman and 

K. Stärk (2013). "Proposed terms and concepts for describing and evaluating animal-

health surveillance systems." Preventive veterinary medicine 112(1): 1-12.

Hulse-Post, D., K. Sturm-Ramirez, J. Humberd, P. Seiler, E. Govorkova, S. Krauss, C. Scholtissek, P. 

Puthavathana, C. Buranathai and T. Nguyen (2005). "Role of domestic ducks in the 

propagation and biological evolution of highly pathogenic H5N1 influenza viruses in 

Asia." Proceedings of the National Academy of Sciences of the United States of America 

102(30): 10682-10687.

Hutwagner, L., T. Browne, G. M. Seeman and A. T. Fleischauer (2005). "Comparing aberration 

detection methods with simulated data." Emerg Infect Dis 11(2): 314-316.

Slingenbergh, M. G., K. de Balogh and W. Wint (2004). "Ecological sources of zoonotic diseases." 

Rev. sci. tech. Off. int. Epiz., 23(2): 467-484.

Kahn, L. H. (2006). "Confronting zoonoses, linking human and veterinary medicine." Emerging 

Infectious Diseases 12(4): 556.

Kalluri, S., P. Gilruth, D. Rogers and M. Szczur (2007). "Surveillance of arthropod vector-borne 

infectious diseases using remote sensing techniques: a review." PLoS Pathog 3(10): 1361-

1371.

Karesh, W. B., A. Dobson, J. O. Lloyd-Smith, J. Lubroth, M. A. Dixon, M. Bennett, S. Aldrich, T. 

Harrington, P. Formenty and E. H. Loh (2012). "Ecology of zoonoses: natural and 

unnatural histories." The Lancet 380(9857): 1936-1945.

Kitron, U. (2000). "Risk maps: transmission and burden of vector-borne diseases." Parasitol Today

16(8): 324-325.

Kuiken, T., F. Leighton, R. Fouchier and J. LeDuc (2005). "Pathogen surveillance in animals." 

Science 309(5741): 1680.

Kulasekera, V. L., L. Kramer, R. S. Nasci, F. Mostashari, B. Cherry, S. C. Trock, C. Glaser and J. R. 

Miller (2001). "West Nile virus infection in mosquitoes, birds, horses, and humans, Staten 

Island, New York, 2000." Emerging infectious diseases 7(4): 722.

Kurtenbach, K., K. Hanincová, J. I. Tsao, G. Margos, D. Fish and N. H. Ogden (2006). "Fundamental 

processes in the evolutionary ecology of Lyme borreliosis." Nature Reviews 

Microbiology 4(9): 660-669.

Lawson, A. B., F. L. Williams and F. Williams (2001). An introductory guide to disease mapping,

John Wiley.

Loth, L., M. Gilbert, J. Wu, C. Czarnecki, M. Hidayat and X. Xiao (2011). "Identifying risk factors of 

highly pathogenic avian influenza (H5N1 subtype) in Indonesia." Preventive veterinary 

medicine 102(1): 50-58.

Ma, J., Z.-P. Fan and L.-H. Huang (1999). "A subjective and objective integrated approach to 

determine attribute weights." European journal of operational research 112(2): 397-404.



83

Malczewski, J. (2002). "On the use of weighted linear combination method in GIS: common and best 

practice approaches." Transactions in GIS 4(1): 5-22.

Martin, P., A. Cameron, K. Barfod, E. Sergeant and M. Greiner (2007). "Demonstrating freedom from 

disease using multiple complex data sources: 2: Case study—Classical swine fever in

Denmark." Preventive Veterinary Medicine 79(2): 98-115.

Martin, V., D. U. Pfeiffer, X. Zhou, X. Xiao, D. J. Prosser, F. Guo and M. Gilbert (2011). "Spatial 

distribution and risk factors of highly pathogenic avian influenza (HPAI) H5N1 in China." 

PLoS Pathog 7(3): e1001308.

Molesworth, A. M., M. C. Thomson, S. J. Connor, M. P. Cresswell, A. P. Morse, P. Shears, C. A. 

Hart and L. E. Cuevas (2002). "Where is the meningitis belt? Defining an area at risk of 

epidemic meningitis in Africa." Trans R Soc Trop Med Hyg 96(12174770): 242-249.

Myers, M. F., D. Rogers, J. Cox, A. Flahault and S. Hay (2000). "Forecasting disease risk for 

increased epidemic preparedness in public health." Advances in parasitology 47: 309-330.

Ortiz-Pelaez, A., D. U. Pfeiffer, R. J. Soares-Magalhaes and F. J. Guitian (2006). "Use of social 

network analysis to characterize the pattern of animal movements in the initial phases of 

the 2001 foot and mouth disease (FMD) epidemic in the UK." Preventive Veterinary 

Medicine 76(1-2): 40-55.

Ossadnik, W. and O. Lange (1999). "AHP-based evaluation of AHP-Software." European journal of 

operational research 118(3): 578-588.

Ostfeld, R. S., G. E. Glass and F. Keesing (2005). "Spatial epidemiology: an emerging (or re-

emerging) discipline." Trends in Ecology & Evolution 20(6): 328-336.

Paul, M., S. Tavornpanich, D. Abrial, P. Gasqui, M. Charras-Garrido, W. Thanapongtharm, X. Xiao, 

M. Gilbert, F. Roger and C. Ducrot (2010). "Anthropogenic factors and the risk of highly 

pathogenic avian influenza H5N1: prospects from a spatial-based model." Veterinary 

research 41(3): 28.

Pfeiffer, D. U., P. Q. Minh, V. Martin, M. Epprecht and M. J. Otte (2007). "An analysis of the spatial 

and temporal patterns of highly pathogenic avian influenza occurrence in Vietnam using 

national surveillance data." The Veterinary Journal 174(2): 302-309.

Pigott, D. M., N. Golding, A. Mylne, Z. Huang, A. J. Henry, D. J. Weiss, O. J. Brady, M. U. Kraemer, 

D. L. Smith and C. L. Moyes (2014). "Mapping the zoonotic niche of Ebola virus disease 

in Africa." Elife 3: e04395.

Polgreen, P. M., Z. Chen, A. M. Segre, M. L. Harris, M. A. Pentella and G. Rushton (2009). 

"Optimizing influenza sentinel surveillance at the state level." American journal of 

epidemiology: kwp270.

Prattley, D., R. Morris, M. Stevenson and R. Thornton (2007). "Application of portfolio theory to 

risk-based allocation of surveillance resources in animal populations." Preventive 

veterinary medicine 81(1): 56-69.



84

Presi, P., K. D. C. Staerk, L. Knopf, E. Breidenbach, M. Sanaa, J. Frey and G. Regula (2008). 

"Efficiency of risk-based vs. random sampling for the monitoring of tetracycline residues 

in slaughtered calves in Switzerland." Food Additives and Contaminants 25(5): 566-573.

Qing, T., M. Saijo, H. Lei, M. Niikura, A. Maeda, T. Ikegami, W. Xinjung, I. Kurane and S. 

Morikawa (2003). "Detection of immunoglobulin G to Crimean-Congo hemorrhagic fever 

virus in sheep sera by recombinant nucleoprotein-based enzyme-linked immunosorbent 

and immunofluorescence assays." Journal of virological methods 108(1): 111-116.

Racloz, V., G. Venter, C. Griot and K. D. C. Stark (2008). "Estimating the temporal and spatial risk of 

bluetongue related to the incursion of infected vectors into Switzerland." BMC Veterinary 

Research 4(42): (15 October 2008)-(2015 October 2008).

Randolph, S. E. (2001). "The shifting landscape of tick-borne zoonoses: tick-borne encephalitis and 

Lyme borreliosis in Europe." Philosophical Transactions of the Royal Society B: 

Biological Sciences 356(1411): 1045-1056.

Reist, M., T. Jemmi and K. D. C. Staerk (2012). "Policy-driven development of cost-effective, risk-

based surveillance strategies." Preventive Veterinary Medicine 105(3): 176-184.

Rogers, D. J. and S. E. Randolph (2003). "Studying the global distribution of infectious diseases using 

GIS and RS." Nature Reviews Microbiology 1(3): 231-237.

Roszkowska, E. (2013). "Rank Ordering Criteria Weighting Methods–a Comparative Overview."

Saaty, R. W. (1987). "THE ANALYTIC HIERARCHY PROCESS - WHAT IT IS AND HOW IT IS 

USED." Mathematical Modelling 9(3-5): 161-176.

Saaty, T. L. (1986). "A NOTE ON THE AHP AND EXPECTED VALUE THEORY." Socio-

Economic Planning Sciences 20(6): 397-398.

Saaty, T. L. (1990). "HOW TO MAKE A DECISION - THE ANALYTIC HIERARCHY 

PROCESS." European Journal of Operational Research 48(1): 9-26.

Saaty, T. L. (2013). "The Modern Science of Multicriteria Decision Making and Its Practical 

Applications: The AHP/ANP Approach." Operations Research 61(5): 1101-1118.

Scarpino, S. V., N. B. Dimitrov and L. A. Meyers (2012). "Optimizing provider recruitment for 

influenza surveillance networks." PLoS Comput Biol 8(4): e1002472.

Schwermer, H., I. Reding and D. C. Hadorn (2009). "Risk-based sample size calculation for 

consecutive surveys to document freedom from animal diseases." Preventive Veterinary 

Medicine 92(4): 366-372.

Si, Y., T. Wang, A. K. Skidmore, W. F. de Boer, L. Li and H. H. Prins (2010). "Environmental factors 

influencing the spread of the highly pathogenic avian influenza H5N1 virus in wild birds 

in Europe." Ecol. Soc 15: 26.

Smieszek, T. and M. Salathé (2013). "A low-cost method to assess the epidemiological importance of 

individuals in controlling infectious disease outbreaks." BMC medicine 11(1): 35.



85

Snow, R., M. Craig, U. Deichmann and D. Le Sueur (1999). "A preliminary continental risk map for 

malaria mortality among African children." Parasitology today 15(3): 99-104.

Sparks, R. (2013). "Challenges in designing a disease surveillance plan: What we have and what we 

need?" IIE Transactions on Healthcare Systems Engineering 3(3): 181-192.

Stark, K. D. C., G. Regula, J. Hernandez, L. Knopf, K. Fuchs, R. S. Morris and P. Davies (2006). 

"Concepts for risk-based surveillance in the field of veterinary medicine and veterinary 

public health: review of current approaches." BMC Health Services Research 6(20): (28 

February 2006)-(2028 February 2006).

Stevens, K. B. and D. U. Pfeiffer (2011). "Spatial modelling of disease using data-and knowledge-

driven approaches." Spatial and spatio-temporal epidemiology 2(3): 125-133.

Stillwell, W. G., D. A. Seaver and W. Edwards (1981). "A comparison of weight approximation 

techniques in multiattribute utility decision making." Organizational behavior and human 

performance 28(1): 62-77.

Sturm-Ramirez, K., D. Hulse-Post, E. Govorkova, J. Humberd, P. Seiler, P. Puthavathana, C. 

Buranathai, T. Nguyen, A. Chaisingh and H. Long (2005). "Are ducks contributing to the 

endemicity of highly pathogenic H5N1 influenza virus in Asia?" Journal of virology 

79(17): 11269-11279.

Takekawa, J. Y., S. H. Newman, X. Xiao, D. J. Prosser, K. A. Spragens, E. C. Palm, B. Yan, T. Li, F. 

Lei and D. Zhao (2010). "Migration of waterfowl in the East Asian flyway and spatial 

relationship to HPAI H5N1 outbreaks." Avian diseases 54(s1): 466-476.

Tavornpanich, S., I. A. Gardner, T. E. Carpenter, W. O. Johnson and R. J. Anderson (2006). 

"Evaluation of cost-effectiveness of targeted sampling methods for detection of 

Mycobacterium aviumsubsp paratuberculosis infection in dairy herds." American journal 

of veterinary research 67(5): 821-828.

Taylor, N. (2003). "Review of the use of models in informing disease control policy development and 

adjustment." A report for Defra. Defra, London 94.

Tiensin, T., S. S. U. Ahmed, S. Rojanasthien, T. Songserm, P. Ratanakorn, K. Chaichoun, W. 

Kalpravidh, S. Wongkasemjit, T. Patchimasiri and K. Chanachai (2009). "Ecologic risk 

factor investigation of clusters of avian influenza A (H5N1) virus infection in Thailand." 

Journal of Infectious Diseases 199(12): 1735-1743.

Tiensin, T., P. Chaitaweesup, T. Songserm, A. Chaising, W. Hoonsuwan, C. Buranathai, T. 

Parakamawongsa, S. Premashthira, A. Amonsin and M. Gilbert (2005). "Highly 

pathogenic avian influenza H5N1." Emerging infectious diseases 11: 1664-1672.

Tsai, P., K. A. Scott, M. Pappaioanou, M. C. Gonzalez and G. T. Keusch (2009). Sustaining global 

surveillance and response to emerging zoonotic diseases, National Academies Press.

Vandermeer, J. H. (1972). "Niche theory." Annual Review of Ecology and Systematics: 107-132.



86

Vannier, P. (2007). "Avian influenza; routes of transmission: lessons and thoughts drawn out of the 

past and present situation in the world and in the European Union." Pathologie Biologie 

55(6): 273-276.

Wang, X., D. Zeng, H. Seale, S. Li, H. Cheng, R. Luan, X. He, X. Pang, X. Dou and Q. Wang (2010). 

"Comparing early outbreak detection algorithms based on their optimized parameter 

values." Journal of biomedical informatics 43(1): 97-103.

Ward, M. P. (2007). "Geographic information system-based avian influenza surveillance systems for 

village poultry in Romania." Veterinaria italiana 43(3): 483-489.

Weinberg, M., S. Waterman, C. A. Lucas, V. C. Falcon, P. K. Morales, L. A. Lopez, C. Peter, A. E. 

Gutiérrez, E. R. Gonzalez and A. Flisser (2003). "The US-Mexico border infectious 

disease surveillance project: Establishing binational border surveillance." Emerging 

Infectious Diseases 9(1): 97.

WHO, FAO. (1967). Joint FAO/WHO Committee on Zoonoses-Third Report, Geneva, Switzerland.

Wilcox, B. A. and D. J. Gubler (2005). "Disease ecology and the global emergence of zoonotic 

pathogens." Environmental Health and Preventive Medicine 10(5): 263-272.

Willeberg, P., L. R. Nielsen and M. Salman (2012). "Designing and evaluating risk-based surveillance 

systems: Potential unwarranted effects of applying adjusted risk estimates." Preventive 

Veterinary Medicine 105(3): 185-194.

Woolhouse, M. (2011). "How to make predictions about future infectious disease risks." 

Philosophical Transactions of the Royal Society B: Biological Sciences 366(1573): 2045-

2054.

Yoon, K. P. and C.-L. Hwang (1995). Multiple attribute decision making: an introduction, Sage 

publications.

Yupiana, Y., S. J. de Vlas, N. M. Adnan and J. H. Richardus (2010). "Risk factors of poultry 

outbreaks and human cases of H5N1 avian influenza virus infection in West Java 

Province, Indonesia." International Journal of Infectious Diseases 14(9): e800-e805.

Zhang, L., I. Jamal, Y. Qu and G. Zeng (2011). "Optimization of event detection methods for disease 

surveillance." Épidémiologie et Santé Animale(59/60): 196-198.



87

CHAPTER 4

4. Development of a generic system for creating a 

digital disease risk landscape – HandiMap

4.1. Abstract
Background: Disease risk mapping is a valuable tool in the development of epidemiologically 

appropriate surveillance and control efforts. However, most published mapping activities have been 

directed towards improved scientific understanding, rather than as practical decision-making tools.

There is a need for a flexible method which can be used by countries to design surveillance and 

control policies for a range of diseases which are of national importance. To facilitate disease risk 

mapping, Human and Animal Disease Mapping tool (HandiMap) was developed.

Method: A system for using available spatial epidemiological information such as remote-sensed 

environmental and climatological variables to generate risk landscapes for any disease of concern in 

any country in the world has been developed. As a first illustration of the use of HandiMap, risk maps 

for Highly Pathogenic Avian Influenza (HPAI) H5N1 occurrence in southern Vietnam were 

developed. The mapping process was elaborated through a step-wise approach. The results were 

compared to the actual HPAI H5N1 epidemic in southern Vietnam between late 2004 and early 2005.

Results: Three types of HPAI H5N1 risk maps were successfully developed for southern Vietnam and 

were used to adjust transmission probabilities for this disease in the HandiSpread disease model 

according to variation in the height of the risk landscape. 

Conclusion: HandiMap is a convenient tool for estimating and visualizing spatial variation in the risk 

of occurrence for a zoonotic disease in any country, and is applicable in resource and data sparse 

settings. It is suitable for use by epidemiologists to facilitate effective communication on infectious 

diseases, and in conjunction with the other modules of HandiResponse to support epidemiologically 

informed decision making for surveillance and other disease interventions.
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4.2. Introduction
HandiResponse has been designed for (i) visualizing the disease risk landscape and representing 

spatial variation in the expected occurrence of a zoonotic disease both quantitatively and visually; (ii) 

evaluating economic benefit and costs of a single surveillance activity or a multi-component portfolio; 

(iii) identifying optimal use of resources for surveillance. The program comprises four modules: (i) 

risk map development – HandiMap; (ii) surveillance portfolio development – HandiSurv; (iii) 

economic impact assessment – HandiEcon and (iv) surveillance optimization – OptiSurv.

HandiResponse operates within the Integrated Real-Time Information System (IRIS), a web-based 

data management platform supporting human and animal health. The particular implementation of 

IRIS used here is called HandiView.

In this chapter the operation of HandiMap to develop a risk landscape for design of surveillance 

portfolios is illustrated, using the example of HPAI H5N1 in southern Vietnam.

4.3. Method
4.3.1.Login to HandiResponse

To use HandiResponse, it is necessary to log into IRIS. IRIS can be accessed at 

http://demo.episoft.co.nz. With approval from a system administrator, a user can set up a user ID and 

a password to access the system (Figure 4-1). IRIS can operate in any language for which the 

translation of screen information has been completed, so that it can support any country-specific 

disease management programs in national languages. Currently it is available to operate in English, 

Chinese, Mongolian and Vietnamese. Login details determine a user’s rights, such as the contents of 

the databases that the user can access and the functions that the user is authorised to perform on the 

data.
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After entering IRIS, the user will see a list of specific data sets and disease management programs that

can be accessed. These are called “Projects” by IRIS. Clicking on “HandiResponse” will allow the 

user to enter into HandiResponse (Figure 4-2. Entering HandiResponse).
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To provide user assistance, an IRIS wiki has been developed. It is available by clicking on “?Help” 

icon, before entering the term or operation that the user needs to understand.

4.3.2.HandiMap operation

4.3.2.1. Creating or entering into a report

In HandiResponse, the user is presented with all the existing reports by clicking the Tab of “All 

items”. Since the diseases are organized by epitype, the user can also click other tabs/menus such as 

“Direct Transmission”, “Fomite Transmission”, etc. so that they will be led to all the existing reports 

under the selected epitypes. Additional epitypes will need to be added in the next stage of 

development. A new report can be created by clicking the “add” button, as shown (Figure 4-3). 
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Procedures to produce outputs from analysis of data stored in a project are called reports. A sub-set of 

data from a project may be prepared and used for analysis – this procedure is called a filter. As the full 

range of epitypes is progressively included into the tab options, at least one demonstration (demo) 

disease risk map report will be provided under each epitype. The demos can be modified by the user, 

and the report procedure in the demo can be adapted for other diseases which fit under the same 

epitype category.

The example report shown in Figure 4-4 is the procedure to create a risk map for HPAI H5N1 in 

southern Vietnam.
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4.3.2.2. Selection of risk layers

At this step, the user is required to choose the risk factors and environmental descriptors/predictors 

selected for estimating the probability of the disease occurrence by epidemiological unit under study.

The risk layers can be either those already available in the HandiResponse data repository, or can be 

imported from external sources and added to the repository. More than 30 global environmental and 

climatic layers have already been stored in the repository, and more are being added as the need 

arises. In additional to global remote-sensed data sets, it is possible to add national spatial data sets.

A zone perimeter needs to be defined for the map boundary before starting selection of risk factor 

layers. A zone is defined as the geographic area of interest, which could be a country, a subnational 

administration unit within a country, or a user-defined geographic area covering a number of 

countries, even an entire continent. In this study, we defined southern Vietnam as an area covering 

four administrative regions within the country - the South East Region, Mekong River Delta, the 

South Central Coast Region and the Central Highland Region.

In order to model the disease in HandiSpread on the risk map, the final risk score for each 

epidemiological unit can be exported and integrated with the “farm file” in HandiSpread, which is the 

list of epidemiological units, their epidemiological attributes such as animal populations, and their 

spatial attributes. The risk scores can be exported from HandiMap by clicking “risk index” filter. The 

file will be created in .csv format from the risk map, and can be integrated with the farm file. If 

HandiSpread finds numerical values in the range zero to 5 in the risk index field of the farm file, it 

will automatically adjust the susceptibility of each epidemiological unit to establishment of infection, 

so that high risk units are more likely than the reference level to become infected, while low risk units 

are less likely.

The risk layers are categorized into groups which have common characteristics. The most frequently 

used ones such as human population, populations of at risk animal species, transportation/movement, 

vector density, temperature, altitude, vegetation/landcover types are listed in HandiResponse, while 

others can be added by the user. Within each group, individual risk layers are selected for inclusion 

(Figure 4-5). By clicking the magnifier icon, a list of data layers available for choosing from for any 

specific risk groups will be displayed. A sample list is shown in Figure 4-6.
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As previously discussed, for risk factor or environmental predictor selection, it is recommended that 

four principles be applied: (i) epidemiological relevance. Any risk factors or environmental 

descriptors must be proven or estimated to be correlated with the probability of disease 

occurrence/presence, either negatively or positively; (ii) the rule of “parsimony”. This means a 

minimum set of inter-independent risk factors and environmental, climatic descriptors should be 

chosen; (iii) comprehensiveness. The final set of selected risk factors, environmental descriptors 

should include all the possible ones and (iv) measurability. A numerical value can be assigned to each 

unit/pixel of a given risk factor and environmental layer.

A thorough literature review is the imperative first step for informing the selection of the most 

relevant biotic and abiotic risk factors, environment determinants/descriptors. For HPAI H5N1, the 

following risk layers, environmental descriptors are proposed, based on a literature review (Table 

4-1). 
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In this study, three alternative types of risk maps will be designed by using different risk factor layers 

and environmental descriptors: -Map, population centered 

- -Map. For E-map, rice paddy coverage, surface water 

coverage and altitude were selected for HPAI H5N1 risk mapping while for P-Map human population

density, duck density and rice paddy coverage were selected. M-Map was the most comprehensive 

one since almost all risk factors and environment predictors used for P map and E map were included 

for its development, plus distance to road and distance to water. The selected risk factors and 

environmental predictors for HPAI H5N1 outbreak in southern Vietnam and their data sources are 

documented in Table 4-2, and the list of variables used in each map are shown in Table 4-2.

Table 4-2. Selected putative risk factors and environmental predictors for HPAI H5N1 
Outbreaks in Vietnam

Note: MARD, Ministry of Agriculture and Rural Development, Viet Nam.

4.3.2.3. Setting Constraint(s)

Constraints can be added for each risk layer. For instance, certain environments may be excluded 

from the risk map - such as mountain regions which are snow covered all year round, locations above 

a certain altitude or latitude, desert, etc., that are considered unsuitable for occurrence of the particular 

disease. They need to be screened out at this stage. For HPAI H5N1 in Southern Vietnam, no 

constraints were set, because all areas were considered suitable for occurrence of the disease.

4.3.2.4. Standardization of value of each risk layer

Standardization has two purposes: firstly, the minimum and maximum of raw values per risk layer 

varies. The raw values need to be converted to a standard scale so that values are comparable before 

any logic operations could be performed to generate a risk map. In HandiRepsonse, a scale can be 

chosen to suit the situation - from 0 to 1 or to10 or to 100, etc. for standardization, as long as all layer 

variables are converted to the same scale. For the HPAI H5N1 risk map, the range was chosen to be 

Risk Factor Data Source
Human population density Vietnam Census from MARD

Duck density Vietnam Census, MARD

Chicken density Vietnam Census, MARD

Distance to road
GIST, International Steering Committee for Global Mapping 

(ISCGM) https://gistdata.itos.uga.edu/

Distance to waterway
GIST, International Steering Committee for Global Mapping 

(ISCGM) https://gistdata.itos.uga.edu/

% of land used for rice cropping (Xiao et al., 2006; Xiao et al., 2005)

% of land covered by surface water GADM at http://www.gadm.org

Elevation
Data available from the U.S. Geological Survey.

http://topotools.cr.usgs.gov/GMTED_Viewer/
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between 0 and 1. This means all the values of pixels for each risk layer have to be rescaled to take 

values between 0 and 1, with 0 representing no risk and 1 representing the maximum risk. Secondly, a 

relationship needs to be assumed between the scale in each layer and the risk or probability of disease 

occurrence. This may be linear or non-linear, and may be direct or inverse. Figure 4-7 demonstrates 

the result for the duck density layer standardization.
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4.3.2.5. Weight assignment

Not all factors exert the same intensity of influence on occurrence of the disease, so after 

standardization a weight must be assigned to each factor according to its perceived importance in 

influencing disease occurrence. This is a very important part of the process, which relies on evidence 

from the scientific literature and other sources. Weight assignment is designed to be accomplished in 

two steps in HandiMap: step one is to assign weight for each risk factor/environmental descriptor 

within the given risk group; step two is to assign a weight for each risk group in relation to other risk 

groups. The advantage of the two step weight assignment is that it is effective in handling a large 

number of risk layers, and it is essential for factors such as vegetation type where there are multiple 

layers within a group, but they are mutually exclusive for each pixel or raster unit. The risk layer and 

group weight assignments for M-Map is illustrated in Figure 4-8 and Figure 4-9 respectively. Weights 

within a block of factors must sum to 1.0. Analytic Hierarchy Process (AHP) is recommended to be 

used to facilitate the weight elicitation. The AHP approach has been a widely used weight elicitation 

method and there exist ready-made programs to carry it out (Ossadnik & Lange, 1999). A sample 

weight elicitation using the analytical hierarchy process (AHP) in an Excel spreadsheet is documented 

in Table 4-3.

Table 4-3. AHP for weight assignment for risk layers for the P-Map estimating the risk of HPAI 
H5N1 outbreak, southern Vietnam

Note: CI stands for consistency index; CR stands for consistency ratio. It is a comparison between consistency 
index and random consistency index. In case CR is equal or less than 0.1, the inconsistency level is acceptable If 
CR is less than 10%, the level of inconsistency is acceptable. 
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Weight assignments for all the selected risk factors and environmental predictors used for three maps 

are summarized in Table 4-4.

Table 4-4. Final weight assignments for selected risk factors and environmental descriptors

Risk factor E-Map P-Map M-Map

Human population density 0.10

Duck density 0.09 0.07

Chicken density 0.01

Distance to highway 0.40

Distance to waterway 0.20

% of land covered by rice paddy 0.80 0.81 0.28

% land covered by water 0.11 0.04

Altitude 0.09

Consistency ratio 8.99E-04 9.76E-05 0.002

Notes: Consistency ratio (CR) is a comparison between consistency index and random consistency index. In 
case CR is equal or less than 0.1, the inconsistency level is acceptable.  

4.3.2.6. Risk categorization of epidemiological units

In principle risk can be assigned at the smallest raster unit available, which may be as small as a pixel, 

but in the case of satellite data is typically a square km, or 5 sq km, etc. However typically it is 

necessary to assign risk values to epidemiologically and managerially meaningful spatial units, such 

as farms, villages, or in the case of HPAI in Vietnam, communes, which are groups of 10 to 15 

villages. These are vector rather than raster units, and can be processed either as a shape file or as a 

point location situated within the spatial unit, which represents the unit as a whole. This point or the 

centroid of a polygon is considered to represent the risk level of that epidemiological unit.

In HandiMap, all epidemiological units within the map zone are divided into quintiles according to 

their risk levels. Transmission probabilities (effectively the susceptibility of a spatial unit to becoming 

infected) are then adjusted from the reference level so that high risk spatial units are more likely than 

the reference level to become infected (and hence transmit infection onward),while low risk units are 

less likely. Users can choose any of the five quintiles as the reference level and assign it a risk 

adjustment value of 1, but the 3rd quintile would usually be appropriate, or the 2nd quintile offers an 

alternative, as shown below. The rest of the quintiles are then assigned a risk adjustment value above 

or below the reference level. The adjustment factor may be linear, or non-linear, typically with risk 

escalating upward from the reference level to level 5, but linear downward to level 1 (termed a rapid 

increase scheme). The results of risk adjustment values for all epidemiological units can then be 

exported as a csv file to be used as an input for modelling spatial distribution of a disease outbreak, or 

to guide the development of any risk-based surveillance strategies.
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A “5 Percent Rapid Increase” scheme for risk level categorization is illustrated in Figure 4-10. For a 

HPAI H5N1 risk map for southern Vietnam, the 3rd quintile is set to be the reference level with a risk 

adjustment value of 1. Under this particular rapid increase scheme, the risk adjustment value for the 

4th quintile is set to 1.05 ( or 1+0.05) and the fifth quintile to 1.15 ( or 1.05+0.05×2). For each quintile 

below the 3rd quintile, proportional or linear decrease is applied. The risk adjustment value for the 2nd

Quintile is 0.95 (or 1-0.05) and that for 1st quintile 0.9 (or 0.95-0.05). The choice of risk adjustment 

scheme and the scaling factors used for adjustment are both a matter of epidemiological judgment, 

and the effect of changing them can easily be explored, as shown in Chapter 5.
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4.3.2.7. Selection of map display type and color scheme for map presentation

In this step, the user can choose how the disease risk map will be presented. By default, 

HandiResponse assumes a kernel smoothed map is the preferred choice. The underlying map can be 

any of the four choices - Open Street, Google Street, Google Hybrid and Google Satellite. There are 

14 color schemes available for the users to choose from for map presentation (Figure 4-11), to achieve 

different visual representations of risk levels.
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This completes all the steps to create a disease risk map. The last but the most important step is to 

click “save”. HandiResponse will then do the all necessary calculations and processes, then will 

generate a risk map. This takes a few seconds.

4.4. Results
Maps produced by HandiResponse can be either kernel smoothed (Figure 4-12), or raw pixel (non-

kernel smoothed) versions (Figure 4-13); with the underlying landscape being presented as one of 

four user-selected choices - open street, google street, google hybrid and google satellite (Figure 

4-14). Apart from integrated risk maps, the user can also choose to display any individual risk layers 

(Figure 4-15).

Based upon different individuals’ judgments about the epidemiological importance of particular risk 

factors and environmental descriptors, different risk maps can be developed and the importance of the 

differences evaluated. In the case of the HPAI H5N1 risk maps in southern Vietnam, three risk maps 

were developed: P-Map (Figure 4-12, Figure 4-13 and Figure 4-14), E-Map (Figure 4-16) and M-Map 

(Figure 4-17). They represent potential different findings and viewpoints on the importance of the 

various risk factors, as reported in the scientific literature.
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As mentioned earlier, HandiMap can also export the risk adjustment values of the risk landscape to a csv 

file. The risk file has four columns: ID number of each epidemiological unit, corresponding risk score, as 

well as its northing and easting (Figure 4-18).

Figure 4-18. The structure and content of a sample risk file produced by Handimap
Note: ID stands for commune identifier; Risk stand for HPAI H5N1 risk; X stands for X coordinate and Y 

stands for Y coordinate. 

4.5. Discussion
4.5.1.Rationale for development of HandiMap

As a valuable technique in spatial epidemiology, disease risk mapping can help test a hypothesis, identify 

gaps in our knowledge, provide a direction for surveillance and control efforts, or evaluate the actual or 

potential effectiveness of an intervention (Brownstein, Freifeld, & Madoff, 2009; Kitron, 2000; Tatem,

Smith et al., 2010). It can also provide a valuable evidence base for achieving progress towards global 

health commitments (Pigott, Howes et al., 2015). However, a recent review revealed that out of 176

globally important infectious diseases with a strong rationale for mapping, only 4% have been adequately 

mapped (Hay, Battle et al., 2013).

Compared with other commercially available mapping tools, HandiMap has the following merits: (i) at 

least one disease risk map under each epitype has been developed or will be developed for program users 

to learn by “mirroring” from the demonstration disease to the disease of interest to them; (ii) more than 30 

global environmental and climatic descriptor layers have been stored in the IRIS data server and can be 

accessed freely, so an epidemiologist can explore the use of different layers without needing to download 
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them from multiple servers and install them in a standard GIS package. The number of layers will 

continue to increase, and the file sizes are very large so it is much better to have them stored on a single 

site than to have individual users store them on local hard drives. The layers will also need to be regularly 

updated as new releases become available, and this is best done through a single server site; (iii) risk 

values by epidemiological unit can be exported and used by other modules of HandiResponse (or other 

disease modelling programs) to simulate disease spread, and assess the effect of any disease surveillance 

and mitigation strategies and (iv) the tool is free of charge.

4.5.2.Selection of risk layers and environmental descriptors for genuinely novel diseases

If the disease of concern involves an unknown pathogen for which only limited evidence is available, it is 

critical to collect and analyze the epidemiological information on the disease through outbreak 

investigation, sporadic case investigation, intervention studies and expert elicitation approaches (Pires,

Evers et al., 2009). Besides, ex ante risk assessment on possible emerging zoonotic diseases and 

prioritization exercise is highly recommended for any countries that wish to improve their preparedness 

for these diseases (Balabanova, Gilsdorf et al., 2011; Cardoen, Van Huffel et al., 2009; Doherty, 2000; 

Andreas Gilsdorf & Gérard Krause, 2011; Havelaar, Van Rosse et al., 2010; Krause, 2008; Kurowicka, 

Bucura et al., 2010; Mangen, Batz et al., 2010; McKenzie, Simpson et al., 2007). This process will help to 

identify the top ranking emerging infectious diseases relevant to any given countries, so that information 

collection on them can be implemented well in advance.

The following practical questions need to be considered before selection of risk factors for a given disease 

risk mapping: (i) whether the disease affects any specific sub-group(s) of the human population; (ii) what 

species of animals are affected; (iii) whether the disease affect specific sub-groups within animal 

populations; (iv) whether any vectors are involved; (v) whether any products or specific foods are 

implicated in disease spread; (vi) whether the disease is explicitly or implicitly trade-related; (vii) whether 

the disease incidence varies seasonally and (viii) whether the disease occurrence or spread is influenced

by any particular environmental factors.

In this study, we developed three types of disease maps which make use of particular combinations of 

putative risk factors, namely E-Map, P-Map and M-Map. 

In the E-Map, we selected percentage of land covered by rice paddy, altitude and percentage of land 

covered by water to predict the risk of HPAI H5N1 outbreak (Desvaux, Grosbois et al., 2011; Ge,

Haining et al., 2012; Gilbert, Chaitaweesup et al., 2006; Gilbert, Xiao et al., 2008; Iglesias, Muñoz et 

al.,2010; Loth, Gilbert et al., 2011; Martin, Pfeiffer, et al., 2011; Paul, Tavornpanich et al., 2010; Paul,

Wongnarkpet et al., 2011; Pfeiffer, Minh et al., 2007; Si, Wang et al., 2010; Takekawa, Newman et al., 
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2010; Tiensin, Ahmed et al., 2009; Van Boeckel, Thanapongtharm, et al., 2012; Yupiana, de Vlas et al.,

2010). All these environmental descriptor layers were extracted from the remote-sensed images. They 

represent a practical solution for estimating HPAI H5N1 outbreak risk in case (i) there is no readily 

available agricultural census data; (ii) the data is available but out of date and (iii) data are only available 

with coarse spatial and temporal resolutions (Gilbert, Xiao et al., 2007). Another advantage of the E-

model is that data obtained have less chance to be manipulated. E-model was grounded on the 

understanding that rice cropping intensity was one of the most important predictors for the HPAI H5N1 

outbreak in southern Vietnam, by influencing both duck density and duck movement patterns. Gilbert et 

al. claimed that cropping intensity was a better epidemiological descriptor for the density of free-grazing 

ducks than the reported duck density, since the latter was obtained from a duck registry done at the home 

villages, but ducks may migrate to other villages with rice paddy and harvests where they could get 

infected and spread the disease (Gilbert, Xiao et al., 2008; Xiao, Gilbert et al., 2007). We used percentage 

of land covered by rice paddy to represent cropping activities since we could not get the data on rice 

cropping intensity. Besides, human population density was used as a surrogate or an explanatory variable 

for anthropogenic factor(s) such as poultry movement in this map (Gilbert, Xiao et al., 2008).

In P-Map, as well as selection of rice paddy as an environmental predictor, other risk factors such as duck 

density and human population density were introduced. Human density was used as a surrogate 

representing disease risk related to human behaviours affecting poultry rearing and movement and also 

the influence of closeness of interaction between families and their poultry flocks (Gilbert, Chaitaweesup

et al., 2006; Gilbert, Newman et al., 2010; Gilbert & U Pfeiffer, 2012; Gilbert, Xiao et al., 2008; 

Hogerwerf, Wallace et al., 2010; Loth, Gilbert et al., 2011; Paul, Tavornpanich et al., 2010; Pfeiffer, Minh

et al., 2007; Sturm-Ramirez, Hulse-Post et al., 2005; Tiensin, Chaitaweesup et al., 2005).

M-map employed almost all risk factors and environment predictors used for P map and E map so that it 

could be considered to cumulate the contents of the two previous risk maps (chicken population density, 

duck population density, percentage of commune covered by rice paddy, percentage of commune covered 

by surface water) and add two surrogate variables for mobility of people and their poultry (inverse of 

distances to road and waterway). The selection of these factors was based on reviewing relevant literature 

(Cao, Xu et al., 2010; Fang, de Vlas et al., 2008; Gilbert, Xiao et al., 2008; Martin, Pfeiffer, et al., 2011; 

Peterson & Williams, 2008; Pfeiffer, Minh et al., 2007; Rivas, Chowell et al., 2010; Tiensin,

Chaitaweesup et al., 2005; Williams & Peterson, 2009; Xiao, Boles et al., 2005; Yupiana, de Vlas et al., 

2010). Poultry movement was confirmed to be significantly associated with the spread of HPAI H5N1 

outbreaks in Vietnam (Pfeiffer, Minh et al., 2007). The two surrogate variables for movement were 

considered as the most important risk factors in the M-Map, based upon this evidence and others from a 
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wider literature review (Cao, Xu et al., 2010; Gauthier-Clerc, Lebarbenchon, & Thomas, 2007; Ge,

Haining et al., 2012; Gilbert & Pfeiffer, 2012; Paul, Tavornpanich et al., 2010; Pfeiffer, Minh et al., 

2007). While they are quite indirect ways of measuring mobility, they are the most practical to use when 

no direct movement data is available. Rice cropping was again included and considered just as potentially 

influential as the movement risk factors. Duck density, chicken density, percentage of land covered by 

surface water were also enlisted as the risk factors or environmental predictors. Percentage of land 

covered by surface water was proven to be correlated with elevated risk for HPAI H5N1 due to a putative 

association with presence of wild birds, density of duck population or contact between domestic water 

birds and wild birds (Desvaux Grosbois, et al., 2011; Martin, Pfeiffer, et al., 2011; Van Boeckel, 

Thanapongtharm et al., 2012; Van Boeckel, Thanapongtharm et al., 2012).

Other environmental and climatological predictors such as precipitation, normalized difference vegetation 

index (NDVI) had also been confirmed as having an association with HPAI H5N1 outbreaks in different 

locations (Fang, de Vlas et al., 2008; Henning, Henning et al., 2009; Peterson & Williams, 2008; Si,

Wang et al., 2010; Williams & Peterson, 2009). Henning et al. used re-scaled NDVI value of 140 to 160 

to represent land consisting of waterway with widespread vegetation. They hypothesized that such a 

geographic landscape was associated with ducks and an abundance of a variety of wild birds associated 

with these wetlands that might pose a further risk for HPAI occurrence (Henning & Pfeiffer, 2009). They 

concluded that in Vietnam, medium level May to October NDVI was associated with higher HPAI risk.

By using ecological niche modelling, Williams described that HPAI H5N1 was predicted to be absent 

from areas with low NDVI values and low seasonal variation, but present in areas with marked seasonal 

variation in their Middle East and northeastern Africa assessment, with an exception for the Arabian 

peninsula (Williams & Peterson, 2009). These two studies indicate that using NDVI to predict HPAI 

H5N1 is highly locality specific. The key is to identify what underlying epidemiological factors NDVI is 

intended to represent. Fang et al. identified that annual precipitation was negatively associated with HPAI 

H5N1 outbreaks in China. They hypothesized that lower precipitation levels may lead to a higher 

concentration of birds in a reduced number of wetlands, thus increasing the chances of birds becoming 

infected through contact with the virus (Fang, de Vlas et al., 2008).

Following the rule of parsimony on selection of the layers for risk map development, we decided not to 

use NDVI since we were able to use data on rice paddy and surface water as more directly relevant risk 

factors, and besides, NDVI is a very short term measurement. We also did not use annual precipitation 

data as because of the short duration of the epidemic waves, clearly other factors were more influential 

than this. 
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4.5.3.Standardization of risk values

HandiResponse does not specify any particular standardization methods to be used. It actually 

accommodates various approaches for standardization, such as linear scale transformation methods like 

function approaches (Drobne & Lisec, 2009; Eastman, 1997; Lai & Hopkins, 1989; Malczewski, 1999; 

Voogd, 1983).

For a meaningful standardization of various risk data, it is desirable to understand the distribution of the 

values of each risk factor, the minimum, median and maximum value. Secondly, standardization also 

means that a relationship or function between raw metrics and disease occurrence/presence needs to be 

assumed. Establishment or estimation of a relationship must be based upon comprehensive 

epidemiological review. If empirical evidence is lacking, elicitation of experts’ opinion would be a 

practical alternative.

4.5.4.Relative importance of risk factors and environmental descriptors 

Decisions on the relative importance of the selected risk factors and environmental predictors which are 

used as proxies or surrogates for unmeasurable risk factors were informed by reviewing relevant literature 

as well as by obtaining experts’ opinions.

We compared the results from AHP with those from other weight elicitation methods. AHP approach 

agreed with ranking order centroid method and swing weights technique, though results were different 

from balance beam approach (Edwards & Barron, 1994; Jia, Fischer, & Dyer, 1998; Watson & Buede, 

1987) (Figure 4-19).
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Figure 4-19. Comparison of results from weight elicitation methods for M-map
Note: Y-axis is weight value, with a range from 0 to 1. The larger the weight, the higher the value; ROC stands for 
Ranking Order Centroid and AHP stands for Analytic Hierarchy Process; Movement, Environment and Affected 
Species are three risk groups for HPAI H5N1.  

4.5.5.Challenges and limitations 

A risk map can be the outcome of modelling disease transmission, based on spatial and temporal data 

(Kitron, 2000), or can be directly derived from synthesis of available epidemiological information, as in 

HandiMap. A risk map attempts to represent ecological, biological, behavioral processes influenced by 

host, pathogen and surrounding environment and climate (Slingenbergh, 2004; Karesh, Dobson et al., 

2012; Wilcox & Gubler, 2005). Such a process may misrepresent the dynamic process for any given 

disease if, for example, (i) the input data are outdated, or simply wrong; (ii) the explanatory variables 

being used are selected wrongly; (iii) the epidemiological assumption substantiating risk map is wrong 

(Hirzel, Hausser et al., 2002; Rogers & Randolph, 2003; Woolhouse, 2011). Besides, a pathogen or a 

disease will not occupy all suitable habitats. Hence even with the power of combining geographical 

information systems, remote sensing, computer technology and statistical tools, risk maps developed by 

using disease risk factors and their surrogates, individually or collectively can only estimate the likelihood 

of disease introduction or spread at a particular geographic location, and in some cases can also take 

account of time and season. 

The risk maps produced by HandiMap are somewhat different in that they are intended as the starting 

point of an information gathering process, rather than the endpoint. To improve the predictability of any 

risk map, it is recommended that validation with disease presence data, either through ground truthing or 
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historical records and constant updating are undertaken (Brownstein, Skelly et al., 2005; Glass, Cheek et 

al., 2000; Sumption, Rweyemamu et al., 2008; Yang, Vounatsou et al., 2005). What HandiMap does is to 

integrate the best available existing information on the epidemiology of a disease and its likely spatial 

distribution, then use that through the modelling process to design a surveillance strategy to gather 

targeted information to enhance the accuracy of understanding of a disease and its possible presence in a 

country. This can be a cyclic process, as illustrated in Chapter 5, where development of a risk map led to 

risk-based surveillance which demonstrated that a disease was unexpectedly present in Mongolia, which 

then raised a list of questions that need to be answered to clarify the significance of the initial findings 

and to decide what action is needed.

Availability of proper data is a constant challenge in epidemiological investigation of emerging diseases.

However, more and more public domain data on environmental and climatic descriptors relevant to 

disease risk mapping are now being generated from remote sensing images, which are global and can be 

readily manipulated and accessed. Food and Agriculture Organization of United Nations has also 

developed georeferenced data on numbers of major domestic animal species and economic crops.

However these data are not always up to date or might not be available at the required resolution. Besides, 

some critical pieces of information such as level of disease control efforts by geographic unit or 

epidemiological unit, one of the important factors for disease risk estimation, have to be collected from 

the field.

Data availability is even more challenging in resource poor countries because of suboptimal or non-

existing health information systems and public health programs. In such cases, creative ways have to be 

thought about how to use informative surrogates to approximate missing or unavailable data. For 

instance, one example was to use satellite nighttime light density images to estimate human population 

density (Pozzi, Small, & Yetman, 2003; Sutton, 2003). Other examples include using normalized 

difference vegetation index (NDVI) to estimate distribution of animal species (Leyequien et al., 2007) and 

tick abundance (Estrada-Peña, 1999).

HandiMap has been designed as a convenient disease risk mapping tool for infectious diseases. It is not 

intended to be a fully-fledged GIS software program to compete with commercial products such as Arc-

GIS, or open source free products such as QGIS. It is specifically designed to be an integral part of the 

surveillance design function within HandiResponse, and it has now been shown to be capable of 

achieving that objective. The tool can be further improved in its user-friendliness. 
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4.6. Conclusions
HandiMap is a convenient tool specialized for estimating and visualizing the risk of occurrence for a 

given infectious disease. In the HandiMap module, infectious diseases are categorized into epitypes and 

mapping templates are available as examples for some of the epitypes, with the remaining examples to be 

developed after the end of this project. A range of environmental descriptor layers for constructing risk 

maps are stored on a server and can be used for disease risk mapping. This in turn leads to the design of 

epidemiologically and economically optimal disease surveillance programs, and potentially to more 

effective disease control.

It can facilitate effective communication on infectious diseases and decision making for surveillance and 

disease interventions, and it offers particular benefits in resource and data-sparse environments. 
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CHAPTER 5

5. Evaluating the benefit of risk mapping to predict 

temporal and spatial distribution of Highly 

Pathogenic Avian Influenza (H5N1) outbreaks in 

southern Vietnam

5.1. Abstract
Background: Identification of a dynamic model which can accurately represent the spatial and temporal 

pattern of a disease outbreak is critical for development of an appropriately targeted surveillance program 

for a zoonotic disease.

Methods: A spatial and temporal model delineating the HPAI H5N1 outbreak in Southern Vietnam 

between late 2004 and early 2005 was developed by combining stochastic modelling, risk mapping and 

statistical tests. The stepwise approach comprises three key elements: (i) development of a model which 

provided statistically accurate temporal fit; (ii) using risk mapping to improve spatial fit of the base 

models developed in step 1; (iii) testing the statistical validity of the predictions by applying the 

Kolmogorov-Smirnov test for temporal fit, and Receiver-Operator Characteristic curves for spatial fit.

Results: The model which did not use risk mapping could predict temporal spread pattern adequately, but 

had only moderate capability to predict spatial spread. Risk mapping to provide a spatially variable 

landscape on which modelling of disease spread would take place could improve spatial prediction by this 

model, particularly when using a combination of using different disease risk factors and environmental 

predictors.

Conclusion: The approach was demonstrated to be a practical and generalizable method, which has the 

potential to be applied in other countries and for other diseases. 
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5.2. Introduction
Since HPAI H5N1 was first identified in East Asia in the mid-1990s (Duan, Bahl et al., 2008; Sims & 

Brown, 2008), it has quickly evolved into a pandemic disease affecting both animals and human beings in 

Asia, Europe and Africa (Adegboye & Kotze, 2014; Bett, Henning et al., 2014; Gauthier Clerc,

Lebarbenchon, & Thomas, 2007; Hagag, Mansour et al., 2015; Stevens, Costard et al., 2009; Williams & 

Peterson, 2009). The disease has resulted in significant economic loss to rural households, to the wider 

agriculture sector and to the macro economy of affected countries. No previous true avian influenza virus 

strain had caused serious human disease, so the direct effect plus the negative externalities for the human 

population in the affected countries caused serious economic and social disruption, and rapid spread of 

the disease to many countries caused global panic and fear (Herring & Lockerbie, 2010; Osterholm, 2005; 

Peiris, De Jong, & Guan, 2007). The number of human cases has remained fairly small, and no sustained 

human-to-human transmission has yet occurred. Although it is not possible to predict if or when this may 

happen, it would only take a small number of critical genetic mutations or genomic replacements before 

the virus could be efficiently transmitted through human to human contact and flare up into a global 

human influenza pandemic (Amendola, Ranghiero et al., 2015; Belshe, 2005; Gambaryan & Matrosovich, 

2015).

Poultry production in Vietnam is strategically important. Its productive value ranks second in the animal 

husbandry industry in Vietnam, and it has been steadily increasing since 1990s (Duc & Long, 2008) with 

the exception of the period between 2003 and 2005. Almost 80% of rural households participate in 

poultry production through backyard and garden rearing of ducks and/or chickens. Four regions which 

host the most poultry production in Vietnam are Red River Delta, South East Region, Mekong River 

Delta and South Central Coast Region (Burgos, Hanh et al., 2007).

Vietnam was among the hardest hit countries by HPAI H5N1. For instance, fifty nine out of sixty four 

provinces reported HPAI H5N1 outbreaks in 2007 (Minh, Morris et al., 2009). The human H5N1 cases 

reported from Vietnam accounted for more than 80 percent of the total cases around the world by 2007 

(Beigel et al., 2005; Uyeki, 2008). The disease in the country has occurred as a series of epidemic waves 

since 2003, with gradually reducing size over the years as control measures took effect (Minh, Morris et 

al., 2009; Uyeki, 2008). From 2003 to 2007, the peak time of the reported human infections and poultry 

disease outbreaks shifted gradually from the initial time period of the cool season of December until 

March or April, to the warmer months of each year (Minh, Morris et al., 2009). The principal disease foci 

were in two geographically distinct ecological niches - around the Mekong River Delta in the south and 

the Red River Delta in the north. In these two epidemic zones the disease has become endemic, but there 



135

are different epidemiological underpinnings in the two regions (Desvaux, Grosbois et al., 2011; Henning 

& Henning et al., 2009; Minh, Morris et al., 2009; Minh, Stevenson et al., 2010).

Models have become valuable tools and been increasingly integrated into the public health decision-

making process. They can help to provide general insights on disease spread, generate testable 

hypotheses, predict disease outbreaks and assess the effect of control measures such as surveillance and 

vaccination campaigns (Barnabas, Laukkanen et al., 2006; Brisson, Edmunds et al., 2000; Keeling,

Woolhouse et al., 2001; Koopman, 2005; Merler, Ajelli et al., 2015; Mossong, Hens et al., 2008; Myers,

Rogers et al., 2000; Riley, 2007; Woolhouse, 2011). Spatial and temporal modelling tends to be more 

practical and desirable since it has the potential to predict where and when a disease would spread. Such 

pieces of information are particularly important at early stages of emerging infectious disease epidemics 

when little knowledge has accumulated about disease behaviour. However, there remains a need to further 

develop and test models of emerging diseases and to build them into decision support systems 

(Bettencourt & Ribeiro, 2008; Kao, 2002; Lawson & Leimich, 2000).

The HandiResponse is a disease surveillance management program which has been designed to assist 

countries to respond to the threat of introduction of emerging diseases. It is embedded in the Integrated 

Real-time Information System (IRIS) for Animal and Human Health, a data management platform for 

managing human and animal infectious diseases developed as a precursor project to development of 

HandiResponse, and has special value for managing zoonoses. IRIS is given different names in its use for 

different countries and purposes, and in this context it is called HandiView. HandiResponse comprises 

four modules at the moment: (i) risk map development – HandiMap; (ii) surveillance portfolio 

development – HandiSurv; (iii) economic impact assessment – HandiEcon and (iv) surveillance 

optimization – OptiSurv. The program can facilitate risk mapping, assessment of surveillance approaches 

and development of an economically optimal surveillance portfolio.

In this chapter, we plan to test the value of the software through evaluating how well the simulated spatial 

and temporal disease models refined by the risk information generated by using HandiMap can represent 

the spatial and temporal spread of a disease in a particular environment, during an outbreak in a country 

where emerging diseases are likely to occur. We use the dataset on H5N1 avian influenza in southern 

Vietnam during the second epidemic wave in 2004/5 to test the power of predictability of those models.  

The dataset from the Southern Viet Nam is relatively free from data biases, and with detailed spatial and

temporal information on both HPAI H5N1 positive and negative communes. A range of raster maps of 

the spatial distribution of various factors which have been considered to influence local risk of disease 

outbreaks is also available, to test the potential value of alternative risk maps as a basis for evaluating the 
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effect of modelling the disease on a risk landscape which varies the transmission probabilities according 

to the local risk level, rather than on a uniform “flat” landscape, as is commonly used for disease 

modelling.

5.3. Methods
5.3.1.Overall technical approach

Using HandiResponse to develop best fit model for HPAI H5N1 outbreak in southern Vietnam took the 

following steps: (i) risk map development; (ii) creation of a base model to represent the HPAI H5N1

outbreak in Southern Vietnam in late 2004 and early 2005 without considering spatial variation in risk; 

(iii) reconfiguring the base model by using the information on the risk level of each commune generated 

by risk mapping using three alternative risk datasets based on different epidemiological assumptions 

(Figure 5-1), and to compare the spatial and temporal fit of the different model predictions to the recorded 

individual affected communes over the period of the actual outbreak. 

Figure 5-1. Approach for Screening best fit model for HPAI H5N1 outbreak in southern 
Vietnam

5.3.2.Risk map development 

Three types of risk map for HPAI H5N1 spread in South Vietnam were developed to test alternative 

approaches: (i) environment-centered map, E-map; (ii) population-centred map, P-map and (iii) 

movement-centred map, M-map. Detailed procedure for HPAI H5N1 risk map development for southern 

Vietnam were documented in Chapter 4.

For each map developed, the value of each raster unit was based on the summation of weighted risk 

estimates for the particular one of the three risk assessment methods used. The raster surface was then 

kernel-smoothed, and the kernel-smoothed risk score attached to the centroid of each commune (the 

chosen epidemiological unit) was used to represent that commune, then the population of communes in 

southern Vietnam were divided into quintiles representing five risk levels. One of the five levels was 
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selected as the “reference level” and the same transmission probabilities were used for this level as in the 

base model. Then the transmission probabilities were scaled up or down for each of the other levels by 

adjustment factors which provided either a linear change in transmission probabilities or an escalating 

one, and different scaling options for the change in transmission probability were explored. Details of the 

adjustment process are shown in Figure 5-2. A total of 81 risk files (27 risk files for each of the three risk 

mapping strategies used) have been produced to allow comparison of the temporal and spatial fit of each 

risk-adjusted model with the base model.

Figure 5-2. Adjustment procedure for transmission probabilities based on risk level

5.3.3.Development of avian influenza H5N1 outbreak model for Southern Vietnam

HandiSpread4 was used to generate a model to represent the temporal and spatial characteristics of the 

avian influenza (HPAI) H5N1 epidemic wave in Southern Vietnam in late 2004 and early 2005. The 

HandiSpread software is a further development of the InterSpread Plus spatial disease model (Stevenson 

et al., 2013) to provide for modelling on risk landscape surfaces, and to include transfer of infection to 

human contacts of the infected animals and involvement of wildlife. Four different base models were 

developed and evaluated, with differences in important parameters to test which could give the best fit 

when modelling was conducted on a flat risk landscape with no risk factors taken into account. Then three 

alternative risk landscapes were derived from an analysis of the published literature – one based 

principally on environmental factors (E-Map), one based on population-related factors (P-Map), and one 

4 HandiSpread, Massey University EpiCentre, Palmerston North, New Zealand. Available at 
http://www.interspreadplus.com, accessed on August 14, 2014. 
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based on movement-related factors (M-Map). The corresponding spatial disease models shared the same 

initial parameter settings, but parameter values were adjusted at commune level to take account of the 

various risk maps, as described below, and the models were named respectively as E-model, P-model and 

M-model, corresponding to E-Map, P-Map and M-Map respectively, as shown in Figure 5-3. The 

procedures for developing the mapping process were described in Chapter 4.

Figure 5-3. Plan of risk-adjusted disease modelling process.

Estimation of key parameters for base model development is summarized in Table 5-1.
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5.3.4. Statistical analysis

SAS® (Version 9.4) was used for examining temporal and spatial fit of each model when compared with 

the actual outbreak in 2004 in Southern Vietnam. Kolmogorov-Smirnov two sample test (K-S Test) was 

performed to compare the temporal fit for epidemiological curve of daily cumulative number of infected 

communes between modelled outbreak and the actual outbreak. Area under the curve (AUC) of the 

receiver-operating characteristic (ROC) plot was used for assessing the spatial agreement between each 

model and the actual outbreak data at district level. Districts typically comprise 15-20 communes, with 

considerable variation. Although modelling used commune as the spatial unit for modelling transmission 

since that was the unit size at which outbreak data was collated. However it was too small a unit to be 

used to assess spatial fit of the model output to the reported epidemic. Further issues were the fact that 

there is extensive bird movement between communes, especially of grazing ducks, and hence commune is 

too small a unit for spatial fit comparisons, and also it is known that not all communes reported their 

disease outbreaks, whereas it is highly unlikely that an infected district would have no communes report 

signs consistent with H5N1 virus. Therefore district is considered a suitable unit size for spatial 

comparisons. 

5.3.5.Identifying good fit model(s)

The following criteria were used for assessing model fit to the actual epidemic wave: temporal fit, better 

spatial fit than the base models and size of model outbreak (Table 5-2).

Table 5-2. Criteria for assessing fit of HPAI model(s) to actual epidemic data
Criterion Explanation

Temporal fit Epidemiological curve of daily cumulative infected communes is not significantly 
different from that of actual outbreak

Spatial fit AUC of risk adjusted model should be larger than that of base model (calculated 
using AUC determined from the median plus 10 iterations on each side of the 
median iteration)

Size of outbreak The modelled epidemic should provide an outbreak size at least as large as that of 
actual epidemic

5.4. Results

Of the four base models that vary in important parameters related to movement 1 evaluated, Models 2 and 

4 gave the good temporal fit to the actual epidemic (Figure 5-4), and were chosen as the two to be used

for tests and comparison after they were adjusted with the E-Map, P-Map and M-Map, as described

before.
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The three commune-level kernel-smoothed risk maps developed using the risk factors are presented in 

Figure 5-5, Figure 5-6 and Figure 5-7 below. 
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Base models 2 and 4 were then simulated using the risk data generated from three risk maps derived from 

HandiResponse. Of the 162 alternative risk maps (81 maps each model) used, five were selected as the 

best ones meeting all three evaluation criteria, and these are summarized in Table 5-3. All these selected 

risk maps achieved close fit to the actual temporal epidemic curve, as demonstrated by the Kolmogorov-

Smirnov test. All except one (m-r-3-5 in Table 5-3) had outbreak sizes larger than the reported outbreak.

It is recognized that not all infected communes provided reports, so as long as the simulated total outbreak 

size for a model was equal to or moderately greater than the reported epidemic size, it would be 

considered to meet requirements. The main objective of the risk map was to improve spatial fit between 

model prediction and the actual epidemic, considering both positive and negative communes. The spatial 

fit was assessed by measuring the area under the ROC curve, reported as AUC. AUC was measured both 

for the single simulated outbreak of a median size (number of communes affected) (AUC2) and for the 

median plus ten simulated epidemics with the similar size to that of the median on either side of it 

(AUC1).

Four risk-adjusted models were found to be superior to Base Model 2 on spatial fit and equivalent on 

temporal fit. One model each used M-Map and P-Map, while two used E-Map. Model m-r-3-10 was 

considered the model which fitted best to the actual epidemic in all respects, when compared with base 

model 4. It is movement-centred, using risk level 3 as the reference level, with the risk level increasing by 

10% to level 4 and 20% from level 4 to 5 (Table 5-3).

Table 5-3. Summary of goodness of fit of models to actual epidemic 
Model K-S Test AUC 1 AUC 2 Size of outbreak
Base model 2 Accepted 0.63 0.60 466 (>462*)
p-r-3-5 Accepted 0.66 0.69 499
e-p-3-10 Accepted 0.65 0.68 468
e-r-3-5 Accepted 0.68 0.63 497
m-r-3-5 Accepted 0.65 0.72 459
Base model 4 Accepted 0.62 0.58 468
m-r-3-10 Accepted 0.69 0.74 480

Note: AUC 1, Average AUC for 21 iterations including median iteration and 10 iterations on each side of median 
iteration; AUC 2 denotes the value of AUC for median iteration. * the actual number of infected communes between 
late 2004 and early 2005 in southern Vietnam. 

Spatial distributions of the actual outbreak, base model and the best risk adjusted model are presented in 

Figure 5-8. Temporal distributions of the actual outbreak and the good fit risk adjusted model are 

presented in Figure 5-9 and Figure 5-10.
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Kolmogorov-Smirnov test showed the temporal curve of model 4-m-r-3-10 was not significantly different 

from the actual HPAI outbreak in Southern Vietnam between late 2004 and early 2005 (Figure 5-11).

Figure 5-11. Result of Kolmogorov Smirnov Test

Results of AUC, generated from SAS Program, for the median iteration and 10 iterations on each side of 

the median iteration are documented in Table 5-4. The size of AUC (AUC 1) of the median iteration is 

0.74 and the average size AUC (AUC2) of all 21 iterations is 0.69.
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5.5. Discussion
5.5.1.Rationale for the selection of Wave II HPAI H5N1 outbreak in Southern Vietnam

There are only a few data sets on disease epidemics in Asia where there is an adequate spatial data set of 

outbreak locations, and data on putative risk factors for the spread of the disease. One of these data sets 

exists for the avian influenza H5N1 epidemic in Vietnam, although even that has limitations that must be 

considered in interpretation of the evidence. The available data and publications derived from the data set 

were used to decide on the best sub-set of the total data set to be used in testing whether the use of a risk 

landscape could improve the predictive value of a spatial model. It was not realistic to develop a single set 

of model parameters to represent the HPAI H5N1 outbreaks in the whole of Vietnam. As informed by the 

relevant empirical studies, HPAI H5N1 outbreaks in Red River Delta and Mekong River Delta were 

similar in several respects but also epidemiologically divergent in a number of respects, driven to a 

significant extent by different risk factors. For example, whereas there was quite close temporal 

synchrony between the two regions in epidemic waves I and II, there was a substantial third epidemic 

wave in Red River Delta associated with the first vaccination campaign, but only a slight increase in 

outbreaks in Mekong Delta. It has been suggested that this was due to the riskier vaccination policy 

known to have been used in Red River Delta. Even where the same risk factors were operating, they 

might have different epidemiological importance (Minh, Morris et al., 2009; Pfeiffer, Minh et al., 2007).

Development of a single risk map for Vietnam by assuming the same level of importance in south and

north could result in misrepresentation, unless detailed epidemiological evidence could be used to adjust 

parameter settings.

The second wave of HPAI H5N1 outbreaks in the Mekong River delta region between December 2004 

and April 2005 was used as the test case to evaluate how accurately the reported epidemiological curve 

for the disease outbreaks could be replicated in HandiSpread, using different risk landscapes. As depicted 

by Figure 5-12, the epidemic of Wave I HPAI H5N1 outbreak in 2003 was characterized as of shorter 

duration and with a peak around late January with an abrupt decrease afterwards that was unlikely to be 

real. The initial phase of this first epidemic wave is known to have been affected by under-reporting and 

problems in establishing adequate records. The rapid decrease in the late phase of the wave was partly 

explained by depopulation of many flocks and partly attributed to under-reporting (Gilbert, Xiao et al., 

2008). On the other hand, the size of the late 2005 outbreak was much smaller and interpretation of the 

pattern is complicated by the progressive implementation of vaccination campaigns. The reported 

epidemic wave 2 in 2004/5 was considered to be closest to the behaviour of the true underlying epidemic 

because (i) disease reporting was better than in 2003 as farmers and veterinarians gained some knowledge 
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of the disease; (ii) complicating interventions such as vaccination campaigns were not introduced until 

later in 2005.

Figure 5-12. Epidemic Waves of HPAI H5N1 in Mekong River Delta, Vietnam
Note: with permission, the figure was adopted from the original article by Minh, P. Q., R. S. Morris, et al. 
(2009). "Spatio-temporal epidemiology of highly pathogenic avian influenza outbreaks in the two deltas of 
Vietnam during 2003–2007." Preventive veterinary Medicine 89(1): 16-24. 

5.5.2. Identification of the best fit model(s) 

Four potential candidates were initially developed as the base models. They differed from each other by 

the value for the parameter of “time (frequency) per period time” under Movement 1. Movement 1 was 

created to typify the itinerant duck movements that were hypothesized as the main risk factor in the South 

East Asia setting (Gaidet, Newman et al., 2008; Gilbert, Xiao et al., 2007; Kim, Negovetich et al., 2009).

Eventually base model 2 and model 4 were chosen as the finalist models at this stage for further 

modelling works since they resembled the actual 2004/5 HPAI outbreak in Southern Vietnam temporally 

by having passed the Kolmogorov-Smirnov test. 

In the second stage, the farm file used in base model 2 and 4 was replaced by each of the 81 risk adjusted 

farm files (27 risk files for each of the three risk mapping strategies) generated from three types of risk 

maps in an attempt to improve their spatial fit. A number of promising candidates, out of a total number 

of 162 variant models, were screened out for K-S test and calculation of AUC. Eventually the models 

with no significant temporal difference from the actual outbreak, with a similar or larger size of outbreak, 

and larger value of AUC were selected as the spatially best fitting candidates. The detailed technical 

procedure for selecting good fit model(s) is illustrated in previous Figure 5-3.
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The study demonstrates that M-model, using a combination of different risk factors and environment 

predictors, represents the best option, followed by environmental predictors represented in E-model. The 

least satisfactory model was P-model. 

5.5.3.Relative importance of risk factors and environmental predictors 

We assumed that poultry movement played a slightly important role than environment predictors for the 

best available model, m4-m-r-3-10, based upon literature review and experts’ opinion. We then tested 

three additional hypotheses: (i) movement was epidemiologically more important than environmental 

predictors in term of contribution to HPAI H5N1 outbreak; (ii) both of them were equally important and 

(iii) movement was less important than environment predictors (Table 5-5). However, compared with the 

m4-m-r-3-10, none of the three additional options improved the spatial fit (Table 5-6).

Table 5-5. Weight assignments under three additional hypotheses
Risk Factor Hypothesis 1* Hypothesis 2** Hypothesis 3***
Distance to highway 0.60 0.39 0.13
Distance to waterway 0.12 0.08 0.07
Rice Paddy 0.18 0.41 0.64
% land covered by water 0.03 0.06 0.09
Duck Density 0.06 0.05 0.05
Chicken Density 0.01 0.01 0.01
Sum 1.00 1.00 1.00
Note: *movement is epidemiologically more important than environmental predictors; **movement is equally 
important as environmental predictors; ***movement is less important than environmental predictors.

Table 5-6. Average AUC under three additional hypotheses
Model K-S Test AUC 1 AUC 2 Size of outbreak

m4-2-m-r-3-4 Accepted 0.65 0.66
The size is larger than that for the actual outbreak 
(487>462)

m4-3-m-p-2-2 Accepted 0.64 0.63
The size is larger than that for the actual outbreak 
(470>462)

m4-4-m-p-2-2 Accepted 0.65 0.68 The size is less than that for actual outbreak (451<462)
Note: AUC 1, Average AUC for 21 iterations including median iteration and 10 iterations on each side of median 
iteration; AUC 2 denotes the value of AUC for median iteration. 

5.5.4. The benefit of using a risk map for modelling H5N1 avian influenza

The objective in this study was to explore the effect of taking a map of risk factor information into 

account in predictive modelling of avian influenza H5N1 in Vietnam, and assessing whether doing this 

improves predictive accuracy of the model. The answer is that it improves the spatial prediction of the 

model, without sacrificing temporal fit (which was an inherent risk of the strategy). 
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This was a first attempt, and it will be necessary over time to broaden the range of disease and countries 

for which the approach is tested in order to more fully judge its potential, but that will require better data 

collection on disease events by countries, to provide a wider range of data sets. Complicating the 

assessment was the fact that there was no information on true positives and true negatives at commune 

level. The information used to represent the actual HPAI H5N1 outbreak was based on reporting that was 

highly likely to be compromised to a moderate degree because of imperfect knowledge of HPAI disease 

among farmers, veterinarians as well as the negative impacts such as banning of poultry trade, reduced 

consumption, culling of flocks with unfulfilled or suboptimal compensation provided, etc. If it had been 

possible to cross-check between clinical reports and laboratory investigation results on the same 

communes (both positive report communes and communes which did not report the disease), the 

predictive accuracy of the model(s) could possibly be further improved. Such an approach has been tested 

elsewhere (Martin, Pfeiffer, et al., 2011).

An important benefit of comparing model predictions with actual outbreaks is that it provides insights 

into the epidemiological processes on disease spread.  Models generated by HandiSpread provide 

estimation of emergent properties.  The emergent properties are the statistics of contributions to the 

outbreak by different transmission modes. Through comparing these emergent properties with field 

evidence, the predicted values of the models can be verified and models can be further improved. For 

instance, in this study, the modelling predicted that live bird markets and itinerant duck movement 

explained 49 percent and 40 percent of HPAI outbreaks respectively, and the contributions from other 

routes were insignificant (Table 5-7). Such pieces of information could be used for priority setting in 

intervention design.  

Table 5-7. Epidemiological contribution of different transmission routes under m4-m-r-3-10 
Mode of Infection Number of IPs Share

Epidemic History 8 2%
Local spread 34 7%
Live bird movement 194 40%
Personnel movement 9 2%
From live bird markets 235 49%
To live bird markets 0 0
Total 480 100%
Note: IP stands for infected property.

We discerned that daily reported number of outbreaks by communes was reduced from about 25 per day 

before Tet (New Year) Festival to less than 5 per day around the Tet Festival in early February, then 

increased sharply again after Tet. Although it could be partly explained by reduced poultry movement and 
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trade during this period of time, it would be hard to believe the reduction to be so dramatic. It is likely 

that this represented delayed reporting, and therefore the model should predict levels over Tet higher that 

the field data showed, which was in fact the case.

This study has revealed that the key to develop a good fit model is (i) to understand epidemiological 

processes driving the disease spread. For instance, it is critical to represent different movement types 

varying by distance, frequency and probability of transmission, plus local spread of disease in model 

development and (ii) to identify and represent key epidemiological units/groups and interaction between 

them.

Selection of the epidemiological unit for analysis was also critical to accurately judging the predictive 

power of models. While the unit of observation for disease outbreaks was the commune, this was too fine 

a spatial scale to use in assessing model performance, and the larger district unit was therefore used. This 

better represented the pattern of spread as predicted by the model, and reduced the effect of non-reporting 

by some communes.

5.5.5.Future direction

This exercise was the first attempt to use HandiResponse program to develop risk maps and create a 

dynamic spatial and temporal model for a disease which took account of spatial variation in susceptibility 

of local areas to disease establishment. It demonstrated that this approach improved the spatial fit of 

model predictions, without adversely affecting other aspects of prediction. As next steps, we intend to 

improve the user-friendliness of the program for users in countries at risk of disease outbreaks, and also to 

use the model to test different surveillance options. 

5.6. Conclusion
Disease modelling can help provide general insights on disease spread, generate testable hypotheses, 

predict disease outbreak patterns and assess effect of control measures such as surveillance and 

vaccination campaigns. It can also facilitate decision making processes. This study demonstrated that a 

model which took account of risk maps could provide useful predictions of both temporal and spatial 

aspects of disease spread in a real disease outbreak, HPAI H5N1 epidemic wave II in southern Vietnam.



155

5.7. References
Adegboye, O. and D. Kotze (2014). "Epidemiological analysis of spatially misaligned data: a case of 

highly pathogenic avian influenza virus outbreak in Nigeria." Epidemiology and infection

142(05): 940-949.

Amendola, A., A. Ranghiero, et al. (2015). "Is avian influenza virus A (H5N1) a real threat to human 

health?" Journal of preventive medicine and hygiene 52(3).

Barnabas, R. V., P. Laukkanen, et al. (2006). "Epidemiology of HPV 16 and cervical cancer in Finland 

and the potential impact of vaccination: mathematical modelling analyses." PLoS Med 3(5): 

e138.

Beigel, J. H., J. Farrar, et al. (2005). "Avian influenza A (H5N1) infection in humans." New England 

Journal of Medicine 353(13): 1374-1385.

Belshe, R. B. (2005). "The origins of pandemic influenza—lessons from the 1918 virus." New England 

Journal of Medicine 353(21): 2209-2211.

Bett, B., J. Henning, et al. (2014). "Transmission rate and reproductive number of the H5N1 highly 

pathogenic avian influenza virus during the December 2005–July 2008 epidemic in Nigeria." 

Transboundary and emerging diseases 61(1): 60-68.

Bettencourt, L. M. and R. M. Ribeiro (2008). "Real time bayesian estimation of the epidemic potential of 

emerging infectious diseases." PLoS One 3(5): e2185.

Boender, G. J., T. J. Hagenaars, et al. (2007). "Risk maps for the spread of highly pathogenic avian 

influenza in poultry." PLoS Comput Biol 3(4): e71.

Bos, M. E., M. Van Boven, et al. (2007). "Estimating the day of highly pathogenic avian influenza 

(H7N7) virus introduction into a poultry flock based on mortality data." Veterinary research

38(3): 493-504.

Brisson, M., W. Edmunds, et al. (2000). "Modelling the impact of immunization on the epidemiology of 

varicella zoster virus." Epidemiology and infection 125(03): 651-669.

Burgos, S., P. H. Hanh, et al. (2007). "Characterization of poultry production systems in Vietnam." 

International Journal of Poultry Science 6(10): 709-712.

Desvaux, S., V. Grosbois, et al. (2011). "Risk factors of highly pathogenic avian influenza H5N1 

occurrence at the village and farm levels in the Red River Delta Region in Vietnam." 

Transboundary and emerging diseases 58(6): 492-502.

Duan, L., J. Bahl, et al. (2008). "The development and genetic diversity of H5N1 influenza virus in China, 

1996–2006." Virology 380(2): 243-254.

Duc, N. V. and T. Long (2008). "Poultry Production Systems in Viet Nam." Animal genetics and 

breeding department, National Institute of animal husbandry, Vietnam.



156

Gaidet, N., S. H. Newman, et al. (2008). "Duck migration and past influenza A (H5N1) outbreak areas." 

Emerging infectious diseases 14(7): 1164.

Gambaryan, A. and M. Matrosovich (2015). "What adaptive changes in hemagglutinin and neuraminidase 

are necessary for emergence of pandemic influenza virus from its avian precursor?" 

Biochemistry (Moscow) 80(7): 872-880.

Gauthier Clerc, M., C. Lebarbenchon, et al. (2007). "Recent expansion of highly pathogenic avian 

influenza H5N1: a critical review." Ibis 149(2): 202-214.

Gilbert, M., X. Xiao, et al. (2007). "Avian influenza, domestic ducks and rice agriculture in Thailand." 

Agriculture, ecosystems & environment 119(3): 409-415.

Gilbert, M., X. Xiao, et al. (2008). "Mapping H5N1 highly pathogenic avian influenza risk in Southeast 

Asia." Proceedings of the National Academy of Sciences 105(12): 4769-4774.

Hagag, I. T., S. M. Mansour, et al. (2015). "Pathogenicity of Highly Pathogenic Avian Influenza Virus 

H5N1 in Naturally Infected Poultry in Egypt."

Henning, K. A., J. Henning, et al. (2009). "Farm-and flock-level risk factors associated with Highly 

Pathogenic Avian Influenza outbreaks on small holder duck and chicken farms in the Mekong 

Delta of Viet Nam." Preventive veterinary medicine 91(2): 179-188.

Herring, D. A. and S. Lockerbie (2010). "The Coming Plague of Avian Influenza." Plagues and 

Epidemics: Infected Spaces Past and Present: 179.

Kao, R. R. (2002). "The role of mathematical modelling in the control of the 2001 FMD epidemic in the 

UK." Trends in microbiology 10(6): 279-286.

Keeling, M. J., M. E. Woolhouse, et al. (2001). "Dynamics of the 2001 UK foot and mouth epidemic: 

stochastic dispersal in a heterogeneous landscape." Science 294(5543): 813-817.

Kim, J. K., N. J. Negovetich, et al. (2009). "Ducks: the “Trojan horses” of H5N1 influenza." Influenza 

and other respiratory viruses 3(4): 121-128.

Koopman, J. S. (2005). "Infection transmission science and models." Japanese journal of infectious 

diseases 58(6): S.

Lawson, A. B. and P. Leimich (2000). "Approaches to the space-time modelling of infectious disease 

behaviour." Mathematical Medicine and Biology 17(1): 1-13.

Mannelli, A., N. Ferre, et al. (2006). "Analysis of the 1999–2000 highly pathogenic avian influenza 

(H7N1) epidemic in the main poultry-production area in northern Italy." Preventive veterinary 

medicine 73(4): 273-285.

Martin, V., D. U. Pfeiffer, et al. (2011). "Spatial distribution and risk factors of highly pathogenic avian 

influenza (HPAI) H5N1 in China." PLoS Pathog 7(3): e1001308.



157

Merler, S., M. Ajelli, et al. (2015). "Spatiotemporal spread of the 2014 outbreak of Ebola virus disease in 

Liberia and the effectiveness of non-pharmaceutical interventions: a computational modelling 

analysis." The Lancet Infectious Diseases 15(2): 204-211.

Minh, P. Q., R. S. Morris, et al. (2009). "Spatio-temporal epidemiology of highly pathogenic avian 

influenza outbreaks in the two deltas of Vietnam during 2003–2007." Preventive veterinary 

medicine 89(1): 16-24.

Minh, P. Q., M. Stevenson, et al. (2010). "A description of the management of itinerant grazing ducks in 

the Mekong River Delta of Vietnam." Preventive veterinary medicine 94(1): 101-107.

Mossong, J., N. Hens, et al. (2008). "Social contacts and mixing patterns relevant to the spread of 

infectious diseases." PLoS Med 5(3): e74.

Myers, M. F., D. Rogers, et al. (2000). "Forecasting disease risk for increased epidemic preparedness in 

public health." Advances in Parasitology 47: 309-330.

Osterholm, M. T. (2005). "Preparing for the next pandemic." New England Journal of Medicine 352(18): 

1839-1842.

Peiris, J. M., M. D. De Jong, et al. (2007). "Avian influenza virus (H5N1): a threat to human health." 

Clinical microbiology reviews 20(2): 243-267.

Pfeiffer, D. U., P. Q. Minh, et al. (2007). "An analysis of the spatial and temporal patterns of highly 

pathogenic avian influenza occurrence in Vietnam using national surveillance data." The 

Veterinary Journal 174(2): 302-309.

Riley, S. (2007). "Large-scale spatial-transmission models of infectious disease." Science 316(5829): 

1298-1301.

Sims, L. D. and I. H. Brown (2008). "Multicontinental epidemic of H5N1 HPAI virus (1996–2007)." 

Avian influenza: 251-286.

Stegeman, A., A. Bouma, et al. (2004). "Avian influenza A virus (H7N7) epidemic in The Netherlands in 

2003: course of the epidemic and effectiveness of control measures." Journal of Infectious 

Diseases 190(12): 2088-2095.

Stevens, K., S. Costard, et al. (2009). "Mapping the Likelihood of Introduction and Spread of Highly 

Pathogenic Avian Influenza Virus H5N1 in Africa, Ghana, Ethiopia, Kenya and Nigeria using 

Multicriteria Decision Modelling." DFID funded project for Controlling Avian Flu and 

Protecting People’s Livelihoods in Africa/Indonesia.

Stevenson, M., R. Sanson, et al. (2013). "InterSpread Plus: a spatial and stochastic simulation model of 

disease in animal populations." Preventive Veterinary Medicine 109(1): 10-24.



158

Tiensin, T., M. Nielen, et al. (2007). "Transmission of the highly pathogenic avian influenza virus H5N1 

within flocks during the 2004 epidemic in Thailand." Journal of Infectious Diseases 196(11): 

1679-1684.

Uyeki, T. M. (2008). "Global epidemiology of human infections with highly pathogenic avian influenza 

A (H5N1) viruses." Respirology 13(s1): S2-S9.

Van der Goot, J., G. Koch, et al. (2005). "Quantification of the effect of vaccination on transmission of 

avian influenza (H7N7) in chickens." Proceedings of the National Academy of Sciences of 

the United States of America 102(50): 18141-18146.

Williams, R. A. and A. T. Peterson (2009). "Ecology and geography of avian influenza (HPAI H5N1) 

transmission in the Middle East and northeastern Africa." International Journal of Health 

Geographics 8(1): 47.

Woolhouse, M. (2011). "How to make predictions about future infectious disease risks." Philosophical

Transactions of the Royal Society B: Biological Sciences 366(1573): 2045-2054.



159

CHAPTER 6

6. HandiMap Assisted Risk-based Survey on Crimean 

Congo Haemorrhagic Fever in Mongolia

6.1. Abstract
Background: The ecological conditions and fauna in some parts of Mongolia are similar to those in 

surrounding countries, where Crimean Congo Haemorrhagic Fever (CCHF) is endemic in some areas. 

However no human cases of CCHF have ever been reported in Mongolia despite the severe nature of the 

disease, and no investigation of possible animal infection has ever been conducted.

Methods: High risk and low risk areas of Mongolia for the presence of CCHF were identified by risk 

mapping using evidence from the scientific literature. This was undertaken by producing both a habitat 

suitability map for ticks and a risk map for human CCHF in HandiMap, a disease risk mapping program.

A cross-sectional serological investigation for the presence of antibodies to CCHF virus among 

transhumant herders and their sheep was implemented in selected districts of Mongolia that were 

predicted to be high and low risk for the occurrence of CCHF virus respectively. 

Results: Two types of risk maps were developed for Mongolia. One predicted the spatial distribution of 

the likelihood that the main tick vector of CCHF virus, Hyalomma spp. is present at a specific location, 

while the other predicted the likelihood that people in a particular area had been previously exposed to 

CCHF virus. Antibodies to CCHFV were detected in either sheep or human blood in all 21 districts 

sampled in the high risk area in the south of Mongolia, and in both species in 15 of 21 districts. One 

district in the Province of Selenge in the low risk area, was confirmed to be negative for anti-CCHFV IgG 

in both sheep and human blood samples. 

Conclusion: HandiMap is a useful tool in facilitating disease risk assessment and guiding an 

epidemiological study to detect evidence of infection or demonstrate freedom from a disease. The study 

has confirmed for the first time the presence of CCHF in areas of Mongolia predicted to be at risk of 

infection. However, further studies are needed to determine why no human cases have been reported, and 

to better understand the ecology of hosts and epidemiology of the disease.
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6.2. Introduction
Crimean Congo Hemorrhagic Fever is an acute highly contagious viral zoonosis caused by a member of 

the genus Nairovirus, family Bunyaviridae (Whitehouse, 2004). It is mainly transmitted to human by 

ixodid tick bites, or by direct contact with blood or tissues of viraemic hosts, such as during slaughter and 

butchering of ruminants. Hosts include cattle, sheep and goats, a range of wild animals, and some birds.

Animal infection is subclinical. In most cases, human infections with CCHF virus are asymptomatic.

However it can cause severe illness, with a fatality rate ranging from 2% to 80% (Çevik, Erbay et al., 

2007; Chinikar, Goya et al., 2008; Ergönül, et al., 2004; Hoogstraal, 1979; Vorou, Pierroutsakos, 

& Maltezou, 2007; Whitehouse, 2004). CCHF can also cause community and nosocomial outbreaks 

(Altaf, Luby et al., 1998; Ergönül et al., 2004; Parlak, Ertürk et al., 2015; Van Eeden, Joubert, 

& Van de Wal, 1985).

CCHF is endemic in substantial parts of Africa and Eurasia. Human infection with CCHF virus has been 

increasingly reported in recent years, mainly because of anthropogenic factors (Hoogstraal, 1979; 

Jameson, Ramadani, & Medlock, 2012; Leblebicioglu, 2010; Messina, Pigott et al., 2015; Randolph & 

Rogers, 2007). It has been predicted that the disease would likely expand beyond its traditional 

geographic locations as a result of climate change (Estrada-Pena & Venzal, 2007; Randolph & Rogers, 

2007). Because of its public health importance, CCHF has been listed as a disease requiring notification 

to WHO under the revised International Health Regulations (2005) for notification of health events to the 

WHO (Formenty, Schnepf et al., 2007; Maltezou, Papa et al., 2009).

One common denominator for active CCHFV transmission is the presence of Hyalomma spp. ticks, since 

these are the principal vectors. A recent risk analysis of CCHF in Mongolia conducted as part of this 

study suggested that most parts of Mongolia were suitable for Hyalomma tick presence and there existed a 

number of locations where Hyalomma ticks (and other ixodid species which can be secondary vectors) 

could complete their lifecycle in small and large mammals (Roger Hewson, 2013). In Asia, the disease 

has been reported among humans and livestock in neighboring China and other countries such as Russia, 

Tajikistan and Kazakhstan in close proximity to Mongolia (Atkinson, Chamberlain et al., 2013; 

Hoogstraal, 1979; Yashina, Petrova et al., 2003; Yen, Kong et al., 1985). Some parts of Mongolia, 

particularly the provinces in the south, have the same ecological typology and fauna as in the countries 

mentioned here. Besides, the tick infested area is likely to be expanded as the size of steppe, desert steppe 

and desert has been projected to increase and shift northward because of climate change (Angerer, Han, 

Fujisaki, & Havstad, 2008). Although serological and virological testing of CCHFV were conducted 

around 1987 in wild mammals, the results have not been published on any international peer reviewed 

journals hence their accuracy could not be assessed. There had been no documentation of the disease 
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presence in either domestic animals or human population in Mongolia before this study was conducted 

(Messina, Pigott et al., 2015).

A number of reasons prompted that investigation of CCHFV should be implemented in Mongolia. Firstly, 

livestock in Mongolia represents a crucial national resource that offers an essential basis for sustainable 

development and maintenance of the herders’ livelihood tradition. Agriculture sector produced 33 percent 

of gross domestic product, of which 87 percent was from livestock production (Fermet, Jane, & Forman, 

2007). More than 90 percent of people employed in agricultural sector were engaged in animal husbandry 

in 2010. The traditional transhumant animal raising practices expose herders to tick bites. If ticks are 

infected with CCHFV, human infection would be inevitable. Secondly, the growing mining industry 

would increase the opportunities for susceptible miners working in the field to be exposed to ticks and 

possible infection with CCHFV. In the Gobi Desert, which lies across the southern part of Mongolia, 

herder family encampments can be up to 120 km apart because the population is very sparse and herders 

have very restricted access to medical services. The disease might exist in the country undetected because 

of low awareness and medical staff may lack the necessary disease-specific expertise to diagnose the 

disease.

The study was designed and conducted in 2013. It aimed to use HandiMap, a risk mapping module, to 

assist a risk-based survey investigating the evidence on the possible existence of CCHFV infection among 

domestic animals and/or human population in the Country. 

6.3. Methods and Data
6.3.1.Study area

Mongolia lies between 52°9' north, 41°38' north, 87°47' east and 119°53' east. The selection of the 

locations for field investigation was guided by risk analysis and risk map(s).

6.3.2.Investigation approach

A review of the scientific literature on ecological factors which influence the host ticks and CCHF was 

implemented as the first step of the study. The objective of the review was to identify putative 

environmental and climatological predictors for host tick distribution, tick abundance and human CCHF 

cases, for which suitable remote-sensed data was available (Ansari, Shahbaz et al., 2014; Estrada-Peña, 

2005; Estrada-Peña, Jameson et al., 2012; Estrada-Peña, Vatansever et al., 2010; Estrada-Peña & Venzal, 

2007; Estrada-Peña, Zatansever et al., 2007; Roger Hewson, 2013; Vescio, Busani et al., 2012; Wilson,
Gonzalez et al., 1991). The results are summarized in Table 6-1. The findings from the literature review 
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were used to inform the development of CCHFV suitability maps in Mongolia by using HandiMap, the 

risk mapping module of HandiResponse Program. Guided by the risk maps developed, targeted field 

investigation among domestic animals and herders was implemented in possible geographical hot spots 

and cold spots, in order to identify whether there was any evidence of the presence of CCHFV infection 

in Mongolia.

Table 6-1. Putative environmental and climatological factors for CCHFV suitability mapping

Environmental descriptor
Tick 

distribution
Tick 

abundance
Incidence of human 

infection
Temperature 

Mean monthly temperature + +
Absolute maximum temperature + +
Winter temperature previous year -

NDVI
Mean monthly NDVI + + +
NDVI anomaly +

% of land covered by shrub, grass and 
herbaceous vegetation

+ +

Fragmentation
Traversability, recruitment index + +
Number of different landcover types +
SD* of mean NDVI +

Annual mean precipitation - - -
Note: *standard deviation; “+” means increase in the value of the environmental/climatological descriptor is 
significantly associated with an increase in the possibility or incidence of either tick distribution, abundance or 
CCHF infection among human. “-”means increase in the value of the environmental/climatological descriptor is 
significantly associated with a decrease in tick abundance or CCHF infection among human. Blank means the factor 
is not significantly associated with the measure, or has not been investigated. NDVI stands for normalized difference
vegetation Index.

6.3.3.Development of CCHFV suitability map

Habitat suitability map for tick distribution (named as CCHF I map) and risk map for CCHF occurrence 

(CCHF II map) were developed. Following the ecological niche approach and guided by the four 

principles of relevance, comprehensiveness, no redundancy and measurability for selection of risk layers 

for GIS mapping (Malczewski, 2000), we chose mean NDVI from April to August, monthly maximum 

land-surface temperature, and mean annual precipitation layers for the development of CCHF I map, and 

percent of land covered by shrub, grass and herbaceous vegetation, mean NDVI from April to August, 

mean annual precipitation and mean maximum land surface temperature from April to August for CCHF 
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II-1 map. Because in the Mongolian environment, sparse vegetation and land covered by shrub, grass and 

herbaceous vegetation are negatively correlated spatially, a second CCHF prediction map was prepared, 

using sparse vegetation. For development of this CCHF II-2 map, mean NDVI from April to August, 

mean annual precipitation, mean maximum land surface temperature from April to August and sparse 

vegetation layer were used (Table 6-2).

Table 6-2. Selected putative environmental/climatological predictors for CCHF mapping in 
Mongolia
Environmental/climatological descriptor Mapping purpose Data source
% of land covered by shrub, grass and 
herbaceous vegetation

CCHF http://earthenv.org/

Sparse vegetation, grassland, shrub land CCHF http://neo.sci.gsfc.nasa.gov/
Mean NDVI from April to August Tick distribution, CCHF http://neo.sci.gsfc.nasa.gov/
Annual mean precipitation Tick distribution, CCHF http://worldclim.org/
Maximum land-surface temperature mean 
from April to August

Tick distribution, CCHF http://neo.sci.gsfc.nasa.gov

Values of all selected environmental descriptors were standardized between 0 and 1. Assumed 

relationship between a given descriptor layer and CCHF are documented in Table 6-3.

Table 6-3. Assumed relationship between a selected environmental and climatological descriptor 
and tick distribution, human CCHF infection risk 

Environmental/climatological descriptor Hypothesized relationship

% of land covered by shrub, grass and herbaceous 
vegetation

The higher percentage covered by grass, the lower 
the risk

Sparse vegetation, grassland, shrub land Sparseness level is positively associated with 
increased risk 

Mean NDVI from April to August the higher NDVI value, the higher risk 
Annual mean precipitation The higher precipitation level, the lower risk 
Maximum land-surface temperature mean from 
April to August

The higher maximum temperature level, the 
higher risk

Analytical Hierarchy Process (AHP) was used for weight assignment for the selected environmental and 

climatological descriptors. The relative importance between the selected environmental descriptors was 

informed by the study done by Messina et al. (Messina, Pigott et al., 2015). The results of weight 

assignments are documented in Table 6-4.
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Table 6-4. Weight assignment for selected environmental/climatological descriptors for CCHF 
mapping in Mongolia
Risk layers Tick distribution CCHF II-1 CCHF II-2

% of land covered by shrub, grass and 
herbaceous vegetation

0.65

Sparse vegetation, grassland, shrub land 0.65
Mean maximum temperature from April to 
August

0.80 0.21 0.21

Mean annual precipitation 0.11 0.08 0.08
Mean NDVI from April to August 0.09 0.06 0.06

Consistency Ratio 0.01 0.02 0.02
Note: NDVI stands for normalized difference vegetation index. Consistency Ratio is a comparison between 
consistency index and random consistency index. In case CR is equal or less than 0.1, the inconsistency level is 
acceptable.  

6.3.4.Field investigation

A cross sectional CCHF sero-prevalence survey was conducted among herders and their sheep in twenty 

two districts from six provinces in August, 2013. The study was approved by the ethical committees from 

both Ministry of Health and Ministry of Food, Agriculture and Light Industry. Informed consent was 

obtained from the participating herder families. A brief interview with the herders was implemented by 

the investigation teams with a pre-designed questionnaire.

In each selected district, on average 20 herders from different families were interviewed and whole blood 

sample were taken from them. Selection of herders’ families was based upon logistic feasibility. About 

80 sheep from the same twenty families per district were bled for blood samples during summer time in

2013. This will give at least 95% confidence to detect at least one positive sample for the test method with 

a sensitivity of 80% at the designed disease prevalence of 5% (Cannon & Roe, 1982).

The recombinant anti-CCHFV NP IgG ELISA was performed for blood samples collected from sheep and 

human, selected sheep blood samples were tested by using indirect immunofluorescence antibody (IFA) 

method (Kranzler, Davidovich et al., 2013; Morikawa, 2013).

6.3.5.Concordance analysis

Cohen’s Kappa was used to assess whether the presence of one or more positive sheep (versus zero 

positives) was associated with the presence (or absence) of positives in people from the same district. 
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6.4. Results
CCHF I, CCHF II-1 and CCHF II-2 maps (Figure 6-1,2,3) all suggest the southern Mongolia districts are 

high risk area for CCHF and the host ticks, while northern areas are at low risk.

Figure 6-1. Habitat suitability map for tick distribution (CCHFV I map)
Note: the lighter the color the higher the probability for the presence of ticks. 

Figure 6-2. Risk map for CCHF occurrence (CCHFV II-1 map)
Note: the lighter the color the higher the probability for CCHF occurrence.
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Figure 6-3. Risk map for CCHF occurrence (CCHFV II-2 map)
Note: the lighter the color the higher the probability for CCHF occurrence.

The number of sheep by district is illustrated in Figure 6-4 and the districts selected for field investigation 

are indicated in Figure 6-5. One southern district on the far right is very small, so not obvious on the map 

at this scale.

Figure 6-4. Number of sheep by district in Mongolia, 2013 
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Figure 6-5. Districts selected for field investigation of CCHF in Mongolia, 2013

The districts investigated were 21 high risk Gobi Desert districts along the border with China and 1 low 

risk northern district, as informed by the risk maps. The serological test results are summarized in Table 

6-5.
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Table 6-5. Anti-CCHFV IgG prevalence among human and sheep by district surveyed

Province County
Sheep Human

No. tested % positive No. tested % positive

Khovd
Bulgan 80 17.5% 13 53.8%

Yench 80 28.8% 22 36.4%

Altai 80 36.3% 12 33.3%

Govi-Altai

Bugat 80 35.0% 24 20.8%
Altai sum 80 42.5% 15 40.0%
Tsogt 80 20.0% 13 15.4%
Erdene 80 8.8% 13 7.7%

Bayankhongor 
Bayan-Undur 80 6.3% 34 55.9%
Shine jinst 80 21.3% 28 67.9%

Dornogovi 

Erdene 75 0 26 15.4%
Zamiin Ud 75 8.0% 23 8.7%
Ulaanbadrakh 25 76.0% 26 11.5%
Khuvsgul 75 4.0% 21 0
Khatanbulag 75 0 21 57.1%

Umnugovi

Khanbogd 75 2.7% 23 30.4%

Bayan-Ovoo 75 13.3% 37 62.2%

Nomgon 75 0 20 60.0%

Khurmen 75 24.0% 24 12.5%

Bayandalai 75 9.3% 23 0

Noyon 75 5.3% 22 0

Gurvan 145 0.7% 26 30.8%

Selenge Baruunburen 96 0 30 0
Note: confidence interval have not been provided since the study is intended to confirm whether a district has or has 
not serological evidence of CCHF.  

Cohen’s Kappa value is 0.083 and 95% confidence interval is -0.54 to 0.71. Therefore although only six 

of 22 districts are discordant, with the small number of total observations the results fail the concordance 

test. This means the result of whether a district is a CCHF positive among sheep is not correlated with 

whether it is a CCHF positive among human beings, and vice versa.  
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6.5. Discussion
6.5.1.CCHF infection exists in Mongolia

The study, for the first time, has generated serological evidence that CCHF infection has occurred in both 

people and domestic animals in Mongolia, and that the evidence of infection is present in areas of high 

ecological risk for both host ticks and the disease, but not in a low risk area. While this pattern of CCHF 

sero-positivity among both human and sheep in multiple locations suggests that the disease is likely to be 

endemic in at least some parts of the country, isolation and characterization of the virus would be required 

to provide definitive proof. The prevalence of anti-CCHFV IgG among both human and sheep is 

comparable to that in other CCHF endemic countries (Gonzalez, LeGuenno et al., 1990; Mostafavi, 

Haghdoost et al., 2013; Wilson, Gonzalez et al., 1991).

However, there has been no report of human CCHF cases in Mongolia so far. The reasons could include 

(i) only low pathogenic virus strain(s) exists in the country. There are seven known clades of CCHFV and 

they vary in virulence (Ergönül, 2012; Mild, Simon et al., 2010). Human CCHF cases have only been 

reported in locations where highly pathogenic CCHFV strains exist, such as Europe 1 (Hewson et al., 

2004); (ii) Human cases of CCHF have occurred but clinically affected people did not seek health care or 

died before it could be obtained, and (iii) CCHF affected people sought health care but were 

misdiagnosed by health practitioners who were inadequately equipped with knowledge of the disease 

(Estrada-Peña, Jameson et al., 2012). Health personnel in Mongolia who were consulted were unware of 

the possibility that this disease might be present, so a training program was arranged after the findings of 

this investigation were made available.

6.5.2.Selection of risk factors 

Neither the human population density nor sheep density were included as an explanatory risk factor for 

CCHF prediction. Neither of them has been confirmed to be correlated with the incidence of reported 

human CCHF cases elsewhere (Messina, Pigott et al., 2015; Vescio, Busani et al., 2012). However 

reliance on reporting of CCHF cases only can be misleading since a significant proportion of CCHF 

infected persons could be asymptomatic or have mild clinical manifestation (Ergönül, et al., 

2004; Wilson, Gonzalez et al., 1991). Besides, we have not found any studies that either confirm or reject 

whether the density of human population or sheep is correlated to the presence of anti-CCHF IgG among 

these two populations. Hence, to be on the safe side, we decided not to use these population density risk 

layers. Density of both human and sheep populations are very low in the Gobi Desert, but the tick-

transmitted nature of this disease make transmission possible even in areas of low density, especially 
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when families and their flocks are very mobile, as is the case with this transhumant (verging on nomadic) 

community.

For the development of human CCHFV infection, we attributed an inverse relationship between 

percentage of land covered by grass, shrub and and human CCHF occurrence. Such a relationship is 

different from that reported by some investigators (Messina, Pigott et al., 2015). A positive relationship 

was attributed between areas with sparse vegetation and CCHF risk. Areas with low percentage grass and 

shrub and sparse vegetation coverage mainly concentrate in southern Mongolia. Such an ecological 

environment in southern Mongolia provides suitable habitats for susceptible wild and domestic herbivore 

CCHFV hosts, and enables tick survival and virus circulation (Hewson, 2013). Besides, lower percentage 

coverage of grass and shrub also means high habitat fragmentation in Mongolia, which is also a risk 

factor for human CCHF infection (Estrada-Peña, Vatansever et al., 2010).

6.5.3.Selection of sheep for the CCHF survey

We chose sheep to be tested for anti-CCHFV IgG because (i) most of Mongolia herder families rear sheep 

and the number of sheep was almost four times higher than the cumulative total of cattle, camels and 

horses in 2003; (ii) previous studies revealed that sero-prevalence of CCHF usually tends to be higher in 

small ruminants such as sheep and goats than among large ruminants in the same CCHF affected areas 

(Mohamed, Said et al., 2007; Telmadarraiy Ghiasi et al., 2010; Williams, Al-Busaidy et al., 2000); (iii) 

presence of anti-CCHF IgG in sheep represents relatively recent active transmission of the disease 

because of their shorter lifespan compared with other other susceptible domestic animals (Wilson,

Gonzalez et al., 1991); (iv) the test has better validation evidence for sheep than for other animal species.

6.5.4.Inconsistency in CCHF occurrence between people and animals

All high risk districts yielded positives in at least one species. However the test results from sheep 

samples did not always agree with the results from human samples on whether a high-risk district was 

CCHFV positive or negative. Among six districts that were in disagreement over CCHF status between 

people and sheep (Table 6-6), three districts were CCHF negative in sheep but positive in people and the 

remaining three were CCHF positive in sheep but negative in people.
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Table 6-6. Districts in disagreement in CCHF status between human and sheep
District Sheep Human

Khuvsgul 4% 0

Bayandalai 9.3% 0

Noyon 5.3% 0

Erdene 0 26.7%

Khatanbulag 0 68.6%

Nomgon 0 38.7%

The first step in considering these different results is to confirm whether the laboratory results are largely 

valid.

Although false positive result cannot be ruled out for an individual test, this is highly unlikely for all the 

positive results. About twenty percent (341/1,640) of the sheep samples tested by ELISA were reassessed 

by IFA method, but we were not provided with data on the ELISA test status of samples submitted for 

IFA, other than that most but not all samples tested by IFA were ELISA positive. The results confirmed 

that quite a number of sheep samples were anti-CCHFV IgG positive by both methods. Even for the low 

prevalence districts like Gurvan in Umnugovi Province and Bayan-Under in Bayankhongor Province, 

these two methods were consistent in the investigation results (Morikawa, 2013).

Table 6-7. CCHFV antibody test results for sheep samples in selected districts by ELISA and IFA 

Province District No. tested for 
ELISA

Positive 
(ELISA)

No. ELISA 
sample tested 

by IFA
Positive (IFA)

Khovd
Bulgan 80 17.5% 18 83.3%
Yench 80 28.8% 30 96.7%
Altai 80 36.3% 38 71.3%

Govi-Altai Bugat 80 35.0% 34 55.9%
Altai sum 80 42.5% 38 44.7%

Bayankhongor 
Bayan-Undur 80 6.3% 2 50.0%
Shine jinst 80 21.3% 4 75.0%

Umnugovi Gurvan 145 0.7% 81 1.2%
Selenge Baruunburen 96 0% 96 0.0%
Note: both ELISA and IFA tests were implemented at the Department of Veterinary Science, National Institute of 
Infectious Disease Japan.

False negative results of anti-CCHFV IgG could also happen in individual cases, but not to all infected 

sheep or herders in a district. The ELISA method for detection antibody to CCHFV is highly sensitive 

(Burt, Swanepoel, & Braack, 1993; Morikawa, 2013; Vanhomwegen, Alves et al., 2012). Newly infected 

animals or people can be seronegative, as can cases in very late convalescence and some very severe 



172

human cases (Ergönül, 2012; Ergönül & Whitehouse, 2007; Papa, Mirazimi et al., 2015). None of these 

issues explain the discrepancy between sheep and human results in the six districts.

The issue may simply be a matter of sample size, particularly with respect to people, since the sample 

sizes for people would not reliably detect prevalences at district level below about 15%, depending on the 

district. Another explanation is that multiple transmission routes are occurring, and not all of them operate 

in all districts. People can get directly infected from tick bites, and the ticks may have become infected 

from wild animal hosts, rather than sheep. In some districts, depending on the ecological situation, 

infection may only be present in wild animals. People may also get infected from such direct contact tasks 

as slaughtering and/or butchering wild animals rather than sheep, in some cases. People may also become 

infected from other people. Sheep may be infected but there may be no transmission to people, because 

the particular people who were sampled do not adopt risky practices. Local tick populations may be small, 

and people may therefore escape exposure. In 15 districts both species are infected, and only in three 

districts are all sampled people negative, and in the other three districts all sampled sheep are negative.

6.5.5.Timing for field investigation

The investigation was implemented in August since this month was likely to be the peak season for 

infection among domestic animals and human as suggested by the epidemiological intelligence from the 

Xinjiang Uygur Autonomous Region in neighboring China (Saijo, 2007).

6.5.6.Interpretation of the risk landscapes

The risk landscapes prepared for this study using information from the scientific literature successfully 

identified large areas where CCHF was likely to establish if it entered Mongolia, and an area where it was 

unlikely to be present, and surveillance conducted in these areas provided strong evidence for the first 

time that CCHF virus is present in Mongolia, which was unexpected for national government personnel in 

human and animal health.

Exactly as found in this case, risk landscapes provide guidance on priority areas for surveillance, but do 

not provide any more information than that. The three maps which were produced differ in the size of the 

area which they indicate ranks towards the high end of the risk scale, because they use different risk 

factors, but if they were all overlaid then the summary map would show the highest risk area as the part of 

Mongolia where positive serology was found, and the negative area would fall in the low risk part. To 

further test which of the risk landscape maps is most accurate, it would be necessary to sample people and 

animals more widely across Mongolia, and this would clarify the predictive value of each map more fully.
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6.5.7.Limitation of the study and future directions

The study presents only an initial step in understanding the complexity of CCHF in Mongolia. We hope it 

can prompt the Government to adopt a one health approach for further study on the disease, and develop a 

risk-based surveillance and disease mitigation program. Further actions we would like to suggest are (i) 

the samples collected from sheep and herders need to be tested for Ig M antibody to CCHFV, which can 

help identify any early infections among the two populations; (ii) ticks need to be collected and tested for 

CCHFV presence. Globally, CCHFV has been isolated from thirty species from seven genera of ticks that 

were naturally infected (Estrada-Peña & Jongejan, 1999; Turell, 2007).

Field investigation will be necessary to test presence of CCHFV via PCR in different species of ticks as 

well as their host wild animals. Such investigation would improve the understanding of the ecology of 

CCHFV in Mongolia (Camicas, Wilson et al., 1991). It can validate and improve the CCHFV I map and 

detect new disease foci; (iii) virus needs to be isolated and its genome sequenced to understand its 

virulence and pathogenicity; (iv) epidemiological studies need to be implemented to understand risk 

factors for human exposure to the virus in Mongolia; (v) risk-based surveillance adopting one health 

concept is needed among wild life, domestic animals, herders and workers in abattoirs in at least high risk 

areas identified by the CCHF maps and (vi) based upon the findings from the studies and surveillance 

activities, interventions may need to be implemented in the country (Mertens, Schmidt et al., 2013).

6.6. Conclusion
CCHF is known to occur in countries surrounding Mongolia, but has not been detected in Mongolia and 

was thought to be absent. The disease risk maps generated in HandiResponse using published scientific 

evidence facilitated the identification of high and low risk areas for CCHF and its host ticks. When survey 

was conducted in both types of areas, serological evidence of infection was found in people and their 

associated sheep flocks in the highest risk part of the country, but not in a low risk area. The study 

provided evidence that CCHFV is endemic in Mongolia, which needs to be further strengthened by 

virological investigations using PCR and possibly virus isolation. Further actions are warranted to 

understand the ecology of the disease and its pathogenicity by applying a one health approach and 

undertaking further surveillance in people, domestic animal hosts and wildlife hosts, leading if 

appropriate to mitigation measures designed to counteract possible severe human cases of the disease.
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CHAPTER 7

7. Modelling alternative surveillance methods to detect 

incursion of an exotic zoonotic disease

7.1. Abstract
Background: Emerging diseases pose a constant threat to countries throughout the world, and an 

incursion of a novel disease could result in social and economic disruption in affected countries, as has 

occurred with avian influenza and Ebola virus disease. Timely detection of disease outbreaks in at-risk 

countries is critical. An objective approach is needed for predicting the epidemiological performance of 

various surveillance methods in order to identify optimum combinations of methods for use under the 

circumstances of an individual country.

Methods: We used a hypothesized zoonotic disease, Austeria, as an example to test the effects of different 

surveillance options in disease detection. A temporal and spatial dynamic model was developed for 

simulating the disease in Queensland Australia over a period of 365 days. Eight surveillance components 

were designed to detect the disease by focusing on different strata of affected pig or human populations.

Each component has nine variant sub-components that differ in surveillance intensity and sensitivity of 

detection. Using the Austeria model, the efficiency of each surveillance method in detecting a disease 

incursion was evaluated, as measured by (i) number of days for outbreak detection (efficiency), (ii) 

proportion of simulated outbreaks detected (effectiveness), and (iii) number of farms infected by the date

of detection (which strongly influences economic consequences of the outbreak). The evaluation was 

conducted by simulating 99 epidemiologically distinct outbreaks, then separately evaluating the 

performance of each surveillance component and its subcomponents on these 99 outbreaks.

Results: The most efficient approach was risk-based sampling of commercial herds in areas where there 

was substantial numbers of both commercial herds and feral pigs (strategy RB2), and the least efficient 

method was use of hunters to collect blood samples from feral pigs they captured (strategy FPB). The 

remaining six surveillance components fell in between and were clustered in the middle of the range 

between the two extreme results on each of the performance measures. Strategy RB2 with high 

surveillance intensity and high sensitivity of detection could detect the outbreak at a median of 108 days 
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after incursion, and successfully detected over 93 percent of the 99 simulated outbreaks. When this 

component and subcomponent was used, it would detect the disease when a median of 23 farms were 

infected. In contrast, the FPB component with low intensity and low sensitivity sub-components detected 

only 3 percent of the 99 simulated outbreaks, within this 3% it could only detect the disease at a median 

number of 281 days after the incursion, and when the disease was detected, a median of 2,515 farms were 

already infected.

Conclusions: The methodology developed for assessing performance of surveillance strategies allowed 

72 different surveillance methods to be compared, using a combination of three evaluation criteria. The 

approach can be generalized for other infectious diseases.

7.2. Introduction
A recent estimate showed that infectious disease accounted for more than one third of the total global 

disease burden, and the share was even higher in developing countries (Murray, Vos et al., 2013). Among 

the infectious diseases, emerging zoonotic diseases have taken centre stage in recent years because of 

their potential for generating social, economic and humanitarian disruption and the growing numbers of 

outbreaks caused by these disease agents (Brahmbhatt, 2006; Fan, 2003; Meltzer, Cox, & Fukuda, 1999; 

Narrod, Zinsstag, & Tiongco, 2012; UNDG, 2015; WorldBank, 2014). Over the past four decades, we 

have seen on average one to three newly emerged infectious human diseases per year, and approximately 

75 percent of the newly emerged human diseases are zoonotic (Jones, Patel et al., 2008; Taylor, Latham,

& Mark, 2001). Globalization, international trade, increasing human population, habitat encroachment, 

changing agricultural practices have been either hypothesized or confirmed to contribute to such an 

increase (Barrett, Kuzawa et al., 1998; Bengis, Leighton et al., 2004; Brown, 2004; Daszak, Cunningham, 

& Hyatt, 2000; Jones, Patel et al., 2008; Patz, Daszak et al., 2004; Taylor, Latham, & Mark, 2001).

Surveillance is critical for responding to all infectious disease threats. Earlier detection would win more 

time to respond and hence potentially less infections will result (Kaufmann, Meltzer, & Schmid, 1997; 

Longini, Nizam et al., 2005). Various approaches have been proposed or used for improving timeliness of 

surveillance systems. These include: (i) improving quality of existing signals (for instance, by adopting 

active disease reporting or implementing risk-based surveillance); (ii) adding new signals (for instance 

implementation of different surveillance components and activities); (iii) improving detection algorithm 

and (iv) optimizing the detection strategy (Box, Jenkins, & Reinsel, 2013; Goutard, Paul et al., 2012; 

Jajosky & Groseclose, 2004; Martinez, 2000; Melton & Hripcsak, 2005; Wagner, Tsui et al., 2001).

Surveillance approaches not only differ in technical performance and cost, but also in operational 
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complexity. In the real world, people tend to use a combination of different surveillance approaches or 

components in the expectation that this will improve detection. However, selection of an appropriate 

combination of surveillance methods has largely been based on subjective judgment rather than objective 

assessment.

This paper introduces a systematic approach to assessing the expected outcomes of various combinations 

of surveillance approaches for an infectious disease affecting both animals and human beings. The 

outcomes are assessed in terms of time to detection and economic effects of delayed detection (the latter 

will be presented in Chapter 8). It was conducted by using stochastic modelling of the disease and 

economic analysis of the costs and benefits of different combinations of surveillance methods. The goal is 

to determine an optimum mix of surveillance methods which in combination will be more effective, 

efficient, and/or of lower cost than using a single method. Most emerging diseases involve wild animals 

as well as domestic animals, so the assessment needs to consider surveillance in both wild and domestic 

animals, and in humans.

7.3. Methods and data
7.3.1.The example disease - Austeria

Austeria is a hypothesized infectious zoonotic disease, invented to demonstrate the evaluation of 

surveillance portfolios for detection of diseases involving domestic animals, wild or feral animals and 

people. It is caused by a virus affecting mainly pigs, and is modelled on the epidemiology of porcine 

reproductive and respiratory syndrome (PRRS) virus, although various features have been adjusted to 

create the purely artificial disease Austeria, including its ability to infect people. The virus can be 

transmitted via direct contact between an infected pig and a susceptible one, by fomites, or by aerosol 

transmission over a distance of at least 1 km. Pigs are susceptible to infection by both oral and respiratory 

routes. The muscles of infected pigs contain high concentration of virus. Therefore a pig may also be 

infected by ingesting feed contaminated with the virus.

The State of Queensland in Australia was chosen as the test location for the investigation because it has 

an appropriate mix of large and small scale owned pig herds, and a substantial feral pig population 

overlapping owned pig herds in spatial distribution. These populations are all adequately defined in 

spatial and demographic terms (including enterprise-level economic performance) to allow spatial 

modelling and economic analysis to be undertaken.
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We assumed for this analysis that the disease was exotic to Australia and it was brought into the country 

by illegal introduction of pork contaminated by the virulent virus. The pork was subsequently discarded 

and included in food waste illegally fed to the primary case – a small “backyard” (non-commercial) pig 

herd, located in an area of Queensland where a substantial population of feral pigs is present, and there is 

opportunity for interaction between the pigs in the primary case herd and feral pigs. The owner of the 

primary case herd also bought and sold pigs to other small herds. The disease was initially transmitted to 

other backyard herds and then to commercial pig farms and feral pig families. Both local spread and 

multiple movement types contribute to the disease diffusion.

We also assumed the disease could cause human infection by direct contact between a person and an 

infected pig, but not by consumption of infected pork products. However, the disease could not generate 

human to human transmission.

7.3.2.Data needed for modelling

A spatial and temporal model predicting Austeria disease spread was developed by using HandiSpread 

software5, the enhanced version of InterSpread Plus. The software was populated with estimated or actual 

locations of all commercial and non-commercial pig farms in Queensland.

One back yard pig herd located in an area of moderate density of feral pigs was selected as the starting 

point of the disease introduction for an outbreak simulation in Queensland. Ninety-nine replicates of each 

simulation were run using different random number seeds in order to establish a distribution of possible 

outcomes for an outbreak scenario; each outbreak was allowed to continue for a 365 day period without 

any controls. HandiSpread uses independent random number seeding of each process within the model, 

and so it is possible to generate exactly the same set of 99 different disease outbreaks that reflect a range 

of natural epidemiological variability as many times as needed. A range of surveillance strategies can then 

be modelled for the same set of 99 outbreaks and their performance summarized for each. The choice of 

99 outbreaks was based on preliminary assessment of variability between replicates, and the use of an odd 

number of replicates makes selection of a “median outbreak” possible, and this median outbreak will be

used extensively to demonstrate spatial results of model runs.

5 InterSpread Plus; Massey University EpiCentre, Palmerston North, New Zealand. Available at 
http://www.interspreadplus.com, accessed August 22, 2015, 2015
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7.3.2.1. Number and location of domestic pigs and feral pigs

Estimates on size of individual domesticated pig herd, feral pig family and their locations were done by 

Neumann, et al6.

Commercial pig herds

Data on the postcode area in which each registered pig herd that routinely sends pigs to an abattoir for 

slaughter (and is therefore considered to be commercial) was obtained from the PigPass database held by 

Australian Pork Limited. An official copy of the shape file describing the polygon outline of each 

Australian postcode was obtained7 in order to assign a specific point location to each commercial pig 

farm. This point location was based on post code information attached to each farm in the PigPass 

database8 which was provided by Australian Pork Limited. To ensure the confidentiality of individual 

property details, geographic information system software9 was used to randomly assign a fixed location to 

each farm listed in PigPass, within its respective postcode area. Data on the pig industry in Queensland 

Australia are summarized in Table 7-1.

Table 7-1. Number of feral pig and commercial pig herds in Queensland, Australia, 2013

Type Farm description Sow (or boar) 
inventory

Growing pig 
inventory

Number 
of farms

Sm Small registered commercial 
breeder farms (farrow to finish)

pert(1,3,7) pert(0,2,7) 318

By Backyard farms unregistered
(farrow to finish)

pert(1,3,7) pert(0,2,7) 1532

grow Commercial growers and multi-
site growers only (no breeders)

NA pert(240,650,12000) 164

Lg Large commercial breeders 
(farrow to finish)

pert(8,125,500) pert(7,8,9) 196

multi-ff Multi-site commercial farms 
(farrow to finish)

pert(200,350,3000) pert(3,4,5) 21

multi-sow Multi-site commercial breeders 
only

pert(200,350,3000) NA 24

Ai Artificial insemination pert(10,20,30) NA 2

6 Neumann EJ, Hall WF, Morris RS, O'Leary B. The risk and consequences of PRRS virus introduction to Australia 
through importation of pork (Project 2011/1039.426). Australian Pork Ltd, Barton, ACT, Australia, 2013.
7 Terrapages Pty Ltd. Australian Postcode spatial database (version dated August 2012); Pyrmont, NSW
8 Australian Pork Limited. Fact Sheet: What is the PigPass system?
http://www.pigpass.com.au/documents/FACTSHEET-WhatIsThePigPassSystem_Feb2011.pdf. Accessed November 
18, 2012
9 Quantum GIS Development Team (2012), version 1.8.0 Lisboa. Quantum GIS Geographic Information System. 
Open Source Geospatial Foundation Project. http://qgis.osgeo.org
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Back yard pig herds

No single register of non-commercial pig holdings exists in Australia and therefore information and data 

was accumulated from various official and unofficial sources to generate reasonable estimates of the total 

number of “backyard” pig holdings and their locations. The specific methods and sources are described 

by Neumann et al in the report mentioned above.

Estimates of the minimum, most likely, and maximum number of backyard pig farms (not listed in the 

PigPass database) was achieved through review of State Livestock Registers, previous published 

estimates and a survey among a group of experts. A simulation approach was used to generate the spatial 

distribution of the population of backyard pig herds, since in most cases there is no geographic data 

available for this group. The number of backyard pig herds was assumed to be in proportion to the density 

of the human population in each area, but limited to areas for which the principal land use is agriculture. 

For mesh blocks with population densities falling in the range of 0.1 to 5 persons per square kilometer, 

the probability of keeping backyard pigs was set to 0.1. For each selected mesh block a single random 

draw from the binomial distribution was used to estimate the number of households within the mesh 

block that kept backyards pigs. For each of these ‘backyard pig households’ a point location was assigned 

within the boundaries of the respective mesh block. The resulting spatial distribution was compared with 

those backyard pig farms having known geographic locations, and was considered as a credible 

representation of the distribution of backyard herds.

Feral pig families

The total number of feral pigs in Australia is quite uncertain, and various estimates have put the 

population at various levels ranging from 3.5 to 23 million (Hone, 1990), with exact numbers known to 

vary from year to year and between seasons. Feral pigs live in family groups, with home ranges 

depending on habitat suitability and availability of feed and water. Estimation of feral pig density was 

based on the relative suitability of the habitat for feral pigs (supplemented by count data where available) 

and was scaled from 1 (‘not suitable’) to 9 (‘highly suitable’) to enable the distribution of feral pig 

families to be mapped on to Queensland, to create a population of feral pig family units which could 

interact with owned pig herds in the model. The starting point for the development of the map was 

information provided by a group of experts in Australian vertebrates (Cowled, Giannini et al., 2009; 

Hone, 2012; West, 2008) and from this information a numerically scaled zoning map (Figure 7-1) of feral 

pig habitat suitability was created. No areas of Queensland were classified in zone 9.

For the purpose of this modelling, it was assumed that 10 million feral pigs were present in Australia, 

existing in family groups with a mean size of 10 pigs (adults, juveniles, and young), suggesting a total of 
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one million family groups in the country. These one million family groups were distributed across the 

country at densities proportional to the total land mass in each habitat suitability zone, and 429,262 of 

these families were located in Queensland. The breakdown of feral families by habitat zone in

Queensland is shown in Table 7-2 below, and the distribution of owned pig herds by feral pig density 

zone is shown in

Table 7-3. Once the total number of feral family groups for each zone was determined, each family was 

randomly assigned a point location within its respective habitat zone. The estimated feral pig density 

distribution in Queensland is illustrated in Figure 7-1.

Table 7-2. Estimated distribution of feral families by risk zone in Queensland, Australia
Feral risk zone Feral families Area (km2) Area per feral family
1 600 13,686 22.8
2 152 1,923 12.7
3 1,341 9,952 7.4
4 102,253 573,655 5.6
5 915 3,936 4.3
6 203,820 765,431 3.8
7 2,132 7,225 3.4
8 118,049 347,634 2.9

Summary 429,262 1,723,442 4.0
Note: the higher number the feral risk zone, the more suitable for feral pigs.

Table 7-3. Number of owned herds of each type in the feral pig density zones
Density zone 1 2 3 4 5 6 7 8 Total
ai 2 2
by 592 837 103 1,532

feral 600 152 1,341 102,253 915 203,820 2,132 118,049 429,262

grow 93 66 5 164

lg 102 81 13 196

multi-ff 11 10 21

multi-sow 15 8 1 24

sm 200 113 5 318

Total 600 152 1,341 103,268 915 204,935 2,132 118,176 431,519
Note: refer to explanations on farm type in Table 7-1. Number in the first row represents suitability scale, ranges 
from 1 (poor suitability) to 9 (high suitability).
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Figure 7-1. Estimated relative density of feral pigs in Queensland, Australia
Note: based on the suitability of habitat, the zoning was created using initial source data obtained from 
the Invasive Animal Cooperative Research Centre (CRC), available at www.invasiveanimals.com (West, 
2008). Suitability has been scaled from 1 (poor suitability) to 9 (high suitability).

7.3.2.2. Incubation period and infectivity

The mean incubation period for Austeria, based on 1000 draws from a log-normal distribution, was set at 

8 days and with a standard deviation of three days. Infectivity of infected herds was set relative to the 

onset of clinical signs with 60% infectiousness at Day 1 post-onset of clinical signs and 100% 

infectiousness at Day 5 post-onset of clinical signs. Infectiousness then declined subsequently.

7.3.2.3. Infection transmission between herd types

Austeria is hypothesized to be spread by three types of local spread, four movements between different 

sectors of the commercial and backyard herd populations, as well as interaction between feral pigs and 

domestic pigs as depicted in Figure 7-2. The feral pig population is represented on the left hand side of 

the diagram, and the various populations of owned pigs on the right. Local spread between pigs that are in 

fairly close proximity but do not have a known action that transmitted infection. Movement spread is 

relates to animals being moved deliberately or known forms of movement taking place.

Parameters such as frequency and distance for different types of movement, probability of transmission 

for each type of movement were estimated after consultation with the experts and are documented in 

Table 7-4 to Table 7-17.
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Table 7-11. Movement type 4: distance matrix

Proportion 0.1 0.6 0.29 0.01

Distance (m) 1000 5000 20000 50000

Probability of transmission = Constant (0.10)

Local spread type 1: Local spread of infection originating from all farm classes and spreading to all 

farm classes. Provides the only mechanism for infection to move from commercial farms to feral pigs 

(at a very low rate). Feral families are primarily infected through local spread from backyard pigs 

(Local spread type 3).

Table 7-12. Local spread 1: probability of transmission
Distance (m) 1000 2000 3000

Probability of transmission 0.012 0.003 0.001

Table 7-13. Adjustment in probability of transmission for specific farm class destinations
Farm class Adjustment factor to reduce probability of transmission

lg 1

sm 1

grow 1

ai 0.0

by 1

multi-ff 1

multi-sow 1

feral 0.15

Local spread type 2: Local spread representing the only mechanism by which infection can move 

from feral pigs to commercial and backyard farms (low frequency event over short distance; origin of 

infection limited only to feral families).

Table 7-14. Local spread type 2: probability of transmission
Distance (m) 1000 2000 3000 5000

Probability of transmission 0.0045 0.002 0.0008 0.0005
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Table 7-15. Local spread type 2: adjustment in probability of transmission for specific farm 
class destinations
Farm class Adjustment factor to reduce probability of transmission

Lg 0.2

Sm 0.2

Grow 0.2

Ai 0.2

By 0.2

multi-ff 0.2

multi-sow 0.2

Feral 1

Local spread type 3: Local spread representing spread of infection from backyard pigs to feral (origin 

of infection limited only to backyard farm class).

Table 7-16. Local spread type 3: probability of transmission
Distance (m) 1000 2000 3000

Probability of transmission 0.0025 0.00125 0.001

Table 7-17. Local spread type 3: adjustment in probability of transmission for specific farm 
class destinations
Farm class Adjustment factor to reduce probability of transmission

Lg 0

Sm 0

Grow 0

Ai 0

By 0

multi-ff 0

multi-sow 0

Feral 1

7.3.3.Surveillance components for the disease

Eight epidemiologically appropriate surveillance components were designed and simulated for their 

ability to achieve Austeria detection within a year of an incursion (Table 7-18). They were (i) 

slaughter pigs (SP): active surveillance by testing slaughter age pigs at abattoirs; (ii) sows on farms 

(SOF): active surveillance among breeding sows by visiting farms to test the sows; (iii) feral pig 

bleeding (FPB): voluntary reporting and blood sample collection on filter paper by hunters, followed 

by serological investigation; (iv) random lifestyle (RL): active surveillance among backyard and small 
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commercial pig farms; (v) risk-based 1 (RB1): risk-based surveillance option 1 targeting at domestic 

pig herds in the zone perceived with “the highest risk” for Austeria in Queensland, zone 8 (shown in 

Figure 7-1); (vi) risk-based 2 (RB2): risk-based surveillance option 2 targeting domestic pigs in the 

second highest risk zone present in Queensland, zone 6 (shown in Figure 7-1); (vii) farmer reporting 

(FR): passive disease reporting by farmers based on detection of unusual clinical signs in their 

domestic pigs and (viii) human case reporting (HCR): reporting of unusual cases of human disease by 

medical practitioners .

Table 7-18. Subjects for each Austeria surveillance component
Component code back yard Feral grow lg multi-ff multi-sow Small farm

SP
SOF
FPB
RL
RB1
RB2
FR
HCR
Note: SP stands for slaughter pigs, SOF for sows on farms, FPB for feral pig bleeding, RL for random lifestyle, 
RB1 for risk-based option 1, RB2 for risk-based option 2, FR for farmer reporting, HCR for human case 
reporting (HCR).

Each surveillance component was implemented with three levels of sampling intensity and three 

levels of diagnostic sensitivity, creating 9 sub-components per component. The key assumptions on 

technical parameters are summarized in Table 7-19.
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Table 7-19. Description of surveillance components for Austeria

Component Description Intensity
(Test events/year)

Sensitivity
(Herd level)

SP

ELISA testing of 30/20/10 pigs per 
herd collected randomly from healthy 
pigs in abattoir , 0.5/1/2 times per 
year

High (762)
Medium (381)
Low (191)

High: 80%
Medium: 60%
Low: 50%

SOF
ELISA testing of 30/20/10 pigs per 
herd collected randomly from healthy 
pigs on farm, 4/6/12 times per year

High (2,892)
Medium (1,446)
Low (964)

High: 80%
Medium: 60%
Low: 50%

FPB

ELISA testing of 2.5% of feral family 
groups each year based on harvest of 
1 pig from 2.5% of the available feral 
families

High (1,073)
Medium (537)
Low (107)

High: 80%
Medium: 60%
Low: 40%

RL

ELISA testing of 10% of the 
combination of BY and SM 
commercial farms (total n=1850, 185 
sampled), one time per year

High (370)
Medium (185)
Low (93)

High: 90%
Medium: 70%
Low: 50%

RB1
ELISA test on all commercial and 
backyard herds (in CRC zone 8),
4/6/12 per year

High (3,624*/2,256**)
Medium (1,812/1,128)
Low (1,280/752)

High: 90%
Medium: 70%
Low: 50%

RB2
ELISA test on all commercial and 
backyard herds (in CRC zone 6), 
4/6/12 per year

High (288/1,236)
Medium (144/618)
Low (96/412)

High: 90%
Medium: 70%
Low: 50%

FR Farmer recognizes clinical sign(s) and 
reports

High (39,694/83,877)
Medium(26,463/55,918)
Low (13,231/27,959)

High: 40%
Medium: 20%
Low: 10%

HCR
Observation, reporting, and 
confirmation testing based on clinical 
signs consistent with the disease

High: 61,785
Medium: 20,959
Low: 8,238

High: 10%
Medium: 7.5%
Low: 5%

Note: * number of pig herds from commercial farms; ** number of pig herds from backyard farm. SP stands for 
slaughter pigs, SOF for sows on farms, FPB for feral pig bleeding, RL for random lifestyle, RB1 for risk-based 
option 1, RB2 for risk-based option 2, FR for farmer reporting, HCR for human case reporting (HCR).

Subject enterprise types under each surveillance component are documented in Table 7-19. An 

example on how the intensity for a given surveillance component/sub-component was calculated is 

illustrated in Table 7-20.

Table 7-20. Two examples of defining surveillance intensity and probability of detection for the 
high intensity sub-component
Key steps Row ID SP FPB Explanation
Number herds in population A 381 429,262
Proportion of herds sampled per year B 100% 1%
Maximum test per year for a given herd C 2 1
Sampling compliance ratio D 100% 25%
Average number of testing events per year E 762 1073 A*B*C*D
Daily probability of sampling F 0.0055 6.8E-06 C*D/365
Herd level diagnostic sensitivity G 90% 80%
Daily probability of detection H 0.005 5.5E-06 F*G
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7.4. Results
7.4.1.Temporal and spatial distribution of Austeria

The temporal and spatial distribution of Austeria after it is introduced are illustrated in Figure 7-3 and 

Figure 7-4. A median-sized Austeria outbreak would affect 2,524 pig herds and a large size Austeria 

outbreak would infect more than 4,500 pig herds within a year (including feral pig families).

Figure 7-3. Number of daily cumulative infected farms of an uncontrolled Austeria outbreak in
Queensland, Australia
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Figure 7-4. Spatial distribution of Austeria infected pig herds in a median outbreak overlaid on
top of the feral pig zones in Queensland, Australia

7.4.2.Number of days taken for Austeria detection

RB2 component stands out as the most efficient surveillance option since it takes on average 137 days 

to detect the simulated Austeria outbreaks.  The least efficient component is FPB, on average it takes 

286 days to detect the simulated outbreaks (Table 7-21).  

Table 7-21. Mean number of days taken for each surveillance component to detect Austeria over 
up to 99 iterations, Queensland, Australia (summarized for 9 sub-components)
Surveillance component Mean SD
RB2 137 12
RB1 197 9
RL 198 30
FR 202 33
SP 206 22
HCR 208 5
SOF 209 13
FPB 286 7
Note: SP stands for slaughter pigs, SOF for sows on farms, FPB for feral pig bleeding, RL for random 
lifestyle, RB1 for risk-based option 1, RB2 for risk-based option 2, FR for farmer reporting, HCR for 
human case reporting (HCR).
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Figure 7-5 show results for those outbreaks that are detected in less than 365 days. The RB2 

component takes the shortest median time for detecting Austeria outbreaks across all sub-components 

while the FPB component takes the longest. The RB2 subcomponent with high intensity and high 

sensitivity takes a median number of 106 days to detect the simulated outbreak, while the FPB sub-

component with high intensity and high sensitivity takes a median number of 316 days to detect the 

simulated outbreaks.  

The number of days taken for Austeria outbreak detection also varies among the sub-components 

within each component that differ in surveillance intensity and sensitivity. In general, the ones with 

high intensity and high sensitivity options tend to be the best performers that would take the shortest 

time to detect Austeria, while the ones with low intensity and low sensitivity take the longest time. 

One exception is for the FPB component. The low intensity and low sensitivity sub-component of the 

FPB seems to detect the disease earlier than other sub-components when measured by the median 

number of days taken for detection. The explanations for this result are detailed in Section 7.5.2.
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Figure 7-5. Number of days taken for Austeria detection by surveillance approach
Note: Y-axis represents number of days taken for outbreak detection. SP stands for slaughter pigs, SOF for sows 
on farms, FPB for feral pig bleeding, RL for random lifestyle, RB1 for risk-based option 1, RB2 for risk-based 
option 2, FR for farmer reporting, HCR for human case reporting (HCR). H-H means high intensity, high 
sensitivity; H-M, high intensity, median sensitivity; H-L, high intensity, low sensitivity; M-H, median intensity, 
high sensitivity, M-M, median intensity, median sensitivity; M-L, median intensity, low sensitivity; L-H, low 
intensity, high sensitivity; L-M, low intensity, median sensitivity and L-L, low intensity, low sensitivity.

7.4.3.Number of infected properties by the time of detection

As described before, a median-sized undetected Austeria outbreak would infect 2,524 pig herds 

(including feral pig families) over a period of 365 days. The most efficient surveillance component is 
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RB2, and least efficient one is FPB (Table 7-22).  Component RB2 on average could detect the 

outbreak when only 54 owned pig herds are infected. On the contrary, Component FPB could only 

detect the outbreaks when 2129 owned pig herds are infected.  

Table 7-22. Mean number of farms infected by the day of detection over up to 99 iterations, 
Queensland, Australia (summarized for 9 sub-components)
Surveillance component Mean SD
RB2 54 17
RB1 226 45
RL 240 168
FR 281 238
SOF 357 86
HCR 366 50
SP 390 152
FPB 2129 161
Note: SP stands for slaughter pigs, SOF for sows on farms, FPB for feral pig bleeding, RL for random 
lifestyle, RB1 for risk-based option 1, RB2 for risk-based option 2, FR for farmer reporting, HCR for 
human case reporting (HCR).

Sub-component RB2 with high intensity and sensitivity, could detect the disease when there are only 

23 farms infected in the median outbreak. The least efficient one, FPB with low intensity and low 

sensitivity could only detect the disease when 2,515 farms are infected in the median outbreak (99.6 

percent of 2,524) (Figure 7-6). 
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Figure 7-6. Median number of herds infected by the day of detection, by surveillance approach
Note: SP stands for slaughter pigs, SOF for sows on farms, FPB for feral pig bleeding, RL for random lifestyle, 
RB1 for risk-based option 1, RB2 for risk-based option 2, FR for farmer reporting, HCR for human case 
reporting (HCR). H-H means high intensity, high sensitivity; H-M, high intensity, median sensitivity; H-L, high 
intensity, low sensitivity; M-H, median intensity, high sensitivity, M-M, median intensity, median sensitivity; 
M-L, median intensity, low sensitivity; L-H, low intensity, high sensitivity; L-M, low intensity, median 
sensitivity and L-L, low intensity, low sensitivity.
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7.4.4.Number of Austeria outbreaks detected

All RB2 subcomponents, on average, can detect 93 percent of the simulated outbreaks while all FPB 

sub-components detect only 15 percent of the simulated outbreaks (Table 7-22).  

Table 7-23. Mean Percentage of Austeria outbreaks detected over 99 iterations for each 
surveillance component in Queensland, Australia (summarized for 9 sub-components)
Surveillance component Mean SD
RB2 93% 0.3%
RL 89% 3.4%
RB1 88% 3.8%
FR 87% 5.7%
HCR 87% 1.4%
SOF 86% 1.2%
SP 85% 2.0%
FPB 15% 11.1%
Note: SP stands for slaughter pigs, SOF for sows on farms, FPB for feral pig bleeding, RL for random 
lifestyle, RB1 for risk-based option 1, RB2 for risk-based option 2, FR for farmer reporting, HCR for 
human case reporting (HCR).

A closer look reveals that a majority of surveillance approaches are able to detect the outbreak in 

more than 80 percent of 99 simulated outbreaks within 365 days (Figure 7-7). The FR component 

with high intensity and high sensitivity is able to detect the disease outbreak in 95 percent of the 

simulated outbreaks while FPB with low intensity and low sensitivity can only detect 3 percent, or 3 

simulated Austeria outbreaks. All RB2 sub-components can detect more than 90 percent of 99 

simulated Austeria outbreaks. 
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Figure 7-7. Percentage of the 99 simulated Austeria outbreaks detected by each surveillance 
approach within 365 days
Note: SP stands for slaughter pigs, SOF for sows on farms, FPB for feral pig bleeding, RL for random lifestyle, 
RB1 for risk-based option 1, RB2 for risk-based option 2, FR for farmer reporting, HCR for human case 
reporting (HCR). H-H means high intensity, high sensitivity; H-M means high intensity, median sensitivity; H-
L, high intensity, low sensitivity; M-H, median intensity, high sensitivity, M-M, median intensity, median 
sensitivity; M-L, median intensity, low sensitivity; L-H, low intensity, high sensitivity; L-M, low intensity,
median sensitivity and L-L, low intensity, low sensitivity.
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7.5. Discussion
7.5.1.Selection of disease and location for modelling

Feral pigs can act as either a vector or a reservoir species for a number of pathogens affecting animals 

and human beings (Hone & Pech, 1990; Meng, Lindsay, & Sriranganathan, 2009; Naranjo, Gortazar

et al., 2008; Pullar, 1950; Yob, Field et al., 2001), and can therefore contribute to disease spread 

following an incursion, complicating control. They were thought to have been brought to Australia by 

European settlers two centuries ago as domestic pigs and subsequently escaped into the wild on many 

occasions (Pullar, 1953). Their polyoestrous nature, together with an omnivorous diet and active 

foraging habit makes the species highly adaptable to a wide range of environmental and climatic 

conditions. Feral pigs nowadays inhabit 38 to 45 percent of Australia and are thought to be most 

abundant in Queensland, New South Wales, and Northern Territory (McLeod & Norris, 2004; West, 

2008). Studies in Australia and elsewhere have shown that feral pigs are willing to come into close 

proximity to commercial piggeries, which presents the possibility of disease transmission between the 

two populations by short distance aerosol or direct contact if adequate barriers are not maintained 

(Bengsen, Gentle et al., 2014; Wu, Abril et al., 2011; Wyckoff, Henke et al., 2009).

The reason for selection of Queensland for this study was because it is one of the major pig producing 

states and the estimated density for both backyard pigs and feral pigs was among the highest in 

Australia (Figure 7-8 and Figure 7-9). In many locations within the State, the habitats of feral pigs are 

in the vicinity of backyard pig farms, so it would be highly possible for the pigs of the two groups to 

get into contact, with the greatest degree of overlapping of the populations being in Queensland. 
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7.5.2.Epidemiological performance of surveillance approaches

We used mean/median number of days taken for outbreak detection, mean/median number of farms 

infected by the day of detection and number/percent of the 99 simulated outbreaks in which disease was 

detected to compare the performance of the surveillance approaches tested. The results for the 

surveillance approaches tested are mainly consistent between the three evaluation criteria: RB2 stands 

out as the most successful surveillance component and FPB is the least successful. The rest of the 

surveillance approaches, falling between RB2 and FPB, are clustered in the middle of the ranges for the 

various evaluation criteria and are not substantially different in their technical performance (Table 7-21,

Table 7-22 and Table 7-23).

Our modelling work demonstrated that even the most successful surveillance component, on average, 

would take 137 days to detect an Austeria outbreak (7-21). However, the median time to detection for 

the RB2 approach (131 days) is about a week shorter than the mean that is presented in the table, 

because the distribution of time to detection for all surveillance components is approximately 

lognormal. This produces a median time to detection shorter than the mean, because in a small number 

of outbreaks where there was a long delay to detection. The box and whisker plots in Figure 7-5

demonstrate this clearly, with the size of the “box” (25th to 75th percentile) being smaller for the more 

successful approaches, but the “whisker” (shortest to longest detection time) showing much less 

variation between approaches, both within and between components. Therefore the median time to 

detection is a more informative guide to selecting a surveillance approach than the mean.

The FPB sub-component with low intensity and low sensitivity seemingly outperforms the other sub-

components under the same component by achieving a lower median number of days taken for 

detection (Figure 7-5). However, this is largely an artifact because the FPB sub-components differ in 

the number of simulated outbreaks detected. The FPB sub-component with high intensity and high 

sensitivity detected 36 percent of 99 simulated outbreaks, and the one with low intensity and low 

sensitivity detected only 3 simulated outbreaks of 99. Therefore because FPB is such a poor detection 

method with the parameter values used, the results for sub-components largely reflect differences in 

numbers of outbreaks detected, rather than efficiency of detection.

Surveillance component RB1 provides a good illustration of the importance of considering all 

epidemiological factors in deciding on surveillance methods. In theory, sampling all commercial and 

backyard herds in the areas with highest density of feral pigs (zone 8) seems an excellent surveillance 

approach, but the model results showed that under the circumstances in Queensland it is poorly 

effective, and sampling commercial and backyard herds in the second highest density zone (component 

RB2, operating in zone 6 because there are no commercial or backyard herds in zone 7 in Queensland) 

is a much better option, and is in fact the best component. The reason is that there is very little overlap 

between zone 8 (largely in the northern part of Queensland) and commercial herds, with only 24 
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commercial and 103 backyard herds in the zone, a total of 127 being sampled. In contrast, zone 6 

extends to much more southern areas of the State and has 278 commercial and 837 backyard herds 

(total 1,115), so sampling these herds was a very effective method of detecting the disease. This 

demonstrates the benefit of modelling surveillance strategies to identify their value.

None of the surveillance strategies could detect the outbreak until it was already well established, 

because for at least 12 weeks the outbreak was largely limited to backyard herds and was spreading 

slowly before it began to increase rapidly in both backyard and feral pig herds from week 16 (Figure 

7-10). The only surveillance component which achieved a median days to detection of under 16 weeks 

was RB2. Backyard herds are numerous but difficult to find since they are unregistered. Sampling 

strategy RL targeted these herds plus small commercial herds, but since there are 1,850 herds in this 

group across the whole of Queensland, and the strategy involved sampling only 5 to 20% of them, the 

H-H subcomponent (sampling 20%) detected 93% of outbreaks with a median days to detection of 144 

days and a median of only 57 herds infected, but sampling 10% or 5% increased median days to 

detection to 161 or 182 respectively, because the probability of selecting an infected herd for sampling 

was considerably lower.

Figure 7-10. Weekly cumulative Austeria epidemic curves by pig production sector
Note: by means backyard farms unregistered (farrow to finish); grow, commercial growers and multi-site growers 
only (no breeders); lg, large commercial breeders (farrow to finish); multi-ff, multi-site commercial farms (farrow 
to finish); multi-sow, multi-site commercial breeders only; sm, small registered commercial breeder farms (farrow 
to finish). 
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Farmer reporting would be a very effective method of detection if both recognition of a novel disease 

and willingness to report the disease were at a high level. In this evaluation, the H-H subcomponent of 

FR achieved median detection at 146 days, when only 61 herds were infected, and it detected 95% of 

the 99 outbreaks. However, practical experience in many disease outbreaks around the world 

demonstrates that farmer reporting usually detects the disease quite late, due to failure of either disease 

recognition or willingness to report, or both – especially where infection has established in backyard 

herds initially. A very relevant demonstration of this has been the first of three incursions of porcine 

reproductive and respiratory syndrome in South Africa (Morris, 2012). In this case PRRS spread over 

an uncertain but extended period in backyard herds before eventually being transmitted to a commercial 

herd, at which point it was identified.

Reporting of human clinical cases (HCR component) is a highly efficient approach with a daily disease 

detection probability ranging from 0.02 to 0.08 that is among the highest in all eight surveillance 

components. Since we have hypothesized that Austeria was not transmitted from an infected pig to 

human efficiently, there would be few human cases. For a median sized Austeria outbreak, spillover 

into humans did not occur until day 174 with a total of 24 human infections over 365 days. HCR even 

overruns the RB2 component with high intensity and diagnostic sensitivity when measuring the 

difference between the day of disease onset and the day of detection (Table 7-24). Reporting of human 

clinical cases (HCR component) with high intensity and high diagnostic sensitivity could identify the 

disease in humans within one month of the first human case occurring, on day 208. In comparison, RB2 

with high intensity and high diagnostic sensitivity subcomponent would detect the disease in pigs more 

than 3 months after the first farm infected, on day 108. Two policy implications of such a surveillance 

strategy implemented in humans need to be highlighted. Firstly, for a zoonotic disease like Austeria, 

reporting of human case(s) might indicate the disease, sometime on an even larger scale, are occurring 

among animal(s). For some diseases, reporting of sporadic human clinical case even predated any 

reporting on the same disease outbreaks among animals (Minh, Schauer et al., 2009). Secondly, 

surveillance among (sentinel) animals could provide early warning for upcoming human infections 

(Kulasekera et al., 2001).

Table 7-24. Comparison of HCR and RB2 by the day of onset and the day of detection
Surveillance component Day of onset of Austeria Day of first detection

RB2 H-H 10* 108

HCR H-H 174** 208
Note: *the first secondary infection in pigs after the index case; **the day of first human infection. 
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7.5.3.Contributions and limitations of our approach

The methodology presented in this paper comprises two steps: (i) development of a temporal and spatial 

dynamic disease model; (ii) applying several different surveillance approaches, each varying in 

intensity and sensitivity, to model their potential effects in terms of timeliness of disease detection, 

proportion of outbreaks detected as well as number of farms infected by the date of detection. Such a 

methodology can be generalized and used for other infectious diseases and their surveillance programs.

All the three outcome measures, in particular, the time (days) taken for detection and the proportion of 

outbreaks detected, are highly policy relevant. For a disease outbreak, earlier detection means a reduced 

loss of productivity in animals and in the case of a zoonosis, less effect on human health. For instance, 

late detection when using the FPB (low intensity and low sensitivity) approach, would generate, under a 

median Austeria outbreak, 294 more commercial farms and 6 more people infected compared to that of 

RB2 (high intensity and high sensitivity) (Table 7-25). Until recent years, few published studies 

measured or evaluated surveillance approaches by the time taken to detect a disease outbreak (Jajosky 

& Groseclose, 2004; Wagner, Tsui et al., 2001). The proportion of outbreaks detected de facto measures 

the sensitivity of surveillance approach under different scenarios. An effective surveillance approach, 

such as the RB2 subcomponents, should be able to detect almost all possible outbreaks, particularly the 

ones with low incidence. When assessing the technical performance of a surveillance approach by 

modelling, we recommend these two parameters be used jointly.

Table 7-25. Comparison of number of infected farms under different surveillance approaches

Surveillance
Days to Detection

(median)

Number of Infected 

by grow lg multi-ff multi-sow sm Human

RB2 H-H 108 24 3 0 0 0 2 0

FPB L-L 281 302 8 0 0 0 13 6

Note: by means backyard farms unregistered (farrow to finish); grow, commercial growers and multi-site growers 
only (no breeders); lg, large commercial breeders (farrow to finish); multi-ff, multi-site commercial farms (farrow 
to finish); multi-sow, multi-site commercial breeders only; sm, small registered commercial breeder farms (farrow 
to finish). 

The study has identified the risk-based surveillance component RB2 as the most successful single 

surveillance approach by all three epidemiological criteria used.  However, it fails to answer whether a

combination of different surveillance approaches could produce a better result.  Would RB2 

surveillance approach remain the best option in case the economic aspects of each component and its 

alternative sub-components, and the benefit to both pig production and human health of achieving 

earlier detection of a disease incursion were taken into consideration? As we know, in the real world, it 

is seldom for a country to employ a single surveillance approach for disease surveillance, in particular 
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for disease outbreaks (Grein, Kamara et al., 2000; Heymann & Rodier, 2001; Morse, 2007; Wagner,

Tsui et al., 2001).

Further, before exploring how to identify the most desirable overall surveillance approach, it is 

legitimate and critical to understand the expectations of the policy makers on the surveillance program 

for a given disease. Are they aiming at the one with the shortest expected time for outbreak detection or 

the one that could detect the highest proportion of possible disease outbreaks? Further, in addition to the 

epidemiological indicators of success, if cost and benefit of different options are also brought into the 

decision-making equation, will they together change the final selection of surveillance approaches?

7.6. Conclusion
In this article, we explore a novel approach in assessing epidemiological performance of surveillance 

strategies: (i) a temporal and spatial dynamic model was developed to evaluate surveillance options; (ii) 

a number of surveillance components and sub-components with different investigation intensity and 

detection sensitivity were hypothesized and tested for their performance, as measured by three 

epidemiological indicator variables. The findings from this work could be used to explore an 

epidemiologically and economically optimal surveillance portfolio, which incorporates multiple 

synergistic elements. 



211

7.7. References
Barrett, R., C. W. Kuzawa, et al. (1998). "Emerging and re-emerging infectious diseases: the third 

epidemiologic transition." Annual review of anthropology: 247-271.

Bengis, R., F. Leighton, et al. (2004). "The role of wildlife in emerging and re-emerging zoonoses." 

Revue Scientifique et Technique-Office International des Epizooties 23(2): 497-512.

Bengsen, A. J., M. N. Gentle, et al. (2014). "Impacts and management of wild pigs Sus scrofa in 

Australia." Mammal Review 44(2): 135-147.

Box, G. E., G. M. Jenkins, et al. (2013). Time series analysis: forecasting and control, John Wiley & 

Sons.

Brahmbhatt, M. (2006). Economic impacts of avian influenza propagation. First International 

Conference on Avian Influenza in Humans.

Brown, C. (2004). "Emerging zoonoses and pathogens of public health significance--an overview." 

Revue Scientifique et Technique-Office International des Epizooties 23(2): 435-442.

Cowled, B. D., F. Giannini, et al. (2009). "Feral pigs: predicting future distributions." Wildlife Research

36(3): 242-251.

Daszak, P., A. A. Cunningham, et al. (2000). "Emerging infectious diseases of wildlife--threats to 

biodiversity and human health." Science 287(5452): 443-449.

Fan, E. X. (2003). "SARS: economic impacts and implications."

Goutard, F. L., M. Paul, et al. (2012). "Optimizing early detection of avian influenza H5N1 in backyard 

and free-range poultry production systems in Thailand." Preventive veterinary medicine

105(3): 223-234.

Grein, T. W., K. Kamara, et al. (2000). "Rumors of disease in the global village: outbreak verification." 

Emerging infectious diseases 6(2): 97.

Heymann, D. L. and G. R. Rodier (2001). "Hot spots in a wired world: WHO surveillance of emerging 

and re-emerging infectious diseases." The Lancet infectious diseases 1(5): 345-353.

Hone, J. (1990). "How Many Feral Pigs in Australia." Wildlife Research 17(6): 571-572.

Hone, J. (2012). Applied population and community ecology: the case of feral pigs in Australia, John 

Wiley & Sons.

Hone, J. and R. Pech (1990). "Disease surveillance in wildlife with emphasis on detecting foot and 

mouth disease in feral pigs." Journal of Environmental Management 31(2): 173-184.

Jajosky, R. A. and S. L. Groseclose (2004). "Evaluation of reporting timeliness of public health 

surveillance systems for infectious diseases." BMC public health 4(1): 29.

Jones, K. E., N. G. Patel, et al. (2008). "Global trends in emerging infectious diseases." Nature

451(7181): 990-993.



212

Kaufmann, A. F., M. I. Meltzer, et al. (1997). "The economic impact of a bioterrorist attack: are 

prevention and postattack intervention programs justifiable?" Emerging Infectious Diseases

3(2): 83.

Kulasekera, V. L., L. Kramer, et al. (2001). "West Nile virus infection in mosquitoes, birds, horses, and 

humans, Staten Island, New York, 2000." Emerging infectious diseases 7(4): 722.

Longini, I. M., A. Nizam, et al. (2005). "Containing pandemic influenza at the source." Science

309(5737): 1083-1087.

Martinez, L. (2000). "Global infectious disease surveillance." International Journal of Infectious 

Diseases 4(4): 222-228.

McLeod, R. and A. Norris (2004). Counting the cost: impact of invasive animals in Australia, 2004,

Cooperative Research Centre for Pest Animal Control Canberra.

Melton, G. B. and G. Hripcsak (2005). "Automated detection of adverse events using natural language 

processing of discharge summaries." Journal of the American Medical Informatics 

Association 12(4): 448-457.

Meltzer, M. I., N. J. Cox, et al. (1999). "The economic impact of pandemic influenza in the United 

States: priorities for intervention." Emerging infectious diseases 5: 659-671.

Meng, X., D. Lindsay, et al. (2009). "Wild boars as sources for infectious diseases in livestock and 

humans." Philosophical Transactions of the Royal Society B: Biological Sciences

364(1530): 2697-2707.

Minh, P., B. Schauer, et al. (2009). "Association between human cases and poultry outbreaks of highly 

pathogenic avian influenza in Vietnam from 2003 to 2007: a nationwide study." 

Transboundary and emerging diseases 56(8): 311-320.

Morris, R. (2012). "Biosecurity risks to New Zealand: Lessons from the South African experience with 

porcine reproductive and respiratory syndrome." New Zealand veterinary journal 60(1): 84-

85.

Morse, S. S. (2007). "Global infectious disease surveillance and health intelligence." Health Affairs

26(4): 1069-1077.

Murray, C. J., T. Vos, et al. (2013). "Disability-adjusted life years (DALYs) for 291 diseases and 

injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease 

Study 2010." The lancet 380(9859): 2197-2223.

Naranjo, V., C. Gortazar, et al. (2008). "Evidence of the role of European wild boar as a reservoir of 

Mycobacterium tuberculosis complex." Veterinary microbiology 127(1): 1-9.

Narrod, C., J. Zinsstag, et al. (2012). "A one health framework for estimating the economic costs of 

zoonotic diseases on society." EcoHealth 9(2): 150-162.

Patz, J. A., P. Daszak, et al. (2004). "Unhealthy landscapes: policy recommendations on land use 

change and infectious disease emergence." Environmental health perspectives 112(10): 

1092.



213

Pullar, E. M. (1950). "The wild (feral) pigs of Australia and their role in the spread of infectious 

diseases." Australian Veterinary Journal 26(5): 99-110.

Pullar, E. (1953). "The wild (feral) pigs of Australia: their origin, distribution and economic 

importance." Memoirs of the National Museum 18: 7-23.

Taylor, L. H., S. M. Latham, et al. (2001). "Risk factors for human disease emergence." Philosophical 

Transactions of the Royal Society of London B: Biological Sciences 356(1411): 983-989.

UNDG (2015). Socio-Economic Impact of Ebola Virus Disease in West African Countries - A call for 

national and regional containment, recovery and prevention. New York, USA, United 

Nations Development Programme Regional Bureau for Africa: 93.

Wagner, M. M., F.-C. Tsui, et al. (2001). "The emerging science of very early detection of disease 

outbreaks." Journal of Public Health Management and Practice 7(6): 51-59.

West, P. (2008). Assessing invasive animals in Australia 2008, National Land & Water Resources 

Audit.

World Bank (2014). The economic impact of the 2014 Ebola epidemic : short and medium term 

estimates for West Africa. . W. B. Group. Washington, DC: 71.

Wu, N., C. Abril, et al. (2011). "Free-ranging wild boar: a disease threat to domestic pigs in 

Switzerland?" Journal of Wildlife Diseases 47(4): 868-879.

Wyckoff, A. C., S. E. Henke, et al. (2009). "Feral swine contact with domestic swine: a serologic 

survey and assessment of potential for disease transmission." Journal of Wildlife Diseases

45(2): 422-429.

Yob, J. M., H. Field, et al. (2001). "Nipah virus infection in bats (order Chiroptera) in peninsular 

Malaysia." Emerging infectious diseases 7(3): 439.



214



215

CHAPTER 8

8. Selection of optimal surveillance portfolios for 

detecting the incursion of an emerging zoonotic 

disease affecting pigs and human beings

8.1. Abstract
Background: Resources are scarce and their utilization has an opportunity cost. Decision making on 

disease surveillance strategies needs to be based upon sound epidemiological and economic principles.

Methods: A surveillance optimization program, OptiSurv, was developed and used for selecting 

optimal surveillance portfolios for detection of a hypothetical disease affecting domestic pig, feral pig 

and human populations after its introduction to Australia. To generate the inputs for the optimization 

process, both spread of the disease and the effects of 8 different surveillance approaches (referred to as 

‘components’) and 9 sub-components for each were simulated using a spatial and temporal dynamic 

model. Each surveillance component/sub-component combination was modelled using 99 replicates, 

each replicate using different random number seeds. The economic impacts of the disease in pigs were 

estimated through comparing productivity differences between the scenarios with and without a 

surveillance program. Impacts in the human population were estimated by calculating disability-

adjusted years (DALYs) lost plus costs of patient care. Different criteria were used for optimal 

surveillance program identification, depending on policy considerations such as the severity of human 

health risk versus overall economic benefit and cost of surveillance.

Results: The use of multi-component surveillance portfolios offers extra epidemiological and economic 

benefits over use of a single surveillance method. For eight possible surveillance components, each with 

nine different sub-components representing different combinations of intensity of investigation and 

detection sensitivity, 100 million different portfolios were possible. The optimization procedure uses 

alternative decision rules to rapidly identify the ten best portfolios in order, for each decision rule. The 

decision rules gave different weightings to human health effects, animal health effects, and costs of 

surveillance. In all cases, multi-component portfolios comprised all ten top options, ranking higher than 

all possible single-component portfolios. 

Conclusion: The study introduced a practical and efficient way for screening all combinations of a set 

of selected surveillance components and identifying the most suitable combination of components to 
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make up a surveillance portfolio, using a range of decision rules which considered both epidemiological 

and economic factors. It demonstrated that multi-component surveillance programs could perform 

better than any single surveillance component, when evaluated for a range of 99 simulated variations of 

a single disease outbreak. The approach employed and the optimization tool used in the study are 

generalizable for optimization of surveillance programs for other infectious diseases.

8.2. Introduction
Optimization of surveillance program for a disease or a hazard has been defined as maximizing 

surveillance performance within given or expected budget constraints (Guo, Claassen et al., 2014; 

Prattley, Morris et al., 2007), or minimizing cost of a surveillance program given technical performance 

parameters (Hadorn & Stärk, 2008; Wang, Zeng et al., 2010). The technical performance means earlier 

detection of a disease or a hazard, improved sensitivity and/or specificity (Hutwagner, Browne et al., 

2005). Technical approaches for surveillance program optimization have so far included: (i) 

stratification of data into different streams (Sparks, 2013); (ii) combination of different surveillance 

approaches (Hadorn & Stärk, 2008); (iii) using different detection algorithms for selection of a sub-set 

of the existing information providers without or with bearable loss of information (Polgreen, Chen et 

al., 2009; Scarpino, Dimitrov, & Meyers, 2012; Zhang, Jamal et al., 2011) and (iv) employing a risk-

based approach (Prattley, Morris et al., 2007). Up to now, the published methods for surveillance 

program optimization have been focusing on achieving either the earliest detection or the highest 

sensitivity of detection, and the authors seldom discuss whether these strategies would be most 

economically efficient. 

This chapter, together with Chapter 7 of the thesis, introduces a systematic approach to assessing the 

expected outcomes of various combinations of surveillance approaches (subsequently referred to as 

‘surveillance components’) for an infectious disease affecting both wild and domestic animals and 

human beings. The goal was to identify an optimal surveillance portfolio which was expected to 

achieve the objective as specified in the decision rule selected for the particular disease situation. The 

optimization approach considered both time to detection (Chapter 7) and the economic effects of 

delayed detection (Chapter 8). Stochastic modelling was used for simulating both the disease outcomes 

and the associated economic costs and benefits of different combinations of surveillance components. 

By using an optimization algorithm, optimal surveillance portfolios were selected using a set of criteria 

appropriate to the disease situation. 
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8.3. Method and materials
8.3.1.Details of the disease and populations

Information concerning the population of owned pigs in Queensland (provided by Neumann, et al.10), 

the population of feral pigs, the epidemiology of the hypothesized zoonotic disease Austeria, and other 

relevant information about the case study can be found in Chapter 7.

The epidemiological outcomes of Austeria on pig and human populations were simulated by 

HandiSpread11, an enhanced version of InterSpread Plus software. Again, the descriptions of the disease 

are elaborated in Chapter 7.

8.3.2.Surveillance components

Eight surveillance components were proposed for use to detect an incursion of Austeria in different 

populations as shown in Table 8-1. These components fall into three broad categories such as (i) 

laboratory surveillance among animals at either abattoirs or farms; (ii) animal or human disease 

reporting and (iii) surveillance among feral pigs. Each component comprised nine sub-components that 

were different in surveillance intensity and detection sensitivity (Table 8-1 and Table 8-2). Components 

and their sub-components could also be implemented in different combinations defined as surveillance 

portfolios. For each component selected for inclusion in a portfolio, only one sub-components could be 

selected since the sub-components are mutually exclusive.

Table 8-1. The nine surveillance components evaluated in the study and the populations in which 
they were applied
Component code By feral grow lg multi-ff multi-sow sm
SP
SOF
FPB
RL
RB1
RB2
FR
HCR
Note: SP stands for slaughter pigs, SOF for sows on farms, FPB for feral pig bleeding, RL for random lifestyle, 
RB1 for risk-based option 1, RB2 for risk-based option 2, FR for farmer reporting, HCR for human case reporting 
(HCR). by means backyard farms unregistered (farrow to finish); grow, commercial growers and multi-site 
growers only (no breeders); lg, large commercial breeders (farrow to finish); multi-ff, multi-site commercial farms 
(farrow to finish); multi-sow, multi-site commercial breeders only; sm, small registered commercial breeder farms 
(farrow to finish). 

10 Neumann EJ, Hall WF, Morris RS, O'Leary B. The risk and consequences of PRRS virus introduction to 
Australia through importation of pork (Project 2011/1039.426). Australian Pork Ltd, Barton, ACT, Australia, 
2013.
11 InterSpread Plus; Massey University EpiCentre, Palmerston North, New Zealand. Available at 
http://www.interspreadplus.com, accessed August 22, 2015
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Table 8-2. Description of surveillance components and sub-components for Austeria

Component Description
Intensity

(test events/year)

Sensitivity

(herd level)

Cost 

(per event)

SP

ELISA testing of 30/20/10 samples 
collected randomly per herd from healthy 
pigs in abattoir.Testing frequency 2/1/0.5 
times per year

H: 762
M: 381
L: 191

H: 80%
M: 60%
L: 50%

H: 460
M: 340
L: 220

SOF

ELISA testing of 30/20/10 samples per 
herd collected randomly from healthy 
pigs on farm.
Testing frequency 12/6/4/times per year 

H: 2892
M: 1446
L: 964

H: 80%
M: 60%
L: 50%

H: 460
M: 340
L: 220

FPB

ELISA testing of 2.5% of feral family 
groups each year based on harvest of 1 
pig from 2.5% of the available feral 
families

H: 1073
M: 537
L: 107

H: 80%
M: 60%
L: 40%

H: 260
M: 236
L: 212

RL

ELISA testing of 10% of the combined 
population of BY and SM commercial 
farms (total n=1850, 185 sampled), once
per year

H: 370
M: 185
L: 93

H: 90%
M: 70%
L: 50%

H: 184
M: 160
L: 136

RB1

ELISA testing of all commercial and 
backyard herds (in CRC zone 8) in a 
single random week, 12/6/4times per 
year 

H: 3624*/2256**
M: 1812/1128
L: 1280/752

H: 90%
M: 70%
L: 50%

H: 460/184
M: 340/160
L: 220/136

RB2
ELISA testing of all commercial and 
backyard herds (in CRC zone 6), 
12/6/4times per year 

H: 288/1236 
M: 144/618
L: 96/412

H: 90%
M: 70%
L: 50%

H: 460/184
M: 340/160
L: 220/136

FR
Farmer recognizes some unusual clinical 
signs in pigs and reports them to the 
veterinary service

H: 39694/83877
M: 26463/55918
L: 13231/27959

H: 40%
M: 20%
L: 10%

H: 5.5/1
M: 2.75/0.5
L: 1.38/0.25

HCR

An affected person is recognized as 
having a novel disease by a medical 
practitioner, and reports the findings to 
the health services. 

H: 61785
M: 20959
L: 8238

H: 10%
M: 7.5%
L: 5%

H: 300
M: 150
L: 115

Notes: SP stands for slaughter pigs, SOF for sows on farms, FPB for feral pig bleeding, RL for random lifestyle, 
RB1 for risk-based option 1, RB2 for risk-based option 2, FR for farmer reporting, HCR for human case reporting 
(HCR). * the number of commercial pig herds under surveillance; ** the number of backyard pig herds under 
surveillance. Details of the surveillance strategies are given in Chapter 7.

8.3.3.Simulation modelling of Austeria and surveillance components/sub-components

Each of the 72 surveillance component/sub-component combinations was simulated for 99 iterations of 

the disease, using HandiSpread, making a total of 7,128 model runs. By using 99 iterations of the model 

with each based on a separate random number seeding process, variability in the disease process was 

represented while keeping all parameter settings constant. Each simulation stopped when the disease 

was detected by that surveillance method or the model had run for 365 days, whichever came first. The 
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key outputs of each model run included: days taken for detection, number of farms infected by the day 

of detection, and the proportion of simulated outbreaks detected within 365 days, which were 

summarized across the set of 99 simulations for each component/sub-component option. These pieces 

of information were used to determine the economic impact of an Austeria outbreak and the benefit of 

detection, and this data was used when searching for the optimal surveillance portfolio(s). 

8.3.4.Estimation of economic effect of an Austeria outbreak and benefit of surveillance

Definitions of the key economic metrics used for the estimation of economic impacts of the disease and 

benefit of a given surveillance component/sub-component are documented in Table 8-3.

Table 8-3. Terminology and definitions used in the economic evaluation of surveillance 
components/sub-components

Terminology Definition

Total economic 
impact of Austeria

The summation of the impact on the pig industry and the impact of human 
cases of the disease. The impact on the pig industry is the difference between 
average net revenue per pig under Austeria outbreak scenario versus Austeria-
free scenario multiplied by the number of pigs produced by that particular pig 
enterprise 

Average net 
revenue per pig

The current market value of a pig minus the average feed cost, non-feed 
variable cost, fixed overhead cost of production.

Gross benefit of 
surveillance 

Averted impact of Austeria from the date of detection for a given surveillance 
approach

Net benefit of 
surveillance 

Gross benefit of surveillance minus the cost for surveillance

Benefit cost ratio Gross benefit divided by surveillance cost by the day of detection

8.3.4.1. Cost for surveillance 

Only the variable cost for implementing any given surveillance strategy was estimated. This included 

the cost incurred for laboratory investigation, travel, sample collection and transportation, etc over a 

period of up to 365 days. We assumed the cost for laboratory investigation was 12 Australian dollars 

per sample for screening test. Cost for collection of samples, travel, transportation was 100 Australia 

dollars for SP, SOF, RL, RB1 and RB2, 200 dollars for FPB and 0 for FR and HCR. The cost per 

testing event was multiplied by the number of testing events. Cost for laboratory investigation of human 

infection is 125 Australian dollars. Zero dollar cost for human sample collection, transportation, etc.  

Fixed cost of maintaining the infrastructure to conduct surveillance was not taken into consideration.
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8.3.4.2. Economic consequence of Austeria on the pig industry

The economic impact of an Austeria outbreak comprised two parts: (i) economic loss to pig industry 

and (ii) economic value of lost human life and productivity. For each surveillance component/sub-

component that was evaluated, the net economic loss associated with the disease was accrued to the day 

of outbreak detection or 365 days, whichever came first.

A budgeting model was developed by Neumann et al 12to estimate the typical cost of production and 

income from pig production on Australian pig farms. The results of this analysis were used in this study 

to estimate economic inputs and outputs from production under an Austeria-free scenario, and then this 

was adjusted to estimate the economic consequences of an Austeria outbreak at individual enterprise

level. Expenses were partitioned across the following four stages of production: breeding and gestation, 

lactation (up to four weeks after parturition), early post-weaning (‘weaner’ stage; four to 12 weeks of 

age), and growing (12 to 20 weeks of age). Data on various cost elements were obtained from literature 

and experts’ opinions (Table 8-4).

Table 8-4. Diet specifications and ingredient costs for Australian pig budgeting model

Ingredient
Diet specification
Creep Weaner Grower Finisher Dry Lact

$/tonnea,b % % % % % %
Barley 265 0.00 0.00 40.50 88.56 79.60 33.00
Maize 290 0.00 0.00 0.00 0.00 0.00 0.00
Meat / bone meal 720 5.00 8.00 10.00 8.00 8.00 10.00
Dried blood meal 880 0.00 2.50 4.00 3.00 0.00 1.50
Fishmeal 2,000 7.50 4.00 0.00 0.00 0.00 2.00
Skim milk powder 1,100 25.00 5.00 0.00 0.00 0.00 0.00
Wheat 275 54.17 72.21 40.00 0.00 12.00 50.00
Synthetic lysine 3,200 0.40 0.42 0.20 0.17 0.15 0.25
Tallow 990 0.00 0.00 0.00 0.00 0.00 3.00
Soybean oil 1,370 2.50 2.50 0.00 0.00 0.00 0.00
Soybean meal 550 5.00 5.00 5.00 0.00 0.00 0.00
Salt 460 0.00 0.00 0.00 0.00 0.00 0.00
Synthetic methionine 6,400 0.18 0.12 0.05 0.02 0.00 0.00
Synthetic threonine 5,120 0.00 0.00 0.00 0.00 0.00 0.00
Premix (weaner) 12,800 0.25 0.25 0.00 0.00 0.00 0.00
Premix (grower) 12,800 0.00 0.00 0.25 0.25 0.00 0.00
Premix (sows) 12,800 0.00 0.00 0.00 0.00 0.25 0.25
Total (%) 100 100 100 100 100 100
Freight 32
Total cost (per ton) 760 560 425 389 370 451
Note: aAnonymous. Eyes and Ears. Australian Pork Limited, Kingston, ACT, Australia, 2013; b communication 
with Barugh IW, Massey University, February 15, 2013; all costs are in Australia dollars.

12 Neumann EJ, Hall WF, Morris RS, O'Leary B. The risk and consequences of PRRS virus introduction to 
Australia through importation of pork (Project 2011/1039.426). Australian Pork Ltd, Barton, ACT, Australia, 
2013.



221

Cost of production in the base model was subtracted from the current market value of a slaughter age 

pig (baconer) carcass to determine the net revenue per baconer sold. Using this process, the average net 

revenue per pig sold was calculated across all baconers sold from a “typical” pig enterprise within each 

production system. For the surveillance study, a single typical value was used for each type of 

production system, with no consideration of variation with enterprise types. The total profit margin was 

then estimated by using the average net revenue per pig multiplied by the number of pigs marketed. 

Loss of pigs because of mortality both with and without the effect of Austeria was monetized and 

averaged across the pigs surviving by the end of each production stage.

We hypothesized that the effects of Austeria on pig productivity would be similar to those of porcine 

reproductive and respiratory syndrome (PRRS), the disease on which Austeria was modelled. The data 

on the effects of PRRS was based on a large recent study on the cost of the disease on the United States

pig industry over a 12-month period following an outbreak of the disease in a previously negative herd 

(Holtkamp, Kliebenstein et al., 2007). The key assumptions for economic loss estimation are 

documented in Table 8-5.

Table 8-5. Key performance metrics influencing cost of production and net revenue per pig in 
herds with and without Austeria

Base model Austeria model
Min Likely Max Min Likely Max

Breeding herd
Born alive per litter 10.5 10.8 11.2 9.6 10.0 10.3
Pre-weaning mortality 9.39% 11.99% 13.39% 15.00% 15.52% 19.00%
Litters/mated female/year 2.20 2.25 2.33 2.09 2.19 2.22
Culling rate 50.24% 54.67% 59.24% 47.00% 51.49% 56.00%
Mortality rate 8.86% 10.08% 11.56% 10.20% 12.29% 12.90%
Growing herd (post-weaning)
Mortality rate 3.60% 4.78% 6.60% 6.40% 8.01% 9.40%
Average daily gain (g/day) 667 701 727 650 680 710
Feed conversion rate 2.41 2.50 2.54 2.37 2.41 2.50
Percent sold as prime 95.4% 96.0% 97.4% 94.8% 95.8% 96.8%

The Neumann et al budgeting model was used for estimating cost of adjusted pig productivity under 

Austeria. The resulting change in average net revenue per pig in the ‘Austeria’ model multiplied by the 

number of pigs produced (or sold) resulted in the total cost of the outbreak for a herd.

Other important assumptions included: 

The effect per pig of Austeria infection on large breeders, small breeders, and multi-site farrow to 

finish breeders would be the same, as the primary farm revenue from these farm classes was 

generated from the sale of baconers. 

The cost of Austeria infection for multi-site farrow to feeder breeding farms was restricted only to 
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its effect on production up to the 12 week age at sale. 

Grower and multi-site grower farms were considered as the downstream ‘customers’ of multi-site 

breeding farms, receiving 12 week old pigs for feeding to market weight at around 20 weeks of age. 

Economic costs on these farm classes included expenses due to increased cost of production and 

loss of revenue from selling pigs at a lighter bodyweight. While the cost of PRRS on other farms 

was annualized based on the estimated biological productivity of the farm for a 12 month period 

after the infection, the cost of PRRS to an individual growing pig was annualized by multiplying 

the point in time inventory for the site by six to account for the fact that the population of pigs 

would be turned over approximately every 8 to 9 weeks, or about six times per year. 

The cost of Austeria in backyard pig (BYP) herds was calculated in a manner similar to that of very 

small farrow to finish herds. However, an adjustment was made to account for the fact that not only 

was the sale of market weight pigs an important source of revenue for a BYP herd but that 

production of pork meat for consumption by the owner’s family was also an important farm output, 

and if this output was lost then equivalent quantities of meat would have to be purchased. As BYP 

farms relied almost exclusively on free or very low cost sources of feed such as grazing and waste 

food as their primary source of nutrition and labour is unpaid, the cost of production in the post-

weaning phase of BYP production was considered negligible. A simple model for assigning the 

cost of an Austeria outbreak to a BYP was therefore established that represented the sum of 80% of 

the cost of Austeria on a similar-sized very small commercial farrow to finish breeding herd plus 

the expense associated with having to purchase 50% of their annual pork consumption. 

Feral pig family outbreaks were assigned a cost of $0.01 per family so that non-zero values could 

be included in calculations. 

The disease would fully run its course in 16 weeks. We assumed that after 16 weeks, the farm 

would return to normal productivity and the farms would have an adequate degree of herd 

immunity to prevent further virus circulation.

The economic effect of an individual herd outbreak of Austeria was calculated by subtracting the profit 

margin under the non-Austeria scenario from the profit margin under the Austeria scenario, producing a 

net loss per pig, which when multiplied by the number of pigs produced a herd level economic effect. 

The unit economic loss per pig due to Austeria in each production system is summarised in Table 8-6.
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Table 8-6. Economic net loss per pig due to Austeria under different production systems in 
Australia
Production type Economic loss per pig produced (A$)*

Weaned pig in weaner producing herd 11.34

Farrow to finish herd 37.5

Grower herd only 26.16

Backyard pig (cost per farm) 401=37.5*0.8 + 0.5*742
Note: * unit cost in Australia dollars. Cost for commercial pig herds is estimated per pig produced. The cost for 
backyard pig herds is estimated per farm. 

8.3.4.3. Economic cost of Austeria on human population

The cost for human infection of Austeria comprised two parts: (i) direct cost: for treatment of affected 

people; (ii) indirect cost: productivity loss because of the disease. 

Indirect cost of Austeria on human population was estimated in two steps. Firstly, the disease burden 

caused by Austeria was summarized in DALYs (Murray & Acharya, 1997) by using WHO’s DALY 

template13. Secondly, the number of DALYs was converted into dollar value by using the human capital 

approach14.

Key assumptions for estimation of the number of DALYs per human case included: 

The high risk group for Austeria consists of all people living in the immediate proximity of the pig 

farms and coming in direct contact with pigs. We assumed this was a population of 10,000 people 

involved in the management of all commercial and backyard pig farms, which represented an 

average of 4.5 persons per farm. They were considered to range in ages at the time of exposure to 

Austeria between 15 and 69 years old; to further simplify the calculation, we assumed only male 

residents got infected. 

Epidemiological and clinical characteristics of human infections: the disease was transmissible 

from pigs to people directly handling them, but did not cause human to human transmission. 

Among the people who became infected, 25 percent had mild clinical manifestations and they 

would suffer 50 percent disability for 1 month. Another 25 percent experienced severe symptoms 

and suffered 100 percent disability for a year. The remaining 50 percent died. 

Treatment cost: 250 AUD per mild case, 12,500 AUD per severe case who recovered and 10, 000 

AUD per deceased case. 

The effect of loss of income was estimated using nominal GDP per capita, which was 62,000 USD 

13 http://www.who.int/healthinfo/global_burden_disease/tools_national/en/
14 Health of Nations: The Value of a Statistical Life. Australian Safety and Compensation Council, Australian 
Government, July 2008 pp. 194.
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in 2014, obtained from the World Bank Group website15. At that time the US and Australian dollars 

were at approximate parity, so this figure was also treated as the amount in Australian dollars.

8.3.4.4. Summary of the economic analysis outputs

An Excel spreadsheet was created to document the potential economic effects of each total multi-unit 

outbreak of Austeria, using as input the results from HandiSpread simulations on the effect of 

surveillance components/sub-components plus the economic calculations described above. This file was 

used as an input for the optimization process. 

8.3.5.Surveillance optimization approach

An optimization program, called OptiSurv, was developed in Excel format, using Visual Basic 

programming. The process for optimization is illustrated in Figure 8-1. The program identified the 

optimum portfolio from a number of surveillance components (in OptiSurv, a component is called a 

strategy), each of which could have a number of subcomponents (called sub-strategies in OptiSurv)

with varied surveillance intensity and detection sensitivity (refer to Section 8.3.2), plus an additional 

sub-component that corresponded to “do not include this component in the portfolio”. 

Figure 8-1. Optimization process under OptiSurv Program 

OptiSurv allows you to choose from a number of alternative criteria when searching for the best 

surveillance portfolios as follows: 

“Fastest detection” selects the portfolio which will on average find the disease first, without 

consideration of economic aspects.

“Fastest cheap” picks out low cost portfolios which still give quite rapid detection, although not 

as good as the first option. 

15 http://data.worldbank.org/indicator/NY.GDP.PCAP.CD
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“Highest net benefit” concentrates on economic efficiency, although it can be combined with a

requirement for rapid detection. 

“Highest benefit cost ratio” ensures maximum economic payoff per dollar invested, but is likely 

to pick very low cost strategies which may be inefficient in detecting the disease. 

With eight surveillance components and nine sub-components per component, plus “no action”, there 

were 100 million possible surveillance portfolios to be compared16. The optimization process within 

OptiSurv therefore evaluates all possible portfolios in a computationally-efficient manner that reduces 

processing time. It does this by systematically building up each portfolio one component and sub-

component at a time, using a goal-seeking strategy which rapidly discards suboptimal portfolios, and 

concentrates on identifying the top 100 portfolios, which can then be ranked using the analyst’s 

preferred decision rules based on speed of disease detection plus economic costs and benefits, as 

demonstrated later in this chapter.

The first step is to consider the minimum time to detection achieved for each of the 99 outbreak 

iterations by portfolios, progressively building each portfolio by adding component/sub-component 

combinations until it becomes clear whether or not it is a contender for the “short list”, and if not 

discarding it. Each pair of component/sub-component is evaluated only once, and that result is used 

each time that combination is considered with other component/sub-components. It is also necessary to 

exclude portfolios which achieve rapid detection, but contain component/sub-components which do not 

contribute to detection speed. The evaluation still takes up to a few hours because of the size of the task, 

but it is much faster than if all possible portfolios had to be fully evaluated. With such a large number 

of possible portfolios, it is inevitable that differences between many similarly constructed portfolios 

will be slight, but some clusters of portfolios will stand out as superior to the bulk of alternatives, and 

they will be included in the top-ranked group. By default OptiSurv keeps track of the 100 “best” 

portfolios found while it is evaluating all possible portfolios in case there are alternative portfolios that 

are close to the optimal portfolio that might be more practical to use. Figure 8-2 shows the layout of the 

summary screen of OptiSurv, through which the various steps of the optimization process are managed.

16 There are eight surveillance components, nine sub-components plus one“don’t choice” option. The possible 
combinination of different options could be 108.
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Figure 8-2 Summary screen of OptiSurv

8.4. Results
Each of the alternative decision rules will now be considered, and results presented for the top-ranked 

portfolios based on each rule. Factors influencing the choice of which decision rule to apply in a 

particular disease situation are also outlined.

8.4.1.Portfolios with the shortest expected ‘number of days to detection’ 

This option chooses a portfolio purely on how fast the disease would be detected, regardless of cost. It 

may be appropriate in a case where the possibility of the disease entering the country is causing severe 

panic in the population, and the government instructs that no expense is to be spared in undertaking 

surveillance. By using such a portfolio, Austeria could be detected by day 96 after incursion, on 

average. Compared with no surveillance (365 days of disease spread), this represents a saving of 269 
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days. A number of portfolios can equally achieve the fastest detection time of 96 days. The top ten 

portfolios are listed in Table 8-7.

Since there is no economic element taken into consideration in the optimization process, all components 

except FPB are used with high or medium intensity and sensitive sub-components. Notably, none of 

these portfolios included an FPB surveillance component because it does not reduce time to detection 

any more than the other seven components together. Average gross benefit of implementing any of 

these ten surveillance portfolios was the same at $5,980,587 because the number of farms infected and 

the associated impacts were the same in all cases by the same day of detection. However these 

surveillance portfolios vary in benefit cost ratio and net benefit because the cost for implementing them 

varies from $0.95 m to over $1.1 m. The net benefit is $760,000 to 950,000 less than that of portfolios 

chosen using economic criteria. 

8.4.2.Portfolios with the highest net benefit

Portfolios chosen solely on the basis of highest net benefit usually consisted of RL, FR and HCR 

surveillance components. This is because they use only low cost surveillance components. The cost for 

surveillance is about 6% of the cost of the portfolios that achieve fastest detection, the average time to 

detection was 38 days longer, allowing greater spread of disease. The best portfolio in this group could 

achieve the an extra of $947,337 than that of the fastest detection portfolio and the surveillance cost was 

about $1,063,930 lower. The top ten surveillance portfolios are presented in Table 8-8.
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8.4.3.Portfolios with the highest benefit cost ratio

It would seem from first principles that the portfolio with the highest benefit-cost ratio would be a very 

beneficial one. However in reality this approach chooses a minimum surveillance portfolio with a cost 

of $10,000 or less, which yields extremely high benefit cost ratios but delays detection by about 140 

days. Most of the surveillance portfolios with high benefit cost ratio have only one surveillance 

component, HCR, which has minimal cost, while a few portfolios include RL and FR as well (Table

8-9). These portfolios rely on detection and reporting of human cases, and are only likely to be rational 

for a minor disease which has a low impact on human health. 
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8.4.4.Portfolios with both early detection and high net benefit

This evaluation aims to balance speed of detection and net benefit. It does that by requiring the average 

days to detection to be within 5 days of the fastest detection time, then chooses portfolios with the 

highest net benefit. It achieves a detection time of slightly under 101 days, with an average net benefit 

$555,218 better than the fastest detection time. This is largely because surveillance cost is reduced by 

$563,011 on average. In comparison with the highest net benefit option, disease is detected on average 

33 days earlier, but net benefit is reduced by $392,118 on average. Cost of surveillance is increased by 

$500,920 on average. These portfolios typically include the risk-based component RB2 and the 

classical surveillance components SP and RL as well as the low cost options FR and HCR (Table 8-10). 

This portfolio type is likely to appeal to policy makers as offering a moderate cost option with detection 

performance almost matching the much more expensive option of fastest detection.
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8.4.5.Portfolios with speedy detection and high benefit cost ratio

Interestingly, when the requirement for early detection is specified (within 5 days of the fastest 

detection option), this decision rule can no longer select very cheap but poorly effective portfolios, and 

the results are almost indistinguishable from the previous option, except that RB1 is now chosen as well 

as RB2, because this boosts the benefit cost ratio and only increases the cost by a modest amount. 

Therefore policy makers could be presented with both results, and can decide whether to make the 

small additional investment in RB1. The top ten selections are presented in Table 8-11.



23
5

T
ab

le
 8

-1
1.

 T
op

 te
n 

su
rv

ei
lla

nc
e 

po
rt

fo
lio

s f
or

 A
us

te
ri

a 
in

 A
us

tr
al

ia
 w

ith
 fa

st
 d

et
ec

tio
n 

an
d 

hi
gh

 b
en

ef
it 

co
st

 r
at

io

R
an

k
SP

SO
F

FP
B

R
L

R
B

1
R

B
2

FR
H

C
R

A
ve

 B
/C

A
ve

 D
S

A
ve

 G
B

A
ve

 N
B

A
ve

 S
C

1s
t

M
-M

N
U

N
U

H
-H

M
-H

H
-M

H
-H

H
-M

16
.4

26
4.

2
59

72
37

3.
6

53
85

75
6.

9
58

66
16

.7
2n

d
M

-M
N

U
N

U
H

-H
M

-H
H

-M
H

-H
M

-H
16

.4
26

4.
2

59
72

37
3.

6
53

85
75

6.
9

58
66

16
.7

3r
d

M
-M

N
U

N
U

H
-H

M
-H

H
-M

H
-H

H
-H

16
.3

26
4.

2
59

72
37

3.
6

53
84

25
6.

9
58

81
16

.7
4t

h
H

-M
N

U
N

U
H

-H
M

-H
H

-M
M

-H
H

-M
16

.2
26

4.
0

59
72

26
3.

2
53

94
56

1.
9

57
77

01
.2

5t
h

H
-M

N
U

N
U

H
-H

M
-H

H
-M

M
-H

M
-H

16
.2

26
4.

0
59

72
26

3.
2

53
94

56
1.

9
57

77
01

.2
6t

h
H

-M
N

U
N

U
H

-H
M

-H
H

-M
M

-H
H

-H
16

.2
26

4.
1

59
72

26
3.

2
53

93
05

9.
2

57
92

04
.0

7t
h

H
-L

N
U

N
U

H
-H

M
-H

H
-M

H
-H

H
-H

16
.1

26
4.

3
59

72
40

0.
6

53
75

91
6.

0
59

64
84

.6
8t

h
H

-L
N

U
N

U
H

-H
M

-H
H

-M
H

-H
M

-H
16

.1
26

4.
3

59
72

40
0.

6
53

75
91

6.
0

59
64

84
.6

9t
h

H
-L

N
U

N
U

H
-H

M
-H

H
-M

H
-H

H
-H

16
.0

26
4.

3
59

72
40

0.
6

53
74

41
8.

8
59

79
81

.8
10

th
H

-M
N

U
N

U
H

-H
M

-H
H

-M
H

-M
H

-M
16

.0
26

4.
0

59
72

26
3.

2
53

86
89

4.
3

58
53

68
.8

N
ot

e:
SP

 st
an

ds
 fo

r s
la

ug
ht

er
 p

ig
s, 

SO
F 

fo
r s

ow
s o

n 
fa

rm
s, 

FP
B

 fo
r f

er
al

 p
ig

 b
le

ed
in

g,
 R

L 
fo

r r
an

do
m

 li
fe

st
yl

e,
 R

B
1 

fo
r r

is
k-

ba
se

d 
op

tio
n 

1,
 R

B
2 

fo
r r

isk
-b

as
ed

 o
pt

io
n 

2,
 F

R
 

fo
r f

ar
m

er
 re

po
rti

ng
, H

C
R

 fo
r h

um
an

 c
as

e 
re

po
rti

ng
 (H

C
R

).
H

 m
ea

ns
 e

ith
er

 h
ig

h 
in

te
ns

ity
 o

r h
ig

h 
se

ns
iti

vi
ty

, M
 e

ith
er

 m
ed

iu
m

 in
te

ns
ity

 o
r m

ed
iu

m
 se

ns
iti

vi
ty

 a
nd

 L
 e

ith
er

 
lo

w
 in

te
ns

ity
 o

r l
ow

 se
ns

iti
vi

ty
; N

U
 m

ea
ns

 n
ot

 u
se

d;
 A

ve
 B

/C
 m

ea
ns

 a
ve

ra
ge

 b
en

ef
it 

co
st

 ra
tio

; A
ve

 D
S 

m
ea

ns
 a

ve
ra

ge
 d

ay
s s

av
ed

; A
ve

 G
B

 m
ea

ns
 a

ve
ra

ge
 g

ro
ss

be
ne

fit
;

A
ve

 N
B

 m
ea

ns
 a

ve
ra

ge
 n

et
 b

en
ef

it;
 A

ve
 S

C
 m

ea
ns

 a
ve

ra
ge

 su
rv

ei
lla

nc
e 

co
st

.



236

8.4.6.The final set of optimal surveillance portfolios

Depending on the criteria used by policy makers for decision making on surveillance, different optimal 

surveillance portfolios can be chosen as discussed in each section above. They are summarized in Table

8-12.
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None of the optimal surveillance portfolios has included FPB, the approach of using hunters to 

undertake volunteer surveillance among feral pigs, by collecting blood samples from pigs they kill. This 

is because the intensity of surveillance that was considered feasible for them to conduct was too low for 

them to detect infection earlier than the on-farm options. Sampling sows on farms is costly and also 

relatively poorly effective, so was only included when cost of surveillance was not considered in the 

selection of portfolio components. All of the other surveillance components are included in some of the 

portfolios, depending on the weight given to speed of detection versus minimizing cost.

8.5. Discussion
8.5.1.Feasibility of optimizing zoonotic disease surveillance

There has been extensive discussion in the scientific literature and in national policy circles about 

achieving improved disease surveillance, especially for emerging diseases, through integrating different 

surveillance methods and adopting a risk-based approach. However there has been no standard 

procedure which countries could use to apply these principles to practical policy decisions.

This study took an example of a region with spatially defined populations of owned pigs, feral pigs, and 

associated people, and created a fictitious zoonotic disease that involved all three populations. The 

disease was then modelled on this spatial population structure using the HandiSpread disease model, 

adapted to represent the epidemiological scenario. By using 99 iterations of the model with each based 

on a separate random number seeding process, variability in the disease process was represented while 

keeping all parameter settings constant. The 99 models were then run with all 72 surveillance 

components and sub-components, to test how long each surveillance strategy took to detect the disease 

when evaluated on equal terms. This can only be achieved with a model such as HandiSpread, where 

each biological process within the model is independently seeded, and by using 99 different starting 

seeds, the same epidemics could be run repeatedly, while varying the surveillance strategies.

Therefore it was technically feasible to produce 99 replicates of an epidemic with biological variability 

represented, and to determine the detection success of each of 72 surveillance strategies which used a 

single component and single sub-component. Detection success was determined by measuring days 

from incursion to detection, number of pig herds infected by the date of detection, and proportion of 

outbreaks detected in less than 365 days. The number of people infected was also recorded, and the 

economic impact in the pig population and the human population was estimated. The cost of each 

surveillance component/sub-component combination was also measured. This data then allowed the 

costs and economic benefits of each surveillance strategy to be estimated for each of the 99 epidemic 

replicates. 



239

The challenge was then to develop a procedure for logically combining individual surveillance 

procedures into portfolios which would on average detect disease outbreaks more rapidly and/or more 

cost-effectively than a single procedure alone. Even with only 8 components, each with 9 sub-

components, there were 100 million portfolios to choose from. The OptiSurv procedure was therefore 

developed, which screens potential combinations of components/sub-components, excludes ones which 

are inferior, and narrows the focus to those which detect the disease most rapidly, and where 

appropriate provide the greatest economic benefit. Because of the large number of possible portfolios, 

many related portfolios produce results which differ to only a slight degree, so it is better to think of 

clusters of suitable or unsuitable portfolios.

It seems intuitively reasonable to expect economic measures alone to identify optimal portfolios, but in 

fact (at least under the conditions of this case study) if either net benefit or benefit-cost ratio alone was 

used as a decision rule, the top-ranked portfolios sacrificed considerable speed of disease detection for 

moderate increases in economic outcome, while using minimum time to detection alone as the decision 

rule process an extremely expensive portfolio for only a small reduction in days to detection. It was 

concluded that the optimal strategies for most situations were those which produced intervals from 

incursion to detection which were close to but not equal to the shortest detection time, and did so with 

high net benefit or benefit-cost ratio. Such portfolios were not optimal on either detection speed or 

economic performance, but they provided the best balance between the two. Either economic measure 

was equally suitable to select a portfolio. In special situations one of the other decision rules may be 

preferred, but in general the balanced portfolio would be preferred. Thus it did prove possible to 

develop a structured process which identified optimal surveillance portfolios comprising several 

surveillance components from what might seem initially to be a bewildering range of possibilities. Once 

the disease model is set up and the optimization task defined, the procedure can be easily updated and 

re-run when new data is available, making this tool useful for evaluating optimal surveillance portfolios 

for other diseases.

Estimating the economic impact of a disease in pigs requires considerable data, but is relatively 

straightforward. The main challenge in applying economic analysis to a zoonotic disease is how to 

produce an economic measure for the effect of a disease on human health, which can be combined with 

the economic impact data for animals. The use of disability-adjusted life years (DALYs) is now broadly 

accepted as a way of quantifying the severity of disease impacts in people, but it is a purely 

epidemiological measure, not an economic one. The issue of how to put an economic value on a DALY 

is much more controversial17, and there is no consensus on whether it is acceptable to do so, and if so 

17 Health of Nations: The Value of a Statistical Life. Australian Safety and Compensation Council, Australian 
Government, July 2008 pp. 194.
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how to do it. The problem in considering economic aspects of zoonoses is that a monetary value must 

be assigned to a DALY in order to undertake the analytical procedure we have used. We used the 

human capital approach for estimating the impact of a DALY due to Austeria. This approach was 

consistent with the methodology used for the estimation of economic impact of Austeria on pig 

production, and the impacts could then be combined. In one sense this treats human life as a commodity 

with a price, which is generally regarded as inappropriate. However another way of viewing it is that 

the person who suffers the effects of a disease does in fact suffer an adverse economic effect, and 

representing that specific effect is acceptable, while acknowledging that it is a clear under-valuing of 

the overall significance of a DALY. An alternative to the human capital approach which has been put 

forward is the Willingness To Pay (WTP) approach (Mishan, 1971; Viscusi & Aldy, 2003). However, 

using WTP to estimate the economic loss of both infected animals and humans would be technically 

challenging (Howe, Häsler, & Stärk et al., 2013; Narrod, Zinsstag, & Tiongco, 2012), and suffers from 

as many ethical concerns as human capital, so was not applied in this case study. 

8.5.2.Comparison of a surveillance portfolio with a single surveillance component

Our study demonstrates that combining surveillance components into portfolios indeed advances the 

performance frontier in terms of technical and economic efficiency when compared with that of using 

single component strategies, evaluating these two alternatives on the basis of detection speed and 

achieving the highest net benefit. For instance, the risk-based surveillance component (RB2), used with 

high surveillance intensity and detection sensitivity, could achieve the fastest detection among all the 

individual surveillance components. On average, it would take 184 days to detect Austeria, however, 

the optimal surveillance portfolios only took 96 to101 days to detect the disease. Further, the optimal 

surveillance portfolio with highest net benefit would save 188,516 dollars compared to the most 

economically efficient single component (RL with high intensity and high sensitivity).

Table 8-13 Comparison of the optimal surveillance portfolios with single components for two 
different surveillance decision rules
Criterion Optimal Portfolio Best performing single component

Average DS SP/SOF/RL/RB1/RB2/FR/HCR: 269 days RB2: 181 days

Average NB FR/HCR: $5,795,134 RL: $5,606,618

Note: DS means days saved, it equates to 365 minus the number of days for detection; NB means net benefit. 

8.5.3.Practical consideration of different criteria for surveillance decision making

Our study demonstrates that there are many choices for policy makers for the selection of most suitable 

surveillance strategies. The idea is illustrated in Figure 8-3. A (in red) represents the surveillance option 

with the highest benefit cost ratio; B (in green) means the option with the highest net benefit (the 
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highest economic efficiency) and C (in orange) denotes the fastest detection of disease (the highest 

technical efficiency). 

Figure 8-3. Optimal performance of a surveillance strategy
Note: adopted from Howe, K., B. Häsler, et al. (2013). "Economic principles for resource allocation decisions at 
national level to mitigate the effects of disease in farm animal populations." Epidemiology and infection 141(01): 
91-101.

8.5.3.1. Maximizing economic efficiency

Resources are always scarce and have opportunity costs. For disease prevention and control, resources 

have to be allocated among different disease management programs; for the same disease, resources 

also need to be allocated between surveillance and disease mitigation. Hence, striking the right balance 

in resource allocation between disease detection and mitigation may mean making what appears to be a 

suboptimal investment in surveillance, in order to be sure of having sufficient resources to undertake 

mitigation if the surveillance discovers that disease is present. Therefore it may be economically 

rational to reduce the investment in surveillance to a moderately suboptimal level, even if resources are 

available. The “balanced” portfolios which require both days to detection and economic benefit to be 

mildly suboptimal are likely in most cases to be the preferred strategy. In case of Austeria, Figure 8-4

shows that for fairly early detection, a minor delay has only a small effect on the number of farms 

which become infected, whereas at a later stage a delay of equal length is much more serious.
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Figure 8-4. The weekly count of infected farms caused by a medium sized Austeria outbreak in 
Queensland, Australia 

8.5.3.2. Maximizing technical efficiency

For diseases, such as Ebola haemorrhagic fever, that can spread easily and rapidly cause high case 

fatality rates among people in a short period of time, a country may choose to adopt a portfolio which 

minimizes time to detection, despite the high cost. 

8.5.3.3. Further development of economic analysis of zoonoses

The economic analysis procedure used in this study was specific to this disease, but represents one of 

the examples which is being used to guide development of a generic form of economic analysis of 

zoonoses, although the work is outside the scope of this project.

A prototype of a generic form of analysis in spreadsheet form is shown below in Figure 8-5 to illustrate 

the next stage of development currently underway from work undertaken in this and other related 

economic studies of specific diseases.
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8.6. Conclusions 
The study introduced a practical way for screening all feasible surveillance portfolios comprising one or 

more surveillance components, and using decision rules based on one of more of the criteria speed of 

detection, cost of surveillance and net benefit of surveillance to identify a cluster of surveillance 

portfolios, any one of which can best satisfy the chosen decision rule. It demonstrated that under the 

circumstances of the case study multi-component surveillance strategies perform better than single 

surveillance component both epidemiologically and economically. In general, a surveillance portfolio 

which is mildly suboptimal for both days to detection and net benefit of surveillance is likely to be 

preferred by policy makers, because it achieves the best balance between the two objectives.

The approach employed and the OptiSurv tool used in the study are generalizable for optimization of 

surveillance programs for other zoonotic diseases.
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CHAPTER 9

9. General discussion

9.1. Goal of the thesis
The thesis was focused on development, application and evaluation of a software toolbox, 

HandiResponse, for identifying the most appropriate surveillance portfolio for zoonotic diseases, 

especially emerging diseases, taking account of the influence of epidemiological risk factors and 

environmental influences on the spatial distribution of the risk of occurrence of the disease of concern.

The major contributions of the author in the project include (i) development of the concept and design 

of the architecture of HandiResponse; (ii) specifying objectives, expected outputs and design of detailed 

steps of the technical process that generate the outputs, identification of techniques employed in each 

module; (iii) parameterization of disease spread models for HPAI H5N1 and Austeria based upon 

literature review and consultations with topic experts and (iv) testing the proto-type version(s) of 

HandiResponse and providing feedback for further refinement. 

9.2. Studies undertaken in the thesis
The project discussed in this thesis is about designing and testing a set of tools that could enable an 

epidemiologist in any country to use available evidence about an emerging disease which might enter 

the country to develop risk landscape for the disease and use such knowledge to plan an optimal mix of 

surveillance activities to detect the disease promptly and in a cost-effectively manner if it enters the 

country.  Just as the thesis is being submitted, there is worldwide concern about spread of Zika virus, 

which is the latest example of the series of emerging diseases that have spread around the world in 

recent years, and for which HandiResponse could provide countries with a valuable tool.

The structure of the thesis is illustrated by the diagram below. It forms part of a wider project to 

develop a comprehensive planning and management strategy for emerging diseases. 

HandiResponse starts from risk assessment on possible disease occurrence, then guides the user through 

the steps of risk mapping, modelling disease spread, evaluating the potential development of a 

surveillance portfolio taking account of spatial variation in disease risk, and finally portfolio 

optimization. All the processes are facilitated by different modules within HandiResponse: HandiMap, 

HandiSpread, HandiSurv, HandiEcon and OptiSurv respectively.
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Figure 9-1 Thesis structure 

Emerging and re-emerging infectious diseases (ERID) are capable of generating sizable economic 

impact and can cause social instability (Brahmbhatt, 2006; Narrod, Zinsstag, & Tiongco, 2012; UNDG, 

2015; WorldBank, 2014). To prevent and mitigate the negative impacts of ERID, it is imperative to 

have a sensitive surveillance strategy for early disease detection. Furthermore, from the economic 

perspective, resources are always scarce and have opportunity cost, so investment in a surveillance 

program has to demonstrate that it can maximize the utility function of allocated resources. 

Two notable development in disease surveillance system design in recent years deserve highlight: 

firstly, risk-based surveillance has gained in popularity and represents an important advance for modern 

disease surveillance program development (Stark, Regula et al., 2006). Risk-based surveillance

programs can outperform the traditional non-risk-based (Alba, Casal et al., 2010; Hadorn, Rufenacht et 

al., 2002; Kahn, 2006; Kuiken, Leighton et al., 2005; Kulasekera, Kramer et al., 2001; Kulldorff, Fang, 

& Walsh, 2003; Presi, Staerk et al., 2008; Reist, Jemmi, & Staerk et al., 2012; Schwermer, Reding, & 

Hadorn et al., 2009; Tavornpanich, Gardner et al., 2006; Walsh & Miller, 2010; Willeberg, Nielsen, & 

Salman, 2012). Secondly, a surveillance program rarely has only one component, rather it is often a 

network of networks or a system comprising different components varying in surveillance subject, 

location, season, event, diagnostic method etc. (Eidson, Kramer et al., 2001; Heymann & Rodier, 1998; 

Morse, 2007; Mostashari, Bunning et al., 2001; Mostashari, Kulldorff et al., 2003).

It has however proved challenging in many situations to plan an integrated risk-based approach for 

surveillance and optimize a portfolio comprising several different surveillance approaches because of 

policy constraints, difficulty in getting access to all the required data, inadequate epidemiological 

capacity and resources to design and manage the program and other difficulties (Alba, Casal et al., 

2010; Cameron, 2012; Carroll, Au et al., 2014; Christensen, El Allaki, & Vallières et al., 2014; adorn & 

Stark, 2008; Martin , Cameron et al., 2007a; Ortiz-Pelaez, Pfeiffer et al., 2006; Paul, Held, & Toschke,

2008; Stark, Regula et al., 2006; Tsai, Scott et al., 2009; Wieland, Brownstein et al., 2007), These 

challenges are usually more prominent in developing countries. Hence, most of the risk-based
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surveillance activities have been so far implemented in developed economies, whereas they could 

provide greater benefit if applied in resource-constrained countries. 

HandiResponse was developed to contribute to dealing with these challenges. The specific objectives of 

HandiResponse are (i) to visualize the disease risk landscape and identify hotspots where the infectious 

disease under study is most likely to occur if it becomes established in the country; (ii) to evaluate 

economic benefit and costs of each surveillance option and their combined effects as components of a 

portfolio; (iii) to define optimal use of resources for a surveillance program through selection of an 

epidemiologically effective and/or an economically efficient surveillance portfolio across predefined 

risk categories such as geographic area, species, sectors, types of stakeholders, etc. It comprises four 

modules: HandiMap, HandiSurv, HandiEcon and OptiSurv. Besides, the program needs to be used in 

conjunction with HandiSpread, a disease simulation modelling program (Figure 9-2). The purposes and 

the outputs of these models are summarized in Table 9-1.

Figure 9-2. Structure of HandiResponse and linkage between different modules
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Table 9-1. The purpose and output of different modules of HandiResponse 
Purpose Output

HandiMap: development of risk landscape for 
an infectious disease

risk map(s) that display the “height” of the risk at 

each location. The maps can be either in kernel 

smoothed format or raster format

a risk score file which transfers the “risk height’ 

information to HandiSpread, for adjusting the 

susceptibility of particular locations to 

occurrence of the disease, and hence allows 

HandiSpread to take account of risk level in 

representing transmission of the disease

HandiSurv: defining all the possible 
surveillance components and subcomponents 
for an infectious disease

a matrix summarizing surveillance subject, 

location, modality, intensity, sensitivity and cost

HandiEcon: estimation of economic effect of 
a disease or a given surveillance approach

a set of MS Excel spreadsheets summarizing (i) 

economic effect of an uncontrolled infectious 

disease by time, location and species and (ii) 

economic effect of an infectious disease under a

given surveillance option

OptiSurv: optimization of surveillance 
approaches according to the predefined criteria

the optimal surveillance portfolio(s) meeting a 

given criterion 

Although as described in the literature review and later chapters there have been many papers published 

both on methods of undertaking surveillance for emerging diseases and on specific investigations of 

particular diseases, there has been no previously published step by step generic system for a country to 

use in planning and managing how it can use the techniques and the scientific information in the 

national situation.

9.3. Classification of diseases
Making the system generic both with respect to diseases which can be considered was the first 

challenge. It is clearly not possible to have a system matched both to all known diseases and to 

previously unknown emerging diseases! The approach adopted was to develop a structure which 

allowed diseases to be categorized into a limited number of groups, which have been termed “epitypes” 

for the purpose of the thesis. The classification system described in Chapter 3 was adapted from a 

World Health Organization report on zoonoses, and allows the development of an analytical approach 

matched to the specific epidemiological characteristics of each epitype, since the diseases classified 
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within each epitype share most of their core features in common, even though they may appear different 

in their manifestations. An assessment of zoonoses did not identify any that fell outside the overall 

classification structure. By far the largest number of zoonoses fit into the epitype of direct zoonoses, so 

this group has been divided into several sub-epitypes, since there are important epidemiological 

differences, for example, between respiratory route transmission and foodborne transmission, even 

though they are both direct. This thesis has concentrated principally on developing the later stages of 

the analytical process using examples of direct zoonoses, and further work will be required in future to 

design and build a module of HandiResponse which assists the user to decide which epitype and sub-

epitype a disease belongs to, and then to record defining epidemiological characteristics of the disease, 

so that the mapping stage can proceed smoothly.

9.4. Steps in the HandiResponse surveillance planning process
As illustrated in Figure 9-2, an analysis using HandiResponse typically starts with HandiMap, which 

produces risk map(s) and generates a risk file with a score for each epidemiological unit. Step two, the 

information on risk scores is fed into HandiSpread for the development of a model representing the 

spread of a newly introduced disease temporally and spatially. Step three, the predicted temporal and 

spatial distribution of a disease informs the design of different surveillance options including risk-based

ones for it; then, the model in HandiSpread will be used to simulate the potential impacts of each 

surveillance option. Step four, the metrics, such as number of farms and/or persons infected by the day 

of detection, from the simulation of surveillance options are input into HandiEcon for estimating the 

economic effect of each surveillance option, in contrast to the economic impact of an undiagnosed 

disease outbreak. Step five, the statistics produced by HandiSurv and HandiEcon are used by OptiSurv

to generate optimal surveillance portfolios.

9.5. Development of a risk map
Chapter 4 demonstrated how to use HandiMap to generate disease risk maps in a stepwise approach. As 

a major method of spatial epidemiology, disease risk mapping can help test a hypothesis, provide a

direction for surveillance and control efforts or evaluate the actual or potential effectiveness of an 

intervention (Brownstein, Freifeld, & Madoff, 2009; Kitron, 2000; Tatem, Adamo et al., 2010). It can 

also provide evidence for substantiating progress towards global health commitments (Pigott, Howes et 

al., 2015). However, a recent review revealed that out of 176 globally important infectious diseases 

with a strong rationale for mapping, only 4% have been adequately mapped (Hay, Battle et al., 2013).

A major reason why scientific data on disease risk has not commonly been converted into a risk map is 

the effort normally required to bring together the data sets necessary to draw a risk map, and integrate 

the evidence into a digital map which reflects the available evidence. HandiMap now provides a tool for 
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doing this across the full spectrum of diseases where spatial representation is helpful. To do this 

requires access to both country geography and spatial data on putative risk factors and proxy variables 

which can be overlaid on the country geography. The first step of providing country geography is 

simple in principle, but there were challenges to resolve along the way in providing the data to 

HandiMap. Global digital maps are available which provide shape files for all countries and for the 

main subdivisions within each country, although subdivisions change and digital maps may have 

outdated boundaries for some subdivisions. Shape files for lower level administrative areas are not 

generally available at global level, so must be obtained from national sources. For the study of 

Mongolia in Chapter 5, boundaries of provinces (known as aimags) were available on global map data 

but boundaries of districts (known as soums) were required since sampling for CCHF was undertaken at 

this level, and these were obtained after some effort. There is no publicly available set of shape files for 

the lowest administrative area in Mongolia, sub-district or bag, and these shape files were only 

available through direct negotiation with the official who had produced them. However they were not 

necessary for this particular study. Mongolia illustrates another practical problem resulting from the 

large size of the country, its very large east-west extent, and its high latitude (which makes effects of 

the curvature of the earth very pronounced). The standard digital map for Mongolia used three separate 

somewhat incompatible map projections for different parts of the country, and it required expert help to 

create a single projection with smooth unbroken connections between the parts. However in working 

with data for various countries we have found that any problems with administrative boundary maps 

can be solved and once the map for a country is correctly established in the data repository, it can be 

used as much as needed. The other layers such as Google hybrid can also be overlaid on the 

administrative boundary map.

The development in recent years which has made disease risk mapping much easier and potentially 

much more informative has been the rapid expansion in the range of global remote-sensed satellite 

images which are now available. Until a decade or so ago, satellite images were quite restricted in the 

types of data available, and costs of obtaining digital images were high. However the range of data sets 

of relevance to disease control has increased greatly over the last decade, and they are now mostly 

available at no cost from web sites. The resolution has also improved considerably, and the interval 

between successive images being produced and made available has reduced. This makes disease risk 

mapping a very straightforward and informative way of exploring disease distribution. Since HandiMap 

can process any digital raster image provided to it from satellite data, it is a very effective and 

straightforward way to build risk maps for a disease of concern if remote-sensed data for risk factors 

and/or proxies is available.

In Chapter 5, HPAIV H5N1 outbreak in southern Vietnam was used as an example to demonstrate the 

procedures used to create a risk map in HandiMap, and to compare maps which use different risk 

factors. 
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Compared with other widely available mapping tools, HandiMap has the following merits: (i) at least 

one disease risk map under each epitype has been developed or will be developed for program users to 

learn by transferring the methods from the demonstration disease to the disease of interest to them; (ii) 

more than 30 global environmental and climatic descriptor layers have been stored in the IRIS data 

server and can be accessed freely, so an epidemiologist can explore the use of different layers without 

needing to download them from multiple servers and install them in a standard GIS package. The 

number of layers stored in the repository will continue to increase, and the file sizes are very large so it 

is much better to have them stored on a single site than to have individual users store them on local hard 

drives. The layers will also need to be regularly updated as new releases become available, and this is 

best done through a single server site; (iii) risk values by epidemiological unit can be exported and used 

by other modules of HandiResponse (or other disease modelling programs) to simulate disease spread, 

and assess the effect of any disease surveillance and mitigation strategies and (iv) the tool is free of 

charge. 

HandiMap is a convenient generic tool for estimating and visualizing the risk of occurrence for a 

disease of interest. It can facilitate effective communication on infectious diseases and support decision 

making for surveillance and disease interventions, and it offers particular benefits in resource and data-

sparse environments. There have been numerous papers published on factors influencing the spatial 

distribution of avian influenza H5N1 outbreaks, especially for Vietnam, because one of the most 

comprehensive spatial data sets from this global disease event was the one for Vietnam. It is possible to 

produce risk maps for Vietnam based on the risk factor information, but the question which has not 

previously been answered is whether the risk map is genuinely informative about where outbreaks are 

likely to occur, on a fine enough scale to support surveillance and control activities. Therefore a review 

of all available papers was undertaken, and the findings used to formulate two initial risk maps for 

southern Vietnam, one based entirely on environmental variables derived from satellite data and 

considered by some investigators to influence disease occurrence, and one using poultry and human 

population data together with selected environmental factors. Then a third map was produced, in which 

most of the factors in the earlier two maps were included, plus variables which were proxies for ease of 

movement of poultry around the region, since no direct data was available on movement patterns.

The issue which then had to be dealt with was how to test whether the risk maps had epidemiological 

validity. Therefore to test the value of the risk maps, a simulation model of avian influenza H5N1 

(termed the base model because it did not make use of a risk map) was constructed in the modelling 

program HandiSpread, and parameters adjusted so that the model gave a cumulative temporal epidemic 

curve not significantly different from the actual epidemic curve, by the Kolmogorov-Smirnov statistic. 

Disease models have become valuable tools that help to provide insights on disease spread, generate 

testable hypotheses, predict disease outbreaks and assess the effect of surveillance and disease 

mitigation measures (Barnabas, Laukkanen et al., 2006; Brisson, Edmunds et al., 2000; Keeling,
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Woolhouse et al., 2001; Koopman, 2005; Merler, Ajelli et al., 2015; Mossong, Hens et al., 2008; Myers,

Rogers et al., 2000; Riley, 2007; Woolhouse, 2011). Spatial and temporal modelling offers a way to 

make predictions about where and how fast a disease would spread. Such pieces of information are 

particularly important at early stages of emerging infectious outbreaks when little knowledge has 

accumulated about disease behaviours. However, there remains a need to further develop and test 

models of emerging diseases and to build them into decision support systems (Bettencourt & Ribeiro, 

2008; Kao, 2002; Lawson & Leimich, 2000). HandiResponse offers an answer to these needs by 

providing risk mapping, spatio-temporal modelling and other components of a decision support system 

for detecting disease incursions.

Very few examples have been reported in which model predictions for an emerging disease have been 

compared with field evidence of the spatio-temporal spread of the same disease. In Chapter 5 the 

benefit was evaluated of modelling on a risk landscape generated in HandiMap when compared with 

the base model – the same disease model without the adjustment in spread probability provided by the 

risk map. To achieve this, the first step was to develop the base model in HandiSpread of avian 

influenza H5N1 using research data and expert opinion, and to compare the temporal and spatial pattern 

with field data from the 2004-5 second epidemic wave in southern Vietnam. This first model gave good 

temporal fit to the real epidemic wave, but spatial fit was only moderate. Two different variants of this 

base model were chosen, which had mildly different settings for one set of spread parameters, but both 

of which gave good temporal fit to the actual epidemic wave. The field data set covering the second 

epidemic wave used for this comparison was chosen because it was relatively free from biases due 

either to under-reporting or poultry vaccination.

Having produced the three different risk maps (E, P and M), the next issue was to assess what 

adjustment to infection susceptibility was appropriate to use for each of the five risk levels allocated to 

communes in the risk maps. The key issues were whether to use linear or escalating effect of increasing 

risk level, and what percentage change in susceptibility to use between different risk levels. To test 

these issues, a matrix of 162 adjustment factor combinations was constructed, and 99 replicate 

simulations were run for each combination. The modelled outbreaks were then tested for their temporal 

fit in comparison with the actual HPAIV H5N1 epidemic wave in southern Vietnam by Kolmogorov-

Smirnov test and for spatial fit by calculation of the area under the Receiver-Operating Characteristic 

curve (AUC value). Out of 162 models tested, five candidates were selected as having the best fit of the 

risk adjusted models. The best one was the M-map m-r-3-10 linked to base model 4. This meant that the 

adjustment factor was escalating rather than linear, the reference level was the middle risk value 3, and 

the adjustment was 10%. The robustness of fit of the m4-m-r-3-10 model was tested by changing the 

relative importance of the movement risk component to the environmental descriptor component. The 

results showed that m4-m-r-3-10 still outperformed all other models. 
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The exercise revealed that M-model, using a combination of different risk factors and environment

predictors, was the best option for representing HPAIV H5N1 outbreak in southern Vietnam between 

late 2004 and early 2005. In this model, poultry movement was hypothesized as the most important risk 

factor, followed by rice paddy coverage. Both risk factors have been confirmed to be responsible for 

HPAIV H5N1 outbreaks in South East Asia (Cao, Xu et al., 2010; Fang, de Vlas et al., 2008; Gilbert,

Xiao et al., 2008; Martin, Pfeiffer, et al., 2011; Peterson & Williams, 2008; Pfeiffer, Minh et al., 2007; 

Rivas, Chowell et al., 2010; Tiensin, Chaitaweesup et al., 2005; Williams & Peterson, 2009; Xiao,

Boles et al., 2005; Yupiana, de Vlas et al., 2010). In particular, poultry movement was confirmed to be 

significantly associated with the spread of HPAIV H5N1 outbreaks in Vietnam (Pfeiffer, Minh et al., 

2007). E-model would be the second choice since the model was mainly defined by distribution of rice 

paddy. The least satisfactory model was P-model, which used only poultry and human population-based 

risk factors, with no environmental or movement factors included.

The disease spread model could also generate insightful epidemiological metrics to be used for 

informing surveillance and disease mitigation design. For instance, under m4-m-r-3-10 model, live bird 

markets and itinerant duck movement were responsible for 49 percent and 40 percent of HPAIV H5N1 

infections respectively, and other forms of spread were minor. Efforts for surveillance and control 

should therefore give special emphasis to these forms of spread. 

While this study was valuable in testing the value of a risk map in predicting disease spread, there are 

various issues which could not be fully resolved. The first is that the field data set used for comparison 

is itself known from experience of the Vietnam epidemic to be imperfect, although the best available 

(Gilbert, Xiao et al., 2008). If better data on H5N1 infection prevalence and clinical disease were 

available, the technical performance of models could possibly be better. Despite the large scale of the 

avian influenza H5N1 global epidemic, the amount of credible clinical outbreak data with spatial 

locations which was collected was very small, and the amount of data on infection prevalence even 

smaller. Far too little effort in major disease outbreaks of all kinds goes into recording and analyzing 

the spatio-temporal characteristics of the epidemic, and therefore there is very limited opportunity to 

improve the response capability for future events. HandiResponse and its underlying database 

HandiView provide a valuable tool for improving disease records, if they can be adopted by countries 

around the world through an international effort. The Ebola epidemic and now the spread of Zika virus 

around the world may provide the required stimulus for this to happen.

The second issue is that while it appears that environmental and movement risk factors were the most 

informative in guiding risk map development, the conclusions for this disease in this environment are at 

best tentative, and based on retrospective analysis rather than testing whether predictions of disease 

occurrence based on a risk map prove useful in surveillance.
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9.6. Using risk mapping to inform surveillance
Therefore the next exercise in the project was to test the predictive ability of risk mapping. In Chapter 

6, HandiMap was used to visualize the risk landscape for Crimean Congo Haemorrhagic Fever in 

Mongolia, and then to undertake surveillance to determine whether a disease incursion had occurred. 

The disease has been reported among human and livestock in neighboring parts of China and other 

countries such as Russia, Tajikistan and Kazakhstan in close proximity to Mongolia (Atkinson,

Chamberlain et al., 2013; Hoogstraal, 1979; Yashina, Petrova et al., 2003; Yen, Kong et al., 1985).

However neither animal infection nor human cases of CCHF had ever been reported in Mongolia. 

Livestock in Mongolia represents an essential basis for sustainable development, and conservation of 

the livelihood tradition of Mongolian herders. In 2010, more than 90 percent of people employed in the 

agricultural sector of Mongolia were engaged in animal husbandry. The traditional grazing practices 

can expose herders and domestic animals to tick bites. If ticks are infected with CCHFV, human 

infection would be inevitable. Besides, the growing mining industry in the country could increase the 

opportunities for susceptible miners working in the field to be exposed to ticks and hence to possible 

infection. The disease might exist in the country undetected because of low awareness and very limited 

disease-specific expertise. 

A risk assessment on CCHF conducted in conjunction with this study suggested that most parts of 

Mongolia were suitable for Hyalomma tick presence, and there existed areas of Mongolia where 

Hyalomma ticks and other suitable ixodid species could complete their lifecycle in small and large 

mammals (Atkinson et al., 2013; Roger Hewson, 2013). Informed by a review of the published 

literature, the following environmental predictors were selected for CCHF risk map development: (i) 

proportion of land covered by shrub and grass, (ii) mean annual NDVI, (iii) mean annual precipitation 

and (iv) maximum temperature. Separate risk maps were developed based on predicted Hyalomma tick 

distribution and on CCHF distribution. They showed broad agreement on where high risk and low risk 

areas of the country are located, although the risk map for CCHF indicated a more extensive risky area 

than did the tick map, because of the different risk factors used. It is likely that the tick map is a more 

precise predictor, because the disease cannot persist long term in an area unless the host ticks are 

present. Targeted cross sectional serological surveys of people in herder families and their sheep were 

conducted in twenty one districts in the area of southern Mongolia identified as high risk on both types 

of maps, and in one district in the low risk northern part of the country. The survey showed for the first 

time that serological evidence of exposure of both sheep and people to CCHFV was present in all the 

high risk part of Mongolia evaluated, but there was no evidence of infection in either species in the 

district identified as low risk. Therefore the risk map was predictive of the localized presence of an 

important disease in a country previously considered to be free of it. 
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9.7. Development of optimal surveillance portfolios
The next step was to use the components of HandiResponse to test the effectiveness of risk-based and 

classical surveillance techniques for detecting a zoonotic disease incursion, and to assess the costs of 

surveillance and the benefits of prompt detection. This required comprehensive information on the 

spatial distribution of animal populations, and on economic aspects of the disease in at-risk animal and 

human populations. No suitable sets of required data could be identified for an Asian country, but data 

sets were available on spatial distribution of domestic pig populations and economic aspects of pig 

production for Australia, arising from an earlier study of a possible incursion of porcine reproductive 

and respiratory syndrome into Australia, which is free of the disease. 

In Chapter 7, this information was used as the basis for inventing a zoonotic disease called “Austeria” 

as an example to test the effects of different surveillance options in disease detection. Australia has a 

large population of feral pigs which would undoubtedly be involved in spreading a disease of this 

nature, and it was essential that they be included in the evaluation of surveillance options. A risk map 

had already been developed for predicted density of feral pigs in all parts of Australia by national 

experts in the field of feral pig ecology. This map was therefore used together with ecological 

information from Australian studies to produce a map of home ranges for feral pig families throughout 

the country that reflected local densities, and each feral pig family was given a point location in its 

home range. 

A temporal and spatial dynamic model was then developed to simulate the spread of Austeria over a 

period of 365 days following an incursion into a “backyard” or non-commercial pig herd in the State of 

Queensland, which has the largest number of domestic pig herds, plus a large population of feral pigs 

with varying density of families depending on local habitats.

Eight potential surveillance components were then identified, with each designed to detect the disease 

by focusing on different strata of at-risk pig populations or human populations, and different 

investigational strategies. Some components were risk-based active surveillance precisely targeted 

based on the risk map for feral pigs, others were classical surveillance sampling strategies, one 

component targeted feral pigs through voluntary sample collection by hunters, and others were passive 

disease reporting. Costs varied considerably according to the sample collection effort required. Each 

component had nine variants termed sub-components that differed in investigational intensity and 

detection sensitivity, making a total of 72 different options to be compared with the undetected 

outbreak. Using 99 iterations of the Austeria model per component/subcomponent combination, the 

technical efficiency of each surveillance approach was measured by (i) number of days for outbreak 

detection, (ii) number of simulated outbreaks detected, and (iii) number of farms infected by the time of 

detection, compared with the undetected outbreak.
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The surveillance approaches fell into three groups according to the above mentioned three technical 

efficiency measurements. Risk-based option 2 (RB2) stood out as the most technically efficient 

approach and the feral pig blood sampling by hunters (FPB) was the least useful. The remaining six 

surveillance components fell in between and did not differ substantially in technical performance. The 

RB2 risk-based component with high intensity and high sensitivity detected the outbreak at a median of 

108 days, and successfully detected over 93 percent of the 99 simulated outbreaks. At the time of 

detection, a median number of only 23 farms were infected. On the contrary, the least effective FPB 

sub-component with low intensity and low sensitivity could only detected the disease at a median 

number of 281 days after the disease was introduced, detected only 3 percent of the 99 simulated 

outbreaks, and when the disease was detected, a median number of 2, 515 farms were already infected.

The study demonstrated practically how a spatial and temporal model could help in designing 

surveillance strategies and assessing their technical performance. It revealed that it would take more 

than 4 months for the most efficient surveillance approach to detect a newly introduced slowly 

spreading disease like Austeria. Furthermore, it showed that the risk-based surveillance strategy RB1 

which was expected to achieve the most rapid detection because it was focused on the highest feral pig 

density areas was in fact poorly successful because very few domestic pig herds were located in these 

areas, and they were the target population for surveillance. The study identified a new way in measuring 

a surveillance component sensitivity: how many outbreaks could be detected by a particular method out 

of all the simulated outbreaks. We concluded that all the three technical efficiency measurements were 

policy-relevant and should be used jointly in practical evaluation of surveillance options. 

The study described in Chapter 7 left two important questions to be answered: (i) what would be the 

technical efficiency if surveillance components are used in combination as a portfolio rather than 

individually and (ii) what would be the economic efficiency of different surveillance portfolios. 

Chapter 8 deals with these two issues. It does so through the development and application of OptiSurv,

a surveillance optimization program, because the selection of an optimal portfolio, even from the 

restricted range of 72 different component/subcomponent combinations, requires a precisely structured 

evaluation procedure, and a goal-seeking strategy to select and rank the portfolios which best meet a

predefined criterion, because the choice of criterion depends on the disease situation, and there are 100 

million portfolios to choose from in this particular case. Resources are always scarce and have 

opportunity cost. Hence, decision making on disease surveillance strategies needs to be based upon 

sound technical and economic principles. Optimization of surveillance program for a disease or a 

hazard has been defined as maximizing surveillance performance within given or expected budget 

constraints (Guo, Claassen et al., 2014; Prattley, Morris et al., 2007), or it implicates maximizing cost 

saved for surveillance program without compromising or even increased technical performance 

(Hadorn & Stark, 2008; Wang Zeng et al., 2010). Superior technical performance means earlier 
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detection of a disease or a hazard, improved sensitivity and specificity (Hutwagner, Browne et al., 

2005). A number of approaches have been employed to optimize the technical and in some cases 

economic performance of surveillance programs (Hadorn & Stark, 2008; Polgreen, Chen et al., 2009;

Prattley, Morris et al., 2007; Scarpino, Dimitrov, & Meyers, 2012; Sparks, 2013; Zhang, Jamal et al., 

2011). The approach adopted here builds on the earlier work of Prattley et al. to offer a standardised 

method for producing lists of optimal portfolios for each of the decision rules proposed in Chapter 8.

To achieve this, HandiSpread was used to construct a spatial and temporal model representing the 

spread of Austeria, as a test for a zoonotic disease, and to provide critical epidemiological metrics of the 

outbreak. The model was also used to estimate the potential effects of proposed surveillance options, in 

term of when the disease was detected, how many pig herds and how many persons would be infected 

as well as how many of the 99 simulated outbreaks could be detected. HandiEcon was then used to 

estimate the economic impacts of the disease: the epidemiological effect of Austeria on the pig industry 

in Queensland was monetized by employing a budgeting model, while disease burden (mortality and 

morbidity) caused by Austeria in people was estimated by the use of disability-adjusted life years and 

converted into an economic value by using the human capital approach. Outputs from HandiSpread and 

HandiEcon were then fed into OptiSurv to evaluate all possible portfolios and identify clusters of 

optimal surveillance portfolios. The version of HandiEcon used was one of a number of separate 

economic analysis procedures developed for different individual diseases and animal production 

systems, as preparatory work for the development of a generic economic analysis system for zoonoses, 

which is being produced outside the scope of this project.

OptiSurv could identify the optimal surveillance portfolio with regard to different decision rules. The 

portfolio with the shortest detection time was straightforward, and took an average of 96 days to detect 

the disease, across 99 replicates. In principle it would seem that the portfolio with the highest net 

benefit, or the one with the highest benefit cost ratio, would be the preferred policy option. However at 

least in the Austeria case study situation, the portfolio with the highest benefit/ cost ratio was simply the 

lowest cost one, with a very long delay to detection and the overall poor performance. Although the 

portfolio with the highest net benefit was better in terms of detecting the outbreak earlier but also 

unlikely to be the preferred policy option because of excessive delay in detection. Therefore, it was 

necessary to set a maximum acceptable delay to detection compared with the portfolio that offered the 

shortest delay to detection. Once a constraint of that nature was added to the decision rule, net benefit 

and benefit/cost ratio calculations produced very similar portfolios, which were economically much 

superior to the fastest detection option, while losing very little time until detection occurred. 

The study also confirmed that optimal surveillance portfolios indeed outperformed single component

surveillance approaches. For instance, the surveillance portfolio with the fastest detection would take 96 

days to detect the disease while the fastest single component surveillance strategy would take 184 days 
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on average; and the portfolio with the highest net benefit would save $188,516 compared with the most 

economically efficient single component surveillance option (Table 8-13 on Page 239).

The study enriches the understanding of what constitutes the “most optimal” surveillance program. It 

shows that decision making for surveillance needs to be a multi-criteria process, with different 

considerations being weighed up according to the nature of the disease and factors such as the 

seriousness of the clinical effects in people. Each criterion has its practical implications. Sometimes, for 

certain diseases such as Ebola Hemorrhagic Fever, design of a surveillance program should aim at 

achieving the highest technical efficiency in detecting the disease. This means the disease needs to be 

detected as early as possible because of the speed at which it spreads and the severe social and 

economic consequences it can generate. However, in a less rapidly spreading disease, such as Austeria, 

by accepting a five day average delay (5.5%) in disease detection compared with that of the portfolio 

with the fastest detection time, the portfolio with highest net benefit that meets the delay requirement 

would save $555, 218 (11.5%) compared with the fastest option. Policy makers may well be willing to 

accept this option balancing different objectives in most cases. 

In summary, the study introduced a practical way for screening and identifying most suitable 

surveillance options under different situations. It demonstrated that the best multi-component 

surveillance portfolios could perform better than the best single surveillance component, whether 

evaluated technically or economically. It also indicated the importance of understanding the 

epidemiology of a disease in identification of the most efficient disease surveillance and mitigation 

strategies. The approach employed and the OptiSurv tool used in the study are generalizable for 

optimization of surveillance programs for other zoonotic diseases.

9.8. Practical value of HandiResponse
HandiResponse has the following merits: (i) all the critical steps for designing an optimal risk-based

surveillance portfolio are included in the package. With the help of the program, not only could 

surveillance programs be designed, but also their effects could be assessed ex-ante. (ii) the program is 

designed to present the inputs, process and the results of each step in a transparent and comprehensible 

manner, and allows participation from stakeholders in the critical steps such as risk factor identification, 

estimation of economic consequences of a disease, decision making on most suitable surveillance 

portfolios; (iii) to address the issue of data scarcity, two approaches have been proposed. The program 

has compiled and will update periodically remote sensed data sets relevant to disease risk prediction.

These data sets will offer a valuable complement to national statistical data sets and ad hoc field survey 

data. They have been standardized and are obtained from source organizations which ensure that the 

data is of good quality. Moreover, they can be used for any user-defined geographic areas without 

worrying about national borders. Further, using the program can help countries identify gaps in critical 
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information needed for surveillance program design. Expert opinions can also be used to guide 

decisions through the selection of variables and interpretation of available information; (iv) the program 

is currently still under development with respect to achieving completely user-friendly design, but now 

that the basic principles have been established, user experience can be enhanced as resources become 

available. The program operates within the Incident Response Information System (IRIS) that is also a 

platform for data management in relation to disease investigation and management. A Wiki has been 

developed for easy reference and consultation, plus, on-line advice on how to use the program is 

available and (v) HandiResponse program is free of charge.

Last but not least, the program has been specifically designed to handle infectious diseases affects both 

human and animal populations, hence zoonotic diseases can be mapped, modelled and their surveillance 

programs designed and assessed. OptiSurv can help identify both technically and economically efficient 

surveillance portfolios. These portfolios satisfy different policy targets.

9.9. Limitations and future direction
Within this project, HandiResponse has been applied to two well-known diseases (directly transmitted 

HPAIV H5N1 and vector-borne CCHF) to test its robustness and scope of coverage of disease epitypes. 

In the future, the program needs to be challenged and validated with additional well-documented 

infectious disease outbreaks or epidemics. All the other epitypes and sub-epitypes need to be fully 

covered in the software, and a procedure needs to be implemented in the software to help the user select 

which epitype template to use for the task they are undertaking. The software also needs an interface 

which assists user interaction, and more fully integrates the sequence of steps needed to design and

implement a surveillance portfolio. Consideration also needs to be given as to how to handle diseases 

which vary considerably between seasons or have other forms of temporal variation that would 

influence surveillance decisions

A number of enhancements will be needed to further improve user-friendliness of the existing modules 

so that a fully user-friendly version of HandiResponse is readily available. Firstly, the modules that 

currently are in MS-Excel format need to be converted to a web-based version and all modules should 

have consistent user interfaces. Secondly, transfer of information between successive modules should 

be automated as far as possible, and should include error detection and reporting, to deal with cases 

where a user has formulated data in a way which is incompatible with the next module. Thirdly, 

additional demonstration risk maps need to be developed as templates under each epitype to assist users 

to make full use of the capabilities of HandiMap. Fourthly, a module on disease mitigation needs to be 

developed since surveillance needs to be linked to subsequent mitigation, and they must be considered 

and assessed simultaneously. However this is a major task comparable in size to this project. Lastly, the 

HandiSurv module needs further refinement so that it can help guide the user through selection of
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surveillance approaches by illustrating details on the structure of potential surveillance programs: by 

whom (institution and personnel), when (frequency and duration) and what (planning, training and 

supervision, and with what means of implementation).

9.10. Conclusion
A desirable disease surveillance program needs to be technically sound and economically efficient. A 

surveillance portfolio which makes use of both risk-based and classical surveillance methods represents 

a promising solution. HandiResponse is a practical tool that could promote the implementation of risk-

based surveillance approaches, and could improve both technical and economic efficiency of 

surveillance programs for infectious diseases, in particular those which affect both human and animals. 

The project reported in this thesis has demonstrated the practical value of HandiResponse in completing 

the various stages in the process of designing and implementing a surveillance portfolio.
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