Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

THE IMPACT OF THE TECHNOLOGY NEW ZEALAND SCHEME ON SMALL-AND-MEDIUM ENTERPRISES IN NEW ZEALAND

A Thesis presented in partial fulfilment of the requirements for the Degree of Masters of Technology in Product Development at Massey University

> Amanda C.M. Ho 2001

ABSTRACT

The purpose of this research study was to examine the impact of the Technology new Zealand Scheme (TechNZ) on small-and-medium enterprises (SMEs) in New Zealand where the focus was on participants of the Technology for Business Growth programme (TBG). In addition, the relationship between the product development process, technological capabilities, and Research and Development (R&D) investments of these companies were explored.

Technological innovation has become one of the key drivers for company successes. Technological innovation has been defined as a learning process through which companies assemble the intangible assets of human capital and knowledge, and apply them to economic opportunities (Winsley, 1997).

Within the technological innovation framework, there are three critical success factors that are very important. These are: the product development process, R&D and technological capabilities within companies. This ability to successfully create technological innovation into new products and processes is critical to the ongoing survival of companies.

The New Zealand Government acknowledged technological innovation as the key factor for sustaining the growth of the New Zealand economy. Therefore, in 1997, the Technology New Zealand Scheme (TechNZ) was established and is administered by the Foundation for Research, Science and Technology (FRST).

The TechNZ Scheme provides part-funding for small-to-medium enterprises (SMEs) to conduct R&D activities. The aim of the scheme is to increase the ability of companies to adopt new technologies for business growth. There are three programmes that are available through which companies may access funding. These are: the Technology for Business Growth Programme (TBG), the Technology for Industry Fellowship Programme (TIF) and the TechLink Programme.

The research was based on case studies and questionnaire surveys where respondents operate in the electronics, software and manufacturing sectors nationwide. A 13-stage product development model by Cooper and Kleinschmidt (1986) was used for this research in order to gain insight into the companies' product development activities.

The research showed that the majority of the companies saw product development as an important organisational activity. However, only 42% of the responded companies use a formal product development process. The most frequently used product development activities related to the physical design of products. The least frequently used activities were detailed market research, market test and pre-launch business analysis. This could possibly be because these activities are intangible elements of the product development process. Therefore, it may be difficult for companies to quantify the benefits of them, so less emphasis are sometimes placed on these activities.

Over 90% of the responded companies indicated R&D to be important to the overall success of their company, and most believed there exists a positive relationship between market position and levels of R&D investment.

Respondents believe that technological capability lies deeply in human capital where equipment plays a minor role. There shows a positive relationship between the elements of product development, R&D and technological capability. These are inter-related. In order for companies to successfully innovate, they are required to be technological capable, using this capability to assist with their product development and R&D activities leading towards innovation.

In general, TechNZ presents an excellent image to respondents in their operations and in the services that it provides. Respondents provided a number of valuable suggestions to TechNZ, including: offering larger sums of funding, providing clearer instructions in TechNZ application packs, and funding wider areas of funding. Therefore, results from the current study showed that TechNZ is putting a positive impact on New Zealand SMEs via the TBG programme.

ACKNOWLEDGMENT

I would like to express my thanks to the following people who contributed to the production of this thesis:

- Aruna Shekar for supervising this project with patience, time and support.
- Dr. David Lillis for his many valuable comments, explanations and help with this research.
- Hamish Campbell for providing much guidance and constructive criticism in the development and writing of this thesis.
- Jane Cameron for her help with resources and journal articles.
- The companies that participated willingly and provided invaluable information to this research.
- My friends at the Foundation for Research, Science and Technology for their willingness to discuss and tease out the elements of the TechNZ Scheme.
- My colleagues at the Ministry of Agriculture and Forestry for allowing me time and space to complete my thesis.
- My mum and dad who gave me unqualified support.
- Michael Ho who assisted me tremendously when ever my computer challenges me with technical problems.
- Minnie Ho who gave me careful criticism that helped me enormously in getting my thoughts into words.
- Philip Chu who supported and encouraged me immensely throughout my academic years.

The research was sponsored by the Ministry of Research, Science and Technology (MoRST) and the Foundation for Research, Science and Technology (FRST).

TABLE OF CONTENTS

1	INNO	VATION: THE KEY TO BUSINESS SURVIVAL	1
	1.1 INT	RODUCTION	1
	1.1.1	Technological Innovation	1
	1.1.2	The New Zealand Innovation Environment	2
	1.1.3	Thesis Outline	3
	1.2 TEC	CHNOLOGICAL INNOVATION	4
	1.2.1	The Product Development Process	6
	1.2.2	Technological Capability	7
	1.2.3	Research and Development	8
	1.3 SUP	PORTING INNOVATION IN BUSINESSES	9
	1.3.1	Investments by the New Zealand Government	9
	1.3.2	Structure of the New Zealand Research, Science and Technology Environment	10
	1.3.3	The Technology New Zealand Scheme (TechNZ)	11
	1.3.4	The Technology for Business Growth Programme	12
	1.4 ABG	OUT THIS RESEARCH STUDY	13
	1.5 RES	EARCH OBJECTIVES	13
	1.6 ABG	OUT THIS THESIS	14
2	THE I	PROCESS OF TECHNOLOGICAL INNOVATION	15
	2.1 INT	RODUCTION	15
	2.1.1	Technology - Key Driving Force in Today's Manufacturing Industry	
	2.2 TEC	HNOLOGICAL INNOVATION	
	2.2.1	Types of Innovation	19
	2.2.2	Sources of Innovation	20
	2.2.3	The Measurement of Innovative Successes	21
	2.2.4	Management of Innovation	23
	2.2.5	Successful Innovation	24
	2.3 PRO	DUCT DEVELOPMENT: THE KEY TO TECHNOLOGICAL INNOVATION	25
	2.3.1	The Product Development Process	25
	2.3.2	The Benefits of Formal Product Development Processes	28
	2.3.4	Success Factors for Product Development	29
	2.3.5	Management of Product Development Activities	30
	2.4 TEC	THNOLOGICAL CAPABILITY	30
	2.4.1	Characteristics of Technological Capability	31
	2.4.2	Development of Technological Capabilities	35
	2.5 RES	EARCH AND DEVELOPMENT	36
	2.5.1	Measuring R&D Benefits	37
	2.5.2	Factors for Successful R&D	40

	2.	.5.3	Risks Involved with R&D	. 42
	2.	.5.4	R&D in New Zealand	. 43
	2.6	RESE	ARCH COLLABORATION	. 44
	2.	.6.1	Benefits from Research Collaboration	. 45
	2.	.6.2	Success Factors for Research Collaboration.	. 46
3	R	ESEA	RCH METHODOLOGY	. 47
	3.1	GEN	ERAL APPROACH TO THE RESEARCH	. 47
	3.2	CASI	STUDIES	. 48
	3.	.2.1	Objectives of the Case Studies	. 48
	3.	2.2	Selection of Companies for Case Studies	. 48
	3.	2.3	Design of the Case Study Questionnaire	. 48
	3.	2.4	Interview Techniques	. 49
	3.	2.5	Analysis of Case Study Results	. 50
	3.3	THE	QUESTIONNAIRE SURVEY	. 50
	3.	.3.1	Aims of the Questionnaire Survey	. 50
	3.	3.2	Selection of Companies for Questionnaire Survey	. 50
	3.	.3.3	Design of the Questionnaire Surveys	. 51
	3.	3.4	Analysis of Questionnaire Results	. 52
	3.4	Етні	CS AND CONFIDENTIALITY	. 53
	3.5	RESP	ONSE RATES OF CASE STUDY AND QUESTIONNAIRE GROUPS	. 53
	3.6	Сна	RACTERISTICS OF COMPANIES IN SAMPLES	. 53
	3.7	Сом	PANY PROFITS	. 55
	3.8	EXPO	ORT PRODUCTION	. 55
	3.9	RESE	ONDENT DEMOGRAPHICS	. 57
	3.10	RESE	ARCH OUTLINE	. 58
4	R	ESUL	TS AND DISCUSSION: TECHNOLOGICAL CAPABILITY AND THE IMPA	СТ
			G	
	4.1	INTE	ODUCTION	50
	4.2		NITION OF TECHNOLOGICAL CAPABILITY	
	4.3		NGES IN COMPANY PROCESSES	
	.0.5 80	3.1	Age of Plant and Equipment	
	4.4		RACTION BETWEEN R&D STAFF AND OTHER FUNCTIONAL GROUPS	
	4.5		EFITS DELIVERED BY THE TECHNZ SCHEME	
	4.6		CCT OF TECHNZ INVESTMENTS ON TECHNOLOGICAL CAPABILITY AND INNOVATION	. 00
	,		IIN COMPANIES	. 66
	4.7		OVEMENTS AND SUGGESTIONS FOR THE TECHNZ SCHEME	
	4.8		NTION TO UNDERTAKE FUTURE TECHNZ PROJECTS	
	4.9		PANY VIEWS ON KEY ISSUES	
			Case Study Companies	. 72

	4.	9.2 Questionnaire Group	73
	4.10	AWARENESS OF TECHNZ.	73
	4.11	SUMMARY OF FINDINGS	75
5	R	ESULTS AND DISCUSSION: PRODUCT DEVELOPMENT	77
	5.1	Introduction	77
	5.2	INNOVATIVENESS OF COMPANIES	
	5.3	USE AND IMPORTANCE OF THE PRODUCT DEVELOPMENT MODEL	
	5.4	COMPARISON OF PRODUCT DEVELOPMENT STAGES WITH OTHER RESEARCH	
	5.5	OBJECTIVES FOR DEVELOPMENT OF PRODUCTS	
	5.6	Sources of New Product Ideas	
	5.7	NEW PRODUCT DEVELOPMENT SUCCESS FACTORS	
	5.8	TECHNICAL AND COMMERCIAL SUCCESS OF NEW PRODUCTS	
	5.9	PROBLEMS INHIBITING PRODUCT DEVELOPMENT	
	5.10	IMPORTANCE OF TECHNOLOGICAL INNOVATION FOR AN INCREASE IN MARKET SHARE	
	5.11	SUMMARY OF FINDINGS	
_			
6	K	ESULTS AND DISCUSSION: RESEARCH AND DEVELOPMENT	93
	6.1	Introduction	93
	6.2	QUANTIFIABLE BENEFITS OF R&D INVESTMENT	93
	6.3	ADDITIONAL R&D INVESTMENT AND EXPECTED BENEFITS	95
	6.4	MARKET POSITION AND R&D INVESTMENT	97
	6.5	R&D ACTIVITIES	99
	6.6	SUMMARY OF FINDINGS	100
7	C	ONCLUSION: TECHNOLOGICAL INNOVATION	102
	7.1	INTRODUCTION	102
	7.2	TECHNOLOGICAL CAPABILITY AND THE IMPACT OF TECHNZ	102
	7.3	PRODUCT DEVELOPMENT	105
	7.4	RESEARCH AND DEVELOPMENT	106
	7.5	TECHNOLOGICAL INNOVATION: THE OVERALL CONCLUSIONS	108
	7.6	RECOMMENDATIONS	109
	7.7	FUTURE RESEARCH	109
B	BLIC	GRAPHY	110
A	PPEN	DIX I: LETTER OF INTRODUCTION FOR CASE STUDY RESPONDENTS	121
Α.	PPFN	DIX II: INFORMATION SHEET FOR CASE STUDY AND QUESTIONNAIRE	
		CIAPANTS	122
	11(11(24.4.4.4.5.0	122
Α.	PPEN	DIX III. CASE STUDY INTERVIEW OUESTIONS	125

APPENDIX IV: CASE STUDY REPORTS	30
APPENDIX V: DEMOGRAPHICS OF CASE STUDY AND QUESTIONNAIRE RESPONDENTS	S
	31
APPENDIX VI: LETTER OF INTRODUCTION FOR QUESTIONNAIRE RESPONDENTS 18	32
APPENDIX VII: FULL VERSION OF QUESTIONNAIRE SURVEY 18	33
APPENDIX VIII: SHORTENED VERSION OF QUESTIONNAIRE SURVEY)5
APPENDIX IX: QUESTIONNAIRE SURVEY RESULTS	15
APPENDIX X: FREOUENCY OF USE OF THE PRODUCT DEVELOPMENT MODEL	35

LIST OF FIGURES

FIGURE 1-1	TECHNOLOGICAL INNOVATION FRAMEWORK	5
FIGURE 2-1	THE DYNAMICS OF THE TECHNOLOGICAL INNOVATION ENGINE	17
FIGURE 2-2	THE TECHNOLOGICAL INNOVATION FRAMEWORK	18
FIGURE 2-3	CHARACTERISTICS OF TECHNOLOGICAL CAPABILITY (DODGSON AND BESSANT,	
	1996)	32
FIGURE 2-4	THE TECHNOLOGICAL CAPABILITY MODEL (ARNOLD AND THURIAUX, 1997)	33
FIGURE 2-5	DEVELOPMENT MODEL OF TECHNOLOGICAL CAPABILITY (ARNOLD AND	
	Thuriaux, (1997)	35
FIGURE 2-6	MEASUREMENT OF UNCERTAIN ACTIVITIES OF AN R&D DEPARTMENT	
	(Kurstedt, 1995)	39
FIGURE 5-1	COMPARISON OF PRODUCT DEVELOPMENT STAGES WITH PREVIOUS	
	RESEARCH	32

LIST OF TABLES

TABLE 2-1	STRATEGIC ADVANTAGES THROUGH INNOVATION (TIDD ET AL., 1997)	19
TABLE 2-2	THE 13-STAGES OF THE PRODUCT DEVELOPMENT PROCESS (COOPER AND	
	Kleinschmidt, 1986)	27
TABLE 3-1	BACKGROUND INFORMATION TO COMPANIES	54
TABLE 3-2	TURNOVER INFORMATION OF COMPANIES	55
TABLE 3-3	TOTAL PRODUCTION FOR EXPORT (N=23)	55
TABLE 3-4	EXPORT MARKETS FOR QUESTIONNAIRE RESPONDENTS	
	(N=21)5	56
TABLE 3-5	DEMOGRAPHICS OF CASE STUDY AND QUESTIONNAIRE RESPONDENTS	57
TABLE 4-1	AVERAGE RATING FOR TECHNOLOGY & PRODUCTION CHANGES AND	
	Management System Changes for Both Groups	51
TABLE 4-2	AVERAGE RATING FOR AGE OF PLANT AND EQUIPMENT	52
TABLE 4-3	PERCENTAGE OF COMPANIES THAT GAINED EXPECTED BENEFITS	54
TABLE 4-4	PERCENTAGE OF COMPANIES WHO GAINED UNEXPECTED BENEFITS	55
TABLE 4-5	QUESTIONNAIRE RESPONDENTS' OVERALL IMPRESSION OF THE SCHEME	58
TABLE 4-6	RESULTS TO DECLINED FUNDING	14
TABLE 5-1	USAGE AND IMPORTANCE OF THE PRODUCT DEVELOPMENT PROCESS	30
TABLE 5-2	OBJECTIVES FOR DEVELOPMENT OF PRODUCTS	34
TABLE 5-3	SOURCES OF NEW PRODUCT IDEAS	36
TABLE 5-4	SUCCESS FACTORS FOR NEW PRODUCT DEVELOPMENT	38
TABLE 5-5	TECHNICAL AND COMMERCIAL SUCCESS RATES OF COMPANIES' PRODUCTS	
	(OVER LAST FIVE YEARS)	39
TABLE 5-6	PROBLEMS INHIBITING PRODUCT DEVELOPMENT ACTIVITIES	0
TABLE 5-7	IMPORTANCE OF TECHNOLOGY INNOVATION FOR INCREASING MARKET	
	Share9	1
TABLE 6-1	BENEFITS FROM ADDITIONAL R&D INVESTMENT (QUESTIONNAIRE	
	GROUP)9	16
TARIF 6-2	IMPORTANCE OF R&D ACTIVITIES	00