Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

# PHYLOGENETICS, DIVERGENCE AND MORPHOLOGY OF NEW ZEALAND ELEOTRIDAE (GOBIOMORPHUS GILL) 

A thesis
presented in partial fulfilment of the requirements for the Degree
of
Master of Science in Ecology
at

Massey Iniversity, Palmerston North
New Zealand
by
Emily Atkinson

## ABSTRACT

The genus Gobiomorphus Gill (1863) is the only representative freshwater Eleotridae in New Zealand and is comprised of seven species, of which four are diadromous. The species are endemic to New Zealand and are widespread around lowland streams and coasts (with non-diadromous species penetrating further inland). The only other Gobiomorphus species are G. coxii and G. australis, which are endemic to Australia. Eleotridae are stocky fishes of small size (up to 150 mm in length) (McDowall, 1990) and are characterised by two dorsal fins, large pectoral fins, separate thoracic pelvic fins (fused in gobies) and the absence of a lateral line (McDowall, 1990; Allen et al., 2002).

Gobiomorphus has had a particularly turbulent taxonomic history in the literature, spanning approximately 150 years from Gill (1863) to the present, where many species have been synonymised with one another (particularly, most Gobiomorphus species were synonymised with G. gobioides) due the plasticity of many morphological characters. Additionally, similar morphologies have led to identification difficulties. Phenotypic plasticity can also make cladistic approaches difficult (e.g. Vrijenhoek, 1998; Orti et al., 1994), for example there has been a lot of controversy surrounding G. alpinus and its species status. Furthermore, studies of evolution using morphological characters often lack an accurate perspective on relationships and origins of fish species, in particular, little information exists on the evolutionary origins of the Gobiomorphus genus. Genetic studies have contributed to resolving problems with taxonomically difficult groups by detecting diversity between morphologically similar species (where DNA variation is often not expressed phenotypically), and examining geographical divergence within species (e.g. Vrijenhoek, 1998; Kocher et al., 1989). Thus, this thesis employed two regions of mitochondrial DNA (cytochrome $b$ and control region) to resolve issues surrounding species identification, morphological variation, phylogenetic relationships (including divergence), origins and the evolution of diadromy within the Gobiomorphus group.

Mitochondrial DNA sequences were obtained from all seven Gobiomorphus species in New Zealand, as well as from both Australian Gobiomorphus. The morphology of both $G$. basalis and G. breviceps in the lower North Island was also examined. The results suggested that the Australasian Gobiomorphus are a polyphyletic group, although with the exclusion of G. australis the rest of the species formed a
monophyletic group. The Australian group formed a polyphyletic group basal to the New Zealand monophyletic group. Gobiomorphus hubbsi, a diadromous species was found to be a sister group to the New Zealand Gobiomorphus. Clock calibrations indicated that the New Zealand and Australian groups have been isolated for about 6-37 Myr, suggesting that the New Zealand species dispersed here (in a single event) from Australia post-Gondwana break-up. These results are discussed in terms of New Zealand's geological history. Once in New Zealand there was a series of radiations; the most recent radiation produced the non-diadromous species ( $G$. breviceps, and a $G$. basalis, G. cotidianus (although not all populations are diadromous) and G. alpinus species complex). Furthermore, G. huttoni and G. gobioides (both diadromous) formed a monophyletic group that is part of the first radiation, indicating that diadromy is a primitive feature of Gobiomorphus.

Mitochondrial DNA accurately distinguished between G. breviceps and $G$. basalis (suggesting a genetic basis to morphological variation), and coupled with morphological data, identified pectoral fin ray counts as the best quantitative character for differentiating the species. However, within species high morphological variation was observed that did not fit expected patterns of geographical divergence. Limited time periods may have obscured subtle morphological divergence between catchments. Mitochondrial DNA revealed some unique haplotypes within both catchments, whereas some catchments shared identical haplotypes. The lack of divergence between catchments may have been due in part to connections during the Pleistocene, whereas populations with unique haplotypes may have been isolated for a greater length of time.

Collectively, these studies highlighted the usefulness of mitochondrial DNA for exploring; phylogenetic relationships (including divergence) and solving problems with taxonomically difficult groups, and origins of fish species. Furthermore, the use of molecular data coupled with morphological data can be used to aid in the improvement of identification of morphologically similar species.

## PREFACE and ACKNOWLEDGEMENTS

Each chapter has its own acknowledgements section. Here I thank those people whose assistance was not specific to any one chapter of this thesis.

First I would like to thank my supervisor, Dr Michael Joy for providing excellent guidance throughout the long and often difficult journey that a thesis can often be. I would also like to thank Mike for his humour (although often very dry) and for the 'counselling' sessions that myself and other students made full use of! Furthermore, I would like to thank my co-supervisors Dr Mark Stevens and Dr Russell Death. Thankyou Mark for your excellent tutoring and crash course in genetic analysis; from the laboratory work to the write-up. Without you I do not think my thesis would have been so interesting! Russell you have my gratitude for the help that you gave me early on during my undergraduate study. You are the one that facilitated my interests in freshwater ecology and helped me plan my future career, which is turning out to be rather fun! Without you I may not have realised my aims in life.

I would also like to acknowledge the support given to me by the Julie Alley bursary, which gave me some much needed financial aid.

I am also very grateful to the other post-graduate students around the ecology department (as well as a few in the Allan Wilson Centre) who provided many hours of entertainment, especially during lunch breaks that may have at times gone on for a little too long! Having people in the same boat as you also helps you stay sane and focussed. Angela, thank-you for your guidance and providing for me with an outlet when things got a little frustrating! I also really enjoyed those coffee breaks (which often went a little longer than planned) even when we didn't actually get coffee, and I hope we will always find the time to sit down together every once in awhile. I also must thank Richard Seaton for sharing his office with me, especially as I gave him so much cheek! One day Richard you'll be able to get me back (how does the score stand? 100 to me and 1 to you I think!).

The support provided by the rest of the staff in Ecology has been phenomenal. A big thank-you goes to all the technicians for helping with field work and anything else I needed, and also to the office staff who provided so much help on so many levels. I would also like to thank the rest of the lecturers in the department for many helpful comments on my project and for giving me the encouragement I often needed. During
my time in Ecology I also really enjoyed the morning tea shouts (at which all postgraduate students could be found!), which provided me with much sustenance. Long live the morning tea shouts!

To my Mum and Dad; thank-you so much for everything you have done for me, without you I could not have achieved what I have. Your love, support and confidence in my ability has meant the world to me. My achievements are yours to be proud of too. Thank-you also to my siblings (James, Melissa, Claire and Benjamin) for just being there and for fun chats on the phone. Nanna, Grandad, and my many Aunties and Uncles have also contributed; they have always provided me with support and shown a strong interest in what I am up to, so for that I thank-you. My cat Mia has also helped in her own way. Her constant need for my attention and loud purrs have reminded me to think beyond my own problems and needs.

Last, but certainly not least a big thanks goes to my partner Mike Ushaw, who has been infinitely patient with me and provided me with much love and support, which is essential when completing a task such as a thesis. Cheers for sticking around, especially as I may not have always been in the best mood! I would also like to thank Mike's family who have treated me as one of their own and taken me into the fold. This has been especially wonderful, as my own family is in the South Island, so it is nice to know I have support in the North!

If I have forgotten anyone, my apologies; many people contribute in positive ways to your life, but it is very difficult to thank everyone, but I think I have covered the main ones.

## TABLE of CONTENTS

ABSTRACT ..... i
PREFACE and ACKNOWLEDGEMENTS ..... iii
LIST of TABLES ..... vii
LIST of FIGURES ..... vii
LIST of APPENDICES ..... ix
THESIS INTRODUCTION ..... 1
Literature Cited ..... 5
CHAPTER I - PHYLOGENY OF NEW ZEALAND AND AUSTRALIAN ELEOTRIDAE WITH A FOCUS ON GOBIOMORPHUS .....  8
Abstract ..... 9
Introduction ..... 10
Materials and Methods ..... 13
Specimen collection ..... 13
DNA analyses ..... 17
Data analyses ..... 18
Results. ..... 19
Cytochrome b ..... 19
Control region ..... 24
Discussion. ..... 28
Conclusions ..... 34
Acknowledgements ..... 36
Literature Cited ..... 37
CHAPTER II - GENES AND MORPHOLOGY: A COMPARATIVE EXAMINATION OF G. BREVICEPS AND G. BASALIS IN THE LOWER NORTH ISLAND, NEW ZEALAND ..... 45
Abstract ..... 46
Introduction ..... 47
Materials and Methods ..... 49
Specimen collection ..... 49
DNA analyses. ..... 51
Morphological analyses ..... 52
Data analyses ..... 52
Results ..... 54
Molecular analysis ..... 54
Morphological analysis ..... 59
Discussion ..... 65
Conclusions. ..... 68
Acknowledgements ..... 70
Literature Cited ..... 71
THESIS CONCLUSION ..... 75
Future Research ..... 78
Literature Cited ..... 80
Appendices ..... facing page 82

## LIST of TABLES

TABLE I. 1 Sampling locations for all specimens throughout New Zealand and Australia (see also Smith et al., 2005; Akihito et al., 2000 and Thacker \& Hardman, 2005). [ ] indicate sequences yet to be placed on GenBank, numbers indicate number of sequences for each mtDNA region, and (-) no sequences for the region. *- sequenced by M. Stevens and B. Hicks (unpublished data), all others collected for the purpose of this study. Sequences with GenBank accession numbers: AY644-Smith et al. (2005); AY722 - Thacker \& Hardman (2005); ABO212 - Akihito et al. (2000).

TABLE I. 2 The 375 variable sites for cytochrome $b$ region for Gobiomorphus. Locations are indicated using location codes from Table 1. Identical character states are indicated by dots. A - Gobiomorphus gobioides $\qquad$ facing page 20

TABLE I. 3 Sequence divergence (both regions of mtDNA) between G. coxii and the extant New Zealand Gobiomorphus taxa.

TABLE I. 4 The 368 variable sites for control region sequences for Gobiomorphus. Locations are indicated using codes from Table 1. Identical character states are indicated by dots. $\mathrm{A}=G$. gobioides . $\qquad$ facing page 24

TABLE II. 1 Variable sites. The first set of variable sites is the cytochrome $b$ sequences and the second is the control region sequences. Locations where each haplotype was found are indicated using location codes from fig. 3 and haplotypes are given a single letter code (i.e. A,B etc.). Identical character states are indicated by dots. The (-) indicates a deletion $\qquad$ facing page 55

TABLE II. 2 Canonical coefficients for each morphological character showing relative importance of each variable for discriminating the three species .60

## LIST of FIGURES

FIGURE I. 1 Map showing relative locations of regions in New Zealand and Australia.................................................................................................. 14

FIGURE I. 2 Maximum likelihood phylogram based on the substitution model GTR+ $\mathrm{I}+\mathrm{G}(-\mathrm{InL}=4408.8896$; base frequencies set to $\mathrm{A}=0.2951, \mathrm{C}=0.3741, \mathrm{G}=0.0970, \mathrm{~T}$ $=0.2338$ ) derived from Modeltest vers. 3.7 (see methods), using a 377-bp fragment of
the mitochondrial DNA (cytochrome $b$ ) gene using only unique sequences. Bootstrap confidence limits ( 500 replicates) shown above nodes. Codes are those used in Table 1. Number of identical haplotypes present at any site is given in parentheses. Symbols indicate life history patterns; open circle $=$ non-diadromous, closed circle $=$ diadromous, half circle $=$ presence of both life history patterns. G. huttoni species in bold is Chatham Island haplotype. $\mathrm{A}-\mathrm{N} / \mathrm{KR}(2)$, W/WR(1), BOP/LT(2), BOP/RR(3), BOP/KR(1), $\mathrm{NE} / \mathrm{M}(3), \mathrm{EC} / \mathrm{G}(3), \mathrm{M} / \mathrm{N}(2), \mathrm{WC} / \mathrm{CR}(2) . \mathrm{B}-\mathrm{N} / \mathrm{SS}(1)$, W/M(3), M/N(5), WC/LB(2). C - N/KR(1), N/LN(3), N/N(3), N/LW(3), N/WR(2), W/M(1). D - M/T(8), M/W(1), M/TS(9), M/K(12), M/M(1), Wa/K(7), Wa/WR(1), Wa/H(2), Wa/M(1), We/K(2), We/ES(1). E - N/KR(2), N/WR(2), N/Mi(2), N/M(1), N/US(2), W/M(2)................. 23

FIGURE I. 3 Maximum likelihood phylogram based on the substitution model $\mathrm{HKY}+\mathrm{I}+\mathrm{G}(-\mathrm{InL}=2123.9351$; base frequencies set to $\mathrm{A}=0.3922, \mathrm{C}=0.1775, \mathrm{G}=$ $0.1356, T=0.2947$ ) derived from Modeltest vers. 3.7 (see methods), using a 384-bp fragment of the mitochondrial DNA (control region) gene using only unique sequences. Bootstrap confidence limits ( 500 replicates) shown above nodes. Codes are those used in Table 1. Number of identical haplotypes present at any site is given in parentheses. Symbols indicate life history; open circle $=$ non-diadromous species, closed circle $=$ diadromous species, half circle $=$ presence of both life history patterns. G. huttoni in bold is the Chatham Island haplotype27

FIGURE II. 1 The location of the sites sampled for bullies in the Wellington,
Manawatu and Wairarapa regions, North Island, New Zealand............................... 50
FIGURE II. 2 Examples of photos used to count fin rays...................................... 53
FIGURE II. 3 Haplotype network (neighbour joining with 100 bootstraps) showing mtDNA haplotypes and their relative connections, with bootstrap support. Data from:
(A) G. basalis (B) G. breviceps 58

FIGURE II. 4 Discriminant analysis of all three species based on morphological data. The species form three distinct clusters with some overlap. $\mathrm{Up}=G$. breviceps, $\mathrm{Cr}=G$. basalis and $\mathrm{Co}=G$.
cotidianus.60

FIGURE II. 5 Scatter plot using the two best discriminating features (pectoral fin ray counts and anal fin ray counts) from canonical discriminant analysis, showing three fairly distinct species groups
FIGURE II.6a Canonical discriminant analysis of the three G. basalis locations using morphological data (all 5 variables). Each point represents individual specimens. Location: Cirele $=$ Ngturoa; triangle $=$ Turitea: diamond $\approx$ Kopuaranga
FIGURE 1I.6b Canonical discriminant analysis of the seven locations using $G$. breviceps morphological data (all 5 variables). Each point represents individual specimens

FIGURE 1I. 7 Canonical Discriminant analysis of the three catchments based on ( $B$. breviceps morphological data (all 5 variables). The three catchments overlap considerably. Catchment: Open circle $=$ Manawatu: closed circle $=$ Wellington: triangle = Wairarapa

## I.IST of APPENDICES


#### Abstract

APPENDIX I Genetic distance based on sequence variation in the 105 unicue mtI NA cytochrome $b$ sequences for Gohiomorphus. Lower triangle is uncorrected distances and upper triangle is maximum likelihood distances. Location codes refer to those used in Table I. A - Gohiomorphus gohioides...........................acing page 82


APPENDIX II Genetic distance based on sequence variation in the 56 unique $m \mathrm{mD} \Lambda$ control region sequences for Gohiomorphus. Lower triangle is uncorrected distances and upper triangle is maximum likelihood distances. I ocation codes refer to those used in Table 1. $\mathrm{A}=\mathrm{C}$. gobioides: $\mathrm{B}=(\mathrm{C}$. hubhsi. facing page 86

APPENDIX III Uncorrected genctic distances based on sequence variation in 21 mtDNA sequences for (i. basalis. Location codes refer to those used in Figure 1
facing page 90
APPENDIX IV Uncorrected genetic distance based on sequence variation in the 57 mIDNA sequences for (i. breviceps. Location codes refer to those used in Figure 1 $\qquad$

## THESIS INTRODUCTION

The freshwater bullies of New Zealand form part of the genus Gobiomorphus Gill, 1863 (Eleotridae), which consists of nine species to date. The name Gobiomorphus can be broken down into two parts, with Gobio recognising the similarity between them and the European gudgeon Gobio gobio and morphus taken from the Latin word representing form or shape (McDowall, 1990). They are stocky fishes of small size (up to 150 mm in length) and are characterised by two dorsal fins, large pectoral fins, separate thoracic pelvic fins (fused in gobies) and the absence of a lateral line (McDowall, 1990; Allen et al., 2002). The bullies are widely distributed throughout New Zealand and two species (G. coxii (Cox's gudgeon) and G. australis (striped gudgeon)) are endemic to Australia and found on the Victorian south-eastern coast. The species occupy both brackish- and inland fresh-water habitats and are typically benthic, feeding on small aquatic invertebrates. While some members of the genus spend their entire life cycle in freshwater, four of the seven New Zealand species are diadromous, where part of their life cycle is spent in salt water. In particular, New Zealand Gobiomorphus are amphidromous (a form of diadromy) where the larvae migrate out to sea for a feeding phase before returning as juveniles to freshwater (McDowall, 1998).

Morphological characters have been used historically in systematics, however, several characteristics (e.g. fin ray numbers) that have been used to describe fish are often phenotypically plastic, where morphology tends to reflect the environmental conditions. This has made cladistic approaches difficult (Vrijenhoek, 1998; Orti et al., 1994). Thus, in the early literature many species were not recognised (most species were originally described as the one species; G. gobioides) due to their similar morphology. Additionally, little information exists on the evolutionary origins of this genus, including explanations regarding how Gobiomorphus reached New Zealand, where the Eleotridae family is at southern-most limit (McDowall, 1975). However, many genetic studies have contributed to resolving problems with taxonomically difficult groups by detecting diversity between morphologically similar species (where DNA variation is often not expressed phenotypically), and examining geographical divergence within species (e.g. Vrijenhoek, 1998; Kocher et al., 1989). In particular, mitochondrial DNA (mtDNA) has allowed for high resolution analyses of populationlevel questions in many species of fishes (Orti et al., 1994), and has provided insights
into the origins, evolution and phylogenetics of many New Zealand fishes including Galaxiidae and Gobiomorphus (e.g. Waters et al., 2000; Smith et al., 2005). Thus, this thesis consists of two chapters dealing with genetic species identification, morphological variation, phylogenetic relationships (including divergence), origins and the evolution of diadromy within the Gobiomorphus group.

Chapter I utilised two regions of mitochondrial DNA (control and cytochrome $b$ regions) to examine and resolve phylogenetic relationships within the Gobiomorphus genus and examine the relationship between Gobiomorphus, Philypnodon and Eleotris. Additionally, this chapter aimed to provide an understanding of the somewhat contentious view of species origins for this Australasian group, with a special focus on the New Zealand species and the evolution of diadromy.

Although five out of the seven currently recognised species were recognised in the early literature, there were some difficulties with identification. For example, Gobiomorphus was once considered part of the Eleotris and Philypnodon genera-G. gobioides (giant bully), G. huttoni (redfin bully), and G. basalis (Cran's bully) (G. cotidianus (common bully) was not described until 1975 by McDowall) were all part of the genus Eleotris before being moved to Gobiomorphus in the late 1800's; G. hubbsi (bluegill bully) and G. breviceps (upland bully) were part of the genus Philypnodon before being placed in Gobiomorphus in the 1960's. Chapter I aimed to address the confusion surrounding genetic species identification (and thus bully systematics) in New Zealand by applying phylogenetic analyses to this species group.

Additionally, while the origin of typically migratory New Zealand Galaxiidae has been well studied, with species distributions assigned as being either dispersal- or vicariance-driven (McDowall, 2002; Waters \& Burridge, 1999), little is known of the origins of Gobiomorphus in New Zealand. However, some authors have suggested a role for dispersal in creating current Gobiomorphus distributions. For example, McDowall (1975) suggested that Gobiomorphus may have reached New Zealand via dispersal in prevailing ocean currents, and believes that G. coxii is ancestral to or has common ancestry with New Zealand Gobiomorphus. Meanwhile, Thacker and Unmack (2005) examined the origins of the Australian Hypseleotris species whose widespread distribution encompasses South Africa, Japan, Southeast Asia and Australia, and suggested that this species dispersed from Southeast Asia via marine environments before invading freshwaters in Australia. These findings highlight the dispersal potential of fish species within the Eleotridae family. However, Gobiomorphus origins may
alternatively fit the vicariance theory such that current distributions may be a result of Gondwanan plate tectonics and speciation. Therefore, Chapter I also aims to examine this 'dispersal vs. vicariance' issue by examining which of these methods resulted in Gobiomorphus colonising New Zealand, and determining whether this involved single, or multiple dispersal events (if Gobiomorphus distribution is dispersal-driven). Finally, Chapter I examines the evolution of diadromy in Gobiomorphus. The presence of a saltwater-tolerant phase in diadromous fish species that allows dispersal has led to the belief that ancestry for these species must be marine. This has been argued against by McDowall (2004) who believes that diadromy simply implies an ancestry to other diadromous species elsewhere rather than a purely marine ancestry. To further complicate the issue, the genus Rhyacichthys is exclusively freshwater and is basal to the Eleotridae (Akihito et al., 2000; Thacker \& Hardman, 2005), possibly indicating a freshwater ancestry for Gobiomorphus, and suggesting that non-diadromous bullies should have a more basal position within species groups than diadromous bullies. Alternatively, diadromy may be an ancestral character, which appears to be the case for galaxiid fishes, where the presence of a marine phase is found in the basal members of clades, but is absent in more derived species (Waters et al., 2000). Potentially diadromous species in the New Zealand Gobiomorphus could belong in basal position within the Gobiomorphus group, with non-diadromous species being of more recent descent. Therefore, placement of species on phylogenetic trees will help to infer ancestry or derivation of diadromy in Gobiomorphus.

Chapter II focuses on the identification and divergence of two non-migratory, morphologically similar species ( $G$. breviceps and G. basalis) in the lower North Island of New Zealand. Gobiomorphus breviceps has a widespread distribution in New Zealand, encompassing the South Island as well as lower North Island's Manawatu, Wairarapa and Wellington regions (McDowall, 1990). Conversely, G. basalis has a widespread yet intermittent distribution in the North Island that reaches its southern limit at Wellington (McDowall, 2000). Both species occupy a variety of habitats at low altitudes (McDowall, 1975; 1990; 2000). The two species are sexually dimorphic; the adult males often have bright and distinct colouration that the females and juveniles lack. Colouration is often used as a diagnostic tool and is useful for identifying male bullies, but can cause complications when females and juveniles are being compared in situ. The overlap in distribution of the two species has led to confusion in the identification of females and juveniles in the lower North Island, which is further
confounded by the presence of G. cotidianus (common bully) a morphologically similar species.

Morphological characters including body ratios and serially repeated structures such as fin rays (Christiansen et al., 1988) allow species to be further distinguished. However, they may be strongly influenced by environmental factors, causing variation in populations (Smith et al., 2003; King et al., 2003). For example, G. alpinus (Tarndale bully) occupies an extreme high-altitude environment and has the lowest number of first dorsal spines for Gobiomorphus, which Smith et al. (2003) suggest may be the result of the cold water that the species live in. The large variation in meristic counts (e.g. fin ray counts) observed between populations in G. basalis and G. breviceps may also be a result of environmental influence. For example, G. breviceps have 4-7 first dorsal spines and $G$. basalis have 6-8 first dorsal spines. This overlap in fin ray counts between $G$. breviceps and $G$. basalis can make identification of species difficult.

Therefore, this chapter aimed to utilise the control and cytochrome $b$ regions of mtDNA to accurately distinguish between G. breviceps and G. basalis. Upon species identification, meristic information is applied to individuals in order to identify diagnostic morphological characters. Additionally, the genetic and morphological information for both species is used to examine divergence (both genetic and morphological) to ascertain geographical patterns. It is thought that there would be genetic and morphological divergence between catchments, as there will be no dispersal (non-diadromous species), and there would be no genetic or morphological divergence within catchments as dispersal would be possible.

Collectively, the two chapters of this thesis address the phylogenetic relationships, origins and evolution of diadromy in Gobiomorphus, as well as resolving issues surrounding identification and morphological variation. This work demonstrates how genetic data can be used to resolve difficult taxonomic questions, and clarify evolutionary patterns and origins in fish species. The thesis concludes with an overall summary, and then addresses priorities for future research.

## LITERATURE CITED

Akihito, Iwata, A., Kobayashi, T., Ikeo, K., Imanishi, T., Ono, H., Umehara, Y., Hamamatsu, C., Sugiyama, K., Ikeda, Y., Sakamoto, K., Fumihito, A., Ohno, S. \& Gojobori, T. (2000). Evolutionary aspects of gobioid fishes based upon a phylogenetic analysis of mitochondrial cytochrome $b$ genes. Gene 259: 5-15.

Allen, G. R., Midgley, S.H., Allen, M. (2002). Field guide to the Freshwater Fishes of Australia. Perth, Western Australian Museum.

Christiansen, F. B., Nielsen, V.H., Simonsen, V. (1988). Genetics of Zoarces populations XV. Genetic and morphological variation in Mariager Fjord. Hereditas 109: 99-112.

Gill, T. (1863). On the gobioids of the eastern coast of the United States. Proceedings of the Academy of Natural Sciences, Philadelphia 5: 267-271.

King, K. J., Young, K.D., Waters, J.M. \& Wallis, G.P. (2003). Preliminary genetic analysis of koaro (Galaxias brevipinnis) in New Zealand lakes: Evidence for allopatric differentiation among lakes but little population subdivision within lakes. Journal of the Royal Society of New Zealand 33(3): 591-600.

Kocher, T.D., Thomas, W. K., Meyer, A., Edwards S.V., Pääbo, S. Villablanca F.X., Wilson A.C. (1989). Dynamics of Mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proceedings of the Academy of Natural Sciences. 86: 6196-6200.

McDowall, R. M. (1975). A Revision of the New Zealand species of Gobiomorphus (Pisces: Eleotridae). National Museum of New Zealand Records 1(1): 1-32.

McDowall, R. M. (1990). New Zealand freshwater fishes: A natural history and guide. Auckland, Heinemann Reed MAF Publishing group.

McDowall, R.M. (1998). Driven by diadromy: its role in the historical and ecological biogeography of the New Zealand freshwater lish fauna. Itchian Joumal of Zoolog 65. suppl: 73-85.

McDowall. R. M. (2000). The Reed Field Guide to New Zealand Freshwater Fishes. Auckland. Reed Publishing.

McDowall, R. M. (2002). Accumulating evidence for a dispersal biogeography of southern cool temperate freshwater fishes. Jominal of Biogeography 29: 207219.

McDowall. R. M. (200+). Ancestry and amphidromy in island freshwater fish fanas. Fish and Fisheries 5: 75-85.

Orti ( F . Bell. M. A.. Remehen. T.E.. Meyer. A. (1994). Global Survey of Mitochondrial DNA Sequences in the Threespine Stichleback: Evidence for Recent Migrations. Erolution 48(3): 608-622.

Smith. P. J.. McVeagh. S.M.. Altibone. R. (2003). The Tarndale bully revisited with molecular markers: an ecophenotype of the common bully Gobiomorphus cotidiamus (Pisces: Gobiidae). Iournal of the Royal Soctety of New Zeatand 33(3): 663-673.

Smith. P. J. Mc Veagh, S.M., Allibone, R. (2005). Extensive genetic differentiation in Gobiomorphus breviceps from New Zealand. Journal of Fish Biolog' 67: 627639.

Thacker, C., Hardman, M.A. (2005). Molecular phylogeny of basal gobioid tishes: Rhyacichthyidae, Odontobutidae, Xenisthmidac. Eleotridae (Teleostei: Perciformes: Gobioidei). Molecular Phylogenefics and Evolution 37: 858-871.

Thacker. C.. Unmack, P.J. (2005). Phylogeny and Biogeography of the Eleotrid Genus Hypseleotris (Teleostei: Gobioidei: Eleotridae), with Redescription of H. cyprinoides. Records of the Australian Museum 57(1): 1-13.

Vrijenhoek, R. C. (1998). Conscrvation genetics of fresbwater tish. Joumal of Fish Biology 53(Supplement A): 394-412.

Waters. J. M.. Lopez. J.A. Wallis, G.P. (2000). Molecular Phylogenetics and Biogeography of Galaxiid Fishes (Osteichthyes: Galaxiidae): Dispersal. Vicariance, and the Position of Lepidogalaxias salamandroides. Sistematic Biology 49(4): 777-795.

Waters, J. M.. Burridge. C.P. (1999). Extreme intraspecitic Mitochondrial DN.A Sequence Divergence in (Galaxias maculatus (Osteichthys: Galaxiidac). One of the World's Most Widespread Freshwater Fish. Molectlar Phylogenetics and Evolution 11(1): 1-12.

## CHAPTER I

# PHYLOGENY OF NEW ZEALAND AND AUSTRALIAN ELEOTRIDAE WITH A FOCUS ON GOBIOMORPHUS* 

Key Words: Gobiomorphus, mitochondrial DNA, origin, diadromy, morphology

*to be published under the same title as: Emily P. Atkinson, Mark I. Stevens, Michael K. Joy, Russell G. Death


#### Abstract

Gobiomorphus Gill (1863) is the only representative Eleotridae genus in New Zealand freshwaters and is comprised of seven species, of which four are diadromous. The only other Gobiomorphus species are G. coxii and G. australis, which are found around the Victorian south-eastern coast of Australia in freshwaters and estuaries.

The New Zealand Gobiomorphus were originally described as Eleotris and two species (G. hubbsi and G. breviceps) were described as Philypnodon. Furthermore, there was some confusion with the recognition of species in the early literature, resulting in most species being classified as Gobiomorphus gobioides (giant bully) at some point.

We used molecular data to examine the phylogenetic relationships within the genus, as well as looking at the relationship between Gobiomorphus, Philypnodon and Eleotris. This study aimed to test the origins of New Zealand Gobiomorphus and explore the evolution of diadromy. The hypotheses were: 1) Gobiomorphus dispersed from Australia to New Zealand in a single event; and 2) diadromy in Gobiomorphus is an ancestral character.

The monophyly of New Zealand Gobiomorphus was strongly reinforced, with the Australian species forming a polyphyletic group basal to the New Zealand Gobiomorphus species. The data suggested that the two Gobiomorphus groups have been isolated between 6 to 30 million years, indicating that Gobiomorphus may have dispersed to New Zealand from Australia since the break-up of Gondwana about 80 million years ago. Gobiomorphus hubbsi is a diadromous species that formed a sister group to all the other New Zealand Gobiomorphus suggesting that diadromy is an ancestral state at least for the New Zealand radiation of bullies. The colonisation of New Zealand via oceanic dispersal requires a marine phase in the lifecycle of a species, which was further supported by the basal position of the migratory species on the phylogenetic trees. In New Zealand there were three major radiations, where Gobiomorphus cotidianus, Gobiomorphus basalis and Gobiomorphus alpinus formed a species complex (species not easily differentiated) in the most recent radiation. Gobiomorphus breviceps, a non-diadromous species formed two distinct North and South monophyletic groups, suggesting that the two groups are actually separate species.


## INTRODUCTION

The family Eleotridae (Teleostei: Perciformes: Gobioidei) is comprised of approximately 35 genera containing about 150 species (Allen et al., 2002). Members of the family are characterised by their long slender bodies, two dorsal fins, lack of a lateral line, benthic life-style and relatively small size (Allen et al., 2002). The family is widely distributed around the world with the majority of species found in the vicinity of the Indo-Pacific (Allen et al., 2002). They are present in a variety of habitats; from inland freshwaters, brackish estuarine waters, to coastal seas with some species adopting diadromous life strategies utilising both fresh and salt waters as part of their reproductive cycles. This strategy involves larvae migrating out to sea for a feeding phase before returning as juveniles to freshwater. The presence of coastal species and saltwater tolerance of some larvae has led to the suggestion that the Eleotridae are derived from marine origins and that the freshwater fauna is composed of secondary freshwater species (Allen et al., 2002).

Although New Zealand freshwaters have just one eleotrid genus (Gobiomorphus), Australia has approximately 14 genera. For example, Mogurnda and Philypnodon are endemic to Australia, whereas members of Hypseleotris occupy a broad geographic range encompassing South Africa, Japan, Southeast Asia and Australia (Thacker \& Unmack, 2005). Thacker and Unmack (2005) examined the origins of the Australian Hypseleotris species, and suggested that they dispersed from Southeast Asia via marine environments before invading freshwater in the southeast (the majority of the eleotrids in Australia are distributed around the north- to southeastern coasts). Potentially, similar dispersals could explain the origins of the eleotrid species in New Zealand and Australia. For example, McDowall (1975) suggested that New Zealand freshwater fish are derived from Australia via prevailing ocean currents. He thought that Gobiomorphus may have reached New Zealand through this route, and that Gobiomorphus coxii is ancestral to or has common ancestry with New Zealand Gobiomorphus. Further, he noted that this colonisation may have occurred through either a single event, or repeated dispersal events. However, the origin of Gobiomorphus may alternatively be vicariant - fitting a Gondwanan model, as has been shown for other southern temperate biota. For example, galaxiid fish, southern beech trees and ratite birds have all been postulated to fit a vicariant Gondwanan distribution
(Waters et al., 2000a), where current distributions can be explained by plate tectonics. However, it is now known that some of the southern New Zealand biota obtained their current distributions by means of dispersal. For example, long-distance dispersal of southern beech is supported by molecular clock evidence where divergence dates postdate continental drift (Knapp et al., 2005).

Gobiomorphus Gill (1863) in New Zealand freshwaters is comprised of seven species, of which four are diadromous. The species are widespread around the lowland streams and coasts of New Zealand (non-diadromous species penetrate further inland), and are characterised by several morphological characters, including 27-30 vertebrae, partly scaled cheeks, 5-8 rays on the first dorsal fin and 7-10 rays on the second dorsal fin (Stokell, 1941). The only other Gobiomorphus species (G. coxii (Cox's gudgeon) and Gobiomorphus australis (striped gudgeon)), are found in fresh water bodies and estuaries around the Victorian south-eastern coast of Australia.

New Zealand Gobiomorphus has had a particularly turbulent taxonomic history in the literature, spanning approximately 150 years from Gill (1863) to the present. Originally part of the Eleotris genus; the Gobiomorphus genus was proposed by Gill (1863), and then recognised again by Bleeker (1874). Following this, the Australian Eleotris coxii was moved to Gobiomorphus by McCulloch and Ogilby (1921). Meanwhile, Stokell (1941) identified the presence of four species; Gobiomorphus gobioides, Gobiomorphus radiata, Gobiomorphus basalis and Gobiomorphus huttoni. He described G. huttoni (redfin bully) as a "species of questionable validity known from a single specimen...Affinities with G. radiata, and possibly identical with that species" (Stokell, 1941 p.274). G. radiata was eventually synonymised with $G$. huttoni (McDowall, 1962). Two of the New Zealand Gobiomorphus species (Gobiomorphus breviceps (upland bully) and Gobiomorphus hubbsi (bluegill bully)) were originally described as Philypnodon, and left out of the early Gobiomorphus taxonomy. This was due to the fact that the heads of these species lack scales (Stokell, 1940, 1941, 1959, 1962). Stokell (1959) expressed doubt over this decision to keep them separate from Gobiomorphus. He compared them to the Australian Philypnodon, and said that they differed in that they had a broad isthmus and narrow gill openings, unlike the Australian forms and more like the New Zealand Gobiomorphus. The genus Philypnodon was later discarded in New Zealand by Whitley (1968) and the two species moved to Gobiomorphus.

There has been some confusion regarding the recognition of various species, which runs from the early literature to current times. Recently, there has been significant controversy concerning Gobiomorphus alpinus (Tarndale bully),

Gobiomorphus cotidianus (common bully) and G. basalis (Cran's bully). Two of these species (G. cotidianus and G. alpinus) have been shown to be indistinguishable using mitochondrial DNA, however, are distinct morphologically (Smith et al., 2003). Gobiomorphus alpinus was first described in 1962 by Stokell, as it was found at high altitudes that; "exceeds the recorded maximum of Philypnodon breviceps" (Stokell, 1962 p. 31). All other Gobiomorphus species were considered lowland species. McDowall (1975) returned G. alpinus to G. basalis and named it as a junior synonym. He also described a new species $G$. cotidianus that had originally been synonymised with G. gobioides until 1941 later put with G. basalis. Cranfield (1962) discovered that the syntypes of $G$. basalis were different species. Gobiomorphus alpinus was then redescribed by McDowall (1994), who suggested that their small eggs cast doubt on the relationship with G. basalis and recommended that they be reinstated as a separate species that are derived from G. cotidianus. More recently, Smith et al. (2003) rejected G. alpinus as a separate species on the basis of mitochondrial DNA that failed to differentiate the species from G. cotidianus. They suggested that G. alpinus be considered an ecophenotype of $G$. cotidianus.

The belief that amphidromous species (i.e. those that spawn in freshwater, with larvae migrating out to sea for a feeding phase, before returning to freshwaters) have 'marine ancestry' stems mostly from the presence in these species of a saltwater tolerant phase. This view has been challenged recently by McDowall (2004), who argues that amphidromy implies an ancestry to other amphidromous species elsewhere; or ancestry amongst other freshwater taxa as they spawn in freshwater, and rules out marine as the ancestral condition. Indeed, Thacker and Hardman (2005) found that basal taxa of gobioid fishes are usually found in fresh or brackish water and the genus Rhyacichthys (basal to the Eleotridae) is exclusively freshwater dwelling. It is believed that gobioids speciated in freshwater from marine ancestors, and returned to marine habitats one or more times (e.g. Allen et al., 2002; Thacker \& Hardman, 2005).If this is true of Gobiomorphus, then the non-diadromous bullies would potentially occupy a more basal position on a phylogenetic tree than the diadromous species. However, most of the basal gobioids examined by Thacker \& Hardman (2005) exhibited at least partial saltwater tolerance. Alternatively, diadromy may well be an ancestral character. Waters and

Wallis (2001) examined loss of diadromy in the Galaxias vulgaris complex (approximately 10 non-migratory lineages) and found that three species had independently derived non-migratory life histories, indicating that non-migratory species were of a more recent origin, at least in Galaxias. Meanwhile, Allibone et al. (1996) found that speciation within Galaxias species has been promoted by the loss of diadromy, and data collected by Waters et al. (2000a) on galaxiid fishes further supported this hypothesis that migratory ability is a primitive characteristic.

Here, we used two mitochondrial (mt) genes (cytochrome $c$ oxidase $b$ and the control region) to provide further understanding of the origins of Australasian Gobiomorphus. In particular, we examined the phylogenetic relationships within the genus, as well we looked at the relationship among Gobiomorphus, Philypnodon, and Eleotris. This is the first phylogenetic study to include all New Zealand and Australian Gobiomorphus species. The present study aimed to test the hypotheses: 1) that Gobiomorphus dispersed from Australia to New Zealand in a single event; and 2) that diadromy in Gobiomorphus is an ancestral character.

## MATERIALS and METHODS

## Specimen collection


#### Abstract

A total of 91 Eleotridae specimens were collected from New Zealand (including the Chatham Islands) and Australia (Fig. 1) for the purpose of this study. Specimens were identified to species using diagnostic colour patterns (when possible) as well as pectoral and dorsal fin ray counts. Both males and females were used. Blood samples were taken from a total of 79 fish in New Zealand. Fish were anaesthetized using Phenoxy-2ethanol and then $5-50 \mu \mathrm{~L}$ of blood was taken (depending on the size of the fish) from the caudal vein at the base of the anal fin using a fine gauge needle (29 gauge $\mathrm{x} 1 / 2^{\prime \prime}$ ) primed with approximately $50 \mu \mathrm{~L}$ of anticoagulant (sterilised EDTA ( 100 mM )) (Gleeson et al., 1999). Fish were then exposed to a lethal dose of Phenoxy-2-ethanol and preserved in $80 \%$ ethanol. Fin clips were taken from the pectoral fin of all samples for possible DNA extraction as necessary. Blood samples and fin clips were frozen at $80^{\circ} \mathrm{C}$ until required. Fin clips or muscle tissue were taken from the 12 Australian and Chatham Island fish and stored in $80 \%$ ethanol (Table 1).




FIGURE 1. Map showing relative locations of regions in New Zealand and Australia.

TABLE 1．Sampling locations for all specimens throughout New Zealand and Australia （see also Smith et al．，2005：Akihito et al．， 2000 and Thacker \＆Hardman，2005）．［ ］ indicate sequences yet to be placed on GenBank，numbers indicate number of sequences for each $\operatorname{mtDNA}$ region，and（－）no sequences for the region．＊－sequenced by $M$ ．

Stevens and B．Hicks（unpublished data），all others collected for the purpose of this study．Sequences with GenBank accession numbers：AY644－Smith et al．（2005）； AY722－Thacker \＆Hardman（2005）；ABO212－Akihito ef al．（2000）．

| Regian | Sitemane | Gewbank actession |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Species | Cote | CR | Cab | Conteraed bys |
| Suretilatd | Kuxthen Rucer | （i）mumat | NKR13！ | ． | 1泬＊ |  |
|  |  | 1i．custichnes | SKくで） |  | 1\％ |  |
|  |  |  | 入トR12！ | （11＊ | 13＊ |  |
|  |  | （i．coutidam | N以ハ！ |  | ｜ic |  |
|  |  | （i）bescries | ※心が |  | 19＊＊ |  |
|  | Suels sicum |  | －SSitit | 19 | ＋ $\mathrm{j}^{*}$ |  |
|  | Katur krec | 1i \％ismas | 人が， | ｜i｜＊ | $1+{ }^{-}$ |  |
|  |  | 2．．craituras | ＊Rils |  | ｜i｜${ }^{\text {a }}$ |  |
|  |  |  | － 4 S |  | 1）＊ |  |
|  | 1 10meme sumat | （i）dmane： | 人19：3 |  | 1iv |  |
|  | 1 athe＊uybnela | （i）：whimutim | NW131 |  | 1i＊ |  |
|  | 1 ：the Natherelil | （i）crabitures | N：N： | － | i＝1＊ |  |
|  |  | ＂imme＇s | －N：11 |  | ！i＊ |  |
|  |  |  | $\therefore$ ハッい |  | $\because:$ |  |
|  | Saman memin | － 8 denme | 人31：3 |  | $\because \cdot$ |  |
|  |  | （i cracimos | －WRら， |  | ！ |  |
|  |  |  | $\therefore 36161$ |  | ： |  |
|  |  |  | －『－， |  | $\because \%$ |  |
| Waikisu | Waik ill \ll：en | 4i ．．1．atiun | a Wk．i |  | ！${ }^{-}$ |  |
|  | Sombenema sicut | （i．） ascas $^{\text {a }}$ | asis： |  | $\because *$ |  |
|  | Simlios surum | if $\mathrm{m}_{\text {ases }}$ | ※以い |  | $\cdots$ |  |
|  |  | if Smom： | WM．i | $\square_{i}{ }^{-}$ | 1is |  |
|  |  | （i）suticumas | 33： |  | 1！ |  |
| Taramaki |  |  | 13s． | ：！＊ | $\cdots *$ |  |
| Bay uf Preoty |  | 1；，wroveress |  |  | $+$ |  |
|  |  | 1；，wisamen |  |  | $\because$ |  |
|  | 1．ince immamer | is ceremames |  |  | ：＊ |  |
| Fasis cipe | （ Sivinutus | 1）conometar | lutio |  | ；＊ |  |
| W＊itarap |  | 1．A，Sscis | Aaxisif | ［1］ | ！ 11 | U吅吅吅： |
|  |  |  | ぶっくい | 氺 | － |  |
|  |  | 1，bactes |  | ：1．11 | ！リ |  |
|  | Matienaxa | （\％；mutcen | W 11－3 |  |  |  |
|  | ｜1＊＊3\％ | （i）mincom | Wath：d， |  | AYotanitats： |  |
|  |  |  |  | $5$ | $\therefore 2027$ |  |
|  |  | （i）＇revicim | Watron， |  |  |  |
| Manau：lu | States Stu：ne | ti＇nemis： | MGS： | $11$ | $!!$ |  |
|  |  |  | MTSい！ | 191 | 吅 |  |
|  | k．thutrema | （i．mromers | $N K:\left(i_{j}\right.$ | ｜ 1 P1 | ［11！ |  |
|  |  | （；mevaig | МK゙っ！ | AYtais．r．aiz |  |  |
|  |  | （i）¢отй＂， | \．\％ |  | 1이 |  |
|  | Neltran | （i）hraut | $\triangle \mathrm{Si}_{1}$ | ｜${ }^{11}$ | ｜바 |  |
|  |  | 1：breweys | A1N0\％ | ｜i］ | （1） |  |
|  | （ Mauk knen | （i．Amenews |  |  5535 s |  |  |
|  | Samer | （i）brevates | SM，M： 21 |  |  |  |
| Wellinutar | Nilk：lua | （i．）bruacers | WeNilly | ［10］ | ｜i！ |  |
|  | Fsubi slieel | （i．）mbicepe | W0FS |  |  |  |
|  | Kars | （i）hatuctas | Wekes | A）仿4575．576 |  |  |

TABLE 1. (continued)

| Region | Site name | Genbank accession |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Species | Code | CR | cyt b | Collected by§ |
| North East (SI) | Marlborough | G. huttoni | NE/M (3) | - | [3]* | M. Stevens (2003) |
|  |  | G. cotidianus | NE/M (3) |  | [3]* | M. Stevens (2003) |
|  | Takaka | G. breviceps | NE/T (2) | AY644531,573 | AY644589,631 |  |
|  | Branch | G. breviceps | NE/B (5) | AY644533,535 | AY644591,593 |  |
|  |  |  |  | 570, 571.572 | 628,629,630 |  |
|  | Motueka | G. breviceps | NE/Mo (2) | AY644544.545 | AY644602.603 |  |
|  | Maitai | G. breviceps | NE/Mt (1) | AY644538 | AY644596 |  |
| West Coast (SI) | Crooked River | G. cotidianus | WC/CR (2) | [1]* | [2]* | M. Stevens (2003) |
|  | Lake Brunner outlet | G. cotidianus | WC/LB (3) | [1]* | [3]* | M. Stevens (2003) |
|  | Ruffe Creek | G. breviceps | WC/R (1) | AY644557 | AY644615 |  |
|  | Stony Creek | G. breviceps | WC/S (1) | AY644558 | AY644616 |  |
|  | Lester Creek | G. breviceps | WC/L (2) | AY644566,567 | AY644624,625 |  |
|  | Flagstaff Creek | G. breviceps | WC/F (2) | AY644568,569 | AY644626,627 |  |
| East Coast (SI) | Clarence River trib. | G. alpimus | $\mathrm{Eco} / \mathrm{C}$ (1) | [1]* | [1]* | M. Stevens (2003) |
|  | Kowai | G. breviceps | Eco/K (2) | AY644536,537 | AY644594,595 |  |
|  | Dry Street | G. breviceps | Eco/D (1) | AY644559 | AY644617 |  |
|  | Conway | G. breviceps | Eco/CW (2) | AY644560,561 | AY644618,619 |  |
|  | Clarence River | G. breviceps | Eco/CR (1) | AY644562 | AY644620 |  |
| Canterbury | Ashley River | G. hubbsi | C/AR (1) | - | AB021239 |  |
|  |  | G. breviceps | C/AR (1) | - | AY722224 |  |
|  | Unknown location | G. hubbsi | C/U (3) | - | AY722227,28.30 |  |
| North Otago | Kakanui | G. breviceps | $\mathrm{NO} / \mathrm{K}$ (2) | AY644519/539 | AY644577/597 |  |
| Central Lakes | Ahuriri | G. breviceps | CL/A (1) | AY644554 | AY644612 |  |
|  | Fraser Street | G. breviceps | CL/F (1) | AY644555 | AY644613 |  |
|  | Tasman River | G. breviceps | CL/TR (1) | AY644556 | AY644614 |  |
| Central Otago | Linnburn | G. breviceps | $\mathrm{Ce} / \mathrm{L}(4)$ | AY644520,521 | AY644578.579 |  |
|  |  |  |  | 522,574 | 580.632 |  |
| Coastal Otago | Waikouati | G. breviceps | CO/W (2) | AY644523,524 | AY644581,582 |  |
| Clutha | Manuherika | G. breviceps | $\mathrm{Cl} / \mathrm{M}$ (2) | AY644542,543 | AY644600,601 |  |
| Southland | Mossburn | G. breviceps | $\mathrm{S} / \mathrm{M}(2)$ | AY644540.541 | AY644598,599 |  |
|  | Centre Burn | G. breviceps | S/CB (1) | AY644550 | AY644608 |  |
| Chatam Islands | Waipaua Stream | G. hutoni | CI/W (1) | [1] | [1] | M. Joy (2005) |
| Australia | Burringbar Creek | G. coxii | G. coxii (3) | [1] | [1] | T. Fowler (2003) |
|  | Lachlan Catchment | P. grandiceps | P.grandiceps (5) | - | [5] | K. Pitman (2003) |
|  | Clarence Catchment | P.sp | P.sp (3) | - | [1] | D. Gilligan (2003) |
|  | Gascoyne River, WA | H. aurea | H. aurea (1) | - | AY722187 |  |
|  | Ross River, QLD | H. compressa | H. compressa (1) | - | AY722188 |  |
|  | Barcoo River, QLD | H. klunzingen | H. klunzingen (1) | - | AY722189 |  |
|  | Ross River, QLD | M. mogurnda | M. mogumda (2) | - | AY722192.210 |  |
|  | Ross River. QLD | M. adspersa | M. adspersa (1) | _ | AY722184 |  |
|  | East coast (unknown location) | G. australis | G. australis (5) | [1]* | $\begin{aligned} & \text { AY722216.18 } \\ & 20.23 \end{aligned}$ |  |
|  |  | M. thermophila | M. thermophila (2) | - | [2]* | L. Faulks \& D. Gilligan (2003) |
|  |  | M. larapintae | M. larapintae (2) | [1]* | [2]* | L. Faulks \& D. Gilligan (2003) |
|  |  | P. grandiceps | P.grandiceps (1) | - | [1]* | L. Faulks \& D. Gilligan (2003) |
|  |  | P.sp | Pspp (1) | - | [1]* | L. Fauks \& D. Gilligan (2003) |
|  |  | H. compressa | H. compressa (1) | - | [1]* | L. Faulhs \& D Gilligan (2003) |
|  |  | H. galii | H. galii (1) | - | [1]* | L. Faulks \& D Gilligan (2003) |
|  |  | M.adspersa | M.adspersa (1) | - | [1]* | L. Faulks \& D. Gilligan (2003) |
|  |  | M. clivicola | M. clivicola (1) | - | [1]* | L. Faulks \& D. Gilligan (2003) |
| Japan | Yoshida-cho, Shizuoka | E. oxycephala | E. oxycephala (2) | - | ABO21235,238 |  |
|  | Iriomote Island, Ohinawa | E. fusca | E. fusca (1) | - | ABO21236 |  |
|  | Ishigaki Island, Ohinawa | E. melanosoma | E. melanosoma (1) | - | ABO21237 |  |
| Panama | Rio Caimito | E. picta | E. picta (2) | - | AY722204,19 |  |
|  | Rio San Lorenzo \& Punto del Medio | E. amblyopsis | E. amblyopsis (3) | - | AY722205,12,26 |  |
| Hawaii | Kaaawa, Oahu | E. sandwicensis | E. sandwicensis (1) | - | AY722186 |  |
| Mexico | Ounta de Mita | E. pisonis | E. pisonis (1) | - | AY722229 |  |
| Sulawesi | Unknown location | E. fusca | E. fusca (1) | - | AY722245 |  |
| aquarium | Unknown location | M. mogurnda | M. mogurnda (1) | - | ABO21242 |  |

$\S$ : If specimens collected by persons other than who sequenced them.
Genera abbreviated as: $G$ - Gobiomorphus, $P$ - Philypnodon, $H$ - Hypseleotris, $M$ - Morgurnda, $E$ Eleotris.

## DNA Analyses

## $m t D N A$ extraction, amplification and sequencing

Total genomic DNA was extracted from blood and fin/muscle tissue by homogenisation and digestion with proteinase- K and high salt buffer at $57^{\circ} \mathrm{C}$ for four hours (modified from; Sunnucks \& Hales, 1996); then purified by sodium chloride extraction and ethanol precipitation techniques. Two regions of the mitochondrial genome were amplified for each individual using the polymerase chain reaction (PCR). An approximate 500 base pair fragment of the mitochondrial (mt) cytochrome $c$ oxidase $b$ gene was amplified using the universal primers Cyb 2 (modified) ( $5^{\prime}-\mathrm{ccc}$ tca gaa tga tat $\left.\operatorname{ttg} \operatorname{tcc} \mathrm{t}-3^{\prime}\right)$ (Kocher et al., 1989) and tGludg ( $5^{\prime}-\mathrm{tga}$ ctt gaa raa cca ycg $\mathrm{ttg}-3^{\prime}$ ) (Palumbi et al., 1991), and the primer pairs H-16498 (5' - cct gaa cta gga acc aga tg $3^{\prime}$ ) (Shields \& Kocher, 1991) and L-15995 (5' - aac tct cac ccc tag ctc cca aag - 3') (Meyer et al., 1994) were used to amplify approximately 400 base pairs of the control region. Amplifications for each specimen used a $10 \mu \mathrm{l}$ reaction volume containing 0.75 $\mu$ l of the extracted DNA (unquantified), $1 \times$ PCR buffer (Roche) $2.2 \mathrm{mM} \mathrm{MgCl} 2,0.2$ mM of each dNTP (Boehringer-Mannheim), $0.2 \mu \mathrm{l}$ of each primer (tGludg/Cyb 2 and H-16498/L-15995), $0.5 \mu$ l of BSA (Bovine Serum Albumin), and 0.1 unit of Taq DNA polymerase (Roche). The thermal cycles for both genes (carried out on a T 1 thermocycler Whatman Biometra) were: 2 min of initial denaturation at $94^{\circ} \mathrm{C}$ followed by 35 cycles of denaturation and polymerase amplification $\left(94^{\circ} \mathrm{C}\right.$ for $30 \mathrm{~s}, 55^{\circ} \mathrm{C}$ for 45 s and then $72^{\circ} \mathrm{C}$ for 30 s ), followed by 5 min at $72^{\circ} \mathrm{C}$.

PCR samples were purified using SAPEXO (USB Corp.) following the manufacturers guidelines. Products were sequenced (BigDye ${ }^{\mathrm{TM}}$ Terminator chemistry (Perkin-Elmer Applied Biosystems)) using the tGludg and $\mathrm{H}-16498$ primers. Sequencing reactions were cleaned using CleanSEQ (Agencourt Bioscience Corp.), before capillary separation on an AB13730 genetic analyser (Applied Biosystems Inc.) at the Allan Wilson Centre Genome Service, Massey University, Palmerston North.

## Data Analyses

In addition to the 91 specimens obtained in this study, sequences from 99 specimens were obtained from M. Stevens and B. Hicks (unpubl. data); and further sequences from 86 specimens were taken from GenBank, giving sequences from a total of 276 specimens (Table 1). Individual DNA sequences were verified as being derived from the relevant taxa using GenBank ${ }^{\text {TM }}$ BlastN search, and were aligned using SEQUENCHER (Gene Codes ver. 4.2) sequence editor. Sequence data were analysed with PAUP* ver. 4.0b10 (Swofford, 2002). Distance matrices of pairwise nucleotide sequence divergence (based on uncorrected distance and maximum likelihood model; Appendices I \& II) were calculated using PAUP*.

Phylogenetic analyses were performed separately for the cytochrome $b$ and control region sequences; the cytochrome $b$ alignment included 271 sequences and the control region alignment included 150 sequences. Initial phylogenies were explored with PAUP* using neighbour-joining (NJ) and used as initial configurations for heuristic searches of Maximum likelihood (ML) trees. Mogurnda, Philypnodon and Hypseleotris were included as outgroup taxa (after Akihito et al., 2000). Maximum likelihood was used for the final phylogenies. Modeltest ver. 3.7 (Posada \& Crandall, 1998) was used to determine the appropriate substitution model for maximum likelihood (ML) heuristic searches (using all unique sequences). The model selected for the cytochrome $b$ region was GTR $+\mathrm{I}+\gamma(-\mathrm{InL}=4408.8896$; rate matrix: $\mathrm{A}-\mathrm{C}=1.0949$, $\mathrm{A}-\mathrm{G}=13.5963, \mathrm{~A}-\mathrm{T}=0.5297, \mathrm{C}-\mathrm{G}=1.5282, \mathrm{C}-\mathrm{T}=5.8474, \mathrm{G}-\mathrm{T}=1.0000$; proportion of invariable sites $(\mathrm{I})=0.4925,(\gamma)=1.0071$; with base frequencies set to $\mathrm{A}=0.2951, \mathrm{C}$ $=0.3741, \mathrm{G}=0.0970, \mathrm{~T}=0.2338)$; and for control region was $\mathrm{HKY}+\mathrm{I}+\gamma(-\operatorname{InL}=$ $2123.9351 ; \mathrm{ti} / \mathrm{tv}=0.8299, \mathrm{I}=0.3245,(\gamma)=0.5847$; with base frequencies set to $\mathrm{A}=$ $0.3922, \mathrm{C}=0.1775, \mathrm{G}=0.1356, \mathrm{~T}=0.2947$ ). The robustness of each phylogeny was assessed by implementing bootstrap analysis consisting of 500 replicates (Felsenstein, 1985). Comparisons of log likelihood scores (using $X^{2}$ tests) for trees with and without a molecular clock enforced, indicated that these sequences were evolving in a "clocklike" manner. Ages among lineages were estimated using the common clock calibration of 0.8-2.5 \% divergence per million years derived from cytochrome $b$ mitochondrial data (Meyer et al., 1990; Orti et al., 1994; Rocha-Olivares et al., 1999), and 4\%-15\% derived from control region mitochondrial data (Rocha-Olivares et al., 1999).

## RESULTS

## Cytochrome b

The cytochrome $b$ region alignment provided a 377 bp fragment. Within this alignment, 175 bp were variable. Analysis revealed 107 haplotypes (Table 2), of which many were region specific. However, the 258 sequences sampled from across Australia and New Zealand fell into several groups (Fig. 2). The New Zealand species formed five groups with the Australian Gobiomorphus forming another two groups that were basal to the New Zealand Gobiomorphus. The ML tree (Fig. 2) suggested that the two Australian Gobiomorphus species were not monophyletic but polyphyletic, as G. australis was found outside of the Gobiomorphus group and formed a sister group to Mogurnda. The average divergence between the two Australian Gobiomorphus species was observed at $13.7 \%$ uncorrected distance (UD) and $25.3 \%$ ML (Appendix I). Gobiomorphus australis occupied the most basal position in the phylogeny.

The New Zealand Gobiomorphus species formed a monophyletic group, within which $G$. hubbsi was the most basal species. Average sequence divergence between $G$. hubbsi and G. coxii was $15.6 \%$ UD and $29.7 \%$ ML. Average sequence divergence between $G$. coxii and the rest of the New Zealand taxa were similar (Table 3). Divergence within the New Zealand Gobiomorphus ranged from 4.6 \% to $25 \%$ ML and $0.4 \%$ to $14.9 \%$ UD. The lowest average sequence divergence was observed between $G$. breviceps, and the G. cotidianus, G. basalis and G. alpinus complex (CBAC), which formed a sister group to all other Gobiomorphus (Fig. 2). The highest average divergence ( 11.2 \% UD and 16.0 \%) was detected between G. hubbsi and CBAC. Gobiomorphus huttoni and G. gobioides formed a monophyletic group (4.6 \% UD and 4.8 \% ML average divergence) on the ML tree (Fig. 2). Average divergence between and G. gobioides, G. huttoni, and G. hubbsi was 14.3 \% UD and 23.7 \% ML The Chatham Island $G$. huttoni $(\mathrm{CI} / \mathrm{W})$ was a unique haplotype that is sister to the other $G$. huttoni from the North Island ( $0.5 \%$ divergence UD \& ML). CBAC and G. breviceps formed two sister groups but with low bootstrap support suggesting that we did not have enough information to resolve these groups.

TABLE 2. The 375 variable sites for cytochrome $b$ region for (iohomomphes. i ocations are indicated using location codes from Table 1.
Identical character states are indicated by dots. A - Gobiomorphus gohioides.


TABLEE 2. (continued)


TABLE 3. Sequence divergence (both regions of mtDNA) between $G$. coxil and the extant New Zealand Gobiomorphus taxa.

| Species | Cytochrome b | Control Region |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | Maximum | Uncorrected | Maximum | Uneorrected |
|  | (MLelihood | Distance (UD) | Likelihood | Distance |
|  | (\%) | $(\%)$ | $(\mathrm{ML})(\%)$ | (UD) (\%) |
| G. hubbsi | 29.7 | 15.6 | 10.7 | 8.6 |
| G. huttoni | 24.2 | 14.3 | 19.2 | 12.8 |
| G. gobioides | 25.1 | 14.5 | 21.7 | 13.9 |
| G. breviceps | 27.6 | 15.9 | 18.3 | 12.3 |
| CBAC | 26.9 | 14.8 | 15.5 | 10.9 |



FIGURE 2. Maximum likelihood phylogram based on the substitution model GTR $+\mathrm{I}+\mathrm{G}(-\operatorname{InL}$ $=4408.8896$; base frequencies set to $\mathrm{A}=0.2951, \mathrm{C}=0.3741, \mathrm{G}=0.0970, \mathrm{~T}=0.2338$ ) derived from Modeltest vers. 3.7 (see methods), using a 377-bp fragment of the mitochondrial DNA (cytochrome $b$ ) gene using only unique sequences. Bootstrap confidence limits ( 500 replicates) shown above nodes. Codes are those used in Table 1. Number of identical haplotypes present at any site is given in parentheses. Symbols indicate life history patterns; open circle $=$ nondiadromous, closed circle $=$ diadromous, half circle $=$ presence of both life history patterns. $G$. huttoni species in bold is Chatham Island haplotype. A - N/KR(2), W/WR(1), BOP/LT(2), BOP/RR(3), BOP/KR(1), NE/M(3), EC/G(3), M/N(2), WC/CR(2). B - N/SS(1), W/M(3), $\mathrm{M} / \mathrm{N}(5), \mathrm{WC} / \mathrm{LB}(2) . \mathrm{C}-\mathrm{N} / \mathrm{KR}(1), \mathrm{N} / \mathrm{LN}(3), \mathrm{N} / \mathrm{N}(3), \mathrm{N} / \mathrm{LW}(3), \mathrm{N} / \mathrm{WR}(2), \mathrm{W} / \mathrm{M}(1)$. $\mathrm{D}-$ $\mathrm{M} / \mathrm{T}(8), \mathrm{M} / \mathrm{W}(1), \mathrm{M} / \mathrm{TS}(9), \mathrm{M} / \mathrm{K}(12), \mathrm{M} / \mathrm{M}(1), \mathrm{Wa} / \mathrm{K}(7), \mathrm{Wa} / \mathrm{WR}(1), \mathrm{Wa} / \mathrm{H}(2), \mathrm{Wa} / \mathrm{M}(1)$, $\mathrm{We} / \mathrm{K}(2), \mathrm{We} / \mathrm{ES}(1) . \mathrm{E}-\mathrm{N} / \mathrm{KR}(2), \mathrm{N} / \mathrm{WR}(2), \mathrm{N} / \mathrm{Mi}(2), \mathrm{N} / \mathrm{M}(1), \mathrm{N} / \mathrm{US}(2), \mathrm{W} / \mathrm{M}(2)$.

Average sequence divergence ranged from $0.3 \%$ to $7.2 \%$ within-species for ML and 0.2 \% to $6.4 \%$ for UD. The lowest average divergence ( $1 \%$ for both UD and ML) was within the CBAC, with strong bootstrap support that these species should be grouped together. The three species could not be differentiated using this region of mitochondrial DNA. This was reflected by the ML tree where the species did not form discrete groups (only unique haplotypes are presented). However, Manawatu and Wairarapa G. basalis populations formed separate groups. Bay of Plenty populations of G. cotidianus also formed a distinct group. Meanwhile, the greatest within-species divergence was within G. breviceps; which formed two distinct clusters that are sister groups; a lower South Island group (I) and a Northern group (II) that included the specimens from the upper South Island. Average divergence detected between the two groups was $7.2 \%$ ML and 6.4 \% UD.

## Control Region

The control region provided a 384 bp alignment for analysis. Within this fragment, 131 bp were variable. There were 56 unique haplotypes from 161 sequences (Table 4). The control region sequences resulted in an ML tree (Fig. 3) with a similar topology to the cytochrome $b$ region (Fig. 2). The individual haplotypes separated into seven groups. Gobiomorphus breviceps formed two groups, with the rest of the species separating into distinct groups (Fig. 3). The New Zealand Gobiomorphus formed a monophyletic group. Average divergence between the two Australian species was $12.4 \%$ UD and $18.2 \%$ ML. In agreement with the cytochrome $b$ analyses, the most basal New Zealand species was $G$. hubbsi. The average divergence between $G$. hubbsi and G. coxii was observed at $8.6 \%$ UD and $10.7 \%$ ML (Table 4). The monophyletic group consisting of both G. huttoni and G. gobioides (average divergence observed at $4.9 \%$ UD and $5.5 \%$ M) was the next most basal group, with average divergence from G. coxii observed at 13.2 \% UD and 20.0 \% ML and from G. hubbsi at 9.9 \% UD and 13.8 \% ML. The Chatham Island G. huttoni (CI/W) was a unique haplotype that was sister to G. huttoni from the

TABLE 4. The 368 variable nucleotide sites for control region sequences for (iohiomorphus. Locations are indicated using codes from Table 1.
Identical character states are indicated by dots. $\mathrm{A}=$ (i. gobioides


TABLE 4. (continued)



FIGURE 3. Maximum likelihood phylogram based on the substitution model HKY+I+G ( $-\mathrm{InL}=$ 2123.9351; base frequencies set to $\mathrm{A}=0.3922, \mathrm{C}=0.1775, \mathrm{G}=0.1356, \mathrm{~T}=0.2947$ ) derived from Modeltest vers. 3.7 (see methods), using a 384-bp fragment of the mitochondrial DNA (control region) gene using only unique sequences. Bootstrap confidence limits ( 500 replicates) shown above nodes. Codes are those used in Table 1. Number of identical haplotypes present at any site is given in parentheses. Symbols indicate life history; open circle $=$ non-diadromous species, closed circle $=$ diadromous species, half circle $=$ presence of both life history patterns. G. huttoni in bold is the Chatham Island haplotype.

Waikato region ( 0.3 \% UD and ML divergence). The most recently derived lineages were G. breviceps and CBAC. The ML tree (Fig. 3) indicated that G. cotidianus, $G$. basalis and G. alpinus were indistinguishable using mtDNA, although again some Wairarapa and Manawatu populations of G. basalis formed separate groups. This species complex formed a sister group to $G$. breviceps. The divergence within CBAC ranged from $0.3-2.8 \%$ ML and $0.3-11.6 \%$ UD. Gobiomorphus alpinus shared the same haplotype as a $G$. cotidianus specimen. Gobiomorphus breviceps separated into two groups (Fig. 3) that formed sister groups. Group I was formed by the North Island and west coast South Island species. The greatest average within-species divergence was within G. breviceps at $8.6 \%$ UD and $10.7 \%$ ML. The greatest average divergence between any two New Zealand Gobiomorphus species was detected between $G$. breviceps and G. hubbsi (most basal species) at 11.6 \% UD and $17.1 \%$ ML. The lowest average divergence between species was observed between $G$. breviceps and CBAC at 6.9 \% UD and 8.5 \% ML.

## DISCUSSION

The analysis showed Gobiomorphus as polyphyletic. However, excluding G. australis, Gobiomorphus is supported as a monophyletic group. Gobiomorphus australis was found outside of the Gobiomorphus group and as a sister group to Mogurnda. Furthermore, this study indicated that the smallest monophyletic group to include all Gobiomorphus species also included Hypseleotris and Mogurnda. Eleotris and Philypnodon were basal to the Gobiomorphus group with Hypseleotris sister to the New Zealand Gobiomorphus and G. coxii. Thacker and Hardman (2005) examined the phylogeny of basal gobioid fishes and found that all of Gobiomorphus, including $G$. australis, formed a monophyletic group. Further, they found that Mogurnda and Philypnodon were basal to Gobiomorphus, and that Gobiomorphus was basal to Hypseleotris and Eleotris. Eleotris is widespread worldwide and represents a major radiation into the new world tropics. Additionally, their results revealed the Australian Gobiomorphus as a polyphyletic group basal to the New Zealand radiation of Gobiomorphus. Although the sequences of the coding and non-coding regions evolve at a rate that has been proven to be useful for resolving ancient and recent events in many
vertebrates (e.g. Kocher et al., 1989), the lack of resolution in the present study for the 'deeper' taxonomic questions may be due in part to the short gene fragment ( $<400$ base pairs). There is limited variation in first and second codon positions resulting in little phylogenetic information for 'deep' evolutionary hypotheses (Meyer, 1994) hence the need for a longer fragment in future studies. Indeed, the phylogeny examined by Thacker and Hardman (2005) was an analysis of four regions of approximately 1000 base pairs, and this most likely allowed for the greater resolution revealed in their study.

Gobiomorphus coxii formed a sister group to all New Zealand taxa, with $G$. hubbsi being the most basal species. Molecular clock calibrations indicated that G. coxii and extant New Zealand taxa have probably been isolated for about 6 to 20 million years using a non-conservative rate of divergence and 10 to 30 million years using a conservative rate of divergence for the cytochrome $b$ region. New Zealand has been physically separated from Australia by at least $1,200 \mathrm{~km}$ for the last 60 million years (Cooper \& Milliner, 1993), indicating that there has been dispersal and gene flow between the two continents since the break-up of Gondwana. Although the divergence of Gobiomorphus is more indicative of a dispersal event from Australia to New Zealand (Australian taxa basal to New Zealand taxa), a vicariant theory can not be ruled out, as divergence merely indicates the period of isolation between the Australian and New Zealand Gobiomorphus i.e. dispersal "stopped" about 30 million years ago (Mya). Further, changes in oceanic circulation patterns (after the geological separation of New Zealand from Australia) could have been the cause of the isolation and subsequent divergence of New Zealand Gobiomorphus.

The popular approach is that New Zealand's flora and fauna is Gondwanan because New Zealand's underlying substrate is Gondwanan in origin (e.g. Stevens, 1980). This concept reached its peak with the panbiogeographical school that stressed the ancientness of New Zealand's biota and used it to attribute broad southern distributions of taxa to former connections of lands, with distributions becoming fragmented by continental drift (Croizat et al., 1974; Rosen, 1974; Craw et al., 1999). However, during the Palaeocene ( $65-23$ Mya), New Zealand was progressively submerged beneath a marine transgression until the late Oligocene epoch (34-23 Mya). In this period there is little indication of the presence of land in the marine sediments, although it is under continual debate whether New Zealand was completely submerged during this time (Pole, 1994). If New Zealand was completely submerged then much of the fauna and flora of New Zealand would have arrived after this period via trans-
oceanic dispersal. Pole (1994) indicated that a trans-Tasman dispersal is likely and that it is possible that the entire forest-flora of New Zealand arrived by long distance dispersal rather than the popular Gondwanan origin theory (the predominant theory used by early biogeographers, and still used by some). Therefore, it seems plausible that New Zealand Gobiomorphus may have arrived via oceanic dispersal after the Oligocene epoch, which is well matched by the molecular data. Fossil records indicate the presence of Gobiomorphus in New Zealand since the early Miocene epoch (16-20 Mya) (McDowall, pers. comm.), which is supported by the genetic data and indicates a minimum time Gobiomorphus has been present in New Zealand. However, there could have been other dispersal events where the taxa became extinct and are missing from the fossil record. Furthermore, the oldest fossil record of a taxon only provides a minimum estimate of its age.

Other freshwater fish species in New Zealand have been postulated as having achieved their current distributions by means of oceanic dispersal. Molecular studies support the importance of marine dispersal in Galaxias maculatus (Berra et al., 1996; Waters \& Burridge, 1999; Waters et al., 2000b), as the sister relationship of Australian and New Zealand haplotypes conflicts with the popular idea of plate tectonics being responsible for their observed distributions (Waters et al., 2000a). This is further supported by the high dispersal ability of juveniles, which have been found as far as 700 km from continental land (McDowall et al., 1975). Furthermore, Neochanna, and $G$. brevipinnis (Galaxiidae species) have divergence rates that post-date the Gondwanan break-up. Additional evidence for oceanic dispersal comes from the recent dispersal of the Australian anguilliid (Anguilla reinhardtii) to northern New Zealand that was previously only known from eastern Australia, New Caledonia, Norfolk Island and Lord Howe Island (McDowall et al., 1998).

Therefore, although a vicariant origin for Gobiomorphus cannot be completely ruled out, evidence appears to favour marine dispersal. Oceanic dispersal requires a marine phase to be present in the lifecycle of a species (i.e. a species must be diadromous). Gobiomorphus hubbsi is a diadromous species that is a sister species to the rest of the New Zealand Gobiomorphus, indicating that diadromy is an ancestral characteristic in the Gobiomorphus species. Diadromy has also been considered to be a primitive feature of the galaxiidae (McDowall, 1970; 1978), with species that do not exhibit diadromy being the result of land-locking. The loss of diadromous behaviour has been postulated as an important mechanism in speciation (the result of a decrease in
gene flow, where genes are no longer transferred from one population to another), especially within Galaxias species (Allibone et al., 1996). Galaxias vulgaris have diverged into 10 lineages of which three species have independently derived nonmigratory life histories (Waters and Wallis, 2001). The recently derived species in Gobiomorphus are non-diadromous species e.g. G. breviceps, G. basalis and G. alpinus. Gobiomorphus alpinus has been suggested as a lake-derived form of G. cotidianus, which perhaps is in the early stages of speciation (Smith et al., 2003). Gobiomorphus basalis may also have been derived from the diadromous G. cotidianus (although diadromy is not obligatory in this species). This indicates that the loss of diadromy may also play an important role in the speciation of New Zealand Gobiomorphus.

The molecular data suggest that New Zealand Gobiomorphus dispersed to New Zealand from Australia in a single event (i.e. presence of monophyly). Once in New Zealand there was then a series of radiations. The first radiation produced G. hubbsi and the monophyletic group that included G. huttoni and G. gobioides from which later the two species diverged. The second radiation produced the very diverse (large genetic variation among individuals) group that makes up G. breviceps, with the final radiation producing the G. cotidianus, G. basalis and G. alpinus complex.

Gobiomorphus huttoni is the only Gobiomorphus species from New Zealand to have dispersed to the Chatham Islands, which have been regularly colonized by both vertebrates and invertebrates via oceanic currents. Animal taxa on Chatham Islands are generally affiliated with taxa from both the South Island and North Island (Stevens \& Hogg, 2004). This has been supported by the findings of McGaughran et al. (2005), who examined the genetic divergence of freshwater amphipods and found that Chatham Island species had affinities with South Island taxa. They postulated that the Southland current along the subtropical front provided a plausible mechanism for dispersal events to the Chatham Islands. This is further supported by Stevens and Hogg (2004) who found that corophiid amphipods have affinities with mainland New Zealand taxa. Much of Chatham Islands terrestrial fauna are also postulated to have arrived via dispersal. The taxonomy of large flightless insects, avifauna and flora is in keeping with more recent dispersal events rather than vicariance as a mechanism of colonisation (Trewick, 2000). The G. huttoni Chatham Island haplotype is affiliated with haplotypes from the Waikato region, which appear to have become isolated between $20,000-75,000$ years ago (control region) and 200,000-400,000 years ago (cytochrome $b$ region) based on molecular clock calibrations. The Chatham Islands have been identified as remnants of
late Cretaceous volcanic islands and have been oceanic islands for at least 70 million years (Campbell et al., 1993). Thus, the time frames involved indicate that $G$. huttoni dispersed from New Zealand to Chatham Islands rather than having an older vicariant distribution. The low divergence observed between the Chatham Island haplotype and the New Zealand haplotypes suggests that dispersal occurs on a regular basis, and is perhaps supplying the Chatham Island populations (juveniles going out to sea are unlikely to return to the Chathams). However, as G. huttoni is the only Gobiomorphus species on the Islands, it seems unusual that no other migratory bullies have populated the Islands. Perhaps $G$. huttoni is the only species to reach the Islands due purely to numbers, as they are the most common obligatory diadromous Gobiomorphus ( $G$. cotidianus is more common in lakes) (Joy pers. comm.). To resolve this issue more sampling would be required.

The G. cotidianus, G. basalis and G. alpinus complex had the lowest amount of between-species divergence, and were not easily differentiated using mtDNA.

Although, two populations of $G$. basalis from around the Manawatu and Wairarapa regions had some support for their separate species status. However, not all G. basalis populations grouped together. For example, G. alpinus had a unique haplotype for the cytochrome $b$ region but not the control region; where it had an identical haplotype to a G. cotidianus species from the South Island. Smith et al. (2003) were able to differentiate one G. basalis population from G. cotidianus, and G. alpinus, but could not differentiate G. alpinus from G. cotidianus as they shared identical haplotypes. Subsequently, they suggested that G. alpinus is an eco-phenotype of G. cotidianus, and suggested that they were either a population in the early stages of speciation or that the meristic differences were an adaptation to a high-altitude environment. C. Michel, M.I. Stevens and M. van den Heuvel (unpublished data) examined amplified fragment length polymorphisms (AFLPs) of the three species and found that they could be differentiated, and that G. basalis and G. alpinus each formed monophyletic groups, indicating that G. alpinus should retain its species status. According to the rules of nomenclature G. alpinus should never have lost its species status, rather G. cotidianus should have been re-described as G. alpinus as the senior synonym (described by Stokell in 1962; G. cotidianus wasn't described until 1975 by McDowall).

Akihito et al. (2000) found that morphological differences or similarities in fishes were not always correlated with genetic patterns. Weins and Penkrot (2002) compared morphology and mtDNA with regard to examining the phylogeny of newly
diverged species and found that mtDNA was preferred because it changed at a faster rate (Thacker, 2004), and genetic variation is not always expressed phenotypically (Vrijenhoek, 1998). The G. cotidianus, G. basalis and G. alpinus complex indicate that this may not always be the case, as morphology may be diverging at a faster rate than mtDNA. Some factors however, may have accelerated morphological differentiation; namely habitat or sexual selection (both G. alpinus and G. basalis are non-diadromous and sexually dimorphic). The extent of sexual dimorphism exhibited by species indicates the importance of female choice (Ritchie et al., 2005) which then accelerates speciation by altering male characteristics. In fact sexual selection (mate choice) has been referred to as the 'engine of speciation' (Ritchie et al., 2005). D’Anatro and Loureiro (2005) examined the geographic variation in Austolebias luteoflamulatus and found that the differences between the sexes may be a result of the forces of sexual selection. However, "over evolutionary time scale[s], biogeography and ecological specialisation may swamp the more subtle phylogenetic signal due to sexual selection." (Ritchie et al., 2005 p.928). Within Gobiomorphus we are looking at a more recent situation where phylogenetic patterns are unlikely to have been obscured over time. Signals due to sexual selection may have instead been swamped by the cost to males of elaborate colours. Environmental influences may also play a role in the observed morphological divergence, where there are adaptive roles for morphological differences (Langerhans et al., 2003). Smith et al. (2003) suggested this as a reason why G. alpinus is morphologically different to G. cotidianus, as they are exposed to high altitude conditions. However, G. cotidianus is found in similar environments as both G. basalis and G. alpinus, suggesting that the environment has little influence on the expressed phenotypes.

Gobiomorphus breviceps has two distinct Northern and Southern monophyletic groups and has the largest within-species divergence. The North Island group is made up of North Island populations as well as upper South Island populations. The South Island group is made up of populations from the East Coast of the South Island down through to Southland. The disjunction between the two groups is postulated by Smith et al. (2005) to be due to Pleistocene glacial periods $1,810,000-11,550$ years before present (bp) when sea levels were lower than the present day and the northern South Island was connected to the lower North Island. Molecular clock calibrations agree with this theory, as they suggest the two G. breviceps groups have been isolated for around 2 million years. The presence of two monophyletic groups in $G$. breviceps suggests that
they are actually two separate species (phylogenetic species concept), which was further supported by the ML tree, where they could be compared to the other species in the genus. Turner (1999) believed that (taken from Cracraft, 1989; Mayden \& Wood, 1995); "A species should be the smallest monophyletic group (all units contained are descended from a single common ancestor and no such units are excluded) that is supported by characteristics shared by all members of the group". However, defining a species purely on genetic criteria has been criticised, with many believing that species should be defined on the basis of common patterns of variation across multiple characters sets such as mtDNA and morphology (Grady \& Quattro, 1999). Extensive morphological examination of $G$. breviceps was beyond the scope of this study, but perhaps should be examined in the future to confirm if they are separate species under the above definition. Furthermore, many believe that to define a species as a separate unit, they must be reproductively isolated (biological species concept) (Turner, 1999), which is difficult to determine in the case of $G$. breviceps as the populations are allopatric. Therefore, it is suggested that the two $G$. breviceps groups be defined as separate entities, however, further research is necessary to properly define these two "species".

## CONCLUSIONS

The Australian G. coxii is a sister species to the New Zealand Gobiomorphus and has been isolated from the New Zealand group for 6-37 Mya, suggesting that Gobiomorphus dispersed to New Zealand from Australia via oceanic dispersal after Gondwana broke-up ( $\sim 80 \mathrm{Mya}$ ), this is further supported by the fossil record that indicates that the oldest fossil is from the Miocene epoch (16-20 Mya), with no evidence of Gobiomorphus being in New Zealand before the Oligocene (period of marine transgression).

Gobiomorphus hubbsi is a diadromous species that formed a sister group to all other New Zealand Gobiomorphus species, indicating that diadromy is a primitive feature at least for the New Zealand radiation of Gobiomorphus (oceanic dispersal requires a marine phase to be present in the lifecycle of a species). Loss of diadromy (a
derived feature) has been postulated as an important mechanism for speciation, and appears to be important in the speciation of the New Zealand Gobiomorphus where the recently derived species are non-diadromous (e.g. G. basalis, G. alpinus and G. breviceps).

The presence of monophyly suggests that Gobiomorphus colonised New Zealand from Australia in a single event followed by a series of radiations: (1) $G$. huttoni and G. gobioides (which later diverged), (2) G. breviceps, which has two distinct North and South monophyletic clades. The Northern group is formed by populations from the North Island as well as some populations from the north-east of the South Island. The Southern group is formed by populations of the lower South Island. The two groups were potentially isolated by the Pleistocene glacial period ( $1,810,000-11,500$ years BP) when the northern South Island was connected to the lower North Island. (3) G. cotidianus, G. basalis and G. alpinus complex, which had the lowest between species divergence rates, and are not easily differentiated using mtDNA. However, they are easily differentiated using AFLPs (C. Michel, M.I. Stevens and M. van den Heuvel, unpubl. data). The morphological divergence observed (despite the lack of mtDNA divergence) may have been accelerated by sexual selection, where certain traits are selected for, or by environmental influences, where there are adaptive roles for morphological divergence. However, environmental influences on morphology, seems an unlikely reason for the observed morphological divergence between G. cotidianus and G. basalis as they are found in the same environment.

## ACKNOWLEDGEMENTS

This work was possible owing to the support from a Julic Alley Bursary, Massey University. We are grateful to Jessica Costall. Shaun Neilson, Logan Brown. Kiryn Weaver, Jono Tonkin. Carol Nicholson. Zoe Dewson and Alex James for their help in the field. We are also grateful to Angela McGaughran for help in the laboratory and for helpful comments on this manuscript. This study was carried out under approval from the Massey University ethics committee, protocol number $04 / 125$.

## LITERATURE CITED

Akihito. Iwata, A., Kobayashi, T., Ikeo, K., Imanishi, T., Ono. H., Umehara. Y., Hamamatsu, C., Sugiyama, K., Ikeda, Y.. Sakamoto, K., Fumihito, A.. Ohno, S.. Gojobori. T. (2000). Evolutionary aspects of gobioid fishes based upon a phylogenetic analysis of mitochondrial cytochrome $b$ genes. Gene 259: 5-15.

Allen. G. R.. Midgley. S.II.. Allen. M. (2002). Field guide to the Freshwater Fishes of Australia. Perth. Western Australian Museum.

Allibone, R. M., Crowl. T.A., Holmes, J.M., King. T.M. McDowall, R.M.. Townsend. C.R.. Wallis, G.P. (1996). Isozyme analysis of Galaxias species (Teleostei: Galaxiidae) from the Taieri River, South lsland, New Zealand: a species complex revealed. Biological. Ioumal of the Limncan Society 57: 107127.

Berra. T. M., Crowley. I... Ivansolf. W.. Fuerst, P.A. (1996). Galaxias maculatus: An explanation ol its biogeography. Warine and Freshuater Research 47(6): 845849.

Blecker, P. (1874). Espuisse d'un Systeme Naturel des Gobioides. Archives Neertandaises des Scionces Exactes et Vaturelles: 303.

Campbell, I. J.. Andrews. P.B., Beu. A.G., Maxwell, P.A., Edwards, A.R., Laird, M.G., Homibrook. N. de B., Midenhall. D.C.. Watters. W.A.. Buckeridge. J.S.. Lee, D.E., Strong, C.P., Wilson, W.A., Hayward, B.W. (1993). Cretaceous Cenozoic geology and biostratigraphy of the Chatham Islands. New Zealand. Institute of Geological and Nuclear Sciences Monograph 2(269).

Cooper, R. A., Milliner, P. R. (1993). The New Zealand biota: historical background and new research. Trends in Ecolog' and Evolution 8: 429-433.

Cracraft, J. (1989). Speciation and its ontology: The empirical consequences of alternative species concepts for understanding patterns and processes of differentiation. In Otte. D. and Endler, J.A. eds. Speciation and Its consequences. Sinauer. Sunderland. MA, pp. 25-59.

Cranfield. H.J.(1962). Studies on the systematics of Gohiomorphus breviceps (Stokell) and G. gobioides (Cuvier and Valenciennes). Unpublished M.Sc. thesis. University of Canterbury. Christchurch. 240 pp .

Craw. R.C.. Grehan. J.R., Heads. M. (1999). Panbiogeograph- tracking the history of life. Oxford Biogeography Series 12. Oxford University Press. New York.

Croizat. L.. Nelson, G.3. Rosen. D.E. (1974). Centres of origin and related concepts. Sistematic Zoology 23: 265-287.

D'Anatro. A.. loureiro. M. (2005). Geographic variation in Austrolehics Inteoflomulatus Var-Ferreira. Siera \& Scaglia (Cyprinodontiformes. Rivulidac). Joumal of Fish Biologl 67: 849-865

Felsenstein. J. (1985). Confidence-Limits on Phylogenics - an Approach Using the Bootstrap. Evolution 39(4): 783-791.

Gill. T. (1863). On the gobioids of the eastem coast of the United States. Proceeding.s of the Academy of Natural Sciences. Philadelphia 5: 267-271.

Gleeson. D. M., Howitt. R.L.J., Ling, N. (1999). Genctic variation. population structure and cryptic species within the black mudfish Neochomna diversus an endemic galaxiid from New Zealand. Molecular Ecology 8: 47-57.

Grady, J. M., Quattro, J.M. (1999). Using character concordance to define taxonomic and conservation units. Conservation Biology 13: 1004-1007.

Knapp, M., Stockler, K., Havell, D., Delsuc, F., Sebastiani, F., Lockhart, P.J. (2005). Relaxed molecular clock provides evidence for long-distance dispersal of Nothofagus (southern beech). Plos Biology 3(1): 38-43.

Kocher T.D., Thomas, W. K., Meyer, A., Edwards S.P., Villablanca F.X., Wilson A.C. (1989). Dynamics of Mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences of the United States of America 86: 6196-6200.

Langerhans, R. B., Layman, C.A., Langerhans, A.K., Dewitt, T.J. (2003). Habitatassociated morphological divergence in two Neotropical fish species. Biological Journal of the Linnean Society 80(4): 689-698.

Mayden, R. L., Wood, R.M. (1995). Systematics, species concepts and the evolutionary significant unit in biodiversity and conservation biology. American Fisheries Society 17: 58-113.

McCulloch, A. R., Ogilby, J.D. (1921). Some Australian fishes of the Family Gobiidae. Records of the Australian Museum 12: 193-291.

McDowall, R.M. (1962). A redescription of the freshwater red-finned bully Gobiomorphus huttoni (Ogilby). Transactions of the Royal Society of New Zealand, Zoology 4(2): 3-15.

McDowall, R. M. (1970). The galaxiid fishes of New Zealand. Bulletin of the Museum of Comparative Zoology, Harvard University 139: 341-432.

McDowall, R. M. (1975). A Revision of the New Zealand species of Gobiomorphus (Pisces: Eleotridae). National Museum of New Zealand Records 1(1): 1-32.

McDowall, R. M. (1978). Generalized Tracks and Dispersal in Biogeography. Systematic Zoology 27(1): 88-104.

McDowall, R. M. (1994). The Tarndale bully, Gobiomorphus alpinus Stokell (Pisces: Eleotridae) revisited and redescribed. Journal of the Royal Society of New Zealand 24: 117-124.

McDowall, R. M. (2004). Ancestry and amphidromy in island freshwater fish faunas. Fish and Fisheries 5: 75-85.

McDowall, R. M.. Robertson. D.A., Saito. R. (1975). Occurrence of galaxiid larvae and juveniles in the sea. New Zealand Joumal of Marine and Freshmater Research 9: 1-11.

McDowall. R. M.. Jellyman, D.I., Dijkstra. L.H. (1998). Arrival of an Australian anguilliid eel in New Zealand: an example of transoceanic dispersal. Enviromental Biology of Fishes s1(1): 1-6.

MeGaughran, A., Hogg, I.D.. Stevens. M.I., Chadderton, W.L.. Winterbourn, M.I. (2006). Genetic divergence of three freshwater isopod species from southern New Kealand. Jownal of Biogeography 33(1): 23-30.

Meyer. A. (1994). Shortcomings of the cytochrome $b$ gene as a molecular marker. Trends in Ecology \& Evolution 9(8): 278-280.

Meyer. A.. Kocher. T.D.. Basasibwaki. P.. Wilson, A.C. (1990). Monophyletic Origin of Lake Victoria Cichlid Fishes Suggested by Mitochondrial-DNA Sequences. Voture 347(6293): 550-553.

Meyer, A., Morrissey, J.M., Schartl. M. (1994). Recurrent origin of a sexually selected trait in Xiphophorns fishes inferred from a molecular phylogeny. Nature 368 : 539-542.

Orti G., Bell. M. A., Reimehen T.E., Meyer A. (1994). Global Survey of Mitochondrial DNA Sequences in the Threespine Stickleback: Evidence for Recent Migrations. Evolution 48(3): 608-622.

Palumbi. S., Martin, A., Romano. S., McMillian, W., Stice, L., Grabowski, G. (1991). The Simple Fool's guide to PCR, Version 2.0. Honolulu. USA, University of Hawaii.

Pole. M. (1994). The New 7ealand flora - entirely long-distance dispersal? Jownal of Biogeography 21: 625-635.

Posada. D.. Crandall. K.A. (1998). Modeltest: testing the model of D.NA substitution. Bionformafics 14(9): 817-818.

Ritchic. M.G., Webb. S.A., Graves. J.A.. Magurran, A.E., Garcia. C.M. (2005). Patterns of speciation in endemic Mexican Goodeid fish: sexual conflict or early radiation? Joumal of Evolutionary Biolog 18(4): 922-929.

Rocha-Olivares. A. Rosenblatt. R.H.. Vetter. R.D. (1999). Molecular evolution. systematics. and zoogeography of the rocklish subgenus Sebastomus (Sebastes. Scorpaenidae) based on mitochondrial cytochrome band control region sequences. Molecular Phtogonotics and Evolution 11(3): $4+1-458$.

Rosen. D.E. (1974). Plyylogeny and zoogeography of samoniform fishes and relationships of Lepiodogalarias sallamandroides. Bulletin of the American Maseum of Natural /history, 153: 265-326.

Shields. G.F.. Kocher, T.D. (1991). Phylogenetic relationships of North American ursids based on analysis of mitochondrial DNA. Evolution 45: 218-221.

Smith. P.J.. MeVeagh. S.M., Allibone, R. (2003). The Tarndale bully revisited with molecular markers: an ecophenotype of the common bully Gohiomorphus colidiamus (Pisces: Gobiidae). Journal of the Royal Society of New Zealand 33(3): 663-673.

Smith, P.J.. McVeagh, S.M., Allibone, R. (2005). Extensive genetic differentiation in Gobiomorphus breviceps from New Zealand. Journal of Fish Biolog 67: 627639.

Stevens, G.R. (1980). New Zealand adrift. Reed, Wellington.

Stevens, M.I., Hogg, I.D. (2004). Population genetic structure of New Zealand's endemic corophiid amphipods: evidence for allopatric speciation. Biological Joumal of the Limnean Society 81(1): 119-133.

Stokell, G. (1940). A new freshwater fish of the genus Philhphodon. Transactions of the Roxal Society of New Zealand 69: 129-133.

Stokell, G. (1941). A Revision of the Genus Gobiomorphus. Transactions of the Royal Society of New Zealand 2: 265-275.

Stokell, G. (1959). Notes on galaxiids and eleotrids with descriptions of new species. Transactions of the Roval Society of New Zealand 87((3+4)): 265-269.

Stokell. (3. (1962). A new species of Cohiomorphus. Transettions of the Royal Sockety of hew Zealund, Zoology 2(3): 32-3+.

Sumnets. P.. Itales. D.f: (1996). Numerous transposed sequences of mitochondrial evtochrome oxidase I-II in aphids of the genus Sitobion (Itemiptera: Aphididae). Wolectlar Biolosy and Ewolution 13(3): 510-524.

Swofford. D. (2002). PAUP*: Phylogenetic Analysis Using Parsimony. Version 4.0610 for Macintosh. Sunderland MA, Sinater Associates Inc.

Thacker. C. (2004). Phylogeny and species boundaries in the gobiid genus Gnatholepis (Teleostei: Perciformes). Zoological Joumal of the Linnean Society 142: 573-582.

Thacker. C.. Hardman. M.A. (2005). Molecular phylogeny of basal gobioid fishes: Rhyacichthyidae. Odontobutidae, Xenisthmidae, Eleotridac (Telcostei: Perciformes: Gobioidei). Moloctalar Phylogenetics and Evolution 37: 858-871.

Thacker, C.. Unmack. P.J (2005). Phylogeny and Biogeography of the Eleotrid Genus Hypseleotris (Teleostei: Gobioidei: Eleotridac), with Redescription of $H$. cyprinoides. Records of the Australian Museum 57(1): 1-13.

Trewick. S.A. (2000). Molecular evidence for dispersal rather than vicariance as the origin of flightless insect species on the Chatham Islands, New Zealand. Journal of Biogeography 27(5): 1189-1200.

Turner, G.F. (1999). What is a fish species? Reviens in Fish Biologn and Fisheries 9(4): 281-297.

Vrijenhoek, R.C. (1998). Conservation genetics of freshwater fish. Joumal of Fish Biolog 53(Supplement A): 394-412.

Waters. J. M.. Wallis. G.P. (2001). Mitochondrial D.NA phylogenetics of the Galaxias rulgaris complex from the South Island. New Zealand: rapid radiation of a species flock. Jomonal of Fish Biologl 58: 1166-1180.

Waters. I. M.. Dijkstra. L..H.. Wallis. (G.P. (2000a). Biogeography of a southern hemisphere freshwater fish: how important is marine dispersal? Wolectld Ecology 9: 1815-1821.

Waters. J. M.. Lopez. J.A.. Wallis. (3.P. (2000b). Molecular Phylogeneties and Biogeography of Galaxiid Fishes (Osteichthyes: Galaxiidae): Dispersal. Vicariance. and the Position of Lepidogalaxias salamandroides. Sistematic Biolog. 49(4): 777-795.

Waters. J. M.. Burridge, C.P. (1999). Extreme intraspecific Mitochondrial DNA Sequence Divergence in Galaxias maculatus (Osteichthys: Galaxiidae). One of the World's Most Widespread Freshwater Fish. Molecular Phylogenetics and Evolution 11(1): 1-12.

Weins, J.J.. Penkrot. T.A. (2002). Delimiting species using DNA and morphological variation and discordant species limits in spiny lizards (Sceloporus). Sistematic Biolog' 51: 69-91.

Whitley, G. P. (1968). A checklist of the fishes recorded from the New Zealand region. Australian Zoologist 15(1): 1-102.

## CHAPTER II

## GENES AND MORPHOLOGY: A COMPARATIVE

## EXAMINATION OF G. BREVICEPS AND G. BASALIS IN THE LOWER NORTH ISLAND, NEW ZEALAND*

Key Words: Gobiomorphus breviceps, G. basalis, mitochondrial DNA, morphology, divergence

*to be published under the same title as: Emily P. Atkinson, Michael K. Joy, Mark I.
Stevens, Russell G. Death


#### Abstract

Gobiomorphus breviceps (Upland bully) and Gobiomorphus basalis (Cran's bully) have an overlapping distribution in the lower North Island and can be difficult to differentiate due to similar morphologies. We examined mitochondrial DNA (mtDNA) and morphological characteristics to identify diagnostic characters that could clearly differentiate these two species. As Gobiomorphus cotidianus (common bully) is also found in the lower North Island and is known to often be confused with G. basalis, specimens were included in the morphological analysis. Furthermore, we examined whether these morphological characters could resolve any geographical patterns, and if these patterns were congruent between mtDNA and morphology. MtDNA proved to be an effective tool both for identifying fish species and for examining genetic divergence between populations and catchments. Populations in the Manawatu (Manawatu catchment) and Wairarapa (Ruamahanga catchment) regions shared a number of identical haplotypes, as well as harbouring some catchment specific haplotypes. However, the Wellington (Makara) populations had only unique haplotypes. These results are discussed in terms of catchment connections during the Pleistocene. The most effective diagnostic morphological characteristic for differentiating between species was found to be the number of pectoral fin rays. The morphological data showed relatively little divergence between populations or catchments, despite the characters being highly polymorphic. We conclude that the two species can be differentiated using the pectoral fin rays (although some error is unavoidable as there is some overlap), as well as mtDNA. In addition, we found that the mtDNA revealed geographic structuring between populations and catchments indicating the presence of isolating barriers to dispersal.


## INTRODUCTION

The Upland and Cran's bullies are two of the four of New Zealand's endemic nondiadromous Gobiomorphus species (family Eleotridae). The upland bully (Gobiomorphus breviceps) occurs commonly at low altitudes in a variety of habitats, for example; wetlands, small streams, farm drains and large gravely rivers, anywhere where the flow is gentle (McDowall, 2000). Gobiomorphus breviceps is common and widespread in South Island; in Nelson/Marlborough region, on the west coast as far south as Hokitika and throughout eastern South Island (McDowall, 2000). However, it is also known in the lower North Island in parts of the Manawatu and Ruamahanga (Wairarapa) river systems, and around Wellington region (McDowall, 1990). The Cran's bully (Gobiomorphus basalis), like G. breviceps is found in a variety of habitats at low altitudes. It has a widespread yet intermittent distribution from Northland (throughout most of the North Island) to its southern limit at Wellington (McDowall, 2000).

The distribution of the two species shows that they have a broadly overlapping zone in the lower North Island, with both species having been found in the Manawatu and Ruamahanga River systems (McDowall, 1975). McDowall (1975) suggested that the two species evolved in the separate islands and were able to become sympatric during the Pleistocene when Cook Strait was bridged by land (Fleming, 1962), and that G. breviceps populations in lower North Island are remaining populations from this period (McDowall, 1975). This broad overlap in distribution has led to confusion in the identification of the two species in the lower North Island. Both species exhibit sexual dimorphism, where adult males can possess distinct colour patterns that allow for identification. However, juveniles and females lack the bright and distinct colouration of the males, thus females of both species are often confused (McDowall, 2000). Furthermore, like the non-migratory populations of common bullies (Gobiomorphus cotidianus) Cran's and upland bullies lack open pores on the head and have reduced scale cover on the back of the head and back (McDowall, 1990). In areas where nondiadromous bullies and G. cotidianus overlap in distribution it can become difficult to distinguish between the species. This has added to the confusion and has been attributed to why G. basalis did not reappear in the literature until 1962 when it was re-described
by H.J.Cranfield (it was thought to be one and the same with G. cotidianus), even though it was first discovered in 1842 (Cranfield, 1962).

The elucidation of fixed diagnostic morphological characters allows for species to be identified and distinguished. Morphological characters including body ratios and counts of serially repeated structures e.g. fin ray counts have a genetic basis (Christiansen et al., 1988), therefore can be used for identification purposes. Although they have a genetic basis, they are phenotypically plastic and may be strongly influenced by environmental factors, resulting in population differences (Smith et al., 2003; King et al., 2003). This has been observed in both G. breviceps and G. basalis, where there is considerable variation between populations, although McDowall (1990) stated that there was little evidence of morphological variation in $G$. breviceps. McDowall (1975) however, reported a southward decline in the first dorsal spine counts in G. basalis. Additionally, he reported that counts tend to be stable between and within populations in other eleotrids. Ling et al. (2001) found that meristic variables such as numbers of vertebrae and gill rakers were strongly influenced by environmental factors in both Galaxias maculatus and Galaxias gracilis (Dwarf inanga), and the loss of diadromy resulted in fewer vertebrae and more gill rakers. Interestingly, nondiadromous Gobiomorphus species have more vertebrae (28-29) than the diadromous species (27) (although G. cotidianus a non-obligatory migratory species has 29 vertebrae). This variation in morphological variables has made it difficult to distinguish between $G$. basalis and G. breviceps, i.e. there is considerable overlap in the measurements of these features between the two species. For example, the first dorsal fin spine count of $G$. breviceps is usually six, but at times can also be five or seven, whereas for $G$. basalis the first dorsal fin spine count is usually seven or eight, but at times can be six.

Smith et al. (2003) provided a molecular analysis of the genus Gobiomorphus in New Zealand. They established that the two species (G. basalis and G. breviceps) could be identified using genetic information. Two mitochondrial DNA (mtDNA) regions; the cytochrome $b$ gene (non-coding) and the control region (coding) are subject to different ecological constraints and have been used extensively to examine phylogenetic questions in fish (Smith et al., 2005). The cytochrome $b$ gene is variable enough to answer population questions, but the rate of evolution is slow enough to allow for deeper phylogenetic questions to be examined (Meyer, 1994).

Mitochondrial DNA allows for the two described species (G. basalis and G. breviceps) to be correctly identified and further distinguished by the presence of fixed diagnostic morphological characters. Here we examine two regions of the mitochondrial (mt) genome, the cytochrome $b$ gene and the control region. These genes can accurately identify the two described species, to which we can then apply meristic information to identify diagnostic characters that can be used in the field to distinguish between the species. Further, as considerable morphological variation between populations has been observed in both; G. breviceps and G. basalis, we compared population differences in the mtDNA with morphological data to examine geographical patterns.

The two hypotheses used were: 1) that the lack of gene flow between catchments will result in genetic and morphological divergence; and 2) there will be no genetic or morphological divergence within catchments where gene flow is possible.

## MATERIALS and METHODS

## Specimen collection

Gobiomorphus specimens were collected from around the lower North Island in the region of Wairarapa, Manawatu and Wellington by hand netting and electric fishing. Specimens were identified (using colour patterns on large fish and first dorsal fin spine counts on all) in the field and returned to the laboratory for further identification as well as meristic measurement and blood sampling. Blood samples were taken from a total of 80 fish. Fish were anaesthetized using 2 Phenoxy-ethanol then $5-50 \mu \mathrm{~L}$ of blood was taken (depending on the size of the fish) from the caudal vein at the base of the anal fin using a fine gauge needle ( 29 gauge $\mathrm{x} 1 / 2 "$ ) and primed with $50 \mu \mathrm{~L}$ of anticoagulant (sterilised EDTA (100mM) (Gleeson et al., 1999). Fish were then exposed to a lethal dose of 2 phenoxy-ethanol and preserved in $80 \%$ ethanol. Fin clips were taken from the pectoral fin (right fin) on all the fish as a backup. Blood samples and fin clips were frozen at $-80^{\circ} \mathrm{C}$ until required.

Ten $G$. breviceps specimens were collected from Makara, Wellington region in the upper reaches of the Makara stream, 10 from the Wairarapa region in the Kiriwhakapapa stream, 10 from Manawatu region in the lower reaches of the

Kahuterawa (a tributary of the Manawatu River), and 10 from Tokomaru River (Fig. 1).
Ten G. basalis specimens were collected from Manawatu region in the Nguturoa stream, 10 from the Turitea stream (one specimen was correctly identified as $G$. breviceps by molecular analysis) and 20 from Wairarapa region in the Kopuaranga stream (Fig. I) (nine specimens from this site were wrongly identified as $G$. basalis. but correctly identified by molecular analysis as (G. breviceps). Gohiomorphus cotidianus was included in the morphological analysis, which were collected from the Marlborough region (9) and Lake Kohangatera in Wellington region (10).


FIGURE 1. The location of the sites sampled for bullies in the Wellington. Manawatu and Wairarapa regions, North Island, New Zealand.

## DNA Analyses

## $m t D N A$ extraction, amplification and sequencing

Total genomic DNA was extracted from blood and fin/muscle tissue by homogenisation and digestion with proteinase- K and high salt buffer at $57^{\circ} \mathrm{C}$ for four hours (modified from; Sunnucks \& Hales, 1996); then purified by sodium chloride extraction and ethanol precipitation techniques. Two regions of the mitochondrial genome were amplified for each individual using the polymerase chain reaction (PCR). An approximate 500 base pair fragment of the mitochondrial (mt) cytochrome c oxidase $b$ gene was amplified using the universal primers Cyb 2 (modified) ( $5^{\prime}-\mathrm{ccc}$ tca gaa tga tat $\left.\mathrm{ttg} \operatorname{tcc} \mathrm{t}-3^{\prime}\right)$ (Kocher et al., 1989) and tGludg ( $5^{\prime}-\mathrm{tga}$ ctt gaa raa cca ycg $\mathrm{ttg}-3^{\prime}$ ) (Palumbi et al., 1991), and the primer pairs H-16498 (5' - cet gaa cta gga acc aga tg $\left.3^{\prime}\right)$ (Shields \& Kocher, 1991) and L-15995 (5' - aac tct cac ccc tag ctc cca aag - 3') (Meyer et al., 1994) were used to amplify approximately 400 base pairs of the control region. Amplifications for each specimen used a $10 \mu \mathrm{l}$ reaction volume containing 0.75 $\mu \mathrm{l}$ of the extracted DNA (unquantified), $1 \times \mathrm{PCR}$ buffer (Roche) $2.2 \mathrm{mM} \mathrm{MgCl} 2,0.2$ mM of each dNTP (Boehringer-Mannheim), $0.2 \mu \mathrm{l}$ of each primer (tGludg/Cyb 2 and H-16498/L-15995), $0.5 \mu \mathrm{l}$ of BSA (Bovine Serum Albumin), and 0.1 unit of Taq DNA polymerase (Roche). The thermal cycles for both genes (carried out on a T1 thermocycler Whatman Biometra) were: 2 min of initial denaturation at $94^{\circ} \mathrm{C}$ followed by 35 cycles of denaturation and polymerase amplification $\left(94^{\circ} \mathrm{C}\right.$ for $30 \mathrm{~s}, 55^{\circ} \mathrm{C}$ for 45 s and then $72^{\circ} \mathrm{C}$ for 30 s ), followed by 5 min at $72^{\circ} \mathrm{C}$.

PCR samples were purified using SAPEXO (USB Corp.) following the manufacturers guidelines. Products were sequenced (BigDye ${ }^{\mathrm{TM}}$ Terminator chemistry (Perkin-Elmer Applied Biosystems)) using the tGludg and $\mathrm{H}-16498$ primers. Sequencing reactions were cleaned using CleanSEQ (Agencourt Bioscience Corp.), before capillary separation on an AB13730 genetic analyser (Applied Biosystems Inc.) at the Allan Wilson Centre Genome Service, Massey University, Palmerston North.

## Morphological Analyses

External meristic counts were made on all specimens (specimens left side). The spines in the first and second dorsal fins, and the pectoral, anal and pelvic fin rays were counted using multiple photos (see figure 2 for example photos) taken before the fish were killed and using the whole fish. Multiple measurements (3) were taken (one from photos and two from whole fish) for each characteristic measured to allow averages to be calculated.

## Data Analysis

Individual DNA sequences were verified as being derived from the relevant taxa using GenBank ${ }^{\text {TM }}$ BlastN search, and were aligned using SEQUENCHER (Gene Codes ver. 4.2) sequence editor (NB: Unable to get cytochrome $b$ sequence for specimen $\operatorname{Tok}(4)$ so it was removed from genetic analysis). Sequence data were analysed with PAUP* ver. 4.0 bl 10 (Swofford, 2002). Distance matrices of pairwise nucleotide sequence divergence (uncorrected ' $p$ ' distance method) were calculated using PAUP. Separate analyses of the cytochrome $b$ and control region sequences, produced comparable results. We then examined the congruence of the two data sets with a partition homogeneity test (Farris et al., 1994). One hundred partition replicates were analysed under maximum parsimony (MP) using heuristic searches in PAUP. The two datasets were combined and analysed as composite sequences. Bootstrapping (100 runs) was performed using splitstree ver. 4.1 (Huson \& Bryant, 2006). Canonical discriminant analysis was carried out on the morphological data and the distance matrices with SAS system ver. 8.02 (SAS Institute Inc. 2001). MANOVA SAS tests were used to test the strength of associations in the analysis.


FIGURE 2. Examples of photos used to count fin rays.

## RESULTS

Molecular Analysis

Molecular analyses of the specimens correctly identified the two species. As a result some specimens that had been collected and misidentified in the field were subsequently analysed as different species. In particular, one of the Turitea specimens and nine of the Kopuaranga specimens were wrongly identified as $G$. basalis.

Analyses used 382 basepairs (bp) of the control region and 411 bp of the cytochrome $b$ gene. Of the cytochrome $b$ sequences 33 of the 411 bases, and 31 of the 382 bases for the control region were variable (Table 1). Genetic divergences ranged from $0.13 \%$ to $1.6 \%$ for G. basalis (Appendix III), and $0.13 \%$ to $0.9 \%$ for G. breviceps (Appendix IV). The highest sequence divergences $(0.4 \%-0.9 \%)$ in $G$. breviceps were between the Makara population, and the Manawatu and Wairarapa populations. The lowest sequence divergence ( $0.13 \%-0.3 \%$ ) was between the Manawatu and Wairarapa populations (Appendix IV). The highest sequence divergences ( $0.6 \%-1.6 \%$ ) in $G$. basalis were between the Manawatu and Wairarapa populations. However, these populations also showed individuals with identical haplotypes for both mtDNA regions. Sequence divergence was generally low within populations ( $0.13 \%-0.5 \%$ ) (Appendix III).

For the combined sequence data (combined based on partition homogeneity test), a total of 15 haplotypes were found; seven $G$. breviceps haplotypes and eight $G$. basalis haplotypes (Fig. 3). One identical haplotype was found between the two river catchments (Manawatu and Ruamahanga) for both species (Fig. 3). However, some haplotypes occurred only within particular catchments but not between them. For example, the Makara stream contained two haplotypes that were unique to that catchment (Fig. 3). They were also the most dissimilar haplotypes for the G. breviceps populations, where the Ruamahanga and Manawatu haplotypes were most similar. The G. basalis haplotypes in the Manawatu and Ruamahanga were genetically distant from each other (apart from the one identical haplotype) (Fig. 3). However, haplotypes from both catchments were found at each extreme of the network. For both Gobiomorphus species there was very little geographical divergence between populations (Fig. 3), with the populations in the lower North Island appearing genetically homogeneous. In particular, for G. breviceps the Wellington populations were distinct from the Manawatu and Wairarapa populations.

TABLE 1. Variable sites. The first set of variable sites is the cytochrome $b$ sequences and the second is the control region sequences. Locations where each haplotype was found are indicated using location codes from fig. 3 and haplotypes are given a single letter code. Identical character states are indicated by dots. The $(-)$ indicates a deletion.


TABLE 1. (cont.)

| $\frac{\stackrel{y y}{0}}{\frac{0}{0}}$ | LOCATION | 1 3 | 1 | 5 2 | 6 5 | 7 3 | 8 3 | 8 | 9 | 9 4 | 1 1 4 | 1 3 1 | 1 3 9 | 1 4 0 | 1 4 2 | 1 4 4 | 1 4 9 | 1 5 1 | 1 5 3 | 1 8 3 | 1 | 2 0 3 | 2 0 6 | 2 2 6 | 2 3 0 | 2 3 3 | 2 5 7 | 2 6 5 | 2 7 4 | 3 0 1 | 3 5 8 | 3 <br> 6 <br> 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | $\begin{aligned} & \text { Tur(3-8,10), } \operatorname{Ngt}(4), \operatorname{Kir}(1- \\ & 10), \operatorname{Kah}(1-10) \\ & \operatorname{Tok}(1-3,5-9) \\ & \operatorname{Kop}(3,10,11,13,14,16,17,19 \end{aligned}$ | A | T | G |  | T | T | A | A | A | A | T | T | G | A | T | A | A | C | A | T | G | T | T | A | T | T | T | T | T |  | T |
| B | ,20), Tur(9) | - | . | . | - | . | . | . | . | . | G | . | . | . | . | . | . | . | - | . | - | - | . | - | . | - | . | . | - | - |  |  |
| C | $\operatorname{Mak}(1-10)$ |  | . | . | - | . | A | . | . | . | G | . |  | . | . | . | . | . | . | . | . | . | . | . | . | C | . | . | . |  |  |  |
| D | Tur(2) | T |  | . |  | . | . | . | . | . | . | . |  | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . |  |  |
| E | Ngt(1-3,5-8,10) |  | A | C | A | A | A | C |  |  | G | C | A | A | C | G | T |  | G |  | C | A | C | A | . | C | C | A | G | A |  | C |
| F | Ngt(9) |  | A | C | A | A | A | C |  |  | G | C | A | A | C | G | T | T | G |  | C | A | C | A | . | C | C | A | G | A |  | C |
| G | Kop(2) |  | A | C | A | A | A | C |  |  | G | C | A | A | T | G | C |  | A | G | C | A | C | A | C | C |  | A | G | A |  | C |
| H | $\operatorname{Tur}(1), \operatorname{Kop}(4,6,15)$ |  | A | C | A |  | A | C | C | G | G | C | A | A | C | G | T |  | G |  |  | A | C | A | . | C | C | A | G | A | C | C |
| I | Kop(1,5,7,8,9,12,18) |  | A | C | A | A | A | C | C | G | G | C | A | A | T | G | C | . | A | G | C | A | C | A | C | C | . | A | G | A |  |  |

G. breviceps
G. basalis
(A)

(B)

$\operatorname{Kir}(2,3,5,7-10)$, Tur(3-8,10), $\operatorname{Ngt}(4) \& \operatorname{Kah}(1-10)$


Tur(2)

FIGURE 3. Haplotype network (neighbour joining with 100 bootstraps) showing mtDNA haplotypes and their relative connections, with bootstrap support. Data from: (A) G. basalis (B) G. breviceps.

## Morphological Analysis

We examined external morphology for all individuals used for DNA analyses in addition to 19 ( 10 Lake and 9 riverine specimens) Gobiomorphus cotidianus (common bully). Canonical discriminant analyses were carried out using all five morphological characters ( $1^{\text {st }}$ and $2^{\text {nd }}$ dorsal spine counts, pectoral, anal and pelvic fin rays) to examine phenotypic differences between the species. The analysis showed that the morphological characters for all three species differed significantly (see Fig. 4). A MANOVA test rejected the null hypothesis that species had no overall effect (< 0.0001 ), indicating that species assignments had a significant relationship to the morphology of the individuals. The discriminant analysis had a correct classification success rate of $95 \%$. With cross-validation, this success rate became $74 \%$. The first canonical discriminant function (CDF) explained $97 \%$ of the variation seen between the three species, whereas the second CDF only explained $3 \%$ of the variation observed in the data. Therefore, only the canonical coefficients from the first CDF were interpreted.

The canonical coefficients from the first CDF showed that the pectoral fin ray counts had the highest influence of the variables in separating the species, followed by the anal fin ray counts and first dorsal spine count (see Table 2). This indicated that the species could be discriminated (both male and female) by using pectoral, anal and first dorsal spine counts. The rules for classifying the species are; pectoral fin rays $\leq 16=$ upland, pectoral fin rays 17 or 18 AND anal fin rays $<11=$ Cran's, pectoral fin rays $\geq$ 18 AND anal fin rays $\geq 11=$ common. The classification success rate of this rule for this data set is $95 \%$. By comparing the canonical coefficients with figure 4 it can be seen that G. basalis and G. cotidianus had greater fin ray counts for both pectoral and anal fins as well as a greater number of first dorsal spine counts than found for $G$. breviceps. This is clearly seen in figure 5 , showing pectoral fin rays against anal fin rays (two most defining characteristics). Gobiomorphus basalis and G. cotidianus could be discriminated from $G$. breviceps by the presence of more than 16 pectoral fin rays. This was the case most of the time; however, there was still some overlap with one $G$. breviceps specimen having 17 fin rays and one G. basalis specimen having only 15 fin rays. G. cotidianus could be discriminated to some extent from G. basalis by the presence of more than 18 pectoral fin rays, and also by slightly more anal fin rays (occasionally $>11$ ). This separation of $G$. basalis from G. cotidianus suggests that $G$.
basalis caught and identified in the field, were G. basalis rather than G. cotidianus, although there is still potentially error here as there was some overlap.

TABLE 2. Canonical coefficients for each morphological character showing relative importance of each variable for discriminating the three species.

| Variable (morphological <br> character) | Canonical coefficient <br> Canonical axis 1 | Canonical axis 2 |
| :--- | :--- | :--- |
| $1^{\text {st }}$ Dorsal fin | 0.260 | 0.633 |
| $2^{\text {nd }}$ Dorsal fin | -0.196 | 0.846 |
| Pectoral fin | 0.933 | -0.095 |
| Pelvic fin | 0.000 | 0.000 |
| Anal fin | 0.378 | -0.482 |



FIGURE 4. Discriminant analysis of all three species based on morphological data. The species form three distinct clusters with some overlap. $\mathrm{Up}=$ G. breviceps, $\mathrm{Cr}=G$. basalis and $\mathrm{Co}=G$. cotidianus.


FIGURE 5. Scatter plot using the two best discriminating features (pectoral fin ray counts and anal fin ray counts) from canonical discriminant analysis, showing three fairly distinct species groups.

Canonical discriminant analysis was also used to examine differences between the populations. The location groups overlapped considerably with both species, indicating that morphology did not separate out the populations i.e. there is little divergence between populations morphologically (Figs. 6a \& b). MANOVA tests showed that the null hypothesis that there is no overall location effect was marginally acceptable for the G. basalis populations $(\mathrm{p}=0.06)$, whereas it could be rejected for the G. breviceps populations $(\mathrm{p}=0.02)$ as there was a small effect of location on morphology. The eigenvectors from the first CDF, showed that the pectoral fin ray counts had the greatest influence ( 0.963 ) in separating the populations.

As there is the potential for dispersal between populations, morphological divergence may be more likely between catchments rather than populations. A canonical discriminant analysis was carried out on the morphological data of both Gobiomorphus species, looking at the difference between catchments. Figure 7 showed
that there is some clustering within catchments for G. breviceps, but there was a large amount of overlap between catchments. A MANOVA ( $p=0.008$ ) indicated that there is some catchment relationship with the morphology of the species. However, for $G$. basalis (MANOVA; $\mathrm{p}=0.510$ ), there is no significant catchment relationship to the morphology of the species. The large morphological variation both between catchments, populations and individuals indicated that morphology may be highly plastic.


FIGURE 6a. Canonical discriminant analysis of the three G. basalis locations using morphological data (all 5 variables). Each point represents individual specimens. Location: Circle $=$ Ngturoa; triangle $=$ Turitea; diamond $=$ Kopuaranga .


FIGURE 6b. Canonical discriminant analysis of the seven locations using G. breviceps morphological data (all 5 variables). Each point represents individual specimens.


FIGURE 7. Canonical Discriminant analysis of the three catchments based on $G$. breviceps morphological data (all 5 variables). The three catchments overlap considerably. Catchment: Open circle $=$ Manawatu; closed circle $=$ Wellington; triangle $=$ Wairarapa.

## DISCUSSION

The mtDNA provided clear species discrimination, and demonstrated the geographic divergence between populations of both $G$. breviceps and $G$. basalis. Populations of non-diadromous fish are restricted to separate catchments, as they spend their whole life cycle in freshwater, this allows for these populations to evolve separately (Allibone, 2002). Therefore, we might expect these non-diadromous Gobiomorphus species to have diverged to some extent between catchments.

The North Island populations of G. breviceps have been described as relic populations from the last glaciation when there were land connections between the North and South Island due to lower sea levels (Smith et al., 2005). At the end of the last glaciation, around 17,000 years ago (Allibone, 2002), the sea levels rose and thus for non-diadromous species, isolation between the North and South Island populations was likely. Due to this time-scale, the divergence between populations would be expected to be low between lower North Island and upper South Island, and even lower between populations in the North Island. This pattern is reflected by the genetic structure of dwarf Galaxias (Galaxias divergens) in the upper South Island and lower North Island (Allibone, 2002). The low divergence ( $0.4 \%-0.9 \%$ ) of G. breviceps reflects the fairly recent colonisation of the North Island, and relatively short time for evolution. Alternatively, these low divergence levels could reflect the time since $G$. breviceps stopped being diadromous. In comparison, G. basalis, which has divergence levels of $(0.6 \%-1.6 \%)$ is typically a North Island species and has potentially been present in isolated catchments for a greater length of time. However, once again divergence could merely be a reflection of life history i.e. the time since they were a diadromous species.

The variable sites (Table 1) showed that there are few haplotypes specific to certain catchments, as well as some identical haplotypes found between the Manawatu and Ruamahanga catchments. The Makara stream in Wellington has haplotypes (D and E; cytochrome $b$ region, and C ; control region) that are unique to that catchment. As both $G$. breviceps and G. basalis are non-diadromous species it is expected that there would be little mixing of haplotypes between catchments, with haplotypes exhibiting divergence between catchments. Smith et al. (2005) examined the genetic divergence of G. breviceps, and found that haplotypes were catchment specific both in the North and

South Island. In particular, they found that haplotypes were only shared between the Manawatu and Ruamahanga catchments, and proposed that it was due to the Pleistocene connections (geological evidence suggests that the two catchments were interconnected) (Stevens, 1980), this was also reflected by the molecular clock data. The Kopuaranga site in the Wairarapa drains into the Ruamahanga catchment, but is approximately 200 metres away from a river that drains into the Manawatu catchment. Potentially the Kopuaranga could have originally been part of the Manawatu river system and been 'captured' by the Ruamahanga river system through various means e.g. an earthquake or landslide. The Wairarapa fault line lies near the Wairarapa sites, and has been active in the last 1000 - 10000 years (Schermer et al., 2004), therefore, could potentially have caused an offset, allowing gene flow across catchments. Jackson et al. (1998) examined anticlines (a type of fold that contributes to mountain building) in the Manawatu, and found that there was a clear relationship between the active faults and drainage patterns. Streams and rivers may be captured or diverted by these vertical uplifts, affecting dispersal among of populations.

The divergence of the $G$. breviceps Makara population indicates that gene flow has been low enough to enable fine-scale divergence. Allibone (2002) found that lower south-west North Island populations of dwarf Galaxias (Galaxias divergens) were genetically distinct from those in the Manawatu and Ruamahanga. Smith et al. (2005) also found that G. breviceps in the Ohau River (south-west North Island) were genetically distinct. This suggests that there has been relatively little mixing between these populations that do not form part of the Manawatu or Ruamahanga river systems. The Makara population is well separated from the Manawatu catchment by the Rimutaka range and approximately 90 km of land, and separated from the Ruamahanga by the Tararua ranges as well as approximately 30 km of land. This may be responsible for the divergence patterns observed.

Despite the large within species morphological variation, all three species could be discriminated using multivariate analysis (with minor overlap). The ability to be able to differentiate G. cotidianus from G. basalis morphologically is of some importance, as they cannot always be differentiated using mtDNA. Smith et al. (2003) found a similar pattern between $G$. cotidianus and G. alpinus. Although the two species were morphologically distinct they were not differentiable using mtDNA. The quantitative character that most clearly separated the three species was the number of pectoral fin rays. The next best discriminator was the number of rays in the anal fin, which helped to
further clarify G. cotidianus from G. basalis. Pectoral fin ray counts as the best distinguishing feature between $G$. breviceps and G. basalis has also been found by Fenaughty (unpublished thesis, 1986) and McDowall (1990), who further described $G$. basalis as being distinguishable from G. cotidianus by the small and widely spaced scales on the back of the head and fewer scales on the opercula. In the present study only characters easily examinable in the field were looked at.

The ability to identify species based on fixed diagnostic morphological characters fairly accurately indicates that they have a genetic basis. Despite this they are also highly plastic, and may be strongly influenced by environmental factors. Lindsey (1988) found that the number of vertebrae and fin rays in two Galaxias species correlated with water temperatures. Population differences may then be a result of environmental influence rather than genetic variation (Smith et al. 2003), which has been postulated as the cause of the meristic differences in G. alpinus. Smith et al. (2003) suggested that it might be a response to the extreme high-altitude environment they live in. However, G. cotidianus found at similar altitudes express similar phenotypic characteristics to lowland G. cotidianus, and there is little evidence available to suggest that Eleotrids modify their morphology in response to environmental conditions (McDowall, pers. comm.). It is expected that if there is a strong genetic basis to morphological characters, then genetically diverse populations within a species may have diverged morphologically as well.

The morphology of the individual populations overlapped considerably; there was a large amount of variation that did not fit the patterns of genetic divergence. Location had no overall relationship with morphology. This could in part be due to the continual gene flow between populations within a river system, indicating that divergence may in fact be at the level of the catchment. However, there was a considerable amount of morphological overlap between catchments. The MANOVA test indicated that there is a weak catchment relationship with morphology, which may be due to several factors, namely; (1) that there has potentially been gene flow between the Manawatu and Ruamahanga in the recent past; (2) morphological divergence may closely reflect mtDNA divergence patterns; (3) environmental influences on morphology may disrupt divergence patterns. However, it would be expected that individual populations would have similar morphologies as they would be exposed to similar environmental influences, which was not the case in the present study (high variation within populations).

D'Anatro and Loureiro (2005) examined the geographic variation in Austrolebias luteoflamulatus, an annual killifish in Uruguay, where gene flow interruption between populations may occur on a regular basis. The results of their study showed that populations are structured according to geographical patterns corresponding to different drainage systems; this effect was greater in the males than females. It was thought that sexual selection and to some extent environmental variables played an important role in the differentiation of the populations in this species. As both Gobiomorphus species are sexually dimorphic, it is possible that sexual selection may have some impact on the morphology of the populations. Neves and Monterio (2003), in contrast discovered that there was an environmental selection pressure on the genotype expressed when looking at the morphological variation between populations of livebearing fish Poecilia vivipara in lagoons of Grussai and Iquipari in Brazil.

## CONCLUSIONS

Molecular analysis provides a useful tool for the identification of fish to enable definition of diagnostic characters. It also allows for population differences to be examined and compared with morphological data to study geological differences. In this case, the Manawatu and Ruamahanga river systems shared identical haplotypes as well as having some unique haplotypes. The lack of divergence between the two catchments has been postulated to be due to catchment connection during the Pleistocene (although the possibility that divergence levels merely reflect life history i.e. time since the species were diadromous can not be ruled out without further examination). The spatial proximity of the two catchments could have led to a stream being "captured" by one river system from the other, thus allowing gene flow to occur. The Makara population of $G$. breviceps was the most divergent population probably due to lack of possible connection with the other two catchments.

Gobiomorphus breviceps, G. basalis and G. cotidianus in the lower North Island can be differentiated using morphological information i.e. fin ray counts (although there is some error involved i.e. with cross-validation there was $26 \%$ error). The most effective diagnostic character is the pectoral fin ray followed by the anal fin rays. The
lack of morphological divergence and high variation between the populations and catchments can potentially be contributed to environmental influence on morphology, or the high gene flow between the populations, which may limit evolution. Sexual selection is unlikely to be effecting these populations, as it should enhance morphological divergence.

More extensive examination of morphology and genetics of the Gobiomorphus species throughout New Zealand may provide further insights to the divergence patterns between catchments and populations.

## ACKNOWLEDGEMENTS

This work was possible owing to the support from a Julie Alley Bursary, Massey University. We are grateful to Jessica Costall, Shaun Neilson, Logan Brown, Kiryn Weaver, Jono Tonkin, Carol Nicholson, Zoe Dewson and Alex James for their help in the field. We are also grateful to Angela McGaughran for help in the laboratory and for helpful comments on this manuscript. This study was carried out under approval from the Massey University ethics committee, protocol number 04/125.

## LITERATURE CITED

Allibone, R. (2002). Dealing with diversity dwarf galaxias style. Water \& Atmosphere 10(1): 18-19.

Christiansen, F. B., Nielsen, V.H., Simonsen, V. (1988). Genetics of Zoarces populations XV. Genetic and morphological variation in Mariager Fjord. Hereditas 109: 99-112.

Cranfield, H.J. (1962). Studies on the systematics of Gobiomorphus breviceps (Stokell) and G. gobioides (Cuvier and Valenciennes). Unpublished M.Sc. thesis, University of Canterbury, Christchurch. 240 pp.

D'Anatro, A., Loureiro, M. (2005). Geographic variation in Austrolebias luteoflamulatus Vaz-Ferreira, Sierra \& Scaglia (Cyprinodontiformes, Rivulidae). Journal of Fish Biology 67: 849-865.

Farris, J., Kallersjo, M., Kluge, A., Bult, C. (1994). Testing significance of incongruence. Cladistics 10: 315-319.

Fenaughty, C. M. (1986). The biochemical systematics of the Cran's and Upland bullies. Unpublished BSc thesis held in Victoria University library, Wellington.

Fleming, C. A. (1962). New Zealand biogeography - a palaeontologist's approach. Tuatara 10(2): 53-108.

Gleeson, D. M., Howitt, R.L.J., Ling, N. (1999). Genetic variation, population structure and cryptic species within the black mudfish Neochanna diversus an endemic galaxiid from New Zealand. Molecular Ecology 8: 47-57.

Huson, D.H., Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23: 254-267.

Jackson, J., Van Dissen, R., Berryman, K. (1998). Tilting of active folds and faults in the Manawatu region, New Zealand: evidence from surface draining patterns. New Zealand Journal of Geology \& Geophysics 41: 377-385.

King, K. J., Young, K.D., Waters, J.M., Wallis, G.P. (2003). Preliminary genetic analysis of koaro (Galaxias brevipinnis) in New Zealand lakes: Evidence for allopatric differentiation among lakes but little population subdivision within lakes. Journal of the Royal Society of New Zealand 33(3): 591-600.

Kocher T.D., Thomas, W. K., Meyer, A., Edwards S.P., Villablanca F.X., Wilson A.C. (1989). Dynamics of Mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences of the United States of America 86: 6196-6200.

Lindsey, C.C. (1988). Factors controlling meristic variation. In. Hoar, W.S., Randall, D.J. ed. Fish physiology. Vol X1B. New York, Academic Press. Pp. 179-274.

Ling, N., Gleeson, D.M., Willis, K.J., Binzegger, S.U. (2001). Creating and destroying species: the 'new' biodiversity and evolutionary significant units among New Zealand's galaxiid fishes. Journal of Fish Biology 59 (Supplement A): 209-222.

McDowall, R. M. (1975). A Revision of the New Zealand species of Gobiomorphus (Pisces: Eleotridae). National Museum of New Zealand Records 1(1): 1-32.

McDowall, R. M. (1990). New Zealand freshwater fishes: A natural history and guide. Auckland, Heinemann Reed MAF Publishing group.

McDowall, R. M. (2000). The Reed Field Guide to New Zealand Freshwater Fishes. Auckland, Reed Publishing.

Meyer, A. (1994). Shortcomings of the cytochrome $b$ gene as a molecular marker. Trends in Ecology \& Evolution 9(8): 278-280.

Meyer, A., Morrissey, J.M., Schartl, M. (1994). Recurrent origin of a sexually selected trait in Xiphophorus fishes inferred from a molecular phylogeny. Nature 368: 539-542.

Neves, F. M., Monteiro, L.R. (2003). Body shape and size divergence among populations of Poecilia vivipara in coastal lagoons of south-eastern Brazil. Journal of Fish Biology 63(4): 928-941.

Palumbi, S., Martin, A., Romano, S., McMillian, W., Stice, L., Grabowski, G. (1991). The Simple Fool's guide to PCR, Version 2.0. Honolulu, USA, University of Hawaii.

Schermer, E. R., Van Dissen, R., Berryman, K.R., Kelsey, H.M., Cashman, S.M. (2004). Active faults, paleoseismology, and historical fault rupture in northern Wairarapa, North Island, New Zealand. New Zealand Journal of Geology \& Geophysics 47: 101-122.

Shields, G.F., Kocher, T.D. (1991). Phylogenetic relationships of North American ursids based on analysis of mitochondrial DNA. Evolution 45: 218-221.

Smith, P. J., McVeagh, S.M., Allibone, R. (2003). The Tarndale bully revisited with molecular markers: an ecophenotype of the common bully Gobiomorphus cotidianus (Pisces: Gobiidae). Journal of the Royal Society of New Zealand 33(3): 663-673.

Smith, P. J., McVeagh, S.M., Allibone, R. (2005). Extensive genetic differentiation in Gobiomorphus breviceps from New Zealand. Journal of Fish Biology 67: 627-639.

Stevens, G. (1980). New Zealand Adrift. Wellington, Reed.

Sunnucks, P., Hales, D.F. (1996). Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). Molecular Biology and Evolution 13(3): 510-524.

Swofford, D. (2002). PAUP*: Phylogenetic Analysis Using Parsimony, Version 4.0 b 10 for Macintosh. Sunderland MA, Sinauer Associates Inc.

## THESIS CONCLUSION

Genetic studies have contributed to resolving problems with taxonomically difficult groups, detecting diversity between morphologically similar species, as well as examining geographical divergence within species that previously have not been well resolved by morphological studies alone (Vrijenhoek, 1998; Orti et al. 1994). Within the Gobiomorphus genus, cladistics have typically been carried out using morphological characters that have not allowed for the examination of deeper questions such as; the analysis of origins, evolution of diadromy and relationships within the taxa as well as relationships with other families. Molecular data has allowed for the high resolution analyses of population-level questions in many species of fish (Orti et al. 1994), as well as accurate identification of fish species. In New Zealand, mtDNA has been used extensively to provide insights into the origins, evolution and phylogenetics of many fishes including Galaxiidae and Gobiomorphus.

In this thesis, I used mtDNA to examine phylogenetic relationships (including divergence), the origins and evolution of diadromy within Gobiomorphus, species identification, and morphological variation.

Examination of phylogenetic relationships within the Australasian Gobiomorphus (Chapter I) revealed that the genus is indeed a monophyletic group if the species G. australis is removed. However, Thacker and Hardman (2005) found strong support for the monophyly of the group inclusive of G. australis. Furthermore, the Australian Gobiomorphus form a polyphyletic group basal to the New Zealand radiation. Molecular clock calibrations indicate that the New Zealand and Australian Gobiomorphus have been isolated for 6-37 Myr, suggesting that the New Zealand species dispersed here post- Gondwanan break-up from Australia. Interestingly, the molecular clock dates match the late Oligocene epoch (34-23 Mya), the end of the period in which New Zealand was progressively submerged beneath a marine transgression. Pole (1994) believes that much of the present fauna and flora of New Zealand arrived via trans-oceanic dispersal after this period. Furthermore, fossil records indicate the presence of Gobiomorphus since the early Miocene epoch (16-20 Mya) (McDowall, pers. comm.). The importance of marine dispersal in Galaxiidae species has also been supported by molecular studies (Berra et al., 1996; Waters \& Burridge, 1999; Waters et al., 2000).

The molecular data suggest that New Zealand Gobiomorphus dispersed to New Zealand from Australia in a single event (i.e. the presence of monophyly). Once in New Zealand there was then a series of radiations. The most recent radiation produced the $G$. cotidianus, G. basalis and G. alpinus species complex. The species are not easily differentiated by mtDNA, which is reflected by the low between-species divergence rates. Smith et al. (2003) were able to differentiate G. basalis from G. cotidianus and $G$. alpinus, but not G. alpinus from G. cotidianus. Subsequently, they suggested that $G$. alpinus is an eco-phenotype of G. cotidianus. Gobiomorphus breviceps is also part of the later radiation of Gobiomorphus, and has the largest within-species divergence. The species forms two distinct Southern and Northern monophyletic groups, suggesting the presence of two species. The disjunction between the two groups has been postulated by Smith et al. (2005) to be due to Pleistocene glacial periods (1,810,000-11,550 bp) where the sea levels were lower than the present day, which is supported by molecular calibrations. It is suggested that the northern and southern groups be considered separate entities, however, further research is necessary to properly define these two putative species.

The later radiation of Gobiomorphus in New Zealand is of non-diadromous Gobiomorphus, suggesting that loss of diadromy (derived feature) is important in speciation. Diadromy appears to be a primitive characteristic as $G$. hubbsi a diadromous species, forms a sister group to all other New Zealand Gobiomorphus. Furthermore, G. huttoni and G. gobioides (both diadromous species) form a monophyletic group that is part of the first radiation. Diadromy has also been considered to be a primitive feature of the galaxiidae (McDowall, 1970; 1978), where the non-diadromous species have speciated from diadromous stock. The ability to disperse via marine currents has allowed G. huttoni to reach the Chatham Islands where no other Gobiomorphus species are found. The Chatham Island species affiliate with specimens from Waikato, with divergence rates measuring between 20,000 to 400,000 years ago. The Chatham Islands have been identified as remnants of late Cretaceous volcanic islands, and have been oceanic islands for at least 70 million years (Campbell et al. (1993). Thus, the presence of $G$. huttoni on the Chatham Islands suggests that dispersal is important mechanism in colonisation.

Chapter II aimed to use mtDNA to accurately distinguish between $G$. breviceps and G. basalis in order to identify diagnostic morphological characters. Additionally, population divergence and geographical patterns were examined. The mtDNA revealed
some unique haplotypes both within and between catchments for both G. basalis and $G$. breviceps. However, the Manawatu and Ruamahanga catchments shared identical haplotypes, suggesting that there has been some dispersal (gene flow) between the two catchments in the past. Smith et al. (2005) examined divergence of $G$. breviceps between catchments, and found that haplotypes were catchment specific with the exception of the Manawatu and Ruamahanga catchments. They suggested that the lack of divergence between the two catchments may be due to connections during the Pleistocene. Additionally, the proximity of the two catchments could have led to river "capture", thus allowing gene flow to occur. The Makara population of G. breviceps was the most divergent population, which may be due to the lack of connections with the other two catchments (separated by the Rimutaka and Tararua ranges, as well as approximately 90 km of land).

The mtDNA provided clear species discrimination between the two species, which allowed for the identification of a diagnostic morphological character. It was possible to discriminate between all there species ( $G$. breviceps, G. basalis and $G$. cotidianus) using all morphological characters, although there was some overlap, particularly between $G$. basalis and $G$. cotidianus. The quantitative character that most clearly separated the three species was the number of pectoral fin rays, followed by the number of rays in the anal fin, which helped to further clarify $G$. basalis from $G$. cotidianus However, using the classification rules there was still $5 \%$ classification error in the data set. Fenaughty (1986) and McDowall (1990) also found pectoral fin ray counts to be the best discriminatory feature between these species.

The ability to identify species based on fixed diagnostic morphological characters indicates that they have a genetic basis. However, within species and between populations high morphological variation was observed. It has been suggested that morphology is strongly influenced by environmental factors (e.g. Lindsey, 1988; Smith et al. 2003; Neves \& Monterio, 2003; D’Anatro \& Loureiro, 2005). Furthermore, sexual selection (both G. breviceps and G. basalis are sexually dimorphic) has been found to play an important role in the differentiation of populations in some fish species such as Austrolebias luteoflamulatus (an annual killifish in Uruquay) (D’Anatro \& Loureiro, 2005), and may have some impact on the morphology of the Gobiomorphus populations i.e. morphological divergence between catchments should be enhanced. The lack of morphological divergence between catchments (where dispersal is limited) despite high morphological variation could potentially be due to these influences. However, all the
species are exposed to similar environmental conditions, and sexual selection should result in males exhibiting the same characters within each catchment. Furthermore, the lack of morphological divergence could be a reflection of the genetic homogeneity of the populations.

The issues examined in this thesis highlight the usefulness of mitochondrial DNA for exploring, phylogenetic relationships (including divergence) and solving problems with taxonomically difficult groups, origins of fish species, and evolution of diadromy. Furthermore, molecular data coupled with morphological data can be used to improve identification techniques when dealing with morphologically similar species, as well as defining species and population 'conservation units'. Genetic data, and in particular mtDNA has allowed for high resolution analyses of population-level questions, and has already provided insights into the origins and phylogenetics of New Zealand fishes including Galaxiidae and Gobiomorphus.

## Future Research

Historically research on New Zealand freshwater fish has focussed on morphology characteristics for systematics, which often lack an accurate perspective on the relationships and origins of fish species (Orti et al., 1994). However, more recently genetic data has had a positive contribution to what we know of relationships and origins of fish species in New Zealand. Typically genetic analysis in New Zealand has focussed on short fragments of mtDNA for examining 'deep' evolutionary hypotheses, however, there is limited variation in the first and second codon positions of these shorter fragments (Meyer, 1994). It is suggested that for future research longer fragments (of approximately 1000 base pairs) are used when looking for high resolution in taxonomic studies.

Genetic data has been coupled with morphological data to some extent to distinguish new species, for example, morphological analyses of the Galaxias vulgaris complex has led to a taxonomic revision and identification of four new species (McDowall, 1997). The presence of two distinct $G$. breviceps groups, as indicated by mtDNA, suggests the presence of two species. Morphological analyses of this species would perhaps aid in the description of this species.

Furthermore, the presence of only one Gobiomorphus species (G. huttoni) in the Chatham Islands is rather puzzling as G. gobioides, G. hubbsi and G. cotidianus all have dispersive capabilities. This warrants further investigation.

## LITERATURE CITED

Berra, T. M., Crowley, L., Ivansoff, W., Fuerst, P.A. (1996). Galaxias maculatus: An explanation of its biogeography. Marine and Freshwater Research 47(6): 845849.

Campbell, H. J., Andrews, P.B., Beu, A.G., Maxwell, P.A., Edwards, A.R., Laird, M.G., Hornibrook, N. de B., Mildenhall, D.C., Watters, W.A., Buckeridge, J.S., Lee, D.E., Strong, C.P., Wilson, W.A., Hayward, B.W. (1993). Cretaceous Cenozoic geology and biostratigraphy of the Chatham Islands, New Zealand. Institute of Geological and Nuclear Sciences Monograph 2(269).

D'Anatro, A., Loureiro, M. (2005). Geographic variation in Austrolebias luteoflamulatus Vaz-Ferreira, Sierra \& Scaglia (Cyprinodontiformes, Rivulidae). Journal of Fish Biology 67: 849-865.

Fenaughty, C. M. (1986). The biochemical systematics of the Cran's and Upland bullies. Unpublished BSc thesis held in Victoria University library, Wellington.

Lindsey, C.C. (1988). Factors controlling meristic variation. In. Hoar, W.S., Randall, D.J. ed. Fish physiology. Vol X1B. New York, Academic Press. Pp. 179-274.

McDowall, R. M. (1970). The galaxiid fishes of New Zealand. Bulletin of the Museum of Comparative Zoology, Harvard University 139: 341-432.

McDowall, R. M. (1978). Generalized Tracks and Dispersal in Biogeography. Systematic Zoology 27(1): 88-104.

McDowall, R. M. (1990). New Zealand freshwater fishes: A natural history and guide. Auckland, Heinemann Reed MAF Publishing group.

McDowall, R.M. (1997). Two further species of Galaxias (Teleostei: Galaxiidae) from the Taieri River, southern New Zealand. Journal of the Royal Society of New Zealand 27: 199-217.

Meyer, A. (1994). Shortcomings of the cytochrome $b$ gene as a molecular marker. Trends in Ecology \& Evolution 9(8): 278-280.

Neves, F. M., Monteiro, L.R. (2003). Body shape and size divergence among populations of Poecilia vivipara in coastal lagoons of south-eastern Brazil. Journal of Fish Biology 63(4): 928-941.

Orti G., Bell, M. A., Reimchen T.E., Meyer A. (1994). Global Survey of Mitochondrial DNA Sequences in the Threespine Stickleback: Evidence for Recent Migrations. Evolution 48(3): 608-622.

Pole, M. (1994). The New Zealand flora - entirely long-distance dispersal? Journal of Biogeography 21: 625-635.

Smith, P. J., McVeagh, S.M., Allibone, R. (2003). The Tarndale bully revisited with molecular markers: an ecophenotype of the common bully Gobiomorphus cotidianus (Pisces: Gobiidae). Journal of the Royal Society of New Zealand 33(3): 663-673.

Smith, P. J. McVeagh, S.M., Allibone, R. (2005). Extensive genetic differentiation in Gobiomorphus breviceps from New Zealand. Journal of Fish Biology 67: 627639.

Thacker, C., Hardman, M.A. (2005). Molecular phylogeny of basal gobioid fishes: Rhyacichthyidae, Odontobutidae, Xenisthmidae, Eleotridae (Teleostei: Perciformes: Gobioidei). Molecular Phylogenetics and Evolution 37: 858-871.

Vrijenhoek, R.C. (1998). Conservation genetics of freshwater fish. Journal of Fish Biology 53(Supplement A): 394-412.

Waters, J. M., Lopez, J.A., Wallis, G.P. (2000). Molecular Phylogenetics and Biogeography of Galaxiid Fishes (Osteichthyes: Galaxiidae): Dispersal, Vicariance, and the Position of Lepidogalaxias salamandroides. Systematic Biology 49(4): 777-795.

Waters, J. M., Burridge, C.P. (1999). Extreme intraspecific Mitochondrial DNA Sequence Divergence in Galaxias maculatus (Osteichthys: Galaxiidae), One of the World's Most Widespread Freshwater Fish. Molecular Phylogenetics and Evolution 11(1): 1-12.

## APPENDIX I. Genetic distance based on sequence variation in the 105 unique mtDNA cytochrome $b$ sequences for Gobiomorphus. Lower

triangle is uncorrected distances and upper triangle is maximum likelihood distances. Location codes refer to those used in Table 1. A -

## Gobiomorphus gobioides.


























 2




















































































[^0]APPENDIX II. Genetic distance based on sequence variation in the 56 unique mtDNA control region sequences for Gobiomorphus. Lower triangle is uncorrected distances and upper triangle is maximum likelihood distances. Location codes refer to those used in Table 1. A = $G$.
gobioides; $\mathrm{B}=$ G. hubbsi.

|  | G. hu | oni | A |  |  |  |  |  |  |  |  |  |  |  |  | bre | ps |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LOCATION* | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
| CLWW(1) |  | 0.003 | 0.057 | 0.096 | 0.109 | 0.104 | 0.109 | 0.105 | 0.100 | 0.104 | 0.104 | 0114 | 0118 | 0.103 | 0.108 | 0.104 | 0.100 | 0.104 | 0.100 | 0.092 | 0.092 | 0.083 | 0.084 | 0.123 | 0.127 | 0.118 | 0.095 | 0.091 | 0.091 | 0.104 | 0.113 |
| W/M(1) | 0.003 |  | 0.053 | 0.100 | 0.113 | 0.108 | 0.113 | 0.109 | 0.104 | 0.108 | 0.108 | 0.118 | 0.122 | 0.107 | 0.112 | 0.108 | 0.104 | 0.108 | 0.104 | 0.096 | 0.096 | 0.087 | 0.087 | 0.127 | 0.131 | 0.122 | 0.099 | 0.095 | 0.095 | 0.108 | 0.118 |
| N/KR(1) | 0.050 | 0.048 |  | 0.110 | 0.124 | 0.119 | 0.122 | 0.119 | 0.114 | 0.119 | 0.119 | 0.138 | 0.133 | 0.117 | 0.131 | 0.114 | 0.110 | 0.114 | 0.109 | 0.101 | 0.105 | 0.100 | 0.101 | 0.129 | 0.133 | 0.124 | 0.108 | 0.104 | 0.096 | 0.117 | 0.127 |
| A | 0.077 | 0.079 | 0.084 |  | 0.008 | 0.005 | 0.011 | 0.005 | 0.003 | 0.005 | 0005 | 0.028 | 0.025 | 0.014 | 0.022 | 0.014 | 0.011 | 0.014 | 0.014 | 0.005 | 0.014 | 0.011 | 0.014 | 0.038 | 0.042 | 0.035 | 0.028 | 0.025 | 0.019 | 101 | 0.110 |
| Wa/M(1) | . 085 | 0.087 | 0.092 | 0.008 |  | 0.003 | 0.008 | 0.003 | 0.005 | 0.008 | 0.008 | 0.032 | 0.029 | 0.017 | 0.025 | 0.016 | 0.019 | 0.022 | 0.022 | 0.014 | 0.022 | 0.019 | 0.022 | 0.035 | 0.038 | 0.032 | 0.038 | 0.035 | 0.029 | 0.105 | 0.115 |
| M/K(1) | 82 | 0.085 | 0.090 | 0.005 | 0.003 |  | 0.011 | 0.005 | 0.003 | 0.005 | 0.005 | 0.029 | 0.026 | 0.014 | 0.022 | 0.014 | 0.016 | 0.019 | 0.019 | 0.011 | 0.019 | 0.016 | 0.019 | 0.039 | 0.042 | 0.035 | 0.034 | 0.031 | 0.025 | 0.110 | 0.119 |
| M/M(1) | 85 | 0.087 | 0.092 | 0.010 | 0.008 | 0.011 |  | 0.005 | 0.008 | 0.011 | 0.011 | 0035 | 0.032 | 0.019 | 0.028 | 0.025 | 0.022 | 0.025 | 0.025 | 0.016 | 0.025 | 0.022 | 0.025 | 0.038 | 0.042 | 0.035 | 0.041 | 0.038 | 0.032 | 0.109 | 0.119 |
| M/M(1) | 82 | 0.085 | 0.090 | 0.005 | 0.003 | 0.005 | 0.005 |  | 0.003 | 0.005 | 0.005 | 0.029 | 0.026 | 0014 | 0.022 | 0.019 | 0.016 | 0.019 | 0.019 | 0.011 | 0.019 | 0.016 | 0.019 | 0.032 | 0.035 | 0.029 | 0.035 | 0.031 | 0.025 | 0.101 | 0.110 |
| B | 0.079 | 0.082 | 0.087 | 0.003 | 0.005 | 0.003 | 0.008 | 03 |  | 0.003 | 0.003 | 0.026 | 0.022 | 0.011 | 0.019 | 0.016 | 0.014 | 0.016 | 0.016 | 0.008 | 0.016 | 0.014 | 0.017 | 0.035 | 0.038 | 0.032 | 0.031 | 0.028 | 0.022 | 0.105 | 0.114 |
| M/TS(1) | 0.082 | 0.085 | 0.090 | 0.005 | 0.008 | 0.005 | 0.010 | 0.005 | 0.003 |  | 0.005 | 0.029 | 0.025 | 0.014 | 0.022 | 0.019 | 0.016 | 0.019 | 0.019 | 0.011 | 0.019 | 0.016 | 0.019 | 0.039 | 0.042 | 0.035 | 0.034 | 0.031 | 0.025 | 0.110 | 0.119 |
| W/WR(1) | 0.082 | 0.085 | 0.090 | 0.005 | 0.008 | 0.005 | 0.011 | 0.005 | 0.003 | 0.005 |  | 0.029 | 0.026 | 0.014 | 0.022 | 0.014 | 0.011 | 0.014 | 0.019 | 0.011 | 0.019 | 0.016 | 0.019 | 0.039 | 0.042 | 0.035 | 0.03 | 0.03 | 0.025 | 0.110 | 0.119 |
| WC/R(1) | 0.087 | 0.090 | 0.100 | 0.026 | 0.029 | 0.026 | 0.032 | 0.026 | 0.024 | 0.026 | 0.026 |  | 0.014 | 0.028 | 0.025 | 0.038 | 0.035 | 0.031 | 0.038 | 0.028 | 0.038 | 0.035 | 0.038 | 0.052 | 0.056 | 0.049 | 0.051 | 0.048 | 0.041 | 0.106 | 0.115 |
| WC/S(1) | 0.090 | 0.093 | 0.098 | 0.024 | 0.026 | 0.024 | 0.029 | 0.024 | 0.021 | 0.024 | 0.024 | 0.013 |  | 0.025 | 0.035 | 0.035 | 0.031 | 0.028 | 0.034 | 0.025 | 0.035 | 0.032 | 0.035 | 0.049 | 0.052 | 0.045 | 0.051 | 0.048 | 0.041 | 0.114 | 0.123 |
| WC/L (1) | 0.082 | 0.085 | 0.090 | 0.013 | 0.016 | 0.013 | 0.018 | 0.013 | 0.011 | 0.013 | 0.013 | 0.026 | 0.024 |  | 0.008 | 0.022 | 0.019 | 0.022 | 0.022 | 0.014 | 0.022 | 0.019 | 0.022 | 0.042 | 0.045 | 0.038 | 0.038 | 0.034 | 0.028 | 0.109 | 0.118 |
| WC/L(1) | 0.085 | 0.087 | 0.098 | 0.021 | 0.024 | 0.021 | 0.026 | 0.021 | 0.018 | 0.021 | 0.021 | 0.024 | 0.032 | 0.008 |  | 0.031 | 0.028 | 0.031 | 0.031 | 0.022 | 0.031 | 0.028 | 0.025 | 0.045 | 0.048 | 0.048 | 0.047 | 0.044 | 0.038 | 0.114 | 0.123 |
| M/OR(1) | 0.082 | 0.085 | 0.087 | 0.013 | 0.016 | 0.013 | 0.024 | 0.018 | 0.016 | 0.018 | 0.013 | 0.034 | 0.032 | 0.021 | 0.029 |  | 0.003 | 0.005 | 0.016 | 0.008 | 0.016 | 0.014 | 0.017 | 0.042 | 0.045 | 0.038 | 0.031 | 0.028 | 0.022 | 0.105 | 0.115 |
| M/OR(2) | 0.079 | 0.082 | 0.084 | 0.010 | 0.018 | 0.016 | 0.021 | 0.016 | 0.013 | 0.016 | 0.011 | 0.032 | 0.029 | 0.018 | 0.026 | 0.003 |  | 0.003 | 0.014 | 0.005 | 0.014 | 0.011 | 0.014 | 0.038 | 0.042 | 0.035 | 0.028 | 0.025 | 0.019 | 0.101 | 0.110 |
| M/OR(1) | 0.082 | 0.084 | 0.087 | 0.013 | 0.021 | 0.018 | 0.024 | 0.018 | 0.016 | 0.018 | 0.013 | 0.029 | 0.026 | 0.021 | 0.029 | 0.005 | 0.003 |  | 0.016 | 0.008 | 0.016 | 0.014 | 0.017 | 0.035 | 0.038 | 0.032 | 0.031 | 0.028 | 0.022 | 0.096 | 0.105 |
| We/K(1) | 0.079 | 0.082 | 0.084 | 0.013 | 0.021 | 0.018 | 0.024 | 0.018 | 0.016 | 0.018 | 0.018 | 0.034 | 0.032 | 0.021 | 0.029 | 0.016 | 0.013 | 0.016 |  | 0.008 | 0.016 | 0.014 | 0.016 | 0.042 | 0.045 | 0.038 | 0.031 | 0.028 | 0.022 | 0.101 | 0.110 |
| We/M(10). We/K(1) | 0.074 | 0.077 | 0.079 | 0.005 | 0.013 | 0.011 | 0.016 | 0.011 | 0.008 | 0010 | 0.011 | 0.026 | 0.024 | 0.013 | 0.021 | 0.008 | 0.005 | 0.008 | 0.008 |  | 0.008 | 0.005 | 0.008 | 0.032 | 0.035 | 0.029 | 0.022 | 0.019 | 0.014 | 0.093 | 0.101 |
| T/WS(1) | 0.074 | 0.077 | 0.082 | 0.013 | 0.021 | 0.019 | 0.024 | 0.019 | 0.016 | 0.018 | 0.018 | 0.034 | 0.032 | 0.021 | 0.029 | 0.016 | 0.013 | 0.016 | 0.016 | 0.008 |  | 0.008 | 0.011 | 0.035 | 0.038 | 0.032 | 0.025 | 0.022 | 0.017 | 0.093 | 0.102 |
| $\mathrm{NE} / \mathrm{T}(1)$ | 0.069 | 0.071 | 0.079 | 0.010 | 0.018 | 0.016 | 0.021 | 0.016 | 0.013 | 0.016 | 0.016 | 0.032 | 0.029 | 0.018 | 0.026 | 0.013 | 0.010 | 0.013 | 0.013 | 0.005 | 0.008 |  | 0.003 | 0.032 | 0.035 | 0.029 | 0.022 | 0.019 | 0.014 | 0.101 | 0.110 |
| $\mathrm{NE} / \mathrm{T}$ (1) | . 69 | 0.071 | 0.079 | 0.013 | 0.021 | 0.018 | 0.024 | 0.018 | 0.016 | 0.019 | 0.018 | 0.034 | 0.032 | 0.021 | 0.024 | 0.016 | 0.013 | 0.016 | 0.016 | 0.008 | 0.011 | 0.003 |  | 0.029 | 0.032 | 0.032 | 0.025 | 0.022 | 0.016 | 101 | 110 |
| NE/B(1) | . 92 | 0.095 | 0.095 | 0.034 | 0.032 | 0.034 | 0.034 | 0.029 | 0.032 | 0.034 | 0.034 | 0.045 | 0.042 | 0.037 | 0.040 | 0.037 | 0.034 | 0.032 | 0.037 | 0.029 | 0.032 | 0.029 | 0.026 |  | 0.003 | 0.003 | 0.042 | 0.038 | 0.035 | 0.116 | 0.116 |
| $\mathrm{NE} / \mathrm{B}(2)$ | 0.095 | 0.098 | 0.097 | 0.037 | 0.034 | 0.037 | 0.037 | 0.032 | 0.034 | 0.037 | 0.037 | 0.047 | 0.045 | 0.040 | 0.042 | 0.040 | 0.037 | 0.034 | 0.040 | 0.032 | 0.034 | 0.03 | 0.029 | 0.003 |  | 0.005 | 0.045 | 0.042 | 0.038 | 0.120 | 0.120 |
| $\mathrm{NE} / \mathrm{B}(2)$ | 90 | 0.092 | 0.092 | 0.032 | 0.029 | 0.032 | 0.032 | 0.026 | 0.029 | 0.032 | 0.032 | 0.042 | 0.040 | 0.034 | 0.042 | 0.034 | 0.032 | 0.029 | 0.034 | 0.026 | 0.029 | 0.026 | 0.02 | 0.003 | 0.005 |  | 0.03 | 0.035 | 0.032 | 0.1 | 111 |
| NEML(1) | 0.077 | 0.079 | 0.084 | 0.026 | 0.034 | 0.032 | 0.037 | 0.032 | 0.029 | 0.032 | 032 | 0045 | 0.045 | 0.034 | $0.0+2$ | 0.029 | 0.026 | 0.029 | 0.029 | 0.021 | 0.024 | 0.021 | 0.02 | 0.037 | 0.040 | 0.034 |  | 0.003 | 0.008 | 0.081 | 0.085 |
| $\mathrm{NE} / \mathrm{Mo}(1)$ | 0.074 | 0.077 | 0.082 | 0.024 | 0.032 | 0.029 | 0.034 | 0.029 | 0.026 | 0.029 | 0.029 | 0.042 | 0.042 | 0.032 | 0.040 | 0.026 | 0.024 | 0.026 | 0.026 | 0.018 | 0.021 | 0.018 | 0.021 | 0.034 | 0.037 | 0.032 | 0.003 |  | 0.005 | 0.077 | 0.081 |
| $\mathrm{NE} / \mathrm{Mo}(1)$ | 0.074 | 0.077 | 0.076 | 0.019 | 0.026 | 0.024 | 0.029 | 0.024 | 0.021 | 0.024 | 0.024 | 0.037 | 0.037 | 0.026 | 0.034 | 0.021 | 0.018 | 0.021 | 0.021 | 0.013 | 0.016 | 0.013 | 0.016 | 0.032 | 0.034 | 0.029 | 0.008 | 0.005 |  | 0.077 | 0.085 |
| NO/K(2) | 0.082 | 0.084 | 0.089 | 0.079 | 0.082 | 0.084 | 0.084 | 0.079 | 0.082 | 0.084 | 0.084 | 0.082 | 0.087 | 0.084 | 0.087 | 0.082 | 0.079 | 0.076 | 0.079 | 0.074 | 0.074 | 0.079 | 0.079 | 0.087 | 0.089 | 0.084 | 0.066 | 0.063 | 0.063 |  | 0.005 |
| Co/w(2) | 0.087 | 0.090 | 0.095 | 0.084 | 0.087 | 0.090 | 0.090 | 0.084 | 0.087 | 0.090 | 0.090 | 0.087 | 0.092 | 0.090 | 0.092 | 0.087 | 0.084 | 0.082 | 0.084 | 0.079 | 0.079 | 0.084 | 0.084 | 0.087 | 0.089 | 0.084 | 0.069 | 0.066 | 0.069 | 0.005 |  |
| CL/A (1), CL/F(1) | 0.084 | 0.087 | 0.097 | 0.082 | 0.085 | 0.087 | 0.087 | 0.082 | 0.084 | 0.087 | 0.087 | 0.084 | 0.090 | 0.087 | 0.090 | 0.085 | 0.082 | 0.079 | 0.082 | 0.077 | 0.077 | 0.082 | 0.082 | 0.084 | 0.087 | 0.082 | 0.066 | 0.063 | 0.066 | 0.016 | 0.016 |
| CL/TR(1) | 0.087 | 0.090 | 0.100 | 0.084 | 0.087 | 0.090 | 0.090 | 0.085 | 0.087 | 0090 | 0.090 | 0.087 | 0092 | 0.090 | 0.092 | 0.087 | 0.085 | 0.082 | 0.085 | 0.079 | 0.080 | 0.084 | 0.085 | 0.087 | 0.090 | 0.084 | 0.069 | 0.066 | 0.069 | 0.018 | 0.018 |
| ECo/K(1) | 0.085 | 0.087 | 0.090 | 0.087 | 0.090 | 0.093 | 0.093 | 0.087 | 0.090 | 0.093 | 0.093 | 0.090 | 0.095 | 0.093 | 0095 | 0.090 | 0.087 | 0.085 | 0.087 | 0.082 | 0.082 | 0.082 | 0.082 | 0.082 | 0.085 | 0.079 | 0.066 | 0.064 | 0.066 | 0.034 | 0.034 |
| ECo/CR(1) | 0.085 | 0.088 | 0.090 | 0.087 | 0.090 | 0.093 | 0.093 | 0.087 | 0.090 | 0093 | 0.093 | 0.090 | 0.095 | 0.093 | 0.095 | 0090 | 0.087 | 0.085 | 0.087 | 0.082 | 0.082 | 0.082 | 0.082 | 0.082 | 0.085 | 0.079 | 0.066 | 0.064 | 0.066 | 0.034 | 0.034 |
| ECo/D(1), ECo/K(1) | 0.082 | 0.085 | 0.087 | 0.085 | 0.087 | 0.090 | 0.090 | 0.085 | 0.087 | 0.090 | 0.090 | 0.087 | 0.093 | 0090 | 0.093 | 0087 | 0.085 | 0.082 | 0.085 | 0.079 | 0.080 | 0.079 | 0.080 | 0.079 | 0.082 | 0.077 | 0.064 | 0.061 | 0.064 | 0.032 | 0.032 |
| ECo/CW(2) | 0.085 | 0.087 | 0.100 | 0.087 | 0.090 | 0.093 | 0.087 | 0.087 | 0.090 | 0.093 | 0.093 | 0.090 | 0.095 | 0.093 | 0.095 | 0090 | 0.087 | 0.085 | 0.087 | 0.082 | 0.082 | 0.082 | 0.082 | 0.079 | 0.082 | 0.077 | 0.066 | 0.064 | 0.066 | 0.045 | 0.045 |
| Ce/L(3) | 0.071 | 0.069 | 0.082 | 0.084 | 0.090 | 0.087 | 0.092 | 0.087 | 0.084 | 0.087 | 0.087 | 0.087 | 0.090 | 0.087 | 0090 | 0.087 | 0.084 | 0.082 | 0.084 | 0.079 | 0.085 | 0.079 | 0.079 | 0.084 | 0.087 | $0.082$ | 0.074 | 0.071 | 0.074 | 0.053 | $0.053$ |
| Ce/L(1) | 0.084 | 0.082 | 0.092 | 0.098 | 0.098 | 0.100 | 0.100 | 0.095 | 0.098 | 0.100 | 0.100 | 0.100 | 0.103 | 0.100 | 0.103 | 0.100 | 0.098 | 0.095 | 0.098 | 0.092 | 0.092 | 0.092 | 0.092 | 0.092 | 0.095 | 0.089 | 0.084 | 0.082 | 0.082 | 0.050 | 0.055 |
| S/M(1) | 0.063 | 0.066 | 0.079 | 0.071 | 0.076 | 0.074 | 0.079 | 0.074 | 0.071 | 0.074 | 0.074 | 0.074 | 0.077 | 0.074 | 0.077 | 0.074 | 0.071 | 0.068 | 0.071 | 0.066 | 0.071 | 0.066 | 0.066 | 0.076 | 0.079 | $0.074$ | 0.063 | 0.061 | 0.061 | 0.055 | $0.061$ |
| $\mathrm{S} / \mathrm{M}(1), \mathrm{S} / \mathrm{C}(1)$ | 0.058 | 0.061 | 0.074 | 0.071 | 0.077 | 0.074 | 0.079 | 0.074 | 0.071 | 0.074 | 0.074 | $0.074$ | 0.077 | 0.074 | 0.077 | 0.074 | 0.071 | 0.069 | 0.071 | 0.066 | 0.072 | 0.066 | 0.066 | 0.077 | 0.079 | 0.074 | 0.063 | 0.061 | 0.061 | 0.055 | 0.061 |
| C//M(2) | 0.071 | 0.074 | 0.084 | 0.079 | 0.084 | 0.082 | 0.087 | 0.082 | 0.079 | 0.082 | 0.082 | 0.082 | 0.084 | 0.082 | 0.084 | 0.082 | 0.079 | 0.076 | 0.079 | 0.074 | 0.079 | 0.074 | 0.074 | 0.084 | 0.087 | 0.082 | 0.071 | 0.069 | 0.069 | 0.068 | 0.074 |



$\begin{array}{llllllllllllllllllllllllllll}1 & 0.108 & 0.113 & 0.108 & 0.108 & 0.104 & 0.108 & 0.087 & 0.108 & 0.076 & 0.068 & 0.087 & 0.072 & 0.057 & 0.064 & 0.061 & 0.061 & 0.068 & 0.072 & 0.079 & 0.071 & 0.126 & 0.190 & 0.189 & 0.155 & 0.160\end{array}$ $\begin{array}{llllllllllllllllllllll}0.112 & 0.117 & 0.112 & 0.112 & 0.108 & 0.113 & 0.083 & 0.104 & 0.079 & 0.071 & 0.091 & 0.076 & 0.061 & 0.061 & 0.064 & 0.064 & 0.071 & 0.075 & 0.075 & 0.068 & 0.130 & 0.195\end{array} 0.194 \quad 0.160 \quad 0.165$ | 0.131 | 0.136 | 0.117 | 0.117 | 0.113 | 0.135 | 0.104 | 0.123 | 0.100 | 0.091 | 0.108 | 0.090 | 0.067 | 0.068 | 0.071 | 0.078 | 0.078 | 0.082 | 0.075 | 0.068 | 0.158 | 0.217 | 0.216 | 0.156 | 0.152 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllllllllllllllllllllll}0.105 & 0.110 & 0.114 & 0.115 & 0.110 & 0.115 & 0.110 & 0.133 & 0.089 & 0.089 & 0.103 & 0.093 & 0.084 & 0.088 & 0.085 & 0.073 & 0.073 & 0.077 & 0.077 & 0.084 & 0.178 & 0.178 & 0.179 & 0.198 & 0.203\end{array}$ $\begin{array}{lllllllllllllllllllll}0.109 & 0.114 & 0.119 & 0.119 & 0.114 & 0.120 & 0.119 & 0.134 & 0.098 & 0.098 & 0.112 & 0.106 & 0.097 & 0.101 & 0.097 & 0.085 & 0.085 & 0.089 & 0.089 & 0.097 & 0.196\end{array} 0.186 \quad 0.187 \quad 0.204 \quad 0.209$ | 0.114 | 0.119 | 0.123 | 0.124 | 0.119 | 0.124 | 0.114 | 0.139 | 0.094 | 0.094 | 0.107 | 0.102 | 0.092 | 0.097 | 0.093 | 0.081 | 0.081 | 0.085 | 0.085 | 0.093 | 0.190 | 0.179 | 0.181 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.197 | 0.202 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{array}{lllllllllllllllllllllll}0.114 & 0.118 & 0.123 & 0.124 & 0.119 & 0.114 & 0.124 & 0.138 & 0.102 & 0.102 & 0.117 & 0.111 & 0.101 & 0.105 & 0.101 & 0.089 & 0.089 & 0.093 & 0.093 & 0.101 & 0.196 & 0.184 & 0.185 \\ 0.209 & 0.221\end{array}$ $\begin{array}{llllllllllllllllllllllll}0.105 & 0.109 & 0.114 & 0.114 & 0.110 & 0.115 & 0.115 & 0.128 & 0.094 & 0.094 & 0.108 & 0.102 & 0.092 & 0.097 & 0.093 & 0.081 & 0.081 & 0.085 & 0.085 & 0.093 & 0.190 & 0.180 & 0.181 & 0.210 \\ 0.216\end{array}$ $\begin{array}{lllllllllllllllllllllllll}0.109 & 0.114 & 0.119 & 0.119 & 0.114 & 0.120 & 0.110 & 0.133 & 0.089 & 0.089 & 0.103 & 0.097 & 0.088 & 0.092 & 0.089 & 0.076 & 0.076 & 0.080 & 0.080 & 0.088 & 0.183 & 0.173 & 0.174 & 0.203 & 0.209\end{array}$ $\begin{array}{llllllllllllllllllllllll}0 & 0.114 & 0.119 & 0.123 & 0.124 & 0.119 & 0.124 & 0.114 & 0.139 & 0.093 & 0.094 & 0.107 & 0.102 & 0.092 & 0.097 & 0.093 & 0.080 & 0.080 & 0.085 & 0.085 & 0.092 & 0.189 & 0.179 & 0.180\end{array} 0.210 \quad 0.216$ $\begin{array}{llllllllllllllllllllllllll}11 & 0.114 & 0.119 & 0.123 & 0.124 & 0.119 & 0.124 & 0.114 & 0.139 & 0.094 & 0.094 & 0.107 & 0.102 & 0.092 & 0.097 & 0.093 & 0.081 & 0.081 & 0.085 & 0.085 & 0.093 & 0.190 & 0.179 & 0.181 & 0.210 & 0.216\end{array}$ $\begin{array}{lllllllllllllllllllllllll}12 & 0.110 & 0.115 & 0.119 & 0.120 & 0.115 & 0.120 & 0.115 & 0.139 & 0.094 & 0.094 & 0.108 & 0.102 & 0.101 & 0.106 & 0.102 & 0.089 & 0.089 & 0.093 & 0.093 & 0.102 & 0.190 & 0.205 & 0.193 & 0.224 \\ 0.230\end{array}$ $1 \begin{array}{llllllllllllllllllllll}13 & 0.118 & 0.123 & 0.127 & 0.128 & 0.123 & 0.129 & 0.118 & 0.143 & 0.097 & 0.098 & 0.111 & 0.105 & 0.105 & 0.109 & 0.105 & 0.093 & 0.093 & 0.097 & 0.097 & 0.105 & 0.194 \\ 0.210 & 0.198 & 0.229 & 0.235\end{array}$ $\begin{array}{lllllllllllllllllllllllll}14 & 0.113 & 0.117 & 0.122 & 0.123 & 0.118 & 0.123 & 0.113 & 0.137 & 0.093 & 0.093 & 0.106 & 0.101 & 0.091 & 0.096 & 0.092 & 0.080 & 0.080 & 0.084 & 0.084 & 0.092 & 0.187 & 0.184 & 0.179 & 0.208 \\ 0.213\end{array}$ $\begin{array}{llllllllllllllllllllllll}15 & 0.118 & 0.123 & 0.127 & 0.128 & 0.123 & 0.129 & 0.118 & 0.143 & 0.097 & 0.098 & 0.111 & 0.105 & 0.096 & 0.100 & 0.096 & 0.084 & 0.084 & 0.088 & 0.088 & 0.096 & 0.194 & 0.191 & 0.185\end{array} 0.215 \quad 0.221$ $\begin{array}{llllllllllllllllllllllll}16 & 0.110 & 0.114 & 0.119 & 0.120 & 0.115 & 0.120 & 0.114 & 0.139 & 0.093 & 0.094 & 0.107 & 0.098 & 0.088 & 0.093 & 0.089 & 0.077 & 0.077 & 0.081 & 0.081 & 0.089 & 0.195 & 0.195 & 0.196\end{array} 0.191 \quad 0.197$ $\begin{array}{llllllllllllllllllllllll}16 & 0.110 & 0.114 & 0.119 & 0.120 & 0.115 & 0.120 & 0.114 & 0.139 & 0.093 & 0.094 & 0.107 & 0.098 & 0.088 & 0.093 & 0.089 & 0.077 & 0.077 & 0.081 & 0.081 & 0.089 & 0.195 & 0.195 & 0.196 \\ 0.191 & 0.197\end{array}$ $\begin{array}{lllllllllllllllllllllllllllll}17 & 0.105 & 0.110 & 0.114 & 0.115 & 0.110 & 0.115 & 0.110 & 0.133 & 0.089 & 0.089 & 0.103 & 0.093 & 0.084 & 0.088 & 0.085 & 0.073 & 0.073 & 0.077 & 0.077 & 0.085 & 0.188 & 0.189 & 0.190 & 0.197 & 0.203 & \end{array}$ $\begin{array}{llllllllllllllllllllllllllll}18 & 0.100 & 0.105 & 0.109 & 0.110 & 0.105 & 0.110 & 0.105 & 0.128 & 0.085 & 0.085 & 0.098 & 0.089 & 0.088 & 0.092 & 0.089 & 0.077 & 0.077 & 0.081 & 0.081 & 0.089 & 0.182 & 0.195 & 0.196 & 0.203 & 0.209 \\ 19 & 0.105 & 0.10 & 0.11 & 0.15 & 0.10 & 0.15 & 0.10 & 0.133 & 0.089 & 0.089 & 0.103 & 0.097 & 0.088 & 0.092 & 0.088 & 0.076 & 0.077 & 0.081 & 0.081 & 0.088 & 0.188 & 0.194 & 0.195 & 0.197 & 0.203\end{array}$








 $26 \quad 0.106$ $\begin{array}{lllllllllllllllllllllllllllll}27 & 0.081 & 0.085 & 0.080 & 0.081 & 0.077 & 0.081 & 0.092 & 0.109 & 0.076 & 0.076 & 0.089 & 0.080 & 0.072 & 0.075 & 0.072 & 0.061 & 0.061 & 0.065 & 0.065 & 0.072 & 0.169 & 0.165 & 0.166 & 0.187 & 0.193\end{array}$ $\begin{array}{llllllllllllllllllllllllllll}28 & 0.077 & 0.081 & 0.077 & 0.077 & 0.073 & 0.077 & 0.088 & 0.105 & 0.073 & 0.073 & 0.085 & 0.076 & 0.068 & 0.072 & 0.068 & 0.058 & 0.058 & 0.061 & 0.061 & 0.068 & 0.164 & 0.160 & 0.161 & 0.182 & 0.187\end{array}$ \begin{tabular}{lllllllllllllllllllllllllllllllllll}
29 \& 0.081 \& 0.085 \& 0.080 \& 0.081 \& 0.077 \& 0.081 \& 0.091 \& 0.105 \& 0.072 \& 0.073 \& 0.085 \& 0.076 \& 0.068 \& 0.072 \& 0.068 \& 0.057 \& 0.058 \& 0.061 \& 0.061 \& 0.068 \& 0.169 \& 0.165 \& 0.166 \& 0.171 \& 0.176 <br>
\hline

 $\begin{array}{llllllllllllllllllllllllllll}30 & 0.017 & 0.020 & 0.038 & 0.038 & 0.035 & 0.052 & 0.062 & 0.058 & 0.065 & 0.065 & 0.084 & 0.077 & 0.073 & 0.084 & 0.080 & 0.077 & 0.084 & 0.089 & 0.085 & 0.077 & 0.139 & 0.195 & 0.184 & 0.207 & 0.207\end{array}$ 

31 \& 0.017 \& 0.020 \& 0.038 \& 0.038 \& 0.035 \& 0.052 \& 0.061 \& 0.066 \& 0.072 \& 0.073 \& 0.093 \& 0.085 \& 0.081 \& 0.093 \& 0.089 \& 0.085 \& 0.093 \& 0.097 \& 0.093 \& 0.085 \& 0.139 \& 0.195 \& 0.183 \& 0.221 \& 0.221 <br>
\hline
\end{tabular} $\begin{array}{lllllllllllllllllllllllll}32 & 0.003 & 0.045 & 0.045 & 0.042 & 0.045 & 0.044 & 0.048 & 0.054 & 0.055 & 0.073 & 0.085 & 0.081 & 0.093 & 0.089 & 0.085 & 0.093 & 0.097 & 0.097 & 0.089 & 0.144 & 0.177 & 0.166 & 0.221 & 0.215\end{array}$ $\begin{array}{lllllllllllllllllllllllllll}33 & 0.003 & 0.045 & 0.045 & 0.045 & 0.045 & 0.048 & 0.051 & 0.058 & 0.058 & 0.077 & 0.089 & 0.085 & 0.097 & 0.093 & 0.089 & 0.097 & 0.102 & 0.102 & 0.093 & 0.149 & 0.183 & 0.172 & 0.228 & 0.222\end{array}$ $\begin{array}{lllllllllllllllllllllllll}34 & 0.040 & 0.040 & 0.003 & 0.003 & 0.019 & 0.075 & 0.088 & 0.079 & 0.076 & 0.100 & 0.076 & 0.080 & 0.091 & 0.088 & 0.076 & 0.092 & 0.096 & 0.088 & 0.080 & 0.134 & 0.180 & 0.169 & 0.218 & 0.218\end{array}$ $\begin{array}{llll}35 & 0.040 & 0.040 & 0.003\end{array}$ $\begin{array}{lllllllllllllllllllllll}0.005 & 0.022 & 0.076 & 0.088 & 0.080 & 0.076 & 0.101 & 0.076 & 0.080 & 0.092 & 0.088 & 0.076 & 0.092 & 0.096 & 0.089 & 0.081 & 0.134 & 0.186 & 0.175 & 0.219 & 0.21\end{array}$

## APPENDIX II (continued)


$\begin{array}{ll}43 & \mathrm{~N} / \mathrm{K}(1) \\ 44 & \mathrm{~N} / \mathrm{WS}(1) \mathrm{W} / \mathrm{MS}(1)\end{array}$
44 N/WS(1), W/M
45 WC/CR(1)
46 WC/LB(1), ECo/C( 1
$47 \mathrm{M} / \mathrm{TS}(1), \mathrm{Wa} / \mathrm{KS}(3)$
$\begin{array}{ll}48 & \mathrm{M} / \mathrm{N}(8) \\ 49 & \mathrm{M} / \mathrm{N}(1)\end{array}$
$\begin{array}{ll}49 & \mathrm{M} / \mathrm{N}(1) \\ 50 & \mathrm{Wa} / \mathrm{KS}(1)\end{array}$
$\begin{array}{ll}50 & \mathrm{Wa} / \mathrm{KS}(1) \\ 51 & \mathrm{Wa} / \mathrm{KS}(7)\end{array}$
52 N/SS(1)
53 G. caxii (2)
$\begin{array}{ll}52 & \text { G. caxii (2) } \\ 54 & \text { G. caxii (1) }\end{array}$
55 G. australis (1)

$\begin{array}{lllllllllllllllllllllllllllllllllllllllllllllll}0.061 & 0.063 & 0.074 & 0.074 & 0.082 & 0.079 & 0.084 & 0.079 & 0.076 & 0.079 & 0.079 & 0.079 & 0.082 & 0.079 & 0.082 & 0.076 & 0.074 & 0.071 & 0.076 & 0.068 & 0.074 & 0.068 & 0.069 & 0.084 & 0.087 & 0.082 & 0.066 & 0.063 & 0.063 & 0.063 & 0.068\end{array}$ | 0.050 | 0.053 | 0.058 | 0.068 | 0.076 | 0.074 | 0.079 | 0.074 | 0.071 | 0.074 | 0.074 | 0.079 | 0.082 | 0.074 | 0.076 | 0.071 | 0.069 | 0.071 | 0.071 | 0.063 | 0.069 | 0.063 | 0.063 | 0.082 | 0.084 | 0.079 | 0.061 | 0.058 | 0.058 | 0.061 | 0.066 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |







 $\begin{array}{llllllllllllllllllllllllllllllllllll}0.092 & 0.095 & 0.111 & 0.119 & 0.127 & 0.125 & 0.127 & 0.125 & 0.122 & 0.124 & 0.124 & 0.125 & 0.127 & 0.124 & 0.127 & 0.127 & 0.124 & 0.122 & 0.124 & 0.119 & 0.127 & 0.119 & 0.122 & 0.127 & 0.130 & 0.124 & 0.116 & 0.114 & 0.116 & 0.100 & 0.100 \\ 0.127 & 0.129 & 0.139 & 0.121 & 0.124 & 0.121 & 0.124 & 0.121 & 0.119 & 0.121 & 0.121 & 0.132 & 0.134 & 0.124 & 0.127 & 0.129 & 0.126 & 0.129 & 0.129 & 0.121 & 0.124 & 0.121 & 0.124 & 0.126 & 0.129 & 0.124 & 0.116 & 0.113 & 0.116 & 0.126 & 0.126\end{array}$ $\begin{array}{llllllllllllllllllllllllllllllllll}0.127 & 0.129 & 0.139 & 0.121 & 0.124 & 0.121 & 0.124 & 0.121 & 0.119 & 0.121 & 0.121 & 0.132 & 0.134 & 0.124 & 0.127 & 0.129 & 0.126 & 0.129 & 0.129 & 0.121 & 0.124 & 0.121 & 0.124 & 0.126 & 0.129 & 0.124 & 0.116 & 0.113 & 0.116 & 0.126 & 0.126 \\ 0.127 & 0.129 & 0.139 & 0.121 & 0.124 & 0.121 & 0.124 & 0.121 & 0.118 & 0.121 & 0.121 & 0.126 & 0.129 & 0.121 & 0.124 & 0.129 & 0.126 & 0.129 & 0.129 & 0.121 & 0.124 & 0.121 & 0.124 & 0.126 & 0.129 & 0.124 & 0.116 & 0.113 & 0.116 & 0.121 & 0.121\end{array}$ $\begin{array}{lllllllllllllllllllllllllllllll}0.108 & 0.111 & 0.110 & 0.127 & 0.129 & 0.127 & 0.132 & 0.132 & 0.129 & 0.132 & 0.132 & 0.137 & 0.140 & 0 & 132 & 0.135 & 0.124 & 0.127 & 0.129 & 0.127 & 0.121 & 0.127 & 0.121 & 0.121 & 0.140 & 0.142 & 0.137 & 0.124 & 0.121 & 0.116 & 0.132\end{array} 0.137$

## APPENDIX II (continued)



| 43 | 0.069 | 0.071 | 0.063 | 0.063 | 0.061 | 0.069 | 0.063 | 0.076 | 0.055 | 0.055 | 0.058 |  | 0.019 | 0.016 | 0.013 | 0.016 | 0.022 | 0.025 | 0.028 | 0.022 | 0.116 | 0.145 | 0.139 | 0.131 | 0.140 |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 44 | 0.066 | 0.069 | 0.066 | 0.066 | 0.063 | 0.071 | 0.058 | 0.071 | 0.050 | 0.050 | 0.058 | 0.018 |  | 0.008 | 0.005 | 0.008 | 0.008 | 0.011 | 0.025 | 0.019 | 0.107 | 0.158 | 0.148 | 0.133 | 0.143 |  |  |  |  |  |  |
| 45 | 0.074 | 0.076 | 0.074 | 0.074 | 0.071 | 0.074 | 0.061 | 0.074 | 0.058 | 0.058 | 0.061 | 0.016 | 0.008 |  | 0.003 | 0.011 | 0.011 | 0.014 | 0.016 | 0.011 | 0.116 | 0.159 | 0.153 | 0.134 | 0.143 |  |  |  |  |  |  |
| 46 | 0.071 | 0.074 | 0.071 | 0.071 | 0.069 | 0.071 | 0.063 | 0.076 | 0.055 | 0.055 | 0.058 | 0.013 | 0.005 | 0.003 |  | 0.008 | 0.008 | 0.011 | 0.019 | 0.013 | 0.111 | 0.154 | 0.148 | 0.130 | 0.139 |  |  |  |  |  |  |
| 47 | 0.068 | 0.071 | 0.063 | 0.063 | 0.061 | 0.063 | 0.060 | 0.074 | 0.053 | 0.053 | 0.055 | 0.016 | 0.008 | 0.011 | 0.008 |  | 0.011 | 0.013 | 0.028 | 0.022 | 0.116 | 0.159 | 0.148 | 0.134 | 0.143 |  |  |  |  |  |  |
| 48 | 0.074 | 0.076 | 0.074 | 0.074 | 0.071 | 0.074 | 0.066 | 0.079 | 0.058 | 0.058 | 0.060 | 0.021 | 0.008 | 0.011 | 0.008 | 0.010 |  | 0.003 | 0.016 | 0.022 | 0.120 | 0.164 | 0.153 | 0.139 | 0.148 |  |  |  |  |  |  |
| 49 | 0.076 | 0.079 | 0.077 | 0.077 | 0.074 | 0.077 | 0.068 | 0.082 | 0.060 | 0.061 | 0.063 | 0.024 | 0.011 | 0.013 | 0.011 | 0.013 | 0.003 |  | 0.019 | 0.025 | 0.125 | 0.163 | 0.153 | 0.134 | 0.143 |  |  |  |  |  |  |
| 50 | 0.076 | 0.079 | 0.071 | 0.071 | 0.069 | 0.079 | 0.066 | 0.079 | 0.063 | 0.063 | 0.066 | 0.026 | 0.024 | 0.016 | 0.018 | 0.026 | 0.016 | 0.018 |  | 0.005 | 0.130 | 0.170 | 0.164 | 0.144 | 0.144 |  |  |  |  |  |  |
| 51 | 0.071 | 0.074 | 0.066 | 0.066 | 0.063 | 0.074 | 0.060 | 0.074 | 0.058 | 0.058 | 0.060 | 0.021 | 0.018 | 0.011 | 0.013 | 0.021 | 0.021 | 0.024 | 0.005 |  | 0.120 | 0.159 | 0.153 | 0.134 | 0.134 |  |  |  |  |  |  |
| 52 | 0.103 | 0.106 | 0.098 | 0.098 | 0.096 | 0.106 | 0.092 | 0.103 | 0.100 | 0.100 | 0.114 | 0.087 | 0.082 | 0.087 | 0.084 | 0.087 | 0.090 | 0.092 | 0.095 | 0.090 |  | 0.169 | 0.168 | 0.195 | 0.195 |  |  |  |  |  |  |
| 53 | 0.119 | 0.121 | 0.121 | 0.124 | 0.119 | 0.121 | 0.118 | 0.134 | 0.124 | 0.124 | 0.132 | 0.103 | 0.111 | 0.111 | 0.108 | 0.111 | 0.113 | 0.113 | 0.116 | 0.110 | 0.116 |  | 0.011 | 0.188 | 0.177 |  |  |  |  |  |  |
| 54 | 0.113 | 0.116 | 0.116 | 0.119 | 0.113 | 0.116 | 0.113 | 0.129 | 0.118 | 0.119 | 0.126 | 0.100 | 0.105 | 0.108 | 0.105 | 0.105 | 0.108 | 0.108 | 0.113 | 0.108 | 0.116 | 0.010 |  | 0.187 | 0.177 |  |  |  |  |  |  |
| 55 | 0.137 | 0.140 | 0.138 | 0.138 | 0.135 | 0.138 | 0.121 | 0.134 | 0.118 | 0.114 | 0.121 | 0.095 | 0.097 | 0.097 | 0.095 | 0.097 | 0.100 | 0.098 | 0.103 | 0.097 | 0.126 | 0.126 | 0.126 |  | 0.008 |  |  |  |  |  |  |
| 56 | 0.135 | 0.137 | 0.138 | 0.138 | 0.135 | 0.143 | 0.119 | 0.132 | 0.116 | 0.1111 | 0.118 | 0.100 | 0.103 | 0.103 | 0.100 | 0.103 | 0.105 | 0.103 | 0.103 | 0.097 | 0.126 | 0.121 | 0.121 | 0.008 |  |  |  |  |  |  |  |

[^1]APPENDIX III. Uncorrected genetic distances based on sequence variation in 21 mtDNA sequences for G. basalis. Location codes refer to those used in Figure 1.

|  | LOCATION | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Ngt10 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 | Ngtl | 0.000 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3 | Ngt2 | 0.001 | 0.001 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 | Ngt3 | 0.000 | 0.000 | 0.001 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 5 | Ngt5 | 0.001 | 0.001 | 0.003 | 0.001 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 6 | Ngt6 | 0.000 | 0.000 | 0.001 | 0.000 | 0.001 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 | Ngt7 | 0.000 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8 | Ngt8 | 0.000 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.000 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 9 | Ngt9 | 0.001 | 0.001 | 0.003 | 0.001 | 0.003 | 0.001 | 0.001 | 0.001 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 | Turl | 0.006 | 0.006 | 0.008 | 0.006 | 0.008 | 0.006 | 0.006 | 0.006 | 0.008 |  |  |  |  |  |  |  |  |  |  |  |  |
| 11 | Kop12 | 0.013 | 0.013 | 0.014 | 0.013 | 0.014 | 0.013 | 0.013 | 0.013 | 0.014 | 0.014 |  |  |  |  |  |  |  |  |  |  |  |
| 12 | Kop15 | 0.006 | 0.006 | 0.008 | 0.006 | 0.008 | 0.006 | 0.006 | 0.006 | 0.008 | 0.000 | 0.014 |  |  |  |  |  |  |  |  |  |  |
| 13 | Kop18 | 0.013 | 0.013 | 0.014 | 0.013 | 0.014 | 0.013 | 0.013 | 0.013 | 0.014 | 0.014 | 0.000 | 0.014 |  |  |  |  |  |  |  |  |  |
| 14 | Kop1 | 0.014 | 0.014 | 0.015 | 0.014 | 0.015 | 0.014 | 0.014 | 0.014 | 0.015 | 0.015 | 0.001 | 0.015 | 0.001 |  |  |  |  |  |  |  |  |
| 15 | Kop2 | 0.010 | 0.010 | 0.011 | 0.010 | 0.011 | 0.010 | 0.010 | 0.010 | 0.011 | 0.016 | 0.003 | 0.016 | 0.003 | 0.004 |  |  |  |  |  |  |  |
| 16 | Kop4 | 0.006 | 0.006 | 0.008 | 0.006 | 0.008 | 0.006 | 0.006 | 0.006 | 0.008 | 0.000 | 0.014 | 0.000 | 0.014 | 0.015 | 0.016 |  |  |  |  |  |  |
| 17 | Kop5 | 0.013 | 0.013 | 0.014 | 0.013 | 0.014 | 0.013 | 0.013 | 0.013 | 0.014 | 0.014 | 0.000 | 0.014 | 0.000 | 0.001 | 0.003 | 0.014 |  |  |  |  |  |
| 18 | Kop6 | 0.006 | 0.006 | 0.008 | 0.006 | 0.008 | 0.006 | 0.006 | 0.006 | 0.008 | 0.000 | 0.014 | 0.000 | 0.014 | 0.015 | 0.016 | 0.000 | 0.014 |  |  |  |  |
| 19 | Kop7 | 0.013 | 0.013 | 0.014 | 0.013 | 0.014 | 0.013 | 0.013 | 0.013 | 0.014 | 0.014 | 0.000 | 0.014 | 0.000 | 0.001 | 0.003 | 0.014 | 0.000 | 0.014 |  |  |  |
| 20 | Kop8 | 0.013 | 0.013 | 0.014 | 0.013 | 0.014 | 0.013 | 0.013 | 0.013 | 0.014 | 0.014 | 0.000 | 0.014 | 0.000 | 0.001 | 0.003 | 0.014 | 0.000 | 0.014 | 0.000 |  |  |
| 21 | Kop9 | 0.013 | 0.013 | 0.014 | 0.013 | 0.014 | 0.013 | 0.013 | 0.013 | 0.014 | 0.014 | 0.000 | 0.014 | 0.000 | 0.001 | 0.003 | 0.014 | 0.000 | 0.014 | 0.000 | 0.000 |  |

APPENDIX IV. Uncorrected genetic distance based on sequence variation in the 57 mtDNA sequences for $G$. breviceps. Location codes refer to

## those used in Figure 1.



## APPENDIX IV. Cont.

```
LOCATION 
```



```
lo000
00060006 0.006
0.008
0006 0006 0006 0000 0001
llllll
lulllll
00060006 0006 0000000001 0000 0000 0000
00060006 0006 0000 0001 0000 0000 0000 0000 0000
0.005 l.005 0.005 0.001 0.003 0.001 0.001 0.001 0.001 0.001 0.001
lu04
lullllllllllll
lu044
lull
lullllllllllllll
```




```
lllllllllllllllll
```



```
lulllllllllllllllllllll
0.0060006 0.006 0.000 0.001 0.000 0.000 0000 0.000 0000 0000 0001 0.003 0003 0003 0003 0003 0003 0.003 0003 0003 0000 0.001 0000
lull
```



```
llllllllllllllllllllllllllllllllllll
lullllllllllllllllllllllllll
```


[^0]:    A - M/N(2), N/K(2), W/WR(1), EC/G(3), WC/CR(2), BOP/RR(3), BOP/LT(2), BOP/KR(1), NE/M(3) $\mathrm{B}-\mathrm{N} / \mathrm{SS}(1), \mathrm{W} / \mathrm{M}(3), \mathrm{WC} / \mathrm{LB}(2), \mathrm{M} / \mathrm{N}(5)$ $\mathrm{C}-\mathrm{N} / \mathrm{KR}(1), \mathrm{N} / \mathrm{LN}(3), \mathrm{W} / \mathrm{M}(1), \mathrm{N} / \mathrm{N}(3), \mathrm{N} / \mathrm{LW}(3), \mathrm{N} / \mathrm{WR}(2)$
    $\mathrm{D}-\mathrm{ECo} / \mathrm{K}(2), \mathrm{ECo} / \mathrm{D}(1), \mathrm{C} / \mathrm{AR}(1)$ $\mathrm{E}-\mathrm{M} / \mathrm{T}(8), \mathrm{M} / \mathrm{N}(1), \mathrm{M} / \mathrm{TS}(9), \mathrm{Wa} / \mathrm{K}(7)$
    $\mathrm{G}-\mathrm{N} / \mathrm{KR}(2), \mathrm{N} / \mathrm{WR}(1), \mathrm{N} / \mathrm{US}(2), \mathrm{N} / \mathrm{Mi}(2), \mathrm{W} / \mathrm{M}(2), \mathrm{Wa} / \mathrm{WR}(1)$

[^1]:    - $\mathrm{A}-\mathrm{M} / \mathrm{T}(9), \mathrm{M} / \mathrm{TS}(1), \mathrm{Wa} / \mathrm{KS}(9)$, Wa/M(1)
    $\mathrm{B}-\mathrm{M} / \mathrm{K}(11), \mathrm{M} / \mathrm{TS}(7), \mathrm{M} / \mathrm{N}(1), \mathrm{Wa} / \mathrm{K}(10), \mathrm{Wa} / \mathrm{H}(4), \mathrm{Wa} / \mathrm{WR}(1), \mathrm{We} / \mathrm{ES}(2), \mathrm{WC} / \mathrm{F}(2)$

