Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Recombinant *Escherichia coli* producing an immobilised functional protein at the surface of bio-polyester beads:

A novel application for a bio-bead

A thesis presented in partial fulfillment of the

requirements of the degree of

Master of Science

in

Microbiology

at Massey University, Palmerston North,

New Zealand.

Jane Adair Atwood

2008

Abstract

Polyhydroxyalkanoates (PHAs) are polyesters, produced by many bacteria and some archaea. The most commonly characterised is polyhydroxybutyrate (PHB). Produced when nutrients are growth limiting and carbon available in excess, PHA serves as a carbon-energy storage material and forms generally spherical insoluble inclusions between 50-500nm in diameter in the cytoplasm. The key enzyme for PHA synthesis is the PHA synthase and this enzyme catalyses the polymerisation of (*R*)-3-hydroxy fatty acids into PHA. PHA synthase remains covalently attached to the growing polyester chain and is displayed on the surface of the PHA granule. Other proteins associated with PHA granules include depolymerases for mobilisation or degradation of granules, regulatory proteins and phasins, proteins that aid in PHA granule stability.

PHA bio-beads displaying an IgG binding protein were produced and used to purify IgG from serum demonstrating that the PHA synthase can be engineered to display functional synthase fusion proteins at the PHA granule surface. Correctly folded eukaryotic proteins were also produced and displayed at the PHA granule surface as phasin fusion proteins. Multiple-functionality was also achievable by co-expression of various hybrid genes suggesting that this biotechnological bead production strategy might represent a versatile platform technology.

The production of functional eukaryotic proteins at the PHA bead surface represents a novel *in vivo* matrix-assisted protein folding system. Protein engineering of PHA granule surface proteins provides a novel molecular tool for the display of antigens for FACS based analysis and offers promising possibilities in the development of future biotechnological production processes. Overall, the results obtained in this study strongly enhance the applied potential of these polyester beads in biotechnology and medicine.

Acknowledgements

Approval for the research has been obtained for this work (GMO 07/MU013).

I would like to thank my supervisors, Professor Bernd Rehm and Dr Zoe Jordens for the ideas, encouragement and for all of the support during my husband Paul's illness and after his death in November 2006. Thanks to the people at IMBS and to all in the Rehm workgroup at the time who also gave me their time, support, technical advice and expertise when needed. Thanks to Pat Munro for all the scientific discussion and networking during those trips between Levin and Science Tower C. Thanks to Chris Pennington for proofreading the final draft version and finding the word horseradish funny.

Thanks to my family, especially my parents Graeme and Daphne Brockelbank who did their best to start me off in the right direction, my daughter Caitlin and my husband Paul Atwood for his unending support, encouragement, and insistence that I complete this degree.

2006 was the year that I learned much about loss, about grief, about my own strengths and weaknesses and while I do not know how I managed, I do know that due to the support of my work colleagues, my friends and my family, I was able to continue. Finally, thanks to Rory who has been there for me this year.

Life is a precious gift and my advice to you is this:

MAKE EACH DAY COUNT

(And don't forget to take photos along the way).

"When operating earthmoving equipment......get right back out of it"

(This work is dedicated to Paul Atwood 1957-2006)

ABSTH	RACTI	
ACKNOWLEDGEMENTSII		
LIST (OF TABLESVI	
LIST (OF FIGURES VII	
ABBR	EVIATIONSIX	
CH	IAPTER 1: POLYHYDROXYALKANOATE1	
1.1	Bacterial polyester1	
1.2	Isolating PHA from bacteria	
1.3	Classification of PHA synthases	
1.4	Biosynthesis and formation of PHA granules	
1.5	Granule associated proteins	
1.6	PHA granules as bio-nano beads10	
1.7	Protein production and immobilisation of functional proteins	
1.8	The aim of this study12	
CH	IAPTER 2: MATERIALS AND METHODS	
2.1	Bacterial strains, culture conditions and chemicals14	
2.1.1	Liquid media14	
2.1.2	Solid media14	
2.2	Antibiotic stock solutions and final concentrations15	
2.3	Preservation of strains	
2.4	Details of the cultivation conditions and plasmids15	
2.5	Oligonucleotide design and cloning strategy	
2.5.1	ZZ-PhaC cloning method19	
2.5.2	PhaP-IL2 Cloning Method	
2.5.3	Construction of PHA beads displaying two functional proteins	

2.5.3	3.1 pBHR68GPM construction	. 21
2.5.3	3.2 pBHR69GCPM construction	. 21
2.6	Preparation of competent cells for long term storage	. 23
2.7	Transformation of <i>E.coli</i> cells	. 24
2.8	Isolation of plasmid DNA	. 24
2.8.1	Determination of the size of DNA fragments	. 25
2.8.2	Determination of the DNA concentration	. 26
2.8.3	Agarose gel electrophoresis (AGE)	. 26
2.8.4	DNA A-tailing procedure and ligation of fragments	. 26
2.8.5	Polymerase chain reaction (PCR)	. 27
2.8.6	DNA sequencing	. 28
2.9	PHA extraction, preparation and analysis	. 28
2.9.1	Cell disruption and crude extract preparation	. 28
2.9.2	Isolation of PHA from crude extract	. 30
2.10	Detection of PHA accumulating colonies by staining with Nile Red	. 31
2.11	Sample preparation for Gas Chromatography Mass Spectrometry analys (GCMS)	is . 31
2.12	General methods for protein analysis	. 32
2.12.1	Protein concentration measurement (Bradford 1976)	. 32
2.12.2	Sodium dodecyl sulphate gel electrophoresis (SDS- PAGE)	. 32
2.12.3	Preparation of protein samples for SDS-PAGE	. 33
2.12.4	Protein staining with Coomassie Blue	. 34
2.13	Determination of fusion protein activity	. 34
2.14	Standardisation of beads – quantification	. 35
2.15	Confirmation of functional protein at the surface of PHA beads : ELISA	ł
	assay	. 35

2.16	FACS analysis	
2.16.1	Materials, methods and reagents for FACS staining	
2.17	Production of PhaP fused to IL2 or MOG at the PHA bead surface	
2.18	MALDI-TOF mass spectrometry	
2.19	N Terminal sequencing	
CH	IAPTER 3: RESULTS	. 40
3.1	Part I: ZZ-PhaC construct	
3.1.1	Display of the ZZ domain at the PHA bead surface and binding capacity of ZZ-PHAC beads	
3.1.2	Purification of IgG from human serum with ZZ-PhaC beads	
3.2	Part II: PhaP-MOG and PhaP-IL2	
3.2.1	PhaP-MOG and PhaP-IL2 PHA beads	
3.3	Part III: Multifunctional PHA beads	
CH	IAPTER 4: DISCUSSION	. 52
4.1	Protein production and purification: A novel application for a bio-bead. 52	
4.2	PhaC fusion protein	
4.3	PhaP fusion protein	
4.4	Multiple functionality: display of MOG and GFP at the bead surface 55	
4.5	Conclusions	
APPEN	VDIX	. 58
REFE	RENCES	. 59
PUBLI	CATIONS	.72

List of Tables

Page

Table 1	Properties of PHA compared to polypropylene (modified from Rehm 2007)	2
Table 2	Polyester synthases are classified into four classes (Rehm, 2003)	4
Table 3	Bacterial strains used in this study	14
Table 4	Antibiotic stock solutions and respective concentrations mg ml ⁻¹	15
Table 5	Plasmids and oligonucleotides used in the ZZ-PhaC study	16
Table 6	PhaP-MOG/IL2 study	17
Table 7	Double functionality study	18
Table 8	Reagents for DNA isolation	25
Table 9	TBE buffer and stop mix	26
Table 10	PCR reaction mixture	28
Table 11	MALDI-TOF analysis of PhaP-MOG and PhaP-IL2	45
Table 12	MALDI-TOF analysis of pBHR68GPM	48

VII

List of Figures

		Page
Figure 1	Cupriavidus necator accumulating PHA (Zou and Chen, 2007)	1
Figure 2	Reaction catalysed by the synthase PhaC (Rehm 2003)	4
Figure 3	Conserved and variable N terminal region of PhaC from <i>Cupriavidus necator</i> with the eight conserved amino acid residues indicated by arrows (Rehm, 2007)	5
Figure 4	Metabolic routes toward PHA biosynthesis. The dashed arrows show steps only shown in recombinant systems (from Rehm, 2006)	7
Figure 5	Budding and micelle model of PHA synthesis (Waltermann and Steinbüchel, 2005)	8
Figure 6	A schematic diagram showing a polyester granule (Rehm, 2003)	8
Figure 7	pCWE contains the gene phaC from <i>Cupriavidus necator</i> and an in- frame <i>NdeI</i> restriction site at the N-terminus of phaC to allow the addition of the ZZ fusion partner	19
Figure 8	Vector map and schematic diagram of the fusion MOG and IL2 constructs	20
Figure 9	Vectors pBHR68GPM and pBHR69 GCPM	22
Figure 10	Schematic representation of hybrid genes for production of the respective fusion proteins. Triangle, lac promoter; diagonally striped rectangles, linker regions; MOG, murine myelin oligodendrocyte glycoprotein; GFP, green fluorescent protein; Synthase, polyester synthase	23
Figure 11	Diagram showing the process for isolation of PHA beads from crude cell extract. Inset (blue shaded box) is a schematic showing density separation of PHA beads after ultracentrifugation	30
Figure 12	Electron microscopy of recombinant <i>Escherichia coli</i> with PHA granule accumulation appearing as spherical intracellular inclusions indicated by white arrows. The size bar represents 1000nm	40
Figure 13	ELISA using various PHA beads and anti-IgG antibodies for the detection of IgG bound to PHA beads	41
Figure 14	IgG purification from human serum. Lanes are marked as follows: 1: whole serum, 2: PHA beads ZZ(-)PhaC, 3: PHA beads WT, 4: Sepharose A beads (Sigma)	42

Figure 15	SDS-PAGE analysis of PHA granule-attached proteins	44
Figure 16	PHA beads display the native eukaryotic proteins (Bäckström et al., 2007)	45
Figure 17	ELISA showing anti-MOG antibody binding to various beads. C, only secondary HRP-conjugated antibody; WT, wildtype beads (no fusion protein present); GC, beads with GFP-polyester synthase; PM, beads with phasin-MOG; GCPM, beads with GFP-polyester synthase and phasin-MOG; GPM, beads with GFP-phasin-MOG	49
Figure 18	FACS results. Bio-beads displaying GFP showed fluorescence when incubated with FITC conjugated anti-GFP antibodies whereas beads displaying MOG showed fluorescence when incubated with anti- mouse antibodies followed by PE conjugated anti-mouse antibodies followed by PE conjugated anti-mouse antibodies. Legend: FL1 = FITC, FL2 = Phycoerythrin (PE)	50

Figure 19 Fluorescence microscopy using a FITC filter demonstrated the presence of GFP on the surface of the beads. A. GCPM beads. B GPM beads. Magnification, 1000x; Bar corresponds to 1 μm

Abbreviations

AFM	Atomic force microscopy
BSA	Bovine serum albumin
CFA	Complete Freund's adjuvant
DMSO	Dimethyl sulfoxide
ELISA	Enzyme linked immuno-assay
FACS	Fluorescence activated cell sorting
FITC	Fluorescein isothiocyanate
GCMS	Gas chromatography mass spectrometry
GCPM	Gfp-PhaC and PhaP-MOG fusion protein construct
GPM	GFP-PhaP-MOG fusion protein construct
GFP	Green fluorescent protein
HRP	Horse radish peroxidase
IgG	Immunoglobulin G
IL2	Interleukin 2
kDa	Kilo Daltons
MALDI-TOF	Matrix assisted laser desorption ionisation time-of-flight mass spectrometry
MCL	Medium chain length
MOG	Myelin oligodendrocyte glycoprotein
ORF	Open reading frame
PCR	Polymerase chain reaction
PHA	Polyhydroxyalkanoate
PhaC	PHA synthase
PhaE	Type III PHA synthase subunit
PhaP	Phasin
PhaR	Phasin regulatory protein
PhaY	Hydrolase (depolymerase)
PhaZ	PHA intracellular depolymerase
PHB	Polyhydroxybutyrate
scFv	Single chain variable fragment (antibody)
SCL	Short chain length
SDS-PAGE	Sodium dodecyl sulphate gel electrophoresis