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Abstract

We propose an improved technique to calculate the linear response of a single
and multiple plates models due to ocean waves. The single plate model is the basis
for the multiple plates model which we take to be a periodic array of identical
plates. For the single plate model we solve the plate displacement by the Finite
Element Method (FEM) and the water potential by the Boundary Element Method
(BEM). The displacement is expanded in terms of the basis functions of the FEM.
The boundary integral equation representing the potential is approximated by these
basis functions. The resulting integral operator involving the free-surface Green’s
function is solved using an elementary integration scheme. Results are presented
for the single plate model. We then use the same technique to solve for the periodic
array of plates problem because the single and the periodic array plates model differ
only in the expression of the Green’s function. For the periodic array plate model
the boundary integral equation for the potential involves a periodic Green’s function
which can be obtained by taking an infinite sum of the free-surface Green'’s function
for the single plate model. The solution for the periodic array plate is derived in the
same way as the single plate model. From this solution we then calculate the waves

scattered by this periodic array.
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