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Abstract 

We propose an improved technique to calculate the linear response of a single 

and multiple plates models due to ocean waves. The single plate model is the basis 

for the multiple plates model which we take to be a periodic array of identical 

plates. For the single plate model we solve the plate displacement by the Finite 

Element Method (FEM) and the water potential by the Boundary Element Method 

(BEM). The displacement is expanded in terms of the basis functions of the FEM. 

The boundary integral equation representing the potential is approximated by these 

basis functions. The resulting integral operator involving the free-surface Green's 

function is solved using an elementary integration scheme. Results are presented 

for the single plate model. We then use the same technique to solve for the periodic 

array of plates problem because the single and the periodic array plates model differ 

only in the expression of the Green's function. For the periodic array plate model 

the boundary integral equation for the potential involves a periodic Green's function 

which can be obtained by taking an infinite sum of the free-surface Green's function 

for the single plate model. The solution for the periodic array plate is derived in the 

same way as the single plate model. From this solution we then calculate the waves 

scattered by this periodic array. 
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overlapping plot of the diffracted wave of of order 1 .  (d) The 
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directed towards positive x (solid line) and negative x (chained 
line) in the negative y region and directed towards positive x 
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