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Abstract

This study on intuitive frieze pattern construction and description was set up as an attempt
to answer part of a general question: "Do students bring intuitive transformation geometry
concepts with them into the classroom and, if so, what is the character of those concepts?”
The motivation to explore this topic arose, in part, from the particular relevance that
transformation geometry has to New Zealand: kowhaiwhai (Maori rafter patterns) are
examples of frieze patterns and are suggested by recent mathematics curriculum

documents as a way for Form 3 and 4 students to explore transformations.

When very few restrictions were put on the subjects, frieze patterns made by Standard 3
and 4 students displayed evidence of the use of transformations such as translation,
vertical reflection, and half-turn. Transformations, such as horizontal reflection and glide
reflection, were very rarely used by themselves. However, from the frieze group analysis
alone, no strong conclusions could be drawn about the frieze patterns featuring a
combination of two or more different symmetry types (besides translation). The Form 4
class surveyed showed similar results, with an increase in the proportion of students using
half-turn by itself. Another contrast between the two age groups was the production of
disjoint and connected patterns: the Primary students' patterns were mostly disjoint,
whereas the Secondary students made almost equal numbers of disjoint and connected
designs.

In a restricted frieze construction activity, which required the subjects to use asymmetric
objects (right-angled scalene triangles), the use of non-translation transformations reduced
considerably from the first exercise, although vertical reflection was still popular amongst
70% of the Primary students. However, the results of a small survey of 10 children
suggested that if the strips to be filled in are aligned vertically, the rarer symmetries such
as glide reflection may be used more easily than in the horizontal case.

The style analysis revealed that the Primary (pre-formal) and Tertiary (post-formal) groups
were quite similar in the patterns they drew under the restricted conditions, and therefore
in the probable construction methods used to produce them. The Form 4's patterns
differed in several ways, especially by their extensive use of half turn and tilings. It seems
that the Fourth Form students were affected by the formal transformation geometry
framework to which they had been recently exposed.
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Interviews of 10 Primary students provided information about the intentions and methods
used to construct the frieze patterns under both restricted and unrestricted conditions. The
case studies revealed that several standard approaches to frieze pattern construction were
employed, none of which corresponded with the mathematical structure of a symmetry
group. It was also found that a number of methods could be used to make the same
pattern. The qualitativc'analysis highlighted some shortfalls of the quantitative approach.
For example, some students used transformations not detected by the frieze group
analysis, and some symmetries present in the children's patterns were incidental (a spin-
off of another motivation) or accidental. Ambiguities in pattern classification also arose.

The Primary children's descriptions of the seven different frieze groups (which were
discrete examples) displayed several characteristic features. For instance, they often used a
form of simile or metaphor, comparing a pattern part to a real world object with the same
set of symmetries. In addition, many children considered a pattern's translation unit to be
'the pattern'. In this case, the interviews suggested that the repetition (translation) was
obvious to the students. Also interesting was the tendency of these subjects to write down
orientation or direction judgements, omitting the relationships between adjacent congruent
figures within a pattern. However, the Primary children did use more explicit
transformation terminology when able to describe the patterns orally. A peculiar feature of
these explanations was that the symmetry described was often not differentiable from
another symmetry. For example, to a child, the phrase "turn upside down" can mean a
half-turn or a horizontal reflection or both; the result is identical in many cases.

Secondary and Tertiary students tended not to use implicit phrases in their pattern
descriptions but were more explicit and precise, using a wider range of criteria in their
descriptions. The results from this activity also indicated that the Primary and older
students alike did not perceive the patterns to extend infinitely beyond the confines of the
the page, highlighting another difference between the mathematical structure of a
symmetry group and the intuitive cognitive processes of the students.

An additional matching activity was conducted in the interviews, requiring the subjects to
match various pairs of frieze patterns and discuss the similarities they saw. It appeared that
transformation criteria were not verbalized predominantly over other criteria such as
orientation or direction judgements, although many matches were made between patterns
with the same underlying frieze group.

Finally, educational implications for mathematics were indicated and areas for further
research were suggested.
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Introduction

1.1 An Explanation of the Topic
Aims

This thesis addresses the question of how students of various ages perceive, or make,
frieze patterns. The purpose of this research is to decide whether intuitive transformation
geometry concepts form a component of either of these processes and, if so, to what
extent. Consequently, the main objective of this mathematics education study is to
identify and describe the character of the conceptualization and utilization of
transformation geometry in students' description or construction of frieze designs. In
particular, we consider this conceptualization and utilization as an element of 'geometrical
intuition', which is a perceptual function by which a person apprehends spatial
relationships independent of a formal geomerry framework. To outline the nature of this
topic, there are three key phrases which probably deserve further explanation:
transformation geometry, frieze patterns, and intuition. These terms are discussed in the

three subsections which follow.
1.1.1 Transformation Geometry
Background

Transformation, or 'motion’, geometry was secured on firm mathematical ground in the
1870's when Felix Klein and Sophus Lie produced their version of it. In one sense, it can
be considered as a refashioning of Euclidean (Sinha, 1986) and other geometries. In
hindsight, this progression seems to have been quite natural. For instance, David Hilbert
praised Euclid for his foresight in perceiving that 'motion' is a prerequisite for
establishing the congruence of two figures (Sinha, 1986).

Rosenfeld (1988) reported that, in 1872, Felix Klein presented a lecture outlining the
Erlangen Program, entitled (in English) Comparative Overview of Recent Geometric
Investigations. The types of motions which he considered varied from rigid, affine, and

projective transformations to inversive, circular and conformal transformations. Klein
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noticed that such transformations form groups! under composition. His emphasis was
therefore on groups of transformations of space or manifolds, and the geometric
properties of spatial figures. In this present study, however, the consideration of
transformations is generally restricted to the 'rigid' or congruence transformations of the
plane, as well as a variety of associated groups. This begs the question: what is a rigid

transformation?

Rigid Transformations

Loosely, a rigid transformation is a motion of the plane which doesn't change the size or
shape of figures within that plane. However, from a mathematical point of view, a
transformation is a mapping which describes the relationship of points and their images;
the idea of a motion is informal. Martin (1982) showed that there are only four types of
rigid 'motions': a reflection about a mirror line, a rotation about a point, a translation in
the direction and length of a vector, and a glide reflection about a line. The transformation
most likely to be unfamiliar to the reader is the glide reflection. This 'motion' can be
understood as the composition of a reflection and a translation, although it is a
transformation in its own right. If this seems somewhat unexpected or contrived, it may
be helpful to remember that a rotation (or a translation) can both be thought of as a
product of two reflections. For more formal definitions of these transformations, see
section 2.4.

If a transformation maps a set of points onto itself (so that it appears unchanged), it is
called a symmetry of that set of points. As a consequence, there are four types of
symmetry associated with the four types of transformations, which is contrary to a

popular view that symmetry is synonymous with reflection symmetry.
1.1.2 Frieze Patterns

Until their own work was published, Griinbaum and Shephard (1987) explained that the
term pattern had not been defined, even by mathematicians, in a lucid and useful way.
For the purposes of this thesis, the word pattern is employed very broadly in its popular
use, that is, as some sort of 'regular design'. (A design is taken to mean any set of points
in the plane). Uinlike Griinbaum and Shephard's (1987) definition, tilings (partitions of
the plane into regions) are considered to be a special kind of pattern. A frieze pattern can
be understood, informally , as a set of points in the plane which has translation symmetry

in only one direction. An example is shown below.

! The algebraic properties of a group are assumed to be known to the reader.
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Figure 1.1

Reproduced from Shubnikov and Koptsik (1974), p 90

If we imagine the infinite extension of the pattern shown above (fig. 1.1) and translate it a
distance AB (along its 'length'), then it will map onto itself. Of course, this particular
example has other types of symmetries as well, such as a half-turn symmetry about the
point O, a reflection symmetry about the line v, and a glide reflection symmetry about the
line h (with the translation component in the direction of h).

In general, every frieze pattern has an underlying set of symmetries forming a frieze
group. It was probably first proven by Federov a hundred years ago (Washburn and
Crowe, 1988), and was shown again in detail by Martin (1982), that there are only seven
different classes of frieze groups. Examples and the corresponding nomenclatures
(Coxeter, 1987) are given in the following table:

Table 1
Belov's Senechal’s Martin's Examples
Crystallographic | Abbreviated (1982)
Notation Notation Notation
plll 11 F, L) e ] -
plml Im Fll s T Vol Pt Vol Pl Pl
R [ L [ LS
2
pml1 ml Fy DN TS A
plal lg F13 A A A ~
= N ]
pl12 12 Fs A A A A
P P
pmm?2 mm le IS TS AT ]
NN S
pma2 mg F22 o ok o
W \J
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1.1.3 Intuition

Perhaps the most elusive ingredient of this thesis' title is that of intuition. Before
proposing a working definition, it seems appropriate to consider a number of viewpoints
of this concept. For instance, the Concise Oxford Dictionary (1990) described intuition

as:

"1. immediate apprehension by the mind without reasoning. 2. immediate apprehension by a

sense. 3. immediate insight."

It appears that the term has a similar meaning in psychological circles, but it is viewed
somewhat suspiciously by a number of psychologists, as the following extracts from

psychological dictionaries indicate:

"Immediate perception or judgement, usually with some emotional colouring, without any

conscious mental steps in preparation; a popular rather than scientific term.” (Drever, 1952)

“1. direct or immediate knowledge without consciousness of having engaged in preliminary
thinking. 2. a judgement made without preliminary cogitation. The term is more often used by

laymen rather than by scientists.” (Chaplin, 1968)

However, some psychologists, such as Carl Jung (1933) have described intuitive
personality types in detail. Based on Jung's work, a personality type indicator known as
Myers-Briggs has been developed. It divides perception activities into two categories:
sensing and intuition. Jung described both types of perception as irrational functions,
since neither operation is restricted by "rational direction” (Myers and McCaulley, 1985).
Myers and McCaulley gave a description of each of these two perception functions:

“Sensing ... refers to the perceptions observable by way of the senses. Sensing establishes what
exists. Because the senses can bring to awareness only what is occurring in the present moment,
persons orientated towards sensing perception tend to focus on the immediate experience and often
develop characteristics associated with this awareness such as enjoying the present moment,
realism, acute powers of observation, memory for details, and practicality. (In contrast] intuition
.. refers 1o perception of possibilities, meanings, and relationships by way of insight. Jung
characterized intuition as perception by way of the unconscious. Intuitions may come to the
surface of consciousness suddenly, as a 'hunch’, the sudden perception of a pattern in seemingly
unrelated events, or as a creative discovery. ... persons orientated toward intuitive perception may

become so intent on pursuing possibilities that they may overlook actualities.” (p 12)
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More recently, interest has increased amongst cognitive psychologists in a related area to
intuition; that of explicit and implicit memory. Parkin er al. (1990) explained that:

"Explicit memory refers to any test procedure that requires subjects to reflect consciously on a
previous learning episode. ... Implicit memory tasks, in contrast, assess subjects' memory for a

learning episode without any necessity for a conscious recollection of that episode."

In their experiment, Parkin er al. found that explicit memory of an episode was affected
by an imposition of secondary processing demands whereas implicit memory was not.
Similarly, the spacing of repetitions during initial learning affected explicit memory

performance, but not that of implicit memory.

Piaget and Inhelder (1971) were aware of the existence of intuition. After observing that

figurative aspects of thought are usually different from operational aspects, they wrote:

"But there would appear to be an exception to this - the faculty known to mathematicians as
geometrical 'intuition’. An adult subject who 'sees in space' ... does not stop at imagining static
configurations in three dimensions any more than two. He [or she] is able to imagine movements
and even the most complicated transformations thanks to a remarkable adequation of image to
operation. This correspondence retains exceptional validity in spite of the well known

shortcomings of intuition (such as the difficulty in visualizing curves without tangents, etc.)"

(p317)

The description of intuition, or similar notions, has not been restricted to the domain of
psychologists. In 1952, for example, the famous mathematician Poincaré related in detail
the differences he perceived between two types of mathematical mind, namely, intuitive

and logical (Aiken, 1973). Similarly, Gagatsis and Patronis (1990) reported that:

"Skemp (1971) draws a distinction between two levels of functioning of intelligence, that is, the
intuitive and the reflective. The intuitive level involves awareness, through the senses, of data
from the external environment which are 'automatically' classified and associated to other data.
However, in this activity, the person is not aware of the mental processes involved. In contrast, at

the reflective level, the mental processes become a focus of introspective awareness.”

Of additional interest is Resek and Rupley's (1980) investigation of 'mathophobia’.
Using the Myers-Briggs Type Indicator and ideas closely related to Skemp's (1979),

such as instrumental and relational understanding, they found that a correlation existed
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between rule-orientation and sensation, as well as between concept-orientation and

intuition.

Drora Booth (1975) has considered the intuitive use of symmetry operations in children's
spontaneous pattern painting. In a personal correspondence (1991) with the researcher,
she explained her own understanding of intuitive transformation concepts in children's or
folk art work:

"I take the term to mean any symmetry operation that can be identified in a work (painting,
carving, weaving, block construction, etc.) that was created without the makers having formal

knowledge of the mathematical concept."

This definition is very similar to the one eventually formulated in this thesis. However, in
a cultural context, Griinbaum (1985) warned that:

"Even if we were to believe ... that symmetries can be used to explain the ornaments, that has
absolutely no implication on what the creators of these ornaments had in mind. Any of the
periodic symmetry groups have as a prerequisite the infinite extent of the ornament; surely no
Islamic artist would have dared even to think in such a sacrilegious way about the ornaments he
can creale. ... [Indeed], up to two centuries ago no artist or craftsman or mathematician defined
regularity through symmetries. Equal parts - yes; equal position of parts with respect to their

neighbours - yes; but equivalence with respect to the whole - never entered the picture.”

A suspicion arising from Griinbaum's point is that some, or even all, of the symmetries
able to be identified in a frieze pattern may not be intended, even intuitively, by the
pattern's creator. Such symmetries in a pattern are therefore accidental, and labelling them
as intuitive may be misleading. Naturally, the mathematical classification of patterns has
the benefit of being systematic, but it may not provide a great deal of insight into a child's
intuitive description or construction of a pattern. Lesh (1976) made a specific cautionary
note:

"...the researcher who begins with the assumption that children think in terms of slides, flips and
turns may be jgst as naive as the theorist who assumes flips come before turns and slides, just
because flips are mathematically the most powerful. It could be that children do not conceive of
rigid motions as compositions of slides, flips, and turns, but instead use some entirely different

system of relations to describe spatial transformations.” (p 234)
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In conclusion, some of the key facets of the perceptual process of intuition seem to be that
it is immediate, non-reflective, informal (independent of a formal framework), and
associative (in the non-mathematical sense). While the identification of symmetry or
transformations within a pattern may indicate an intuitive use of transformation geometry
on the part of the creator, this isn't necessarily so. Thus, in this thesis, the working
definition of intuitive transformation geometry in frieze patterns is the non-accidental
presence of transformations or symmetry within a frieze pattern independent of a formal
transformation framework. The property that the perception or creation of a design be
immediate remains a secondary consideration throughout this study. However, in the
analysis of survey results, one of the four measures employed to indicate the relative

'intuitive-ness' of the frieze groups addresses this concern also.

One final point: expressions such as 'more intuitive' indicate a comparison of one or more
of the facets of intuition discussed above. It is hoped that the context of this phrase will

make these facets clear.

1.2 The Motivation for Exploring Intuitive
Transformation Geometry and Frieze Designs

"Perhaps more emphasis needs to be devoted to investigations exploring the
intuitive (i.e., non-formalized) acquisition of systems of mathematical
operations, relations and transformations. There is a popular misconception
that concrete and intuitive mathematics is inferior mathematics and that the
viability of a mathematical topic is measured solely in terms of its
formalization and abstractness. In fact, the situation is often exactly the
opposite." (Lesh, 1976, p 203).

"... linear patterns, sometimes called strip or frieze patterns, ... I believe are

one of the great untapped geometrical treasure chests." (Williams, 1989)
Griinbaum and Shephard (1987) noted that the art of tiling and pattern-making appears to

have begun very early in the history of civilization and, although the cultures emphasized
 different aspects of design, it seems that:

"Every known human society has made use of tilings and patterns in some form or another.” (p 1)

They also claimed that many examples of artifacts from all cultures display a high degree
of intricacy and complexity. Of particular interest to New Zealand is Knight's (1984a)
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observation that Maori rafter patterns, kowhaiwhai, suggest a well-developed geometrical
intuition on the part of their creators.

CRAGRE

Figure 1.2 '

Reproduced from Hamilton (1901).

These designs, when imagined to be infinitely extended along their length, are examples
of frieze patterns. The relevance of this present study seems to be supported by Knight's

conclusion:

“The growing awareness of the importance of Maori Culture in New Zealand makes it particularly
appropriate for students, both Maori and Pakeha, to relate the mathematics they learn to their

cultural heritage.”

Not long after Knight's article was published, the New Zealand mathematics syllabus for
Forms 1 to 4 (1987) indicated that kowhaiwhai could be used to explore translation
symmetry in Forms 3 and 4. However, it appears that little is known about the way in
which students perceive these patterns, or if intuitive symmetry considerations form a part
of this perception. If a teacher is employing a process-orientated approach to this topic
(Skovmose, 1985), it may also be of interest to know the character of students' use and
understanding of transformation geometry in their constructions of strip patterns.

Gagatsis and Patronis (1990) pointed out that intuition (non-reflective information
processing) plays an important role in the development of reflective thinking, especially
for children. In fact, they maintained that:

"... intuitive thinking necessarily precedes reflective thinking and can help its evolution.”

By implication, it would appear that exploiting a student's informal understanding of a
concept may prove to be particularly valuable to mathematics educators. For instance,
Bruner (1966), advocated the use of a "child's intuitive level as the starting point for
teaching" (Booth, 1984). Booth (1985) herself concluded success in employing
children's spontaneous pattern painting as the starting point for teaching art and
transformation geometry.
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However, only 13 years ago, Shultz (1978) indicated that:

"Little is yet known about or agrecd upon regarding children's cognitive abilities concerning

transformation geometry." (p 195)

Today, this still appears to be the case. In addition, Lesh (1976) indicated that difficulties
in teaching motion geometry may be a result of the fact that:

"children make many mathematical judgements using qualitatively different methods than those

typically used by adults." (p 186)

He also noted that such differences are not particularly well understood by researchers,
particularly in the area of geometry. By focussing on the character of intuitive
transformation geometry concepts, this thesis attempts to contribute towards the

knowledge in this area.

1.3 An Overview of the Thesis

To explore this topic, we examine, in chapter 2, the mathematics education literature on
the role of geometry in the development of spatial sense and consider the merits of the
‘transformation approach." A summary of the relevant psychology and mathematics
education literature on the perception and learning of transformations and symmetry is
subsequently undertaken. The literature review also considers a study of children's
spontaneous pattern painting and its implications to intuitive transformation geometry.

The review ends with a summary of some mathematical classifications of designs.

Chapter 3 outlines the design and execution of the surveys and interviews conducted, and
describes the analysis methods used to examine the results. Chapters 4 and 5 include the
results and discussion of the unrestricted and restricted frieze pattern construction
activities. Chapter 6 characterizes the written and oral responses to the frieze pattern
description activity. Summaries are given at the end of chapters 4, 5 and 6.

Chapter 7 concludes the study by discussing the implications of this thesis' findings for
both researchers and mathematics educators at the Primary and Secondary school levels.

To this end, appendix D includes a brief review of some relevant material for use in the
learning environment.





