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ABSTRACT

An overview of some recent work in the field of Ranking and
Selection with emphasis on aspects important to experimenters confront-
ed with Multivariate Ranking and Selection problems is presented.
Ranking and Selection procedures fall into two basic categories.

They are:

1) Indifference Zone Approach

2) Subset Selection Approach.

In these approaches, the multivariate parameters are converted to
univariate parameters. Various procedures using these real valued
functions are given for both the Indifference Zone Approach and the

Subset Selection Approach.

A new formulation that has recently been developed which seiects
the best multivariate population without reducing popu]ations'to uni-
variate quantities is also described. This method is a Multivariate

Solution to the Multivariate Ranking and Selection problem.

Finally a real life problem pertaining to New Zealand's overseas

trade is discussed in the context of Multivariate Ranking.
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CHAPTER 1

1. INTRODUCTION

In the mid nineteen fifties attention began to be drawn to a new
type of problem which does not fit into the framework of testing hypo-
theses and for which no proper statistical approach has been developed.
In this type of problem it is not necessary to refute a null hypothesis
which is clearly false but rather answer a different type of question
which deals with selecting the best or with the ranking of alternatives.

This field of study is called RANKING AND SELECTION THEORY.

A statistical Selection procedure uses a random sample from each
population to select the best population. The same sample of data is
used to order the populations in statistical Ranking procedures. In
these procedures it can be asserted with a specified level of confidence

that the Selection or Ranking made is correct.

Procedures for Selection and Ranking problems were pioneered by
R. E. Bechhofer in 1954 using normality and equal known variance. In
the ensuing years such procedures have been developed for more complex

problems and in more realistic settings.

This thesis presents an overview of some recent work in this
field with emphasis on aspects important to experimenters confronted
with Multivariate Ranking and Selection problems. An example pertaining

to overseas trade using Multivariate Ranking is also discussed.



CHAPTER 2

2. RANKING AND SELECTION

2.1 POSSIBLE GOALS FOR RANKING AND SELECTION PROCEDURES

Ranking and Selection procedures include techniques appropriate

for many different goals, although each different goal requires a care-

ful formulation of the corresponding problem. For any given set of k

populations some of the goals that can be accomplished by these methods

are given below.

a)
b)

f)

Selecting the one best population.

Selecting a random number of populations such that all
populations better than the control population or the
standard are included in the selected subset.
Selecting at least two, say t (= 2), best populations
in an ordered or unordered manner.

Selecting a random number of populations, say r, that
includes the t best populations.

Selecting a fixed number of populations, say f, that
includes the t best populations.

Ordering or ranking all the k populations from best to
worst or vice versa.

Ranking a fixed size subset of the k populations from

best to worst or vice versa.




ol APPROACHES TO RANKING AND SELECTION PROCEDURES

Ranking and Selection procedures fall into two basic categories.

They are:

a) the Indifference Zone Approach pioneered by R. E. Bechhofer
(1954);

b) the Subset Selection Approach pioneered by S. S. Gupta
(1956).

In this chapter the theory related to the two methods are explained in
detail.

2:3 THE PHILOSOPHY OF THE INDIFFERENCE ZONE APPROACH

The essential problem formulation of the indifference zone

approach pioneered by Bechhofer (1954) is as follows.

Let M, Myy «uues I, be k independent populations with underlying
distribution functions F(x, ei)’ 1= 1; &4 weves & The 6; are unknown
values of a quality characteristic which is used as the parameter for
selecting the populations. Except for the value of 8, the distribution
is assumed not to differ from population to population. Also, it is
defined that if 8; 2 ej then I is better than Hj, although in some
cases the inequality is reversed. Let the ordered 8 be denoted by

6[1] < 8[2] E e & s[k]' The experimenter is assumed to have no prior

knowledge regarding the positions of the ordered and unordered 0.

The goal of the experimenter is to choose one of the populations

and claim that is the best, the one associated with e[k].

Max(8ys 8oy i iva B} = O k]



The selection is performed in such a way that the associated probability
of a correct selection for a given selection rule R, P(CS/R) is at least
as large as a predetermined P* (1/k < P* < 1) whenever the distance
(suitably defined) between the best and the second best populations
denoted by § = (eik] - e[k-l])’ is at least as large as a specified

constant §* (> 0).

P(CS/R) » P* (1/k < P* < 1)
ifé§ = (e[k] - a[k-l]) > &% where &* > 0.

The experimenter has the privilege of specifying P* and &* satis-
factory to himself. We will assume without loss of generality that the

distance function is the usual difference a(e[k], e[k-l]) = 8rk1 " rk-11"

This method does not explicitly seek to control the probability
of a correct selection, P(CS/R) at the parameter points 81k1® k-1]"
If the difference between the best and the second best are not suffic-
iently apart or if it is in the "ZONE" & = (e[k] - e[k-ll) < §*, the
experimenter is "INDIFFERENT" to which population is selected. Hence

the name INDIFFERENCE ZONE.

In this approach the experimenter finds the smallest sample size
(n) required from each population corresponding to the defined values
of P* and 6*. Then the experimenter selects the best out of the k
populations using the appropriate statistics gi’ % by Zs sneas K

A .
where 81 is an estimate of ei.

The total space of the 8; values is the union of the Indifference
Zone (IZ) defined by & = (e[k] - e[k-l]) < 8%, and the Preference Zone
(PZ) defined by s = (e[k] - e[k-l]) > 8* for &% > 0. 6% (> 0) defines



the threshold value to separate the Indifference Zone from the Prefer-

ence Zone.

The experimenter is indifferent to which population is selected
_ ) ” % s an . ;
when § (e[k] a[k-l]) < &%, &* or an indifference zone is still
specified in recognition of the fact as é* - 0, n » =, This indicates
that a large sample per population may be necessary for assurance of

trivial gains.

The indifference zone is feasible, in terms of the sample sijze

n only if two conditions are met.

a) The number of populations, k, is not extremely large
(eg k < 50).
b) The experimenter has some design control, via the choice

of n.

There are many other variations of the preference zone as the
situation warrants. The preference zone generally has an infinite
rumber of points. In many cases there is some special configuration
for which the probability of a correct selection is a minimum over all
configurations in the preference zone. This configuration is called

the Teast favourable configuration and denoted by 8§, .

P(CS/g) > P(CS/g, )  for all g € PZ

where ¢ is the vector (91’ 8,5 coses sk)

and 8, is the vector (&) \ps 8y |ps «eens By F)-

2.3.1 GRAPHICAL REPRESENTATION

For an arbitrary number of k populations suppose the distance



measure § = 8pyq = 8y 17 and the parameter space is unlimited so that
the values of § vary on the entire real line. The preference zone is
defined by,
= Lo = *
PZ = {0 28 (e[k] 8rk-17) % &*1

The indifference zone is defined by,

11 =

.

'g . ‘5 = (e[k] - e[k-‘l]) < 6*} 'FOI" 6* > 0.

k1 4
®rk1 ~ k-1 = &
. 17 s[k] - e[k-ll =0
non-existent
g% points

|

®rKk-1]

2.4 THE PHILOSOPHY QOF THE SUBSET SELECTION APPROACH

The goal of this approach is to select a non empty subset from

the given populations so that it includes the best population.

The given set of k populations are divided into two identifiable
subsets of random sizes in such a way that there is a high probability,

P* (pre specified), that the selected subset contains the best population



and the eliminated subset does not. There is no assertion made about
which population is the best within the selected subset. Now a correct
selection occurs if the selected subset contains the population with

the parameter value e[k].

In this subset selection approach a random sample from each of
the k populations is taken and an estimate 31 of the parameter 8, is
computed from the corresponding sample data of the i th population. Then
for each population (i = 1, 2, ...., k) the selection rule is to place
the i th population in the selected subset if and only if giis included
in a certain region I. This region I is usually a closed interval of

the form, I = {g[k] - C, S[k]] where C (> 0) is to be determined.

The value of C should be as small as possible subject to the
condition that the infimum of a correct selection for any rule R, over
the whole parameter space of 84 is at least P* or P(CS/R) > P* for what-
ever be the true configuration of the unknown 6. Here the subset
selected is of random size and sin;e e[k] is always contained in the

region I, the selected subset cannot be empty.

The experimenter can select a rule R such that for the specified
probability P* the expected value of the selected subset size is as

small as possible for all rules R.

2.5 COMPARISON OF THE INDIFFERENCE ZONE AND THE SUBSET SELECTION

APPROACHES

The main difference between tne Indifference Zone Approach and
the Subset Selection Approach is that in the latter there is no

Indifference Zone. Also, in the Subset Selection Approach, the least



favourable cenfiguration is the one with all the 6, equal. Hence it is

almost impossible to compare the two apprecaches analytically.

In any given situation the preference of one over the other of
the two approaches is mainly dictated by the objectives of the experi-

menter,

The Indifference Zone Approach is useful at the experimental
design stage, where a common sample size is to be determined, whereas
the Subset Selection Approach, in the main formulation, assumes that

the sample size may be fixed arbitrarily or by other considerations.

When a subset is selected no single population within that
subset is asserted to be the best one, except by implication if it
happens that the subset selected is of size one. Hence the Subset
Selection Approach gives less precise information but it provides more

flexibility.

The infimum of the Probability of a Correct Selection in the
Indifference Zone Approach is evaluated over the Preference Zone, where-
as in the Subset Selection Approach it is over the entire parameter

space.

The Subset Selection Approach is particularly useful in screening
problems, for example, drug screening. It is also appropriate when k
is very large and it is required to select a smaller number of popul-

ations to test further or to compare for secondary properties.



CHAPTER 3

3 MULTIVARIATE DISTRIBUTIONS

3.1 DEFINITION OF A MULTIVARIATE DISTRIBUTION

A multivariate distribution is the joint probability distribution
of p (= 2) variables. A random sample of size n from a population having
a multivariate distribution consists of n observations of p tuples

(vectors) of measurements.

The most important multivariate distribution is the Multivariate
Normal Distribution. The multivariate normal distribution has as
parameters, not only the means and variances of each of the p variables,

but also covariances or correlations between pairs of these components.

The density function of the multivariate normal distribution
is
1

1 il
f(X;) = expl-5 (% - 1) I (% -
M (e [z A

u.) ]

~i

where 51 is a p variate random vector from the population Moo us and

L; are the corresponding vector of means and the pxp variance-covariance

matrix respectively of the population I

A p variate normal distribution with mean K and variance-

covariance matrix D will be denoted by Np(“i’ 21). The inverse of s

will be denoted by Z;l.
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3id NOTATIONS USED IN MULTIVARIATE RANKING AND SELECTION

Let Mys Tys evnns My be k independent p variate normal popuiat-
ions with mean vectors‘gi and covariance matrices i, 158 X & voven K
and denoted by N (Ed’ 21). A11 the vectors are column vectors and the

p
zi are assumed to be positive definite.

The sample mean vector of the i th population I 5 based on a

sample of size n is defined by

X =
i)
P
7o)
» = ) .
where ?£1) N it S Or € = 1, 24 sesss P ADA Xg}) denotes the

n

¢ th component of the j th random vector observed from I .

The sample variance-covariance matrix S; of the i th population

I, based on a sample of size n is defined by

[ () () i
511 512 e i Slp

(4) (1)
*pl >op




il

n 7 .
vooyli) _ol1)y e (F) )
(i L g e e Mty - K
where scd =
(n - 1)
for c =1, 2, o B 45 1,02 e 48, ok

3.3 MULTIVARIATE RANKING AND SELECTION

The multivariate parameters i and Zis T =Ly By swwnn Ky 598
converted to the univariate parameters 815 8y wenns B by a scalar

function ¢(Ed’ 21), where

1 ~1? 7
Let 9[1] < 9[2] € wsws 8 e[k] denote the ordered parameters
815 8,55 «ouns B, Where e[k] is the largest 6. value. The best popul-

ation 1is the one associated with e{k].

Using the 855 i=1,2, ...., k values, it is necessary to
select the best population out of the populations m,, n,, ...., Ty -
To achieve this it is necessary to develop a procedure R such that for

a fixed P* the probability of a Correct Selection satisfies

Inf P(CS/R) = P*

Q
P

where Qp is a subset of o the total parameter space of all admissible

values of 6 = (6., © » 8, ) and Inf or Infimum denotes the greatest

1’ 2, e

Tower bound.



85,

¥

The best population could be selected by two different approach-

b)

Indifference Zone Approach.

Here the "CS" means the selection of the population
associated with e[k]. ﬂp is a proper subset of the
total parameter space @ and also it is the Preference

Zone.

Subset Selection Approach.
Here the "CS" means the selection of a subset S from
the populations Mys Mys evens Iy such that S contains

the populations associated with 6[k] and Qp = Q.

Various choices have been made of the real valued functions in

papers presented in recent years. An overview of these papers is

given in Chapter 4 and Chapter 5. The following list gives the real

valued functions used in the overview.

8; = Generalized variance

8; = Multiple correlation coefficient

0; = Product moment correlation for the bivariate (p = 2)
case

8; = Coefficient of alienation.
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Each of the above functions reduces Multivariate parameters to a
Univariate parameter. However, an attempt was made by Dudewicz and
Taneja (1981) to give a multivariate solution to the multivariate rank-
ing and selection problem. Chapter 6 is devoted to discussing this new

technique.
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CHAPTER 4

4. THE INDIFFERENCE ZONE APPROACH TO RANKING AND SELECTION OF

SEVERAL MULTIVARIATE NORMAL POPULATIONS

As stated in the previous chapter, various real valued functions

8, have been defined in recent work to select the populations.

Several real valued functions ei of the mean vector K and the

covariance matrix L; are considered in this chapter. They are:

1) The Mahalanobis Distance

2) The Euclidean Distance

3) Multiple Correlation Coefficients

4) Sum of Bivariate Product Moment Correlations

5) Coefficient of Alienation.

4.1 SELECTION IN TERMS OF THE MAHALANOBIS DISTANCE

The selection parameter here is 8, = EA Z;l u; which is the
Mahalanobis distance function. The cases studied in recent work in-
volve that of Z; known and I unknown. Here, an overview is presented
of the work carried out by Alam and Rizvi (1966) and Srivastava and

Taneja (1972) using this parameter.

4.1.1 PROCEDURES STUDIED BY K. ALAM AND M. H. RIZVI (1966)

The procedure R selects t populations such that the infimum of

the probability of a correct selection over a sub-space of the parameter
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space is equal to P*. The main exercise is to determine the least fav-
ourable configuration of the parameter space for which the probability
of a correct selection is a minimum. The expression for the minimum

value determines the smallest sample size needed to satisfy the P* con-

dition.

The selection of k multivariate normal populations with mean
vector M and covariance matrices L (i =1, ...., k) using the
Mahalanobis distance function 8, = H& Z;l B reduces to selecting from
k, non central chi squared populations (in the case of L known) and
non central F populations (in the case of L unknown) with respect to
the non-centrality parameters. The best population is the one assoc-

iated with e[k]'

Let ZH and Si denote the sample mean vector and sample covariance
matrix (defined in Chapter 3.2), based on a sample of size n from .
The P* condition may be satisfied only on a subset of @ which may be

termed a "preference zone". One such subset of 2 described here is

where @, = {8 : 8p 4117 = Ok-t] = 81!

and Q, = {g : e[k-t+1] / s[k-t] > 62}

for some al s 0 5, > 1.

For selecting the t best populations such that the Probability of
Correct Selection » P* whenever ¢ € Qp, Alam and Rizvi (1966) have proposed

rules for the two cases Ei known and D unknown.
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4.1.1.1 CASE 1 I; KNOWN

Let Uy =X L X i=1,2, oo, ke

Then nU; has a non central x* distribution with p degrees of freedom

F 1 .
and non centrality parameter A; =ne;,=n u% Zi ;- The goal is to

select the t populations associated with U[k-t+l]’ 8 aa U[k] where

U[k] = max(Ul, e Uk). The least favourable configuration (LFC) is
given by
81 = ove = Oty T 81/(8 - 1)
Olk-t+1] = *oor = Oy = 8182708, - 1),

The smallest value of n required to satisfy the P* condition is obtained

from,

] né n &8 8, \1t-1 né.é
k-t ( 1) { ( 1 2)1 ( 1 2) _
t| F , —) {1 - F_ {x, f {x, dx = p*
J; p c 8,1 p §5=1 J] p =l

where fp(x, A') and Fp(x, A') denote the probability density function

and the cumulative distribution function respectively of a non central

x* random variable with p degrees of freedom and non centrality para-

meter A'.
These functions are given by

f (x, A') = bl A i

% »0; A' =0
P s r=0 r1 2°7 T(3ptr)

(] s x 1
ACEUE L £(t, A')dt
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Srivastava and Taneja (1972) have stated that the tablies for n are not

yet available to carry out this procedure.

4.1.1.2 CASE 2z, UNKNOWN

S = 2y e
Let Vi = X S,i ﬁi(n-p)/np, y A T —

Then nV. has a non central F distribution with p and (n-p) degrees of

n oy, Z;l ;- The goal

freedom and non centrality parameter A% =n 8

i ~i
is to select the t populations associated with V[k-t+1]’ I V[k]
where V[k] = max(Vl, Vos ceens Vk). The Teast favourable configuration
(LFC) is given by
8pq = +eer = e[k-t] = 51/(52 - 1)
Srk-t+1] = *o00 = Opky = 8182708, - 1),

for some &, > 0 and 6, > 1. The smallest value of n required to satisfy

the P* condition is obtained from
B n 61 n 6152\ t-1 n 6152) \
f L Sp.n-p (x’ 62-1) 1= np ( 5,1 }} Sp n-p** Y

where 9, q(x, A') and G. _(x, A') denote the probability density function

P9
and the cumulative distribution function respectively of a non central F
random variable with p and q = (n-p) degrees of freedom and non central-

ity parameter A'.

These functions are given by
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sl d L+yra v
e? 2 xP T lrprigern) a0

9 q'%s A') = Fogy L - :
R RIS {1+X)35p+‘2q+r riqp +r) 2"r!

s x50
6 (x, ') [ g, o(ts 2]t

4.1.2 PROCEDURES STUDIED BY M. S. SRIVASTAVA AND V. S. TANEJA (1972)

The problem of sequential selection of the best of k, p variate
normal populations with means Bis i=1,2, ...., k and common covariance

matrix £ (for known and unknown ) are considered. Here we discuss the

selection done with respect to the Mahalanobis distance function

T
=kl

Here Paulson's (1964) sequential procedure for selecting the
normal population with the largest mean is extended to the multivariate
case. Truncated and non truncated sequential procedures similar to
those of Paulson (1964) and Hoel and Mazumdar (1968) are investigated.
Hoel and Mazumdar (1968) have proposed a sequential method of selecting

a member of an exponential family with the Tlargest parameter.

The following form is taken by the procedures discussed here.

Denote the ranked 6;'s (= i

=1

is to design a procedure R for selecting the best population correspond-

ing to the largest 8 value such that
P(CS/R) = P* whenever 8tk] ~ O[k-1] * 5*

where &* and P* are specified by the experimenter and H[k] is the popul-

ation associated with e[k].
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In the sequential procedures developed here the inferior popul-
ations are eliminated before the final stage of the experiment which
tends to decrease the number of observations required to reach a
decision. It is also proved that in the ron truncated case the proper

sequential procedure terminates with probability one.

The following lemma by Bechhofer, Kiefer and Sobel (1968) is

needed in the theory to follow.

Let 21, Z,, .... be a sequence of independently distributed
random variables having the same distribution as Z = X - Y, where X
and Y are independent non central chi square random variables with p

degrees of freedom and non centrality parameters Al and A; respectively.

Let Al < Az, 0 = X% Ry ® Al and b > 0. Then

-tob
(Zj + x) > b} <e

where 'Sup' or Supremum is the least upper bound and t0 > 0 is the
solution of

2 1 1 5-1 _2_1
max{t s (1-4t2) "% tDA-MatT42t0g + Ay) - (A2 = A (1-4t%)"" 1}

D=t gk oes LA)

4.1.2.1 NON TRUNCATED SEQUENTIAL PROCEDURE

let U, =x.7 ¥
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Now for &* > Q define

1

Cox = t; Tog{(k-1)(1-P*)7'}

where t, is the solution of equation (A) with A = 0.

Srivastava and Taneja (1972) do not explain how to choose A, - A;
and k; ¥ A; which are in fact Tower and upper bounds for the ordered
differences and sums respectively of the non centrality parameters. It
is reasonable to choose Aé - x; = §* but the choice of Aé + A; is

unclear.

The values of t0 have been tabulated by Srivastava and Teneja
(1972) for selected values of (A; - Al) and (A; + A;), for the number

of variates, p = 2, 3, 4. The table is given below.

TABLE T 4.1 : Values of t for » = 0

. . . . t values
A, = A A, * A
. . 5 p=2 3 B
0.5 4.5 0.0381 | 0.0325 ; 0.0287
3 6.5 0.0287 | 0.0259 | 0.0231
1.0 5.0 0.0709 | 0.0625 | 0.0550
’ 7.0 0.0550 | 0.0493 | 0.0447
5 5 6.5 0.1478 | 0.1328 | 0.1197
' 8.5 0.1197 | 0.1094 | 0.1000
5.0 9.0 0.2321 | 0.2134 | 0.1966
' 11.0 0.1947 | 0.1806 | 0.1684
8.0 12.0 0.2931 | 0.2753 | 0.2594
’ 14.0 0.2537 | 0.2406 | 0.2275
12.0 16.0 0.3437 | 0.3287 | 0.3137
' 18.0 0.3062 | 0.2931 | 0.2819
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The sequential procedure R, is as follows.

Start with one observation on each population I, and compute
Zil’ i=1,2, ...., k. Eliminate from further consideration any
population i for which
I[f all but one population is eliminated terminate the experiment and
select the remaining population as the best one. Otherwise go on to
the second stage of the experiment (m = 2, 3, ....) and take one

measurement on each population not eliminated after the (m-1)th stage

and eliminate any population Hs for which

Lo € mix Zaii = Sy vexia L)

where the maximum is taken over all populations left after the (m-1)th
stage. We terminate the procedure when there is only one population

left out and select it as the best.

It has been shown in Paulson (1964) that this procedure termin-

ates with probability one, and that

P(CS/Rl) > P*  whenever 8rk] = Ork-17 2 &%,

4.1.2.2 TRUNCATED SEQUENTIAL PROCEDURE

In the case of the Non Truncated Sequential Procedure it has not
been possible to obtain any upper bound for the expected number of

observations. For this reason a class of truncated procedures similar
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to Paulson's (1964) procedure has been considered.

Let n be chosen such that 0 < n < &*, Define

i wf
Cn = tn Tog{(k=1)(1-P*)""}

where tn is the solution of equation (A) with » = n. Let “n be the
largest integer less than Cnfn. The sequential procedure R, is as

follows:

Start sampling as in the case of the non-truncated case with

equations (B) and (C) replaced by

< - +
ZSl < max Zrl Cn n
r
d < - 3
an Zsrn m?x Zrm Cn mn

respectively.

If more than one population remains after the wqth stage the
experiment is terminated at the next stage by selecting the population

with the largest Z value. For this procedure R, with n € (0, &%)

P(CS/R,) » P* whenever 6r . - 6 _qq > 8%

As in the case of Paulson's (1964) procedure, the optimum value of n is
not known. However as recommended by Paulson (1964) the value of

n = &8*/4 may be used.

] ]
The same comments on the choice of A; - A; and Az + Al stated 1in

Chapter 4.1.2.1 apply here too.



The values of tq nhave been tabulated by Srivastava and Taneja
(1972) for selected values of (A; - ki) and (. + A;) for the number

of variates, p = 2, 3, 4. The table is given below.

TABLE T 4.2 : VALUES OF t

. . ' t values
Ao = Ko A Y |
= 7 2 p=2| 3 4
0.5 0.1 4.5 0.0308 | 0.0267 | 0.0235
0.1 6.5 0.0235 | 0.0211 | 0.0190
0.2 4.5 0.0231 | 0.0200 | 0.0177
0.2 6.5 0.0177 | 0.0158 | 0.0143
0.3 4.5 0.0154 | 0.0133 | 0.0118
0.3 6.5 0.0118 | 0.0105 | 0.0095
0.4 4.5 0.0077 | 0.0067 | 0.0059
0.4 6.5 0.0059 | 0.0053 | 0.0048
1.0 0.2 5.0 0.0574 | 0.0502 | 0.0446
0.2 7.0 0.0446 | 0.0401 | 0.0364
0.5 5.0 0.0359 | 0.0314 | 0.0279
0.5 7.0 0.0279 | 0.0251 | 0.0228
0.7 5.0 0.0215 | 0.0188 [ 0.0167
0.7 7.0 0.0167 | 0.0150 | 0.0137
0.9 5.0 0.0072 | 0.0063 | 0.0056
0.9 7.0 0.0056 | 0.0050 | 0.0045
2.5 0.6 6.5 0.1143 | 0.1019 | 0.0920
0.6 8.8 0.0917 | 0.0836 | 0.0769
1.2 6.5 0.0784 | 0.0699 | 0.0630
1.2 8.5 0.0629 | 0.0573 | 0.0526
1.8 6.5 0.0419 | 0.0374 | 0.0337
1.8 8.5 0.0337 | 0.0307 | 0.0282
2.4 6.5 0.0059 | 0.0053 | 0.0048
2.4 8.5 0.0048 | 0.0044 | 0.0040
5.0 1.0 9.0 0.1911 | 0.1745 | 0.1604
1.0 11.0 0.1590 | 0.1473 | 0.1372
22 9.0 0.1355 | 0.1231 | 0.1129
2.2 11.0 0.1124 | 0.1038 | 0.0965
3.5 9.0 0.0716 | 0.0651 | 0.0597
3.5 11.0 0.0597 | 0.0552 | 0.0513
4.8 9.0 0.0092 | 0.0084 | 0.0077
4.8 11.0 0.0077 | 0.0072 0.006?1
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TABLE T 4.2 (continued)

. . , 1 t values
Ay = X A P ORE
2
1 & "L 1pug 3 4
8.0 1.6 12..0 0.2472 0.2298 | 0.2144
1.6 14.0 0.2114 | 0.1985 | 0.1870
3.5 12.0 0.1783 | 0.1644 | 0.1526
3.5 14.0 0.1515 | 0.1416 | 0.1329
6.5 12.0 0.0566 | 0.0524 | 0.0489
6.5 14.0 0.0488 | 0.0457 | 0.0430
7.8 12.0 0.0072 | 0.0067 | 0.0063
7.8 14.0 0.0063 | 0.0059 | 0.0056
12.0 3.0 16.0 0.2821 | 0.2657 | 0.2507
3.0 18.0 0.2465 | 0.2338 | 0.2223
6.0 16.0 0.1932 | 0.1803 | 0.1691
6.0 18.0 0.1678 | 0.1583 | 0.1498
9.0 16.0 0.0920 | 0.0862 | 0.0811
9.0 18.0 0.0810 | 0.0766 | 0.0726
11.5 16.0 0.0141 | 0.0134 | 0.0127
11.5 18.0 0.0127 | 0.0121 | 0.0115

4.2 SELECTION IN TERMS OF THE EUCLIDEAN DISTANCE

The selection parameter here is &, . (Eé Hd)% which is the
Euclidean distance function. The cases studied in recent work involve
that of the common covariance matrix £ known and I unknown. Here, an
overview is presented of the sequential procedures investigated by

Srivastava and Taneja (1972).

4.2.1 PROCEDURES STUDIED BY M. S. SRIVASTAVA AND V. S. TANEJA (1972)

The problem of sequential selection of the best of k, p variate
normal populations with means Kio i=1,2, ...., k and common covariance

matrix £ (for known and unknown £) are considered. Here we discuss the
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selection done with respect to the Euclidean distance function

PRI
o = (g iy

1
2

Suppose that the ordered set of o, = (hé u.)? values of populat-

~1

ions Mys Mys wenns Hk are denoted by

<

8[1] < 8[2] £ woes $ B[k] :

The 0; values are assumed to be unknown and the best population is the

one which corresponds to e[k].

Chow and Robbin's (1965) sequential theory has been applied to

design a set of rules R such that

4 +* - e
ét!g P(CS/R) 3 P whenever sfk] e[k-l] 20

where P* and &¢* are preassigned constants.

Two cases are considered.

4.2.1.1 CASE 1 1 KNOWN

n
Let Xin = Z

J ﬁijfn i % Ty 2y wasse Ks

1

where E;n is the sample mean vector based on n independent observations

from 1.

is i=1,2, ...., k. The procedure R1 is as follows:

Take a sample of size n from each population where n is the small-

est integer satisfying
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i.e., A», is the maximum characteristic root of £ and 'a' is given by

1

X 4277 4 .
where o(x) = J (e (2m) 2ldt 1is the normal cumulative distribut-

jon function. The standard normal probability density function is given

by

2
#5) =t e H 18,

Now select the population associated with the largest Z}n Eﬁn‘

4.2.1.2 CASE 2 3 UNKNOWN

_ n
Let iy = 'z .ﬁij/“ 1 =15 &5 seies &
j=1
., koo
Sy = nk) 121 jzl (Xi5 = Xin) (X553 - Xin)
Aq, = max b'S
ol T 1 e

Note that Tim Mn T N almost surely.
n-=o

Let {an} be a sequence of positive constants such that Tim a, = a
N—
where 'a' is defined by

qs(}g—) = (1 - P*)(k - 1)}

and ¢(x) was defined in Chapter 4.2.1.1. The procedure R, is as

follows:
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Start by taking Ny > P observations from each population and then
one observation at a time from each population and stop according to the
stopping rule defined by

-2

N = smallest n = n. such that Xp € ne*? CH

0

When the sampling is stopped at N = n select the population with the

largest iin Zﬁn as the best population.

Srivastava and Taneja (1972) state that as ¢* - 0, this procedure
terminates with probability 1. Extensive work done by Starr (1966) on
the univariate case suggests that the procedure and variations of it

works for various values of &*.

It is not clear how n, is determined in practical applications.
Presumably N, > P is chosen so that it is large enough for Sno to be a
reasonable approximation to £ but not so large that the procedure
terminates immediately. Srivastava and Taneja (1972) do not discuss
this or give guidelines on how to choose Nye

4.3 SELECTION IN TERMS OF MULTIPLE CORRELATION COEFFICIENTS

Here we consider the problem of selection of t largest from among
k multiple correlation coefficients, each arising from one of k indep-
endent p variate normal populations with unknown mean vectors and un-

known covariance matrices.

To arrive at a selection procedure a preassigned probability
value (if‘)'1 < P* < 1 is set and the requirement that the probability of
a correct selection is not smaller than P* whenever the square of the t

largest muitiple correlation coefficients



28

1) exceeds the square of each of the remaining multiple correl-

ations by a magnitude §,, and simultaneously,

2) each is at least 62 times as large as each of the squares of

the remaining multiple correlations
are met.

The separation thresholds 0 < &, < 1 and §, > 1 are also pre-
assigned. These two conditions specify a "preference zone" in the

parameter space. The problem is formulated as follows:

Consider k (> 2) independent p variate (p > 2) normal populations
Npk&i’ Ei)’ i=1,2, ...., k. Here the mean vectors y; and the
covariance matrices L, are all unknown. For the i th population let
8, denote the squared population multiple correlation coefficient
between the first variate and the set of (p - 1) remaining variates.
This is defined by

el o 1z,

(1) .
U111 125 (11) !

p2
i $2l, By enaes D

Here 051) is the leading element of Z; and 21(11) is the matrix obtained

from L by deleting the first row and the first column.

Let the ordered values of the ei's be denoted by

0 e |

€ 8[1] € 8[2] £ oavee £ S[k]

The problem is the selection of the t < k populations with the largest

ei's on the basis of n sample observations from each of the k populations.
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Let the parameter space Q of the ei's be partitioned into a
"preference zone" np and its complement the "indifference zone" Q-
For specified Qp and P* ((:)'l < P* < 1) a decision procedure R is

required where

Inf P(CS/R) > P*.

Q
p

Rizvi and Solomon (1973) have investigated a decision procedure
R as an asymptotic (as n - =) solution to this problem, with an explicit

definition of Qp the preference zone.

Alam, Rizvi and Solomon (1975) subsequently investigated the

procedure R in the exact sample case.

4.3.1 PROCEDURE INVESTIGATED BY M. H. RIZVI AND H. SOLOMON (1973)

The procedure R1 is as follows:

Consider a random sample of size n where n > p from each of the

k populations. The sample squared multiple correlation coefficient
- -1
_ (i)™ _ 2
yi = b=sip ISS50n0 =i, 2, o p
where sgi) is the leading element of the sample covariance matrix Si and
. ()~ 2 = .

lsi(ll)l is the cofactor of 11 (i=1, ...., k), is then computed
for each population. The yi's are then ranked, breaking ties if any,

with suitable randomization. The populations corresponding to the t

largest yi’s are then selected.

For this problem the preference zone @, is defined as 2, N a,

p
where
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8T RET O b T Okt 2 &)

By =R €0 0 ey 1 Ykt B %0

and 0 < §, < 1 and §, > 1 are specified constants.

Calculation of n

For the procedure R, and the preference zone Q_ the probability

P

requirement Inf P(CS/R) > P* is employed and solved asymptotically for
Q

p
the common sample size n from each population. This value of n provides
the sample size to incorporate in the selection procedure R1 so that R,

satisfies Inf P(CS/RI) > P* asymptotically.

o

For fixed p as n » =, ny; is asymptotically distributed as a non-
central chi square random variable with q = (p - 1) degrees of freedom,
and non-centrality parameter ' = n 8. The non-central chi squared
probability density function denoted here as fq(y, A') and the cumulative
distribution function denoted here as Fq(y, A') are given in Chapter

4.1.1.1.

The asymptotic probability of a correct selection Pa(CS/Rl) can

now be written as,

k o k-t k {1 : )1
Pa(CS/Rl) - 1=k§t+1 .L SE]- Fq(‘y’ne[B]) ' Cf.=k1‘}t+l B q(y,ne[cf-} J’-
aFi

folysnepsq)dy

Here, the least favourable configuration (LFC) is given by
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8111 = Oray T veer T Opkaty T 81/(8, - 1)

Ofk-t#1] = veee = Oy = 818/(8; - 1)

The smallest common sample size n is obtained as the solution of the

integral equation

t {j Fg-t(y,nal/(éz-l)}[1-Fq(y,n5152/(62-1D]t_1 fqlyne 8,/(s,-1))dy = P

The tables used to solve the equation for ns, for P* = .90 and P* = .95
are given in Rizvi and Solomon (1973). Once ns, is known, n can be

calculated.

4.3.2 PROCEDURE INVESTIGATED BY K. ALAM, M. H. RIZVI AND H. SOLOMON
(1975)

The Selection Procedure R2 explained here is the same as the
procedure R, (given in Chapter 4.3.1) except for the specified prefer-
ence zone and the fact that this procedure is studied in the exact
sample size case. Here also, the sample squared multiple correlation
coefficient ¥; (defined in Chapter 4.3.1) for each population I1#
(i=1,2, ...., k) is used to select t < k populations. The yi's are
ranked breaking ties if any with suitable randomization and the popul-

ations corresponding to the t largest yi's selected.

For this problem, the preference zone Qp is defined as

1
Qp = 91 n Qz where

=2
"

TR B3 U B gL~ Breqy) * B}

=
1}

, = {g€a: O [k-t+1] / Ork-t] 2 §,}



where é; > 1 and 52 > 1 are specified constants.

Calculation of n

For the procedure R, and the preference zone @_ the probability

P

requirement Inf P(CS/RZ) > P* is employed and solved for the common

Q
p

sample size n for each population. This value of n provides the sample
size to incorporate in the selection procedure R, so that R, satisfies

Inf P(CS/RZ) -

Q
p

Some preliminaries concerning the distribution of a typical
sample squared multiple correlation coefficient Y; based on a random
sample of size n (2 p + 2) and having population squared multiple

correlation coefficient 6, are given below. Let

(&) Bl or

= r ol x
)

J(a,bscix) = fan
r=0 icSr X!

denote the hypergeometric function where (a)0'= 1 and (a)r = a(a+1) ....

(atr-1), r =1, 2, .... The probability density function of y; is

given by

= a e
hy(a,c,ei) = (1 - e;) By(c,a-c)J(a,a,c,eiy), Dey el

where

r(a+b)

L) )

By(a,b) R e

i.e. a Beta probability density function. a = (n-1)/2, c = (p-1)/2
and H (a,c,si) denotes the cumulative distribution function of Yis

Y
where
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Y
Hy(a,c,ei) = J; ht(a,c,ei)dt

The probability of a correct selection P(CS/RZ) can be written as

! ) % rl k-t k
P(CS/R.) = ) m H,(a,c,08;,,) . i 1 = H.(a,8,0: )F .
20 gekctel o gl Y BT peen y el
a#i

hy(ascss[i])dy
Here, the least favourabie configuration (LFC) is given by

0117 = B2y = +ovr T Opk-ty = (8, - V/(s 8, - 1)
Okatbl] = vor = Opky = S(8, - /(s 8, - 1)
The sample size n is obtained as the solution of the integral equation

t Jl Hk=1(a,c,(8!-1)/8'6.-1) . [1 - H.(a,c,s.(s'-1)/s's -1)1t"]
0 Y 1 ¥d YA gy 172 ’

hy(a,c,az(ai-l)/aiaz-l)dy = p*

where a = (n-1)/2 and ¢ = (p-1)/2.

Tables to solve the equation are not given in Alam, Rizvi and

Solomon (1975).

4.4 SELECTION IN TERMS OF THE SUM OF THE BIVARIATE PRODUCT-MOMENT

CORRELATIONS

This is concerned with selecting the single largest population
having the highest 'association' from among the set of k populations.

Here, let 8 be a measure associated with population I defined by



(1)
cd

tween the ¢ th and the d th coordinates of a vector‘i from Hi‘

where p is the bivariate product-moment correlation coefficient be-

. 5(1)
o(é) _ cd
C . . Lé
() 43)

where 011 912 clp
(1)
fe1
Zi il
(1) (1)
°p1 pp
Let 8[1] < 8[2] 2 Wl 6 e{k} be the ordered values of ei. Govindarajulu

and Gore (1971) have studied a procedure for selecting the population

associated with e[k] so that the P* condition Inf P(CS/R) = P* is

o

asymptotically (n » =) is satisfied. Here Qp is the preference zone.

4.4.1 PROCEDURE STUDIED BY Z. GOVINDARAJULU AND A. P. GORE (1971)

Define _ r(;)
V. = ) e, 21,2, , k
T 51 g=q POP-D)
c#d

where rgé) is the sample correlation coefficient defined by
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'”(:1) - mCd(i) I
& 5
(Scc >dd )

and SE;) is defined in Chapter 3.2. The procedure R selects the

population associated with the largest Vs.

For the case p > 3 the authors have shown that for large n

P(CS/R) = P[Ui < /A 5% {21%§ﬁ£§ff§l}‘%, i=1, ..., k-l]

whenever s[k] - e[k-l] 2 8% and Ui’

.++vs Ug_q are standard normal
random variables with equal correlation %

In the bivariate case 8, will be the product-moment correlation
and Vi the sample correlation coefficient, and

PeS/R) 2 Pluy « 2%, i =1, 2, e, ke,

4.5 SELECTION IN TERMS OF THE COEFFICIENT OF ALIENATION

Let X; = (Li, gh)' be a (

q, *+ q,) dimensional random vector with
covariance matrix

. e
by D
21 =
RV

(i) () () () : N
where Zyy , Zyz ; Zzy and ]/ are submatrices of dimension g, x q,,
q; * 9,5 9, *q, and g, x q, respectively. Assume that q, €4,-
The coefficient of alienation between Y. and Z; is o, and defined by
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5 12,1

~

8. = - -
ol T

where the coefficient of alienation is a measure of association between

the two sets of variables. For g = 14t is equal to (1 - pz) where o

is the multiple correlation coefficient between y and (21’ Zys cenes q.!
2
Let 9[1] < 6[2] € waia € e[k] be the ordered 8, values.

The selection of the population associated with 9[1] subject to

the P* condition

2
> 6%

2
*
Inf P(CS/R) » P whenever 8[2]/8[1] >

%

where §* > 1, and has been considered by Frischtak (1973).

4.5.1 PROCEDURE PROPOSED BY R. M. FRISCHTAK (1973)

Let Vi be defined by

s
2 1
V. = - -
T
EAdiEal

-

where Si is the sample covariance matrix based on n independent vector

observations from . Sﬁ;) and ng) are the appropriate submatrices of

the partitioned Si matrix

(1) (D)7
Syy Syz

R

where Sﬁ;), Sﬁ;), 5&;) and Sgl) are submatrices of dimension q, x q,,
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9, * 4w q; ¥4 and g, x g, respectively.

The rule R is to select the population which gives the smallest
V.. An asymptotic (n - =) lower bound on the probability of correct

selection is given by

2 &
Pl « 1090 -2, 5,
2(2q,)"
where U, , U3, S N Uk are standard normal variables with equal correl-

ation 1/2.
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CHAPTER 5

S. THE SUBSET SELECTION APPROACH TO RANKING AND SELECTION OF SEVERAL

MULTIVARIATE NORMAL POPULATIONS

As in the preceding chapter, various real valued functions have

been defined to select the populations.

These real valued functions are:

1) The Mahalanobis Distance

2) Generalized Variances

3) Multiple Correlation Coefficients

4) Measures of Association between Two Subclasses of

Variates.

9.1 SELECTION IN TERMS OF THE MAHALANOBIS DISTANCE

The selection of a subset of k Multivariate Normal Populations
that would include the population located farthest from the origin was

considered by Gupta (1966).

This distance, known as the Mahalanobis distance, is defined as

ui L; u; where y. is the mean vector and z; is the covariance matrix

of the i th population.

- ! -1 -
Let Yij o zdj ) Kﬁj‘ Here, all I, are assumed to be equal to
L, and ﬁij’ 121, 25 5oy ke 721 &y wenns A 18 2 vactor with p
n
components of observations on the i th population. Then Yi ) Yij
)

has a non-central chi squared distribution with np degrees of freedom
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and non centrality parameter k% =n 8; where 6, = E% Z'l u:. The non-
central chi squared probability density function and the cumulative

distribution function are given in Chapter 4.1.1.1.

5.1.1 RULES PROPOSED BY S. S. GUPTA (1966)

5.1.1.1 SELECTION OF A SUBSET CONTAINING THE POPULATION WITH THE LARGEST

Ly = B3 = susy = Zp ® & KNOWN

-1
Here B8: = u: z "l‘l-"i s

1 -1
UTRE TR T

-<
1]
ne-=—3
<

=1 W

The rule R1 is as follows:

Select m; if and only if Y1 3 G max(Yl, 4 2 Yk) where

55 5ee
0 < ¢c=c(k,n,p,P*) < 1 is determined to satisfy the P* condition,

Inf P(CS/R,) » P*.
4 1

Gupta (1966) showed that

Inf P(CS/R,) = Inf Im FETlx/e) £,4(x) dx
I
Q A'20 ‘o
where fl‘(x) and FK.(x) are the probability density function and the
cumulative distribution function respectively of a non central chi
squared distribution with np degrees of freedom, and non centrality

parameter A'. These have been defined in Chapter 4.1.1.1.

The right hand side of the integral is non decreasing in A'.

This has been shown by Gupta (1966) for k = 2 populations and Gupta and



Studden (1970) for k > 2 populations. The integral is monotonically
increasing in \' so the infimum take place when A' = 0. The property
of monotonicity is that the probability of selecting a population with
a larger value of A' is at Teast as large as the probability of select-
ing a population with a smaller value of A'. Therefore the problem
reduces to selecting the gamma population with the largest scale para-

meter. Thus the constant ¢ for this procedure is given by

k-1 ,x "
[ @ gm a-p

where gv(x) and Gv(x) are the probability density function and the cumul-
ative distribution function respectively of a standardized gamma variable

with v = np/2 degrees of freedom. These functions are given by

g (x) =™ ), x>0
X
6, (x) = L g, (t) dt

The values for c are tabulated by Gupta (1963) and Armitage and Krish-
naiah (1964).

5.1.1.2 SELECTION OF A SUBSET CONTAINING THE POPULATION WITH THE SMALLEST

Gyn By BB, F vins Ek = ¢ KNOWN
H - 1 -1
R T M
1 wk
Vi3 = %30 X
)
Y = ¥z s
1055 1

The rule R2 is as follows:
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Select m; if and only if Y. <b min(Yl, Yo wsawn Yk) where
b = b(k,n,p,P*) > 1 is determined to satisfy the P* condition

Inf P(CS/RZ) s P¥,
0

Gupta (1966) showed that

Inf P(CS/Ry) = Inf [ 1= F(u/m) KD £ (0 d
Q A'=20 ‘o

where fl.(x) and Fl.(x) are the probability density function and the
cumulative distribution function respectively of a non central chi
squared distribution with np degrees of freedom and non centrality

parameter A'. This has been defined in Chapter 4.1.1.1.

The right hand side of the integral is non decreasing in A'. The
integral is monotonically increasing in A' so the infimum takes place
when A' = 0. Therefore the problem reduces to selecting the gamma
population with the smallest scale parameter. Thus, the constant b

for this procedure is given by

[t a0t g 00 axs e

where G (x) is the cumulative distribution function of a standardized
gamma variable with np/2 degrees of freedom. This has been defined in
Chapter 5.1.1.1. The values for b are tabulated by Gupta and Sobel
(1962) and Armitage and Krishnaiah (1964).
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5.1.2 PROCEDURES STUDIED BY S. S. GUPTA AND W. J. STUDDEN (1970)

5.1.2.1 SELECTION OF A SUBSET CONTAINING THE POPULATION WITH THE LARGEST

855 Iy NOT NECESSARILY EQUAL BUT KNOWN
Here 8, = p. I-l
i Kidi K

_ gl -1
Zig = Xz L Xag

1] J
i
L. = Lisrea
17 42 71
The procedure R, is as follows:
Select m, if and only if c1Z; > max(Zl, N Zk), ¢, > 1 where

Cy is determined to satisfy the P* condition Inf P(CS/RI) > P*,
Q

Gupta and Studden showed that

Inf P(cS/R,) = [ FRSL (e ) f

(x) dx
Q o "P

np
where fnp(x) and an(x) are the probability density function and the
cumulative distribution function respectively of a central chi squared

distribution with np degrees of freedom. These functions are given by

& sl Ap-1 e
x =
np NP/2 1(no/2)
X
Fp(¥) = [ Fplt) ct

0

c, is chosen so that

k-1 =
Lj an (clx) fnp(x) dx = P*
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5.1.2.2 SELECTION OF A SUBSET CONTAINING THE POPULATION WITH THE SMALLEST

94> I; NOT NECESSARILY EQUAL BUT KNOWN

[] -1
Here : i Ve .
By = By 1y

1 caft
Zis = Xig 4 K

~
1
N~
I~

j=1 13

The procedure R2 is as follows:

Select I, if and only if Z; < b, min(Z;s «ovus Zk), b, > 1 where

b1 is determined to satisfy the P* condition Inf P(CS/RZ) > P*,
Q

Gupta and Studden (1970) showed that
Inf P(CS/R.) = fm (1-F (xb.)1%t £ (%) dx
s 2 . np '™ np

where fnp(x) and F_ (x) are the probability density function and the

p
cumulative distribution function respectively of a central chi squared
distribution with np degrees of freedom. These functions have been

given in Chapter 5.1.2.1. b1 is chosen so that

.L [1 - an(x/bl)]k'1 fnp(x) dx = p*

5.1.2.3 SELECTION OF A SUBSET CONTAINING THE POPULATION WITH THE LARGEST

85 I ARE DIFFERENT AND UNKNOWN

o =1
Heke o =& I K
_ n
% = E Xi5/0

j=1



R

S = .E (zhj - £1)(X1J - E&)'}n-l
J=1
21 ) E 5.1'1 Zi
The procedure R3 is as follows:
Select I if and only if CZ; 2 max(Zl, e Gari Zk), ¢, > 1 where

€y '™ cz(k,n,p,P*) is determined to satisfy the P* condition

Inf P(CS/Ra) = P*
Q

Gupta and Studden (1970) showed that

- pk-1
Igf P(CS/R,) -.L il p(c X) fp,n-p(x) dx

where fp,n-p(x) and Fp,n-p(x) are the probability density function and

the cumulative distribution function respectively of a central F

distribution with v, =P and Vg = DD degrees of freedom. These

functions are given by

r((v,+,)/2) v /2 (v,/2)-1 “vp+,)
fv; (x) = e [2) I‘(\) 77) ( ) X (1"'(\)1/\-’2))() s
for x > 0
X
Foo, (0 j RORT
1 0 22

c2 is chosen so that

Jm D fi- p(c x) f (x) dx = P*

The values of 1/c, have been tabulated by Gupta and Panchapakesan (1969).
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5.1.2.4 SELECTION OF A SUBSET CONTAINING THE POPULATION WITH THE SMALLEST

85, I; ARE DIFFERENT AND UNKNOWN

Here 0: = u. )

i B4 &
Y-
X. = s/
n —
;= 1 (% Xk - %) 'In-t
j=1
.7 ool
Z1 N éi Si £1

The procedure R, is as follows:

Select I if and only if Zi < b2 M2 o cwway Zk)’ b. > 1 where

1e 2

b, is determined to satisfy the P* condition Inf P(CS/RH) > P*,
Q

Gupta and Studden (1970) showed that

N k-1
Inf P(CS/R,) L (1= Fy o)1 f(x) dx

where f (x) and F (x) are the probability density function and

p,n-p p.n-p
the cumulative distribution function respectively of a central F
distribution with V=@ and vy = =p degrees of freedom. These funct-

ions have been given in Chapter 5.1.2.3. b, is chosen so that

_ k=1 —
Lj [1 Fp,n-p(x/bz)] fp,n-p(x) dx = P
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5.1.3 PROCEDURE CONSIDERED BY K. ALAM AND M. H. RIZVI (1966)

5.1.3.1 SELECTION OF A SUBSET CONTAINING THE POPULATION WITH THE LARGEST

85, I; NOT NECESSARILY EQUAL BUT KNOWN

b o1
Here 05 = Wi Lli M
% - )
X, = X 2D
A 351 ~
. = -1 —
Ti = Xidi %

The procedure R is as follows:

Select m; if and only if T, > c, max(Tl, el Tk) where

0 < c, < 1. The smallest value of c, required to satisfy the P* con-

dition Inf P(CS/R) = P* 1is determined by the equation
Q

~ kel -
JO Fp (cax) fp(x)dx = p*

where fp(x) and F_(x) are the probability density function and the cum-

P
ulative distribution function respectively of a central chi squared
distribution with p degrees of freedom. These functions have been

defined in Chapter 5.1.2.1.

Gupta and Panchapakesan (1979) state that this procedure is

unsatisfactory as the constant Cy does not depend on n.
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5.1.4 UNSOLVED PROCEDURES

5.1.4.1 SELECTION OF A SUBSET CONTAINING THE POPULATION WITH THE LARGEST

61, Zl = 22 = = Zk = I KNOWN
H i =1
B 9 = X ) ~i
_ T ep=l =
Ui =2 ) %
The procedure R is as follows:
Select m; if and only if U; » max(Ul, S Uk) - d where d is
determined to satisfy the P* condition Inf P(CS/R) > P*
f
k-1

(x+d) fh,(x) dx

Inf P(CS/R) = Inf fm Fk'
0

Q A'20
where fA.(x) and Fk.(x) are the probability density function and the
cumulative distribution function respectively of a non central chi
squared distribution with np degrees of freedom and non centrality
parameter A'. These functions are defined in Chapter 4.1.1.1. d is

chosen so that

Inf [ F§71 (xtd) f,.(x) dx = p*
A'20 ‘o

Since the monotone behaviour of the integral involving d is not

known procedures of the above type when By = & known or L not equal

but known have not been determined explicitly.

Another unsolved problem is the case of L, = 22 B asee T B =1

unknown, and a pooled estimate is used for Z.
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B2 SELECTION IN TERMS OF THE GENERALIZED VARIANCES

The Covariance Matrix is regarded as the natural measure of dis-
persion for a multivariate normal distribution. However, a univariate
measure of dispersion need be defined for the purpose of selection.
Various measures of dispersion have been considered in the statistical
literature, but none of these is uniformly best in the sense of being
a robust estimator of the dispersion. A frequently used measure of

dispersion is the generalized variance.

In this section, selection in terms of the univariate measure
By = |Zi| the generalized variance associated with the population I,

is discussed.

5.2.1 RULE PROPOSED BY M. GNANADESIKAN AND S. S. GUPTA (1970)

5.2.1.1 SELECTION OF A SUBSET CONTAINING THE POPULATION WITH THE SMALLEST

lzi] BASED ON THE SAMPLE COVARIANCE MATRICES Si’

Assume zi and Ki are unknown. The rule R is as follows:

: : 1 [
Select m; if and only if [S;| < g min(|S [, [S,|, «.cvs [Sy])
where 0 < b = b(k,p,n,P*) < 1 is the largest value to satisfy the P*

condition Inf P(CS/R) > P*. The |S.| is distributed as |z.]/ (n-1)P
9]

times the product of p independent chi squared factors with (n-1), (n-2),

.5 (n-p) degrees of freedom.

Using this fact

Inf P(CS/R) = P(Y, s £ Y.), 1 =2, 3, cuuuy K,
Q
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where Yl, Yoo cones Yk are independent identicaily distributed random

variables each being the product of p independent factors where the r th

factor is distributed as a chi squared with (n-r) degrees of freedom.

The constant b is the 100(1-P*) percentage point of

hy
Y' = min {V_}
2<ick ‘Y1
The exact distribution of Yi is not known, except when p = 2. In this

case

Inf P(CS/R) = P(z1 $ 7%‘21)= i=2,3, coees K
Q

1z
where 7., Z,, ...., 7} = Z(n-l)%p(|si| / |21[)2are independent identic-
ally distributed chi squared random variables with 2(n-2) degrees of

freedom.

Here, vb is the 100(1-P*) percentage point of

b can be obtained from the tables of Gupta and Sobel (1962) and
Krishnaiah and Armitage (1964).

5.2.1.2 APPROXIMATIONS TO THE DISTRIBUTION OF Yi WHEN p > 2

Gnanadesikan and Gupta (1970) have considered the relative merits

of different approximations to Yi = Uil' UiZ & i R A U1-p where Uid is

independent and has a chi squared distribution with (n-d) degrees of

freedom.
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CASE 1
This was suggested by Hoel (1937).

Approximating the distribution of Y%/p by the gamma distribution

with density function

J(n-p) | Dap(n-p)-11 -2x
r(4p(n-p))

g(x) =

_ (p-1) (p-2)\*/P
% _1;_(1_}_%%_%

The approximation of Y}/p decreases in accuracy as p increases.

CASE 2

(Tog Yi)/p using the normal approximation of log x*> as suggested

by Bartlett and Kendall (1946).

1) Here the approximation of the distribution of log x> by the
normal distribution improves with the degrees of freedom of

the chi squared variable.

2) The normal approximation to the distribution of the Tog
(generalized variance) improves with both p and n. Approxim-
ating the distribution of (1/p) log Y; by the normal

distribution gives

k-1
Inf P(CS/R) = % (x-b_) de(x)
" [ b antx

where ¢(x) is the standard normal cumulative distribution

function and is defined in Chapter 4.2.1.1, and
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1

I 5 1%
b, = Tog b / 1d%1 Var(log Xn-d)}
where, for large n, Var(log xﬁ) = 2/(n-1).

The values of b, have been tabulated by Gupta (1963) and
Gupta, Nagel and Panchapakesan (1973) for various values of

k and P*., Therefore, the value of b can be easily calculated.

5.2.2 ALTERNATIVES TO PROCEDURE R PROPOSED BY M. H. REGIER (1976)

5.2.2.1 PROCEDURE BASED ON THE GEOMETRIC MEAN

The procedure R1 is as follows:

( k \l{k
Select m; if and only if [S.| < a{ m |S;] , where'a'is
i i \i=1 14

determined subject to the P* condition Inf P(CS/R;) > P*.
Q

The approximate value of 'a' is based on the normal approximation
to Tog X2, given by Bartlett and Kendall (1946). The probability con-

dition is approximately satisfied if

k-1\% [ F »
log a = Zps (—E—) : (dzl Var(log xﬁ_d)) - H

Here ¢(ZP*) = P*, where &(x) denotes the standard normal distribution
function and is defined in Chapter 4.2.1.1, and H > 0 is a known lower

bound for

1 k |z

log T
k% 4o TPy

where |E|[1] £ woans 8 lzl[k]' If no information is available on
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) 109(}21| / IE|[1]) then H assumes its lowest possible value, namely
i=1 :

Zero.

P e
Values for ( ) Var{log xﬁ_d)) are specified in Regier (1976).
d=1

5.2.2.2 PROCEDURE BASED ON THE ARITHMETIC MEAN

The procedure R2 is as follows:
k

Select m; if and only if [S:| <b } [Si| / k where b > 0 is
i=1

determined subject to the P* condition Inf P(CS/RZ) 5 P,
Q2

The asymptotic distribution of the sample variance is used for
determining b. Clearly, b must be less than k; otherwise the selected

subset would include all k populations.

For n sufficiently large, this condition is approximately satis-

fied by b = k/(1 + B), where B is a solution of the equation

((n-1)/2p)% (M-B) / (IM-(k-2)1% + (k-2) + B%)% = Z,,

Here, @(ZP*) = P*, where ¢(x) is the standard normal cumulative distrib-
ution function and is defined in Chapter 4.2.1.1, and M 3 k-1 is a

lower bound for

k

\
DA CHRALTEY
i#[1]
If no information is available on ) (]z.[ /lzl[ll) , then M assumes
i=1 L
i#(1]

the lowest possible value k-1. In this case
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B = [(k-1) - ((k-1)(k-X)X)Z1/(1-X)

where X = (ZpZE*)/(n-l).

5.2.3 A COMPARISON OF THE THREE PROCEDURES R, R, AND R,

1)

5)

A1l three procedures share the monotone property, i.e.
P(Hi included in the selected subset) decreases as

Izi| / Izl[l] increases.

For all three procedures

E(size of subset) < k P(m included)

[1]

In all three procedures an exact evaluation of the P(CS)
depends on the knowledge of the ratios lzi| / |Ei[1],
1% 1 &5 waves K

However, R depends on the values of |Ei| / Izl[l]

=~

R, depends on the igl ]Zi‘ / |z]I1]

-~

R, depends on the izl |21| / |2|[1].

The three procedures differ in the extent to which they re-
quire special tables for the evaluation of the constants
needed. R and R1 require special tables, whereas for R2 no
special tables are necessary. However, if the approximation
Var(log xﬁ) = 2/(n-1) is used (for n = 10), the need for

special tables is eliminated for Rl.

When comparing the performance of the three procedures when

applied to the same data, it can be seen that all three
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procedures behave in a similar manner, however, R2 consist-
ently appears to be more conservative than the other two.
When known lower bounds on H and M are used, both R1 and R2

result in a smaller expected subset size.

953 SELECTION IN TERMS OF THE MULTIPLE CORRELATION COEFFICIENTS

In some situations, it may be interesting to compare populations
in terms of the association between a particular component and the rest.

A measure of this association in the population I is

The squared multiple correlation coefficient between xil and

Xjps cvenss xip} is defined in Chapter 4.3 by
) =1- |z1|
Piel, 2, cones P i Iz |
11 i(11)

The random vector X. has a multivariate normal distribution Np(hi’ Zi)

(
1

¥ and 21(11) is the matrix obtained from L by deleting the first row

where K and L; are unknown. Here ¢ 1) is the Teading element of
and the first column. The multiple correlation coefficient
. s 2 {

Piil, 2, cuuuy P is the positive square root of 0521, 2, veees D and is
the maximum of the correlation between )(1.1 and a linear combination of
X12’ o Xip over all possible Tinear combinations and as such, is a
measure of the dependence of Xil on X12* SR xip'
Gupta and Panchapakesan (1969) investigated procedures for

selecting a subset containing the population associated with

911~ Prig O Upay * Py
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Let Ri - Ri'l 2 o* The sample squared muitiple correl-
ation coefficient between Xj1 and Xins evnnsy Xip’ is defined as
2 _ isil
R: = 1 - —=
1 5(1_) |S |
11 i(11)

where S, is the sample covariance matrix, 551) the leading element of

Si’ and 51(11) the matrix obtained from Si by deleting the first row

and the first column. Two cases arise,

1) The case in which X12’ ee..s X;_ are fixed, called the

1p
condi tional case.

2) The case in which X12’ T Xip are random, called the
unconditional case.

5.3.1 PROCEDURES INVESTIGATED BY S. S. GUPTA AND S. PANCHAPAKESAN (1969)

5.3.1.1 SELECTION OF &p,q = oy

The procedure D1 is as follows:

Select Iy if and only if th 3 C max(RTz, R;z, o s REZ) where
R:z - Rﬁ / (1-R;) and 0 < c < 1and is determined to satisfy the P*

condition Inf P(CSKDl) x> P*., The density of R?Z can be written as
&

= T(q+m+j) Ad

0= LT (0T fageg) ont

- unconditional case

73 fa(q+i) ,2mt¥)

- conditional case
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2

where A; =e5s QF (p-1)/2, m = (n-p)/2 and fr S(x) is the probabil-
ity density function of a central F distribution with r and s degrees of
freedom. This is given in Chapter 5.1.2.3. The distribution of R?z is

stochastically increasing in A. Hence

Inf P(CS/D,) = Ian Kt (w/c) uy(x) dx
Q 220 ‘o
where Uk(x) is the cumulative distribution function corresponding to

ul(x).

Gupta and Panchapakesan (1969) have shown that the integral is
non decreasing in A in both the unconditional and conditional cases and

therefore the constant c is obtained in both cases from

o0

k-1 _
L b Dol A, o R =

3

where f2q,2m(x) and F2q,2m(x) are the probability density function and
the cumulative distribution function of a central F variable with

(2g,2m) degrees of freedom. These functions are given in Chapter

5.1:2:3.

The values of ¢ which are the same in both cases are given in

Gupta and Panchapakesan (1969).

5.3.1.2 SELECTION OF ®r11 = °r11

The procedure D, is as follows:

2
Select m; if and only if R?z < %—min(RT $ R;z, s R:z) where

0 <b =b(k,n,p,P*) < 1 and is determined to satisfy the P* condition
Inf P(CS/Dz) 3 P*,
Q
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In an analogous manner to procedure D, it follows for both the

conditional and unconditional cases

Inf P(CS/D,) = | [1-F k-1

bx) ]
5 -,o (bx)

2q,2m qu,Zm(x)dx L

Since 1 - qu,Zm(bx) = Fzm,Zq(lfbx) the constants b can be obtained from

constants c by interchanging q and m.

5.4 SELECTION IN TERMS OF MEASURES OF ASSOCIATION BETWEEN TWO SUB-

CLASSES OF VARIATES

When comparing k, p variate normal distributions the p variates
can be considered to be made up of two subsets of g, and g, (q1 + ifj, p)
variates. The populations can be selected according to a suitable
measure of association between the two sets of variates in these popul-
ations. There are various possible measures considered, but in this
case, the two measures considered by Gupta and Panchapakesan (1969) and

Frischtak (1973) are presented.

Let X, = (id’ Zd)' be a (gq; + g,) dimensional random vector with

covariance matrix

. &
21 =
I

where Z(T), Z i E(}) and ig;) are submatrices of dimension q, x q,,

9, X G, 9, x q; and g, x g, respectively. Assume q, £4,.



Let m, (i=1,2, ...., k) be a p variate normal distribution

with mean vector p. and covariance matrix DR The p variates are

i~
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partitioned into two sets of q, and g, components. Let the correspond-

ing sample covariance matrix Si based on n independent vector observ-

ations from Hi be denoted as

i glil ]
Yy

5(1) 52;)

(i) (i) (i) (i) : : : X
where Syy : yz : Szy and SZz are submatrices of dimension q, x4,

q, x 4,5 9, x g, and q, x g, respectively.

Selection in terms of the Conditional Generalized Variance of

51’ given ii’ is defined by

< el ) o (1)) = 5(3) _ (i) ¢(i)-1 (i)
o= ) = 50 7 150 = 1269 - 26 £ P

and has been considered by Gupta and Panchapakesan (1969).

Selection in terms of the Coefficient of Alienation between ii

and Zﬁ is defined by 8 where

. B 151

%7 Z“’l ) PR

..127

and has been considered by Frischtak (1973).
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5.4.1 PROCEDURE CONSIDERED BY S. S. GUPTA AND S. PANCHAPAKESAN (1969)

Let o, = |Zi| J |E§;)I, the conditional generalized variance of
gi given Id' The procedure here selects the subset containing the

population with the smallest 8 Define
5 (i)
Vg = I8yl 7 Isyy|

The procedure R1 is as follows:

Select T, if and only if V. < % min(V,, V

0<b= b(k,P*;n,ql,qz) < 1 is determined to satisfy the P* condition

g3 seens Vk) where

Inf P(CS/RI) > P*.
Q

Gupta and Panchapakesan (1969) showed that

Inf P(CS/R,) = J(W (1 - 6(bx)1¥° ! g(x) dx
Q2 0

where g(x) and G(x) are the probability density function and the cumul-

ative distribution function of a random variable that is distributed as

the product of q, independent chi squared variables with degrees of

freedom (n-ql-l), (n—ql-Z), s (n-ql-qz) respectively. The problem

of evaluating b is similar to that encountered in Chapter 5.2.1 when

evaluating b.

5.4.2 PROCEDURE CONSIDERED BY R. M. FRISCHTAK (1973)

) 11,

Let 8: = - -
o ST

where 8. is the coefficient of alienation, between Y. and Z;. The
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procedure here selects the subset containing the population with the
smallest 81. Define
5 s,

Y. = - .
(77 15(1)
b e

The procedure R, is as follows:

. e D o gl 2
Select m; if and only if Vi < %—m1n(vl, (R Vk) where

0 <b = b(k,P*,n,ql,qz) < 1 is determined to satisfy the P* condition

Inf P(CS/Rz) > P*,
9]

Frischtak has obtained an asymptotic (n -» =) solution and the

vaiue of b is given by

P{U1. gSUEL R 4 518y sven k-l} = px
2(2q,)*

where the Ui are standard normal variables with equal correlation

coefficient L.

Also note that for q, = 1, o> is equal to (1 - p?%) where p is

.i

the multiple correlation coefficient between y and (21’ Zys weees Zg )
2
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CHAPTER 6

6. THE MULTIVARIATE SOLUTION TO THE MULTIVARIATE RANKING AND

SELECTION PROBLEM

In this chapter the new formulation by Dudewicz and Taneja (1981)
that selects the best multivariate population without reducing populat-
ions to univariate quantities is described. The solution developed for
both the known and the unknown variance-covariance matrices are consid-

ered.

This multivariate solution to the multivariate ranking and
selection problem allows for such occurrences as Hl>' n2 > I, ~ T,
where > means "is preferred to". This would be an anomaly in previous
chapters, however, it is expected in truly multivariate problems. They
are problems in which one cannot associate a univariate measure of
goodness or number 0; = ¢(£i’ 21) with a given population but must

rather compare different (ﬂi’ £.) pairs themselves, in order to deter-

.i
mine which is preferred.
This method is also applicable to situations where each populat-

ion I has associated with it a numerical measure of goodness

U, = u(ps:), 1 ¢ i < k such that Ty is preferred to 1 if and only if

In this situation, not only linear functions but also quadratic,
polynomial, exponential and power series or even Fourier series functions

are allowed.



In the new theory 9(31’ Bys oo

ied function with range space {1, 2, ...., k} such that
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"5 lﬁk) is an experimenter specif-

9(31’ Bos coens Rk) =t if and only if given a choice of flyn By omen
Bt is preferred.
6.1 THE MULTIVARIATE PREFERENCE SELECTION PROCEDURE - Rmvp

A random sample is taken from each of the populations
T, Mys wvees Moo Mg is estimated by the sample mean vector
Xi(i =1, cooop k) and T ;v  « -\ selected.
4 o(Fs Da sonen B

Let z = (N Koy, s vy X). The following cases are considered
in selecting I, where t = 9(ﬁ1’ Bys veves Ek)'

8 5= vese = By = 021 with ¢2 known

b) I % eeee =5 =1 with £ known

c) Lo eeees Iy are known but unequal

d) }:1, veees I)oare unknown and not necessarily equal
6.1.1 SELECTING THE BEST WHEN By = By, ® 21 WITH o2 KNOWN

Let 1, be Np(iii’ 2:1.) for i=1,2, ...., k. Assume p > 1 and
By % owsin B ) = 02I. I = pxp identity matrix and o2 is known.
9(31’ T Hk) is an experimenter specified function with range space
{1, 2y voney KFe 9(24’ N Ek) = t denotes that among u,, .y

Kt is preferred.

The Selection Procedure Rmvp

(621) is as follows: Observe n

independent observations from Mis wenes Mo Estimate i by the sample

Xk

Xk

]

3



mean vector Xi EEE

< k). Select Hg(zl

,(;q

Choice of n

If the true means u

= (31’ PR Hk) are such that g(%) =t
while g(g + é) =m(m# t) for a matrix g of small numbers then
P(CS/RmVp(GZI)) will not be much larger than 1/k.

Therefore a method is required on how to specify the sample

size n per population so that for a reasonable preference zone 2_ and

p
for a fixed P* (1/k < P* < 1) and §* > 0 the procedure Rmvp(czl) satis-
fies Inf P(CS/Rm

2
! Vp(c I)) 3 P*, Let
p
Pt = {p: g(ﬁ) 2 g}, t= 1lg.2Z o K
Notes P.u wxevn Pk are disjoint preference sets whose union is R P
The Euclidean distance
kp L
d(gs ?_‘) = (hz']_ (ah - bh)z)

defines the distance between any two points a and b of Rkp. The dist-

ance from u to the boundary of Pg(u) is denoted by

dB(&) = Inf{d(%, g) = %6 Pg(l{)}.

i~

z 6%,

o

The probability requirement for any procedure R is set as P(CS/R)
whenever dB(ﬁ)

s P¥,
Whenever dB(

u) > 8* we have,
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where Y has a central chi squared distribution with kp degrees of free-
dom. The probability density function and the cumulative distribution
function of a central chi squared variable are defined in Chapter

Sadideds

Therefore, the selection procedure Rmvp(czl) satisfies the

probability requirement if the sample size n per population satisfies

n 3 Xip (P*)o2/(5%)%,

where xip (P*) is the value a central chi squared random variable with

kp degrees of freedom fails to exceed with probability P*.

Choice of P*

The choice of P* is similar to the choice of power in tests of
hypotheses. Normally, P* = 0.95 or a similar high value.
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Choice of &*

For any two possible u's, say a and b, which satisfies
2 ~ =]

MaX(Ulcs Uzc, P eae gy ukc) = Min(ulc’ Uzcg sy ].lkc) k4 ﬁc

where 8. 1s the minimum range between the largest of Hics Hogs +oees Hpg

and the smallest of Hics Hoes »vovs Mg which the experimenter wishes to
detect. Hence the choice of &6* could be

g* = Min(al, Bs5 wessa ap)/z

6.1.2 SELECTING THE BEST WHEN z, Zy = I, T KNCWN

Let m; be Np(ﬁi’ Ei) for i

Il
—
-
~a
-

..s k. Assume p > 1 and
L, =L, ®uvis S % Is is the common pxp variance-covariance
matrix. It is assumed to be positive definite and known. Let

X, £ X, £ oowe £ Ap denote the characteristic roots of Z.

9(31’ " Ek) is an experimenter specified function with range
space) {15 2y wuwiey Kb Gliis s wos Ek) = t denotes that among

» Iy Bt is preferred.

);l‘].g }‘{‘2’ CRCE

The selection procedure Rmvp(z) is as follows: Observe n
independent observations from Mo eeens Mo Estimate'gi by the sample

mean vector X. (1 <1 < k). Select ﬂg(z;, X5 s Bgd
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Choice of n

To find the n the common sample size per population such that
the probability requirement P(CS/R) 3z P* whenever dB(ﬁ) > 8%, where

dB(%) = Inf{d(%, g) s g € Pg(h)} the following procedure is used.

~

The result by Rao (1965) is used as explained below.

Let A be any symmetric pxp matrix. Let Yy €Yy € voes § yp be

the characteristic roots of A. Let X be any pxl vector. Then

vy KK € XA < v XX

Choose A = ]~ so that v, is the smallest characteristic root of e

jo@ 1/% Then, whenever dB(é) > 8%

o
PCS/Ryyp(2)) = P(X € Pg(g))
k
> |. Ve oa 2 < # 2-1
> PlLL cil (R - wie)? < (607
K
) P-izl (X = )" (% - ) (6*)2]
- ¢ K 1l /v V(Y n ( *)2
PR NN EIREEJCS |
K - Cyl oy N (542
LD ED R ARS8 ]

PLY < n(a*)z/hp]

where Y has a central chi-squared distribution with kp degrees of free-
dom. The probability density function and the cumulative distribution

function of a central chi-squared variable are defined in Chapter 5.1.2.1.
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Therefore the selection procedure Rmvp(z) satisfies the probab-

ility requirement if the sample size n per population is such that,
2 2
N2 X (P*)Apf(ﬁ*) ;

where xip (P*) is the value a central chi-squared random variable with
kp degrees of freedom fails to exceed with probability P* and xp is the
largest characteristic root of L.

6.1.3 SELECTING THE BEST WHEN Lis weevns Iy KNOWN

Let 1, be Np(Hi’ zi) fori=1,2, ...., k. Assume p > 1 and
El, seeny Ly are known and they are pxp positive definite matrices.
g(hl, S 8 Ek) is an experimenter specified function with range space
{1y 25 cosss Kl g(gl, ceses ) = t denotes among .5 «v.es Ky
Mt is preferred.

The selection procedure Rmvp(zl’ —— Ek) is as follows:

Observe n; independent observations from I; (1 <1 <k). Estimate B

by the sample mean vector 11 (1 <1 <k). Select Hg(Eg’ Zﬁ* s EL)'

Choice of Nis weees nk

To find the sample sizes n -5 Ny from the k populations such

TR
that the probability requirement P(CS/R) = P* whenever dB(E) > 6% is

satisfied, where dB(ég = Inf{d(é, b) : g € Pg(k)} the following method

i~
~

is used.

Let Aip denote the largest characteristic root of Lj» 1.e.
1/

developed previously, it then follows that whenever dB( ) = &* we have

)

Aip is the smallest characteristic root of Z;l. Using the results
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(letting e = Min(nl, N nk) and k[k}p = Max(xlp, ceens Akp))
P(CS/RmVp(zl, R, Ek))
> P E (X = a:)" (X ) & (5*)2]
S PSR 2 i~ Ef! S |
K n
1 < 1 [1] 2
s ?] ¥ ong 2%, - I - ) % (5%)
Li=1 i Aip ~ A N A A[k]p
k n
T 7 i T 1] 2
aPrzn(X-u-)El( - g bl 5w
k
= i- * - ]
PLizl Yieny () A
where Y1’ k6 Yk are independent central chi-squared random variables

with p degrees of freedom. The probability density function and the
cumulative distribution function of a central chi-squared variable are

defined in Chapter 5.1.2.1.

Therefore, the selection procedure R

mvp(zl’ T zk) satisfies

the probability requirement if the sample sizes n .» N are such

T
that

2 2
n[1] b ka (P*)A[k]p/(ﬁ*) s

where Xip (P*) is the value a central chi-squared random variable with

kp degrees of freedom fails to exceed with probability P*.

i1 Min(nl, R nk)

A[k]p = largest of the characteristic roots of Lo evevs Iy

In design problems, one would normally take
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=
"
=
"
i

. 5 ®awen B, B smallest integer > X k (P* )A[k] /(8 )

However, if unequal sample sizes N0

Nys eeens Ny have already been

taken, the smallest &* for which the probability requirement is satis-

fied can be calculated by

vy (Mo P pepye
mg

6.1.4 SELECTING THE BEST WHEN =, ...., Ly UNKNONN, UNEQUAL

Let 1, be Np(kh’ £;) fori=1,2,...., k. Assume p > 1 and

z » Iy are unknown and they are pxp positive definite matrices.

2 e
g(ﬁl, «++ws 1) is an experimenter specified function with range space
Tls 2y e seovin: K g(Eq’ - Ek) = t denotes among u , ...., u»
i is preferred.

No single stage procedure R for this problem can satisfy the

probability requirement P(CS/R) > P* whenever dB( ) 3 8*. The Hetero-

&

scedastic Method by Dudewicz and Bishop (1979) is used to modify the

procedure R__ _(z) of the case described in Chapter 6.1.2 into a pro-

mvp
cedure RHM to solve this problem. The procedure RHM is specified by

a sampling rule and a terminal decision rule.

Sampling Rule for RHM

Select z > 0 and an integer n > p and a pxp positive definite

matrix (a.). Take observations from populations I, G =1, 2 venuwy &)

rs
as follows:

Take n initial observations £§1), W B zéi) where
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Compute

Define the positive integer N; by

p "
_ 3 ] (1) 1
N Max{" TP [z c,§=1 %ed Sed } il

where [q] denotes the largest integer less than g, and select p(pri)

matrices

a i a.
ir 1rlNi
Air N
a. a.
ir ir
Pl i | r=1,2,....0p
in such a way that
a) Qi = e = Ay,
cl cn
b) Air ng = & where nj is the Nixl vector (1 .... 1)' and p

is the px1l vector whose r th element is 1 and all the other

elements zero.

1p)'
® denotes the direct product and (de) denotes the inverse

b g rs cd © = fnd '
C) A.iA,i - Z(u ) ®S.i 3 Whel"e A.i - (A.il, A,izg EEEE A

of the matrix (bcd), ¥, &5 3y By wonny B
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Next, take N. - n additional observations X(i), R X(i) and compute
i ~+1 "Ni
Ni
%}("1) = E z a‘i]" x(1')’ o Iy 23 s P
c=1§=1 '"¢j W

- (39

l 3 ey

1><|>

i

Terminal Decision Rule for RHM

The same decision as Rmvp(z) is taken when a sample size n per

population was taken and had Z/n = z(«") and observed

i.e. select 1

Selection procedure R,y satisfies the probability requirement

P(CS/R) = P* whenever dB(ﬁ) > 6*. 2z > 0 1is chosen so that

K A A
z (z.. S U)'(-& - H"i) < (5*)2] & Px

This is very complicated. Therefore, for large n, an approximate solut-
ion is given.
As n » » the z > 0 which solves the above, approaches a solution

A A A
when (Z&, Eé, ivos s Ko ) 18 replaced by (Yys veeny Yy ) where Y, coons Yy

are independent random variables and Iﬁ = Np(Ej’ zp(ars)). The probab-
ility density function of a p variate normal population is defined in

Chapter 3.1.
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CHAPTER 7

s THE COMPLETE RANKING OF MULTIVARIATE POPULATIONS

In this chapter an application pertaining to New Zealand's over-
seas trade is used to describe the Multivariate Ranking of populations
according to a Tlinear combination of their means. The préperties of
the Multivariate Normal Distribution and the theoretical aspects of the

procedures related to the Ranking of Populations are discussed at first.

7.1 THE PROPERTIES OF THE MULTIVARIATE NORMAL DISTRIBUTION

When Xl, X ...y X follow a p variate normal distribution with

Dt p

mean

and variance-covariance matrix

>4 1P S1p
S =

| °p1 >op

where

n — —

'21 (Xej = X)(Kg5 = Ry
S = J
cd
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the linear combination or weighted score,

L= by + b,% + coen + B X

where b1’ b o3 bp are real constants, has a univariate normal

T
distribution with mean 8 given by,

g = blpl + bzuz PO bpup

and variance Var(L) given by,

P P
Var(L) = 7 J b. b, .
=141 ¢ 4 cd

For k different multivariate populations the i th population has mean
vector

(1) (1) (1),

U—‘(Lll s]—lz 3 sese sy H

. . . : i . -1
variance-covariance matrix I, with elements cgé) and the inverse Zi

with elements c?d fori=1,2, ...., k. 1i.e. u£1) is the mean of the
¢ th component of the i th population. cgé) is the covariance between

the ¢ th and the d th component for the i th population.

A random sample of n observations from each of the k multi-
variate populations will be nk, p tuples of measurements. Let XE})
denote the j th measurement on the ¢ th component of the i th populat-
ion. Then the data consists of kpn measurements. i.e. n observations

from k populations with p measurements in each observation.
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7.1.1 PRESENTATION OF SAMPLE DATA CONSISTING OF n OBSERVATIONS FOR EACH

OF THE k POPULATIONS HAVING p COMPONENTS

population i 1 2 K
component c of
the p variables 1, e, > P Ly 2 s P
ion =1 |x(1)  y(1) y(1) (k) y(k) y(K)
observation j=1 11 ‘ le g pl X11 - 21 I - pl
j=2
ien |y(1) (1) y(Kk) (k)
j=n (X375 s X Xin' » e X
sample mean of Y(l) Y{l) Y(k) Y(k)
component ¢ 1 @ Tt : 2 e > 7p

For each of the i = 1, 2, ...., k populations an estimate of the

mean 8, is given by the linear combination f}, where

L. = b,Y(l” - szgi) + ... bp-é ) .

These average scores for each population can then be ordered as

L{1] < L[2] & e L[k]'

Since'Yii) forc=1,2, ...., p follow the multivariate normal

distribution,.E} has a univariate normal distribution with mean 0 and

variance

Var(L.)

1 R (1)
% b_ b
" czl dgl d °

Var(Li)/n
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The cﬁé) in

Var(T,) = + E E b b, oti)
i N S145; ¢ ¢ cd

are replaced by séé) to calculate the estimate of Var(Li). If the
population variance-covariance matrices Zis 1 =315 25 ssnes k are
unknown but assumed to have a common value I then this common value
g;).in the
equation for Var(f}) is replaced by the corresponding entry in S for

is estimated by S, where S = (S1 +S5, ¥ oaen * Sk)/k and o

1ot THE COMPLETE RANKING OF k POPULATION MEANS

Although the problem is mentioned in Bechhofer (1954), consider-
able progress in this field was made after Carroll and Gupta (1977)
published a paper on the problem of completely ordering (ranking)

k (= 3) populations according to their means.

Two procedures that can be used to completely order k univariate

population means when

a) the common variance is known

b) the common variance is unknown

are given below.

7.2.1 RANKING OF k NORMAL POPULATIONS ACCORDING TO THEIR MEANS WHEN THE

COMMON VARIANCE IS KNOWN

The k normal populations with common known variance o2 are

N(Uls 0-2), N(Uzs 02)9 seway N(uka 02)-



The ordered u are denoted by

<

Pr1] & Mgy & oo € Rppye

As a first step towards ranking the means a "distance" measure must be
defined. The distance between each of the successive pairs of ordered

pu values are

) T Mk] T M[k-1]

5 Hk-11 = *[k-21

Sk=-1 T ¥[21 = ¥r13

The problem is to construct a procedure for ranking the populat-
ions such that the probability of a completely correct ranking is at
least some specified value P* whenever each of the distances 8 is
greater than a common threshold value s*. 1i.e.

8. 2 6%, &

i > 8%, ....,Sk_laé*.

2

The ranking procedure is then to take a sample of n observations from

each of the k populations, compute the k sample means and order them as

X[l] < X[Z] S asnee S X[k] )
where Ykk] is the largest sample mean.
When designing a fixed sample size experiment to rank the k

populations é* and P* will have to be specified in order to determine

the common sample size n. The table given (T 7.1) lists values
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t = &% /n/o that satisfies the probability requirement corresponding to
a given k and P* and is taken from Gibbons, Olkin and Sobel (1977).

Therefore,

7.2.2 TWO STAGE PROCEDURE TO RANK k NORMAL POPULATION MEANS WHEN THE

COMMON VARIANCE IS UNKNOWN

In the first stage, a sample of n observations is taken from each

of the k populations and the k sample variances s?, si, e SE are

calculated. The pooled sample variance is given by

2 B 2
2 (n-l)s1 + (n-l)s2 + nrne F (n«l)sI<

k(n-1)
The degree of freedom for s is v = k(n-1).

In the second stage, a second sample of size N-n is taken from

each of the k populations. The value of N is obtained from

2,2+
N = Max(n, {gg—D—} )
§*2

where {a}" means smallest integer equal to or greater than a. &* is

the threshold value such that

= &%

Mkl T Mk-11 T

s &%

M[k-1] ~ M[k-2] T %2

> 8%

¥r21 ™ g ™ kel ®
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The probability of a completely correct ranking is to be at Teast P*
whenever the above (k-1) inequalities between successive means hold

jointly.

The value of h is obtained from the Table T 7.2 which is taken

from Freeman, Kuzmack and Maurice (1967).

The next step is to compute the k sample means using the entire

sample of N observations and order them as

Xr11 € Xpag 8 =+o+ ¢ Xpege

Y}k] is the largest sample mean.

With this procedure the probability of a correct ranking is
guaranteed to be at least P* whenever MEi+1] T 9] 2 % A= 1585 s

k-1 regardless of the true value of the unknown c2.

13 RANKING OF COUNTRIES ON THEIR TRADE PERFORMANCE WITH NEW ZEALAND

- AN APPLICATION

In the example considered here, an attempt is made to rank sev-
eral countries on their importance to New Zealand's trade using as
variates, the percentages of New Zealand's seven major products exported

to the respective countries.

Let the k populations under consideration be k countries, trading
in the same products in similar proportions. Let n be the number of
years for which the data is obtainable (in this case 6, 1976 to 1981),
and let the p variates be the percentages of major items of New Zealand

produce exported to the countries under consideration. These items are:
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1) Beef and Veal

2) Lamb

3) Mutton
4) Cheese
5) Butter

6) Condensed, Evaporated and Dried Milk
7) Wool.

Therefore, p = 7 and n = 6.

In the calculations, instead of the actual figures, percentages
of the items are used, as it makes more sense from an economic point
of view. For example, it is more meaningful to say that in 1980 Japan
imported 2.6% of New Zealand's Beef and Veal exports and 4.7% of New
Zealand's Processed Milk exports, than $13.75 million worth of New
Zealand's Beef and Veal exports and $10.15 million worth of New Zealand's
Processed Milk exports. Also, this conforms to the assumption that the
observations on each variate should be independent and identically

distributed.

The data for this example was obtained from the Department of
Statistics publication Report and Analysis of External Trade (1979/80
and 1980/81).

At first, in order to obtain a set of countries that imports
three or more of the same main exports, it was necessary to obtain
various combinations of countries and products from the data. A necess-
ary requirement was that each country used in the study possess the same

set of variates.

A set of countries and products suitable for this exercise is

listed below.
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Countries Products

Australia Beef and Veal

China-Taiwan Butter

Hong Kong Processed Milk Products
Japan (Condensed, Evaporated and
Malaysia Dried Milk)

Philippines

Singapore

Then for this combination, it was necessary to calculate for

each country the mean exports of each product and the covariance matrix.

A requirement in the ranking procedure is that the countries possess

similar covariance matrices.

To verify the equality of the covariance matrices of the above

data, the following test given in Box (1949) was performed.

Test for Homogeneity of Covariance Matrices

where k = number of populations

L.

3 covariance matrix of the i th population.

Test Statistic

-~

i=1

which is asymptotically chi squared with }p(p+1)(k-1) degrees
of freedom.

number of variates

o
i

=
n

number of observations from the i th population

<
1]

n;-1, the degrees of freedom



)
1

The data

8l
k

Evi

i=1

maximum likelihocd estimator of Ei

maximum likelihood estimator of the common covariance

matrix £, defined in Chapter 7.1.

sample covariance matrix of the i th population

1 K

?‘( Z sample covariance matrix of the i th popu]ation)
i=1

determinant of Si

determinant of S.

corresponding to the selected countries and products,

the means of the products, the covariance matrices and the results of

the homogeneity

The value
This is a signif
test in effect 1
case 9) sets of
not to get a sig

here only 6 data

To check

transformed usin

a) Inver
b) Logit
c) Probi

test are in the computer printout C 7.3.1.

obtained for the chi squared test statistic is 130.4.
icant result. However, this is not unusual because the
ooks for any significant differences among the (in this
variances and covariances. In fact, it is very difficult
nificant result. Also, the test is asymptotic whereas

values are considered.

the possibility of improving the results the data was
g,
se Sine Y, = Sin™' /X
= X_
E, = 1oge T-x
t Y. =5+y' where P(Z <y') = x
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standard normal curve

X
\

yl

Here x is a typical value of a proportion.

For the transformed data in each category the corresponding means,
covariance matrices and the results of the homogeneity test are given

in the computer printouts C 7.3.2 to C 7.3.4.

The values of the chi squared test statistic in the three cate-

gories are listed below.

a) Inverse Sine -  80.8
b) Logit - 132.3
c) Probit - 89.5

Although the chi squared values in all three categories are significant
the chi squared values in categories (a) and (c) are better than the
chi squared value obtained for the original data. The best result was
obtained from the first transformation, Inverse Sine, and this was used

in what follows.

Using the transformed data it was then necessary to calculate

L., an estimate of the mean 05 for each country, i = 1, 2, ...., k.

L_i = b, X, + b,X, + b,X;

where Xy = the mean percentage of Beef and Veal imported by the country
i over 6 years;
Yé = the mean percentage of Butter imported by country i over 6

years;



3
country i over 6 years.

The weights bl, b, and b, were calculated as follows:

b
b = v
1 bV + bb + bm
b, = i
2 bV + bb + bm
b
b, = U

3 bV + bb +_bm

Value of Total Beef and Veal Exports

where bv - Value of Total Exports
b, = Value of Total Butter Exports
b Value of Total Exports
- Value of Total Milk Products Exports
m Value of Total Exports

Here the totals in each case were taken over the 6 years

From the data of this exercise,

bv = 0.190 b, = 0.134 b, = 0.075
Substituting the values of bv’ by and b,
b, = 0.476 b, = 0.336 by = 0.188

Substituting the values of bl, b2 and b3 in the equation

T o= p(®)
L_i =b Xy +b

the value E} for each country was calculated.

83

X, = the mean percentage of Processed Milk Products imported by

in question.
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Australia L, = 0.0618
China-Taiwan té = 0.0884
Hong Kong L, = 0.1072
Japan T, = 0.1635
Malaysia L, = 0.1464
Philippines L, =0.1484
Singapore E} = 0.1429

The theory of the two stage ranking procedure discussed earlier
is used in this example as the common variance is unknown and the sample
size is small. However the theory is somewhat modified in this case.
Here, the value of N is fixed, (in this case N = 6). Therefore when
using the theory it is necessary to work backwards and calculate the
value of é* for a predetermined h and P*,

2522\
N

where §* = (

, 303
and g czl dzl b. by 9q-

=

The average covariance matrix

1.943E-4 1.069E-4  8.565E-5
8 = 1.069E-4 1.210E-3 6.309E-4
8.565E-5 6.309E-4  1.104E-3

is an estimate of each element corresponding to ed- Hence
2
s® = 5,7668E-05

Using the table given in the theory for P* = 0.95, the value of h can be

estimated by extrapolation.



Here h = 2.4 for N = 6 and k = 7. Then

sk = (2 x 5.7668E-5 x 2.42)%
3
= .0105
% 401

Therefore probability of a completely correct ranking will be at least
.95 (= P*) whenever the difference between successive means is at least

01 (= &%),

The seven means for the countries can be ordered from largest to

smallest as follows:

I

1 Japan .1635

2 Philippines L .1484

3 Malaysia Eg .1464
4 Singapore L, .1429
5 Hong Kong Eg .1072
6 China-Taiwan 1L, .0884
7 Australia L .0618

7.4 COMMENTS ON THE APPLICATION

Real life examples that have been solved using Multivariate
Ranking Procedures are practically non-existent. Therefore, the import-
ance of the problem discussed in this chapter is stressed. However, the

procedure used has several drawbacks.

1) A necessary requirement of the method is that the populations
should have the same set of variates. i.e. in this example

only the countries that import the same New Zealand major



2)

3)

4)
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products can be used. This is not very practical in real
life situations where it may be necessary to compare the
trade performance of a country that imports products A, B
and C with a country that imports products B, D and E.
Therefore, it would be ideal if the variates could be
weighted in some way that all countries are included in the
analysis, whether they trade in certain products or not.

At present there is no such solution for a problem of this

nature.

In this procedure there is no obvious way in which the
coefficients bi are chosen. They are picked on the judge-

ment of the experimenter.

Since it is a requirement of this method that the Zy should
be equal, it makes the problem less meaningful as some of

the countries that could have been used had to be left out.

The value of &* calculated here is doubtful as the tables

available to calculate this are not accurate.
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TABLE T 7.1 The probability of a correct complete ordering of k normal

populations with respect to means for given values of =

K
T 2 3 4 5 6 7 8 9 10
0.00 .500 .167 .041 .008 .001 .00O .0O0O .00O .00O
0.10 .528 .19¢ .056 .014 .003 .001 .000 .000 .000
0.20 .556 .228 .077 .023 .006 .002 .000 .000 .00O
0.30 .584 .263 .101 .03 .012 .004 .001 .000 .000
0.40 .611 .299 .130 .052 .020 .008 .003 .001 .000
0.50 .638 .337 .162 .074 .033 .014 .006 .003 .001
0.60 .664 .376 .192 .100 .050 .025 .012 .006 .003
0.70 .690 .416 .237 .132 .073 .040 .022 .012 .006
0.80 .714 .45 .279 .168 .101 .060 .03 .021 .013
0.90 .738 .496 .324 .208 .134 .08 .055 .035 .022
1.00 .760 .53 .369 .252 .172 .117 .080 .054 .037
1.10 .782 .574 .415 .298 .214 .154 .110 .079 .057
1.20 .802 .612 .461 .346 .260 .195 .146 .110 .082
1.30 .821 .647 .506 .395 .308 .240 .187 .146 .114
1.40 .839 .681 .550 .444 .38 .288 .232 .187 .151
1.50 .855 .714 .593 .492 .408 .338 .281 .233 .193
k
T 2 3 4 5 6 7 8 9 10
1.60 .871 .744 .633 .539 .458 .390 .332 .282 .240
1.70 .885 ,772 .671 .584 .507 .441 .384 .334 .290
1.80 .898 .797 .707 .626 .555 .492 .436 .386 .342
1.90 910 .81 .740 .667 .601 .541 .488 .439 .396
2.00 .921 .843 .770 .704 .644 .589 .538 .492 .450
2.10 931 .82 .798 .739 .684 .633 .586 .543 .503
2.20 .940 .880 .824 .771 .722 .676 .632 .592 .554
2.30 .948 .85 .847 .80 .75%6 .715 .675 .638 .603
2.40 .955 .910 .867 .86 .788 .750 .715 .681 .649
2.50 .961 .923 .88 .80 .816 .783 .752 .721 .692
2.60 .967 .934 .902 .871 .841 .812 .78 .758 .732
2.70 .972 .944 916 .80 .84 .839 .815 .791 .768
2.80 976  .952 .929 .906 .884 .863 .842 .821 .80l
2.90 .978 .90 .940 .921 .902 .883 .865 .847 .830
3.00 .983 .96 .950 .933 .917 .9%01 .88 .871 .856




TABLE T 7.1 (continued)

88

K

T 2 3 B 5 6 7 3 S 10

3.10 .98 .972 .958 .944 ,931 .917 .904 .891 .878
3.20 5988 .977 .965 .953 .9%42 .931 .920 .909 .898
3.30 990 .981 .971 .961 .852 .942 .933 .924 .9ib
3.40 .992 .984 .976 .968 .960 .953 .945 .937 .930
3.50 993 .987 .980 .974 .968 .961 .955 .948 .942
3.60 .995 .989 .984 979 .973 .968 .963 .958 .953
3.70 .99 .991 .987 .983 .978 .974 .970 .966 .962
3.80 996 .993 .990 .98 .983 .979 .976 .972  .969
3.90 997 .994 .991 .98 .98 .983 .981 .978 .975
4.00 998 .,996 .993 .991 .989 .987 .98 .98 .980
4.10 998 1,996 .995 .993 .991 .990 .988 .98 .984
4.20 999 .997 .99 .994 .993 .992 .990 .989 .988
4.30 299 ,998 .997 .9% 895 994 992 .991 .990
4.40 999 998 .997 .997 .996 .995 .994 .993 .992
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TABLE T 7.2 Values of h to determine the common sample size in the
second stage for attaining P* = .95 for a correct com-
plete ordering of k normal populations with respect to
means when n is the common size of the first stage

sample.
k i3
n 3 4 5 6
10 2.053 2.21 2.29 2.28
20 2.002 2.16 2:25 2.24
30 1.988 2.15 2.24 2.23
40 1.981 2.14 2.24 2.22
50 1.977 2.14 2,23 2.22
60 1.975 2.14 2.23 2.22
70 1,973 2.14 2423 2.22
80 1.971 2:13 2.23 2:21
90 1.970 2:13 2:23 2.21
100 1.969 2.13 2.23 2:21
200 1.965 2.13 2.22 2.21
500 1.963 2.12 2.82 -

+ The last digit of each entry for k = 6 is of questionable accuracy
because we expect all the entries to increase as k increases for
fixed n.



C 7.3.1

NAME OF THE COLUNTRY :

YEAR EF%VL BUTTER
1974 0. 200 Q. 000

1277 0. 600 0.000

197= 0. &00 Q. Q00

S 0. 400 0.000

1220 Q.200 0.700

19zl 1.200 0.700

MEAN 0. 430 Q.233

ALUSTRALIA

~

MIL

i

0.100
0..200
Q. 500
0. 400
1700
1.400

0.74&7

COVARIANCE MATRIX - S(1)

BF VL
EUTTER
MILE

BF%VL

1 #270E-1
1.120E~1
1 920E-1

BUTTER

1.1z20E-1
1.3207E-1
2. 123E~1

MILK
1.920E-1
Z.19EE-]

4.047E—1

DETERMINANT OF COVARIANCE MATRIX S(1) = 1.5

MAME OF THE COUNTRY @
YEAR BFLVL BUTTER
19764 0, &00 0. 100
1977 Q. 200 Q. 200
1972 Q. 100 0,400
1979 0. 200 0. 500
1280 Q. 300 0. 300
1231 Q. 400 Q. AQ0
MEAN Q. 200 Q. 350

CHIMA — TAIWAN

MILKE

3.100
Lo 200
7..300
b 700
2. 200
4,200

COVARIANCE MATRIX - =(2)

BF&VL
BIITTER
MILE

DETERMINANT OF COVARIANCE MATRIX

BFLVL BUTTER
2. 200E-2 =1.200E-2

=1.200E-2
-1.400E-1

2. D00E-2

1.000E-2

MILE
-1.400E-1
1.000E~-2
2«27 1E+Q

S(2) = 1.4

i
-t

5

ta,

-

?

E-04

E-0O3
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MANME OF THE COUNTRY @

i e e g e e e L

1974 1.700
1277 2.000
1272 1.700
1979 1.400

======

0. 400
0. 4600
Q. &00
Q. &00

HONG EONG

MI

Q. 700
0, &00
0. 200
0, &H00

1280 1.200 Q. 200 Q.00
1931 2,100 1.400 0. &00
MEAN 1.733 0.733 Q. 4550
COVARIANCE MATRIX - S(2)
BF&VL EBLITTER
BFEVL b. 167E-2 S.447E-2
BUTTER 3. 4&47E-2 1.227E~1
MILK —5.000E-23 =1 ZODE-Z

DETERMINANT

MAME OF THE

91

MILK
-3, 00Q0E-3
-1.200E-2

7. 000E-3

OF COVARIANCE MATRIX S(3) = 2.4&4SE-0S

COLINTRY ¢

JAPAM

BUTTER  MILK

1974 2,000
1977 Z2.700
1973 4,100
1972 2. 800
1230 24600
1921 2400

MEAN 2,100

2.700 10.200
2. 500 L SO0
0,200 5. 400
1.100 b 700
0.200 4,700
0. 100 4,700
1.200 AHe 538

COVARIANCE MATRIX — =(4)
BFuVL BUTTER
BrEVL T 200E-1 =2. 260E-1
BUTTER =3 260E-1 1.672E+0
MILE =24 720E—1 2. 3P4E+Q
DETERMINANT OF COVARIAMCE MATRIX

MILE
—2s 7 2OE=1
2.394E+0
T. 4235E+O

5{4) = J.w7lE—ul



NAFME OF THE COUNTRY @ MALAYSIA

YEAR EF&VL EUTTER MILK

1974 0. 400 2.500 12.200

1977 Q.30 2.400 13.200

1273 0. 200 1.400 ig. 200

1979 0. 200 0.700 14,100

12&0 0. 300 1.700 10.200

17a1 0. 200 2.200 13.400

MEAM Q. 200 1.%30 14,783

COVARIANCE MATRIX - S(5)
BFVL BUTTER MILEK

BF VL 4. 000E-2 2. 200E-2 ?.400E-2
BUTTER 3. 200E-2 D. 3Y0E—-1 & SOOE-2
MILE P dO0E-2 4. 900E-2 o LH1OE+O

DETERMINANT OF COVARIANCE MATRIX S(2) = 4.490E-03

MAME OF THE COUNTRY ¢ PHILIPPINES

YEAR BFLVL BUTTER MILK

1274 0.500 1.200 12.700
1977 0.700 2.000 12.700
1973 0. 400 1.700 14,3500
1979 Q. 400 1.000 12.700
1950 0.300 2,000 1&6.300
ival 0. 400 2.700 13.200
MEAN 0. 4=z 1.747 13.750

CIOVARIANCE MATRIX — =(&)

BF&VL BUTTER HMILKE
EF VL 1.547E-2 7.332E-3 -2, S00E-2
BUTTER 7 333E-3 2. TR7E~L 2.240E-]
MILK =22 D00E=-2 2. 290E-1 Z2.271E+0

DETERMIMAMT OF COVARIANMCE MATRIX S(4) =  1.0463E-02
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NAME OF THE COUNTRY @ SINGAPORE

93
YEAR BF &L BUTTER MILEK
1974 i.900 1.500 &. 100
1277 i.3200 1.400 4., 400
1975 1.400 Q. 200 4,400
1279 1,300 0.2800 2300
1220 1.900 1.700 4,700
1931 2.100 24500 S. 200
MEAM j P i 1.467 4,667

BF VL BUTTER MILK
BFEVL 8.967E-2 1.607E-1 2. 66A7E-L
BUTTER 1.607E-1 2.787E-1 4.107E-1
MILK 2.667E~1 4, 107e-1 1.191E+O

DETERMINANT OF COVARIANCE MATRIX S(7) = Z.232E-02

T = (SI+S2+53+54+55+546+57) /7

{1y
LL}]

EF%LVL BUTTER MILE
BrFVL Y. 237E-2 4,0%3E-2 1.299E=<2
BUTTER 4.,09TE-3 4.46352E-1 4.720E-1
MILK 1.295E-2 4,7320E-1 2. 041E+0

DETERMINANT OF AVERAGE COVARIANCE MATRIX = 1.10ZE-0O1

35 Ln DET (3) = =77.2

5 Ln DET (S1) = -43.9
5 Ln DET (S2) = -32.7
5 Ln DET (§3) = -52.7
5 Ln DET (54) = 1.1
5 Ln DET (§5) = -=25.2
5 Ln DET (S6) = -22.7
5 Ln DET (S7) = -29.3

7
35 Ln DET (S) = ] 5 Ln DET (5i) = 130.4



L 7.3.2 RESULTS WHEN DATA WAS TRANSFORMEL LUz ING

NAFE OF THE COUNTRY ¢ ALUSTRALIA

YEAR BFLVL BUTTER MILK
1976é Q.045 Q. 000 D032
1977 0,072 0, Q00 0. 055
L97% Q.073 Q. Q00 0. 071
1972 0.0463 Q. 000 0.073
1950 UL 095 Q. 024 0.131
1981 a1 10 Q. 024 0.119
MEAM 0.073 0.023 0,021l

BF %VL BUTTER MILE
BFRVL 3.243E-4 2. 173E-4 7 20ZE-4
BUTTER 2. 172E-4 1:871E-3 1.474E-%
MILK 7.00ZE-4 1.474E-3 l.426E-2

INVERESE

DETERMINANT 0OF COVARIANCE MATRIX S5(1) = 4,143E-11

MAME OF THE COLUNTRY @ CHIMA - TAIWAM

o e e e e e e e e  —

YEAR BF&VL BUTTER MILK

L2764 0,072 0.032 0.222
1977 0.045 0.045 0. 252
1975 0. 032 Q.0463 0,274
1979 0,045 0.071 0.242
1220 0,055 2. 05D 0, 133
1321 Q.063 0.078 0. 206
MEAN 0.053 Q.057 0.224

COVARIANCE MATRIX - S(Z)

5

BF VL BUTTER MILKE
BF&VL 2. L0ZE-4 —1.124E-4 -2.001E-4
BUTTER -1.124E-4 2.900E-4 2. ZBIZE-D
MILK -2, 50lE-4 2. 283E-5 1-217E~2

DETERMINANT OF COVARIANCE MATRIX S(Z2) = 4.290E-11
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NAME OF THE COUNTRY @ HONG KONG

95
YEAR EF 2L BUTTER MILis
1976 0131 Q.63 G, 054
YOFT . 142 0.073 0.073
1578 0.131 Q.078 0. 090
1272 0.11% 0.073 0.072
1980 0. 135 Q. 090 0.072
1931 0. 145 0. 119 0.072
MEAM 0.1z4 Q.024 0.031
COVARIANCE MATRIX - S(=)
EBF&VL BUTTER MILK
BF&VL ?.016E-S 1.070E-4 =1.063E-5
BUTTER 1.070E-4 2.545E-4 -4, 137E-5
MILK -1 .0&63E-S -4, V37E=D 2.357E-5

DETERMINANT OF COVARIANCE MATRIX S(2) = 4,234E-13

NAME OF THE COUNTRY 2 JAPAN

i it S D i S et S s S i i i i

YEAR BF VL BUTTER MILK

1974 0. 174 V. 165 0.236
1977 0.165 0.171 Q.2&4
1273 Q.204 0.0453 0.235
1279 Q. 143 0.105 D. 262
17390 0,162 0.045 0.219
1931 0. ias 0. 032 0.219
MEAN 0.17& 0.0%4 0. 256
COVARIANCE MATRIX — =(4)
BFLVL BUTTER MILE
BF&VL 2.492E-4 —4.4L7LE-4 =1.423ZE-4
BUTTER —4.4L76E-4 3. W73E-Z 2. 320E-3
MILK -1.422E-4 2. 323E-3 1.268E-3

DETERMINAMT OF COVARIANCE MATRIX 2(4) = 4.010E-10



MAME OF THE COUNTRY @ MALAYSIA

YEAR EFLVL BUTTER MILE

19764 Q. 0&% . 15% 0. 442

19277 0. 053 0. 154 Q. =272

L=27& 0.055 Q. 119 Q.441

179 0,045 Q.095 Q.32

1280 0. 085 Q, 121 Q. 325

1731 0,055 0. 162 0,272

MEAIN 0., O5S 0.133 &.393

COVARIANCE MATRIX — =(5)
BF%VL BUTTER MILK

BF VL 3.458E-5 1.217E-4 1.104E-4
BUTTER 1.217E-4 7 .347E-4 S 2TVE-S
MILK 1.104E-4 3. 23YE-5 L. 397E-2

DETERMINANT OF COVARIANCE MATRIX S(5) = 1.446Z2E-11

MAME OF THE COUMTRY @ PHILIFPINMES

—_—_———=—== = _—=

YEAR BF&VL BUTTER MILK

1974 0.071 0.110 0. 3267
L7 Q. 024 0.142 0. 364
1273 0.043 0.1.351 Q. 371
1979 0.063 €. 100 0. 264
1220 0.071 . 142 0.413
1931 0,062 0. 145 372
MEAN 0. 069 0. 132 0. 372

COVARIANCE MATRIX — S(4&)

BFRVL BUTTER MILK
EF%VL 4. 432E-5 2. 498E-5 =2 190E-5
BUTTER 2. 476E-35 53.595E-4 1.423E-4
MILK —2. 120E-G 1.455E-4 4.525E-4

OETERMINAMT OF COVARIANCE MATRIX S(&) =  1.442E-11



NAME OF THE COLUNTRY @ SINGAPORE

YEAR BFZLVL BUTTER MILK
1974 Q.13 0.123 0. 250
1277 0. 123 Q.11%2 Q.214
i=7a 0.127 0.09% 0.211
1272 0.114 Q.00 0.168
1780 Q.1322 0.121 0.2273
L7=1 0. 145 Q.15% 0.230
MEAN 0.131 0.11% Q.216&

COVARIANCE MATRIX — S(7)

EBF&VL EUTTER MILE
BFRVL 1.352E-4 2.366E-4 Z.625E-4
BUTTER 2.0646E-4 L. 284E-4 4 SEZE-4
MILK 2.4632E-4 4.533E-4 I7EE-4

DETERMINANT OF COVARIANCE MATRIX S5(7) = 4,391E-12

BF&VL BUTTER MILK
Br VL 1.743E-4 1.06%E-4 2. 565E-5
EUTTER 1.049E-4 1.210E-3 Gt SOVE-4
MILK B DEDE~D L. 309E-4 1.104E-3

DETERMINANT OF AVERAGE COVARIANCE MATRIX = 1.723E-10

35 Ln DET (3) = -786.9

5 Ln DET (S1) = -117.5
5 Ln DET (52) = -119.3
5 Ln DET (S3) = -142.4
5 Ln DET (S4) = -108.2
5 Ln DET (S5) = -124.7
5 Ln DET (S6) = -124.8
5 Ln DET (S7) = -130.8
7
35 Ln DET ¢3) - § 5 Ln DET (Si) = 80.8



L 7.2.2 RESULTS WHEN DATA WAS TRANSFORMED USING LOGIT

NAME OF THE COUNTRY @ ALISTRALIA

YEAR BFEVL BUTTER MILK
1976 —=6.213 0.000 =&, 707
1977 -3.110 Q.000 =5.304
1273 -5.110 0.000 0. 293
1979 =5.317 0,000 =-5.110

130 -4.701 —-4.955 -4. 037
1951 -4.411 —4, 935 -4, 2535

MEAN =-5.177 -1.652 =35.233

s s . s s e

BFEVL BLUTTER MILEK
BEF&VL 4.021E-1 -1.231E+0 2. PlaE=1
BUTTER -1.2Z1E+0 - D47E+O —Z. 145E+0Q
MILK S.713E-1 ~2.145E+Q L. OP2E+O

DETERMINANT OF COVARIANCE MATRIX S(1) = Z2,.092E-01

NAME OF THE COUNTRY ¢ CHINA — TAIWAN

YEAR BF%VL BUTTER MILK

1976 -5.110 ~6.'7Q07 -2.%724
1977 -&.213 -6.213 ~Zeo /1l
19783 =6.%207 =5.317 -2.541

1979 =4.213 -5.2%2 -2.4634
1920 =5.206 —-3.30A -3, 373
ivgl -5.917 -5.110 -Z. 127
MEAN -5.%&1 -5.808 -2.837
CUOVARIAMCE MATRIX — S(2)
EBF VL BUTTER MILK
EF VL CWIZE-1 =1 . 895E~1 -1.294E—-1
BUTTER -1 . 355E-1 4,415E-1 A GHE7E-3
MILK -1.294E-1 b, GEVE-Z 1.028E-1

DETERMINANT OF COVARIANCE MATRIX S(2Z) = 7.17ZE-03

L)



NAME OF THE COUNTRY @

e e o e e e 2

1974 —=4,057
1977 —=2.892
1278 -4,057
1978 =4,25%
1980 =7.999
1931 —-3.842

HONG  RONG

EBLUTTER MILE
-5.917 —-4.935
5% 110 -23.110
~5.110 —-4.,320
-3.110 -5. 110
—-4.520 =5. 110
=4.,253 J.110
-4, 937 =-5.0326

COVARIANCE MATRIX - S(Z2
BF&VL BUTTER
BF&VL 2. 126E-2 2. 427E-2
BUTTER 2. 427E-2 1. 732E-1
MILK —-3X.582E-32 -

2.358E-2

MILK
~3.338E-32
—-2.358E~-2

1.500E-2

DETERMINANT OF COVARIANCE MATRIX S(3) = Z.071E-0T

MAME 2F THE COUNTRY @

m—EEEEEEEEEEE

YEAR BFLVL

1976 —2.47&
1977 —~2.58%8
1978 =3.l152
1979 —=2.5947
1920 =3.4623
1781 -2.347

MEAN —3.455

BUTTER

======

JAFPAN

MILK

~2.101
=2.618
—2.363
—-2.434
=2.009

COVARIANMCE MATRIX - 3(4)

BF VL BUTTER
BF&VL Z.147E-2 ~1 . Z76E~1

ELUTTER =1 . 2F&E=1
MILK -1.204E-2

DETERMIMANT OF

2. 131E+0Q
4, 22ZE-1

MILK
-1.204E-2

4.323£-1

1.174&4E-1

COVARIAMNCE MATRIX =(4) = 1.2837E-G3

MASSEY UNIVERSITY



NAME OF THE COUNTRY @ MALAYSIA

I I e e e e e e e o e

1876 ~0.517 -, &b —i.443
1977 =S.806 =i, JOD =1 SRR
L2783 —35.804 -4, 235 o W
1979 =~f.213 —-4,701 —-1. 807
1980 =5, 804 -4, 057 o e
1981 —3.8086 -3.547 -1.34%

MEAMN —35.3226 -3. 788 e e 5

e T e e e e e Dy p—p—
ST S ES TS Emm=s

BLUTTER

E=2 767 3E=2
IE=2 1+ 929E~=1
-2 2. 325E-3

BUTTER
MILK

DETERMINANT OF COVARIANCE MATRIX

MAME OF THE COUNTRY ¢ PHILIPPINES

o e e e e s s e e s e et s S e e e

1976 =0.293 -4.411 =110
i977 —4.955 2. 8972 =1.: %28
197 —-5.817 =4.057 ~1.774
1979 =5.8517 s W =1 . P2
1Pen ~5.293 ~d B2 -1.621

1981 «85.517 —3. 388 =1.883

o o s s oo s e e v

3} ]

BF VL BUTTER
BFEVL 4,934E-2 1.215E-2
BUTTER 1. 315E~2 L. 38%E~1
MILK ~3. O58E-3 1.459E~2

DETERMINAMT OF COVARIAMIE MATRIX

MILK
2.074E-2
2. 32SE-T

L. 091E-2

kS

sS(5) = 1

MILE

=3 USSE~3
1.459E-2
1.424E-2

S{&) = 2.5

»A27E-04
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NAME OF THE COUNTRY ¢ SINGAPORE

iw78 -4.11% 4,701 -

1279 —4,320 -4, 320 -3.547
o980 -2.944 -4,057 -2 266
1921 =32.842 -3 644 s DR

EF&VL BUTTER MILK
BFLVL 3 B23E~-2 8. 773E=2 4,239E-2
BUTTER & TTIE—2 1.812E=1 S.412E-2
MILE 4, 239E-2 R.412E-2 L DaaEs=

DETERMINANT OF COVARIANCE MATRIX S(7) = 3.064E-035

T ] = e i e mn e -

BF VL BUTTER MILK
BF&VL 1.400E-1L =173 TE~] a2 3TERZ
BUTTER =1 HELE=T 1.40%E+0 ° =2, 326E-1
MILK J2ITE~E ~2.324E~1 2+ 11981

CETERMINANT OF AVERAGE COVARIANCE MATRIX = Z.5432E-02

35 Ln DET (3 = =128.5
5 Ln DET (51) = -7.8
5 Ln DET (82) = =24.7
5 Ln DET (£3) = <51.9
5 Ln DET (34) = =33.3
5 Ln LDET (=5) = -44.3
5 Ln GET (24) = -46.8
5 Lo DET (57) = =52.0

7
35 Ln DET (5) = ] 5 Ln LDET (Si) = 132.3



2 7.%3.4 RESULTS WHEN DATA WAS TRANSFORMED UISING FROBIT

__________ 102

NAME OF THE COUNTRY @ AUSTRALIA

YEAR EFLVL ELUTTER MILK
197& 7.520 2,090 2.090
19277 2310 2,090 7.730
i#7= 7210 2. 0%0 7520
1979 7. 650 2. 070 7.510
1980 7.3270 7.440 7120
1251 7.2460 7.460 7.200
MEAN 7.330 7 330 7.342

COVARIANCE MATRIX - =(1)

e e e e e e e e e e e

BF%VL EBUTTER MILE
BF VL 4.,724E-2 5.418E-2 6. 25328E-2
BUTTER S.418E-2 1.032E-1 9. b18E~2
MILK H.3TBE-2 PLEIBE-Z 1.282E~1

DETERMINANT OF COVARIANCE MATRIX S(1) = 4.4453E-03

NAME OF THE COUMTRY @ CHINA - TAIWAM

YEAR BFaVL BUTTER MILK

19764 7.:310 2. 070 G &80
1977 7 230 7.820 . 540
1272 =, 090 7. 4350 &L 430
1979 7.850 7.980 4. 500
12E0 7750 7.720 G240
192=1 7 &S0 7.310 b 7320
MEAM 7.722 7.74% babl?7

BFLVL BLUTTER MILK
EF&VL 4.1 15E<2 =1.¥QlE-2 =1 $I2E-Z
BLUTTER =L T E=2 4.3735E-2 1.452E-3
MILK =1 . PTHE=2 1.453E-= 22 211E-2

DETERMIMANMT OF COVARIAMCE MATRIX =5(z2) = 1.&79E-05



NAME OF THE COLUNTRY =

1974
1277
1972
1972
1280
1931

MEAM

e

7.200
7. 100
7.040

BUTTER

HONG  FONG

7. &350 7. 4460
7.3510 7+310
7.510 7.410
7.310 7.310
7.410 7.210
7.200 7.310
7.463 7. 435

COVARIANCE MATRIX — Si(3)

BF2VL
BUTTER
MILK

DETERMINANT OF COVARIANCE MATRIX

BF&VL

3. 350e-32
4, 250E-Z

MAME OF THE COUNTRY :
YEAR BF&VL BUTTER
1274 G320 6,730
1977 G 220 &. 200
1973 &£.740 7 230
197% LHa210 7. 290
13720 &L 740 7.830
1oa1 7.030 2. 0920
MEAN & P05 7.495

EBLUTTER
4.550E-3
2. 27 1E~2

2.750E-3

JAFAN

MILK

6.2320
“. 490
ALe10
&S00

BF VL
BUTTER
MILK

DETERMINANT OF COVARIAMCE MATRIX

BF2VL

2. 070E-3
4.510E-3
. 110E-Z

BUTTER
4.510E-3
2.732E-1

7.249E-2

103

MILE
-4, S00E-4
-2.750E-32
1. 720E-=3

S(2) = 7.324E-08

MILK
S.110E-2
7. 24%E-2

2. T62E-2

S¢(4) = 1.

nv)

S2PE-0OT



NAME COF THE COUNTRY @ MALAYSIA

YEAR BF VL RUTTE MILK

1974 7. &350 &L L D520
1977 O & 220 &. 120
197% A 7. 200 =710
1979 7 .320 7.370 G OE0
1¥50 77350 7120 L. 240
191 7.7350 6.210 &o LOO
MEAN 7.735 7.0%0 L.057

COVARIANCE MATRIX — (%)

BF&VL EBUTTER MILK
BF VL 3.3S0E-3 2. 830E-3 2. P40E-3
BUTTER . 880E-2 S O3&E-2 Se &O0E-4
MILE 3.940E-3 3. 600E-4 1: 787E=2

DETERMINANT OF COVARIANCE MATRIX =(5) = 7.44&E-07

NAME OF THE COUNTRY @ PHILIPPINES

1276 7. 380 7.260 Lo 130
1977 7.460 7. 050 &.140
1973 7. &30 7.120 &L 04&0
1979 7. &30 7. 220 &. 140
1280 7.530 7.030 S5.970
1951 7 . &350 b 230 6120
MEAN 7395 7.122 G093

EF VL BUTTER MILE
BF&VL S.550E-2 1.200E-3 =5.400E-4
EUTTER 1.200E-3 2 121E=2 F.047E-2
MILK -3, 400E-4 2.047E-2 4.547E-3

DETERMIMAMT OF COVARIANCE MATRIX S(&) = 4.713E-07
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NAME OF THE COUNTRY @ SINGAFORE

YEAR ErF&VL BUTTER MILK

1976& s QT 7370 &L 330

Vv 7170 7. 200 Lo AP0

1973 74140 7370 £.710

1By T ol 7.410 L.710

1220 7070 7. 120 & &S0

1921 7.040 4. P50 &L 530

MEAN 7.120 7,205 L. 670

COVARIANCE MATRIX - S(7)
EF VL BUTTER MILK

BF &L 5. 280E-3 1.024E-2 7. 620E-2
BUTTER 1.024E-2 2. 755E-2 1.428E-2
MILK 7. 680E~-3 1.428E-2 1.472E~-2

DETERMINANT OF COVARIANCE MATRIX S(7) = 1.421E-07

i e e o e e e e e o

AVERAGE COVARIANCE MATIX - (=)

BFLVL BUTTER MILE
BF VL L aB7IE~2Z P.4&4E—2 B.736E-3
BUTTER . 4E4E-Z 7+ 23582 2y 651E=2
MILE S.9736E-3 2.661E-2 2. 0R7E-Z

DETERMINANT 0OF AVERAGE COVARIANCE MATRIX = 2.282E-0

35 Lm DET (5) = =374,

0
5 Ln DET (S1) = -50.0
5 Ln DET (52) = -55,0
5 Ln DET (§3) = -81.8
5 Ln DET (84) = -54.5
5 Ln DET (S5) =  -70.6
5 Ln DET (846) = -72.8
5 Ln DET (S7) = -78.8

i
35 Ln DET (5) - .Zl 5 Ln DET (5i) = 89.5
'|=
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CHAPTER 8

8. CONCLUSIONS

An overview of Multivariate Ranking and Selection procedures and
an example using Multivariate Ranking has been discussed in the pre-
ceding chapters. This field of study is relatively new and many
improvements can be made to the theory in the years to follow. Although
there are several methods available to select the 'best' population,

methods dealing with the complete ranking of populations are scarce.

It was noticed that in the methods discussed in Chapter 4 and
Chapter 5 that a scalar function 8, had to be found to select the
populations. However, there is no indication as to how a clear and

meaningful choice of that scalar function is made for a given situation.

Also, it is evident that the P(CS) expressions are quite difficult
to evaluate and the tabulated values of such expressions are not always

available.

The method by Dudewicz and Taneja (1981) on the Multivariate
Solution to the Multivariate Ranking and Selection problem explained in
Chapter 6 is difficult to apply in practice as defining the function g

is not easy.

Here again the importance of the example on Multivariate Ranking
discussed in Chapter 7 is stressed as solved examples of that nature are

practically non-existent.



107

BIBLIOGRAPHY

ALAM, K. and M.H. Rizvi (1966)
Selection from multivariate populations. Annals of the Institute
of Statistical Mathematics 18: 307-318.

ALAM, K., M.H. Rizvi and H. Solomon (1975)
Selection of largest multiple correlation coefficients: exact

sample size case. Annals of Statistics 4: 614-620.

ARMITAGE, J.V. and P.R. Krishnaiah (1964)
Tables for the studentized largest chi-squared distribution and

their applications. Ohio, Aerospace Research Laboratories,
Wright-Patterson Air Force Base. (ARL 64-188).

BARTLETT, M.S. and D.G. Kendall (1946)
The statistical analysis of variance heterogeheity and the
Togarithmic transformation. Journal of the Royal Statistical
Society Supplement 8: 128-138.

BECHHOFER, R.E. (1954)
A single sample multiple decision procedure for ranking means of
normal populations with known variances. Annals of Mathematical
Statistics 25: 16-39.

BECHHOFER, R.E., J. Kiefer and M. Sobel (1968)
Sequential identification and ranking procedures. Chicago,

University of Chicago Press.

BOX, G.E.P. (1949)
A general distribution theory for a class of likelihood criteria.

Biometrika 36: 317-346.

CARROLL, R.J. and S.S. Gupta (1977)
On the probabilities of ranking of k populations with applications.
Journal of Statistical Computation and Simulation 5: 145-157.




108

CHOW, Y.S. and H. Robbins (1965)
On the asymptotic theory of fixed-width sequential confidence
intervals for the mean. Annals of Mathematical Statistics 36:
457-462.

DUDEWICZ, E.J. and T.A. Bishop (1979)
The heteroscedastic method. p. 183-203. In Rustagi, J.S. ed.
Optimizing Methods in Statistics. Academic Press, New York.

DUDEWICZ, E.J. and V.S. Taneja (1981)
A multivariate solution to the multivariate ranking and selection
problem. Communications in Statistics Series A: 1849-1868.

FREEMAN, H., A. Kuzmack and R. Maurice (1967) -
Multivariate t and the ranking problem. Biometrika 54: 305-308.

FRISCHTAK, R.M. (1973)
Statistical multiple decision procedures for some multivariate

selection problems. Thesis, Ph.D., New York, Cornell University,
102 p.

GIBBONS, J.D., I. Olkin and M. Sobel (1977)
Selecting and ordering populations. New York, Wiley. 569 p.

GNANADESIKAN, M. and S.S. Gupta (1970)
Selection procedures for multivariate normal distributions in
terms of measures of dispersion. Technometrics 12: 103-117.

GOVINDARAJULU, Z., and A.P. Gore (1971)
Selection procedures with respect to measures of association.
p. 313-345. 1In Gupta, S.S. and J. Yackel eds. Statistical
Decision Theory and Related Topics. New York, Academic Press.

GUPTA, S.S. (1956)
On_a decision rule for a problem in ranking means. Thesis, Ph.D.,

Chapel Hill, University of North Carolina.



GUPTA,

GUPTA,

GUPTA,

GUPTA,

GUPTA,

GUPTA,

GUPTA,

109

S.S. (1963)
On a selection and ranking procedure for gamma populations.
Annals of the Institute of Statistical Mathematics 14: 199-216.

S.S. (1966)

On some selection and ranking procedures for multivariate normal
populations using distance functions. p. 457-475. In
Krishnaiah, P.R. ed. Multivariate Analysis. New York, Academic
Press.

S.S., K. Nagel and S. Panchapakesan (1973)
On the order statistics from equally correlated normal random
variables. Biometrika 60: 403-413.

S.S. and S. Panchapakesan (1969)
Some selection and ranking procedures for multivariate normal
populations. p. 475-505. In Krishnaiah, P.R. ed. Multivariate

Analysis - II. New York, Academic Press.

S.S. and S. Panchapakesan (1979)
Multiple decision procedures. New York, Wiley. 573 p.

S.S. and M. Sobel (1962)
On the smallest of several correlated F statistics. Biometrika
49: 509-523.

$.S. and W.J. Studden (1970)

On some selection and ranking procedures with applications to
multivariate populations. p. 327-338. In Bose, R.C. and others
ed. Essays in Probability and Statistics. Chapel Hi1l, Univer-

sity of North Carolina Press.

HOEL, P.G. (1937)

A significance test for component analysis. Annals of Mathemat-

ical Statistics 8: 149-158,

HOEL, D.G. and M. Mazumdar (1968)

An extension of Paulson's selection procedure. Annals of Mathe-

matical Statistics 39: 2067-2074.




110

PAULSON, E. (1964)
A sequential procedure for selecting the population with the
largest mean from k normal populations. Annals of Mathematical
Statistics 35: 174-180.

RAO, C.R. (1965)
Linear statistical inference and its applications. New York,
John Wiley & Sons.

REGIER, M.H. (1976)
Simplified selection procedures for multivariate normal popul-
ations. Technometrics 18: 483-489.

Report and Analysis of External Trade, 1979/80 and 1980/81.
New Zealand, Department of Statistics Publication. Wellington,
Government Printer,

RIZVI, M.H. and H. Solomon (1973)
Selection of largest multiple correlation coefficients:

asymptotic case. Journal of the American Statistical Assoc-
jation 68: 184-188. Corrigendum, 69, 288.

SRIVASTAVA, M.S. and V.S. Taneja (1972)
Some sequential procedures for ranking multivariate normal
populations. Annais of the Institute of Statistical Mathematics

24: 455-464.

STARR, N. (1966)
The performance of a sequential procedure for the fixed-width
interval estimation of the mean. Annals of Mathematical Statis-

tics 37: 36-50.



