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ABSTRACT 

An overview of some recent work in the field of Ranking and 

Selection with emphasis on aspects important to experimenters confront­

ed with Multivariate Ranking and Selection problems is presented. 

Ranking and Selection procedures fall into two basic categories. 

They are: 

1) Indifference Zone Approach 

2) Subset Selection Approach. 

In these approaches, the multivariate parameters are converted to 

univariate parameters. Various procedures using these real valued 

functions are given for both the Indifference Zone Approach and the 

Subset Selection Approach. 

A new formulation that has recently been developed which seiects 

the best multivariate population without reducing populations to uni­

variate quantities is also described. This method is a Multivariate 

Solution to the Multivariate Ranking and Selection problem. 

Finally a real life problem pertaining to New Zealand 1 s overseas 

trade is discussed in the context of Multivariate Ranking. 



iv 

ACKNOWLEDGEMENTS 

I wish to thank my supervisor Dr. Howard Edwards for his inter­

est and guidance in the preparation of this thesis. Thanks also to 

Mrs. S. Carlyle for her excellent typing of the manuscript. Finally, 

I wish to thank my husband Rohan for his help, encouragement and 

support. 



TABLE OF CONTENTS 

Abstract 

Acknowledgements 

List of Tables 

List of Computer Printouts 

Chapter 1 

1. 

Chapter 2 

2. 

2.1 

2.2 
2.3 
2 . 3. 1 

2.4 

2.5 

Chapter 3 

3. • 

3. 1 

3. 2 

3.3 

Chapter 4 

4. 

4.1 

4. 1.1 

4.1.1.1 

4. 1.1.2 

Introduction 

Ranking and Selection 

Possible Goals for Ranking and Selection Procedures 
Approaches to Ranking and Selection Procedures 

The Ph i losophy of the Indifference Zone Approach 
Graphical Representation 

The Philosophy of the Subset Selection Approach 
Comparison of the Indifference Zone and the Subset 
Selection Approaches 

Multivariate Distributions 
Definition of a Multivariate Distribution 
Notation used in Multivariate Ranking and Selection 
Multivariate Ranking and Selection 

The Indifference Zone Approach to Ranking and Se lect­
ion of Several Mu ltivariate Normal Populations 

Selection in terms of the Mahalanobis Distance 
Procedures studied by K. Alam and M.H. Rizvi (1966) 

Case 1 Li known 

Case 2 Li unknown 

iii 

iv 

ix 

X 

1 

2 

2 

3 

3 

5 

6 

7 

9 

9 

10 

11 

14 

14 

14 

16 
17 



4. 1.2 

4.1.2 . 1 

4.1.2 .2 

4.2 
4.2.1 

Procedures studied by M.S. Srivastava and 
V.S. Taneja (1972) 

Non Truncated Sequential Procedure 
Truncated Sequential Procedure 

Selection in terms of the Euclidean Distance 
Procedures studied by M.S. Srivastava and 
V.S. Taneja (1972) 

19 

21 

24 

24 

4.2.1.1 Case 1 E known 25 

4.2.1.2 Case 2 I unknown 26 

4.3 Selection in terms of Multiple Correlation Coefficients 27 
4.3.1 Procedure investigated by M.H. Rizvi and H. Solomon 29 

(1973) 

4. 3.2 

4.4 

4.4.1 

4.5 

4.5 .1 

Chapter 5 

5. 

Procedure investigated by K. Alam, M.H. Rizvi and 
H. Solomon (1975) 

Selection in tenns of the Sum of the Bivariate 
Product - Moment Correlations 
Procedure studied by Z. Govindarajulu and A.P. Gore 
( 19 71 ) 

Selection in terms of the Coefficient of Alienation 
Procedure proposed by R.M. Frischtak (1973) 

The Subset Selection Approach to Ranking and Select-

ion of Several Multivariate Normal Populations 

31 

33 

34 

35 

36 

38 

5.1 Selection in tenns of the Mahalanobis Distance 38 
5. 1.1 Rules proposed by S.S. Gupta (1966) 39 

5.1.1.1 Selection of a Subset containing the population with 39 

the largest 0i, E1 = E2 = .... = Ek= I known 
5.1.1.2 Selection of a Subset containing the population with 40 

the smallest 0i, E1 = E
2 

= .... = Ek = E known 
5.1.2 Procedures studied by S.S. Gupta and W.J. Studden ( 1970 ) 42 

5.1.2.1 Selection of a Subset containing the population with 42 

the largest 0., I . not necessarily equal but known 
l l 

5. 1. 2.2 Selection of a Subset containing the population with 43 

the smallest 0i , Ei not necessarily equal but known 
5.1.2.3 Selection of a Subset containing the population with 43 

the 1 arges t ei , E; are different and unknown 



5.1.2.4 

5 .1. 3 

5.1.3.1 

5 .1. 4 

5.1.4.1 

5.2 
5. 2 .1 

Selection of a Subset containing the population with 

the smallest 0i, Ei are different and unknown 
Procedures considered by K. Alam and M.H. Rizvi (1966) 
Selection of a Subset containing the population with 

the largest 0i, Ei not necessarily equal but known 
Unsolved Procedures 

Selection of a Subset containing the population with 

the largest 0i, E
1 

= [ 2 = .... = Ek= L known 
Selection in terms of the Generalized Variances 
Rule proposed by M. Gnanadesikan and S.S. Gupta (1970) 

Page 

45 

46 
46 

47 
47 

48 
48 

5. 2. 1. 1 Selection of a Subset containing the population with the 48 
smallest lri l based on the sample covariance matrices 
Si,i=l, .... ,k 

5.2.1.2 Approximations to the distribution of Yi when p > 2 49 
5.2.2 Alternatives to Procedure R proposed by M.H. Regier 51 

( 1976) 

5.2 .2.1 Procedure based on the Geometric Mean 51 
5.2.2.2 Procedure based on the Arithmetic Mean 52 

5. 2.3 A comparison of the three procedures R, R
1 

and R
2 

53 

5.3 Selection in terms of the Multiple Correlation 54 
Coefficients 

5.3 .1 Procedures investigated by S.S. Gupta and S. Panchapak- 55 
esan (1969) 

5.3.1.1 Selection of 0[k] = p[k] 55 

5.3.1.2 Selection of e[l] = P[l] 

5.4 

5. 4. 1 

5.4.2 

Chapter 6 

6. 

6.1 

Selection in terms of Measures of Association between 
two Subclasses of Variates 

Procedure considered by S.S. Gupta and S. Panchapakesan 
(1969) 

Procedure considered by R.M . Frischtak (1973) 

The Multivariate Solution to the Multivariate Ranking 

and Selection Problem 

The Multivariate Preference Selection Procedure Rmvp 

56 

57 

59 

59 

61 

62 



6 .1.1 

6 .1.2 

6 .1. 3 

6 .1. 4 

Chapter 7 

7. 
7.1 
7 .1. 1 

7.2 
7. 2. 1 

7.2.2 

Selecting the best when I
1 

= I
2 

= 
with o 2 known 

Selecting the best when I
1 

= I
2 

= .... = I k = I , 
I known 
Selecting the best when I 

1
, ..•. , I k known 

Selecting the best when E 1 , •••• , Ik, unknown, unequal 

62 

67 

69 

The Complete Ranking of Multivariate Populations 72 
The Properties of the Multivariate Normal Distribution 72 
Presentation of sample data consisting of n observat- 74 
ions for each of the k populations each having p 
components 
The Complete Ranking of k population means 75 
Ranking of k normal populations according to their means 75 

when the common variance is known 
Two stage procedure to r ank k normal population means 
when the common variance is unknown 

77 

7.3 Ranking of Countries on their trade performance with 78 
New Zealand - An Application 

7.4 Comments on the Application 85 

Chapter 8 
8. Conclusions 106 

Bibliography 107 



T 4.1 

T 4.2 

T 7.1 

T 7.2 

LIST OF TABLES 

Values oft for A = 0 

Va 1 ues of t 

The probability of a correct complete ordering of 

k normal populations with respect to means for given 

values of, 

Values of h to determine the common sample size in 

the second stage for attaining P* = .95 for a correct 

complete ordering of k normal populations with 

respect to means when n is the common size of the 

first stage sample 

20 

23 

87 

89 



LIST OF COMPUTER PRINTOUTS 

Page 

C 7.3.1 Results using Direct Data 90 

C 7.3.2 Results when Data was transformed using Inverse Sine 94 

Conversion 

C 7.3.3 Results when Data was transformed using Logit 

Conversion 

C 7.3.4 Results when Data was transfonned using Probit 

Conversion 

98 

102 



1 

CHAPTER 1 

1. INTRODUCTION 

In the mid nineteen fifties attention began to be drawn to a new 

type of problem which does not fit into the framework of testing hypo­

theses and for which no proper statistical approach has been developed. 

In this type of problem it is not necessary to refute a null hypothesis 

which is clearly false but rather answer a different type of question 

which deals with selecting the best or with the ranking of alternatives. 

This field of study is called RANKING AND SELECTION THEORY. 

A statistical Selection procedure uses a random sample from each 

population to select the best population. The same sample of data is 

used to order the populations in statistical Ranking procedures. In 

these procedures it can be asserted with a specified level of confidence 

that the Selection or Ranking made is correct. 

Procedures for Selection and Ranking problems were pioneered by 

R. E. Bechhofer in 1954 using normality and equal known variance. In 

the ensuing years such procedures have been developed for more complex 

problems and in more realistic settings. 

This thesis presents an overview of some recent work in this 

field with emphasis on aspects important to experimenters confronted 

with Multivariate Ranking and Selection problems. An example pertaining 

to overseas trade using Multivariate Ranking is also discussed. 
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CHAPTER 2 

2. RANKING AND SELECTION 

2.1 POSSIBLE GOALS FOR RANKING AND SELECTION PROCEDURES 

Ranking and Selection procedures include techniques appropriate 

for many different goals, although each different goal requires a care­

ful formulation of the corresponding problem. For any given set of k 

populations some of the goals that can be accomplished by these methods 

are given below. 

a) Selecting the one best population. 

b) Selecting a random number of populations such that all 

populations better than the control population or the 

standard are included in the selected subset. 

c) Selecting at least two, say t h 2), best populations 

in an ordered or unordered manner. 

d) Selecting a random number of populations, say r, that 

includes the t best populations. 

e) Selecting a fixed number of populations, say f, that 

includes the t best populations. 

f) Ordering or ranking all the k populations fr.om best to 

worst or vice versa. 

g) Ranking a fixed size subset of the k populations from 

best to worst or vice versa. 
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2.2 APPROACHES TO RANKING AND SELECTION PROCEDURES 

Ranking and Selection procedures fall into two basic categories. 

They are: 

a) the Indifference Zone Approach pioneered by R. E. Bechhofer 

( 1954) ; 

b) the Subset Selection Approach pioneered by S.S. Gupta 

(1956). 

In this chapter the theory related to the two methods are explained in 

detail. 

2.3 THE PHILOSOPHY OF THE INDIFFERENCE ZONE APPROACH 

The essential problem formulation of the indifference zone 

approach pioneered by Bechhofer (1954) is as follows. 

Let rr
1

, rr 2 , •.•• , rr k be k independent populations with underlying 

distribution functions F(x, 0i), i = 1, 2, .... , k. The 0i are unknown 

values of a quality characteristic which is used as the parameter for 

selecting the populations. Except for the value of 0i, the distribution 

is assumed not to differ from population to population. Also, it is 

defined that if 0i ~ ej then IT ; is better than nj, although in some 

cases the inequality is reversed. Let the ordered 8; be denoted by 

e[l] ~ e [Z] ~ . ... ~ 0[k]· The experimenter is assumed to have no prior 

knowledge regarding the positions of the ordered and unordered 0i. 

The goal of the experimenter is to choose one of the populations 

and claim that is the best, the one associated with 0[k]· 

Max ( 0 1 , 0 2 , ••.• , e k) = 0 [ k J 
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The selection is performed in such a way that the associated probability 

of a correct selection for a given selection rule R, P(CS/R) is at least 

as large as a predetermined P* (1/k < P* < 1) 1t1henever the distance 

(suitably defined) between the best and the second best populations 

denoted by o = (0[k] - 0[k-l]), is at least as large as a specified 

constant o* ( > 0). 

P( CS/R) ~ P* ( 1/ k < P* < 1) 

if o = (0[k] - 0[k-l]) ~ o* where o* > o. 

The experimenter has the privilege of specifying P* and o* satis­

factory to himself. We will assume without loss of generality that the 

distance function is the usual difference 0(0[k]' 0[k-l]) = 0[k] - 0[k-l]' 

This method does not explicitly seek to control the probability 

of a correct selection, P(CS/R) at the parameter points 0[k], 0[k-l]' 

If the difference between the best and the second best are not suffic­

iently apart or if it is in the "ZONE" o = (0[k] - e[k-l]) < o*, the 

experimenter is 11 INDIFFERENT 11 to which population is selected. Hence 

the name INDIFFERENCE ZONE. 

In this approach the experimenter finds the smallest sample size 

(n) required from each population corresponding to the defined values 

of P* and o*. Then the experimenter selects the best out of the k 
I\ 

populations using the appropriate statistics 0i, i = 1, 2, .... , k, 

where ~i is an estimate of 0i. 

The total space of the ei values is the union of the Indifference 

Zone (IZ) defined by o = (0[k] - e[k-l]) < o*, and the Preference Zone 

(PZ) defined by o = (0[k] - 0[k-l]) ~ o* for o* > 0. o* (> 0) defines 



the threshold value to separate the Indifference Zone from the Prefer­

ence Zone. 

The experimenter is indifferent to which population is selected 

when o = (e[k] - e[k-l]) < o*. o* or an indifference zone is still 

specified in recognition of the fact as o* ~ 0, n ~ 00 • This indicates 

that a large sample per population may be necessary for assurance of 

trivial gains. 

The indifference zone is feasible, in terms of the sample size 

n only if two conditions are met. 

a) The number of populations, k, is not extremely large 

( eg k ~ 50) . 

b) The experimenter has some design control, via the choice 

of n. 

There are many other variations of the preference zone as the 

situation warrants. The preference zone generally has an infinite 

number of points. In many cases there is some special configuration 

for which the probability of a correct selection is a minimum over all 

configurations in the preference zone. This configuration is called 

the least favourable configuration and denoted by tLF. 

for a 11 e E PZ ,._, 

where tis the vector (e1 , e2 , •.•. , ek) 

and t LF is the vector (e1 ,LF' e2 ,LF' .... , ek ,LF). 

2.3.1 GRAPHICAL REPRESENTATION 

For an arbitrary number of k populations suppose the distance 

5 



measure o = e[k] - e[k-l] and the parameter space is unlimited so that 

the values oft vary on the entire real line. The preference zone is 

defined by, 

The indifference zone is defined by, 

IZ = {t: o = (e[k] - e[k-l]) < o*} for o* > o. 

= o* 

e [k] - e [k-1] = o 

non-existent 
points 

2.4 THE PHILOSOPHY OF THE SUBSET SELECTION APPROACH 

The goal of this approach is to select a non empty subset from 

the given populations so that it includes the best population. 

6 

The given set of k populations are divided into two identifi able 

subsets of random sizes in such a way that there is a high probability, 

P* (pre specified), that the selected subset contains the best population 
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and the eliminated subset does not. There is no assertion made about 

which population is the best within the selected subset. Now a correct 

selection occurs if the selected subset contains the population with 

the parameter value e[k]" 

In this subset selection approach a random sample from each of 
A 

the k populations is taken and an estimate ei of the parameter ei is 

computed from the corresponding sample data of the i th population. Then 

for each population (i = 1, 2, .... , k) the selection rule is to place 
A 

the i th population in the selected subset if and only if ei is included 

in a certain region I. This region I is usually a closed interval of 
A A 

the form, I= [e[k] - C, e[k]] where C (> 0) is to be determined. 

The value of C should be as small as possible subject to the 

condition that the infimum of a correct selection for any rule R, over 

the whole parameter space of ei is at least P* or P(CS/R) ~ P* for what­

ever be the true configuration of the unknown ei. Here the subset 

selected is of random size and since e[k] is always contained in the 

region I, the selected subset cannot be empty. 

The experimenter can select a rule R such that for the specified 

probability P* the expected value of the selected subset size is as 

small as possible for all rules R. 

2.5 COMPARISON OF THE INDIFFERENCE ZONE AND THE SUBSET SELECTION 

APPROACHES 

The main difference between the Indifference Zone Approach and 

the Subset Selection Approach is that in the latter there is no 

Indifference Zone. Also, in the Subset Selection Approach, the least 



8 

favourable configuration is the one with all the e . equal. Hence it is 
1 

almost impossible to compare the two approaches analytically. 

In any given situation the preference of one over the other of 

the two approaches is mainly dictated by the objectives of the experi­

menter. 

The Indifference Zone Approach is useful at the experimental 

design stage, where a common sample size is to be determined, whereas 

the Subset Selection Approach, in the main formulation, assumes that 

the sample size may be fixed arbitrarily or by other considerations. 

When a subset is selected no single population within that 

subset is asserted to be the best one, except by implication if it 

happens that the subset selected is of size one. Hence the Subset 

Selection Approach gives less precise information but it provides more 

fl e Xi bi 1 ity . 

The infimum of the Probability of a Correct Selection in the 

Indifference Zone Approach is evaluated over the Preference Zone, where­

as in the Subset Selection Approach it is over the entire parameter 

space. 

The Subset Selection Approach is particularly useful in screening 

problems, for example, drug screening. It is also appropriate when k 

is very large and it is required to select a smaller number of popul­

ations to test further or to compare for secondary properties. 
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CHAPTER 3 

3. MULTIVARIATE DISTRIBUTIONS 

3.1 DEFINITION OF A MULTIVARIATE DISTRIBUTION 

A multivariate distribution is the joint probability distribution 

of p (~ 2) variables. A random sample of size n from a population having 

a multivariate distribution consists of n observations of p tuples 

(vectors) of measurements. 

The most important multivariate distribution is the Multivariate 

Normal Distribution. The multivariate normal distribution has as 

parameters, not only the means and variances of each of the p variables, 

but also covariances or correlations between pairs of these components. 

The density function of the multivariate normal distribution 

is 

f(~;) = 12P1 
1 exp[--2

1 (x. - u.)' r 1 
(X. - µ. )] 

(2II)'" Ir . J72 ....,, N, , ....,, ....,, 
1 

where 1; is a p variate random vector from the population II;. ~i and 

Ei are the corresponding vector of means and the pxp variance-covariance 

matrix respectively of the population II;. 

A p variate normal distribution with mean µ . and variance-....,, 

covariance matrix E; wi ll be denoted by Np(~;, Ei). The inverse of Ei 

, -1 wi 11 be denoted by l . . 
1 
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3.2 NOTATIONS USED IN MULTIVARIATE RANKING AND SELECTION 

Let rr
1

, rr
2

, ••.• , rrk be k independent p variate normal popuiat­

ions with mean vectors µ . and covariance matrices E
1
. , i = 1, 2, .... , k 

,.._. 1 

and denoted by Np(!:.;, E;). All the vectors are column vectors and the 

E; are assumed to be positive definite. 

The sample mean vector of the i th population IT;, based on a 

sample of size n is defined by 

n I x(i_) 
where x< i ) = =j =_l_c_J_ 

C n 

x. = 
rv1 

x< i) 
1 

x< i) 
p 

- ( i ) for c - 1, 2, .... , p and Xcj denotes the 

c th component of the j th random vector observed from IT;. 

The sample variance-covariance matrix S; of the i th population 

rr. based on a sample of size n is defined by 
1 

( i) 
sll 

( i ) 
s 12 

( i ) 
slp 

s . = 
1 

. 
( i ) 

spl s ( i) 

PP j 



n 
l 

where = j=l 
(n - 1) 

for c = 1, 2, .... , p, d = 1, 2, .... , p, i = 1, 2, .... , k. 

3.3 MULTIVARIATE RANKING AND SELECTION 

The multivariate parameters µ . and I:
1
., i = 1, 2, .... , k, are -, 

converted to the univariate parameters e1 , e2 , •••• , ek by a scalar 

function cp ( µ ., I -)~ where 
-1 1 

Let e[l] ~ e[2] ~ .... ~ e[k] denote the ordered parameters 

11 

e1 , e2 , •.•• , ek' where e[k] is the largest ei value. The best popul­

ation is the one associated with e[k]' 

Using the ei, i = 1, 2, .... , k values, it is necessary to 

select the best population out of the populations rr 1 , rr 2 , .... , rr k. 

To achieve this it is necessary to develop a procedure R such that for 

a fixed P* the probability of a Correct Selection satisfies 

Inf P(CS/R) = P* 
Qp 

where np is a subset of n the total parameter space of all admissible 

values of!= (e1 , e2 , •••• , ek) and Inf or Infimum denotes the greatest 

lower bound. 
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The best population could be selected by two different approach-

es. 

a) Indifference Zone Approach. 

Here the 11 CS 11 means the selection of the population 

associated with e[kJ· ~Pis a proper subset of the 

total parameter space n and also it is the Preference 

Zone. 

b) Subset Selection Approach. 

Here the 11 CS 11 means the selection of a subset S from 

the populations I\, rr2, .... , rrk such that S contains 

the populations associated with e[k] and np = n. 

Various choices have been made of the real valued functions in 

papers presented in recent years. An overview of these papers is 

given in Chapter 4 and Chapter 5. The following list gives the real 

valued functions used in the overview. 

I - 1 
e. = µ . l - µ . 

1 .....,, 
1 

.....,, 

e. =(i.i'. \½ i.i -; 1 .....,, ,__,, 

e . = Generalized variance 
1 

e. = Multiple correlation coefficient 
1 

e. = Product moment correlation for the bivariate (p = 2) 
1 

case 

e . = Coefficient of alienation. 
l 
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Each of the above functions reduces Multivariate parameters ta a 

Univariate parameter. However, an attempt was made by Dudewicz and 

Taneja (1981) to give a multivariate solution to the multivariate rank­

ing and selection problem. Chapter 6 is devoted to discussing this new 

technique. 



CHAPTER 4 

4. THE INDIFFERENCE ZONE APPROACH TO RANKING AND SELECTION OF 

SEVERAL MULTIVARIATE NORMAL POPULATIONS 

14 

As stated in the previous chapter, various real valued functions 

e. have been defined in recent work to select the populations. 
1 

Several real valued functions e. of the mean vectorµ. and the 1 .....,, 

covariance matrix E; are considered in this chapter. They are: 

1) The Mahalanobis Distance 

2) The Euclidean Distance 

3) Multiple Correlation Coefficients 

4) Sum of Bivariate Product Moment Correlations 

5) Coefficient of Alienation. 

4.1 SELECTION IN TERMS OF THE MAHALANOBIS DISTANCE 

The selection parameter here is e. = µ'. I: 1 
u- which is the 1 .....,, 1 ,..,, 

Mahalanobis distance function. The cases studied in recent work in-

volve that of Ei known and Ei unknown. Here, an overview is presented 

of the work carried out by Alam and Rizvi (1966) and Srivastava and 

Taneja (1972) using this parameter. 

4.1.1 PROCEDURES STUDIED BY K. ALAM AND M. H. RIZVI (1966) 

The procedure R selects t populations such that the infimum of 

the probability of a correct selection over a sub-space of the parameter 
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space is equal to P*. The main exercise is to determine the least fav­

ourable configuration of the parameter space for which the probability 

of a correct selection is a minimum. The expression for the minimum 

value determines the smallest sample size needed to satisfy the P* con­

dition. 

The selection of k multivariate normal populations with mean 

vector µ. and covariance matrices z
1
. (i = 1, .... , k) using the ,..,, 

-1 
Mahalanobis distance function e . = µ'. l· µ. reduces to selecting from 1 ...... , 1 ,.,..., 

k, non central chi squared populations (in the case of zi known) and 

non central F populations (in the case of zi unknown) with respect to 

the non-centrality parameters. The best population is the one assoc­

iated with e[k]. 

Let X. and ...... , Si denote the sample mean vector and sample covariance 

matrix (defined in Chapter 3.2), based on a sample of size n from II i . 

The P* condition may be satisfied only on a subset of n which may be 

termed a "preference zone 11
• One such subset of n described here is 

Q = n1 n n2 p 

where n 1 = {e 8 [k-t+l] 8 [k-t] :;;: 8 1 } 
"' 

and Q = 2 {f 8 [k-t+l] 1 8 [k-t] :;;: 02} 

for some o 
1 > 0' 02 > 1. 

For selecting the t best populations such that the Probability of 

Correct Selection ~ P* whenever e E n , Alam and Rizvi (1966) have proposed 
"' p 

rules for the two cases ~i known and zi unknown. 



4.1.1. 1 CASE 1 Li KNOWN 

Let -1 l-1 -u. = x. . x. ' 1 ,._,, 1 ...... , i = 1, 2, .... , k. 

Then nUi has a non central x2 distribution with p degrees of freedom 
-1 

and non centrality parameter A'. = n e . = n µ'. I- µ .• The goal is to 
l 1 ,._,, 1 -, 

select the t populations associated with U[k-t+l], .... , U[k] where 

15 

U[k] = max(U 1 , •••• , Uk). The least favourable configuration (LFC) is 

given by 

The smallest value of n required to satisfy the P* condition is obtained 

from, 

where fp(x, A1
) and Fp( x, A') denote the probability density function 

and the cumulative distribution function respectively of a non central 

x2 random variable with p degrees of freedom and non centrality para­

meter A 1 • 

These functions are given by 
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Srivastava and Taneja (1972) have stated that the tables for n are not 

yet availab le to carry out this procedure. 

4.1.1. 2 CASE 2 Ei UNKNOWN 

Let v. = x,'. s: 1 x,.(n-p)/np, i = 1, 2, .... , k. 
1 "' 1 "' 

Then nVi has a non central F distribution with p and (n-p) degrees of 

freedom and non centrality parameter Ai = n ei 
I -1 

= n µ. l· µ .• ,...,, 1 ,...,, The goal 

is to select the t populations associated with V[k-t+l], .... , V[k] 

where V[k] = max(V 1, V2 , .... , Vk). The least favourable configuration 

(LFC) is given by 

for some o1 > 0 and o2 > 1. The smallest value of n required to satisfy 

the P* condition is obtained from 

Ioo k-t ( n 01) { ( n 0102 \}t-1 ( n 0102 \ 
t o Gp , n - p x ' o 2 - 1 1 - Gp ' n - p x ' o 2 - 1 ) g p , n - p x ' o 2 - 1 ) d x = p * 

where g (x, A') and G q(x, A') denote the probability density function 
p ,q p' 

and the cumulative distribution function respectively of a non central F 

random variable with p and q = (n-p) degrees of freedom and non central­

ity parameter A1
• 

These functions are given by 



g / X A I) p ,q \ , 

= Ix g (t, A')dt 
0 p ,q 

V' 
A I' 

2r I r. 
X > 0 

4.1.2 PROCEDURES STUDIED BY M. S. SRIVASTAVA AND V. S. TANEJA (1972) 
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The problem of sequential selection of the best of k, p variate 

normal populations with means µ., i = 1, 2, .... , k and common covariance ,...,, 

matrix z:: (for known and unknown z:: ) are considered. Here we discuss the 

selection done with respect to the Mahalanobis distance function 
I -1 

si=~iI .l:.i· 

Here Paulson's (1964) sequential procedure for selecting the 

normal population with the largest mean is extended to the multivariate 

case. Truncated and non truncated sequential procedures similar to 

those of Paulson (1964) and Hoel and Mazumdar (1968) are investigated. 

Hoel and Mazumdar (1968) have proposed a sequential method of selecting 

a member of an exponential family with the largest parameter. 

The following form is taken by the procedures discussed here. 

Denote the ranked 0i 's (= .l:.i I-
1 

.l:.i) by 8[l] ~ .... ~ 8[k]" The problem 

is to design a procedure R for selecting the best population correspond­

ing to the largest 8i value such that 

P(CS/R) ~ P* whenever 8[k] - 8[k-l] ~ o* 

where o* and P* are specified by the experimenter and rr [k] is the popul­

ation associated with 8[k]" 
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In the sequential procedures developed here the inferior popul­

ations are eliminated before the final stage of the experiment which 

tends to decrease the number of observations required to reach a 

decision. It is also proved that in the non truncated case the proper 

sequential procedure terminates with probability one. 

The following lemma by Bechhofer, Kiefer and Sobel (1968) is 

needed in the theory to follow. 

Let Z
1

, Z2 , •••• be a sequence of independently distributed 

random variables having the same distribution as Z = X - Y, where X 

and Y are independent non central chi square random variables with p 
I I 

degrees of freedom and non centrality parameters A1 and A2 respectively. 

and b > 0. Then 

where 'Sup' or Supremum is the least upper bound and t
0 

> 0 is the 

solution of 

0 < t < ½ . . . . ( A) 

4.1.2. 1 NON TRUNCATED SEQUENTIAL PROCEDURE 

Let 
I - 1 

u . . = x . . I x .. , i=l, .... ,k, j=l,2, .... 
lJ "'lJ -lJ 

z. = 
,n 

n 

l 
j=l 

u . . 
lJ 
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Now for o* > O define 

where t 0 is the solution of equation (A) with A= 0. 

Srivastava and Taneja (1972) do not explain how to choose A~ - A~ 

and A~+ A~ which are in fact lower and upper bounds for the ordered 

differences and sums respectively of the non centrality parameters. It 

is reasonable to choose A~ - A~ = o* but the choice of A~ + A~ is 

unclear. 

The values of t
0 

have been tabulated by Srivastava and Teneja 

(1972) for selected values of ( A; - A~) and ( A; + A~)~ for the number 

of variates, p = 2, 3, 4. The table is given below. 

TABLET 4.1 Values oft for A = 0 

I I I I 
t values 

A2 - Al A2 + Al 
p = 2 3 4 

0.5 4.5 0.0381 0. 0325 0.0287 
6.5 0.0287 0.0259 0.0231 

1.0 5.0 0. 0709 0.0625 0.0550 
7.0 0.0550 0.0493 0.0447 

2.5 6.5 0.1478 0 .1328 0. 1197 
8.5 0 .1197 0. 1094 0 .1000 

5.0 9.0 0.2321 0.2134 0.1966 
11.0 0 .1947 0 .1806 0 .1684 

8.0 12.0 0 .2931 0.2753 0.2594 
14.0 0. 2537 0. 2406 0.2275 

12.0 16.0 0.3437 0. 3287 0.3137 
18.0 0.3062 0.2931 0.2819 



The sequential procedure R1 is as follows. 

Start with one observation on each population rr i and compute 

Zil' i = 1, 2, .... , k. Eliminate from further consideration any 

population rrs for which 
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• • . • ( B) 

If all but one population is eliminated terminate the experiment and 

select the remaining population as the best one. Otherwise go on to 

the second stage of the experiment (m = 2, 3, .... ) and take one 

measurement on each population not eliminated after the (m-l)th stage 

and eliminate any population rrs for which 

. . • . ( C) 

where the maximum is taken over all populations left after the (m-l)th 

stage. We terminate the procedure when there is only one population 

left out and select it as the best. 

It has been shown in Paulson {1964) that this procedure termin­

ates with probability one, and that 

P(CS/R 1 ) >, P* whenever e[k] - e[k-l] >, o*. 

4.1.2.2 TRUNCATED SEQUENTIAL PROCEDURE 

In the case of the Non Truncated Sequential Procedure it has not 

been possible to obtain any upper bound for the expected number of 

observations. For this reason a class of truncated procedures similar 



to Paulson's (1964) procedure has been considered. 

Let n be chosen such that O < n < o*. Define 

C = t- 1 log{(k-1)(1-P*)- 1 } 
n n 

where t is the solution of equation (A) with A = n. Let W be the 
n n 

largest integer less than Cn/ n. The sequential procedure R
2 

is as 

follows: 

Start sampling as in the case of the non-truncated case with 

equations (B) and (C) replaced by 

and 

respectively. 

If more than one population remains after the W th stage the 
n 
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experiment is terminated at the next stage by selecting the population 

with the largest Z value. For this procedure R
2 

with n E (0, o*) 

P(CS/R2 ) ~ P* whenever e[k] - e[k-l] ~ o* 

As in the case of Paulson's (1964) procedure, the optimum value of n is 

not known. However as recommended by Paulson (1964) the value of 

n = o*/ 4 may be used. 

I I I I 

The same comments on the choice of A2 - A1 and A2 + A1 stated in 

Chapter 4.1.2.1 apply here too. 



The values oft have been tabulated by Srivastava and Taneja 
lj 

(1972) for selected values of ( A~ - A~) and ( A; + A~) for the number 

of variates, p::: 2, 3, 4. The table is given belo\<1. 

TABLET 4.2 VALUES OF t 

t values I I I I I 

A2 - Al A A2 + Al 
p :;: 2 3 4 

0.5 0.1 4.5 0.0308 0.0267 0.0235 
0 .1 6.5 0.0235 0 .0211 0.0190 
0.2 4.5 0.0231 0.0200 0.0177 
0.2 6.5 0.0177 0.0158 0.0143 
0.3 4.5 0.0154 0.0133 0.0118 
0.3 6.5 0.0118 0 .0105 0.0095 
0.4 4.5 0.0077 0.0067 0.0059 
0.4 6.5 0.0059 0.0053 0.0048 

1.0 0.2 5.0 0.0574 0.0502 0.0446 
0.2 7.0 0.0446 0.0401 0.0364 
0.5 5.0 0.0359 0.0314 0 .0279 
0.5 7.0 0.0279 0.0251 0.0228 
0.7 5.0 0.0215 0.0188 0.0167 
0.7 7.0 0 .0167 0.0150 0 .0137 

0.9 5.0 0 .0072 0.0063 0.0056 
0.9 7.0 0.0056 0.0050 0.0045 

2.5 0.6 6.5 0 .1143 0 .1019 0.0920 
0.6 8.5 0.0917 0.0836 0.0769 

1.2 6.5 0.0784 0.0699 0.0630 
1. 2 8.5 0.0629 0.0573 0.0526 

1.8 6.5 0.0419 0.0374 0.0337 
1.8 8.5 0.0337 0.0307 0. 0282 

2.4 6.5 0.0059 0.0053 0.0048 
2.4 8.5 0.0048 0.0044 0.0040 

5.0 1.0 9.0 0 .1911 0.1745 0.1604 
1.0 11.0 0.1590 0.1473 0 .1372 

2.2 9.0 0.1355 0 .1231 0 .1129 
2.2 11.0 0. 1124 0 .1038 0.0965 

3.5 9.0 0 .0716 0.0651 0.0597 
3.5 11.0 0.0597 0.0552 0.0513 

4.8 9.0 0.0092 0.0084 0.0077 
4.8 11.0 0.0077 0. 0072 0.0067 

23 
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TABLET 4.2 (continued) 

I I 
t values 

A I + I 
\ - \ 1 \ \1 2 2 p = 2 3 4 

8.0 1. 6 12 .0 0. 2472 0.2298 0.2144 
1. 6 14.0 0.2114 0 .1985 0 .1870 
3.5 12.0 0.1783 0 .1644 0.1526 
3.5 14.0 0.1515 0. 1416 0.1329 
6.5 12. 0 0.0566 0.0524 0. 0489 
6.5 14.0 0.0488 0.0457 0.0430 
7.8 12.0 0.0072 0.0067 0 .0063 
7.8 14.0 0.0063 0.0059 0.0056 

12.0 3.0 16.0 0. 2821 0.2657 0.2507 
3.0 18.0 0.2465 0. 2338 0.2223 
6.0 16.0 0. 1932 0.1803 0.1691 
6.0 18.0 0. 1678 0 .1583 0 .1498 
9.0 16.0 0.0920 0.0862 0.0811 
9.0 18.0 0. 0810 0.0766 0.0726 

11. 5 16.0 0.0141 0.0134 0.0127 
11. 5 18.0 0.0127 0 .0121 0 .0115 

4.2 SELECTION IN TERMS OF THE EUCLIDEAN DISTANCE 

The selection parameter here is e . = (µ '. µ. )½ which is the 1 .....,, .....,, 

Euclidean distance function. The cases studied in recent work involve 

that of the common covariance matrix E known and E unknown. Here, an 

overview is presented of the sequential procedures investigated by 

Srivastava and Taneja (1972). 

4.2.1 PROCEDURES STUDIED BY M. S. SRIVASTAVA AND V. S. TANEJA (1972) 

The problem of sequential selection of the best of k, p variate 

normal populations with means µ ., i = 1, 2, .... , k and common covariance .....,, 

matrix E (for known and unknown E) are considered. Here we discuss the 
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selection done with respect to the Euclidean distance function 
I !,: e,. = ( µ. µ. ) 2 . .....,, ,_,,, 

Suppose that the ordered set of e . 
l 

I !,: 
= (µ . µ .) 2 values of populat-,_,,, ,_,,, 

ions I\, rr2, .... , rr k are denoted by 

The ei values are assumed to be unknown and the best population is the 

one which corresponds to e[k]· 

Chow and Robbin's (1965) sequential theory has been applied to 

design a set of rules R such that 

lim P(CS/R) ~ P* whenever e[k] - e[k-l] ~ 8* 
8*--0 

where P* and 8* are preassigned constants. 

Two cases are considered. 

4.2. 1.1 CASE 1 E KNOWN 

Let x. = ,_,,, n 
n 
2 X .. /n 

j= 1 ,_,,, J 
i=l,2, .... ,k~ 

where X. is the sample mean vector based on n independent observations --..,n 

from II; , i = 1, 2, .... , k. The procedure R
1 

is as follows: 

Take a samp le of size n from each population where n is t he small­

est integer satisfying 

n a2 , .t' *- 2 
~ /\ 1 u 

where max c' E c 
c:c'c=l"" ""' 
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i.e., A1 is the maximum characteristic root of I and 1 a 1 is given by 

¢(72) = (1 - P*)(k - 1)- 1 

where ¢(x) = L: [e-t
2

/
2 (2 rr )-½]dt is the normal cumulative distribut­

ion function. The standard normal probability density function is given 

by 

f(x) = 

Now select the population associated with the largest x'. X .. -,n -1 n 

4.2.1.2 CASE 2 I UNKNOWN 

Let x. ,...,, n 

n 
= l X .. /n 

j= 1 -, J 

k n 

i=l,2, .... ,k 

Sn= (nkf 1 I l (x . . - x. ) 1 (X . . - x.) 
i=l j=l -lJ -,n "-'lJ -,n 

Aln = max b 1 Sn£ 
b:b'b=l"" 

Note that lim >-- ln = A1 almost surely. 
n--

Let {an } be a sequence of positive constants such that lim an= a 
n_,, 

where 1 a 1 is defined by 

¢(T2) = (1 - P*)(k - 1)- 1 

and ¢(x) was defined in Chapter 4.2.1.1. The procedure R
2 

is as 

follows: 



27 

Start by taking n
0 

> p observations from each population and then 

one observation at a time from each population and stop according to the 

stopping rule defined by 

2 -2 N = smallest n ~ n
0 

such that \ln ~ no* an . 

When the sampling is stopped at N = n select the population with the 

largest x'. x. as the best population. -,n -,n 

Srivastava and Taneja (1972) state that as o* ~ 0, this procedure 

terminates with probability 1. Extensive work done by Starr (1966) on 

the univariate case suggests that the procedure and variations of it 

works for various values of o*. 

It is not clear how n
0 

is determined in practical applications. 

Presumably n
0 

>pis chosen so that it is large enough for Sn to be a 
0 

reasonable approximation tor but not so large that the procedure 

terminates immediately. Srivastava and Taneja (1972) do not discuss 

this or give guidelines on how to choose n
0

• 

4.3 SELECTION IN TERMS OF MULTIPLE CORRELATION COEFFICIENTS 

Here we consider the problem of selection oft largest from among 

k multiple correlation coefficients, each arising from one of k indep­

endent p variate normal populations with unknown mean vectors and un­

known covariance matrices. 

To arrive at a selection procedure a preassigned probability 

value (~)- 1 
< P* < 1 is set and the requirement that the probability of 

a correct selection is not smaller than P* whenever the square of the t 

largest multiple correlation coefficients 
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1) exceeds the square of each of the remaining multiple correl­

ations by a magnitude o
1

, and simultaneously, 

2) each is at least o
2 

times as large as each of the squares of 

the remaining multiple correlations 

are met. 

The separation thresholds O < o1 < 1 and o
2 

> 1 are also pre­

assigned. These two condi ti ans specify a 11 preference zone" in the 

parameter space. The problem is formulated as follows: 

Consider k (~ 2) independent p variate (p ~ 2) normal populations 

Np (l!.i , Ei) , i = 1, 2, .. . . , k. Here the mean vectors .l:.i and the 

covariance matrices Ei are all unknown. For the i th population let 

ei denote the squared population multiple correlation coefficient 

between the first variate and the set of (p - 1) remaining variates. 

This is defined by 

2 
e .= p. l 2 1 1:, , .... , p 

Here a~1) is the leading element of Ei and Ei(ll) is the matrix obtained 

from Ei by deleting the first row and the first column. 

Let the ordered values of the ei's be denoted by 

The problem is the selection of the t < k populations with the largest 

e1
1 s on the basis of n sample observations from each of the k populations. 



Let the parameter space Q of the ei's be partitioned into a 

"preference zone" ri and its complement the II indifference zone" Q "p I. 

For specified np and P* ((~)- 1 
< P* < 1) a decision procedure R is 

required where 

Inf P(CS/R) ~ P*. 
Qp 
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Rizvi and Solomon (1973) have investigated a decision procedure 

Ras an asymptotic (as n ~ 00 ) solution to this problem, with an explicit 

definition of np the preference zone. 

Alam, Rizvi and Solomon (1975) subsequently investigated the 

procedure R in the exact sample case. 

4.3.1 PROCEDURE INVESTIGATED BY M. H. RIZVI AND H. SOLOMON (1973) 

The procedure R
1 

is as follows: 

Consider a random sample of size n where n > p from each of the 

k populations. The sample squared multiple correlation coefficient 

where sii) is the leading element of the sample 

I S I . th f t f ( i ) · ( . - 1 i(ll) ,s e coacoro s 11 ,, - , .... , 

...• ' p 

covariance matrix Si and 

k), is then computed 

for each population. The yi 's are then ranked, breaking ties if any, 

with suitable randomization. The populations corresponding to the t 

largest yi's are then selected. 

For this problem the preference zone np is defined as n1 n n2 

where 
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s-2 1 = {_~. E Q 8 - [ k-t+ 1] 

and O < o
1 

< 1 and o
2 

> 1 are specified constants. 

Calculation of n 

For the procedure R1 and the preference zone Qp the probability 

requirement Inf P(CS/R) ~ P* is employed and solved asymptotically for 
Qp 

the common sample size n from each population. This value of n provides 

the sample size to incorporate in the selection procedure R
1 

so that R1 

satisfies Inf P(CS/R
1

) ~ P* asymptotically. 
Qp 

For fixed pas n ~ 00 , nyi is asymptotically distributed as a non­

central chi square random variable with q = (p - 1) degrees of freedom, 

and non-centrality parameter A 1 = n ei. The non-central chi squared 

probability density function denoted here as fq(Y, A1
) and the cumulative 

distribution function denoted here as Fq(Y, A 1
) are given in Chapter 

4.1.1.1. 

The asymptotic probability of a correct selection Pa(CS/R1 ) can 

now be written as, 

k OO k-t 
Pa(CS/R 1) = l J IT Fq(y,n e[B]) 

i=k-t+l o s=l 

Here, the least favourable configuration (LFC) is given by 



The smallest common sample size n is obtained as the solution of the 

integral equation 
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The tables used to solve the equation for no
1 

for P* = .90 and P* = .95 

are given in Rizvi and Solomon (1973). Once no
1 

is known, n can be 

ca 1 cul ated. 

4.3.2 PROCEDURE INVESTIGATED BY K. ALAM, M. H. RIZVI AND H. SOLOMON 

(1975) 

The Selection Procedure R
2 

explained here is the same as the 

procedure R
1 

(given in Chapter 4.3.1) except for the specified prefer­

ence zone and the fact that this procedure is st~died in the exact 

sample size case. Here also, the sample squared multiple correlation 

coefficient Y; (defined in Chapter 4.3.1) for each population IT; 

(i = 1, 2, .... , k) is used to select t < k populations. The yi 1 s are 

ranked breaking ties if any with suitable randomization and the popul­

ations corresponding to the t largest yi 1 s selected. 

For this problem, the preference zone np is defined as 
I 

np = n1 n n
2 

where 
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I 

where o
1 

> 1 and o
2 

> 1 are specified constants. 

Calculation of n 

For the procedure R2 and the preference zone Qp the probability 

requirement Inf P(CS/R
2

) ~ P* is employed and solved for the common 
Qp 

sample size n for each population. This value of n provides the sample 

size to incorporate in the selection procedure R2 so that R2 satisfies 

Inf P(CS/R
2

) ~ P*. 
Qp 

Some preliminaries concerning the distribution of a typical 

sample squared multiple correlation coefficient yi based on a random 

sample of size n (~ p + 2) and having population squared multiple 

correlation coefficient e. are given below. Let 
l 

00 

J(a,b;c;x) = I 
r=O 

denote the hypergeometric function where (a)
0 

= 1 and (a)r = a(a+l) 

(a+r-1), r = 1, 2, .... The probability density function of Y; is 

given by 

where 

i.e. a Beta probability density function. a= (n-1)/2, c = (p-1)/2 

and Hy(a,c, ei) denotes the cumulative distribution function of yi, 

where 
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The probability of a correct selection P(CS/R
2

) can be written as 

k k r1 k-t 
I 1_ 

8 
__ II

1 
HY(a,c,e[ BJ) 

i=k-t+ 1 .I() 
II {l - HY(a,c,e[a ]) } . 

a=k-t+ 1 
ai i 

hy(a,c,e[i])dy 

Here, the least favourable configuration (LFC) is given by 

8 [k-t+ 1 J = 

The sample size n is obtained as the solution of the integral equation 

where a= (n-1)/2 and c = (p-1)/2. 

Tables to solve the equation are not given in Alam, Rizvi and 

Solomon ( 19 75) . 

4.4 SELECTION IN TERMS OF THE SUM OF THE BIVARIATE PRODUCT-MOMENT 

CORRE LA TI ONS 

This is concerned with selecting the single la~gest population 

having the highest 'association' from among the set of k populations. 

Here, let ei be a measure associated with population II;, defined by 



p p 
0 i ·- I I 

c= 1 d= 1 
Cfd 

( i ) 
Ped 

p ( p-1) ' 
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i=l,2, .... ,k 

where p(i) is the bivariate product-moment correlation coefficient be­cd 
tween the c th and the d th coordinates of a vector 1 from TI ;. 

where 

\ = l. 
1 

( i ) 
( i) = cr cd 

Ped -----
( ( i ) ( i ))½ 
\ (J cc (J dd 

Let 8[l] ~ 8[Z] ~ .... ~ 8[k] be the ordered values of 8i. Govindarajulu 

and Gore (1971) have studied a procedure for selecting the population 

associated with 8[k] so that the P* condition Inf P(CS/R) ~ P* is 
np 

asymptotically (n-+ 00 ) is satisfied. Here np is the preference zone. 

4.4. 1 PROCEDURE STUDIED BY Z. GOVINDARAJULU AND A. P. GORE (1971) 

Define 
p p r(i) 

V. = L l ( cd 1) ' 1 c= 1 d= 1 P p-
i=l,2, .... ,k 

c1d 

where r(i) is the sample correlation coefficient defined by cd 



ands~~) is defined in Chapter 3.2. The procedure R selects the 

population associated with the largest Vi. 

For the case p ~ 3 the authors have shown that for large n 

P( CS/R) = P[u,. Ir, 8* {2( p+3) ( p- 3)}-½ 
~ p(p-1) ' i=l, .... ,k-1] 

whenever e[k] - e[k-l] ~ o* and U;, .... , Uk-l are standard normal 

random variables with equal correlation ½. 
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In the bivariate case ei will be the product-moment correlation 

and Vi the sample correlation coefficient, and 

[ 
' rn o* 

P ( CS/ R) ~ P U i ~ 12 i = 1, 2, .... , k-1]. 

4.5 SELECTION IN TERMS OF THE COEFFICIENT OF ALIENATION 

Let x. = (Y., z.) 1 be a (q 1 + q2 ) dimensional random vector with -, -, -, 
covariance matrix 

I; = 

where I(i) I(i) I (i) and I(i) are submatrices of dimension q
1 

x q
1

, 
yy ' yz ' zy zz 

q
1 

x q
2

, q
2 

x q
1 

and q
2 

x q
2 

respectively. Assume that q
1 

~ q
2

. 

The coefficient of alienation between Y. and z,. is e. and defined by· -, "' , 
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where the coefficient of alienation is a measure of association between 

the two sets of variables. For q
1 

= 1 it is equal to (1 - p
2

) where p 

is the multiple correlation coefficient between y and (z
1

, z
2

, 

Let 0[l] ~ 0(2] ~ .... ~ 0[k] be the ordered 0i values. 

.... , 

The selection of the population associated with 0[l] subject to 

the P* condition 

Inf P(CS/R) ~ P* whenever 
rlp 

where o* > 1, and has been considered by Frischtak (1973). 

4.5.1 PROCEDURE PROPOSED BY R. M. FRISCHTAK (1973) 

Let Vi be defined by 

where Si is the sample covariance matrix based on n independent vector 

observations from TI;, s(i) and s(i) are the appropriate submatrices of 
yy zz 

the partitioned S; matrix 

s. = , 
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The rule R is to select the population which gives the smallest 

v .. An asymptotic (n ~ 00 ) lower bound on the probability of correct 
1 

selection is given by 

i == 2, 3, .... , k} 

where U
2

, U
3

, •••• , Uk are standard nonnal variables with equal correl­

ation 1/2. 
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CHAPTER 5 

5. THE SUBSET SELECTION APPROACH TO RANKING AND SELECTION OF SEVERAL 

MULTIVARIATE NORMAL POPULATIONS 

As in the preceding chapter, various real valued functions have 

been defined to select the populations. 

These real valued functions are: 

1) The Mahalanobis Distance 

2) Generalized Variances 

3) Multiple Correlation Coefficients 

4) Measures of Association between Two Subclasses of 

Vari ates. 

5.1 SELECTION IN TERMS OF THE MAHALANOBIS DISTANCE 

The selection of a subset of k Multivariate Normal Populations 

that would include the population located farthest from the origin was 

considered by Gupta (1966). 

This distance, known as the Mahalanobis distance, is defined as 

I 2-. 1 
µ . µ. where µ. is the mean vector and t:

1
. is the covariance matrix "', 1 ,_,, ,_,, 

of the i th population. 

I ,-1 
Let Y . . = X .. l f,·J·. 

1 J ---, J 
Here, all r i are assumed to be equal to 

r , and X .. , i = 1, 2, .... , k, j = 1, 2, .... , n is a vector with p ,.,..., J 
n 

components of observations on the i th population. Then Y. = I Y .. 
1 j=l lJ 

has a non-central chi squared distribution with np degrees of freedom 
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I I ,-1 and non centrality parameter ;._ .= n e. where e. = u. l µ .• 1 1 1 ,..,, ,..,, The non-

central chi squared probability density function and the cumulative 

distribution function are given in Chapter 4.1.1.1. 

5.1.1 RULES PROPOSED BYS. S. GUPTA (1966) 

5.1.1.1 SELECTION OF A SUBSET CONTAINING THE POPULATION WITH THE LARGEST 

Here i z:-1 e. = µ . µ . ' 1 ....,, ,..,, 

I ,-1 
Y .. =X . . l x .. , 

1 J ....,, J ....,, J 

n 
v. = I v ... 

1 j= l lJ 

The rule R
1 

is as follows: 

Select II ; if and only if Yi~ c max(Y 1 , Y2 , •••• , Yk) where 

0 < c = c(k,n,p,P*) ~ 1 is determined to satisfy the P* condition, 

Inf P(CS/R
1

) >, P*. 
S1 

Gupta (1966) shCMed that 

where f ;._ ,(x) and F;._ ,(x) are the probability density function and the 

cumulative distribution function respectively of a non central chi 

squared distribution with np degrees of freedom, and non centrality 

parameter >- '. These have been defined in Chapter 4.1.1.1. 

-
The right hand side of the integral is non decreasing in A 1

• 

This has been shown by Gupta (1966) fork= 2 populations and Gupta and 
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Studden (1970) fork~ 2 populations. The integral is monotonically 

increasing in >-.
1 so the infimum take place when >-.

1 = 0. The property 

of monotonicity is that the probability of selecting a population with 

a larger value of >-.
1 is at least as large as the probability of select­

ing a population with a smaller value of >-.
1

• Therefore the problem 

reduces to selecting the gamma population with the largest scale para­

meter. Thus the constant c for this procedure is given by 

(' Gk-l (~) g (x) dx = P* 
J, v C v 
0 

where g (x) and G (x) are the probability density function and the cumul-v \) 

ative distribution function respectively of a standardized gamma variable 

with v = np/2 degrees of freedom. These functions are given by 

The values for care tabulated by Gupta (1963) and Armitage and Krish­

nai ah ( 1964). 

5.1.1.2 SELECTION OF A SUBSET CONTAINING THE POPULATION WITH THE SMALLEST 

Here 

The rule R
2 

is as follows: 

I \-1 e. = µ. l µ. 
l -, -, 

I \ -1 Y .. =X .. l x .. 
l J -, J ,...., J 

n 
y i = l 

j=l 
y .. 

lJ 



Select IT ; if and only if Y; ~ b min(Y 
1

, Y2 , •••• , Yk) where 

b = b(k,n,p,P*) > 1 i s determined to satisfy the P* condition 

Inf P(CS/R
2

) ~ P*. 
Q 

Gupta (1966) showed that 

r
(X) 

k-1 Inf Jo [ 1 - F >- , ( x/b) ] f >- , ( x) dx 
>- '~0 

where f >- ,(x) and F>-, (x) are the probability density function and the 

cumulative distribution function respectively of a non central chi 

squared distribution with np degrees of freedom and non centrality 

parameter >. 1
• This has been defined in Chapter 4.1.1.1. 
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The right hand side of the integral is non decreasing in >. 1
• The 

integral is monotonically increasing in >. 1 so the infimum takes place 

when>-' = 0. Therefore the problem reduces to selecting the gamma 

population with the smallest scale parameter. Thus, the constant b 

for this procedure is given by 

J
r

00 

[1 - G (x/b)]k-l g (x) dx = P* 
O V V 

where G (x) is the cumulative distribution function of a standardized 
V 

gamma variable with np / 2 degrees of freedom. This has been defined in 

Chapter 5.1.1.1. The values for bare tabulated by Gupta and Sobel 

(1962) and Annitage and Krishnaiah (1964). 
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5.1.2 PROCEDURES STUDIED BYS. S. GUPTA AND W. J. STUDDEN (1970) 

5.1.2.1 SELECTION OF A SUBSET CONTAINING THE POPULATION WITH THE LARGEST 

8;, E; NOT NECESSARILY EQUAL BUT KNOWN 

Here I \-1 e. = µ. l· \l · l ,.,,, l -, 

I \ -1 z .. =X··l· X .. l J ,.,,, J l ,..,, J 

n 
Z; = l 

j=l 
z .. 
lJ 

The procedure R
1 

is as fo 11 o.-1s: 

Select IT; if and only if c1Z; ~ max(Z
1

, •••• , Zk), c1 > 1 where 

c1 is determined to satisfy the P* condition 

Gupta and Studden showed that 

Inf P(CS/R1) ~ P*. 
[l 

where fnp(x) and Fnp(x) are the probability density function and the 

cumulative distribution function respectively of a central chi squared 

distribution with np degrees of freedom. These functions are given by 

½np-1 -½x 
f np ( x) = X e 

2np/2 r(np/2) 

F np ( x) = Ix fnp(t) dt 
0 

c 
1 

is chosen so that 
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5.i.2.2 SELECTION OF A SUBSET CONTAINING THE POPULATION WITH THE SMALLEST 

9;, ti NOT NECESSARILY EQUAL BUT KNOWN 

Here 
I r l 0 . = ll· ll· l ...... , l ...... , 
I rl z .. = x .. X .. 

' l J ...... , J l -lJ 

n 
z. = l z .. 

l j= 1 lJ 

The procedure R
2 

is as fo 11 ows: 

Select II; if and only if Z; ~ b1 min(Z 1 , •••• , Zk), b
1 

> 1 where 

b
1 

is determined to satisfy the P* condition Inf P(CS/R
2

) ~ P*. 
Q 

Gupta and Studden (1970) showed that 

where fnp(x) and Fnp(x) are the probability density function and the 

cumulative distribution function respectively of a central chi squared 

distribution with np degrees of freedom. These functions have been 

given in Chapter 5.1.2.1. b
1 

is chosen so that 

5.1.2.3 SELECTION OF A SUBSET CONTAINING THE POPULATION WITH THE LARGEST 

6;, t ; ARE DIFFERENT AND UNKNOWN 

Here 
I \-1 

6 ; = ~; l ; l; 

n 
X. - l X • . /n 
...... , j=l ,..,, J 



n 
s . = I ( X. . - x. ) ( X . . 

1 j=l -lJ ,..,, -lJ 

-1 -1 -z.=x.s. x. l ,_,, 1 ,..,_,, 

The procedure R
3 

is as follows: 
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x.) 1 /n-l ,_,, ' 

Select II ; if and only if c2 Z; ~ max(Z
1

, ••.• , Zk), c2 > 1 where 

c2 = c
2

(k,n,p,P*) is determined to satisfy the P* condition 

Inf P(CS/R
3

) ~ P*. 
n 

Gupta and Studden (1970) showed that 

Inf P(CS/R
3

) = J00 

Fk-l (c
2

x) f p(x) dx 
n o p,n-p p,n-

where f n (x) and F n P(x) are the probability density function and 
p ' -p p' -

the cumulative distribution function respectively of a central F 

distribution with v
1 

= p and v
2 

= n-p degrees of freedom. These 

functions are given by 

r (( v1+v2)/2) v1/2 (v /2)-1 -½(v1+v) 
= r (vl/2) r(v2/2) (v1 / v2 ) x 1 (l+( v1 / v2 )x) 2 

c is chosen so that 
2 

for X > 0 

1
00 

Fk-l (c
2

x) f p( x) dx = P* 
0 

p,n-p p,n-

The values of 1/c
2 

have been tabulated by Gupta and Panchapakesan (1969). 
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5.1.2.4 SELECTION OF A SUBSET CONTAINING THE POPULATION WITH THE SMALLEST 

ei, I i ARE DIFFERENT AND UNKNOWN 

Here 
I I~1 e. = µ . µ. 

1 -, -, 
n 

x. = l X .. /n -, j=l -lJ 

n 
s. = I ( x .. - X. )(X .. - x.)'/n-1 

1 j=l -, J ,...,, -, J -, 
-1 s:1 x. z. = x. 

1 -, 1 -, 

The procedure R
4 

is as fo 11 ows: 

Select TI ; if and only if Z; ~ b
2 

min(Z 1 , •••• , Zk), b
2 

> 1 where 

b
2 

is determined to satisfy the P* condition Inf P(CS/R
4

) ~ P*. 
Q 

Gupta and Studden (1970) showed that 

where fp,n-p(x) and Fp,n-p(x) are the probability density function and 

the cumulative distribution function respectively of a central F 

distribution with v
1 

= p and v
2 

= n-p degrees of freedom. These funct­

ions have been given in Chapter 5.1.2.3. b
2 

is chosen so that 
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5.1.3 PROCEDURE CONSIDERED BY K. ALAM AND M. H. RIZVI (1966) 

5.1.3.1 SELECTION OF A SUBSET CONTAINiNG THE POPULATION WITH THE LARGEST 

0;, I ; NOT NECESSARILY EQUAL BUT KNOWN 

Here 
I l~l e. = µ . µ . 

l ..... , ,_,, 

n 
x. = I x .. ;n ,_,, j=l __ , J 

-1 I~1 T- = x. x. 
l ..... , __ , 

The procedure R is as follows: 

Select IT ; if and only if Ti ~ c
3 

max(T
1

, •••• , Tk) where 

0 < c
3 

< 1. The smallest value of c
3 

required to satisfy the P* con­

dition Inf P(CS/R) ~ P* is determined by the equation 
~ 

Joo Fk-1(c x) f (x)dx = P* 
p 3 p 

0 

where fp(x) and Fp(x) are the probability density function and the cum­

ulative distribution function respectively of a central chi squared 

distribution with p degrees of freedom. These functions have been 

defined in Chapter 5.1.2.1. 

Gupta and Panchapakesan (1979) state that this procedure is 

unsatisfactory as the constant c
3 

does not depend on n. 
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5.1.4 UNSOLVED PROCEDURES 

5.1.4.1 SELECTION OF A SUBSET CONTAINING THE POPULATION WITH THE LARGEST 

Here 
I rl e. = µ. µ . 

1 -, -, 
u . -, rl x. = x. 

1 -, _, 

The procedure R is as follows: 

Select IT; if and only if Ui ~ max(U
1

, •••• , Uk) - d where dis 

determined to satisfy the P* condition Inf P(CS/R) ~ P* 

Inf P( CS/R) 
Q 

Q 

where f A,(x) and FA,(x) are the probability density function and the 

cumulative distribution function respectively of a non central chi 

squared distribution with np degrees of freedom and non centrality 

parameter A'. These functions are defined in Chapter 4.1.1.1. dis 

chosen so that 

Inf I"' F~~l (x+d) fA,(x) dx = P* 
A' ~a o 

Since the monotone behaviour of the integral involving dis not 

known procedures of the above type when Li= L known or Li not equal 

but known have not been determined explicitly. 

Another unsolved problem is the case of L1 = L
2 

= 

unknown, and a pooled estimate is used for L, 
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5.2 SELECTION IN TERMS OF THE GENERALIZED VARIANCES 

The Covariance Matrix is regarded as the natural measure of dis­

persion for a multivariate normal distribution. However, a univariate 

measure of dispersion need be defined for the purpose of selection. 

Various measures of dispersion have been considered in the statistical 

literature, but none of these is uniformly best in the sense of being 

a robust estimator of the dispersion. A frequently used measure of 

dispersion is the generalized variance. 

In this section, selection in terms of the univariate measure 

ei = I Lil the generalized variance associated with the population IT ;, 

is discussed. 

5.2.1 RULE PROPOSED BY M. GNANADESIKAN ANDS. S. GUPTA (1970) 

5.2.1.1 SELECTION OF A SUBSET CONTAINING THE POPULATION WITH THE SMALLEST 

IL; I BASED ON THE SAMPLE COVARIANCE MATRICES Si, 

i = 1, 2, .... , k 

Assume [ i and li are unknown. The rule R is as follows: 

Select IT ; if and only if IS; I ~~min( 1S11, IS2 1, .... , I Sk i ) 

where O < b = b(k,p,n,P*) ~ 1 is the largest value to satisfy the P* 

condition Inf P(CS/R) ~ P*. The IS; I is distributed as IL ; I / (n-l)P 
Q 

times the product of p independent chi squared factors with (n-1), (n-2), 

. . . . ' (n-p) degrees of freedom . 

Using this fact 

Inf P( CS/R) 
Q 

i=2,3, .... ,k, 



49 

where Y
1

, Y
2

, •••• , Yk are independent identically distributed random 

variables each being the product of p independent factors where the r th 

factor is distributed as a chi squared with (n-r) degrees of freedom. 

The constant bis the 100(1-P*) percentage point of 

{

y ·) 
Y' = min - 1 

\. 
2~i~k y 1f 

The exact distribution of Y. is not known, except when p = 2. In this 
1 

case 

I ~ f P ( CS/ R) = P ( Z 1 ~ ¼ Z i ) , i = 2 , 3 , . . . . , k 

- ( !---;{) I I I I½ where Z
1

, Z2 , •••• , Zk - 2 n-1) ( Si / ri ) are independent i den tic-

ally distributed chi squared random variables with 2(n-2) degrees of 

freedom. 

Here, lo is the 100(1-P*) percentage point of 

F . 
min 

\) = 

b can be obtained from the tables of Gupta and Sobel (1962) and 

Krishnaiah and Armitage (1964). 

5.2.1.2 APPROXIMATIONS TO THE DISTRIBUTION OF Yi WHEN p > 2 

Gnanadesikan and Gupta (1970) have considered the relative merits 

of different approximations to Yi= ui 1. U; 2 ...... Uip where Uid is 

independent and has a chi squared distribution with (n-d) degrees of 

freedom. 
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This was suggested by Hoel (1937). 

Approximating the distribution of y~/p by the gamma distribution 
l 

with density function 

g(x) 
A~2})(n-p) x[½p(n-p)-1] e- AX 

=-----------
r ( ~2P ( n - p ) ) 

A = E..2 (1 - (p-l)(p-2)\1/p 
2n ) 

The approximation of Y~/p decreases in accuracy asp increases. 
l 

CASE 2 

(log Yi)/p using the normal approximation of log x2 as suggested 

by Bartlett and Kendall (1946). 

1) Here the approximation of the distribution of log x2 by the 

normal distribution improves with the degrees of freedom of 

the chi squared variable. 

2) The normal approximation to the distribution of the log 

(generalized variance) improves with both p and n. Approxim­

ating the distribution of (1/p) log Yi by the normal 

distribution gives 

Inf P(CS/R) ~ J00 

¢k-l (x-b
0

) d¢(x) 
Q -oo 

where ¢(x) is the standard normal cumulative distribution 

function and is defined in Chapter 4.2.1.1, and 
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p 1: 

b
0 

= log b / { l Var(log x2 
. )}

2 

ld=l n-d 

where, for large n, Var(log x~) ~ 2/(n-l). 

The values of b
0 

have been tabulated by Gupta (1963) and 

Gupta, Nagel and Panchapakesan (1973) for various values of 

k and P*. Therefore, the value of b can be easily calculated. 

5.2.2 ALTERNATIVES TO PROCEDURE R PROPOSED BY M. H. REGIER (1976) 

5.2.2.1 PROCEDURE BASED ON THE GEOMETRIC MEAN 

The procedure R1 is as follows: 

( k \1/k 
Select II; if and only if IS; I ~ a1 II IS; I; , where 1a1 is 

,; = 1 

determined subject to the P* condition Inf P(CS/R 1 ) ~ P*. 
Q 

The approximate value of 'a' is based on the normal approximation 

to log x2
, given by Bartlett and Kendall (1946). The probability con­

dition is approximately satisfied if 

Here ~(ZP*) = P*, where ~(x) denotes the standard normal distribution 

function and is defined in Chapter 4.2.1.1, and H ~ 0 is a known lower 

bound for 

where IEl [l] ~ .... ~ IEl [k]· If no information is available on 
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k 
i~l log( lz:; I / lz:I [l]) then H assumes its lowest possible value, namely 

zero. 

p ½ 
Values for (d~l Var(log x~_d)) are specified in Regier (1976). 

5.2.2.2 PROCEDURE BASED ON THE ARITHMETIC MEAN 

The procedure R
2 

is as follows: 

Select II; if and qnly if IS; I ~ b 
k 
I IS; I / k where b > 0 is 

i=l 

determined subject to the P* condition Inf P(CS/R
2

) ~ P*. 
Q 

The asymptotic distribution of the sample variance is used for 

determining b. Clearly, b must be less thank; otherwise the selected 

subset would include all k populations. 

For n sufficiently large, this condition is approximately satis­

fied by b = k/(1 + B), where B is a solution of the equation 

((n-1)/2p) ½ (M-B) / ([M-(k-2)] 2 
+ (k-2) + 82 )½ = ZP* 

Here, ~(ZP*) = P*, where ~(x) is the standard normal cumulative distrib­

ution function and is defined in Chapter 4.2.1.1, and M ~ k-1 is a 

lower bound for 

k 
If no information is available on ijl ( II ; ! / IIl [l]), then M assumes 

if (1] 
the lowest possible value k-1. In this case 



l 

B = [(k-1) - ((k-l)(k-X)X)'2J/(l-X) 

where X = (2pZ~*)/(n-l). 

5.2.3 A COMPARISON OF THE THREE PROCEDURES R, R1 AND R2 

1) All three procedures share the monotone property, i.e. 

P( rr . included in the selected subset) decreases as 
l 

IE;I / IEl [l] increases. 

2) For all three procedures 

E(size of subset) ~ k P(rr[l] included) 

3) In all three procedures an exact evaluation of the P(CS) 

depends on the knCMledge of the ratios IE ; I / IE! [l], 

i = 1, 2, .... , k. 

However, R depends on the values of IE; I / IEI [l] 

k 
Rl depends on the II IL i I IE I [l] 

i=l l 

k 
R2 depends on the l IE. I I IEI [l]" 

i=l l 
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4) The three procedures differ in the extent to which they re­

quire special tables for the evaluation of the constants 

needed. Rand R
1 

require special tables, whereas for R2 no 

special tables are necessary. Hmvever, if the approximation 

Var(log x~) "'2/(n-l) is used (for n ~ 10), the need for 

special tables ;s eliminated for R
1

. 

5) When comparing the performance of the three procedures when 

applied to the same data, it can be seen that all three 
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procedures behave in a similar manner, however, R
2 

consist­

ently appears to be more conservative than the other two. 

When known lower bounds on Hand Mare used, both R
1 

and R
2 

result in a smaller expected subset size. 

5.3 SELECTION IN TERMS OF THE MULTIPLE CORRELATION COEFFICIENTS 

In some situations, it may be interesting to compare populations 

in terms of the association between a particular component and the rest. 

A measure of this association in the population IT; is 

0 · = P· 1 2 · l ,:, , .••. ,p 

The squared multiple correlation coefficient between X; 1 and 

{X; 2, .... , X;p} is defined in Chapter 4.3 by 

2 
pi:1, 2, .... , p = 

The random vector X,· has a multivariate normal distribution N (µ E ) ·- p ,..,,; , i 

where l; and E; are unknown. Here cr ii) is the leading element of 

Ei and Ei(ll) is the matrix obtained from E; by deleting the first row 

and the first column. The multiple correlation coefficient 

P . 1 2 is the pas i ti ve square root 
,:, , .... ,p 

2 of p . 1 2 and is ,:, , .... ,p 

the maximum of the correlation between Xil and a linear combination of 

X; 2, .... , Xip over all possible linear combinations and as such, is a 

measure of the dependence of Xi 1 on Xi 2 : .... , Xi P. 

Gupta and Panchapakesan (1969) investigated procedures for · 

selecting a subset containing the population associated with 
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Let R. = R. 1 2 . The sample squared multiple carrel-, ,:, , .... ,p 

ation coefficient between Xil and XiZ' .... , Xip' is defined as 

Is .1 
R2. 1 1 

= - (') 
, sl~ 1si(ll) I 

where S; is the sample covariance matrix, sii) the leading element of 

Si, and Si(ll) the matrix obtained from S; by deleting the first row 

and the first column. Two cases arise, 

1) The case in which X;z, .... , Xip are fixed, called the 

conditional case. 

2) The case in which X; 2 , .... , X;p are random, called the 

unconditional case. 

5.3.1 PROCEDURES INVESTIGATED BYS. S. GUPTA ANDS. PANCHAPAKESAN (1969) 

5.3.1. 1 SELECTION OF e [k] = P[k] 

The procedure 0
1 

is as follows: 

*2 ( *2 *2 *2) Select IT ; if and only if R
1 

~ c max R1 , R2 , .... , Rk where 

R;2 =Rt/ (1 - Rt) and O < c ~ 1 and is determined to satisfy the P* 

condition Inf P(CS/0 1) ~ P*. The density of R~2 can be written as 
~ 1 

co r ( q+m+ j) ;\ ~ 
( ) = \ , ( ) q+m ( ) 

. u"i x j~O r (q+m) j ! 1 - " i f2(q+j) ,2m x 

co e -m >. i (m>- ; )j 

• I J . 

- unconditional case 

f2(q+j) ,2m(x) 

- conditional case 
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where Ai = p~, q = (p-1)/2, m = (n-p)/2 and f (x) is the probabil­r ,s 
i ty density function of a centra 1 F dis tri buti on with r and s degrees of 

freedom. This is given in Chapter 5.1.2.3. 

stochastically increasing in A. Hence 

The distribution of R~
2 

is 
l 

where UA(x) is the cumulative dist~ibution function corresponding to 

uA(x). 

Gupta and Panchapakesan (1969) have shown that the integral is 

non decreasing in A in both the unconditional and conditional cases and 

therefore the constant c is obtained in both cases from 

where f2q,Zm(x) and F2q,2m(x) are the probability density function and 

the cumulative distribution function of a central F variable with 

(2q,2m) degrees of freedom. These functions are given in Chapter 

5.1.2.3. 

The values of c which are the same in both cases are given in 

Gupta and Panchapakesan (1969). 

5.3.1.2 SELECTION OF e [l] = P[l] 

The procedure D2 is as fo 11 ows: 

. *2 1 . ( *2 *2 *2 Select rr; if and on ly 1f R; ~ b m,n R1 , R2 , .••• , Rk) where 

O < b = b(k,n,p,P*) ~ 1 and is determined to satisfy the P* condition 

Inf P(CS/D
2

) ~ P*. 
Q 
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In an analogous manner to procedure 0
1 

it follows for both the 

condi tional and unconditional cases 

(0 [ 1 - ( ) k-1 = j F2 2 b X ] f 2 2 ( X) dx = P * 
0 

q,m q,m 

Since 1 - F2q, 2m(bx) = F2m, 2q(l/bx) the constants b can be obtained from 

constants c by interchanging q and m. 

5.4 SELECTION IN TERMS OF MEASURES OF ASSOCIATION BETWEEN TWO SUB­

CLASSES OF VARIATES 

When comparing k, p variate normal distributions the p variates 

can be considered to be made up of two subsets of q
1 

and q
2 

(q
1 

+ q
2 

= p) 

variates. The populations can be selected according to a suitable 

measure of association between the two sets of variates in these popul­

ations. There are various possible measures considered, but in this 

case, the two measures considered by Gupta and Panchapakesan (1969) and 

Frischtak (1973) are presented. 

Let x. = (Y., z,.) 1 be a (q 1 + q2 ) dimensional random vector with ..... , ..... , ""' 

covariance matrix 

I (; ) 
yy 

l ( i ) 
yz 

I- = 
1 

I ( i ) 
zy 

I ( n 
zz 

where I (i), I (i), I (i) and I (i) are submatrices of di mension q
1 

x q
1

, 
yy yz zy zz 

q
1 

x q2 , q2 x q1 and q2 x q2 respectively. Assume q
1 

~ q
2

• 



Let il ; (i = 1, 2, .... , k) be a p variate normal distribution 

with mean vectorµ~ and covariance matrix r .. The p variates are 
,.,_. I 1 

58 

partitioned into two sets of q
1 

and q
2 

components. Let the correspond­

ing sample covariance matrix S; based on n independent vector observ­

ations from IT ; be denoted as 

s ( i ) s ( i ) 
yy yz 

s. = 
l 

s ( i ) s(i) 
zy zz 

where s(i) s(i) S(i) and S(i) are submatrices of dimension q
1 

x q
1

, 
yy ' yz ' zy zz 

q
1 

x q
2

, q
2 

x q
1 

and q
2 

x q
2 

respectively. 

Selection in terms of the Conditional Generalized Variance of 

Ii, given Ii, is defined by 

and has been considered by Gupta and Panchapakesan (1969). 

Selection in terms of the Coefficient of Alienation between Y . ..... , 
and 1,i is defi ned by ei, where 

and has been considered by Frischtak (1973). 
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5.4.1 PROCEDURE CONSIDERED BYS. S. GUPTA ANDS. PANCHAPAKESAN (1969) 

Let 8; = II; I / II~~) I , the conditional generalized variance of 

Z. given Y .• .....,, ...... , The procedure here selects the subset containing the 

population with the smallest 8;· Define 

v. = 1s. 1 / 1s(i) I 
1 1 YY 

The procedure R
1 

is as follows: 

Select IT ; if and only if V; ~; min(V
1

, V2 , •••• , Vk) where 

0 < b = b(k,P*,'n,q 1 ,q 2 ) , 1 is determined to satisfy the P* condition 

Inf P(CS/R1) ~ P*. 
n 

Gupta and Panchapakesan (1969) showed that 

r'X) 
= (1 - G(bx)]k-l g(x) dx 

Jo 

where g(x) and G(x) are the probability density function and the cumul­

ative distribution function of a random variable that is distributed as 

the product of q
2 

independent chi squared variables with degrees of 

freedom (n-q
1
-1), (n-q

1
-2), .... , _(n-q

1
-q 2 ) respectively. The problem 

of evaluating bis similar to that encountered in Chapter 5.2.1 when 

evaluating b. 

5.4.2 PROCEDURE CONSIDERED BY R. M. FRISCHTAK (1973) 

Let 
2 e. = 
1 

I I- 1 1 

where ei is the coefficie~t of alienation, between I; and 1.;· The 



procedure here selects the subset containing the population with the 

smallest 8;. Defi ne 

v: = 
1 

Is. I 
1 

The procedure R
2 

is as follows: 

Select IT; if and only if V~ ~ ½ min(V~, v!, .... , v!) where 

0 < b = b(k,P*,n,q
1 

,q2 ) ~ 1 is determined to satisfy the P* condition 

Inf P(CS/R
2

) ~ P*. 
n 

Frischtak has obtained an asymptotic (n ~ 00 ) solution and the 

value of bis given by 

i = 1, 2, .... , k-1} = P* 

where the Ui are standard normal variables with equal correlation 

coefficient ½. 
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Also note that for q
1 

= 1, e~ is equal to (1 - p
2

) where p is 

the multiple correlation coefficient between y and (z
1

, z2 , •.•. , zq) 
2 



CHAPTER 6 

6. THE MULTIVARIATE SOLUTION TO THE MULTIVARIATE RANKING AND 

SELECTION PROBLEM 

61 

In this chapter the new formulation by Dudewicz and Taneja (1981) 

that selects the best multivariate population without reducing populat­

ions to univariate quantities is described. The solution developed for 

both the known and the unknown variance-covariance matrices are consid­

ered. 

This multivariate solution to the multivariate ranking and 

selection problem allows for such occurrences as TI > TI 7 TI
3 
> rr , 

1 2 1 

where > means 11 is preferred to 11
• This would be an anomaly in previous 

chapters, however, it is expected in truly multivariate problems. They 

are problems in which one cannot associate a univariate measure of 

goodness or number ei = ¢(~;, ri) with a given population but must 

rather compare different(µ., r.) pairs themselves, in order to deter-
"' l l 

mine which is preferred. 

This method is also applicable to situations where each populat­

ion IT; has associated with it a numerical measure of goodness 

ui = u(~i), 1 ~ i ~ k such that rrt is preferred to rrm if and only if 

ut > um (1 ~ t, m ~ k). 

In this situation, not only linear functions but also quadratic, 

polynomial, exponential and power series or even Fourier series functions 

are a 11 owed. 
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In the new theory g(,1:.
1

, ~2 , .... , .l::.k) is an experimenter specif-

ied function with range space {l , 2, .... , k} such that 

g(,1;:.
1

, ,1:.2 , .... , .l::.k) = t i f and only if given a choice of ,1;:.
1

, ~' .... , .l:k' 

µ is preferred. ---t 

6.1 THE MULTIVARIATE PREFERENCE SELECTION PROCEDURE - Rmv 

A random sample is taken from each of the populations 

rr
1

, n2, .... , rrk. ,l:.; is estimated by the sample mean vector 

X.(i = 1, .... , k) and ng(-X -x -x ) selected. 
,_,, ---1 ' ---2. ' •••• ' ~ 

Let ~ = (},1 , K2 , •••• , 1). The fo 11 owing cases are considered 

in selecting nt, where t = g( µ 11 11 ) ---1 ' ;:.,,;_ ' •••• ' ,t:.k • 

a) El = = Ek = cr 2I with cr2 known 

b) El = = Ek = E with E known 

c) E 1 ' .... , Ek are known but unequal 

d) E 1 ' .... , Ek are unknown and not necessarily equal 

6.1.1 SELECTING THE BEST WHEN E
1 

= 

Let IT ; be Np(li' Ei) for i = 1, 2, · .... , k. Assume p ~ 1 and 

r
1 

= .... =Ek= cr 2I. I= pxp identity matrix and a 2 is known. 

g(,1;:.
1

, •••• , ~ ) is an experimenter specified function with range space 

{ 1, 2, .... , k}. g(,1;:.
1

, .•.. , .l:k) = t denotes that among ,1:.
1

, ,1:.2 , .... , J!J< , 

.l:.t is preferred. 

The Selection Procedure Rmvp( cr 2I) is as follows: Observe n 

independent observations from rr 1 , •••• , nk. Estimate ~i by the sample 



mean vector X. (1 ~ i f k). 
-1 Se 1 ect rr (X X 

g -1 ' :..:..2. ' 

Choice of n 

If the true means :1; = (,1:.
1

, •••• , l::k) are such that g(J;) = t 

while g( µ + s) = m (m 1 t) for a matrix s of small numbers then 
F>:I ~ ,.. 

P(CS/Rmvp( a2 I)) will not be much larger than 1/k. 

Therefore a method is required on how to specify the sample 
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size n per population so that for a reasonable preference zone np and 

for a fixed P* (1/k < P* < 1) and o* > 0 the procedure R (a 2 I) satis­mvp 
fies Inf P(CS/R (a2 I)) 

12 
mvp 

p 

>, P*. Let 

p = {µ g(,1:.) = t }, t = 1, 2, .... ' k. t "' "' "' 

Note: P 
1

, .•.. , Pk are disjoint preference sets whose uni on is Rkp. 

The Euclidean distance 

defines the distance between any two points a and b of Rkp_ The dist­

ance from~ to the boundary of Pg(µ) is denoted by 
"' "' 

The probability requirement for any procedure R is set as P(CS/R) >, P*, 

whenever d8(~) >, o*. 

Whenever d8(,1:.) ~ o* we have, 
"' 



P(CS/R (a2 I)) = P(X E P ( )) mvp ~ g ~ ,..,, 

~ P(d(µ, X) :S o*) 
Rl s=::1 

= P(_I I (Xie 
,= 1 c=l 

µ. ) 2 :S ( 8*)2) ,c 
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where Y has a central chi squared distribution with kp degrees of free­

dom. The probability density function and the cumulative distribution 

function of a central chi squared variable are defined in Chapter 

5.1.2.1. 

Therefore, the selection procedure Rmvp( a2 I) satisfies the 

probability requirement if the sample size n per population satisfies 

2 where xkp (P*) is the value a central chi squared random variable with 

kp degrees of freedom fails to exceed with probability P*. 

Choice of P* 

The choice of P* is similar to the choice of pm,,er in tests of 

hypotheses. Normally, P* = 0.95 or a similar high value. 



65 

Choice of o* 

For any two possible µ's, say a and b, which satisfies 
:=:,j ~ i:::1 

where 6c is the minimum range between the largest of µle' µ2c, .... , µkc 

and the smallest of µle' µ2c, .... , µkc which the experimenter wishes to 

detect. Hence the choice of o* could be 

6.1.2 SELECTING THE BEST WHEN L1 = 

Let II; be Np(J;:,;, L;) for i = 1, 2, .... , k. Assume p ~ 1 and 

L = L = 
1 2 

= Lk = L. Lis the conman pxp variance-covariance 

matrix. It is assumed to be positive definite and known. Let 

A1 ~ A
2 

~ •••• ~ AP denote the characteristic roots of L. 

g();:_1 , •••. , .1:k) is an experimenter specified function with range 

space {1, 2, .... , k}. g(,~1 , ..•• , ~) = t denotes that among 

li' ~2 , •••• , ~'~tis preferred. 

The selection procedure Rmvp(L) is as follows: Observe n 

independent observations from rr
1

, •••• , rrk. Estimate.!:!,; by the sample 

mean vector X,· (1 ::; i ::; k). Select TI (- - - ) • 
g 11' ~' .... ' ~ 



Choice of n 

To find then the common sample size per population such that 

the probability requirement P( CS/R) >, P* v1henever dB(~) ~ 8*, where 

d8(µ) = Inf{d(µ, b): b E P () } the following procedure is used. 
~ ~ ~ ~ g~ 

The result by Rao (1965) is used as explained below. 

Let A be any symmetric pxp matrix. Let y
1 

~ y
2 

~ •••• ~ yp be 

the characteristic roots of A. Let X be any pxl vector. Then 
"' 

,-1 ,-1 Choose A= l so that y
1 

is the smallest characteristic root of l , 

Then, whenever dB(~) >, 8* 
"' 

= P(X E P ( ) ) 
~ g~ 

r k r i , (- )2 ( J: *) 2 
~ Pli~l c=l Xie - 1-l ic ~ u J 

[ 
k 1 - ] = p I n ;- (X. - µ .) 1 (X. - ~-) ~ -P- ( 8*)

2 
. l 11. ,...,, ,..., 1 ,...,, 1 11. ,= p p 

[ ~ - ,-1 - ) n ( 2] 
>, P l n(X. - ~-) 1 

l Cl,· - i,· ~ ;- 8*) . 1 ...... , l /1. 
l = p 
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where Y has a central chi-squared distribution with kp degrees of free­

dom. The probability density function and the cumulative distribution 

function of a central chi-squared variable are defined in Chapter 5.1.2.1. 
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Therefore the selection procedure R (I) satisfies the probab­mvp 
ility requirement if the sample size n per population is such that, 

2 where xkp (P*) is the value a central chi-squared random variable with 

kp degrees of freedom fails to exceed with probability P* and AP is the 

largest characteristic root of E. 

6.1.3 SELECTING THE BEST WHEN E1 , •••• , Ek KNOWN · 

Let rr . be N (µ
1
., I. ) for i = 1, 2, .... , k. Assume p ~ 1 and 

1 p "' 1 

E1 , •••. , Ek are known and they are pxp positive definite matrices. 

9(!:,1 , ••.• , ~) is an experimenter specified function with range space 

{1, 2, .... , k}. g(.J:!,
1

, .••• , ~) = t denotes among .l:!.i• •••• , .14<, 

lt is preferred. 

The se 1 ecti on procedure Rmvp ( I 1 , •... , Ek) is as fo 11 ows : 

Observe ni independent observations from II ; (1 ~ i ~ k). Estimate ~i 

by the sample mean vector X. ( 1 ~ i ~ k). Select TI (-X -x -x ) . 
-, g ,._,1 ' ~ , •••• ' ~ 

Choice of n
1

, ..•. , nk 

To find the sample sizes n
1

, •••• , nk from the k populations such 

that the probability requirement P(CS/R) ~ P* whenever d8(i) ~ o* is 
"' 

satisfied, where d8(1:) = Inf{d(.J:!,, !?) : .e_ E P ( )} the following method 
"' "' "' "' g .l:!, 

"' is used. 

Let Aip denote the largest characteristic root of E;, i.e~ 

1/A;p is the smallest 

developed previously, 

characteristic root of I: 1
• Using the results 

1 

it then follows that whenever ct8(i) ~ o* we have 
"' 



(letting n[l] = Min(n 1 , •••. , nk) and A[k]p = Max( Alp' .... , Akp)) 

p ( cs/ Rmvp ( L l ' •.•• ' L k) ) 

k 
~ P[ L ex. - µ.)·(x. - µ.) ~ (0*)

2
Jl 

i=l ....... , ""1 ""1 ""1 

k 
1 (-~ Pr L n. -A- X. - µ.)'(X. - JJ.) ::: 

Li= 1 1 . ,,,_,, ,,,_,, _, ,,,_,, 
lp 

r k 
- jJ •) I 

-1 
(X. - JJ. ) ~PLI n.(x. l · ::: . 1 1 ,,,_,, ,,,_,, 

1 
,,,_,, ,,,_,, 

,= 

n[l] (0*)21 
A[k]p J 

n[l] 
(8*) 2] 

A[k]p 
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where Y
1

, •••• , Yk are independent central chi-squared random variables 

with p degrees of freedom. The probability density function and the 

cumulative distribution function of a central chi-squared variable are 

defined in Chapter 5.1.2.1. 

Therefore, the selection procedure Rmvp(E 1 , .•. • , Ek) satisfies 

the probabi 1 i ty requirement if the s amp 1 e sizes n 
1

, .... , nk are such 

that 

where x~P (P*) is the value a central chi-squared random variable with 

kp degrees of freedom fails to exceed with probability P*. 

A[k]p = largest of the characteristic roots of E1 , ..•. , Ek. 

In design problems, one would normally take 
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However, if unequal sample sizes ni, n
2

, •••• , nk have already been 

taken, the smallest 8* for which the probabi .lity requirement is satis­

fied can be calculated by 

6.1.4 SELECTING THE BEST WHEN E1 , •••• , Ek UNKNOWN, UNEQUAL 

Let IT; be Np(l! .. i, E;) for i = 1, 2, .... , k. Assume p ~ 1 and 

r
1

, •••• , Ek are unknown and they are pxp positive definite matrices. 

g(l1 , •••. , ~) is an experimenter specified function with range space 

{l, 2, .... , k}. g(l
1

, •.•• , _l:k) = t denotes among li' .... , .1::.k' 

.1::.t is preferred. 

No single stage procedure R for this problem can satisfy the 

probability requirement P(CS/R) ~ P* whenever dB(~) ~ 8*. The Hetero­

scedastic Method by Dudewicz and Bishop (1979) is used to modify the 

procedure Rmvp(E) of the case described in Chapter 6.1.2 into a pro­

cedure RHM to solve this problem. The procedure RHM is specified by 

a sampling rule and a terminal decision rule. 

Sampling Rule for RHM 

Select z > O and an integer n >panda pxp positive definite 

matrix (ars). Take observations from populations II; (i = 1, 2, .... , k) 

as fo 11 ows: 

T k · ·t · 1 b t · x(i) x(i) h a e n , n, , a o serva , ans ,._.,
1 

, •••• , ......, w ere 



= fx(i) x(i) 
\ lj ' 2j ' .... ' x(i)\ 

pj ) 

I 

j = 1, 2, .... , n 

Compute x< i) = l. I X( i_) 
C n . l CJ J= 

(i) = 1 ~ fx(i) _ x<n)( x(i) _ :z{i)\ 
s cd n-1 j; 1 \ cj · c \ dj d ) 

C ,d = 1, 2, .... , p. 

Define the positive integer Ni by 

N. = Max{n + p2
, Lrz- 1 I a s(i)] + 1JL 

1 c,d=l cd cd 

where [q] denotes the largest integer less than q, and select p(pxNi) 

matrices 

in such a way that 

a) = 

A. = ,r 

= a. 
, r en 

a. 
, r lN. 

l 

a. 
1 r pN. 

l r = 1,2, .... ,p 
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b) Air ni = Er where ni is the Ni xl vector (1 .... 1) 1 and Er 

is the pxl vector whose r th element is 1 and all the other 

elements zero. 

c) 
I rs cd I I I I 

A;A; = z(a ) 0si , where Ai = (Ail' Ai 2 ' .... , Aip). 

0 denotes the direct product and (b cd) denotes the inverse 

of the matrix (bed), r, c = 1, 2, .... , p. 
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(") (i) 
Next, take Ni - n additional observations ~!1, .... , ~- and compute 

1 

~i) 
r 

p N. 

= l l, air. X~Ji), 
c=l j=l CJ 

r = 1, 2, .... , p. 

t:.. 
For rr

1
. construct the p-dimensional vector X. 

"'1 

I\ 

x. = -, (
~(i) ~i)) X 

1 
, .•.. , Xp , 

Terminal Decision Rule for RHM 

i = 1, 2, .... , k. 

The same decision as Rmvp(r) is taken when a sample size n per 

population was taken and had r/n = z( ars) and observed 

.... ' .... ' 

i.e. select n /\ /\ /\ 
g(!1' Kz, .... ' ~) 

Selection procedure RHM satisfies the probability requirement 

P(CS/R) ~ P* whenever d8 (~) ~ 8*. z > 0 is chosen so that 

r k /\ /\ ] 
PL' ex. - µ.)'(X. - u.) ~ (8*)

2 
= P* l -, -, -, ..i;;.1 

i=l 

This is very complicated. Therefore, for large n, an approximate solut­

ion is given. 

As n ~ 00 the z > 0 which solves the above, approaches a solution 
I\ I\ I\ 

when (8:1 , :8:2 , .... ,~)is replaced by (X,1 , .... , 1i) where X,1 , .... , ~ 

are independent random variables and .Y,i =Np(~;, zp(ars)). The probab­

ility density function of a p variate normal population is defined in 

Chapter 3.1. 
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CHAPTER 7 

7. THE COMPLETE RANKING OF MULTIVARIATE POPULATIONS 

In this chapter an application pertaining to New Zealand's over­

seas trade is used to describe the Multivariate Ranking of populations 

according to a linear combination of their means. The properties of 

the Multivariate Normal Distribution and the theoretical aspects of the 

procedures related to the Ranking of Populations are discussed at first. 

7.1 THE PROPERTIES OF THE MULTIVARIATE NORMAL DISTRIBUTION 

mean 

When X1 , X2 , .••. , XP follow a p variate normal distribution with 

n 

jI 1 xcj 
\="'-----, c=l,2, .... ,p 

n 

and variance-covariance matrix 

s = 

where 

( n - 1) 

C = 1, .... , p, d = 1, .... , p 



the linear combination or weighted score, 

where b1 , b2 , .... , bp are real constants, has a univariate normal 

dis tri buti on with mean e given by, 

and variance Var(L) given by, 

p p 
Var(L) = I I be bd acct· 

c= 1 d=l 

Fork different multivariate populations the i th population has mean 

vector 

= ( (i) (i) (i) 
li µl ' µ2 ' .... ' µp ) ' 

variance-covariance matrix Ei with elements ai~) and h . rl t e inverse i 
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with cd for i 1, 2, . . . . ~ k. i.e . ( i ) is the mean of the elements a. = µc l 

C th component of the i th population. ( i ) 
0 cd is the covariance between 

the c th and the d th component for the i th population. 

A random sample of n observations from each of the 

variate populations will be nk, p tuples of measurements. 

denote the j th measurement on the c th component of the i 

k multi­

Let ii_) 
CJ 

th populat-

ion. Then the data consists of kpn measurements. i.e. n observations 

from k populations with p measurements in each observation. 
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7 .1. 1 PRESENTATION OF SAMPLE DATA CONSISTING OF n OBSERVATIONS FOR EACH 

OF THE k POPULATIONS HAVING p COMPONENTS 

population i 1 2 k 

component c of 1, 2 , p 1, 2 , p the p variables .... , .... , 

(1) observation j=l x(l) i l) 
11 ' 21 ' ... , xP 1 

x(k) x(k) 
11 ' 21 ' ... , x(k) 

pl 

j=2 

. . . 
j=n i 1) 

ln ' ... x(l) 
, pn 

x(k) 
ln ' . .. i k) 

, pn 

sample mean of x< 1) x< 1) x< k) x< k) 
component c 1 ' 

... , p 1 , ... , p 

For each of the i = l, 2, .... , k populations an es ti mate of the 

mean e . is given by the linear combination[., where 
l l 

-L =bv{Xi)+bmxi)+ 
i 1 1 2 2 

+bx-{i) 
p p 

These average scores for each population can then be ordered as 

Since ~i) for c = 1, 2, .... , p follow the mu l tivariate normal 

distribution, Li has a univariate normal distribution with mean ei and 

variance 

1 P e (i) 
Var(L

1
.) = - I l b bd cr d 

n c=l d= 1 c c 

= Var(Li)/n 



The a ( i) in 
cd 

l p p (. ' 
Var([;) = n I l be bd a~) 

c= 1 d=l C 

are replaced bys~~) to calculate the estimate of Var(Li). If the 

population variance-covariance matrices I:i, i = 1, 2, .. . . , k are 

unknown but assumed to have a common value I: then this common value 

is estimated by S, where S = (S
1 

+ S
2 

+ + Sk)/k and a ~~) -in the 

equation for Var([.) is replaced by the corresponding entry in S for 
l 

i = 1, 2, .... , k. 

7.2 THE COMPLETE RANKING OF k POPULATION MEANS 
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Although the problem is mentioned in Bechhofer (1954), consider­

able progress in this field was made after Carroll and Gupta (1977) 

published a paper on the problem of completely ordering (ranking) 

k (~ 3) populations according to their means. 

Two procedures that can be used to completely order k univariate 

population means when 

a) the common variance is known 

b) the common variance is unknown 

are given below. 

7. 2 .1 RANKING OF k NORMAL POPULATIONS ACCORDING TO THEIR MEANS WHEN THE 

COMMON VARIANCE rs· KNOWN 

The k normal populations with common known variance o2 are 
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The ordered µ are denoted by 

As a first step towards ranking the means a "distance" measure must be 

defined. The distance between each of the successive pairs of ordered 

µ values are 

0 = 
2 µ[k-1] - µ[k-2] 

The problem is to construct a procedure for ranking the populat­

ions such that the probability of a completely correct ranking is at 

least some specified value P* whenever each of the distances oi is 

greater than a common threshold value a*. i.e. 

a
1 

~ a*, a2 ~ a*, .... , ok-l ~ a*. 

The ranking procedure is then to take a sample of n observations from 

each of the k populations, compute the k sample means and order them as 

where X[k] is the largest sample mean. 

When designing a fixed sample size experiment to rank the k 

populations a* and P* will have to be specified in order to determine 

the common sample size n. The table given (T 7.1) lists values 
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T = a* ./n/o that satisfies the probability requirement corresponding to 

a given k and P* and is taken from Gibbons, Olkin and Sobel (1977). 

Therefore, 

n = 

2 

(TO\ 
o*) 

7.2.2 TWO STAGE PROCEDURE TO RANK k NORMAL POPULATION MEANS WHEN THE 

COMMON VARIANCE IS UNKNOWN 

In the first stage, a sample of n observations is taken from each 

of the k populations and the k sample variances s~, s!, .... , s~ are 

calculated. The pooled sample variance is given by 

s2 = 
(n-l)s~ + (n-l)s~ + .... + (n-l)s~ 

k(n-1) 

The degree of freedom for s2 is v = k(n-1). 

In the second stage, a second sample of size N-n is taken from 

each of the k populations. The value of N is obtained from 

where {a}+ means smallest integer equal to or greater than a. a* is 

the threshold value such that 

= a,., ~ a* 
L 



The probability of a completely correct ranking is to be at least P* 

whenever the above (k-1) inequalities between successive means hold 

jointly. 

The value of his obtained from the Table T 7.2 which is taken 

from Freeman, Kuzmack and Maurice (1967). 
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The next step is to compute the k sample means using the entire 

sample of N observations and order them as 

I[k] is the largest sample mean. 

With this procedure the probability of a correct ranking is 

guaranteed to be at least P* whenever µ[i+l] - µ[i] >, o*, i = 1, 2, .... , 

k-1 regardless of the true value of the unknown o 2 • 

7.3 RANKING OF COUNTRIES ON THEIR TRADE PERFORMANCE WITH NEW ZEALAND 

- AN APPLICATION 

In the example considered here, an attempt is made to rank sev­

eral countries on their importance to New Zealand's trade using as 

variates, the percentages of New Zealand's seven major products exported 

to the respective countries. 

Let the k populations under consideration be k countries, trading 

in the same products in similar proportions. Let n be the number of 

years for which the data is obtainable (in this case 6, 1976 to 1981), 

and let the p variates be the percentages of major items of New Zealand 

produce exported to the countries under consideration. These items are: 
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1) Beef and Veal 

2) Lamb 

3) Mutton 

4) Cheese 

5) Butter 

6) Condensed, Evaporated and Dried Milk 

7) Wool. 

Therefore, p = 7 and n = 6. 

In the calculations, instead of the actual figures, percentages 

of the items are used, as it makes more sense from an economic point 

of view. For example, it is more meaningful to say that in 1980 Japan 

imported 2.6% of New Zealand's Beef and Veal exports and 4.7% of New 

Zealand's Processed Milk exports, than $13.75 million worth of New 

Zealand's Beef and Veal exports and $10.15 million worth of New Zealand 1 s 

Processed Milk exports. Also, this conforms to the assumption that the 

observations on each variate should be independent and identically 

distributed. 

The data for this example was obtained from the Department of 

Statistics publication Report and Analysis of External Trade (1979/80 

and 1980/81). 

At first, in order to obtain a set of countries that imports 

three or more of the same main exports, it was necessary to obtain 

various combinations of countries and products from the data. A necess­

ary requirement was that each country used in the study possess the same 

set of variates. 

A set of countries and products suitable for this exercise is 

listed below. 



Countries 

Australia 

China-Taiwan 

Hong Kong 

Japan 

Malaysia 

Philippines 

Singapore 

Products 

Beef and Veal 

Butter 

Processed Milk Products 

(Condensed, Evaporated and 

Dried Milk) 

Then for this combination, it was necessary to calculate for 
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each country the mean exports of each product and the covariance matrix. 

A requirement in the ranking procedure is that the countries possess 

similar covariance matrices. 

To verify the equality of the covariance matrices of the above 

data, the following test given in Box (1949) was performed. 

Test for Homogeneity of Covariance Matrices 

where k = number of populations 

~- = covariance matrix of the i th population. , 

Test Statistic 

k 
v ln ISi - I 

i=l 
v· 1 n Is. I 1 , 

which is asymptotically chi squared with ~2{)(p+l)(k-1) degrees 

of freedom. 

p = number of variates 

n. = number of observations from the i th population , 
vi= n;-1, the degrees of freedom 
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k 
\) = l \) . 

i-1 1 
-.1. 

s. 
1 

= maximum likelihood estimator of I:i 

s = maximum likelihood estimator of the common covariance 

matrix E ' defined in Chapter 7. 1. 

i.e. s. 
1 

= sample covariance matrix of the i th population 

k 
S = f (i~l sample covariance matrix of the i th population) 

IS- I = determinant of s. 
1 1 

1s1 = determinant of s. 

The data corresponding to the selected countries and products, 

the means of the products, the covariance matrices and the results of 

the homogeneity test are in the computer printout C 7.3.1. 

The value obtained for the chi squared test statistic is 130.4. 

This is a significant result. However, this is not unusual because the 

test in effect looks for any significant differences among the (in this 

case 9) sets of variances and covariances. In fact, it is very difficult 

not to get a significant result. Also, the test is asymptotic whereas 

here only 6 data values are considered. 

To check the possibility of improving the results the data was 

transformed using, 

a) Inverse Sine yl = Sin- 1 /x 

b) Logit y2 = X 
loge 1-x 

c) Probit y3 = 5 + y' where P(Z<y') = X 
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standard normal curve 

y' 

Here x is a typi ca 1 va 1 ue of a_ proportion. 

For the transformed data in each category the corresponding means, 

covariance matrices and the results of the homogeneity test are given 

in the computer printouts C 7.3.2 to C 7.3.4. 

The values of the chi squared test statistic in the three cate­

gories are listed below. 

a) Inverse Sine 

b) Logi t 

c) Probi t 

80.8 

132.3 

89.5 

Although the chi squared values in all three categories are significant 

the chi squared values in categories (a) and (c) are better than the 

chi squared value obtained for the original data. The best result was 

obtained from the first transformation, Inverse Sine, and this was used 

in what follows. 

Using the transformed data it was then necessary to calculate 

[., an estimate of the mean e. for each country, i = 1, 2, .... , k. 
1 1 

where X
1 

= the mean percentage of Beef and Veal imported by the country 

i over 6 years; 

X
2 

= the mean percentage of Butter imported by country i over 6 

years; 
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X3 = the mean percentage of Processed Milk Products imported by 

country i over 6 years. 

The weights b
1

, b2 and b3 were calculated as follows: 

bl = 
bv 

b + bb + bm V 

b2 = 
bb 

b + bb + D 
V m 

b 
b3 = m 

b + bb + b 
V m 

where b = Value of Total Beef and Veal Exports 
v Value of Total Exports 

= Value of Total Butter Exports 
bb Value of Total Exports 

b = Value of Total Milk Products Exports 
m Value of Total Exports 

Here the totals in each case were taken over the 6 years in question. 

From the data of this exercise, 

bv = 0.190 bb = 0.134 bm = 0.075 

Substituting the values of bv, bb and bm 

bl = 0.476 b2 = 0. 336 b3 = 0.188 

Substituting the values of b
1

, b2 and b3 in the equation 

-L = b -x( i) + b mx i) + b mx i) ( . 1 2 7) i 1 1 2 2 3 3 ' l = ' , •••• , 

the value I. for each country was calculated. 
l 
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Australia I. = 0.0618 
1 

China-Taiwan I2 = 0.0884 

Hong Kong I3 = 0. 1072 

Japan I4 = 0 .1635 

Malaysia Is = 0. 1464 

P_hi l i ppi nes I6 = 0.1484 

Singapore I7 = 0 .1429 

The theory of the two stage ranking procedure discussed earlier 

is used in this example as the common variance is unknown and the sample 

size is small. However the theory is somewhat modified in this case. 

Here, the value of N is fixed, (in this case N = 6). Therefore when 

using the theory it is necessary to work backwards and calculate the 

value of o* for a predetermined hand P*, 

where 6* = 

and 
2 1 3 3 

s = 6 2 2 b c b d O cd · 
c=l d= 1 

The average covariance matrix 

s = 

1.943E-4 1.069E-4 8.565E-5 

l.069E-4 1.210E-3 6.309E-4 

8.565E-5 6.309E-4 1.104E-3 

is an estimate of each element corresponding to a cct· Hence 

2 s = 5. 7668E-05 

Using the table given in the theory for P* = 0.95, the val ue of h can be 

estimated by extrapolation. 



85 

Here h "' 2.4 for N = 6 and k = 7. Then 

8* = (2 X 5. 7668E-5 X 2.42)½ 
6 

= .0105 

"' .01 

Therefore probability of a completely correct ranking will be at least 

.95 (= P*) whenever the difference between successive means is at least 

.01 (= o*). 

The seven means for the countries can be ordered from largest to 

smallest as follows: 

1 Japan I4 .1635 

2 Philippines [ 6 .1484 

3 Malaysia Is .1464 

4 Singapore [7 .1429 

5 Hong Kong I 3 .1072 

6 Ch i na-Taiwan [ 2 .0884 

7 Aus tra 1 i a I .0618 
1 

7.4 COMMENTS ON THE APPLICATION 

Real life examples that have been solved using Mu l tivariate 

Ranking Procedures are practically non-existent. Therefore, the import­

ance of the problem discussed in this chapter is stressed. However, the 

procedure used has several drawbacks. 

1) A necessary requirement of the method is that the populations 

should have the same set of variates. i.e. in this example 

only the countries that import the same New Zealand major . 



86 

products can be used. This is not very practical in real 

life situations where it may be necessary to compare the 

trade performance of a country that imports products A, B 

and C with a country that imports products B, D and E. 

Therefore, it would be ideal if the variates could be 

weighted in some way that all countries are included in the 

analysis, whether they trade in certain products or not. 

At present there is no such solution for a problem of this 

nature. 

2) In this procedure there is no obvious way in which the 

coefficients bi are chosen. They are picked on the judge­

ment of the experimenter. 

3) Since it is a requirement of this method that the Ei should 

be equal, it makes the problem less meaningful as some of 

the countries that could have been used had to be left out. 

4) The value of o* calculated here is doubtful as the tables 

available to calculate this are not accurate. 
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TABLET 7.1 The probability of a correct complete ordering of k normal 

populations with respect to means for given values of T 

k 
T 2 3 4 5 6 7 8 9 10 

0.00 .500 .167 .041 .008 .001 .000 .000 .000 .000 
0.10 .528 .196 .056 .014 .003 .001 .000 .000 .000 
0.20 .556 .228 .077 .023 .006 .002 .000 .000 .000 
0. 30 .584 .263 .101 .036 .012 .004 .001 .000 .000 
0.40 .611 .299 .130 .052 .020 .008 .003 .001 .000 
0.50 .638 . 337 .162 .074 .033 .014 .006 .003 .001 
0.60 .664 . 376 .192 .100 .050 .025 .012 .006 .003 
0. 70 .690 . 416 .237 .132 .073 .040 .022 .012 .006 

0.80 . 714 . 456 .279 .168 .101 .060 .036 .021 .013 
0.90 .738 .496 . 324 .208 .134 .086 .055 .035 .022 
1.00 .760 . 536 . 369 .252 .172 .117 .080 .054 .037 
1.10 . 782 .574 .415 .298 .214 .154 . 110 .079 .057 

1.20 .802 . 612 . 461 .346 .260 .195 .146 .110 .082 
1. 30 . 821 .647 .506 . 395 .308 .240 .187 .146 .114 
1. 40 . 839 .681 .550 .444 . 358 .288 .232 .187 . 151 
1.50 . 855 . 714 .593 . 492 . 408 .338 .281 .233 .193 

k 
T 2 3 4 5 6 7 8 9 10 

1.60 .871 . 744 .633 . 539 .458 .390 . 332 .282 .240 
1. 70 .885 . 772 .671 .584 .507 .441 . 384 .334 .290 
1. 80 .898 . 797 . 707 .626 .555 .492 . 436 . 386 .342 
1. 90 .910 . 821 . 740 .667 . 601 . 541 .488 . 439 .396 

2.00 . 921 . 843 .770 . 704 .644 .589 .538 .492 . 450 
2.10 .931 . 862 . 798 . 739 .684 .633 . 586 .543 .503 
2.20 .940 .880 .824 . 771 . 722 . 676 .632 .592 .554 
2. 30 .948 . 856 .847 .800 . 756 . 715 .675 .638 .603 

2.40 .955 .910 .867 .826 .788 .750 . 715 .681 .649 
2.50 .961 .923 .886 .850 .816 .783 . 752 . 721 .692 
2.60 .967 .934 .902 . 871 .841 . 812 . 785 . 758 .732 
2.70 .972 .944 .916 .890 .864 .839 . 815 . 791 . 768 

2.80 . 976 .952 .929 .906 .884 .863 .842 .821 . 801 
2.90 .978 .960 .940 . 921 .902 .883 .865 .847 .830 
3.00 .983 .966 .950 .933 .917 .901 .886 .871 .856 
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TABLET 7.1 (continued) 

k 
T 2 3 4 5 6 7 8 9 10 

3.10 .986 .972 .958 .944 .931 .917 .904 . 891 .878 
3.20 .988 .977 .965 .953 .942 .931 .920 .909 .898 
3.30 .990 .981 .971 .961 .952 .942 .933 .924 .915 
3.40 .992 .984 .976 .968 .960 .953 .945 .937 .930 
3.50 .993 .987 .980 .974 .968 .961 .955 .948 .942 
3.60 .995 .989 .984 . 979 .973 .968 .963 .958 .953 
3.70 .996 .991 . 987 .983 .978 .974 .970 .966 .962 
3.80 .996 .993 .990 .986 .983 .979 .976 .972 .969 
3.90 .997 .994 . 991 .989 .986 .983 .981 .978 .975 
4.00 .998 .996 .993 .991 .989 .987 .985 .982 .980 
4.10 .998 .996 .995 .993 . 991 .990 .988 .986 .984 
4.20 .999 .997 .996 .994 .993 .992 .990 .989 .988 
4.30 .999 .998 .997 .996 .995 .994 .992 .991 .990 
4.40 .999 .998 .997 .997 .996 .995 .994 .993 .992 



TABLET 7.2 Values of h to determine the common sample size in the 

second stage for attaining P* = .95 for a correct com­
plete ordering of k normal populations with respect to 
means when n is the common size of the first stage 

sample. 

k 
5t n 3 4 5 

10 2.053 2.21 2.29 2.28 
20 2.002 2.16 2.25 2.24 
30 1. 988 2. 15 2.24 2 .23 
40 1.981 2. 14 2.24 2.22 

50 1. 977 2.14 2.23 2.22 
60 1. 975 2.14 2.23 2.22 
70 1. 973 2.14 2.23 2.22 
80 1. 971 2.13 2.23 2.21 

90 1.970 2.13 2.23 2. 21 
100 1. 969 2.13 2.23 2.21 
200 1. 965 2.13 2.22 2.21 
500 1. 963 2.12 2.22 -

t The last digit of each entry fork= 6 is of questionable accuracy 
because we expect all the entries to increase ask increases for 

fixed n. 
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C 7.3.1 RESULTS USING DIRECT DATA 
--------------------------------------------------

NAME OF THE COUNTRY f)iUSTRALIA 
--------------------------------------

YEAR BF~t.VL BUTTER MILK 
----- ---------- ----- ------ ----

1976 0.200 0.00(1 o. 100 
1977 0.600 0 • (l(H) 0.300 
1 ·;17::: 0.600 0.000 0.500 
1979 1). 4(H) 0.000 0.600 
19:::0 0.900 0.700 1.700 
19::: l 1. 20(1 o. 700 1 • 400 

----- ----- ---------- ----- -----
,'1EAl,J (,. 650 (>. 2:::i:3 0.767 

COVARIANCE MATRIX - 8(1) 
------------------------------------------------

Bflt.VL 
BUTTER 
MILi< 

BF&VL 
1.270E-1 
1.1.20E-1 
1.920E-1 

BUTTER 
1.12:0E-l 
1.307E-1 
2.193E-1 

MILK 
1.920E-l 
2.193E-1 
4.067E-1 

DETERMINANT OF COVARIANCE MATRIX S(l) = 1.539E-04 

NAME OF THE COUNTRY CHINA - TAIWAN 
--------------------------------------

YEA1=< BF~t.VL BUTTER MILK 
----- ---------- ----- ------ ----

1976 o. 600 o. 100 5. 1 t)(l 

1-;177 0.200 0.200 6.200 
197:3 o. 100 0.400 7. :300 
1979 0.200 o. 500 6.700 
11~1:::<) 0.300 0. :3(>() :3.:300 
19:?,1 0 .400 0.600 4.200 

----- ----- ---------- ----- -----
MEf~N o. ::::oo o. :;:5(, 5.467 

COVARIANCE MATRIX - 8(2) 
------------------------------------------------

BF ,~t.VL 
BUTTER 
MILK 

::::. 2(H)E-2 
-1. 20\)E-2 
-1.600E-1 

BUTTER 
-1. 2(>0E-2 

.3. 5\)0E-2 
1. CiCiOE-2 

11IU< 
-1. 60(iE-1 

1. (H)OE-2 
2 .371E+O 

DETERMINANT OF COVARIANCE MATRIX 8(2) = 1. 4 5 3 E-03 
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NAME OF THE COUNTRY: HONG KONG 
--------------------------------------

YEAR Bfl1.VL BUTTER f'1I!...k 
----- ---------- ----- ------ ----

1976 1.700 0.400 0. 7(Jt) 

1977 2. ()(H) 0.600 0.600 
1978 1.700 (). t,;,(H) 0. ::;:(I() 
1979 1.400 0.600 o. (:,00 
19:::0 1. :::oo (). :::(,O 0.600 
1981 .-, 100 1. 4(1(1 0.600 ..... 

----- ----- ---------- ----- -----
MEAN 1 . 7:3:3 o. 7:3:3 o. 650 

COVARIANCE MATRIX - 8(3) 
======================== 

BflNL 
BUTTER 
MIU< 

BF~<VL 
6.167E-2 
5.467E-2 

-5.000E-.3 

BUTTER 
5.467E-2 
1.227E-1 

-1. 20(1E-:2 

MILK 
-5. (H)OE-:::: 
-1.200E-2 

7. (H)OE-:3 

DETERMINANT OF COVARIANCE MATRIX $(3) = 2.665E-05 

NAME OF THE COUNTRY ,JAPAN 
--------------------------------------

YEAR BF~NL BUTTER MILK 
----- ---------- ----- ------ ----

1976 :3.000 ·"') 700 10.900 ..... 
1 ·::177 2.700 2.900 6. 80(1 
197:3 4. 101) 0.200 5.400 
1·:::,79 2. :::(H) 1. 100 6.700 
19:30 2. 600 0.200 4. 70(> 
1981 3.400 o. 100 4. 700 

----- ----- ---------.. - ----- -----
MEAN ·? ~·. 100 1 .200 (:1. 5~:3 

COVARIANCE MATRIX - S(4) 
------------------------------------------------

Bflt.VL 
BUTTER 
MILK 

Bnt.VL 
::::. 200E-1 

- :?, • 26<)E-1 
-2.720E-1 

BUTTER 
- ::::. 260E-1 

1. 672E+(> 
2.394E+O 

MILK 
-2.720E-1 

2.:394E+O 
5. 4.:::!'.::iE +(> 

DETERMINANT OF COVARIANCE MATRIX S(4) = 7.971E-01 
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NAME OF THE COUNTRY 11AU~YSIA 
--------------------------------------

YEAR BnNL BUTTER MILi< 
----- .. ---------- ----- ------- ----

1976 o. 400 .-, 
..:.. . 500 1-=-,_ .. 800 

1977 (l. :3t)O 2. 4(ll) 1:3. 200 
1978 o. 300 1 . 400 18. 200 
1979 0. 200 o. 900 14. 100 
1 ·;;,:::(1 o. ::::oo 1 . 700 10. :3t)(J 

19:::: 1 (i. :300 ·? .,_. :300 1:3. 600 
----- ----- ----------- ----- -----

i'IEAN (l. :300 1 . ';150 14. 78:3 

COVARIANCE MATRIX - S(5) 
======================== 

BF,~1.VL 
BUTTER 
i'IILK 

BflNL 
4. O(H)E-.3 
:3.200E-2 
9.400E-2 

BUTTER 
:3.200E-2 
5. ::::·?OE-1 
6.500E-2 

11ILK 
9.400E-2 
6. 50(,E-2 
9. 611)E+(> 

DETERMINANT OF COVARIANCE MATRIX S(5) = 6.490E-03 

NAME OF THE COUNTRY PHILIPPINES 
--------------------------------------

YEAR Bfl<VL BUTTER !"!ILK 
----- ---------- ----- ------ ----

1976 0. 50t) 1. 2(H) 12.900 
1977 o. 70(J 2.000 12.700 
1978 (I. 4t)O 1. 7(ll) 14.500 
1 ';179 0.400 1. 000 12. 70(1 
1980 0.500 2. Ot)t) 16.500 
1981 0.400 2.700 13.200 

----- ----- ---------- ----- -----
MEAN (). 4:=::::: 1. 767 13.750 

COVARIANCE MATRIX - 8(6) 
------------------------------------------------

BFt:VL 
BUTTER 
l"IIU( 

8flt.VL 
1. ::::,.::,7E-2 

-2. 5(H)E-2 

BUTTER 

:3.7:37E-.t 
2.240E-1 

t·IILK 
-2.500E-2 

2.240£-1 
2.271E+O 

DETERMINANT OF COVARIANCE MATRIX 8(6) = 1.063E-02 
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NAME OF THE COUNTRY ::: I NGAPORE 
--------------------------------------

'fEAR BF~<VL BUTTER MIU< 
----- ---------- ----- -----·- ----

1976 •; 900 1 500 t .. 100 ... . . 
1977 1 . 50(> 1 . tl()() 4. 6(1() 

197::: 1 . (~.oo o. 900 4. 400 
1 q,,;.·, 

•• I • .- 1 . :300 o. E:(H) 2. :::oo 
1 9:?,C, 1 . ';l(H) 1 . 700 4. 9(1() 

19:31 -, 1(10 •'") 500 5. 200 .... . ..:.. . 
----- ----- ---------- ----·- -----

rlEAi'l 1 . 717 1 . 467 4. 1:.,1:;,7 

COVARIANCE MATRIX - S(7) 
------------------------------------------------

BflNL 
BUTTER 
1'1ILI< 

8. ·~1,s ?E-2 
1.607E-1 
2.667E-1 

BUTTER 
1.607E-1 
3.787E-1 
4.107E-1 

MILK 
2.667E-1 
4.107E-1 
l.191E+O 

DETERMINANT OF COVARIANCE MATRIX 5(7) = 2.832E-03 

S = <Sl+S2+S3+S4+S5+S6+S7) i 7 

AVERAGE COVARIANCE MATIX - (S) 
------------------------------------------------------------

Bfl<VL BUTTER MILK 
BF,~<VL 9.257E-2 4. 095t:::-3 1.295E-2 
BUTTER 4. 095E-:::: 4.652E-1 4.730E- l 
MIU< 1.295E-2 4.730E-1 3.041E+O 

DETERMINANT OF AVERAGE COVARIAhlCE 11ATRIX = 1. 102E-01 

35 Ln DET (S) - 77 .2 

5 Ln DET ( f; 1 ) = -43 .9 
5 Ln DET (S2> = - 32. 7 
5 Ln DET ( :::: ::::) = -5 2 . 7 
5 Ln DET (84) = -1. 1 
5 Ln DET ( :::;5) = - 25.2 
5 Ln DET (86) = - 22 . 7 
5 Ln DET <S7) = - 29 . 3 

7 
35 Ln DET ( 8 ) - .l 5 Ln DET ('.3 i > = 130 .4 

1=1 
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C 7.3.2 RESULTS WHEN DATA WAS TRANSFORMED USING INVERSE 
=============================================== 
'.:: I NE CONVER::: I ON 
=============== 

NAME OF THE COUNTRY AU::,TRALIA 
--------------------------------------

YEAR BF,~<VL BUTTER rlILK 
----- ---------- ----- ------ ----

1976 0.045 o. (l(l(l (). <)::::2 
1977 0. 07:3 o. 000 (I. (155 
1 ·;)7:3 0.078 o. 000 0.(171 
1979 o. t)6:3 0. 000 (l. 07:?, 
198(1 t). 095 o. 084 o. 131 
1981 o. 11 (I o. (1:34 o. 119 

----- ----- ---------- ----- -----
MEAN o. (17:3 o. 02:3 0.081 

COVARIANCE MATRIX - S(l) 
======================== 

Bfl<VL 
BUTTER 
11ILK 

Bfl<VL 
5.243E-4 
:::.17:::E-4 
7. 5(>:2:E-4 

BUTTER 
8.17:?.E-4 
1.:::71E-3 
1.474E-:3 

MILK 
7.502E-4 
1.474E-:~: 
1.42(:.E-3 

DETERMINANT OF COVARIANCE MATRIX 8(1) = 6.163E-11 

NAME OF THE COUNTRY CHINA - TAIWAN 
--------------------------------------

YEAR BF~NL BUTTER MILi< 
----- ---------- ----- ------ ----

.t976 o. 07:3 0.0:32 0.228 
1977 0.045 0.045 (). 252 
197:3 0.0:32 0.06:3 0.274 
1979 0.045 0. <)71 (>. 2t,2 
19:3() 0.055 0.055 o. 1:3:3 
l '?81 0.0(:.:3 t). 078 0.206 

----- ----- ---------- ----- -----
MEAN (). (>5~: 0.057 o. 2:~:4 

COVARIANCE MATRIX - 8(2) 
------------------------------------------------

Bnt.VL 
BUTTER 
MILK 

BflNL 
2. 60::::E-4 

-l.124E-4 
-::::. 5(i1E-4 

BUTTER 
-i.124E-4 

2. 90(,E-4 

i'1ILK 
-3.501E-4 

1 .217E-J 

DETERMINANT OF COVARIANCE MATRIX 5(2) = 4.290E-11 
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NAME OF THE COUNTRY HONG KONG 
--------------------------------------

YEAR BF;~NL BUTTER l"f ILt(: 
---- ----- -----·- --------- ---- .. --

1976 o. 1.:::1 (). (,(:.~: 0. (1:::4 
1977 l). 142 o. 07:3 0.078 
197:::: o. 131 (I. (17:?, (1.090 
1979 o. 119 o. t)78 0.078 
1 ·::1::;l) (J. 1~:5 o. (190 0.07::: 
1·::-1:31 t) . 145 0. 1 19 0.078 

----- ----- ---------- ----- -----
MEAN o. 134 0.084 0.081 

COVARIANCE MATRIX - S(3) 

======================== 
BFg<VL BUTTER 11ILK 

BF~<VL 9.016E-5 1. 07(1E-4 -1.063E-5 
BUTTER l.070E-4 :;: . 565E-4 -4.137E-5 
MILK -1.06:3E-5 -4.1:37E-5 2.557E-5 

DETERMINANT OF COVARIANCE MATRIX SC3) = 4.284E-13 

NAME OF THE COUNTRY ,JAPAN 
--------------------------------------

YEAR BF~NL BUTTER MILi< 
----- ---------- ----- ------ ----

1976 (,. 174 1). 165 l). 3 :3,~ 
1977 (I. 165 o. 171 0.264 
197f3 (l. 204 0.045 0.235 
l'':179 1). 1(:,8 o. 105 0.26..2 
19:31) 0. 162 0.045 0.219 
1981 o. 1:=:5 (l. (1;;;2 o. 219 

----- ----- ---------- ----- -----
l'-IEAN o. 176 0.094 C>. 25C, 

COVARIANCE MATRIX - 8(4) 
================-==-----

Bflt.VL 
BUTTER 
JviILK 

Bflt.VL 
2 . 45'8E-4 

-4.67/:.E-4 
- l • 42:3E-4 

BUTTER 
-4.67(:.E-4 

~: . ~i7:3E-3 

11 IL~< 
-1.423E-4 

2. :325E-:3 

DETERMINANT OF COVARIANCE MATRIX 5(4) = 4.010E-10 

95 



NAME OF THE COUNTRY MALAYSIA 
--------------------------------------

··{EAR BflNL BUTTER MILK 
----- ----------- ----- ------ ----

1976 o. Ot,3 o. 15-;, 0 . 1+4t: 
1 'i177 0. 055 (>. 156 •.) . :372 
197:::: (l. 055 o. i l ';I o. 441 
1979 0. 1)45 (l. 095 o. :3:35 
198(1 0. 055 (,, 1 ~: 1 o. ~:~:5 
1981 0.055 1). 11.:.:3 o. 37::?, 

----- ----- ---------- ----- -----
1~tEAi,J o. 055 o. 13:3 o. :3·~1:3 

COVARIANCE MATRIX - S(5) 
======================== 

BFg<VL BUTTER MILK 
BF,~cVL 3.458E-5 1.217E-4 1. 104E-4 
BUTTER 1. 21 ?E-4 7.847E-4 ~:. 23•;1E-5 
MILi< 1.104E-4 :3 , 239E-5 1. :397E-3 

DETERMINANT OF COVARIANCE MATRIX S(5) = 1.463E-11 

NAME OF THE COUNTRY PH IL I PP I NE'.::: 
--------------------------------------

YEAR Bfl<VL BUTTER MILK 
----- ---------- ----- ------ ----

1976 0.071 o. 11 l) 0.367 
1977 0.084 c,. 142 o. :364 
1978 0.063 0. 1:31 (l. 3'? 1 
1979 0.063 (). 100 0.364 
1 9:30 0.071 (). 142 o. 418 
1981 o. C,6:3 o. 165 <). ~:72 

----- ----- ---------- ----- -----
MEAN 0.069 o. 1 --::, , 

·-'"'- 0. :;:79 

COVARIANCE MATRIX - 5 (6) 
------------------------------------------------

BF ,~NL 
BUTTER 
l"IILK 

BF~NL 
6.4J8E-5 
2.496E-5 

-2.190E-5 

BUTTER 
2. 4'::-'6E-5 
5. 5 ·;"15 E-4 
1. 4 :;;5E-4 

i'IIU< 
-2. 19(>E-5 

1.435E-4 
4. 58!:iE-4 

DETERMINANT OF COVARIANCE MATRIX 8 ( 6) = 1 . 448E-11 
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l'-IA11E OF THE COUNTRY !=,INGAPORE 
--------------------------------------

YEAR Bn<VL BUTTER MILK 
---- ------ ------ --------- ------

1976 o. 1 ,2;8 0. 1 -:, ,-:, 
"-~' 0.250 

1977 o. 12:3 o. 119 0.216 
1 ·_:;,7::_;: o. 127 0.095 0.211 
1979 o. 114 0.090 o. 168 
1980 o. i :3:3 (1. 131 (). 22:;: 
1'?61 (I• 145 o. 159 0.230 

----- ----- ---------- ----- -----
MEAN o. 131 o. 119 0.216 

COVARIANCE MATRIX - S(7) 
=-====================== 

BF&VL 
BUTTER 
MILi< 

BF~NL 
1. :35:3E-4 
2.566E-4 
2. 6:3:3E-4 

BUTTER 
2.566E-4 
6.354E-4 
4.583E-4 

11IU< 
2.638E-4 
4. 58::::E-4 
7 • .37:::E-4 

DETERMINANT OF COVARIANCE MATRIX $(7) = 4.391E-12 

S = <S1+S2+S3+S4+S5+S6+S7) / 7 

AVERAGE COVARIANCE MATIX - (S) 
------------------------------------------------------------

BF~NL BUTTER MILK 
Bt=~<VL 1. 94:3£-4 1.069E-4 :3 . 565E-5 
BUTTER 1. 069E-4 1.210E-3 r~ .• 309E-4 
MIU< ::: . 565E-5 6.309E-4 1. 11)4E-:3 

DETERMINANT OF AVERAGE COVARIANCE MATRIX= 1.723E-10 

35 Ln OET (::;) = -786.9 

5 Ln DET (Sl> = - 117 .5 
5 Ln DET ($2) = -1 19 . 3 
5 Ln DET (53) = - 142 .4 
5 Ln DET ( :34) = -108.2 
5 Ln DET ( ~;5) = -124.7 
5 Ln DET (S6) = -124.8 
5 Ln DET (S7) = -130.8 

7 
35 Lr, DET (:3) - I 5 Ln DET (:3 i) = 80 . 8 

i=l 
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C 7.3.3 RESULTS WHEN DATA WAS TRANSFORMED USING LOGIT 
============================================= 
CONVERSION 
--------------------

NAME OF THE COUNTRY AU!=;TRAL I A 
--------------------------------------

YEAR BnNL BUTTER MILK 
----- ---------- ----- ------ ----

1'::'76 -6. 21:3 (1. 000 -c,. ':,11)7 
1977 -5. 11 (l 0. ()00 -5. :3<)6 
197:3 -5. 110 0.000 -5. 25,:::: 
1979 -5.517 0.00() -5. 110 
1 ·~18() -4.701 -4. ·~1 55 -4.057 
1981 -4.411 -4.955 -4.255 

----- ----- ---------- ----- -----
11EAN -5. 177 -1. 652 -5. 23:3 

COVARIANCE MATRIX - S(l) 

------------------------------------------------

BflNL 
BUTTER 
MILK 

BflNL 
4.021E-1 

-1.231E+O 
5.915E-1 

BUTTER 
-1.2:31E+O 

6.547E+O 
-2. 145E+1) 

MIU~: 
5.915E-1 

-2.145E+O 
1 • 0'?::1E +O 

DETERMINANT OF COVARIANCE MATRIX S(1) = 2.093E-Ol 

NAME OF THE COUNTRY CHINA - TAIWAN 
--------------------------------------

YEAR BF~NL BUTTER MIU< 
----- ---------- ----- ------ ----

1976 -5. 1 10 -6. 907 -2. 924 
1977 -6. 21~: -6. 21~: -2.717 
197:3 -6.907 -5. 517 -2. 541 
197';/ -6. 21:3 -5. 251:~: -2. t,34 
19:3(> -!5. :306 -5. :306 - .3. :378 
1981 -5. 517 -5. 1 10 _--:, ._,. 127 

----- ----- ---------- ----- -----
MEAl"II -5. 961 -5. E:(>::: -2. 8:=:7 

COVARIANCE MATRIX - 8(2) 
===================-----

BF~NL 
BUTTER 
t1ILK 

BF~NL 
::::. 9:)2E-1 

-1. :355E-1 
-1.294E-1 

BUTTER 
-1.:::55E-1 

4.415E-1 

MIU< 
-1.294E-1 

1.025E-1 

DETERMINANT OF COVARIANCE MATRIX 5(2) = 7.173E-03 
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NAME OF THE COUNTRY HONG ~<ON(; 
--------------------------------------
"r'EAR BF~<VL BUTTER MILK 

----- ------· ---- ----- ------ ----
1976 -4. 057 -5. 517 -4. 955 
1977 - ::::. :3''92 -5. 1 10 -5. 1 1 (l 

197::: -4. 057 -5. 1 10 -4. :?.2(> 
1979 -4. 255 -5. 1 10 -::, . 1 10 
1 5,:::(, - ·-=· ·-·. ~1-~1<;1 -4. :::2(> -5. 1 10 
1981 -:3. 842 -4. 255 -5. 1 1 () 

----- ----- ---------- ----- -----
MEAN -4. 017 -4. 9:37 -5. 0:36 

COVARIANCE MATRIX - 8(3) 
------------------------------------------------

BF8NL BUTTER 11ILK 
Bt=&VL .--, 

..:.. . 126E-2 3.427E-2 -:3. 5:3:::E-3 
BUTTER 3.427E-2 1.782E-1 -2. ~358E-2 
MIU< -:3. S8:3E-3 -2.:358E-2 1.500E-2 

DETERMINANT OF COVARIANCE MATRIX 5(3) = 3.091E-05 

NAME OF THE COUNTRY ,..JAPAN 
--------------------------------------

YEAR BF&VL BUTTER 11 I LI< 
----- ---------- ----- ------ ----

1976 - ·-=, 476 -:3. 585 _.-.. 101 . _,. ..-... . 
1977 - :.::. 585 - :~:. 51 1 

__ , 
..-... . 61:3 

197,3 -:3. 152 -6. 21:3 - ·"':i 
-'-. :36:3 

1979 -:3. 54 7 -4. 499 _ . ..., 
L• 6:.::4 

19:30 -·J . _,. 62:3 -(: .. 21:3 - :3 . 009 
1981 - ~3 . 347 -6. 907 - ·-=· ·-·. (H)':,I 

----- ----- ---------- ·----- -----
MEAN -3. 455 -5. 154 ---=· .,,_. 706 

COVARIANCE MATRIX - 8(4) 
------------------------------------------------

Bflt.VL BUTTER MILK 
BF,~t.VL ·-=· ·-·. 147E-2 -1.276E-1 -1. 204E-2 
BUTTER -1.276E-1 2. l ::: 1 E+O 4 ... 32:;:E-l 
i"lILt< -1.204E-2 4. 32::::E-1 1. 176E-1 

DETERMINANT OF COVARIANCE MATRIX S<4> = 1.287E-03 

MASSEY UNIVERSITY 
LIB~A_l'\. 
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NAME OF THE COUNTRY i1ALAYSIA 
--------------------------------------

YEAR BF~<VL BUTTER MILK 
---- ----- ------ --------- ----- -

1971:., - 5 . 517 _ --:, ·-·. 664 -1. 4 63 
i ':-'77 -5 . :~06 -:3. 705 -1 . :38:3 
1 ·~17::: -5. 806 -4 . ·"") C:C:: - 1 5(,3 .... . _ 1._ 1 . 
1 ·:17·? - ,~ .21 :3 -4. 701 -1 • :::07 
1980 -5. 806 -4. (157 _.-.. ..... 1 11 
1981 -5. :306 - :~:. 547 -1 . 84':/ 

----- ----- -----____ ,._ ----- -----
11EAN -5.:326 -3. ·;,:~8 -1 . 769 

COVARIANCE MATRIX - S(5) 
------------------------------------------------

BF~<VL BUTTER 11ILI< 
BF,~VL 4. 925E-2 7.673E-2 2.074£-2 
BUTTER 7. 6,7~:E-2 1.929E-1 2. ~:25E-3 
i'1 I LI< 2.074E-2 2.325E-.3 6 . 051E-2 

DETERMINANT OF COVARIANCE MATRIX S(5) = 1.427E-04 

NAME OF THE COUNTRY PHILIPPINES 
--------------------------------------

YEAR Bn<VL BUTTER i'1ILK 
---- ----- ------ --------- - ------

1976 -5. 2':.1:3 -4. 41 1 -l . 911) 
1977 -4. 9~i5 - ·':• ·-·. :::·;12 -1 . ~12::: 
1978 - 5 . 517 -4. 057 -1 . 7 74 
1979 -5. 517 -4. 595 -1 . ~1 2E: 
1980 -5. 2 '?.3 - ::::. s.::, ·-, .. .... -1 . 621 
1981 -5. 517 -:.::. 585 -1 . 88~: 

------ ----- ---------- ----- -----
11EAN -5. ~: 4 ~1 -4. (172 -1 . :?,41 

COVARIANCE l·tATRIX - S(6) 
------------------------------------------------

Bn<VL 
BUTTER 
MIU=.: 

Bfl<VL 
4. ~134E-2 
1. :~:15E-2 

- :~:. 055E-~: 

BUTTER 
1 . 315E-2 
1. :382E-1 
l . 459E-2 

l•IILK 

1 .459E-2 
1. 4~:4E- 2 

DETERMINANT OF COVARIANCE MATRI X S C6, = 8.571 E-05 
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NAME OF THE COUNTRY SINGAPORE 
--------------------------------------

r"EAR BF,~NL BUTTER t1ILK 
-----· ---- ----- ------------ ----

1976 - ·: ~ ·-·. 944 -4. 185 - -, .... . 7::::4 
1977 -4. 1:35 -4. :255 - ·? ·-·. 0:32 
1978 -4. 1 19 -4. 701 -·-· ._1. 079 
197'? -4. :3.::;() -4. :320 -:3. 547 
19E:0 - ·-=· ._,. 944 -4. 057 -2. ·~166 
1'?81 -.3. 842 - :3 . 664 - ··· .,_. 903 

----- ----- ---------- ----- -----
MEAN -4. 0/.:.1 -4. 28(> _ --;, ._,. 04:3 

COVARIANCE MATRIX - 5(7) 
------------------------------------------------

BF8<VL BUTTER MIU< 
Bfl<VL .3.:32:3£-2 6. 77:3£-2 4.239E-2 
BUTTER .::,. 77~:E-2 1.818E-1 ::: .412E-2 
MILi< 4.239E-2 :3. 412E-2 7 . 5 .32E-2 

DETERMINANT OF COVARIANCE MATRIX 8(7) = 3.064E-05 

S = (51+S2+S3+S4+S5+S6+S7 ) / 7 

AVERAGE COVARIANCE MATIX - <S> 
~============================= 

BF8<VL BUTTER r1ILK 

BF&VL 1. 4(H)E-1 -!.'::i:31E-1 7.237E-2 
BUTTER -1. 931E-1 1. 40';1E+O -2. ::::2(:,E-1 
MILK 7.2:37E-2 -2.326E-1 2.11-?E-1 

DETERMINANT OF AVERAGE COVARIANCE MATRIX= 2.543E-02 

35 Ln DET < S > = - 128. 5 

5 Ln DET (81) = - 7. 8 
5 Ln DET ( S.2 > = - 24 . 7 
5 Ln DET ( ::,,3 ) = -5 1. 9 
5 Ln DET ( :34) = - 33. 3 
5 Ln DET ( :::5; = -44 . 3 
5 Ln DET ( ::,6) = - 46 . 8 
5 Ln DET (::,7) = - 52 . 0 

7 
35 Ln DET (S) - l 

i= 1 
5 Ln DET ( :: : i ) = 132 . 3 
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C 7.3.4 RESULTS WHEN DATA WAS TRANSFORMED USING PROBIT 
============================================-= 
CONVERSION 
--------------------

NAME OF THE COUNTRY AUSTRALIA 
--------------------------------------

YEAR Bn-NL BUTTER MIU( 
----- ---------- ---·-- ------ ----

1976 7. !:;!!:::C> :::.090 8.090 
1977 7.510 8.090 7.750 
i ·~17:3 7.510 ::: • (JS'(> 7. 5:::0 
1979 7.650 8.090 7. 510 
l '::1:::0 7.370 7.460 7. 120 
19::: 1 7.260 7.460 7.20() 

----- ----- ---------- ----- -----
MEAN 7.530 7. :380 7.542 

COVARIANCE MATRIX - S(l) 
------------------------------------------------

Bn-NL BUTTER MILK 
BF~<VL 4.724E-2 5.418E-2 6. :358E-2 
BUTTER 5. 41::::E-2 1. 05:::E-1 9 .61:::E-2 
i~1ILI< 6.858E-2 9 .618E-2 1. 2!=:2E-1 

DETERMINANT OF COVARIANCE MATRIX S(l) = 4.465E-05 

NAME OF THE COUNTRY CHINA - TAIWAN 
--------------------------------------

YEAR BflNL BUTTER i'1ILK 
----- ---------- ----- ------ ----

1976 7. 510 .-, ·~ . 090 (:,. 640 
1977 7 . :38(> 7. :::8() 6. 540 
197:?, :::. 090 7. 65(1 6. 450 
1979 7. 8:::() 7. 5E:<) ,=:,. 500 
1 ';?::;:() l. 750 7. 750 6. :::4() 

1981 7.650 7. 51(1 6. 7:30 
----- ----- ---------- ----- -----

MEAN 7. 7 ·t~: 7. 74:3 f.:,. c,17 

COVARIANCE MATRIX - 8(2) 
------------------------------------------------

BF~<VL 
BUTTER 
MILK 

BF~<VL 
4.115E-2 

-1. ·;io1E-2 
-1.975E-2 

BUTTER 
-1. '::101E-2 

4.575E-2 
1. 453E-:~: 

MILi< 
-1. 97!:iE- 2 

1.45:3E-:3 
2.211E-2 

DETERMINANT OF COVARIANCE MATRIX S(2) = 1.679E-05 
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NAME OF THE COUNTRY HONG t<ONCi 
--------------------------------------

'fEAR BflNL BUTTER MILK 
---- ----- =•==== ---------

1976 7. 120 7./.:.50 7.460 
1977 7.050 7.510 7.510 
1978 7. 120 7. 51(> 7.410 
197'? 7.200 7.510 7.510 
19E:O 7. 100 7.410 7.510 
19:31 7.040 7.200 7.510 

----- ----- ---------- ----- -----
MEAN 7. 105 7.465 7.4:35 

COVARIANCE MATRIX - 8(3) 
------------------------------------------------

BF,~NL 
BUTTER 
f1IU< 

BF~<VL 
:3. :350E-:3 
4. 550E-:::: 

-4.500E-4 

BUTTER 
4.550E-3 
2.271E-2 

-2.750E-3 

MIU< 
-4.500E-4 
-2.750E-3 

1.750E-3 

DETERMINANT OF COVARIANCE MATRIX 8(3) = 7.824E-08 

NAME OF THE COUNTRY ,JAPAN 
=================== 

YEAR BFl<VL BUTTER i'1ILI< 
----- ---------- ·----- ------ ----

1976 6. 8:30 6.930 6.2:30 
1977 (: •• '::°'3(> 6.900 6.490 
197:3 6.740 7. :38<) 6./.:.10 
1979 6.910 7.290 6.500 
1980 6.940 7. :380 6.670 
1981 7. o:::o :::. 090 6.670 

----- ----- ===== ----- -----
MEAN 6.905 7.495 t,.528 

COVARIANCE MATRIX - S<4> 
------------------------------------------------

Bnt.VL 
BUTTER 
MILK 

BFlt.VL 
9.070E-3 
4.510E-:3 
3.llOE-3 

BUTTER 
4. 510E-:::: 
2.7:32E-1 
7.349E-2 

MILi< 
:::: • 11 OE-:::: 
7.349E-2 
2. 7,~,2E-2 

DETERMINANT OF COVARIANCE MATRIX S(4) = 1.829E-05 
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NAME OF THE COUNTRY MALAY::HA 
-------------------------------------- i04 

YEAR BF8<VL BUTTER MIU< 
----- ---------- ----- ------ ----

1976 7.650 6.960 5.:::90 
1977 7.750 6. ·:,i:3() 6. 120 
197:::: 7.750 7.200 5.910 
1979 7. :380 7. :370 6.080 
1·:-1::::0 7.750 7. 120 6.240 
1981 7. 750 6.910 6. 100 

----- ----- ---------- ----- -----
11EAN 7. 755 7. O'i'O 6.057 

COVARIANCE MATRIX - S(5) 
------------------------------------------------

BF8<VL BUTTER 1'1ILi< 
BF,~VL 5.350E-:3 9. :380E-:3 :3. 940E-:::: 
BUTTER ·;,. C:t:C>E-:3 ~:. 056E-2 5.600E-4 
MILl< :3.940E-:3 5.600E-4 1. 7:37E-2 

DETERMINANT OF COVARIANCE MATRIX 8(5) = 7.446E-07 

NAME OF THE COUNTRY PHILIPPINES 
--------------------------------------

YEAR BF~NL BUTTER i'1 I LI< 
----- ---------- ----- ------ ----

1976 7. 580 7. 261) 6. 130 
1977 7. 460 7.050 6. 14(1 
197:?, 7. 650 7. 120 6. 061) 
1979 7. 650 7. ~::::~:(> ,.: .. 140 
1980 7. S::30 7. 05() 5.970 
1981 7.650 (: . • •;1::::() 6. 120 

----- ----- ---------- ----- -----
MEAN 7. 5s-15 7 . 1 --,.-:, 

.L •-' ,s. (,9~: 

COVARIANCE MATRIX - 8(6) 
------------------------------------------------

BF~(VL BUTTER MILi< 
BF8<VL 5. !::i5C,E-~: 1.900E-3 -5. 60(iE-4 
BUTTER 1.900E-3 ·-:1 

-'-. 19!E-:.2 ::;: • 04 7E-.3 
MILi< -5 . . ~.(l(iE-4 3.047E-:3 4.547E-3 

DETERMINANT OF COVARIANCE MATRIX 8(6) = 4.715E-07 
• 



NAME OF THE COUNTRY: SINGAPORE 
=================== 105 

YEAR BF,~NL BUTTER MILi< 
----- ---------- ----- ------ ----

1976 7.070 7 . 170 6. 5!:iO 
1977 7 . 170 7. 200 <.:,. 690 
19 7:3 7 . 14(1 7.37 0 c,. 710 
1979 7 .230 7.41(1 6.910 
1·::180 7.070 7 . 120 (:. .(:.50 

1981 7.040 6.960 6. 6 .:::() 
----- ----- ---------- ----- -----

i'iEAN 7. 120 7.205 6.690 

COVARIANCE MATRIX - S(7) 
------------------------------------------------

BFSNL BUTTER MILK 
BF~<VL 5. 2:3(,E-.3 1.024E-2 7 .680E-:3 
BUTTER 1.024E-2 2.755E-2 1. 42::::E-2 
MILK 7. 6 ::WE-:3 1.428E-2 1. 472E-2 

DETERMINANT OF COVARIANCE MATRIX S(7) = 1.421E-07 

S = (S1+S2+S3+S4+S5+86+S7> / 7 

AVERAGE COVARIANCE MATIX - CS> 
============================== 

Bn<VL BUTTER MI LK 
BF&VL 1. 6 71E-2 9 .464E-.3 :3. ·~;31_:\E-:3 
BUTTER 9 .464E- 3 7 . 5 ::::5E-2 2.661E-2 
MILi< :=:. ·~1:36E-:3 2.661E-2 :3 . 097E-2 

DETERMINANT OF AVERAGE COVARIANCE MATRIX= 2 .288E- 05 

35 Ln DET (S> = - 374 . 0 

5 Lrr DET ( :.:; 1 ) = - 50 . 0 
5 Ln DET < !32) = - 55 . 0 
5 Ln DET ( s;:;: ) = - 81 . 8 
5 Ln DET (S4) = - 54 . 5 
5 Lrr DET <S5) = - 70 . 6 
5 Ln DET (86) = - 72.8 
5 Ln DET ( ::;7 ) = -78 . 8 

7 
35 Ln DET ( s) - .l 5 Ln DET ( !:, i ) = 89 . 5 

1=1 
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CHAPTER 8 

8. CONCLUSIONS 

An overview of Multivariate Ranking and Selection procedures and 

an example using Multivariate Ranking has been discussed in the pre­

ceding chapters. This field of study is relatively new and many 

improvements can be made to the theory in the years to follow. Although 

there are several methods available to select the 'best' population, 

methods dealing with the complete ranking of populations are scarce. 

It was noticed that in the methods discussed in Chapter 4 and 

Chapter 5 that a scalar function ei had to be found to select the 

populations. However, there is no indication as to h<M a clear and 

meaningful choice of that scalar function is made for a given situation. 

Also, it is evident that the P(CS) expressions are quite difficult 

to evaluate and the tabulated values of such expressions are not always 

available. 

The method by Dudewicz and Taneja (1981) on the Multivariate 

Solution to the Multivariate Ranking and Selection problem explained in 

Chapter 6 is difficult to apply in practice as defining the function g 

is not easy. 

Here again the importance of the example on Multivariate Ranking 

discussed in Chapter 7 is stressed as solved examples of that nature are 

practically non-existent. 
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