Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Investigations on Malic Acid Utilisation in Schizosaccharomyces species

A thesis presented in partial fulfilment of the requirements for the degree in Doctor of Philosophy in Genetics at Massey University

Wilhelmina Margaretha Cambourn-Theewis

1990

Abstract

The aims of this investigation were: to determine whether alterations in uptake, or metabolism, of glucose and malate was the cause of malate dependence; to determine the number of genes involved in malate dependence; and to clone the gene(s) involved. A malate dependent mutant, i.e. a mutant that requires both malate and glucose for growth, (mutant 11) of Schizosaccharomyces malidevorans 442 was characterised. Malic enzyme activity was increased almost ten-fold. The V_{max} of malate uptake was increased four-fold compared to S. malidevorans 442. Uptake of glucose was significantly lower in mutant 11 than the wild-type. The kinetics of glucose uptake by S. malidevorans 442 and mutant 11 suggested the presence of two glucose transporters, a high affinity and a low affinity transporter. Only the low affinity transport was apparently altered in mutant 11 compared to the wild-type.

Genetic analysis indicated that the malate dependent mutation is recessive and is the result of a single mutational event. Crosses involving derivatives of mutant 11 and *Schizosaccharomyces pombe* strains did not yield the expected segregation of markers. Tetrad analysis showed that the spore viability was very low. It was not possible, therefore, to determine linkage of the malate dependence locus and any other loci.

All malate dependent strains were apparently homothallic although linkage between the mating-type locus and malate dependence could not be established. The isolation of similar mutants from homothallic strains of *S. pombe*, but not from heterothallic strains, provided strong support for the requirement of homothallism for malate dependence. The pulse field gel electophoresis karyotypes of mutant 11 and derivatives of mutant 11 suggested the presence of a large chromosomal rearrangement of chromosome 2 that cosegregated with malate dependence.

Malate dependent mutants were not obtained from homothallic Saccharomyces cerevisiae MD26.

A malate dependent mutant (WT 6) was isolated from *S. pombe* WT 4 and found to have characteristics similar but not identical to those of mutant 11. WT 6 demonstrated increased utilisation of malate and decreased utilisation of glucose. Malic enzyme activity was not altered in WT 6 compared to the wild-type. Malate uptake was not affected. The karyotype of WT 6 suggested that a chromosomal rearrangement had occurred, but it is not identical to the rearrangement in mutant 11.

The differences in the characteristics of mutant 11 and WT 6 suggested the mutations in these mutants may not be identical. The finding that mutant 11 and WT 6 belong to different complementation groups could explain these differences.

Although differences were found in the uptake of malate and glucose, the inability of malate dependent mutants to grow on glucose implicates a defect in glucose metabolism. I wish to thank my supervisors, Dr Roy J. Thornton, Dr Susan B. Rodriguez and Dr Neville Honey for their guidance, encouragement and patience.

Dr Brian Mansfield and the Molecular Genetics Group for help with construction of gene libraries.

The DSIR for financial support of this research project

Dr M Hardman for help and encouragement in the biochemical aspects of this project.

The 'Yeasties' including; Dr Neil Wedlock (before he became Dr), Mark Lubbers (before he became Dad), Vaughan Parker, Chris Harrod (before he blasted off, without doing grievous bodily harm to the HPLC), Fiona Murray (before she defected to be a CHEF), and Nicolette Hansen (before she began squinting at blots), for listening to my wild theories and for generally putting up with me.

Dr T. J. Brown for using reverse psychology when I was having severe worries and doubts.

My special thanks to my husband Hugh and my family, who had faith in me, most especially when I did not. For Hugh, Micah and Bowser

Table of Contents

Page

Abstract	ii
Acknowledgement	iv
Table of Contents	vi
List of Figures	xii
List of Tables	хv
List of Plates	xvii

<u>Introduction</u>

1.	General description and taxonomy of the genus Schizosaccharomyces	1
2.	The life cycle of Schizosaccharomyces pombe and Schizosaccharomyces malidevorans.	3
3.	Glucose metabolism in yeast.	4
4.	Malate utilisation in yeast and the deacidification of wine.	7
5.	Mutant 11.	8
6.	Aims of this investigation	10
Mate	rials and Methods	

1.	Microbial	strains	and	maintenance	12
2.	Media				12

			vii
Tab	le of C	Contents, cont'd	Page
	2.1.	YM and YMM media	12
	2.2.	Yeast minimal media (MM, MMM)	12
	2.3.	Indicator plate used for screening malate dependent mutants of Schizosaccharomyces	14
	2.4.	Luria broth (LB)	14
	2.5.	Bacterial minimal medium	16
	2.6.	Maltose assimilation medium	16
	2.7.	Yeast extract agar (YEA, YEAM)	16
	2.8.	Magdala red (Phloxin-B) agar	16
	2.9.	Malt extract agar (MEA, MEAM)	18
	2.10	. Sporulation agar (SPA, SPAM)	18
	2.11	. Minimal malate glucose (MMG)	18
3.	Mati	ng procedure	19
4.	Ultra	violet light (UV) mutagenesis	20
5.	Ferm	ientation trials	
	5.1.	Culture conditions in MMG	20
	5.2.	High performance liquid chromatography (HPLC) analyses	
		5.2.1. Preparation of samples	21
		5.2.2. Analyses of glucose and malic acid	21

Table of Contents, cont'd

6.	Enzy	me assays	
	6.1.	Preparation of cell-free extract	22
	6.2.	Hexokinase-ATP-kinase	22
	6.3. 23	Malate dehydrogenase	
	6.4.	Malic enzyme	23
	6.5.	Determination of Km values of malic enzyme	23
	6.6.	Heat inactivation of malic enzyme	24
	6.7.	Determination of protein concentration	24
7.	Gene	library construction and screening	24
	7.1.	Preparation of large amounts of plasmid DNA	25
	7.2.	Preparation of S. malidevorans DNA	25
	7.3.	Digestion of DNA by restriction endonucleases	27
	7.4.	Sodium chloride gradient centifugation	27
	7.5.	Dephosphorylation of DNA	28
	7.6.	Ligation of DNA	28
	7.7.	Transformation of E.coli	28
	7.8.	Agarose gel electrophoresis	28
	7.9.	Transformation of Schizosaccharomyces	28
	7.10.	Rapid preparation of plasmid DNA	29

Page

Table of Contents, cont'd

8.	Tran (TAF	sverse alternating field electrophoresis FE)	
	8.1.	Preparation of the DNA samples for TAFE	29
	8.2.	Electrophoresis conditions	30
9.	Tran Schi	sport of radioactive substrates by zosaccharomyces	
	9.1.	Growth and preparation of cells	31
	9.2.	Transport of ¹⁴ C malate	31
	9.3.	Kinetics of malate uptake	32
	9.4.	Transport of ¹⁴ C glucose	32
	9.5.	Kinetics of glucose uptake	33

Results

1.	Characteristics of S. malidevorans 442, mutant 11 and derivatives	34
2.	Isolation of S. pombe malate dependent mutants	41
3.	U.V mutagenesis of Saccharomyces cerevisiae	46
4.	Maltose assimilation by Schizosaccharomyces	48
5.	Genetic Analysis	49
	5.1. Crosses between mutant 11 and S. pombe auxotrophic strains	49

Page

Table of Contents, cont'd

	5.2.	Crosses between S. pombe malate dependent mutants and S. pombe auxotrophic strains	59
	5.3.	Complementation tests between malate dependent mutants of S. pombe and S. malidevorans	62
6.	Ploid	y of malate dependent strains	
	6.1.	YEA agar with Magdala Red (MR)	64
7.	Trans (TAF	verse Alternating Field Electrophoresis E)	67
8.	Enzy	me Assays	
	8.1.	Malic enzyme	72
	8.2.	Malate dehydrogenase (MDH)	77
	8.3.	Hexose-ATP-kinase	77
	8.4	Thermal inactivation of malic enzyme	77
9.	Uptak strair	te of substrates by Schizosaccharomyces	
	9.1.	Malate uptake	82
	9.2.	Glucose uptake	86
	9.3.	Kinetics of malate and glucose uptake	91
10.	Moleo	cular genetics	
	10.1.	Construction of the pFL20 S. malidevorans gene library	96

Page

Table of Contents, cont'd 10.2. Construction and screening of the pDB262 S. malidevorans gene library 10.3 Screening of a S. pombe gene library

Discussion

1.	Taxonomy of Schizosaccharomyces pombe and Schizosaccharomyces malidevorans	102
2.	Investigation of the mutation(s) that result in the malate dependent phenotype	104
3.	Genetic analysis	108
4.	Involvement of the mating-type in the malate dependent phenotype	111
5.	The uptake of glucose and malate by S. malidevorans and S. pombe	114
6.	Models that explain malate dependence	117
7.	Conclusions	123
<u>Bibl</u> i	iography	126

Page

98

101

List of Figures

Figure		Page
1	Fermentation trial of S. malidevorans 442 in MMG	36
2	Fermentation trial of S. malidevorans mutant 11 in MMG	37
3	Fermentation trial of S. pombe WT 4 in MMG	44
4	Fermentation trial of S. pombe malate dependent mutant, WT 6, in MMG	45
5	Saturation and Lineweaver-Burke plots of the malic enzyme of <i>S. malidevorans</i> 442, varying concentrations of malic acid	75
6	Saturation and Lineweaver-Burke plots of the malic enzyme of <i>S. malidevorans</i> mutant 11, varying concentrations of malic acid.	75
7	Saturation and Lineweaver-Burke plots of the malic enzyme of <i>S. malidevorans</i> 442, varying concentrations of NAD.	76
8	Saturation and Lineweaver-Burke plots of the malic enzyme of S. malidevorans mutant 11, varying concentrations of NAD	76
9	Heat inactivation of malic enzymes from S. malidevorans 442, mutant 11, a class 1 revertant, and a class 2 revertant	81
10	Heat inactivation of malic enzymes from S. malidevorans 442, S. pombe WT 4 and the malate dependent mutant, WT 6	81

List of Figures, cont'd

Figure		Page
11	Malate uptake by S. malidevorans strains	83
12	Malate uptake by S.malidevorans strains in the presence of glucose	83
13	Malate uptake by S. pombe strains	84
14	Malate uptake by S. pombe strains in the presence of glucose	84
15	Uptake, by S. malidevorans strains in the presence of glucose and succinate	85
16	Malate uptake, by S. pombe strains in the presence of glucose and succinate	85
17	Glucose uptake of S. malidevorans 442 at pH 7.0 and at pH 3.5	87
18	Glucose uptake by S. malidevorans strains	89
19	Glucose uptake, by S. malidevorans strains in the presence of malate	89
20	Glucose uptake by S. pombe strains	90
21	Glucose uptake, by S. pombe strains in the presence of malate	90
22	Lineweaver-Burke and saturation plots of malate uptake by S. malidevorans 442	92
23	Lineweaver-Burke and saturation plots of malate uptake by mutant 11	92
24	Hill plot of malate uptake by S. malidevorans 442	93

List of Figures Cont'd

Figure Page 25 Hill plot of malate uptake by mutant 11 93 26 Eadie-Hofstee plot of glucose uptake by S. malidevorans 442 94 Eadie-Hofstee plot of glucose uptake by 27 94 mutant 11 Appendix Figures HPLC chromatograph: malate and glucose A 1 detected by UV detector 124 Protein standard curve (bovine serum albumin) A 2 125

List of Tables

Table		Page
1	Schizosaccharomyces and Saccharomyces strains list	13
2	Bacterial strain list	15
3	Amino acids and bases for supplementing yeast and bacterial minimal media	17
4	Plasmids and gene library list	26
5	Phenotypic characteristics of S. malidevorans 442, mutant 11 and two classes of revertants of mutant 11	39
6	Phenotypic characteristics of two S. pombe strains and two malate dependent S. pombe/S. malidevorans hybrids	40
7	Phenotypic characteristics of S. pombe WT 4 and a malate dependent mutant WT 6, and a class 1 revertant of WT 6	47
8	Genotype/phenotypes of spores from the cross XL1 b (ade 6-704 mig ⁻) and S. pombe 122 (leu 1 his 2)	50
9	Segregation of markers from random spore analysis of spores from the cross XL1 b (ade 6-704 mig ⁻) and S. pombe 122 (leu 1 his 2)	51
10	Linkage analysis of markers from the cross XL1 b (ade 6-704 mig ⁻) and S. pombe 122 (leu 1 his 2)	51

×.

Table		Page
11	Results of testing the mating-type of progeny from crosses between S. pombe strains and S. malidevorans/S. pombe hybrids	53
12	Linkage analysis of mating-type with markers from from the cross XL1 b (ade 6-704, mig ⁻) and S. pombe 122 (leu 1 his 2)	55
13	Genotype/phenotypes of spores from the cross XW1 9 (leu l mig ⁻) and S. pombe WT 2 (ura 4)	56
14	Segregation of markers from random spore analysis of the cross XW1 9 (leu l mig ⁻) and S. pombe WT 2 (ura 4)	58
15	Linkage analysis of markers from the cross XW1 9 (leu 1 mig ⁻) and S. pombe WT 2 (ura 4)	58
16	Formation of prototrophic spores on yeast minimal media from crosses involving S. pombe malate dependent mutants and S. pombe auxotrophic strains	60
17	Complementation between malate dependent mutants of S. pombe and mutant 11	63
18	The colour of <i>Schizosaccharomyces</i> strains on magdala red plates	65
19	Specific activity of malic enzyme of Schizosaccharomyces strains	73
20	Specific activity of malate dehydrogenase of Schizosaccharomyces strains	78
21	Specific activity of ATP-hexokinase of Schizosaccharomyces strains	79

xxii

List of Plates

Plates		Page
1 a	S malidevorans 442 grown on indicator plate	
Iu	(Ind M)	35
1 b	Single colonies of S. malidevorans 442 on Ind M.	35
2 a	S. malidevorans mutant 11 grown on indicator plate (Ind M)	35
2 b	Single colonies of S. malidevorans mutant 11 on Ind M	35
3 a	S. pombe WT 4 grown on indicator plate (Ind P)	43
3 b	Single colonies of S. pombe WT 4 on indicator plate (Ind P)	43
4 a	S. pombe mutant WT 6 grown on indicator plate (Ind P)	43
4 b	Single colonies of <i>S. pombe</i> mutant WT 6 on indicator plate (Ind P)	43
5	Chromosome patterns of S. malidevorans strains, obtained by TAFE	68
6	Chromosome patterns of S. malidevorans and hybrid strains, obtained by TAFE	68
7	Chromosome patterns of S. pombe strains, obtained by TAFE	70
8	NaCl fractions of endonuclease digested S. malidevorans 442 DNA on an agarose gel	97

List of Plates, cont'd

Plates		Page
9	Ligation of pFL20 and S. malidevorans 442 DNA	97
10	HindIII digests of plasmids extracted from five randomly chosen colonies from the construction of the pFL20 gene library, flanked by BRL ladder	100
11	HindIII digests of plasmids extracted from six randomly chosen colonies from the construction of the pDB262 gene library, flanked by BRL ladder	100