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CHAPTER 1: INTRODUCTION

The aim of this thesis is to:

(1) Explore the use of differential forms in obtaining point and contact symmetries
of particular partial differential equations (PDEs) and hence their

corresponding similarity solutions. [1] and [4].

(2) Explore the generalized or Lie-Bicklund symmetries of particular PDEs with
particular reference to the Korteweg-de Vries-Burgers (KdVB) equation [3].

Finding point symmetries of a PDE H =0 with independent variables (x;, X,) which
we take to represent space and time and dependent variable (u) means finding the

transformation group

x| = x; +€& (x|, Xy, 1) + O(?)

X, = X+ €&, (X), %y u) + O(E?)

and
U = u+En(x;, Xy 1) + 0(e?)

that takes the variables (x,, X,,u) to the system (x], x;,u’) and maps solutions of
H = 0 into solutions of the same equation. The form of H=0 remains invariant.
The transformation group is usually expressed in terms of its infinitesimal generator
(X) where

X =& 9, +& 9y, +MI,
=&,iaxi+nau is= 1,2

using the tensor summation convention. X can be considered as a differential vector
operator with components (§;, £,, 1) operating in a three dimensional manifold
(space) with coordinates (X, X,, u). The invariance of H =0 under the
transformation group is expressed in terms of a suitable prolongation or extension of
X (denoted by X®?) to cover the effect of the transformations on the derivatives of u
in H=0.



The invariance condition for H =0 under the action of the transformation group is
XP[H] = 0 whenever H = 0.

We consider X, X,, u and the derivatives of u to be independent variables.

In practical terms, finding point symmetries of H = 0 means finding the components
(€, &,,m) of the infinitesimal generator (X). There are two general methods for

finding &;,&, and 7.

1 THE CLASSICAL METHOD

The method we follow was developed mainly by Bluman and Cole [2]. Consider for
example a k'™ order PDE H =0. H is regarded as a function of X;» X5 and u as well
as the partial derivatives of u with respectto x; and/or x, up to and including the
k™ order derivatives. The k® prolongation of the infinitesimal generator is

X® = giaxi+ n8u+n(ill’, aun # s

(k) o
1191y Uil ...l

using again the tensor summation convention where i, =1,2 andr=1,2, .. k.
Note: i, =1=x; and i =2=x,.
For example:

2 _ =i 2 (2
E11)2 a“iliz "ngl) a“u +TI§2) aulz +7122) 0

L 2 2
=N, + M du, +M; 0y,

Uz

where x represents space and t time.

The coefficients 1](k-) are given by the expressions

i]lz ik

ﬂﬂ) = D; (M -u;D;, (§))



). = Dizﬂg:)—(ui,)j D;, (§;)

ijia
(k) = D. [ntk-D ) . B
niliz...ik = le (ni]iz...ik_[ ) (ullll"'lk-l )_l le (é.l)

i=Lier({x) r=1L2.%

E

f=1.2 orint)

and D;_is the Total Derivative Operator

where D. =90.+u.0d +uUy 9d,. +Uu

o= 1; 20r(x t)

o Eﬁ_:{@_aél}( auj_[agzj( au)
1 aXl ou axl axl axl ax2

_(8&..1) du 2_(3izji B

au axl au axl ax2

X®[H] =0 consists of a polynomial in u and its derivatives and has to hold

For example

whenever H =0 for all values of u = u(x; x,) that are solutions of the PDE H = 0.
This implies that the coefficients of u and its derivatives must be identically equal to
zero. This gives a set of linear partial differential equations called determining
equations which can in principle be solved for &;,&, andn. The general solution

of H=0 is a family of surfaces in (x,x,u) space.

If F(x,, X5, u) = 0 defines such a surface then F(x, x,, u)=0 is an invariant of the

transformation group

ie. X[F] =0
oF dF dF
or | E,IE+€2§2‘+T}E =0

This is often referred to as the invariant surface condition.

A first step in obtaining similarity solutions is solving the subsidiary equations



dx, dx2 du

£ 7%
The solution involves:

(1) C(xi, X5, u) called the similarity variable which becomes the independent

variable;

(2) then the dependent variable is taken as v = f({) where f is an arbitrary

function of {.

The similarity form of the solution of the original PDE is;
u = u(x,, X, (%))

Substitution of this form of u into H =0 gives an ordinary differential equation
(ODE) for v = f(§) which can in principle be solved for f({) thus giving the

similarity solution for H = 0.

2 THE USE OF DIFFERENTIAL FORMS
Harrison and Estabrook [1] used differential forms to formulate systems of partial
differential equations and so obtain their point symmetries and similarity solutions.

An Introduction to Differential Forms [4]

We consider two geometrical objects, namely vectors (V) and differential forms (o),
which exist in an n-dimensional differentiable manifold with coordinates
x;(i=1,2..n).

A vector (V) is a linear differential operator that at each point maps a differentiable,
real valued function f(x;) into a real number. The vector is represented in the

coordinate basis as

V = \.ra(xi)axa (a=1,2,..1n)

using the tensor summation convention.



The functions v,(x;) are the components of the vector. An example of a vector is the
infinitesimal generator (X) of a transformation group which is also referred to as an

isovector.

We start our consideration of differential forms by defining a 0-form as a real valued
function f(x;) (i =1, 2, ... n) in the differentiable manifold. A 1-form is then defined

as a linear combination of the basis differentials dx; (i=1, 2, ... n)

1,600 = a dxi where the a;s are 0-forms.
(D

1-forms are combined by an operation denoted by A known as the exterior or wedge
product. The exterior product of the 1-forms ¢ =0¢,dx, and ® = @, dx,, denoted by
O A, 18

oA = cao)bdxa/\dxb

1
=5 (0, ®, — O,®,) dx, Adx,

OA® is a2-form and the most general 2-form is a linear superposition of the "C,
basis 2-forms dx, Adx,, thatis

o < o, dx Adxy where oy = -0, isskew symmetric.
(2)

We now generalize. A p-form is the exterior product of p(0 < p <n) 1-forms
1
(l}))t) = oI %ag, ., 8%y Adxy ALAdX,

where the coefficients o, , _, are completely skew-symmetric
P

i Qaa,..a, = a[a‘a,...a,,]

where [a; a, ... ap] is an odd permutation of a,a, ... a

Differential forms and the operation of exterior product form a Grassmann Algebra in
the n-dimensional manifold with the following properties:

(1) Forms of the same degree may be added or subtracted.



(2) o A B isa p+qg-form whichis zeroif p+q>n.
P Q)

(3) o A = (-1)P4 P A O
(p) Q) C) ()
o =0 i=]
This implies that dx; A dx; =—dx; A dx; % G §ai

(4)  The exterior product is distributive, i.e. (0+B)AY = aay + Bay

(5)  The exterior product is associative, i.e. (AAB)AY = OA(BAY)

To construct a calculus of differential forms we need two differential operators

namely

(1) The exterior derivative (d), and
(2) The Lie derivative (£,) with respect to the vector V.

The exterior derivative acts on a p-form o to produce a (p+1)-form do and is

defined as
1 ‘
da = o d(aalaz___ap) Adx, Adx,, /\...N:lxaP
_ a(aalaz...ap)
where‘ d(aalaz___ap) = dej

J

The exterior derivative has the following properties. Let o be a p-form, B a g-form

and f a O-form.

(N d(o+p) = do+dB (linearity)

(2) d(aaB) = da AP+ (-1)P oadP (Leibniz Rule)
3) d(da) = O (Poincaré Lemma)

4) d(fa) = dfao+fdo

The Lie derivative operator (£, ) is a linear differential operator associated with a
vector field V = v,(x;) axn(a < 1...n) which can be applied to any geometrical

object. We will confine it to vectors and differential forms.



The Lie derivative of a vector A with respect to V is the commutator of the two

vectors

ie. £(A) = [V,A] = - £,(V)

or in coordinate form £v(aiaxi ) = (vk gai —ay ?‘—J dy,
Xg Xg

Before considering the application of the Lie derivative to a differential form it is
necessary to consider the contraction of a vector (V) and a p-form (o) which gives a

(p-1) form B.

Notation contraction B = <V, o>
or = Vla

In component notation V_l o is defined as
Vdao = (vbaxb) i [a[a,az...a,]dxa. AdX, /\...AanpJ

= p!
p! vbm[bazmap]d:‘ca2 A dxg, /\.../\dxap

Note: The above definition implies that

dy. 1 dx; =8 5 4]
. Yoo =)o =

X o o iz
d;j is the Kronecker delta.

Properties of the contraction of V and (a) include
P

(D v (a1+a2)=v_l o, +Vla,
® () (p)

2 Vvl [a/\ [3) = (V_I (IJA B+ (-1)P aA[VJ ﬁ)

(P (@ (p)/ (@) (p) (q)

(3) Vf = V_1df f = 0-form
For a function f(0-form) the Lie derivative of f with respect to V is a 0-form



£() = VIdf = VI (aa—é dxa) = v, %fa.

For a p-form (o) (0 < p<n) the Lie derivative of o with respectto V is given in

terms of the exterior derivative and the contraction as

£(o) = Vldda+d(V]d o)
which is also a p-form.

Properties of the Lie derivative are

(1) £ (do) = d(£,() i.e. Lie derivative and exterior derivative commute

2) £, (onB) = E (A B+an E,B)
3) £EWlda) = [VW] o +W I £ (o), where W is a vector.

The geometric approach of Harrison and Estabrook [1] involves the use of differential
forms to find the isovector or infinitesimal generator (X) of the transformation group
of a PDE H = 0. Here we shall consider a PDE of order k in one dependent and 2
independent variables, u, X, X, with derivatives of u up to degree k.

The PDE is first represented by a closed set of differential forms o (i=1,2,...) in an
n-dimensional manifold M. This set of forms constitutes a closed differential ideal (I)

on the manifold. Ibeing closed means that if o, =0 then doy, =0 also.

An integral manifold is a submanifold of M on which the differential forms (ct;) are
expressed in terms of the independent variables of the PDE and their differentials.
The o, are annulled (take zero values) on the integral manifold to give the following

information:

(1) The original partial differential equation
(i1) The definition of the n-3 auxiliary variables in M. These are usually
derivatives of u of degree less than k.

(1i1)  The integrability conditions on u.

Imposing independence of x; and X, and their differentials dx, and dx, puts the
ideal (I) in involution with x, and X, (by definition). Cartan’s geometric theory of

PDEs [6, 7] implies that there exists a general or regular integral manifold that can be

8



considered a solution manifold for the PDE. The Lie groups of point symmetries of
PDEs is represented by the infinitesimal group generator, or isovector, X. It is
suitably extended or prolonged as a linear differential vector operator X" in the
space of the variables X, X,, u and derivatives of u. There are two differential

operators that naturally arise in the ring of differential forms. These are

(1) the exterior derivative, and
(2) the Lie derivative.

The Lie derivative, defined in terms of an isovector of the symmetry group, is used in
formulating the invariant conditions. Point symmetries of a PDE H = 0 are defined by
the action of X® on the PDE,

ie. XPI[H] =0 whenever H = 0.

With differential forms this is equivalent to saying that the Lie derivative in the
direction of X of all differential forms o; € I are in the ideal and should vanish if

o;=0. Thatis £ (a;)=0 if o =0 orequivalently £, (o) is alinear combination

of the differential forms oy where q<p ie. £ (o) = 7Lli( AQy (sum over k). The
(@
7\.’-: are arbitrary differential forms, including in some cases O-forms or functions. In

such cases ?Lii( A, is usually written as kli‘ o,. After eliminating the )Lli( forms the

symmetry or invariant condition can be reduced to a set of determining equations
which can be solved for the components &,,&, and n of the infinitesimal generator

of the invariant transformation group. These components, besides being functions of
X{, X5 and u also contain a number of arbitrary integration constants.

The finding of similarity solutions involves augmenting the ideal of differential
forms and imposing the condition that the augmented forms be annulled on the
integral manifold as well as the ideal. One way to augment the ideal is by contracting
the differential forms (o) in the ideal with the isovector (now denoted by V).

That is o, = Vdo.

Now £(0) = £,(Vdo) = VIE (o) = V1 (A¥aa)
= (VAo + 1Pk Aoy

which means the augmented ideal {o, o;} is invariant under the action of V.
Annulling certain forms in the augmented ideal should then produce similarity

solutions of the PDE.



Appendix A shows in detail the use of the classical method of Bluman & Cole for
finding similarity solutions of the nonlinear diffusion equation ¢, = (K(({))q)xI )xl and
the use of differential forms for finding the point symmetries of the Korteweg-deVries
(KdV) equation

u, +uu, +euy,, =0
where € is a constant.

Comparing the two methods as far as hand computation is concerned, I find that they
are of comparable difficulty, although some PDEs might be more easily processed by
one or other of the two methods. In general the Harrison-Estabrook method using
differential forms gives simpler determining equations which are however, usually

obtained by more involved manipulations.

The use of differential forms seems to be the preferred method for the various
computer packages, for example MACSYMA [8] that are used to find the determining
equations. In my opinion the classical method of Bluman & Cole has the
characteristics of an algorithm and gives comparatively little insight into the process
of finding symmetries and similarity solutions. The use of differential forms on the
other hand involves the manipulation of geometric objects in an n dimensional
manifold and the process of finding symmetries can be given a geometrical

interpretation.

Lie-Bicklund Symmetries [3, 4, 11 and 12]

We begin by considering a partial differential equation H(x, u™) = 0 with n
independent variables x = (X, X,,....x,) and a single dependent variable u.

u®™ = (u, u, u, g) where W are the i™ order partial derivatives of u with respect to
the components of x. One-parameter Lie point symmetries of such a PDE are

transformations of the form

X! = x;+ €& (x,u) +0(€?) (i=1,..n)

]

e
1l

u+en(x, u)+ 0(82)

10



that leave H(x,u™) =0 invariant. These point symmetries are usually expressed in
terms of their infinitesimal generator X =& d, +m d, suitably prolonged to cover
the action of derivatives of u. A possible generalization of this would be to
transformations where the coefficients & and m are also functions of derivatives of
u ie. & = &(x, uy, ... lhll ) and N =n(x, u,u, g ). If N is finite these so called

generalized transformations are either prolonged point transformations or contact
transformations [4]. Contact transformations only occur in situations involving a
single dependent variable (u) and are characterized by &; = &; (x, u, %1) and
=NEx, u,?). For broader generalizations we have to consider transformations

where the coefficients & and 1 contain derivatives of u of arbitrarily high order.

1

The prolongation of X = & d, +m 9, to cover the effects of derivatives of u has

to be in general an infinite prolongation.

xS +)§,ﬂj (x, u, }1 s o) auj

where Ny = DM-&u) +&u,
and J=j; ... j, where j, is a suitable integer of x and k 20.

In an analogous way to point symmetries X is a generalized symmetry of
H(x, u™) = 0 if and only if X [H(x,u™)] =0 for every smooth* solution
u = f(x) of the PDE. In practice H(x, u™)) =0 depends only on a finite number of
derivatives of u so only a finite number of terms of X(‘”)_ are required in any given
instance. This means that the question of convergence of X*) does not arise.
Generalized symmetries of this type are commonly called Lie-Bécklund symmetries.
(Olver [3] uses the term generalized symmetry) and include point and contact

symmetries as special cases.

In this thesis we shall deal exclusively with time-evolution equations in two

independent variables x and t of the form H =u, + K(x,u, uj, ..., u ) =0 where

1
u; = % (i=0. 1.0 and Uy =u is the (only) dependent variable.
X

* . i . P . . . T
smooth means that u and its derivatives are continuous in the domain of applicability.

11



Bluman and Kumei [12] and others [3, 4, 10, 11] prove that, for a time evolution

equation, a Lie-Backlund transformation of the form

X' = x+e&(x,t,u,u ...)+0(£—:2)
v =t+el(xt, u,ul...)+0(82J

and v = u+en(xtuu..) +0(82)

acts on a solution surface F(x,t,u) = 0 of the PDE in the same manner as

X =X

t' =t
and v = u+eQ+0(?)
where Q=n-&u -&u,

This means that the infinitesimal generator can now be expressed in the simpler form
X(Q) = Q(x,t,u,u,...) d,. X(Q) is called the evolutionary infinitesimal generator
and Q is referred to as its characteristic. The infinite prolongation of X(Q) now

takes the form

XAQ = IDjQI9,

From the equivalence of the two Lie-Bécklund transformations detailed above, the

following result can be easily proved [3]; An infinitesimal generator X is a
Lie-Bicklund symmetry of a PDE if and only if its evolutionary form X(Q) isa

Lie-Bécklund symmetry.

For a time-evolution equation

u + Kx,u,u;..u) =0

the infinite prolongation X®™)(Q) of the infinitesimal generator takes the form

X“AQ) = Qd, +(D[QIB,, + Y, D1[QId,

j=1

12



where Q = Q(x, t, u, u, ... uy) N arbitrary and D, is the total derivative operator

with respect to x;. Thus
D, = 9, +u,d, +Uydy, +Ux0y, + .
and D, = 9, +u. 9, +udy +uydy + ...

In considering Lie-Bicklund symmetries of a PDE it is convenient to use two

operators namely:

(1) the Fréchet derivative, and

(i1) the recursion operator.

The Fréchet derivative of a smooth differential function H[u] = H[x, t,u, u, u;, .. u,]

is defined as

D,(Q) = Ii Hu+eQl|

It can be readily shown that this is equivalent to

HDJ

= xJ [Q]

JdH oH - d
E;au

Dy(Q) = (5"'5;: D, +

Comparison with X*(Q)[H] shows that
X (Q)[H] = Dy(Q)

The invariance condition for the PDE H = 0 under the action of X(“)(Q) can be
written as D(Q) =0 whenever H=0. Either form of the invariance condition can
be used as an algorithm for finding Q as the solution of a system of determining

equations.

Definition
The operator R = R(u, u, uy, ... u,) is a recursion operator of the time evolution
equation H=u, + K(x,u,uy,..u;) = 0 if and only if [Dg, Rlg_g=0. From this

definition Fokas [9] and others prove that if R is a recursion operator of H=0 and

13



Q =Q(x, t,u, u; ...uy), Narbitrary, is an Lie-Backlund symmetry of H=0, then
X(R [Q])j forj=1, 2 ... are also Lie-Bidcklund symmetries of the PDE.

That is, the recursion operator can generate an infinite sequence of Lie-Bicklund

symmetries depending on higher order derivatives of u.

The method of determining all Lie-Bicklund symmetries of a PDE H(x, u(")) = () 1§
to start with the evolutionary form X(Q) = Qd,, and to decide on some arbitrary order
of derivatives for Q. We then use the invariance condition Dy(Q) =0 whenever

H =0 to generate an equation involving derivatives of Q and u.

A significant calculational feature is that for time - evolution equations the PDE can
be used to substitute for any t derivatives of u which implies that Q involves only

x derivatives of u
ie. Q = Qx,t,u,u; ...up)

As the invariance condition holds for any solution u = u(x,t) of H=0 we can
equate coefficients of the derivatives of u in descending order to zero and find the
general form of Q. Bluman and Kumei [10] use this method to find two finite order
Lie-Bicklund symmetries of the non-linear diffusion equation { a(u+b)_2ux]x -u, =0
and then obtain the recursion operator by inspection. In this way they can generate the

entire sequence of Lie-Bidcklund symmetries for this equation.

To find a Lie-Biacklund symmetry we must assume the order (N) of the highest
derivative in Q. What value of N do we start with? If a recursion operator exists,
then in almost all known cases the point symmetry operator for invariance of H =0
under a t translation is generated (by the recursion operator) from that expressing

invariance under a x translation [9].

For a time-evolution equation of the form u, +u, + G(x,u, u; ...u, ;) =0 we have
two Lie point symmetries Q; =u; and Q, = u_  + G[u]. If there is a recursion
operator R such that Q, = R[Q,] thenR = Dg" + ... . Therefore the first
Lie-Bidcklund symmetry is Q; = R[Q,] =u, | +g(x, u, uy, ..., uy, ,), which

implies that N =2n- 1.

14



Similarity (invariant) solutions

As with point symmetries, similarity or invariant solutions can be found from a given
Lie-Bicklund symmetry [12]. A solution u =u(x, t) of a time-evolution equation
H=u +K(x, u,uy,..,u,) = 0 is invariant under the action of a Lie-Bicklund
symmetry if and only if u = u(x, t) satisfies the invariant surface condition
Q(x, t,u, uy, ..., uy) = 0. QX,t,u,up,..uy) = 0 is regarded as an N order
ordinary differential equation in the independent variable x with t as a parameter.

The solution of the ODE is a similarity form
¢(xs tl u, cl (t)! LCLIE | CN(t)) = 0

with the arbitrary functions ¢ (t), ..., c(t) acting as integration “constants”. These

integration “constants” can be determined by substitution of the similarity form into
the time-evolution equation.

In chapter 3, I intend to study possible Lie-Bécklund symmetries and similarity

solutions of the Korteweg-de Vries-Burgers (KdVB) equation
u, +auu, + !:1:1.1’(x +cu,, = 0, where a, b, and ¢ are constants.

This equation is the simplest form of a wave equation that incorporates nonlinearity

(the auu, term), dispersion (cu,,,) and attenuation (bu,,). In a wave equation u =

XXX
u(x, t) isa perturbation of the medium through which the wave is travelling and can
be either perpendicular to (transverse waves) or parallel to (compressional waves) the
direction of wave propagation. The KdVB equation has been widely used to model

many types of nonlinear wave motion including for example:

(i) the propagation of waves in liquid filled elastic tubes [14]

(i1) tidal bores [21]

(iii)  magneto-hydrodynamic shock waves in plasmas [20]

(iv)  the propagation of acoustic waves in liquids containing small bubbles [13].

Johnson [14], using phase plane analysis on the steady state (constant wave velocity)
form of the KdVB equation, obtained soliton progressive wave, and shock wave
solutions by using various values of a, b and c, particularly b (the constant governing
the degree of attenuation of the wave by the medium). Exact solutions of the KdVB
equation have been obtained by several authors [17 - 19], however Vlieg-Hulstman
and Halford [16] demonstrated that these solutions are essentially equivalent to a

15



single exact solution that is a linear combination of particular solutions of the KdV
equation and Burgers equation. Lakshmanan and Kaliappan [15] found that the
KdVB equation has the following point symmetries

where k;,k, and k; are integration constants. This implies that the KdVB equation

is invariant under the following transformations

75
|

=1 X,
k, =1 X, = d, (x-translation),
1 X, = 9, (t-translation).

atd, + 9, (Galilean transformation),

o
w
I

These lead to a similarity variable
kix  ak,t?
L -——22 + kst
and similarity solution

u = C%:]t + £(0),

where f({) is an arbitrary functional of {. Substitution in the KdVB equation gives
the ODE

3 2 k k :
cd—§+bd—g+[fg+af]d—f_-‘25=0
dg dg 1 dg 1

which on integrating gives

d’f df  ap . /ksC k,c
c—+b—+5f +(77—|f+ [ |C+c, =0,
a2 " a2 (kl) (kl)c :

where c, is an integration constant.

A suitable Ince transformation [22]

_ /=25ac\ 172 ( b_§)
== (121)2) R e

16



2b 1 (6b% Kksc
and f = W(z) exp (-— S_(I.C) g (EH%J

gives the invariant ODE

d*w )
=—> = 6W? +S(Z
dz? .

which is free from movable critical points only if S(Z) = pZ+ q (p and q are
constants) [22]. Hence the invariant ODE has in general movable critical points.
Ablowitz and others [23] suggest that this implies that the KdVB equation is not in
general exactly solvable. However, Fokas [9] defines exact solvability of a PDE in
terms of it admitting a Lax formulation. That is the PDE can be expressed in the form

L, = [A,L]

where A is the Fréchet derivative of the t independent part of the PDE and L is the

recursion operator.

The motivation to investigate the Lie-Backlund symmetries of the KdVB equation is
twofold:

(1) to obtain, if possible, more generalized similarity solutions that could extend
the use of the KdVB equation to other cases involving nonlinear wave

propagation.

(ii) to gain insight into questions of the exact solvability of the KdVB equation.

17



CHAPTER 2: THE HARRISON-ESTABROOK METHOD

This method is a geometric approach for finding invariance groups and similarity
solutions. In this chapter I intend using it on the following partial differential

equations:

(1) The one-dimensional nonlinear diffusion equation ¢, — (¢“¢x)x = 0 where n
is a real constant, ¢ =¢(x, t) the dependent variable and the subscripts

denoting differentiating with respect to space (x) and time (t), ie. ¢, = 3t

and ¢x=g

2) The variable coefficient Korteweg-de Vries (VcKdV) equation
u, +otuu + Pt =0

where u = u(x, t) is the dependent variable, m and n real numbers, and o

and [ constant parameters.

The one-dimensional nonlinear diffusion equation

O, — (9"9,), = 0
or

o, - no" (9,2 - 9", = 0 @2.1)

In this section, I intend to check the results obtained by S M Waller in 1990 [5]. The
first step in finding invariance transformation groups by the Harrison-Estabrook
method [1] is to cast the PDE (2.1) into an equivalent closed ideal of differential

forms in a multidimensional space. One suitable ideal for this is

o = dd - ydx —udt (2.2)
do = —dy Adx —du Adt (2.3)
and B = (u—n({)“"yz) dxadt — ¢" dyadt 2.4)

Annulling (2.2), (2.3) and (2.4) on the integral manifold ¢ = ¢(x, t), where
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do = ¢, dx +odt,

dy = y,dx+ydt,

and du = uxdx -+ utdt,

we obtain the following (a tilde indicates restriction of the differential form to the

integral manifold):

(i) 0 =0 implies that (¢,~y)dx + (¢,—u)dt = O which gives the definitions of
the auxiliary variables y =¢, and u = ¢,.

(i)  (do) = O implies that (y,—u )dxrdt =0 which means y,=u, or ¢, =0,

the integrability condition on ¢.
(iii) B = O implies that
(u-no"'y? 0"y, )dxadt = 0
or ¢ — 0™ (0,)% - "9, =0,
the original PDE (2.1).

The generators of the invariance groups are the isovector
t
V = V9, + V', + V%, + V'3 + V', (2.5)

in the 5-dimensional space (x, t, ¢, y, u). The action of V on the closed ideal is such
that the Lie derivatives with respect to V of the forms (2.2) to (2.4) are still in the
ideal, i.e.

£, cI (2.6)

(2.6) is known as the invariant condition. As o is the only 1-form in the ideal (2.6)

implies that

£y(a) = Ao (2.7)
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where A is an arbitrary O-form. Introducing the O-form F = V_la, equation (2.7) on

expanding becomes

£(0) = Aot = Vddo + d(V_a)

= V_do +dF (2.8)
Expanding dF, we have
dF = F,dx + Fdt + F,d¢ + F dy + F du (2.9)
Also V. dou= (V¥ + V'3, + V94 + VY9, + V¥9,) I (~dy A dx —du A dt)
= — VVdx + V*dy — V¥dt + V'du (2.10)

Equations (2.8), (2.9) and (2.10) imply that

A(do—ydx—udt)

=— VYdx + VXdy — V¥dt + V'du + F dx + F,dt + F,d¢
+F,dy + F du (2.11)

Equating coefficients of the basis 1-forms gives the following set of equations

s X -
Fy=h Ye=B, V==K,
(2.12)

V) = F +yF, V" = F, +uF,,

F = V.ldax

= (V3 + V'3, + V994 + VY9, + V!9,) 1 (d6 — ydx — udt)
= V¢ yV*_uV!

or V¢ = F-yF, -uF, (2.13)
For the second differential form do we find

£V(da) = d(£v(0t))
(dMAa + Ado,

1l
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which is a 2-form already in the ideal.

For the last differential form B the invariance condition (2.6) implies that £,(B) is a

2-form in the ideal

£, = &P+ L{da + maa, (2.14)
where € and { are arbitrary O-forms and ® is an arbitrary 1-form

Let ® = Adu + Bdy + Cdx + Ddt + Ed¢ (2.15)

where A, B, C, D and E are arbitrary O-forms.

As £,(B) = VIdB +d(Vp)
we get, on expanding V_If, V_IdB and o

£y (B) = V¥dxadt - n(n-1)0"2y? V¥dxndt
~2nyo™ ' VYdxadt — no™' VOdyadt + (u-n¢™'y?)dViadt
— (u-no"'yH)dV'Adx — 0"dVYAdt + 6" dV'Ady
= E[(u-no™'y?)dxadt - ¢"dyadt]
~{(dyadx+duadt) + [Adu+Bdy+Cdx+Ddt+Ed$] A (ddp—ydx—udt)
(2.16)
where dVi = Vi dx + Vidt+ Vido + Vidy + Vidu

and i=x,t0,yandu in turn.

Equating coefficients of basis 2-forms on both sides of (2.16) gives the following set

of equations:

Vi-n(n-1)0"2y?V® - 2ny¢™ VY + (u-n¢™'y?) VX
+u-no"'y)V! - ¢"VY = E(u-n¢™'y?) —uC +yD (2.17)

(u-n¢™'y?) V§ = C+yE (2.18)
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(w-n¢"'yH) V! + 0"V = ¢+yB (2.19)
(u-np"'y?) V! = yA (2.20)
— (u-no"'y?) V5 +0"V} = D+uE (2.21)

no™'v® — (u-no™'y?) VY +9"VI+0" Vi = £¢" +uB (2.22)

— (u-n0"'yH VX +¢"VY = {+uA (2.23)
o" V}b =-B (2.24)
-¢,Vs =0 (2.25)

Eliminating the arbitrary O-forms from (2.17) to (2.25) gives the determining

equations for the isovector:
Vi=0 (2.26)

O"(VY — Vi-yV})- (u-n¢™'y?) (V} +V)) = 0 (2.27)
yo" V3 + n(n-1)6"2y2V® + 2nyo™ VY - V¢
—(u-n¢™y)(VX + ¥V =V~ ng V9

-(u-n¢“-‘y2)2¢-“v;+¢“ X =1 - (2.28)

The determining equations and (2.12) and (2.13) can be solved for F to give:

F = 2 (28,-85)0 — (3,x + 8,)y - (5t + 8)u (2:29)

where ,,8,,8; and &, are arbitrary constants. (2.12) and (2.13) in conjunction

with (2.29) give the following set of equations for the components of the isovector
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* =54x+52
Vl =83t+51

V= ;11-[(2- n)d, — d3]y >

V= %[264 —(n+1)83]u (2.30)

1
A =—[28, - 8310

(2.30) gives a 4 parameter invariance group for the PDE (2.1). Independent

generators of the isogroup are found by setting all parameters except one to zero.

The Invariance Group of ¢, — (¢"9,), = 0

) vV %A v VY Types of transformation
o;=1] 0 1 0 0 0 time dilation
S =1| 1 0 0 0 0  space dilation
5 =1 0 t [0} _ ﬂu _Y  t—¢scale change
o, =1 x 0 20 2u f_") x— scale change
n n n )

This invariance group is the same as that obtained by S M Waller [5].

In (x,t, ¢) space the infinitesimal generators are:
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¢ s (2.31)

2
Xy=xd,+ 2 5,

The classical method of Bluman and Cole (Appendix A) gives the following

invariance group for ¢, - (¢"¢, ), = 0

X =4 1
X3 =9,
2.32
X3 = xd, + 2t0, f ( )
; 2¢
X4 = Xax +?al4‘

As X; = 2X; + X, the group (2.31) obtained using differential forms is consistent
with that of (2.32). The commutator table for the corresponding Lie Algebra for
(231)is

i 1 |-

(i) C224 i “Ciz =1
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all other structure constants are zero. Similarity solutions for (2.1) can be found by
augmenting the closed ideal (2.2) to (2.4) by contracting «, da. or B with V and
annulling the new differential forms on the integral manifold ¢ = ¢(x, t).

For similarity solutions the most useful of the 3 new forms is

F =Vla
= (V0 + V'3, + V89g + VY3, + V3, ) (d0 - udt - ydx)
= VO—uVi-yV* (2.33)

Annulling (2.33) on ¢ = ¢(x,t), where u=¢, and y= ¢,, we obtain

Ve = ¢ Vi+o, V¥ (2.34)
Substituting for V®, V! and V* in (2.34) gives

1

0 (28,=85)0= (8 +85)0,+ (3, +8, %),

N b = n(8,+051)9, g n(8, +8,4X)0, (2.35)

25, -8, 28, -8

which is a quasilinear PDE for ¢ and where 28, — 85 #0.

.
Simplifying (2.35) with 8, = 28—' (i=1,2,3,4) gives
-

¢ = n(0,+651) ¢, + n(6, +6,Xx)0, (2.36)

with subsidiary equations

n(ﬁl +93 t) - H(ez +94X) ) ¢’

Solving (2.37) by Lagrange’s method of characteristics gives

0,+6, x

_ (2.38)
(8,+6, 1)%/93
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as the similarity variable and

1
o(x, 1) = G(LXO, +6;t)"% (2.39)

as the similarity form for ¢ = ¢(x, t). Substituting (2.39) into the original PDE (2.1)
we find that the arbitrary function G({) satisfies the ODE

20,-65-1
G”(0) + nG(Q) G/ ()2 *ei GG (6, +8,) %
4
20,-6;-1
- core+0n & =0 (2.40)
n64

The similarity variable (2.38) and the similarity form (2.39) are the same as Waller’s
result [5]. However the ODE (2.40) agrees with Waller’s version only if 8; =6, =1.

Waller next considers the special case of n=-1 and begins by setting

The condition (2.41) should, in my opinion, have been set prior to his version of the
ODE (2.40). Under the condition (2.41) and n =—1 the PDE (2.1), the similarity
variable (2.38), the similarity form (2.39), and the ODE (2.40) all reduce to:

0, +0720)% ~ 670, = O b
B 92+x
6= B+t g
(2.42)
ox,b) = GO+ 1)
and
G"({) -GG + (GG +G(©)* = 0J

(2.42) is in exact agreement with Waller’s result. We will now consider
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a
p+

G = (2.43)

where a and p are constants, as a generating function for a solution to the ODE in
(2.42). This implies that

2al
G = -
(p+3?
and ) (2.44)
7 6al“—2ap
G = —as
: (p+¢’

Substituting (2.43) and (2.44) into the ODE gives

6al? — 2ap ~ 4al? - 2a2¢? % a?
e+ @) ) D

a@-a)¢%p) _

or
(p+¢»?

(2.45)

(2.45) gives either a=0 implying ¢ =0,0r a = 2 and

o(x.t) = GO+t

(8,+1) 0,+x 2]]!
2.46
{ . [p+(91+‘] ” 40

The reduction of (2.46) to a one parameter group solution is possible if 6, = 6, = 0

which means
-1

o(x, 1) = { %I:p ¥ @2 ]} (2.47)

The above critique of Waller’s 1990 paper [5] basically confirm his results. As a
further check I did a second determination of the point symmetries of the nonlinear

diffusion equation (2.1) using another closed ideal of differential forms, namely:
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0 = doadt - pdx adt

0, = doadx +qdxadt
4 (2.48)
oy = dpadx + ¢"dpadt + n¢o" ! pZdxdt

o, = —dpadx —dqAdt J

The details of this computation are in Appendix B, and the results obtained are
identical to those of (2.30) giving further confirmation to Waller’s result.

The Variable Coefficient KdV Equation
In this section I will consider point symmetries of the variable coefficient Korteweg-

deVries equation (VcKdV)
u, + at"uu, + PtTu, = 0 (2.49)

where o and P are arbitrary constant parameters, and m and n are real numbers.
Nirmala, Vedan and Baby in a 1986 paper [24], used the classical method of Bulman
and Cole to obtain point symmetries of (2.49). As a check on their results, I intend to
attempt to find the point symmetries of (2.49) using the Harrison-Estabrook method
involving differential forms. To the best of my knowledge this has not been tried
before on this equation. We begin by considering the following ideal of differential

forms as a possible representation of the PDE (2.49).

o = dz - wdx — ydt i
do = —dwadx —dy Adt

¢ (2.50)
B = (du—zdx)adt

Y = duadx + auzt"dtadx — Bt™ dwadt
where z=u,, y=u,, and w=u,. As dp =dy =0 the ideal (2.50) is closed and
forms a basis for a Grassman Algebra of differential forms on the 6-dimensional

manifold spanned by (x, t, u, z, y, w).

The annulling of the forms in (2.50) on the solution manifold u = u(x, t) where
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dz = zxdx + zldt

dy = y,dx +y.dt

2.51
and ( )
dw = w,dx +wgdt

gives the following results:

(i) & =0 impliesthat w=2z,_and y =

(i) do = 0 implies that z, = z,, an integrability condition for z.

(ii1) ﬁ = 0 implies that z = u, and hence that w =u,, and y =u,, the

definitions of the necessary prolongation variables.

(iv) y=0 give the PDE (2.49).

These results confirm that the ideal is closed and does represent (2.49). The
generators of the invariant transformation groups of the ideal (2.50) are the

components of the isovector
_ t
V = Vi, + Vo, + V', + Vi, + V¥ + V"9, (2.52)
The invariance condition for the transformation groups requires that the Lie

derivatives with respect to V for each of the forms in the ideal are linear combinations

of members of the ideal. That is:

£ () = (2.53)

where A is an arbitrary 0-form

£,B) = & v+ B +p,do+w A (2.54)

£,0y) = &Y+ 5B+, do+w,y A (2.55)

where &;, {; and p; are arbitrary O-forms and

A;,B,C;, D, E and G; are arbitrary O-formsand 1= 1, 2.
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£V(da) = dAaa + Ada is already a linear combination of elements in the ideal and

contributes nothing to the determination of the components of the isovector.

We now expand the Lie derivatives of o, B and 7y starting with (2.53)
£, (o) = Ao = Vdda +d(VIa) (2.56)

Let F = Vla
= (V"Bx +V'9, + V"9, + V9, + VYo, + VWBW)_J (dz — wdx — ydt)

= VZ—wV¥ —yV! (2.57)

Vdda = (V¥0,+V'9+V" 9 +V*9,+V¥9 +V¥3 ) |

(- dwAdx — dy Adt)

]

- VW¥dx + V¥dw — VYdt + V'dy (2.58)

V= VX0, + V19, + VU0, + V7, + VI, + VY9, | (dz- wdx - ydt)
As dF = F, dx + Fdt + F,du + F,dz + F,dy + F,, dw
= d(V_lo)

then this along with (2.56) and (2.58) mean that

(F,—V¥ +Aw)dx + (F,~VY+Ay)dt + F du
+(F,-A)dz + (V'+F))dy + (V*+E,)dw = 0 (2.59)

Equating the coefficients of the basis 1-forms in (2.59) to zero gives the following set
of equations for the components of (2.52) in terms of F.
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VX = -F vt = _F ki

w y
P =K o= ‘
’ ’ > (2.60)
w
V¥ = E, +wF, V) = B+ yE,
Ve = B—wilf, —3E, J

B and 7y both being 2-forms have their Lie derivatives expanded in a similar fashion.

See Appendix C for the details. The results are:

£,(B) = —V*dxadt + dV'Adt—dV'Adu

— zdV*Adt + zdV' A dx
= &7+ §; B+ pdo+w A (2.61)

and £,(y) = at"zV'diadx + o t"uVZdt Adx
+ quznt™ ' Vidtadx + mBt™ I Vidt Adw + dV"adx
— dV*Adu + ouzt" (dV'Adx — dV* Adt)
— Bt™(dVYAdt — dV' Adw)
= Ey+ G, B+ 1y da+ wy A (2.62)

The determining equations for the coefficients of the isovector (V) are obtained by
equating the coefficients of the basis 2-forms on both sides of (2.61) and (2.62) and
then eliminating the arbitrary O-forms. The details of this computation are to be found
in Appendix C. The resulting determining equations for the isovectors components

are:

Vy=V, =0 Vy=0 Vy=0

VE 4 BMV) =0, Vi - B (V +wV,+ V)= 0
Bt™ (V! +2zVi+wV}) = zVy -V

VY- VZ 4wV ouzt™ (Vy +2V, +wV))

+z(V, —zV; - Vi-wV)) =0

mBt™ !V + quzt” (VY -Bt" V)

+ BV + V- VY - VE—wV -V +yV;) = 0
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and at"(zVY +uV?) + ouznt" VY 4 y V!
—z Vi —zyVy +Bt" (V] +zV] + wV})
-z Vi—zyV} + Bt™ (VY + 2V + wV))

+owzt" (Vi =V —ouzt"Vi+zVE +yV)) = 0

Solving the above determining equations with the help of the set (2.60) (the details are

found in Appendix C) we get the following components for the isovector. m and n

are arbitrary real numbers.

vt = 0 1 ]
n+
o= 2
n+1
VY = a \ (2.63)
VW = V2 =0
VY = —aot"w

The variable coefficient KdV equation
n m =
u, +ot"uu, +BtTu,, =0

where m and n are arbitrary real numbers, has the following 2 parameter invariance
group

b ok N V? VY
C‘tn+l .
a=1 0 — 1 0 0 —ot"w
b=1 0 1 0 0 0 0

In (x, t, u) space the infinitesimal generators of the transformation group are

Cl‘.t“+l
xl=n+lax+an (2.64)
X, = 9,

(2.64) are the same as the generators found by Nirmala, Vedan, and Baby [24].



The next stage is to determine the invariance transformations for the variable
coefficient KdV equation for m and n being linearly related. That is

where k1 and k2 are real constants.

The analysis is identical to that used for arbitrary values of m and n up to the point

in Appendix C where the determining equations have been reduced to:

Vi = V4 =V =V, =V, =0
Vi = Vy = Vg, =0
\24 = 0
z . ” > (C60)
b = Vy = Vg =0
vy = V7 = 0
Vi o= VY o= o)
mV' + (Vi + V= V! —=Vi-wV}) =0 (C61)
Vi -Vi+ w‘\/}zl +2(Vy-Vi—-wVy) =0 (C64)
ot (zV" +uV?) + owznt™ V4 VI 4+ y VY — zVY
—zyVE + Bt™ (VY + wVY) + auzt™(V; - Vi) =0 (2.66)
and F = a(t)y + g(x,t,z)w + h(x,t,z) ' (2.67)
From (2.60) and (2.67) we obtain the following set of equations
"
VX=-F, =-g(xt2)
t__F —_
Y= Fy a(t)
- 2
V¥ =F+wF, =g, w+h +gw°+hw ! (2.68)

Vi=F- wF,, - yFy =h(x.1.7)

VY =F, +wF,=a(t)y + gw +h, + gzw2 +h,w

F,=A=gw+h,andF =0 /
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Using the set of equations (2.68) to solve the reduced determining equations (C60)
(C61) (C64) and (2.66) we obtain the following components of the isovector

74 (al —2a )t
k7

a3atn+1
n+1

3

VX = —arX+

+ay

VZ=(a;+ay)z

VY =au+aj

V¥ =(2a; +a;)w (2.69)
V= (Ei;—a]J y+azout"w+(a) +ay)w

where a; a, a3 and a, are arbitrary integration constants.

The linear relationship (2.65) is now restricted to
m=n+Kk, (2.70)

with k, #0.

Details of this computation can be found in Appendix D.
The invariance group of the variable coefficient KdV equation

n+k2 -
u, +ot"uu, +Bt" " 2u, =0

is

VX Vt Vv VZ vV vY

g _Y

= 0 K u z W L

_ 2t 2y

a,= 1 =X _k—z 0 z 2w k2 +w
{Itm'l "

ay =1 5 0 1 0 0 ot'w
=1 1 0 0 0 0 0
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where z=u, y=u, and w=u,,.

In (x, t, u) space the infinitesimal generators of this isogroup are:

at““
Bg = (?;T) O+ | @2.71)
X, =xd, +2t0,
X4 = ax J
Its commutator table is:
X, 0 not™! 0 0
( n+l )X4 =X
X, not"*! 0 (2n+1)ot™! 0
g ‘( n+ 1 )X4 BEYS B
X, 0 (2n+1)ot™! . 0 ~-X,
n+1 4
X4 0 0 X4 0
Similarity Solutions of the variable coefficient KdV equation
u, + ot"uu, + Pt"u, =0 . (2.49)

(1) For Arbitrary values of m and n
Similarity solutions for (2.49) are found by extending the closed ideal of differential

forms (2.50) by contracting the isovector (V) with one of the differential forms in the
ideal. The most suitable contraction is ¢ = V_IB which leads to

V2 —uVi=a. V= D (2.72)

t X

(2.72) is a quasi-linear PDE which can be solved using Lagrange’s method of
characteristics.

For arbitrary values of m and n the infinitesimal generators are (2.64) namely
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Xl=

and
X, = g

For the generator X,, V! =V'= 0 and V¥ = 1 in (2.72) which leads to the

similarity variable { = constant and the trivial similarity form u = constant. For the

(Itm'l
n+l

generator X,;, V* = VY =1 and V'= 0 giving the similarity variable

€ = constant and similarity form

n+l- -1
e (“g ) x + f() 2.73)

n+l

On substituting (2.73) into (2.49) we get the solution

(n+1)x + ok
=

ey (2.74)
where k is an arbitrary constant.
Nirmala, Vedan and Baby obtained the solution
. a(n+1)x +c (2.75)

aot™! + b(n+1)

where a, b and c are arbitrary constants. (2.75) is the same as (2.74) if b = 0.
Details of the calculations for (2.74) are found in Appendix H.

(i) Form=n+1(k, =1)
The variable coefficient KdV equation becomes

n+l
Uy xx

u, +ot"uu + Bt =0 (2.76)

We obtain similarity solution of (2.76) by using V" - utVl —u, V¥ = 0 in conjunction

with the four infinitesimal generators

X]. = ta[ +uau
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X, = (“‘"“)ax +0

n+1 u

X3 = Kax'i‘ztat
£, =3

X

X, =td,+ud, meansthat V* = 0 and V' = V'= 1.

This leads to x = { = constant as the similarity variable and

u =tf(C) (2.77)

as the similarity form. On substitution of (2.77) into (2.76) we get the ODE

3
Btn+2 ddégt.‘) + ot™2 £(%) ,(%CC) +d) =0 (2.78)

Ottn+l

a[nﬂ

K
means that b ¥l — o

V! = 0 and V¥ = 1 which lead to the solution

(n+1)x + ak
| B

Oan+l

which is the same as (2.74).

x2
X3 = xd, +2td, means that V¥=x, V'=2t and VY = 0. This leads to T:C
as the similarity variable and u - f({) as the similarity form. On substituting the

similarity variable into (2.76) we get the ODE

na [, L) | d*H(©)
4Bt {2{, i +3 dC}

+ {20tt" f(z;)--’tf} d—i%l =B (2.79)
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Finally X, =0, gives the trivial solution u = constant.

In the similarity solutions for the variable coefficient KdV equation, there appeared to
be no soliton solution. The reason for this is that a soliton solution requires a
similarity solution of the form u = f(x—ct) which in turn implies a similarity variable
€ =x —ct where c is aconstant. This kind of similarity variable is produced by an
infinitesimal generator of the form X =9, + cd, which does not appear in any of the

invariant transformation groups (2.64) and (2.71).

It has already been noted that the invariance group (2.64), that is

atm-!
X, = (o7 )3+,

and X, =0

which were obtained by the Harrison-Estabrook method are the same as those
obtained by Nirmala, Vedan and Baby [24] so confirming their results. However, the
invariant group (2.71) for m and n related by m=n+ 1 are substantially different.
I intend returning to these in the conclusions in Chapter 4.
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CHAPTER 3: LIE-BACKLUND SYMMETRIES FOR THE
KORTEWEG-deVRIES-BURGERS EQUATION

In the introduction and cited literature, the Korteweg-deVries-Burgers (KdVB)

equation is usually expressed as:

H = 0= & +aum, +bi. +ou,,, =10 (3.1)

where a, b and ¢ are real constants. In this chapter I will use a system of notation

where
Uy =u  u;=u = g—i u=u, = 2—2 etc
dx
and (3.1) now becomes
H=0=u, +auu; +bu,+cu; =0 (3.2)

This is done to simplify the computation of Lie-Backlund (L-B) symmetries. L-B
symmetries for time-evolution equations like (3.2) are best expressed in their

evolutionary form
X@Q = Qd, (3.3)
where X(Q) is a differential operator.

For a time evolution equation like (3.2) the characteristic (Q) of a L-B symmetry is a
function of the independent variables (x, t) and the x derivatives of u, so that

Q = Q(x,t,ug uy, ... uy) (3.4)
for some arbitrary order N.

The existence of L-B symmetries is manifested by the existence of a recursion
operator (R) that generates higher order symmetries from the usually more easily
determined lower order ones. This means the existence of one L-B symmetry implies

the existence of infinitely many.

Fokas [9] and Stephani [4] both suggest that for finding recursion operators a starting
point is that in almost all known cases, the characteristic expressing invariance under

39



a t-translation is generated from that expressing invariance under a x-translation. This

means that
R[u;] = u; = —(cuy +bu, +auu,) (3.5)
(3.5) implies that the following expressions are possible recursion operators for (3.2)

R, =-(aD +bD, + mu + nu; D3} (3.6)

with a=m + n and

b au

R, =_(D§+EDX+ lD“x‘) 3.7)

B
- . - . — x
D, is the total derivative operator with respect to x and D xl = j udx.

From the definition of R given in the introduction, the necessary and sufficient

condition for (3.6) or (3.7) to be a recursion operator is

Dy Rlyg = O (3.8)
where Dy = D, +au; +auD, + bDf - ch ‘ (3.9)
is the Fréchet derivative of (3.2).
When the condition (3.8) is applied to (3.6) and (3.7), both give the result a = 0
which means that R; and R, are not recursion operators for the KdVB equation.

Details of the computation for (3.7) are found in Appendix E.

The conclusion drawn at this point is either, the recursion operator (R) is not of the
form of (3.6) or (3.7) or that it does not exist. I then decided to try and find L-B
symmetries of (3.2) using the invariance condition

DylQlg = 0 (3.10)
For a time-evolution equation like (3.2), (3.10) becomes

JH
; D,[Q]a—uJ =0 (3.11)
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As H=0 = u, +auu, +bu, +cuy = 0, we find that (3.11) takes the form
D[Q] + au;Q + auD,[Q] + bD? [Q] +¢D; [Q] = 0 (3.12)

The required technique is to use (3.12) for Q = Q(x, t, u, u; ... uy) with selected

values of N to generate at least 2 equations involving the derivatives of Q and u. I
will start with N=3 and N =35. As (3.12) holds for all solutions, u = u(x, t) of the
KdVB equation, we can equate coefficients of the derivatives of u in descending
order to zero and hence determine the form of Q. The reason for selecting two values
of N is to try and find a recursion operator by inspection of the two L-B symmetries.

For N=3, Q=Q(x,t,u,uj,uy, uy) (3.13)
In (3.12) D, and D, become

D =0, +ugd, + U, duy +Up0up + i39u3 } (3.14)

D, =0, +ud, -1, du; +ugdu, + u4au3

We then substitute (3.13) and (3.14) into the invariance condition (3.12) which is
then expanded and simplified. At the same time the t-derivatives of u are replaced
by

u, = —(auyu; + bu, +cuy)

u, = - (au% + auu, + buj +cuy)

u, = —(3auju, +auug + bu, + cus)

u; = - (3au% +4au uy + auuy + bus + cug)

This leads to the lengthy expression given in Appendix F. The coefficients of
descending order derivatives of u in this expression are equated to zero giving a set
of determining equations involving the derivatives of Q which are then solved to
give the L-B symmetry

kb k,a
Q =k;u; +[T)u2 ¥ (T)uul +(kyakty, +k,  (3.15)

(k,, k, and k, are arbitrary integration constants) of the KdVB equation
1722 3

The details of the computation of (3.15) are found in Appendix F.

I then used the same technique with Q = Q(x, t, u, uy, u,y, u;, Uy, us) to determine
any 5th order L-B symmetries of (3.2). The result was the same as (3.15). Details
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of this computation are found in Appendix G. A determination of 2nd order

symmetries of (3.2) with Q = Q(x, t, u, u;, u,) gave

where k; and k, are arbitrary integration constants.

(3.16)

According to Olver [3] a generalized or L-B symmetry has an infinitesimal generator

(X) such that

P : q
X=y & Oy, + > ¢, [u] du,
i=1 a=1

(3.17)

where &i u] = éi(x, t,tu,u; ...) and ¢ [u] = ¢, (x,t, 0, u; ... ) are both smooth

differential functions.

The associated evolutionary form of (3.17) is

q
X(@Q = Y, Quuldu,

a=1

where the characteristic (Q,) is

p :
Qot:q)a_z glu?
i=1

(3.18)

(3.19)

In (x, t, u) space a Lie point symmetry transformation has an infinitesimal generator

(X) of the form

X = &, +19,+¢9,

(3.20)

where §=&(x,t) T=1(x,t) and ¢ = ¢(x, t). Its characteristic (Q) is of the form

Q = ¢—E_,Ul —mr_

(3.21)
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Lakshmanun and Kaliappan [15] determined Lie point symmetries for the KdVB
equation u, + auu, +bu, +cu; = 0 and found that (3.20) had the form

X = (apt+d)d, + oo, + P, (3.22)

where o, B and & are arbitrary integration constants. The characteristic (Q) of (3.22)

is

Q = B-(oft+du; —om,
= B - (aft + du; + o (auu, +bu, +cu;) (3.23)

Comparing (3.23) with (3.15) we find that they are identical with

k
1
T b=k

o=
and (aPt+8) = —(ky —ak, t)
which implies that & = — k.
This means that the so-called L-B symmetry (3.15) of the KdVB equation is

completely equivalent to the characteristic of the Lie point symmetry determined by

Lakshmanan and Kaliappan.
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4 MAJOR CONCLUSIONS

In Chapter 2 I critiqued two papers that obtained Lie point symmetries for two

different PDEs. The papers considered were:

(1)  “Isogroup and general similarity solution of a nonlinear diffusion equation” by
S M Waller [5]. Waller obtained point symmetries and a similarity solution

for the equation
¢[ i (¢n¢x )x =0 (4 l)

using differential forms as per the method developed by Harrison and
Estabrook [1]; and

(2)  “A variable coefficient Korteweg-deVries equation: Similarity analysis and
exact solution” by Nirmala and Vedan [24], who obtained various point

symmetries and similarity solutions for the equation

u, + ot"un, +PBtTu, =0 (4.2)

for various values of m and n.

Nirmala and Vedan used the so-called classical method as developed by
Bluman and Cole [2].

For Waller’s paper, I first checked his analysis using the closed ideal of differential

forms

o = do¢ - ydx —udt
do = —dyadx —duadt (4.3)

B = (u-no"™ly?)dxadt — 0" dyadt

which he used and confirmed that the symmetry generators
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V¥ = §3,x+9,

VE = 35t+ 9,

V= 1@, - 85ly
VU = 228, + (n+ )3 ]u

Vo= 1028,-810

he obtained were correct.

(4.4)

As a check, I confirmed the results of (4.4) by using as a starting point the closed ideal

~

0, = doadt-pdxadt
0, = doadx +gdxadt

oy = doadx + 0" dpadt +nd™' pdxAdt

oy = —dpadx —dgadt /
To obtain a similarity solution, Waller solved the quasilinear PDE

(254 = 63)0 = (61+63t)¢[ + (52 + 84X)¢x

1
n
with the condition 26, —8; #0

By Lagrange’s method of characteristics, both Waller and I obtained

_ 82 +0,x

(8, + 83{)94;93

as the similarity variable and

1
0(x, 1) = G(L)(B; +65)"%3

as the similarity solution for (4.1)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)
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8 = % i=1,2,3,4,
28,0

When I substituted (4.9) into (4.1) I obtained the ODE in G({)

G(0) +nGQ)™'G (O + ei GOG(OO 468,
4
260,-6;-1
e G(H)™'(8,+650) % =0 (4.10)
n94

which agrees with Waller’s result only if 6; =6, = 1. When Waller considers the
special case of n=-1 he begins by setting 65 =6, = 1 and obtained the ODE

G"(0) - GG (§)* +LGQ)G () +G©)* = 0 (4.11)
(4.10) also reduces to (4.11) under the same conditions.

(4.11) is then solved to give Waller’s similarity solution to (4.1), that is,

o(x, 1) = [%[p + (% ]2 ]}_l (4.12)

where 6, = 8, = 0 and p is an arbitrary constant.

53. If this is done then (4.6) reduces

Waller did not consider the possibility of 2§,

to
(8, +200, + (8, +X)0, = 0 (4.13)
5 .
where 9i=6—,1=1,2 and 8, #0
4

Solving (4.13) by Lagrange’s method of characteristics leads to

e 0, +x

% 4.14
(8,+20)"2 GRS

as the similarity variable and
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o(x,t) = G(Q)

(4.15)
as the similarity solution.
For n=-1 the substitution of (4.15) into (4.1) gives the ODE for G({)
G"(§) - GG (©* + LG(Q)G(Q) = 0 (4.16)
(4.16) has the solution G({) = Eli which means that
B, +2t
hiK. ) = (4.17)
92 + X
and 8, = 6, = 0 means (4.17) becomes
o
ox, ) = + (4.18)

which is the same as (4.12) with the arbitrary constant p set to zero.

For Nirmala and Vedan’s paper I first checked their derivation of point symmetries for
(4.2) using the Harrison Estabrook method. Starting with the closed ideal
3
a = dz — wdx — ydt
doo = —dwadx —dyadt

B = (du-zdx)adt

Y = duadx + cuzt"dtadx — Bt™dwadt

and assuming m and n in (4.2) are arbitrary, I obtained the following infinitesimal
generators in (X, t, u) space

(1["“
X\ =00 d, +9,

d

X

(4.21)
X,

These turn out to be the same as the generators found by Nirmala and Vedan using the
Bluman and Cole method.
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Also, my similarity solution determined from (4.21) turned out to be

(n+1)x + ak
lie————

o (4.22)
where k is an arbitrary constant. (4.22) corresponds to Nirmala and Vedan'’s
a(n+1)x +c (4.23)

"~ aot™! + b(n+1)

a, b and c being arbitrary constants if b = 0.
To determine the symmetries for (4.2) if m and n are linearly related I started with
m = k;n+k, (4.24)

where k,; and k2 are constants to be determined. The Harrison Estabrook method

gave as components to the isovector

-2
vt = (al k2 az)[ W

Y e > 4.25
V*=—32x+ 3r1+1 +a, ( )

VU.

au+a, J
where a,, a,, a3 and a, are arbitrary constants. (4.24) turned out to have the form
m = n+k, (k) #0) (4.26)

Nirmala and Vedan obtained the following expressions equivalent to the isovector

components
T=VH =1t
n+l
XE=VY = 2+n)x + —— 4P (4.27)
U=VY) = u+a

where a and b are arbitrary constants. Their result for the linear relationship

between m and n is
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m= 3n+35

(4.28)

While (4.27) shows some correspondence with (4.25) the linear relationship (4.28)

does not agree with mine (4.26).

I next retraced Nirmala and Vedan's analysis starting with their determining equations

~ X, + at"[U + u(U,~ X, )] +not™'uT = 0

U+oataU, +pt"™0,. =0

tUu*—3IXx +mT =0

U,-T,=0U, -X =0 U,-3X, =0

t
T, =T, =X,=0

u

The results

B a, — 2a, B 3a,-
T= ()= (h

),

-

> (4.29)

; (4.30)

where a;, a;,b and ¢ are arbitrary constants, were arrived at without any trouble.

(4.30) shows a close correspondence to my results (4.25).

. . L ) —2a; 3ay-a .
Continuing on from this point (4.30) implies that —= = = = which when
combined with m =k, n+k, gives

a,n(3 - k) +n(2k; - 1) = (a, - 2)k, (4.31)
if a, is assumed equal to one.
If it is assumed that k| = 3, then

5n = (a,-2)k, (4.32)

and if it is further assumed that k2 = 5 then
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ay, =n+2 (4.33)

sothat m = k;n+k, becomes m=3n+35. Also (4.27) follows from (4.30) and
(4.33). The components of the isovectors obtained using the Harrison Estabrook
method (4.25) show a reasonable correspondence to those obtained using the Bluman
and Cole method (4.30). The Harrison Estabrook method gave the relationship
between the indices m and n in (4.2) as a condition for one of the determining
equations to hold. That is the equation (4.26) m = n + Kk, (k, # 0) arises naturally
from the analysis. To obtain Nirmala and Vedan’s final result, I had to assign an
arbitrary value to the constant a, in (4.30). This leads to assigning particular values to
k, and k, in (4.24) to obtain (4.27) and (4.28).

The purpose of Chapter 3 is to find any L-B symmetries of the KdVB equation

u, +auu; +buy +cuy =0 (4.34)

Attempts to find a recursion operator (R) for the L-B symmetries such that

R[u;] = u, = —(auu; +bu, +cuy) (4.35)
- = PR " _ _ 2. b
using Ry = —(cDg +bD, + mu+nu, D7) with m+n = aand R, = l:o(Dx+C
au
Do # -E—' D'x’) showed that R, and R, are not recursion operators for L-B

symmetries of (4.34). As an extension of this approach I tried to find a generalized
recursion operator of the form an +BD, +u+9d D‘;l using (4.35) where o, B,y
and & are yet to be determined functions of (x, t, u) and the x derivatives of u. I was
unable to solve the set of determining equations for the functions o, B, Yand & and I
suspect that in light of what happened in the subsequent determination of L-B

symmetries of (4.34) that these determining equations might not be solvable at all.

A more direct approach to determining L-B symmetries uses the invariance condition
Dy[Qlyep = 0 4.36)

where Q = Q(x, t, u, u; ... uy) is the Nth degree (N arbitrary) evolutionary

characteristic.

Using (4.36) with N=3 and N =35 gave, in both cases the following form of Q:
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kb ka
€Y = kIU3+(—€‘]U2+ (TJUU]

+ (k3 —ak, Yu +k, (4.37)

where k|, k, and kj are arbitrary constants. Closer inspection of (4.37) shows it to

be the characteristic of the Lie point symmetries
Ky
X = (akyt —ky)d, + (F)at +kd, (4.38)

This result shows that the 3rd and 5th degree L-B symmetries of (4.34) turn out to be
point symmetries. The main conclusion drawn from chapter (3) is that there are
probably no generalized or L-B symmetries for the KdVB equation. This would
explain why I failed to find a recursion operator using (4.35) for the L-B symmetries.
I think it is quite likely that no such recursion operator exists. Fokas [9] defined the
exact solvability of a PDE in terms of it admitting a Lax formulation. That is, the
PDE H = 0 can be expressed in the form

H = [D,R]

where D is the Fréchet derivative of the time independent part of the PDE and R is
of course a recursion operator. The conjectured lack of any L-B symmetries and the
consequent non-existent recursion operators mean that the KdVB equation (4.34) is

not exactly solvable using symmetry techniques.
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APPENDIX A

(1) Nonlinear Diffusion Equation
Use of the classical method of Bluman & Cole for finding point symmetries of the

non-linear diffusion equation

= [k@0y, |, (A1)
Let (Al) be written as
0, =K(0)0, +K'(0)(0)) (A2)
As (A2) is invariant under the transformation group X =&;dy +nd, i=1,2

XP[0, - K(©)0,, -K'(©)(©)*] = 0

ie. (‘r;laxl +é28x3 +1’]a¢ +n]]]a¢, +'l] a¢
+ 33y, ) [0, - K@)0;; —K (9)(0)*] = 0

o “) -nK'(0)0,, - Tl][’ K(o) - T]K”(‘b)(‘b[)
_27]“) K'(¢)0, = 0 (A3)
9 on 9 0& o 5
e = 5t (a_«aa ‘37;}“’ T b= o
a?; (Ad)
1) — on 3‘52 8{31 a‘-}z
ny = ax, t [5-372 9 = % =
o e
11 ) (AS)
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2] 2 92 32
and T\(ll) = (2 2o : } ; &2

- @ i axlatb E)xl - ax% %

2 2
+(a“ ‘;"](q»)z % o7

96% 909 0>
azéz 3, om 95
— 2__
8¢8 1 ¢'1¢2_ 8¢2 (¢[) ¢2 [q) axlj(b“
8& 8& 8&
3 912335 o 1101~ s s 1t
)0
22 0120, (A6)

Substitute (A4) to (A6) in (A3) and equate coefficients of ¢ and its derivatives to

zero, we obtain the following determining equations

d, I dE,
. e P O A7
a0 00 0x, i
%1 K(0) | 2 o’ 9%, RO AL (A8)
9%, 9x, 00 0x3 dx
9%, aﬁlj o
K _25L| KoM = 0 A9
(d) (ax axl + K'(¢)n (A9)
n o, (9 9§ om) _, .
K) — ‘D + K" () [ -2 E+ é;]-'— K’(¢m=0 (A10)
??n
£ e 8 All
K(0) ax1 8x2 (A1l)

Solving (A7) to (All) we obtain the components of X.

& = % Px, +ax12 + bR+

& = a+PBx,
K(9)

= (4ax; +2b) -
K'(0)
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where o, B, v, a and b are arbitrary constants. Three distinct cases arise

depending on the form of K(9).

Case I If K(¢) is an arbitrary function of ¢ then (A10) implies that a=b =0. This

gives a 3 parameter group of transformations

1
&1 = Bxl +y
n=20

with the corresponding infinitesimal generators

X, = axl = d, i
Xy =05 =0
. > (A12)
and
X3 = X0y, +2X,0y, = x8x+2t8tJ

Case I1 If K(¢) is not arbitrary, then (A 10) implies that K(¢) = 10" where A and n

are arbitrary constants and a = 0. This gives a 4 parameter transformation group

1
= 5 Bx;+bx; +Y

& = a+Px,
v 50

with the corresponding infinitesimal generators (Al2) and

2
X, = X3+ 20, (A13)
. . 4 4
Case 111 If a# O then (A10) implies that (3 - E] =0 or n=- 3 SO that

K(¢) = 7L¢'4" 3. This gives a 5 parameter group of transformations with corresponding

infinitesimal generators (A12), (A13) and

X5 =x°9, - 3x00, (Al4)
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Similarity Solutions
Case I where K(¢) is an arbitrary function of ¢

(i) X = d, has subsidiary equations

which give t = the similarity variable and ¢ = ¢({) = ¢(t) as the similarity
solution.  Substitution of ¢ = ¢(t) into the PDE (A1) gives the trivial solution

¢ = constant.

(i) X =9, has subsidiary equations

which give x = and ¢ =({) = ¢(x). When ¢ = ¢(x) is substituted into the PDE
(A1) we get the solution JK(¢)do = k;x + k, where k; and k, are arbitrary

constants.

dt do

s2is ; dx _ ao .
(111) X = xd, + 2td, has subsidiary equations 7 = o= g which leads to

X

2 2
T C as the similarity variable and ¢ = ¢({) = ¢(XT) as the corresponding

2
similarity solution. On substitution of ¢ = @(XT) into (A1) we obtain the following

ODE in £,

d do _ 4o
i [4C.K(¢) : 2] K(¢)d¢} ¢ &

Case II where K(¢) = ¢" gives the following similarity solutions

o = constant
1

0 = [(n+1) (k; x+ky)]0+]

and ¢ such that
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d ndd) 2¢n+l:| do
—_ 4 e - S
dz;[ SO e at

The additional infinitesimal generator

has subsidiary equations o % = % :; which give t={ as the similarity
2 2

variable and ¢ =x" ¢({) = x" ¢(t) which, when substituted into the PDE (A1)

gives

q;:I:E%:l”n

where K is an arbitrary constant.

_4
Case III where K(¢) = ¢ /3 gives the following similarity solutions

¢ = constant

¢ = [—é (ky x +k2)]3

¢ such that

i 45 do -4 _ . do
dc[%q’ Ak 3}' ag

dg

and

¢ = <72 (t+k)%

The extra symmetry X = xzax - 3x¢8¢ has subsidiary equations d;(
which gives t=C_ and ¢

_a_ do
0 3xd
x_3¢(§) = x‘3¢(t) which on substitution in (Al) gives

the similarity solution ¢ = kx™ where k is an arbitrary constant.
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(2) KdV Equation
The use of differential forms for finding point symmetries of the KdV equation
u, +uu, +€u, =0 where € isaconstant [1].

The closed ideal of required differential forms is:

o = dz—wdx-—ydt
doo = —dwadx—-dyadt
B = (du—zdx)Adt b (A15)

and

Y = duadx+uzdt Adx —edw Adt

dB and dy are both equal to zero and are hence not required for the ideal.

Annulling the differential forms (A15) means setting them equal to zero on the surface

u = u(x, t)

so that 0= 0 impliesthat w = z, and y =z,
B = O implies that z =u,

and hence that w=u, andy = u,.

W, y, z are the necessary prolongation variables. d& = 0 implies that z, = z,, the

integrability condition for z, while ? = 0 gives the KdV equation. The invariant
condition for a group of transforms or isogroup as it is sometimes called, requires that
the Lie derivative with respect to the vector operator V for each of the differential
forms (A15) be a linear combination of the elements of the ideal (A15). The vector

operator V, also called the isovector, is such that
L
V= Vi, + V9, + V9, + Vi, + Vo, + V"9, (A16)

and is equivalent to a prolongated form of X, the infinitesimal generator of the
isogroup. As the Lie derivative does not change the degree of a differential form and
o is the only l-form in (A15) we have

£ (o) = Vido+d(Vla) = Aa (A7)
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where A is an arbitrary O-form.

IfF(x,t,u,z,y,w) = V_a then
diVda) = dF

= Fdx + Fdt+F,du+ F,dz + F,dy
+ F, dw
Vla = F = VZ=wV = yV!

and Vlda = -V¥dx + V¥dw — V¥ dt + V'dy

Substituting (A 18) and (A20) into (A17) we obtain the following equations:

= t_ i
VX=—F, V'=—F, V¥=F,+WF,

VY =F +yF, A=F,and F, =0
(A19) implies that VZ=F + wV* + yV!

For da. £, (do) = d&, () = d(Ae)
= dAao + Ada

which is already in the ideal.

For B £,B) = VIdB+d(VIp)

=&y+ (B +pda+ wacn

(A18)
(A19)
(A20)

(A21)

(A22)

(A23)

where &, { and L are arbitrary O-forms, w = Adx + Bdt + Cdu + Ddz + Edy + Gdw

with A, B, C, D, E and G being arbitrary O-forms.

Equating coefficients on the basis 2-forms in (A23) and eliminating the arbitrary O-

forms, we obtain the equations
t_vytl —n _yu Rz
V=V =0 -V +2Vi=0
t t t
gV, +zV +wV)) = zV3 -V

z _ t t
- V4V =zV] = —uz(V, +zV  + wV))

u X
-2V —2zV}) +zwVi—wV] /

(A24)
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In a similar way

Vlidy +d(Vdy)

£,y)
(A25)

Evy+CP+udo + waa

Generalised 2-form on the ideal

Again equating coefficients of the basis 2-forms and eliminating the arbitrary O-forms
we obtain the equations

t
Vy=0 Vy=0 V§ +eVy =0
g(Vy +wVy - Vi) =V},
V3 +VE+2uz V-V —Vi+wVi-yVi =0
—uVZ—zV" = Vi +e(zV) —wVy =VY)
+y(VE = VI +2zVE +uz(VE +uzV) - Vi

—zVi+yVH)=0

| (A26)

(A21), (A22), (A24) and (A26) are the determining equations for the components V*
VEVY V2 VY and VY of the isovector V. Solving the determining equations for

these components we get

X =k1x+k2t+k3 vZ =—3k12
V'=3kt+ky VY = —6k;y —kow (A27)
vt =—2k1u+k2 v =—4k1W

where k; , k, and k3 are arbitrary constants.
Invariance Transformations of the KdV Equation

Z=1u W=l

e and y = u,

X

Ve vt oyt oy oyy oyw o Type

ky=1] x 3t -2u -3z -6y -4w x, tscale change
k=1 t 0 1 0 -W 0  Galilean transformation

ky=1] 1 0 0 0 0 0  space translation

l':4 =1 10 1 0 0 0 0 time translation
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The infinitesimal generators of the Lie Algebra are:

X; = xd, +3t9, - 2ud,

Xzztax'!‘au A78
X, =2, (A28)
Xy =az

Similarity solutions to the KdV equation are found by augmenting the ideal (A15)
with differential forms obtained by contracting o, do, B and ¥ with the isovector V.
This gives the following new forms F = Vl]a, 6 = Vlda,c =VIB and
T=V_y each of which is in the ideal. These new forms are next annulled, i.e. set to

zero on the solution surface u = u(c, t).

(1) F=Vldo = V2 —wV*—yV', WhenF is annulled on u = u(x t) we get

VZ = u, Vi+u, V! (A29)

XX

(i) 8 = Vl1da = — V¥dx + Vidw - VYdt + V'dy.
On the surface u=u(xt)

dy = y,dx+y,dt = u  dx+u,,dt

and dw = w,dx + wtdt = unxdx + Ut

Annulling 6 therefore gives

- > t
Vo= u,, V¥ +u,V (A30)

(iii) o=VIB = VUdt— V'du-zV*dt + zV'dx
Annulling ¢ onu=u(x,t) where z=u, and du=u, dx +udt gives
VY = o, Vi u V! (A31)

Finally
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vy ©=Vly
= VYdx — V¥du + uzV'dz — uz V¥dx — eV¥dt + eVidw

which, when annulled on the surface u = u(x, t) gives

VY = uxVx + u[Vl

and V¥ =u, V* +u,, V' (A32)

Of the annulled forms (A29) to (A32), only (A31) V'= uxVx +u, V' is used to give

similarity solutions of the KdV equation. We will begin with V¥*=1 V"= V=0 so

that V =9, which has subsidiary equations de = %E = %_u These give { =1 asthe

similarity variable and u = u({) = u(t) as the similarity solution which, on
substitution in the KdV equation, gives the trivial solution u = k an arbitrary

constant.

Letting V' =1 and V* =VY=0 gives V =0, with subsidiary equations

which give { = x as the similarity variable and u =u({) = u(x) as the similarity

solution. Substitution of u=u(x) in the KdV equation gives the ODE

el 0 (A33)

1
s +E— =k (A34)

where k, is an arbitrary constant.

Integrating (A34) gives

du i »
a(a)z + 3 032k u =k (A35)
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where k, is another arbitrary constant.

2
Assuming that u — — ¢ (constant) and both ?1_2 and —: g — 0 as x| = o, we find
X
that (A34) implies that k, = fl, ¢® and that (A35) implies that k, = 32- A

(A35) now becomes

e(g—z)z + %u3 -c%u = §c3

du dx

or = = (A36)

[uilo Lot @
Using the substitution w? = %%3 and 2wdw = g—::] in (A36), we obtain

dw c\/2 dx

e =l s A37

w(l—wz)”“ [E) 2 ; )
Integration of (A37) gives

172
sech'w = (E] -§~+k3 (A38)
8 —

k; being an arbitrary constant.

Eliminating w gives the similarity solution

1”2
u=cl3sech?|(S) S+ky|—1 (A39)
g)] 273
It is worthwhile to consider the linear combination V = d, +cd, where ¢ is a

constant which gives a similarity solution similar to A39, that is:

u = 3c (sech?) [% @”2 (x—ct) + k3] (A40)

(A40) is the soliton or solitary wave solution of the KdV equation with c as the phase
velocity and k, determined by the initial conditions.
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APPENDIX B
On obtaining point symmetries of the nonlinear diffusion equation
o, — (9", = 0

by the Harrison-Estabrook method starting with the following closed ideal of
differential forms

o, = doadt—pdxadt
0, = doadx +qdxadt
03 = dpadx + ¢" dpadt + no™'p? dxadt

03 = —dpadx —dqadt

Annulling (B2) to (B5) on the solution space ¢ = ¢(x, t) where

d¢ = ¢,dx + ¢, dt
dp = p,dx +p,dt

and dq = q,dx +q,dt

gives the following results:

) o, = 0 implies that (¢, —p) dxadt = O and
p = ¢, the definition of the first prolongation variable p.

(ii) Similarly az =0 gives q= ¢, the definition of the second prolongation

variable q.
(iii) o3 = O implies that
(¢, - 0"p, - n¢"'pP)dxadt = 0
or o - 9", — 00" (9> = 0

which is the original PDE (B1)

(B1)

(B2)

(B3)

(B4)

(BS)

66



(ivy o4 = O implies that (p, —q,)dxadt = 0 or ¢,, =¢,, the integrability

condition for ¢.

The generators of the invariance groups are the coefficients of the isovector
= VX t ¢ P q
V = V79, + V', + V¥, + VFd, + V49, (B6)

in the 5 dimensional space (x, t, ¢, p, q). The action of V on the closed ideal is such
that the Lie derivatives with respect to V of the forms (B2) to (B5) are still on the
ideal. As the ideal consists only of 2-forms, this means that

£() = A a,+B,0, +C,a; + Doy (B7)

fori=1,2,3,4and A, B,, C, and D, are arbitrary 0-forms. Expanding the

invariant condition (B7) according to

for each of the four forms of the ideal we obtain for:

(i) i=1

— VPdx adt + dV®adt - dViAdd — pdVX Adt + pdV' Adx

= Aoy +Bjay, +Cio3 +Dj 0y

= A, (dpadt — pdxAdt) + B (ddAdx + gdxAdt).

+ C, (doadx + ¢"dpadt + no™'p? dx adt)

+ D; (- dpadx —dqAdt) (B9)
() i=2

Vidxadt + dVPAdx — dV¥*Add + qgdV* Adt — qdV'Adx

= Ay + By, + Cyo + Dyoy (B10)
Gii)) i=3

no™ ' VOdpadt + n(n-1)¢"2p? Vedxadt

+2npo" ' VPdxadt + dVOPadx — dV¥Ado

+O"(dVPAdt — dV' Adp) + nd™ ' pA(dV*adt — dV' Adx)

= A3 04 + B30, + C505 + D30, (B11)
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(iv) i=4
dV*Adp — dVP Adx + dV' adq - VIadt
= A40, +Byo, + Cho4 +Dyoy (B12)

where dVi = Vi dx+ Vi dt+ Vido+ vli, dp + vg'] dq (B13)
j=x,t,0,p and q in turn.
Using (B13) and equating coefficients of the basis differential 2-forms in (B9) to

(B12), and at the same time eliminating the arbitrary O-forms A; B; C Di fori=1 2,

3, 4 we obtain the following determining equations for the generators of the

isogroups:
Vp=Vg =Ve=V, =0 (B14)
Vi=Va=Vy=0 (B15)
vi=vl=0 (B16)
Ve =0 (B17)
Vit VE=-Vi~Vl =10 (B18)
VI-V?+qV = —pV{ +qV{ (B19)
VP V8 +pVX = pVS —qV? | (B20)

VP - V3 = pVa+q(¢"(Vi - Vi) - VE)

+0¢7p? (VX + v (B21)

n(n—1)0"™2p? V® + 2np"'VP - VP — 6" VP + n¢™'p?
(Vx +VD = —=p(Vi{ +0"V])
+q(V3+Vy - VP - Vi —n¢'V®) + no™ ' pA(ng~' VO

+vg -V} (B22)
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We now solve the determining equations (B14) to (B22) for the components Vi

where j=x,t,¢,p and q in turn of the isovector

(B14) implies that V' = a(t)
(B15) implies that V* = g(x,t)
and (B16) implies that V® = h(x, t, ¢)

where a, g and h are arbitrary functions of the indicated arguments.
From (B20) we get
VP = pV} - qV} + V? - pV}
Then partial differentiating (B26) with respect to q we get
Ve = qu¢+V¢ - pVi-Vi=0
As V¢ = V} = 0 then (B27) implies that

Vi

Il
o

and with (B24) that
VX

I

g(x)

Then using (B19) and (B20) we get

va = V_qVv! +qV¢

¢ = hy+q{hy—a'())

VE = Vf- PV # pvg’

h, +p{h,-g'(X)}
From (B30) we find that

g
Vp-O

(B23)
(B24)
(B25)

(B26)

(B27)

(B28)

(B29)

(B30)

(B31)

(B32)

(B23) to (B25) along with (B30) and (B31) mean that only the coefficient V9
contains the variable q. This means that as (B22) is true for all values of g, so that the

coefficient of q in (B22) must be zero.
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That is VE + V- VE-V{-n¢"'V® = 0

. hy + g'(x) — (hy — g'(x)) - a'(t) - no'v® = 0
and Vq’ = g {Zg'(x) —a'(t)] (333)

(B22) now becomes

(n-1)6""p?(2g(x) - a'(V)} + 2npd™" (b, +p(hy-g (X))
Y ¢ {h,, + plhy ~g"(x)} + o™ p?(g/(x)+2'(1)

n
= — po"(hy s+ Phyy) + n6"'p? (g(x) - 22'(1) + h,y ) (B34)

Now (B34) is true for all values of p, which means that the terms in (B34) not

involving p must be zero.

That is 20, h, =0 (B35)

n
Now (B35) is true for all values of ¢ which means
(1) a”’(t) = 0 and
a(t) = V' = §5t+39, (B36)

where 03 and 6, are arbitrary constants. Also the coefficient of p in (B34) must also

be zero, which means that

2n¢"'h, +¢"g"(x) = 0 (B37)
Now b =g s HEG
n

from (B33). This, in conjunction with (B37) imply that g”(x) =0 and
gx)= V¥ = §,x+3, (B38)

where 8, and d, are arbitrary constants. (B33) along with (B36) and (B38) mean
that
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(B39) implies that

(B40) along with (B30) and (B31) mean that

VP =

{5, -3 }p

and Vi = = {25, - (n+1)3; }Jq

o |—

In summary the components of the isovector are:

V[=53[+81 Vx=64x+82
Vv = = (28, - 85)0
{2-n)8,-8; }p

Ve = %{254—(n+1)83}q

L}
n
V=
n

(B39)

(B40)

(B41)

(B42)
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APPENDIX C

Details of the use of the Harrison-Estabrook method for finding point symmetries of
the variable coefficient KdV equation

n m =
u, +ot'uu, + Bt e, =0

XX

(i) The expansion of the Lie derivatives of the differential forms B and y with
respect to the isovector V.

£B) = v+ B+p da + w, Aa
V1 dB+d(V_B) (CI)

From the ideal (2.50)

B = duadt-zdxadt

so that dB = —dzadx Adt (C2)

V1dB = (V¥9,+ V' + VU9, + VZ9,+ V¥, +V¥9,,) I (-dz A dx A dt)
= — VZdxadt+ V¥dz Adt-V'dz adx (C3)

VA B = (V¥9, + Vio+ VU9, + Vi9,+ V¥o, + V¥, )] (du A dt
—zdx Adt)
VUdt - V'du - zV* dt + zV'dx (C4)

d(Vd B)

dVY Adt —dV'Adu — zdVX Adt — V¥dzadt
+ zdV'Adx + Vldzadx (C5)

where dv

Vidx+Vdt+ Vi du+ Vodz+Vj dy+ Vg, dw
and 1=

= X,t,u,z¥y,w inturn.

On substituting (C3) and (C5) into (C1), we get (2.61). That is
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£.(B) = —-VZdxadt + dV¥Adt — dV' Adu — zdV*adt

+zdV'adx
=&y + §B+p da+wpa
= & (duadx + ozt dt Adx — B t™ dwadt)
+ §;(dundt — zdx Adt) — p; (dwadx + dy Adt)
+ (Adx +Bdt + C; du + Dydz + E\dy + Gdw) A

(dz—wdx—ydt) (C6)

from substituting in the differential forms of the ideal (2.50)

£0) = &7+ 5B+ dat waa

= Vidy +d(Vdy) (C7)

From the ideal (2.50)

vy = duadx + cwzt"diadx — Bt™ dwadt
so that dy = at"(zduadtadx + udz Adt Adx) (C8)

VJ dy = (V*9, + V', + VU9, + V?9, + V¥ay + V79,

o t"(zduadt Adx + udz Adt Adx)

= at"z(V¥dtadx — Viduadx + V¥duadt)

+ ot"u(VZdiadx — Vidzadx + V* dzadt) (C9)

VJy =(V*0, +V'9,+ V"9, +V?9,+ VYo, + V¥9,,)]
(duadx + cuzt"dtadx — Bt™ dwadt)

= V¥ dx—V*du + auzt®(Vidx — V¥ dt) -Bt™(V¥dt — Vidw)
(C10)

From (C10) we obtain,
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d(Vd y) = dV¥Adx — dV*du + cwzt"(dV'adx — dV* Adt)
~ Bt™(dV¥Adt —dV'dw) + azt"(V'duadx — V¥duadt)
+ out™(Vldzadx — V¥dzadt) + cuznt™'Vidt adx

+ mpt™ !V diadw (C11)
On substituting (C9) and (C11) into (C7) we get (2.62). That is,

£,y = at" zV'+ uV*dtadx + dVY Adx - dV* Adu
+ ouzt"(dV'Adx — dVi*Adt) —Bt™(dVY adt — dV' Adw)
+ auznt™ ' Vidt Adx + mBt™ ! Vidt Adw
= &7+ 5, B+ nyda + wona
= &, (duadx + ot uzt"dtadx — Bt dwadt)
+ G, (duadt — zdx Adt) — py(dwadx + dyAdt)
+ (A,dx + B, dt + Cydu + Dydz + Eody + Godw) A

(dz — wdx — ydt) (C12)

from substituting in the differential forms of the ideal (2.50)

(2) The equating of the coefficients of the basis 2-forms on both sides of (C6) and
(C12) and the elimination of the arbitrary 0-forms. We begin by equating coefficients
of the basis 2-forms in (C6) to obtain the following set of equations.

~VE4+ VY —zVi—2zVl = —ouzt" &, —z{, -yA, +wB, (C13)
-V, -2V} = &, +wC, (C14)
-2V, = A; +wD, (C15)

—zv; = wE, (C16)

-2V, = U, +wG, (C17)
-Va-V{+zVi = -, +yC, (C18)
-V¥+2zVi = B, +yD, (C19)
-v;+zv; = W, +yE, (C20)
=V +zV = &, Bt™ +yG; (C21)
VL = (C22)
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vy = ¥, =10 (C23)
E, =G, =0 (C24)
We next eliminate the arbitrary 0-forms from the equations (C13) to (C24).
(C23), (C24) and (C17) imply that u; =0 so therefore by (C20)
ZVy - V) =0 (C25)
(C18) and (C22) give
g, = Vi +Vi-zV} + yv; (C26)
while (C14) and (C22) give
& = Vi+zV, +wV, (C27)
(C21), (C24) and (C27) imply that
Bt™ (V! +zV) +wV)) = zV] - Vg (C28)
From (C15) and (C19) we obtain
—zyV; = yA, +ywD,
and zwVi-wVY = wB; +wyD,
which upon subtracting give
wB| —yA, = zwVi-wV} +zyV, (C29)

On substituting (C26), (C27) and (C29) into (C13), we obtain
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2 _ ; t
- V54 VE-zVY = —ouzt" (V, +2V +wWV,)
- z(Vy—-zV]) +w(zV,-VY) (C30)

Similarly equating coefficients of the basis 2-forms in (C12), we obtain the following
set of equations

at"zVY + ot uV? + VY + ozt (V] +V3)
+ owznt™'V 4 BMVY

= &auzt" + {,z + yA, —wB, (C31)
VY + V24 ouzt" V= &, - wC, (C32)
VY+ouzt" V) = — A, —wD, (C33)

u Nyrd: -
Vy + ouzt Vy = - wE, (C34)
Ve +ouzt"Vy BtV = —wG, -, (C35)
Vi-owzt"VE - BtM VY = §,-yC, (C36)
—owzt" VI - Bt"VY = —B, -yD, (C37)
- owzt"Vy ~ Bt™ Vy = -1, -¥E, (C38)

—owzt" VX - BV + V) - mBt™ IV

-V =-GC, (C40)

-Vy; =0 (C41)

- ViRtV =0 (C42)
0 =E, (C43)

-pmVv! = G, (C44)

Btm v; =0 (C45)

The next step is to eliminate the arbitrary 0-forms from equations (C31) to (C45).
(C23) states that V; = V\L = 0 which is consistent with (C45), while (C43) and
(C34) imply that V; = 0. This coupled with (C41) means that

VY = VE =i (C46)
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(C46), (C43) and (C38) imply that

Hy = Pt V;v
Then (C35), (C44), (C47) and (C23) imply that

Vg = Bt™ (V) + WV, + V;’)= 0
From (C40) and (C32) we obtain

& = Vi+ VX +auzt" V) +wV}
while (C40) and (C36) give

G = Vi-ouzt"V) - BtV +yV]
On substituting (C47) (C49) and (C44) into (C39) we obtain

mBt™ 'V + quzt™(VE - BtV + pt™

t t
(Vy L —V“j‘ —Vi-—wVé‘—V)‘,‘#sz) =)
Finally from (C33) and (C37) we get

-yVe—auzt"yV, = yA, +ywD,

auzt" wVX + Bt™ wV¥ = wB, +ywD,
which on subtracting give

yA, —wB, = —yVi —ouzt” (yV, + wV} )- Bt"wVy
Substitution of (C49), (C50) and (C52) into (C31) gives

at"(zVY + uV?) + cuznt™ V' + Vi + y VY
—zVy —zy V] + BtV + zV] + wV))

+ quzt? (Vt -V, - auzt"VJ +zV, + yV;) = )

The determining equations for the components of the isovector are:

(C47)

(C48)

(C49)

(C50)

(C51)

(C52)

(C53)
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v; =V = v; = v‘; =0 (C23) and (C46)

VI POV =0 (C42)
Vo - Bt (Vi +wV, + V) = 0 (C48)
BI™ (Vi +2zV +wV)) =zV§ -V (C28)

7 u n t t t
V= Vi+wV, +auzt’ (V, +zV +wV))

2V - g _VE V) = O (C30)

mpt™ IV + ozt (VE - BV + BT (VY +

VE=VY —Vi-wVy -V +yV;) = 0 (C51)

u —1y st u
at(zV" + uV?) + ouznt" V' + VI + yVY
—zV¥ —zy Vi + Bt (VY +zV, +wV})

t t t
+ ozt (V, -V - auzt" V, +zV] + yV,)

= 10 (C53)

(3) The solving of the determining equations for the components of the isovector

(2.52). This is done with the help of the following set of equations (2.60). That is:

t o
VX =-F, V'=-F, F, =4 F =0
V¥ = F +wF, V' =F, +yF,

and V: = F—wF, - yF,

F, =0 implies that F=F (x, t, y,2, W) and (2.60) shows that the components V*,

VY, V¥, V¥ and VZ are all independent of u so that
VE=V$=V":=VE=VS=O (C54)

Lo o= o
V- = Fy soVy— Fyy—Oby(CZB).

Integrating Fyy = 0 gives
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F = a(x, t, z, w)y + b(x, t, z, w) (Z35)

where a and b are arbitrary functions of the arguments shown

(2.60), (C23) and (C55) imply that

[ _
Vw_—F = —a

yw w = 0, soa=a(x,t z).

(C28), (C48) and (C54) give

2VY - BtmVY = 0 (C56)

Differentiating (C56) and (C51) with respect to y gives

W YW _
Vyy—wa—O.

Now V;" = ny + szy = a, +wa,

SO V\:‘,’y = a, = 0 implies a=a(x, t).
—_ _

Then Vz = —Fyz =-a, = 0.

(C48) and (C56) then give
Vy+2V, = 0. (C57)

But V; = —Fyx = —a, and above we deduced V‘; = a, so (C57) becomes a, =
0, yielding a = a(t).

(C55) becomes F = a(t)y +b(x, t, z, W) (C58)

(2.60) and (C55) mean that

V¥ = _F_=—b

w w?

while VX = 0

implies that b, =0 which on integrating gives b= g(x, t, z)w + h(x, t, z) where g

and h are two arbitrary functions. (C58) becomes
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F = a(t)y + g(x,t,z2)w + h(x, t, z) (C59)
From (2.60) and (C59) we get

VY =F, +wF, = g w+h, +w(g,w+h,)

which is independent of y so that V;" = 0. Also V= F- wE, - yF}, = h(x, t, )
which means that V; = VI = 0.

In summary we have

t t
Vx = Vy =V, = Vy =V, =0
Vi =W ==
N = 0
. 5 > (C60)
Vi = Vy = Vg, =0
Vi = Wy = 0
- v; = Vi = 0
(C60) and (C51) give
mV' + (Vi + V= Vi-Vi_wVY) =0 (C61)
As m is an arbitrary real number, then (C61) implies that
Vi =0 (C62)
and in turn that V{ = 0 so that (C59) becomes
F = g(x, t,2)w + h(x,t,2) (C63)

0 while (C30) (C51) and

The determining equations now become (C60) and V:

(C53) become
Vi-VEewVi+ (V) - Vi-wV})= 0 (Co64)

VY-V VE=wVE =0 (C65)

at” (zV' +uV?) + VI + yVI —zV§ - zy V)
+Bt™ (VY + wV3) — omzt” VY = (C66)
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From (C63) and (C260) we get

VW = F, +wF, = g, w+h, +w(g,w+h)
V¥ = _F =-g

These two expressions imply that
Vo =g, +2wg, +h,
Ve =-8 Vya=-g
On substitution of the above expressions in (C65) we get

V) = 2g, +3wg, + h, (C67)

From (C60), V = 0 which means that V" and VLL: are independent of w, so as
(C67) is true for all values of w then g, = 0 which means that

V8= —-g=—gxt)and V] =0 (C68)

(C67) becomes F = g(x,t)w + h(x, t, ) (C69)

while (C64), (C65) and (C66) become

VI VZ 4wV 2(VE - VE) = 0 (C70)

V¥ Vi _vX =0 (C71)
and at" VY +uVh) + VY +yV —zV) 4 BT (VY +wV))

—ouzt" Vi = 0 (C72)

From (2.60) and (C69) we obtain the following results

" V? = F-wF,—yF, = h(x,t,2) (C73)

¥

VZ = Vg = Vg = 0 means that VZ V¥ V* and their derivatives are independent

of w and (C70) is true for all values of w then
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V! =0 (C74)

(2) vV = F, +wF, = g w+h, +wh, (C75)
(3) F, =h, = A
From (C75) we obtain

wo_ _
Vo, =g +h, =g +A

= V, +V; by (C71).

which means that V{ =h, = Vj +V =0
by (C68) and (C74), so that on integrating h,, =0 we get

h(x,t,z) = h(x,t)z + k(x,t) = A(x,t)z + k(x,t)
where k 1is an arbitrary function of (x, t) (C73) now becomes

V& = Az +k (C76)
(C67) and g, = O means that

V, = 2g, +h, = 2g +A
which on integrating gives

VY = (2g, + Mu + f(x,1) (C77)
where f is an arbitrary function of (x, t)

VieVlaVisg

means that V" is a function of (x, t, u) only.

(C70) and (C74) mean that
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V: —Vz+z(Vﬂ—V:) =0 (C78)
From (C77) we obtain

Vi = (g, +AJu+f,

Vi = 2g +A
while (C68) gives
V: = — 8

Substitution of the above equations along with (C76) into (C78) gives

(2gx + lx)u +3zg +f, -k =0 (C79)

As f = f(x,t) k = k(x, t) and (C79) is true for all values of z and u we obtain
g,=0, g, =0 and A, = 0 which mean that

=g(t) Vi=0 X=Alt
g=g(t) V} ()} —_—

and fx =k

The results (C80) when combined with (C62), (C68), (C75), (C76) and (C77) give the

following expressions for the coefficients of the isovector

Vi=0 V¥ =—g(t) V¥ =k (x, t) + wA(1)
(C81)
VZ= Atz + k(x, t) and V¥=A(Du + f(x, t)
Using the expressions of (C81) and the determining equation (C72) we obtain
ot"{z(Au+f) + u(Az+k)} + A'(Hu
+f +2g() + Btk —owmzt" A =0 (C82)

(C82) is true for all values of u and z so the coefficients of u, z and uz must all be

identically equal to zero, which gives the following results:
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(i) ot™ (2L =A) = 0 which means that A =0 and A’(t) =0 so that (C82) becomes
ot (zf+uk) + f, +zg'(t) + Pt"k,, = 0 (C83)
(i) otk =0 or k=0 and k., =0 so that (C83) becomes

{ot"f+g'(}z+f, =0 (C84)
(iii) " f+g'(t) = 0 (C85)

(iv) f, = 0 which, when combined with f =k =0 mean that f = a an arbitrary

constant, while (C85) implies that

aot" = —g'(t)
tn-H
o —8) = ar?ﬂ -

b = an arbitrary constant.

The coefficients of the isovector are therefore

vi=0

« _ aot™!

¥ E n+l 5

R e (2.63)
VWaV=0

VY = —aot'w J
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APPENDIX D
On substituting (2.65) and (2.68) into (C61) we get
— (kyn +kya(t) + 1(2g, +3g,w+h,-a'() -V )= 0 (DI

V\‘L = 0 (C60) means that V¥ and its derivatives are independent of w. (D1) is true

for all values of w so that

g,=0 and V* = —g(x,1) (D2)
(D2) implies that vV =0 (D3)
(D1) now becomes

— (kyn + kya(t) + t(2g, +h, —a'(t) - V) =0 (D4)

On substituting V; = 0 and V* = h(x,t,z) into (C64) we get

VY —h(x,t,z)+w VY +2(VE - V) = 0 (D5)
(D5) is true for all values of w and V¥ and V* are independent of w so that

V: = D
and Vi-h(x,t,z) +z(V] -V}) = 0 (D6)

On substituting V) = V; = 0 and the appropriate terms from (2.68) into (2.66) we

get

ot™{zVY + uh(x, t, z)} — cuznt™! a(t) + V‘[l +
zg,(x,t) + Pt"{g, w + h, +2wh,, + w? h,,}

— ozt {a'() + V) = 0 (D7)

(D7) is true for all values of w so that on equating the coefficients of w and w> to

zero, we get

8 t2h, =0 (D8)

XZ
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h,, =0 (D9)

and ot"{zV" + uh(x,1,2)} - owznt"a(t) + VI +
zg,(x,t) + PtTh, (x,t,z) — ozt {2’ () - Vi } = 0 (D10)

V% = h(x,t,z) and (D9) imply that
Vi= hy(x, )z + hy(x, t) (DI11)

where h; and h, are arbitrary functions of (x, t). On substituting (D11) and
Vi =-g,(x,t) into (D6) we get

VU = hy (3,02 — hy(x,t) + 2{ V} + g (x,0)} = 0 (D12)
V7 = 0 means that V" and its derivatives are independent of z so that therefore

Ve = by ) (D13)

and VY = hy(x, 8 = g (x, t (D14)

Differentiating (D14) with respect to u gives
Vu"u=0.AsV;=V;‘=V:=O
then V" is a function of (x, t, u). So on integrating V> =0 we get

VY = f] (x, Du + fH(x, 1) (D15)

where f; and f, are arbitrary functions of (x, t). Differentiating (D15) with respect

to x and equating the result to (D13) we get

VY = fi(x,0), u+fH(x,0), = hy(x.t) (D16)

As (D16) is true for all values of u we obtain the expressions

f(x,0,

0 which means f, = f| (1) (D17)

and £,(x,0), = hy (x1) (D18)
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From (D14) we get VE = f (1) = hy (x,) - g, (x.t) (D19)

(D19) implies that g (x,t) = h,(x,t), which, on substituting into (D8), implies in
turn that

hy(x,) =0 and h;=h() (D20)

This also means that g (x,t) = 0 so that

g(x,t) = g(x + g,(1) (D21)
where g, and g, are arbitrary functions of t.

At this point we have

VZ=h,(t)z + f,(x,), (From D11 and D18) b

u
V¥ = f (tu + fy(x,t) (From D15 and D17) S (D22)
Vx

Il

- g,()x — g,(t) (From D21)

also f; (t) = h(t) —g,(t) (From D19. D20 and D21))
Substituting the expressions of (D22) into (D4) gives
— (kyn + ky)a(t) + 3tg, () —ta’(t) = 0 (D23)

Similarly substituting (D22) into (D10) gives

ot” {zf,(x, 1) + ulh; (Oz + f5(x,0),]} — owznt™" a(t)
+ f1(Ou + fH(x,t), +z{g[(x +g; (O}

+ B (X0 — Cuzt"a’(t) = 0 (D24)

(D24) is true for all values of u and z so that on equating the coefficients of u, z and
uz to zero we get

thy(t) - na(t) — ta’(t)

Il
o

(D25)

oty (X,1) + g (DX + g5(t)

I
o

(D26)
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at"fy(x,t), +f{ (1) = 0

and fo(x,0), + Pt £,(x,0),, = O

XXX

(D27) implies that £, (x,t), = — ——
ot

so that f,(xt) = 0 and by (D28) f,(x,t), = 0 which means that

XXX
f, = £,(x)

’

fio . . :
— which on integrating becomes
ot

(D29) now becomes f; (x) = —

(t)
f(x) = - [i?]x +a,

where a, is an arbitrary constant.

’

1 (V)
ot"

f,(x), = 0 means that
on integrating gives

n+l

n+l

where a5 is an arbitrary constant.

(D22), (D31) and (D32) mean that

" azatnﬂ
[ W+a3 u—a2x+at

(D26) and (D31) give
at’ (—ayx+a)+ g/ (Ox+ gyt =0

(D34) is true for all values of x so that

= a, where a, is an arbitrary constant. f{(t) =

(D27)

(D28)

(D29)

(D30)

(D31)

n

a, ot

(D32)

(D33)

(D34)
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g(() = ayou” and g5 (t) = —a;ou”

which on integrating give

n+l
azat

ala{nﬂ
and g1 = - T (D36)

From (D22) f,(t) = h(t) — g,(t) we obtain

2a, ™!
This means that
) azat"“ 8 [ltm'l
VvV = — a4+—w ﬁ-}- as (D38)
, 2a,0t"!
and Vi = (iT +a3 +ay, ]z -a, (D39)
(D23) and (D25) now become
2a,0t™! ;
;H-il-" ay +a, |—-na(t)-ta’() =0 (D40)
a, tn+l
- (kyn +ky)a(t) + 3t ["HT +ay J— ta’(t) = 0 (D41)
Subtracting (D40) from (D41) gives
3’2 n+l
{n(l—kl)—kz}a(t)+t(-w+2a4—a3}= 0 (D42)

(D42) should be true for all values of n so that

k, =1and a, =0 (D43)
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also Kja(t) + t(2a, —a;) = 0 (D44)

As m and n are linearly related by (2.65) (D43) means that

m=n+k, ky #0 (D45)

The coefficients of the isovector are with relabelling of the four nonzero arbitrary

constants
vl. = al _232 t A
k2
a]atml
Ko = e e TR
V* = a5 X v +a,
Vi = (a) +ayz > (2.69)

VY = au + ay

V¥ = (2a, +a)w

2a,—a
VY = ( ﬁz ')y - a3cct“w +(a; + az)w)
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APPENDIX E

To determine if

b au;
R, = —(Df +7 D+ — DY)

is a recursion operator for the KdVB equation

H=0= u, +auu1+bu2 +cuy = 0

(E.1)

(E.2)

The invariance condition for (E.2) under the L-B symmetry given by X(Q) = Qdu is

Dy[Qlyo = 0 or
(D, +au, +auD, +bD? +cD?) [Qly=0
For R, to be a recursion operator of (E.2)
[DyR,] = DR, -R,Dy = 0
From (E.1) and (E.3)
b

c
e D[D§+2D{Dx+g D, [u;D7'] + au, D

DyR, = (D, +au; +auD, +bD? +cD})(D? +

’ 2 2
abu, 5 +(dul)
c X c

aub
c

=1 3 2
- Dx +aqu+ Dx

5
; by i ¥ D" o4 2( 3% 1
+dUDx]:—C"Dx:|+be+? Dx+be[TDx]

5 4 3 | AB] )

+ CDx+be+CDx I:TD"j[

D, [u; D}] = u;, D} +u; D DY
D, [u; D}]= u, D} +u,

[u, D}]

D, [u,D} +u,]
u; D!+ 20, +u; D,

D; [u,D}'] = D,[u;D} +2u, +u;D,]
= uy D;l +3u3 +3u,D, +u, Di

Fad

(E.3)

(E.4)

uui g
DX+TD.\¢)

(E.5)

(E.6)

(E-T)

(E.8)

(E.9)
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On substituting (E.6) to (E.9) into (E.5), we get

Similarly

au,

DuR; = DD +£3 DD, +—! DD} +¢ D}

2
+2bD? + (au +?C—) D] + (2aul +ai’—u)D§

2abu, azuu1 2abu,
+( - +3au2)Dx+ —14+ =2 4 30, (E.10)

ey b au; ) 5
R,D, = D; D, + 5 Dth+T D D, +¢eDy
2
+ 26D + (au+b?}D£ +(4aul+a:¥“) D?

3abu a2 uu, abu2
+ (~—c-4+ 3au2JDx L D2 g (E.11)
’ abul
abu2

+ —= + 23113
C

=0 (E.12)

(E.12) implies that a = 0.
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APPENDIX F
3rd Order L-B Symmetries of the KdVB Equation

The invariance condition for an L-B symmetry of the KdVB equation is

D,[Q] + au;Q + auD,[Q] + bD3[Q] +¢D] [Q] = 0
If Q = Q(x,t,u,up, uy, uy)
then D, and D, become

D, = d,+ud, + uzau] + u3au2 +u,0

u3 }
D, = @ +ud, + uq&‘u! +uy, Buz - ut3au3

Incorporating (F.2) and (F.3) into (F.1) gives

Q +uQ,+ u[lQu] + utzng + ut3Qu3 +au; Q
+au(Q, +u,Q, + uzQul + 1,13QL12 +1yy Qu3)
+ b D(Q. +u,Q. + u2Qul + Uy Qu2 + u4Qu3)

2
+c¢ Dy (Q, +u,Q, + ”2Qu1 +”3Qu2 + u4Qu3)

Using the expressions

u, = —(auu; + bu, +cuy)

Uy == (au? +auu, + buy +cuy)

Yy = i (3auju, + auu, + buy + cug)

o, = - (3au22 + 4au,uy + auuy + bus + cug)

(F.1)

(F.2)

(E.3)

(F.4)

to eliminate the t-derivatives of u in (F.4) and then by expanding and simplifying we

obtain the expression
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Q,+auQ, +au,Q - auf‘ QLll - 3aulu2Qu,3 - 3:11122 Qu3
- 4au1u3‘Qu3 ks b[uﬁ Qu3u3 + 2u4(qu3 + u,Quu3

¥ l‘12Qu1U3 + U3Qu2U3) + U% Qu2u2 + 2113 (qu2 +
ulQuug * uZQuluz) + Ll% Qu]ul + 2“2(qu]

+uyQuup) +uf Quu 28, Qg + Q]

= CBUS(QXUJ + u]Quu3 + ”2Qu[u3 + "3Quzu3 - u4Qu3u3)
&) uiQu3u3u3 + 3"]4% (qu3u3 * ulQuu3u3 % u2Qu1u3u3 *
u3Qu2u3u3 " Qu2u3) * 3114(qu2 » ulQuug + UZQu1u2
+U3 Qu2u2 * UZQuug, ¥ u3Qu1u_'5 * Qxxu3 * 2U]quu3

E zuzqu;u3 + 2u3qu3u3 + Ll% Quuu3 s u?i Qu1u1u3

¥ u% Qu2u2u3 + 2u‘lu2Quu1u3 + 2u1u3Quu2u3

* 2u2u3Qu1u2u3) g u_’? Qupuguz T 3“% (quzup_

+ ulQuuzuz +uy Qu1u2u2 + Qulug) + 3“3 (qul €

U Quul + U Qu1u1 + Uy Quug = 2“1 quu2 ¥ Uf Quuuz
+ 2u2 qulu2 + Ll% Qaluwg + 2[11].!2 Quu;uz) + u% Qu;u]u[
* 3u%(Quu1 * qu;ul * ulQuulu]) +3up (Quy +

Uy Quu + Qxxul + 2“1quu1 + u% Quuul) K u? Quuu

¥ 3”% quu + 3ulexu + Qxxx] =0 (E.5)

(F.5) holds for all solutions of the KdVB equation so the coefficients of descending
order derivatives of u can be equated to zero. The coefficient of us in (F.5) is

3c(qu3 +u, Quu3 +u, Qulu3 + U3 Qu2u3 - u4Qu3u3) (F.6)
(F.6) is true for all values of u;, u,, u; and u, and ¢ #0 which means

Quus = Quauz = Qujug = Quuy = Quuy = 0 (F.7)
(F.7) means Q = A(tuy + B(x, t,u, uy, u,) (F.8)

where A and B are arbitrary function of the arguments shown.
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Also Qyus = Quy = 0 b j=x 1,0y, u, u3 (F.9)

(F.9) ensures that the coefficient of u? is zero and the coefficient of u, reduces to
4 4

3C(Bxu2 +u, Buu2 +u, Buluz + U3 Buzuz) =:{) (F.10)
As (FI0) holds for all values of u;,u, and u; then:

Biug Bul12 = BUqu = Buzuz =0 (F.11)
which means (F.8) can now be written as

Q = A(tuz + B(t)u, +C(x, t, u, uy) (F.12)
Also Bijug = Bj,_l2 =0 Lj=x,u,u},u, (F.13)

(F.13) makes the coefficients of u% and ug‘ equal to zero and the invariance

condition (F.5) reduces to

(%]% + (%?)“2 -+ C1 +aqu ~au1C—au12 (2

uj]

—2au,u,B — 3au§ A -3auju; A+ b[u% CU|u1

2
- ?.uz(Cxul + uICUUI) +ag Con +20C. +C .1

+c[3u3(CxUI +u|Cuu] - uZCum) B u23 C

+3u3 (Cy, + C

ujuju]

+u1C )+3u2 (Cxu+u] Cml

Xujuj uujuj

+C +2u, C +u:fC )+u?Cuuu

XXU| Xuuj| uuuy
+3u?C,,, +3u,C ,+C,] = O (F.14)
The coefficient of u; in (F.14) is
aa_,
T = au, A + 3c (le+ulCuul+L12Cu1u1) =0 (F.15)
(F.15) is true for all values of u, and u, so that Cuw] = 0 which means that

95



C(x,t,u,uy) = C(x, t, w)u; + D(x, t,u) (F.16)

Also c Cm” = aA which on integrating gives
cix tw = 28 4 Cx, 1)

Finally 92 +3¢cC. = 0 orby (F.16) and (F.17)
dt xuj

dA
Cix, 1) = -3 + CO)

Combining (F.12), (F.16), (F.17) and (F.18) we have

{B.17)

(F.18)

auA x dA
= Au2+Bu2+{T_§E+C}U1+D (F.19)

and &

ijuy ujuj

= C =01i,j=x,u,1 (F.20)

(F.19) and (F.20) mean that the invariance condition (F.14) reduces to

dB

u; dA

+au(Dx—§ W

an,A | dA

[dtju2 e dt 3 g2 @t 1Tt

) + ay, D- 2au1u2 B

2
+b|:2u2 (?—3—0 dt)+ uj Duu+2uleu+Dxx}

+¢ [3uy (D, +u;D,,) +uj D

The coefficient of u, in (F.21)is

dB
dt ~

(F.22) is true for all values of u, which means that

2 -
uuu & 31,11 Dxuu 4 Dxxx] =0

(R.21)

w1 da =
2aulB+2b( . dt)+3c (D +4;D,,) = 0

(F.22)
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which on integrating gives

2
D, tow) = - (B +%)+ D(x, u + E(x, t) (F.23)
2b dA dB
Also 3¢ D, = % At~
which on integrating gives
2b dA dB
B, £ = 30 3¢ dt dt) DY (F.24)
(F.19) now becomes
Q) = Au3+Bu2+{ﬂ::é - 3% %%+C} u,
2
au bA b dA dB\x
+3_C(B_T)+{(§_CE_T)§+D}U+E (F.25)
(F.25) means the invariance condition (F.21) reduces to
audA x dA dC\ _ au’dB bdA
(c dt "3c dt t dt)ul 3c ( ¥ "G dt)
L2 d2 d2B ,dD -
2
au bA b dA dB
+au1 [_:S?(B_T)-*{GZ_CE dt) +D} +E]
bdA dByu . Y45 dA
Pl A dt)3€+ x"3c dt
2au? bAy 2u; 2b dA dB
+b{ 3c (B_ )"' 3¢ Gc dt E)*Exx
+ RE... =0 (F.26)

The coefficient of uf in (F.26) is

2ab bA
3 (B-%)=0
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as a, b and c are all nonzero then

B =24 (F.27)

The coefficient of u, in (F.26) is

au dA x dA dC b dA @)aux

T dt 3¢ dt T dt T|3¢ dt "at 3¢
au dA  2b/2b dA dB
+auD+aE-§E+§GEE—E)=O (F.28)

(F.28) is true for all values of u and the functions A, B, Cand D are all functions of t

only, which means

2a dA b dA dB\ax _
%E+€3—6E—¥)3_C +aD=20 (F.29)

(F.29) is true for all values of x so that

a 2b dA dB
3 3¢ dt —"CF) = 1) (F.30)
(F.27) means that %? = g %—‘? which when substituted into (F.30) gives %—? = 0 er

A =k (F.31)

where k; is an arbitrary constant.

(F.29) reduces to D= (F.32)
bk,
and B = i (E.33)
dC
(F.28) reduces to 3t +aE =0 (F.34)
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so that E = E(t) and

The invariance equation (F.26)

dE
= =0and E =k,

where k, is an arbitrary constant.
(F.34) implies that

(F.31) to (F.37) means that (F.25) becomes

kb K,

d
c

)uul + (ky — ak, Ou; +k,

(E35)

(F.36)

(F.37)
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APPENDIX G
Sth Order L-B Symmetries of the KdVB Equation

In the determination of the 5th order L-B symmetries we follow the same technique as

used in Appendix F for the 3rd order symmetries. In this case

Q = Q(Xs L: U, ul' u2s U3, u45 us) (G.l)

and the differential operators D, and D, in the invariance condition (F.1) become

D, = 0, +u;d, +u, au]+u3 8u2+u48u3+u58u4+u68

us
} (G.2)

D, =0, +ugd, + uuaul + ulzau2 + u[38u3 - u{48u4 - u[SBU5

Incorporating (G.1) and (G.2) into (F.1) gives

Qt +4, Qu L) utlQul + ULZQU?_ * UBQU3 * ut4Qu4 + UISQU5 * a‘ulQ
+au(Q, +u,Q, + uzQu[ +u; Qu2+ u‘,{Qu3 + USQU4 + U6Qu5)
+bD,(Q, +u,Q, + “2Qu, - uBQ112 - u4Qu3 + Ug Qu4 + “6Qu5)
+ ch (Q +u;Q, + uzQul + u3QU2 +uy Qu3 + u5Qu4 + uéQuj)

(G.3)

Using the expressions

u, = —(auu; +bu, + cu,)

Uy = - (au% + auu, + bus + cuy )

u, = —(3auu, + auuy + buy + cuy)

Uy = - (3au% + 4au,u, + auuy + bus +cuy)

u, = —(10auyuy + Sau u, + auus + bug +'cu7 )

us = — (10au§ + 15au,u, + 6au us + auug + bu, + cug)

to eliminate the t-derivatives of u in (G.3) and then by expanding and simplifying

we obtain the expression
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— U 6au1Q =y (SaulQu‘1 + lSauzQUE)
—u3 IOaQu — Uy 4au1Q + lOauzQ )

- u2 3aQu3 — Uy 3au1Qu2 - u] aQul +u,aQ
+uaQ, +Q,

+ blug Quuug *+ 206(Quug + U1 Quug *+ 12Qu u;
WL )+u2Q
+205(Quy, + U Quu, + U2 Qupuy +93Qu,

+2u (Q

+u3Q +u,Q +u5Q

l14l.l5 ugly

2
+ u4QLl3U4) + u4 QU3U3 XIJ3

2
ulQLu.i3 i u2Qu|u3 + UBQ +u3 Q

U2U3 u2u2

2
+ 2u3(qu2 +u Quu2 +U, Qu]uz) +U; Qu]ul
2
+ 2“2 (qul + ulQuul) % L1 Quu & 2uleu
+ Q] +c[3u7(Qqy, + 1y Quu +12Qy

o U3Qu2u5 + u4 QU3I.15 + USQU4L15 + u6Qu5u5

3 2
+Ug Qu5u5u5 * 3u6 (qu5u5 g uIQuu5u5 My Qu]u5u5
* U3Q * u4 QU3U5U5 ¥ U5 QU4U5115 i QU4U5)
+ U4 QU3U4

uSQ +

Bgus

Ugtsts

* 3u6(QXI.14 * u]QUU4 ¥ u2 QUIU4 + U3QU2U4

+us Q +u2Quu5+u3 Qulu5+u4Q

U4U4 U2I.l5

Qxxu5 = zuleuu_r, ¥ 2u2qu1u5 % 2u3qu2u5
2
* 21.14 QXU3U5 * 2u5QXU4U + u] QUUU5

+2u,u,Q +2u,u5Q + 2uu,Q

uu U Llll I.l ull3l15
* ZUIUSQUU4US * u2 QU[U]I.IS + 2u2u3Qu1u2u5

+u§ Q

2
® 2u3u5Qu2U3u5 + 2u3u5QUZU4u5 +uy Q

i 2“2“4 Qu[u_gu5 T 2u2u5Q UsjUqUs

uju4us
u3u3u;
v 2u4u5QU3U4U5 & u25 Qu4u4u5) L 1]35 Qu4u4u4
* 3u§ (qu4u4 % ulQuu4u4 +u,Q u3 Q
* My QU3U4U4 +Q ) + 3u5(QXLl3 Uy Quu3

+ u2Q“1U3 +1u5Q

+ u3Q

Ujuguy * U2U4Ll4

U3U4

+1u,Q + Uy Quu4

Usliy U3ls

+uy Q ¥ Qxxu4 * 2uleut.l4

ujuy Usuy
2
=53 qu]u4 & 2u3quzu4 * 2u4QXU3U4
2
U Quuu4 * zu]UZQuu1u4 * 2"’!"13Qu|.13u_1r

101



+ 2u1u4QuU3U4 * u% Qululu4 ¥ 2u2u3Qu|u2u_1
* 2u2u4Qu|u}u4 # u% Qu2u2u4 * 2u3u4Qu2u3u4
¥ ug QU3U3U4) +u3 QU3U3U3 +3u&2 (QXU3U3
+u Quu3u3 + UZQUIU3H3 g Qu2L13LI3 + Qu2u3)
i 3“4(qu2 + Quuz s HZQu|u2 iy Qu:u:

+ Uy QUU3 +13 QU]U3 * QxxU3 + 2UIQJ(UU3

2
o 2U2qul ¥ 2u3qu2u3 o 1.11 Quuu3

"3
o 2ulu2QUU|U3 +2U1U3Quu2u3 * u% Quiu1Lz3

= 2uZUBQu|!.13L13 = U%QU2U203) o ug Quzuzuz

e 3”% (quzu?_ T Quuzuz * UBQqu2u2 * Quluzl
+3u, (qul e u]Quul + U2Qu|ul Ny Quu2 # Qxxu2
* ?'UIquuz +2u2qu|u2 * u12 Quuu2 e 21“1"’2(:2uu|uz
# 5 Q)05 O, + 005 0

T4 Quu}u] F Quu]) + 3u2(qu Tty Quu

® Qxqu ¥ 2uleuu] i® u% Quuu[) * u? Quuu

+ 3“% quu ¥ 3u1 Qxxu + Qxxx] =0 (6-4)

(G.4) holds for all solutions of the KdVB equation so the coefficients of descending
order derivatives of u can be equated to zero. The coefficient of u; in (G.4) is

3C(qu5 i uy Quus + Uy QuluS i uj Q

+ Uy Qu3u5+u5Q +ugQuu) =0 (G.5)

U4Lt5 U5U5

As c is not zero and (G.5) is true for all values of u;, u,, us, uy, us and ug then

QXUS = QUUS = Qulus = QU2US = QU3u5
=i & Qe = 0 (G.6)

U4l.l5 U5U5
(G.6) implies that

Q = A(us + B(x, t, u, Uy, Uy, Uz, Uy ) (G.7)
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where A and B are arbitrary functions of the arguments shown.

Also Qiju5 = QjuS =0 (G.3)

(is_j = xv U, u]s U2, u33 u4)

(G.8) ensures that the coefficients of ué and ug are zero and the coefficient of ug

reduces to

3c (Bxuu4 + ulBuu4 +u, Bu]u4 + Uy Bl12u4

) =20 (G.9)

+ Uy BU3U4 F Ll5 B

U4U4

As (G.9) holds for all values of uj, u,, u3,u, and ugthen

B = B = B =B = B

Xuy uuy Uy Uy u3uy

uguy 0 (G.10)

which means (G.7) can now be written as
Q = A(us + B(thu, + C(x, t, u, uy, uy, ug) (G.11)

and Qug, = Q, =1 (G.12)

(i,] =X, u,uy, uy, uz)

(G.12) makes the coefficients of ug and ug zero. (G.11) and (G.12) mean that the

coefficient of us in the invariance condition (G.4) becomes

dA
e Sau A+ 3c(Cxu3 +u; Cuu3
+ U, CLllu3 + U Cu2u3 + Uy Cu3u3) =0 (G.13)

(G.13) is true for all values of uj, u,,u; and u, and as c is not zero then

. =i = =B (G.14)
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(G.14) means that (G.11) becomes

Q = Aus+ Bu, + C(x,t,u)u; +D(x,t,u,uj,u,) (G.15)
5aA . : k ;
Also 3CCuu3_53A = 0 or C,,, = 3. which on integrating gives

Clx,tu) = 5‘;‘2‘“ + C(x,0) (G.16)

; dA : ; ;
While 30C’“‘3 = 0 on integrating gives

Clxt) = = (%)%’% +C@) (G.17)
(G.15) to (G.17) mean that
Q = Aug +Bu, + P%%'i - [%)‘L—’? + c} us + D(x,tuu ,u,) (G.18)

(G.18) implies that the coefficients of ui and u_% are zero. The coefficient of u, in

(G.4)is

dB 2 dA IOaUIAj]
T:IT‘%U'B’ISMZB"'[)I:_EW*' 3c
+ 3¢ (sz +u; D, +u, Dulu?.
Sau, A
+ uy Duz“2 g Yy =10 (G.19)

(G.19) is true for all uy, u, and u; which means Du[:zuz = 0 and

D(x,t,u,uq,u,) = D(x,t,u,ul)u2 + E(x,t,u,u)) (G.20)
10aA ; ; ;
Also DulL12 ® 5 which on integrating and by (G.20) means that
10aAu,
D(x,t,u,uy) = 3t D(x,t,u) (G.21)

While D, = 313 (4aB - %’é) which on integrating with the help of (G.21) gives

2
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D(x,t,u) = 2—3(:“ (23 5;’?)+ D(x,t) (G.22)

Finally Dqu - Gb gA dB) which on integrating with the help of (G.22) gives

3c |3c dt dt
x 2bdA dB
D(x0) = o GC e dt)+ D) (G.23)

(G.20) to (G.23) means that (G.18) becomes

SauA x dA
= Au5+Bu4+{T—§E+C} U,

10au, A 2au 5bA\ x /2bdA dB
1 io% (pedd Wkigh, o
+{ - (213 3c) x GC s dt)+ D} u, +E(x,tu,u,)(G.24)

(G.24) ensures that the coefficients of ug' and u% in the invariance condition (G.4)
are zero. The coefficient of uy in (G.4) is

4audA x d?A dC SauA  x dA
— —— 4+ —-3 - +C
3¢ dt ~3c de? dt ( 3¢ 3¢ dt

1 2bdA dBy, 2au; 5bAy 10au,A
10au2B+2b[3chT_E) 3c (2B 3c )+ 3c ]

2a
+3c [E +uiE,, +0E, 322 (213 ng‘ﬂ 0

xul

(G.25)

(G.25) is true for all values of x, u, u; and u, while A, B and C are all arbitrary

functions of t which means that

5bA
Eyuy = (33 3C) (G.26)

(G.26) implies the E, is a function of t only, so that Exulu, = Euulu| = Eu]u]ul =0
Integrating (G.26) gives
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au? 5bA
E(xtuu) = 32 (SB )+ E(x.tuwu, +Fxtu)  (G.27)

Also E

1 [4ab 5bA ..\, Sa’uA axdA
2B =
( ) c ¢ dt

iy = 3] 3| 30 -5 a T C] (0:28)

Integrating (G.28) with the help of (G.27) gives

E(x,tu) = 5[4?2“ (5bA 213) SwA_axu dA e +E(x,t):l

3¢ 2c c dt
(G.29)
Finally
4au dA _ x d?A _dC_2b2bdA _dB
3c dt 3¢ g2 T dt T3c(3c dt"cu)
+ 3¢ Exul =0 (G.30)
From (G.29)
au dA
Exu1 = —‘3;5 A + E(x.t), (G.31)
Substituting (G.31) into (G.30) gives
au dA , daudA x d?A
dC 2b/2b dA dB
+'d—t'+3-6 %E_E}_O (G32)
(G.32) is true for all values of u, which means
a dA
%% aF = 0 (G.33)
dA _ d’A
(G.33) means q = F = (G.34)

as a is nonzero.
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Integrating (G.34) gives
A =k, (G.35)

where k, is an arbitrary constant.

From (G.32) and (G.34) we obtain
1 b dB dC
By = 3¢ G“c T d)

which on integrating gives

E(x,t) = %@g %]-f’— = %—%)+ E(t) (G.36)

(G.27), (G.29), (G.35) and (G.36) mean that (G.24) becomes

Sak,u
Q= k1u5+BU4+{T+C uj +

aulz

3¢

{IOak]u Zau( Sbkl) x dB

3¢ T3¢ |“P T3¢ _§E+D}u2+

Sbk 2 -2
(BB B 1)+ {4abu(5bk1 szJ_,_ 5a“kqu P auC

3c 902 k 3c 6C2 C
i(@ g5 —£)+E] uy + F(x,t,u) (G.37)
3c\3c dt dt

(G.37) ensures that the coefficient of u% in (G.4) is zero and the coefficient of u%

reduces to
Sbkl B
e -B =20 (G.38)
(G.38) means that
& . QZ—B =0 G.39
dt ™ dtz = ( . )
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(G.39) means that the coefficient of u, in the invariance condition (G.4) reduces to

10a%k, u? 10ak,u Sbk
WL '-2au,[ L 2au(2B ‘] D}

dt - 3¢ 3¢ T 3c ~ 3¢
’ 2
+b[-3§9+2u1{%(5bk1 —2Bj+—Ioa SL
3c dt 9c 3c 6¢ c
5 (202%,
+c|uy 3 |t W F,+F,[=0 (G.40)

(G.40) is true for all values of u% which means

10a%k,

% = 0 (G.41)

As a is nonzero (G.41) means that

k, =0 (G42)

and from (G.38) that

B=0 (G.43)
(G.42) and (G.43) reduce (G.37) to

C_ xdC
Q = Cu,+Du,+ {a—‘;— ~3cat E} u; + F(x,tu) (G.44)

(G.44) with suitable redesignation of the arbitrary functions C, D, E and F is identical
to (F.19). Furthermore, substitution of (G.44) into the invariance condition (G.4)
gives
oo u, +9= 00 —d2C+@ u; +F
(dt)2 c dt 3c g2 " dtf17t
U dC
x " 3¢ dt
au,C 1 dC 5
+b |:2Ll«2(T— % E)ﬂi‘ Lll Fuu + zulqu + Fxx]

+c [3uy(E +u,D,) +ul F, +3u’F,  +F ]=0 (G45)

+au(F )+au1 F—2au[u2D
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(G.45) is also identical to the invariance condition (F.21) in Appendix F, again with
suitable redesignation of arbitrary functions. (G.44) and (G.45) mean that the final
form of the 5th order L-B symmetry reduces to

kb k,a

where k, k, and k5 are arbitrary constants.
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APPENDIX H

Similarity solutions for the variable coefficient KdV equation
o, +otu, + Prla,.,. =0 (HI)

where m and n have arbitrary values

Vi—uVi-u V¥ =0 (H2)

Using the infinitesimal generator

n+l

X, = (&)ax +d, (H3)

n+1

n+l

(H3) implies that V¥ = ——— VY =1 and V' = 0 so the subsidiary equations of
p 1 q

n+
(H2) are
dt dx du
B i 1 (H4)
(n+l )
dt = 0 means the similarity variable
t = £ = constant (H5)
(H4) and (H5) mean that
du = (12):“
(n+1 )
which on integrating gives
o n+l\-1
i = (ncll ) x + f(C) (H6)

as the similarity solution.
On substituting (H6) into (H1) we get the ODE in {
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dfQ) _ (m+DEQ)

dg g

which on solving gives

(H8) and (H6) give the solution

(n+1)x + ok
s

atn+]

(H7)

(H8)

Substituting (H9) into H(1) verifies that (H9) is a solution of the variable coefficient

KdV equation.
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