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CHAPTER 1: INTRODUCTION 

The aim of this thesis is to: 

( 1) Explore the use of differential forms in obtaining point and contact symmetries 

of particular partial differential equations (PDEs) and hence their 

corresponding similarity solutions. [ l] and [ 4 ]. 

(2) Explore the generalized or Lie-Backlund symmetries of particular PDEs with 

particular reference to the Korteweg-de Vries-Burgers (KdVB) equation [3]. 

Finding point symmetries of a PDE H = 0 with independent variables (x1, x2) which 

we take to represent space and time and dependent variable (u) means finding the 

transformation group 

and 

I 

xi = Xi +£~I (x1' X2, u) + 0(£2) 

X2 = X2 + £ ~2 (x1, X2, u) + 0(£2) 

u' = 

that takes the variables (xi, x2, u) to the system ex;, x2, u') and maps solutions of 

H = 0 into solutions of the same equation. The form of H = 0 remains invariant. 

The transformation group is usually expressed in terms of it_s infinitesimal generator 

(X) where 

1 = 1, 2 

using the tensor summation convention. X can be considered as a differential vector 

operator with components (~ 1, ~2, Tl) operating in a three dimensional manifold 

(space) with coordinates (x 1, x2 , u). The invariance of H = 0 under the 

transformation group is expressed in terms of a suitable prolongation or extension of 

X (denoted by x<pr)) to cover the effect of the transformations on the derivatives of u 

in H = 0. 
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The invariance condition for H = 0 under the action of the transformation group is 

x<pr)[H] = 0 whenever H = 0. 

We consider x 1, x2, u and the derivatives of u to be independent variables. 

In practical terms, finding point symmetries of H = 0 means finding the components 
(~ 1, ~ 2, 11) of the infinitesimal generator (X). There are two general methods for 

finding ~ 1, ~2 and 11-

1 THE CLASSICAL METHOD 

The method we follow was developed mainly by Bluman and Cole [2]. Consider for 

example a kth order PDE H = 0. His regarded as a function of x1, x2 and u as well 

as the partial derivatives of u with respect to x1 and/or x2 up to and including the 

kth order derivatives. The kth prolongation of the infinitesimal generator is 

i 

using agairi the tensor summation convention where ir = 1, 2 and r = 1, 2, ... k. 

For example: 

where x represents space and t time. 

The coefficients ll(k) . are given by the expressions 
i1i2 ... Ik 
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ir = 1, 2 or (x, t) r = 1, 2 ... k. 

j = 1, 2 or (x, t) 

and Dik is the Total Derivative Operator 

where 

a = 1, 2 or (x, t). 

For example 

x<k)[H] = 0 consists of a polynomial in u and its derivatives and has to hold 

whenever H = 0 for all values of u = u(x 1 x2) that are solutions of the PDE H = 0. 

This implies that the coefficients of u and its derivatives must be identically equal to 

zero. This gives a set of linear partial differential equations called determining 

equations which can in principle be solved for ~1, ~2 and TJ. The general solution 

of H = 0 is a family of surfaces in (x 1 x2 u) space. 

If F(x1, x2, u) = 0 defines such a surface then F(x1, x2, u) = 0 is an invariant of the 

transformation group 

i.e. X[F] = 0 

or 

This is often referred to as the invariant surface condition. 

A first step in obtaining similarity solutions is solving the subsidiary equations 
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The solution involves: 

du 

11 

(1) s(x 1, x2, u) called the similarity variable which becomes the independent 

variable; 

(2) then the dependent variable is taken as v = f(s) where f is an arbitrary 

function of s-

The similarity form of the solution of the original PDE is; 

Substitution of this form of u into H = 0 gives an ordinary differential equation 

(ODE) for v = f(s) which can in principle be solved for f(s) thus giving the 

similarity solution for H = 0. 

2 THE USE OF DIFFERENTIAL FORMS 

Harrison and Estabrook [ 1] used differential forms to formulate systems of partial 

differential equations and so obtain their point symmetries and similarity solutions. 

An Introduction to Differential Forms [ 4] 

We consider two geometrical objects, namely vectors (V) and differential forms (a), 

which exist in an n-dimensional differentiable manifold with coordinates 

xi (i = 1, 2 ... n). 

A vector (V) is a linear differential operator that at each point maps a differentiable, 

real valued function f(x) into a real number. The vector is represented in the 

coordinate basis as 

using the tensor summation convention. 
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The functions v aCxi) are the components of the vector. An example of a vector is the 

infinitesimal generator (X) of a transformation group which is also referred to as an 

isovector. 

We start our consideration of differential forms by defining a 0-form as a real valued 

function f(xi) (i = 1, 2, ... n) in the differentiable manifold. A 1-form is then defined 

as a linear combination of the basis differentials dxi (i = 1, 2, ... n) 

i.e. a = ai dxi where the ai s are 0-forms. 
( I) 

I-forms are combined by an operation denoted by /\ known as the exterior or wedge 

product. The exterior product of the I-forms cr = cradx
8 

and ro = cut,dxb, denoted by 

cr /\W, is 

cr /\W is a 2-form and the most general 2-form is a linear superposition of the "C2 

basis 2-forms dx
8 

/\dxb, that is 

We now generalize. A p-form is the exterior product of p(O < p :5 n) !-forms 

where the coefficients a
3132 

... ap are completely skew-symmetric 

i.e. 

where [a1 ½ ... aP] is an odd permutation of a,½ ... ap. 

Differential forms and the operation of exterior product form a Grassmann Algebra in 

the n-dimensional manifold with the following properties: 

(1) Forms of the same degree may be added or subtracted. 
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(2) a /\ 13 is a p + q-form which is zero if p + q > n. 
(p) (q) 

(3) a /\ 13 = (-l)pq 13 /\ a. 
(p) (q) (q) (p) 

This implies that dxi /\ dxj = - dxj /\ dxi {
= 0 i = j 
-:t O i-:tj 

(4) The exterior product is distributive, i.e. (a+P)/\)' = CJ.I\)' + P/\Y 

(5) The exterior product is associative, i.e. (a/\P)/\)' = CJ./\(P/\Y) 

To construct a calculus of differential forms we need two differential operators 

namely 

(1) The exterior derivative (d), and 
(2) The Lie derivative (£v ) with respect to the vector V. 

The exterior derivative acts on a p-form a to produce a (p+l)-form da and is 

defined as 

<la = -1, d (a.a a a ) /\ dxa /\ dxa /\ ... /\dxa' p. I 2··· p I 2 p 

where 

The exterior derivative has the following properties. Let a be a p-form, P a q-form 

and f a 0-forrn. 

(1) d(a+P) = da + dP (linearity) 

(2) d(a/\P) = da /\p + (-l)P CJ./\dp (Leibniz Rule) 

(3) d(da) = 0 (Poincare Lemma) 

(4) d(fa) = df /\ CX. + fda 

The Lie derivative operator (£v) is a linear differential operator associated with a 

vector field V = v /xi) ax
0 
(a :5 1 ... n) which can be applied to any geometrical 

object. We will confine it to vectors and differential forms. 
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The Lie derivative of a vector A with respect to V is the commutator of the two 

vectors 

i.e. £/A) = [V, A] = - £A(V) 

Before considering the application of the Lie derivative to a differential form it is 

necessary to consider the contraction of a vector (V) and a p-form (a) which gives a 

(p---1) form p. 

Notation contraction p = <V, a> 

or p = VJ a 

In component notation VJ a is defined as 

Note: The above definition implies that 

Oij is the Kronecker delta. 

Properties of the contraction of V and a include 
(p) 

(1) VJ (a1+a.2)=v _J a 1 + v J Ui 
(p) (p) (p) (p) 

(2) vJ(a/\P) 
(p) (q) 

= (vJ a)/\ P +(-I)Pa/\(V_J P) 
(p) (q) (p) (q) 

(3) Vf = VJ df f = 0-form 

For a function f(O-form) the Lie derivative off with respect to Vis a 0-form 
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- ( iJf ) iJf 
£y(f) = V _Jdf = V _J axa dxa = Va axa· 

For a p-form (a.) (0 < p ~ n) the Lie derivative of a with respect to V is given in 

terms of the exterior derivative and the contraction as 

£/a.) = V_J da. + d(V _J a.) 

which is also a p-form. 

Properties of the Lie derivative are 

(1) £/da.) = d(£y(a.)) i.e. Lie derivative and exterior derivative commute 

(2) £/a.A~) = (£y(a.))A ~+a, A (£y(~)) 

(3) £y(W _J a.) = [V,W] _J a. + W _J £/a.), where Wis a vector. 

The geometric approach of Harrison and Estabrook [1] involves the use of differential 

forms to find the isovector or infinitesimal generator (X) of the transformation group 

of a PDE H = 0. Here we shall consider a PDE of order k in one dependent and 2 

independen~ variables, u, x1, x2 with derivatives of u up to degree k. 
I 

The PDE is first represented by a closed set of differential forms a.i (i = 1, 2, ... ) in an 

n-dimensional manifold M. This set of forms constitutes a closed differential ideal (I) 

on the manifold. I being closed means that if a.i = 0 then da.i = Q also. 

An integral manifold is a submanifold of Mon which the differential forms (a.i) are 

expressed in terms of the independent variables of the PDE and their differentials. 

The a.i are annulled (take zero values) on the integral manifold to give the following 

information: 

(i) The original partial differential equation 

(ii) The definition of the n-3 auxiliary variables in M. These are usually 

derivatives of u of degree less than k. 

(iii) The integrability conditions on u. 

Imposing independence of x 1 and x2 and their differentials dx 1 and dx2 puts the 

ideal (I) in involution with x 1 and x2 (by definition). Cartan's geometric theory of 

PDEs [6, 7] implies that there exists a general or regular integral manifold that can be 
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considered a solution manifold for the PDE. The Lie groups of point symmetries of 

PDEs is represented by the infinitesimal group generator, or isovector, X. It is 

suitably extended or prolonged as a linear differential vector operator x<pr) in the 

space of the variables x1, x2, u and derivatives of u. There are two differential 

operators that naturally arise in the ring of differential forms. These are 

(1) the exterior derivative, and 

(2) the Lie derivative. 

The Lie derivative, defined in terms of an isovector of the symmetry group, is used in 

formulating the invariant conditions. Point symmetries of a PDE H = 0 are defined by 

the action of x<pr) on the PDE, 

i.e. x<pr)[H] = 0 whenever H = 0. 

With differential forms this is equivalent to saying that the Lie derivative in the 

direction of X of all differential forms ai E I are in the ideal and should vanish if 

ai = 0. That is £/ai) = 0 if ak = 0 or equivalently £x (ai) is a linear combination 

of the differential forms ak where q ~ p i.e. £x(a) = Af t\Uk (sum over k). The 
(q) 

Af are arbitrary differential forms, including in some cases 0-forms or functions. In 

such cases 11.f t\Uk is usually written as 11.f ak. After eliminating the 11.f forms the 

symmetry or invariant condition can be reduced to a set o·f determining equations 

whic~ can be solved for the components ~1, ~2 and TJ of the infinitesimal generator 

of the invariant transformation group. These components, besides being functions of 

x1, x2 and u also contain a number of arbitrary integration constants. 

The finding of similarity solutions involves augmenting the ideal of differential 

forms and imposing the condition that the augmented forms be annulled on the 

integral manifold as well as the ideal. One way to augment the ideal is by contracting 

the differential forms (ai) in the ideal with the isovector (now denoted by V). 

That is a. = VJ a-. 
I I 

Now £y(cri) = £/V_Jai) = V _J£/ai) = VJ (11.f t\ ak) 

(v _J 11. f )~ + (-1)!}-<jAf A ak 

which means the augmented ideal {ai, cri} is invariant under the action of V. 

Annulling certain forms in the augmented ideal should then produce similarity 

solutions of the PDE. 
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Appendix A shows in detail the use of the classical method of Bluman & Cole for 

finding similarity solutions of the nonlinear diffusion equation <l>x
2 
= (K(<l>)<l>x, )x, and 

the use of differential forms for finding the point symmetries of the Korteweg-de Vries 

(KdV) equation 

Ux + uux + EUx x x = 0 
2 I I I I 

where E is a constant. 

Comparing the two methods as far as hand computation is concerned, I find that they 

are of comparable difficulty, although some PDEs might be more easily processed by 

one or other of the two methods. In general the Harrison-Estabrook method using 

differential forms gives simpler determining equations which are however, usually 

obtained by more involved manipulations. 

The use of differential forms seems to be the preferred method for the various 

computer packages, for example MACSYMA [8] that are used to find the determining 

equations. In my opinion the classical method of Bluman & Cole has the 

characteristics of an algorithm and gives comparatively little insight into the process 

of finding symmetries and similarity solutions. The use of differential forms on the 

other hand involves the manipulation of geometric objects in an n dimensional 

manifold and the process of finding symmetries can be given a geometrical 

interpretation. 

Lie-Backlund Symmetries [3, 4, 11 and 12] 

We begin by considering a partial differential equation H(x, u<n)) = 0 with n 

independent variables x = (x 1, x2, .. . ,xn) and a single dependent variable u. 

u<N) = (u, u, u, ... u) where µ are the ith order partial derivatives of u with respect to 
1 2 N 1 

the components of x. One-parameter Lie point symmetries of such a PDE are 

transformations of the form 

x; = xi+ E l;i (x, u) + 0(£2
) (i = 1, ... ,n) 

u' = u + ETJ(X, u) + 0(£2 ) 
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that leave H(x, u<N)) = 0 invariant. These point symmetries are usually expressed in 

terms of their infinitesimal generator X = <;i dx; + T\ du suitably prolonged to cover 

the action of derivatives of u. A possible generalization of this would be to 

transformations where the coefficients <;i and T\ are also functions of derivatives of 

u. i.e. <;i = <;i(x, u,u, ... u) and T\ = T\(X, u,u, ... u ). If N is finite these so called 
I N I N 

generalized transformations are either prolonged point transformations or contact 

transformations [4] . Contact transformations only occur in situations involving a 

single dependent variable (u) and are characterized by <;i = <;i (x, u, u) and 
I 

T\ = T\ (x, u, u) . For broader generalizations we have to consider transformations 
I 

where the coefficients <;i and T\ contain derivatives of u of arbitrarily high order. 

The prolongation of X = <;i ax; + T\ du to cover the effects of derivatives of u has 

to be in general an infinite prolongation. 

x<00

) = X + LT\1 (x, u, u, ... ) du 
. J I . J 

where T\1 = D/T\ - <;A) + ;iuJi 

and J = ji ... jk where jk is a suitable integer of x and k ~ 0. 

In an analogous way to point symmetries X is a generalized symmetry of 

H(x, u <N)) = 0 if and only if x<00
) [H(x, u(N))] = 0 for every smooth* solution 

u = f(x) of the PDE. In practice H(x, uCN)) = 0 depends only on a finite number of 

derivatives of u so only a finite number of terms of x<00

) are required in any given 

instance. This means that the question of convergence of x<00

) does not arise. 

Generalized symmetries of this type are commonly called Lie-Backlund symmetries. 

(Olver [3] uses the term generalized symmetry) and include point and contact 

symmetries as special cases. 

In this thesis we shall deal exclusively with time-evolution equations m two 

indep~ndent variables x and t of the form H = ut + K(x, u, u 1, •.. , un) = 0 where 

ui = ai~ (i = 0, 1, ... , n) and u0 = u is the (only) dependent variable. 
dX1 

* smooth means that u and its derivatives are continuous in the domain of applicability. 
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Bluman and Kumei [12] and others [3, 4, 10, 11] prove that, for a time evolution 

equation, a Lie-Backlund transformation of the form 

x' = x+E~1(x,t,U,U1· ··)+0(E2
) 

t' = t + E s2 (x, t, u, u 1 ... ) + 0(£2 ) 

and u' = u + E 11(x, t, u, u1 ... ) + 0(£2
) 

acts on a solution surface F(x, t, u) = 0 of the PDE in the same manner as 

and 

where 

x' = X 

t' = t 

u' = U + EQ + 0( E2) 

This means that the infinitesimal generator can now be expressed in the simpler form 

X(Q) = Q(x, t, u, u1 ••• ) du. X(Q) is called the evolutionary infinitesimal generator 

and Q is referred to as its characteristic. The infinite prolongation of X(Q) now 
·, 

takes the form 
I 

From the equivalence of the two Lie-Backlund transformations detailed above, the 

following result can be easily proved [3]; An infinitesimal generator X is a 

Lie-Backlund symmetry of a PDE if and only if its evolutionary form X(Q) is a 

Lie-Backlund symmetry. 

For a time-evolution equation 

the infinite prolongation x<00)(Q) of the infinitesimal generator takes the form 

00 

x<00

)(Q) = Qdu + (Dt[Q]))ul + I D ~ [Q]duj 
j=l 
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where Q = Q(x, t, u, u
1 

••• uN) N arbitrary and Di is the total derivative operator 

with respect to xi . Thus 

and 

In considering Lie-Backlund symmetries of a PDE it is convenient to use two 

operators namely: 

(i) the Frechet derivative, and 

(ii) the recursion operator. 

The Frechet derivative of a smooth differential function H[u] = H[x, t, u, ut' u 1 , ... un] 

is defined as 

DH(Q) = 1~ H[u + EQ] I 
de t=O 

It can be readily shown that this is equivalent to 

Comparison with x<00>(Q)[H] shows that 

The invariance condition for the PDE H = 0 under the action of x<00

\ Q) can be 

written as DttCQ) = 0 whenever H = 0. Either form of the invariance condition can 

be used as an algorithm for finding Q as the solution of a system of determining 

equations. 

Definition 

The operator R = R(u, ut, u 1, ... un) is a recursion operator of the time evolution 

equation H = ut + K(x, u, u1, ... u
0

) = 0 if and only if [D8 , R]H=O = 0. From this 

definition Fokas [9] and others prove that if R is a recursion operator of H = 0 and 
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Q = Q(x, t, u, u1, •.• uN ), N arbitrary, is an Lie-Backlund symmetry of H = 0, then 

X(Rj[Q])j for j = 1, 2 ... are also Lie-Backlund symmetries of the PDE. 

That is, the recursion operator can generate an infinite sequence of Lie-Backlund 

symmetries depending on higher order derivatives of u. 

The method of determining all Lie-Backlund symmetries of a PDE H(x, u<u)) = 0 is 

to start with the evolutionary form X(Q) = Qc)u and to decide on some arbitrary order 

of derivatives for Q. We then use the invariance condition DH(Q) = 0 whenever 

H = 0 to generate an equation involving derivatives of Q and u. 

A significant calculational feature is that for time - evolution equations the PDE can 

be used to substitute for any t derivatives of u which implies that Q involves only 

x derivatives of u 

i.e. 

As the invariance condition holds for any solution u = u(x, t) of H = 0 we can 

equate coefficients of the derivatives of u in descending order to zero and find the 
' 

general forrµ of Q. Bluman and Kumei [10] use this method to find two finite order 

Lie-Backlurid symmetries of the non-linear diffusion equation { a(u+b )-2uxlx - ut = 0 

and then obtain the recursion operator by inspection. In this way they can generate the 

entire sequence of Lie-Backlund symmetries for this equation. 

To find a Lie-Backlund symmetry we must assume the order (N) of the highest 

derivative in Q. What value of N do we start with? If a recursion operator exists, 

then in almost all known cases the point symmetry operator for invariance of H = 0 

under a t translation is generated (by the recursion operator) from that expressing 

invariance under a x translation [9]. 

For a time-evolution equation of the form ut + un + G(x, u, u 1 •.• un_1) = 0 we have 

two Lie point symmetries Q 1 = u 1 and Q2 = un + G[u]. If there is a recursion 

operator R such that Q2 = R[Q 1] then R = D~-l + .. . . Therefore the first 

Lie-Backlund symmetry is Q 3 = R[Q2] = u2n-l + g(x, u, u 1, .. . , u2n_2) , which 

implies that N = 2n - 1. 
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Similarity (invariant) solutions 

As with point symmetries, similarity or invariant solutions can be found from a given 

Lie-Backlund symmetry [12]. A solution u = u(x, t) of a time-evolution equation 

H = ut + K(x, u, u1, ... , u
0

) = 0 is invariant under the action of a Lie-Backlund 

symmetry if and only if u = u(x, t) satisfies the invariant surface condition 

Q(x,t,u,u 1, .. . ,uN) = 0. Q(x,t,u,ul' ... uN) = 0 isregardedasan Nth order 

ordinary differential equation in the independent variable x with t as a parameter. 

The solution of the ODE is a similarity form 

<j>(x, t, u, c1 (t), ... , cN(t)) = 0 

with the arbitrary functions c 1(t), ... , cN(t) acting as integration "constants". These 

integration "constants" can be detemtined by substitution of the similarity form into 

the time-evolution equation. 

In chapter 3, I intend to study possible Lie-Backlund symmetries and similarity 

solutions of the Korteweg-de Vries-Burgers (KdVB) equation 

u1 + auux + buxx + cuxxx = 0, where a, b, and c are constants. 

This equation is the simplest form of a wave equation that incorporates nonlinearity 
i 

(the au,ux term), dispersion (cuxxx) and attenuation (buxx). In a wave equation u = 

u(x, t) is a perturbation of the medium through which the wave is travelling and can 

be either perpendicular to (transverse waves) or parallel to (compressional waves) the 

direction of wave propagation. The KdVB equation has been widely used to model 

many types of n<?:~inear wave motion including for example: 

::: 1 

(i) the propagation of waves in liquid filled elastic tubes [14] 

(ii) tidal bores [21] 

(iii) magneto-hydrodynamic shock waves in plasmas [20] 

(iv) the propagation of acoustic waves in liquids containing small bubbles [13]. 

Johnson [14], using phase plane analysis on the steady state (constant wave velocity) 

form of the KdVB equation, obtained soliton progressive wave, and shock wave 

solutions by using various values of a, band c, particularly b (the constant governing 

the degree of attenuation of the wave by the medium). Exact solutions of the KdVB 

equation have been obtained by several authors [17 - 19], however Vlieg-Hulstman 

and Halford [16] demonstrated that these solutions are essentially equivalent to a 
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single exact solution that is a linear combination of particular solutions of the KdV 

equation and Burgers equation. Lakshmanan and Kaliappan [15] found that the 

KdVB equation has the following point symmetries 

where k1, k2 and k3 are integration constants. This implies that the KdVB equation 

is invariant under the following transformations 

k1 = 1 X1 = ate\+ au (Galilean transformation), 

k2 = 1 X2 = ax (x-translation), 

k3 = 1 X 3 = a
1 

(t-translation). 

These lead to a similarity variable 

and similarity solution 

u = (~~c)t + f(l;), 

where f(l;) is an arbitrary functional of l;. Substitution in the KdVB equation gives 

the ODE 

which on integrating gives 

where c 1 is an integration constant. 

A suitable Ince transformation [22] 

z = (-25ac) 112 exp (- bl;) 
12b2 5c 
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and f = W(z)exp -- + - ---( 2bs) 1 (6b
2 

k3c) 
Sc a 25c k 1 

gives the invariant ODE 

d2W 
- - 6W2 +S(Z) 
dZ2 -

which is free from movable critical points only if S(Z) = pZ + q (p and q are 

constants) [22]. Hence the invariant ODE has in general movable critical points. 

Ablowitz and others [23] suggest that this implies that the KdVB equation is not in 

general exactly solvable. However, Fokas [9] defines exact solvability of a PDE in 

terms of it admitting a Lax formulation . That is the PDE can be expressed in the form 

Lt = [A, L] 

where A is the Frechet derivative of the t independent part of the PDE and L is the 

recursion operator. 

The motivation to investigate the Lie-Backlund symmetries of the KdVB equation is 

twofold: 

(i) to obtain, if possible, more generalized similarity solutions that could extend 

the use of the KdVB equation to other cases involving nonlinear wave 

propagation. 

(ii) to gain insight into questions of the exact solvability of the KdVB equation. 
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CHAPTER 2: THE HARRISON-ESTABROOK METHOD 

This method is a geometric approach for finding invariance groups and similarity 

solutions. In this chapter I intend using it on the following partial differential 

equations: 

(1) The one-dimensional nonlinear diffusion equation <j>1 - C<P"<l>x\ = 0 where n 

is a real constant, <I> = <j>(x, t) the dependent variable and the subscriP.tS 

denoting differentiating with respect to space (x) and time (t), i.e. <!>1 = t~ 
c)<j> 

and <Px = ax 

(2) The variable coefficient Korteweg-de Vries (VcKdV) equation 

where u = u(x, t) is the dependent variable, m and n real numbers, and a 

and ~ constant parameters. 

The one-dimensional nonlinear diffusion equation 

or 

(2.1) 

In this section, I intend to check the results obtained by S M W al!er in 1990 [5]. The 

first step in finding invariance transformation groups by the Harrison-Estabrook 

method [l] is to cast the PDE (2.1) into an equivalent closed ideal of differential 

forms in a multidimensional space. One suitable ideal for this is 

a = d<j> - ydx - udt (2.2) 

da = -dy Adx - du Adt (2.3) 

and (2.4) 

Annulling (2.2), (2.3) and (2.4) on the integral manifold <I>= <j>(x, t), where 
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and 

we obtain the following (a tilde indicates restriction of the differential form to the 

integral manifold): 

(i) a= 0 implies that (<l>ry)dx + (<l>t-u)dt = 0 which gives the definitions of 

the auxiliary variables y = <l>x and u = <l>t. 

(ii) (da) = 0 implies that (Yt - ux)dXAdt = 0 which means Yt = ux or <l>xt = <l>tx' 

the integrability condition on <j>. 

(iii) i3 = 0 implies that 

or 

the original PDE (2.1 ). 

The generators of the invariance groups are the isovector 

(2.5) 

in the 5-dimensional space (x, t, <!>, y, u) . The action of Von the closed ideal is such 

that the Lie derivatives with respect to V of the forms (2.2) to (2.4) are still in the 

ideal, i.e. 

fy(I) c I (2.6) 

(2.6) is known as the invariant condition. As a is the only 1-form in the ideal (2.6) 

implies that 

(2.7) 
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where A is an arbitrary 0-form. Introducing the 0-form F = V -1a, equation (2.7) on 

expanding becomes 

fy(a) = 'Aa = VJda + d(V Ja) 

= VJda+dF 

Expanding dF, we have 

Equations (2.8), (2.9) and (2.10) imply that 

'A( dq>-ydx-udt) 

= - VYdx + Vxdy- Vudt + Vtdu + Fxdx + Ftdt + Fq,d<j) 

+ Fiy +Fudu 

Equating coefficients of the basis 1-forms gives the following set of equations 

F q, = A, yx = - F y, yt = - FU'} 
VY = Fx + yF<P, yu = Ft+ uFq,, 

F = VJa 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

= (V\'.Jx + vtat + v<l>a<I> + VYdy + Vudu) _l ( dcj>-ydx- udt) 

= y<l> _ Y yx _ U yt 

or y<l> = F-yF -uF y u (2.13) 

For the second differential form da we find 

fy(da) = d(fy(a)) 

= (dA)/\CX + 'Ada, 
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which is a 2-form already in the ideal. 

For the last differential form P the invariance condition (2.6) implies that fv(P) is a 

2-form in the ideal 

(2 .14) 

where ~ and s are arbitrary 0-forms and w is an arbitrary 1-form 

Let w = Adu + Bdy + Cdx + Ddt + Edcp (2.15) 

where A, B, C, D and E are arbitrary 0-forms. 

As fy (P) = VJdp + d(V JP) 

we get, on expanding VJ p, VJ dP and w 

where 

and 

fy (P) = vudXAdt - n(n-l)cpn-2y2 v<t>dXAdt 

-2nycpn-lyYdxAdt - ncpn-ly<l>dyAdt + (u-ncpn-ly2)dVxAdt 

- (u-ncpn-Iy2)dVt/\dX - cpndyY Adt + <!>n dVtAdy 

= ~[(u-ncpn-ly2)dxAdt - cpndy Adt] 

-s(dyAdx+duAdt) + [Adu+Bdy+Cdx+Ddt+Ed<p]A(dcp-ydx-udt) 

(2.16) 

dVi =Vi dx+Vidt+Vid,1,.+Vidy+Vidu 
X X <j>'I' y U 

i = x, t, cp, y and u in tum. 

Equating coefficients of basis 2-forms on both sides of (2.16) gives the following set 

of equations: 

yu_n(n-l)cpn-2y2y<!> - 2nycpn-lyy + (u-ncpn-Iy2)V: 

+(u-ncpn-ly2)V: - <j>nV~ = ~(u-ncpn-Iy2) - uC + yD (2.17) 

(u-ncpn-Iy2) V~ = C + yE (2.18) 
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(2.19) 

= yA (2.20) 

(2.21) 

(2.23) 

(2.24) 

-<l>n v~ = 0 (2.25) 

Eliminating the arbitrary 0-forms from (2.17) to (2.25) gives the determining 

equations for the isovector: 

yt = O (2.26) 
u 

y<j>n V~ + n(n-l)<j>n-2y2y<t> + 2ny<j>n-lyY - yu 

-(u-n<j>n-1y2)(V~ + yV$ - Vy - n<j>-1V<I>) 

- (u-n<j>n-ly2)2<j>-nV~ + <j>n X~ = Q 

The determining equations and (2.12) and (2.13) can be solved for F to give: 

(2.28) 

(2.29) 

where 81, 82, 83 and 84 are arbitrary constants. (2.1 2) and (2.13) in conjunction 

with (2.29) give the following set of equations for the components of the isovector 
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yu = _!_[284 -(n + l)03]u 
n 

(2.30) 

(2.30) gives a 4 parameter invariance group for the PDE (2.1). Independent 

generators of the isogroup are found by setting all parameters except one to zero. 

The Invariance Group of <l>t - (<J>"<l>x)x = 0 

yx yt y<I> yu yY . Types of transformation 

<>1 = 1 0 1 0 0 0 time dilation 

Oz = 1 1 0 0 0 0 space dilation 

03 = 1 0 t <1> -c:1 )u 
y t - <I> scale change 

n n 

04 = 1 0 2<1> 2u 
r-~n)y 

x---4> scale change X 

n n 

This invariance group is the same as that obtained by SM Waller [5] . 

In (x, t, <!>) space the infinitesimal generators are: 

23 



(2.31 ) 

The classical method of Bluman and Cole (Appendix A) gives the following 

invariance group for <j>
1 

- ( <P0 <Px )x = 0 

X' = i) I X 

(2.32) 

As X:i = 2X3 + X4, the group (2.31) obtained using differential forms is consistent 

with that of (2.32). The commutator table for the corresponding Lie Algebra for 

(2.31) is 

X2 0 0 0 X2 

The structure constants given by [Xi, X) 

(i) 

(ii) 

C l - Cl - 1 13 - - 31 -

C 2 - c2 - 1 24 - - 42 -

= C~ Xk are IJ 
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all other structure constants are zero. Similarity solutions for (2.1) can be found by 

augmenting the closed ideal (2.2) to (2.4) by contracting a, da or ~ with V and 

annulling the new differential forms on the integral manifold <!> = <p(x, t). 

For similarity solutions the most useful of the 3 new forms is 

F = VJa 

= ( yxax + vta1 + y<l>aq> + yYay + vuau )_J ( d<p - udt - ydx) 

= y$ - uvt - yVX (2.33) 

Annulling (2.33) on<!> = <p(x, t), where u = <l>t and y = <l>x' we obtain 

(2.34) 

Substituting for v<I>, yt and yx in (2.34) gives 

or (2.35) 

which, is a quasilinear PDE for <!> and where 284 - 83 -:t- 0. 

<>· 
Simplifying (2.35) with ei = 1 (i = 1, 2, 3, 4) gives 

2<>4 - 83 

(2.36) 

with subsidiary equations 

__ d_t __ = __ d_x ___ d<p (2.37) 
n(0 1 +03 t) n(02 +04x) <!> 

Solving (2.37) by Lagrange's method of characteristics gives 

(2.38) 
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as the similarity variable and 

I 

<p(x, t) = G(sX01 + 03t)n83 (2.39) 

as the similarity form for <I>= ~(x, t). Substituting (2.39) into the original PDE (2.1) 

we find that the arbitrary function G(s) satisfies the ODE 

204-8rl 

G"(s) + nG(~r1G'(t;)2 + i G(s)-n G'(s) (01 + 03t) 83 

4 

(2.40) 

The similarity variable (2.38) and the similarity form (2.39) are the same as Waller's 
result [5]. However the ODE (2.40) agrees with Waller's version only if 03 = 04 = 1. 

Waller next considers the special case of n = -1 and begins by setting 

(2.41) 

The condition (2.41) should, in my opinion, have been set prior to his version of the 

ODE (2.40). Under the condition (2.41) and n = -1 the PDE (2.1), the similarity 

variable (2.38), the similarity form (2.39), and the ODE (2.40) all reduce to: 

<1>1 + <l>-2(~x)2- <l>-'<l>xx = O 

S = 02 + X 

81+ t 

<p(x,t) = G(s)(01 + tr' 

and 

G"(s) -G(sr'G'(t;)2 + t;G(l;)G'(s) + G(t;)2 = 0 

(2.42) 

(2.42) is in exact agreement with Waller's result. We will now consider 
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a 
G(s) = P + l? (2.43) 

where a and p are constants, as a generating function for a solution to the ODE in 

(2.42). This implies that 

Ir 2as 
G (1.:,) = - 2 2 

(p+s ) 
and 

G"(s) = 6as
2
-2ap 

(p+s2)3 

Substituting (2.43) and (2.44) into the ODE gives 

or 
a(2-a)(s2-p) = O 

(p+s2)3 

(2.45) gives either a= 0 implying <j> = 0, or a = 2 and 

cp(x,t) = G(s)(8 1 +tf1 

(2.44) 

(2.45) 

(2.46) 

The reduction of (2.46) to a one parameter group solution is possible if 81 = 02 = 0 

which means 

(2.47) 

The above critique of Waller's 1990 paper [5] basically confirm his results. As a 

further check I did a second determination of the point symmetries of the nonlinear 

diffusion equation (2.1) using another closed ideal of differential forms, namely: 
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a.1 = dq>/\dt - pdx/\dt 

(½ = dq>l\dx + qdx/\dt 

CX3 = dq>/\dX + <l>ndpAdt + nq>n-lp2dxAdt 

a.4 = -dp/\dX - dq /\dt 

(2.48) 

The details of this computation are in Appendix B, and the results obtained are 

identical to those of (2.30) giving further confirmation to Waller's result. 

The Variable Coefficient KdV Equation 

In this section I will consider point symmetries of the variable coefficient Korteweg

de Vries equation (VcKdV) 

(2.49) 

where a. and p are arbitrary constant parameters, and m and n are real numbers. 

Nirrnala, Vedan and Baby in a 1986 paper [24], used the classical method of Bulman 

and Cole to obtain point symmetries of (2.49). As a check on their results, I intend to 

attempt to find the point symmetries of (2.49) using the Harrison-Estabrook method 

involving differential forms. To the best of my knowledge this has not been tried 

before on this equation. We begin by considering the following ideal of differential 

forms as a possible representation of the PDE (2.49). 

a. = dz - wdx - ydt 

da. = - dw /\dx - dy /\dt 

p = (du-zdx)/\dt 

y = duAdx + a.uztndl/\dx - Ptm dwAdt 

(2.50) 

where z = ux, y = uxt and w = uxx· As d~ = dy = 0 the ideal (2.50) is closed and 

forms a basis for a Grassman Algebra of differential forms on the 6-dimensional 

manifold spanned by (x, t, u, z, y, w). 

The annulling of the forms in (2.50) on the solution manifold u = u(x, t) where 
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dz = zxdx + z1dt 

dy_ = Yx dx + y1dt 

and 

dw = w x dx + w1dt 

gives the following results: 

(i) 

(ii) 

-a = 0 implies that w = zx and y = zt 

da = 0 implies that Ztx = Zxt an integrability condition for z. 

(2.51) 

(iii) ~ = 0 implies that z = ux and hence that w = uxx and y = uxt the 

definitions of the necessary prolongation variables. 

(iv) y = 0 give the PDE (2.49). 

These results confirm that the ideal is closed and does represent (2.49). The 

generators of the invariant transformation groups of the ideal (2.50) are the 

components of the isovector 

V = yxa + V1a + yua + yza + yY a ·+ ywa 
X t U Z y W 

(2.52) 

The invariance condition for the transformation groups requires that the Lie 

derivatives with respect to V for each of the forms in the ideal are linear combinations 

of members of the ideal. That is: 

(2.53) 

where 'A, is an arbitrary 0-form 

(2.54) 

(2.55) 

where ~i' ~i and µi are arbitrary 0-forms and 

w. = A- dx + B-dt + C. du+ D-dz + E-dy + G.dw 
I 1 1 I I I I 

Ai, Bi, Ci, Di, Ei and Gi are arbitrary 0-forms and i = 1, 2. 

29 



£/da) = dMa + )..da is already a linear combination of elements in the ideal and 

contributes nothing to the determination of the components of the isovector. 

We now expand the Lie derivatives of a, p and y starting with (2.53) 

£/a) = 11.a = VJda + d(V Ja) (2.56) 

Let F = VJa 

(2.57) 

(- dwAdx-dy Adt) 

= - yw dx + Vxdw- VYdt + Vtdy (2.58) 

As 

= d(V Ja) 

then this along with (2.56) and (2.58) mean that 

(Fx _yw +Aw)dx + (Ft-VY+ly)dt + Fudu 

+ (F z -A.)dz + (Vt +F y)dy + (Vx+F w)dw = 0 (2.59) 

Equating the coefficients of the basis I-forms in (2.59) to zero gives the following set 

of equations for the components of (2.52) in terms of F. 
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yx = -F 
w 

F = A z 

yz = F-wF -yF w y 

yt = -F 
y 

F = 0 u 

yY = F + yF t z 

(2.60) 

p and 'Y both being 2-forms have their Lie derivatives expanded in a similar fashion. 

See Appendix C for the details. The results are: 

- zdVx Adt + zdV1
" dx 

(2.61) 

and fy("() = atnzvudt/\dx + a t'uV2 dt /\dX 

+ auzntn- lytdtAdx + mptm- lytdt Adw + dVnAdx 

- dVx" du + auztn ( dV1
" dx - dVx " dt) 

- Ptm(dVw /\dt - dV1 /\dW) 

(2.62) 

The determining equations for the coefficients of the isovector (V) are obtained by 

equating the coefficients of the basis 2-forms on both sid~s of (2.61) and (2.62) and 

then eliminating the arbitrary 0-forms. The details of this computation are to be found 

in Appendix C. The resulting determining equations for the isovectors components 

are: 

v ~ = v ~ = o, v; = o, v~ = o 
yx + Atmyt =0 yu _Atm(V 1 +wV1 + VW.= 0 

W I-' U ' W I-' X Z y/ 

Atffi (Vt + zV1 + wV1) = zvx - yu 
I-' X U Z w W 

yu - V2 + wvu + auzt" (V1 + zvt + wV1
) 

X Z X U Z 

+ z(Vu - zVx - yx -wVx) = 0 
U U X Z 

mptm-l V1 + auzt" (V ~ - Ptm V ~ ) 

+ Atm(Vw + yt _ yu _ yx -wVx- yw + yVt) = 0 
I-' Wt U X Z y Z 
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and 

- z yx -zyvx + Atffi (~ + zvw + wVW) t Z I-' X U Z 

- 7 yx - zyvx + Atffi (Vw + zvw + wVW) ~t Z I-' X U Z 

+ auztn (Vt - yu - auztn vt+ zVx + yVt) = 0 
t u u u z 

Solving the above determining equations with the help of the set (2.60) (the details are 

found in Appendix C) we get the following components for the isovector. m and n 

are arbitrary real numbers. 

yt = 0 

yx aatn+l 
b = + 

n+l 
yu = a (2.63) 

yw = yz = 0 

yY = - aa.t 0 w 

The variable coefficient KdV equation 

where m and n are arbitrary real numbers, has the following 2 parameter invariance 

group 

yt 

a=l 0 

b=l 0 

atn+l 

n+l 

1 

yz 

0 0 

0 0 0 

In (x, t, u) space the infinitesimal generators of the transformation group are 

yY 

-a.tnw 

0 

(2.64) 

(2.64) are the same as the generators found by Nirmala, Vedan, and Baby [24]. 
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The next stage is to determine the invariance transformations for the variable 

coefficient KdV equation for m and n being linearly related. That is 

(2.65) 

where k1 and k2 are real constants. 

The analysis is identical to that used for arbitrary values of m and n up to the point 

in Appendix C where the determining equations have been reduced to: 

and 

yt 
X = yt 

u = yt z = 
. t 
Vy = vt 

w = 

vx u = vx y = vx 
w = 

Vy = u 
vz u = vz y = vz 

w = 

Vw u = Vw y = 

Vu y = Vu 
w = 

mvt+t(Vw+vt_yu _yx_wVX) = 0 
W l U X Z 

yu _ V2 +wVu+z(Vu-vx-wVx) = 0 
X Z U X Z · 

at" (zVu +uVz) + auznt0
-

1v 1 + V~ + yV~ - zV~ 

- zyV~ + Ptm cv; + wv;) + auzt0 (V~ - vi)= 0 

F = a(t)y + g(x,t,z)w + h(x,t,z) 

From (2.60) and (2.67) we obtain the following set of equations 

vx =-Fw = - g(x,t,z) 

vt = - F = - a(t) y 

yw = Fx+wFz = gx w + hx + gzw2 + hzw 

vz = F - wF w - yF Y = h(x, t, z) 

yY =Ft+ wF
2 

= a'(t)y + gtw + ~ + gzw2 + hzw 

F z = A. = gz w + hz and Fu = 0 

0 

0 

0 

0 
(C60) 

0 

0 

(C61) 

(C64) 

(2.66) 

(2.67) 

(2.68) 
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Using the set of equations (2.68) to solve the reduced determining equations (C60) 

(C61) (C64) and (2.66) we obtain the following components of the isovector 

(2.69) 

where a1 ½. a3 and a4 are arbitrary integration constants. 

The linear relationship (2.65) is now restricted to 

m= n + k2 (2.70) 

with k2 t; 0. 

Details of this computation can be found in Appendix D. 

The invariance group of the variable coefficient KdV equation 

~ B n+k2 -0 u1 + at ux + t uxxx -

lS 

yx yt yu yz yw yY 

a1 = 1 0 
t w-L 

k2 
u z w 

k2 

a2 = 1 
2t 

0 2w q+w -x 
k2 

z 
k2 

a3 = 1 
atn+l 

0 1 0 0 at0w 
n+l 

a4 = 1 1 0 0 0 0 0 
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where z = ux y = uxt and w = uxx . 

In (x, t, u) space the infinitesimal generators of this isogroup are: 

(
atn+I) 

X2 = n+ 1 ax + au (2.71) 

X3 = xax + 2tat 

X4 = ax 

Its commutator table is: 

X1 X2 X3 X4 

X1 0 (natn+I) 
n+l X4-X2 

0 0 

X2 (natn+I) 
X2 - n+l X4 

0 (2n+ 1 )atn+ 1 

- n+l X4 
0 

X3 0 (2n+ 1 )at"+ 1 

n+l X4 
0 -X4 

X4 0 0 X4 0 

Similarity Solutions of the variable coefficient KdV equation 

(2.49) 

(1) For Arbitrary values of m and n 

Similarity solutions for (2.49) are found by extending the closed ideal of differential 

forms (2.50) by contracting the isovector (V) with one of the differential forms in the 

ideal. The most suitable contraction is cr = VJ~ which leads to 

yu - u yt - u yx = 0 
l X 

(2.72) 

(2.72) is a quasi-linear PDE which can be solved using Lagrange's method of 

characteristics. 

For arbitrary values of m and n the infinitesimal generators are (2.64) namely 
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and 

For the generator X2, vu = yt = 0 and yx = 1 in (2.72) which leads to the 

similarity variable s = constant and the trivial similarity form u = constant. For the 
atn+I 

generator X 1, yx = n+ 1 yu = 1 and yt = 0 giving the similarity variable 

s = constant and similarity form 

U 
= (asn+l)-lx 

n+l + f(s) 

On substituting (2.73) into (2.49) we get the solution 

u = 
(n+l)x + ak 

atn+I 

where k is an arbitrary constant. 

Nirmala, Vedan and Baby obtained the solution 

u = 
a(n+ l)x + c 

aatn+I + b(n+l) 

(2.73) 

(2.74) 

(2.75) 

where a, b and c are arbitrary constants. (2.75) is the same as (2.74) if b = 0. 

Details of the calculations for (2.74) are found in Appendix H. 

(ii) Form= n + 1 (k2 = 1) 

The variable coefficient KdV equation becomes 

n A n+I O ut + at uux + pt uxxx = 

We obtain similarity solution of (2.76) by using vu - utvt - ux yx = 

with the four infinitesimal generators 

(2.76) 

0 in conjunction 
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X2 
(atn+I) 

= n+l c\ + du 

X3 = xdx + 2tdt 

X4 = a 
X 

X1 = tdt + udu means that yx = 0 and yt = yu = 1. 

This leads to x = I;, = constant as the similarity variable and 

u = tf(/;,) 

as the similarity form. On substitution of (2.77) into (2.76) we get the ODE 

means that 

yt = 0 and yu = 1 which lead to the solution 

u = 
(n+l)x + ak 

which is the same as (2.74). 

(2.77) 

(2.78) 

x2 
X3 = xdx + 2tdt means that yx = x, yt = 2t and yu = 0. This leads to t = I;, 

as the similarity variable and u - f(/;,) as the similarity form. On substituting the 

similarity variable into (2.76) we get the ODE 

+ {2at" f(/;,) -~} df(/;,) = 0 
t di;, 

(2.79) 
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Finally X4 = i\ gives the trivial solution u = constant. 

In the similarity solutions for the variable coefficient KdV equation, there appeared to 

be no soliton solution. The reason for this is that a soliton solution requires a 

similarity solution of the form u = f(x-ct) which in turn implies a similarity variable 

s = x - ct where c is a constant. This kind of similarity variable is produced by an 

infinitesimal generator of the form X = ax + cat which does not appear in any of the 

invariant transformation groups (2.64) and (2.71). 

It has already been noted that the invariance group (2.64), that is 

and 

which were obtained by the Harrison-Estabrook method are the same as those 

obtained by Nirmala, Vedan and Baby [24] so confirming their results. However, the 

invariant group (2. 71) for m and n related by m = n + 1 are substantially different. 

I intend returning to these in the conclusions in Chapter 4. 
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CHAPTER 3: LIE-BACKLUND SYMMETRIES FOR THE 
KORTEWEG-deVRIES-BURGERS EQUATION 

In the introduction and cited literature, the Korteweg-deVries-Burgers (KdVB) 

equation is usually expressed as: 

(3.1) 

where a, b and c are real constants. In this chapter I will use a system of notation 

where 

and (3.1) now becomes 

H = 0 = ut + auu 1 + bu2 + cu3 = 0 (3.2) 

This is done to simplify the computation of Lie-Backlund (L-B) symmetries. L-B 

symmetries for time-evolution equations like (3 .2) are best expressed in their 

evolutionary form 

(3.3) 

where X(Q) is a differential operator. 

For a time evolution equation like (3.2) the characteristic (Q) of a L-B symmetry is a 

function of the independent variables (x, t) and the x derivatives of u, so that 

(3.4) 

for some arbitrary order N. 

The existence of L-B symmetries is manifested by the existence of a recursion 

operator (R) that generates higher order symmetries from the usually more easily 

determined lower order ones. This means the existence of one L-B symmetry implies 

the existence of infinitely many. 

Fokas [9] and Stephani [ 4] both suggest that for finding recursion operators a starting 

point is that in almost all known cases, the characteristic expressing invariance under 
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at-translation is generated from that expressing invariance under ax-translation. This 

means that 

(3.5) 

(3.5) implies that the following expressions are possible recursion operators for (3.2) 

(3.6) 

with a = m + n and 

(3.7) 

Dx is the total derivative operator with respect to x and 0:1 

From the definition of R given in the introduction, the necessary and sufficient 

condition for (3.6) or (3.7) to be a recursion operator is 

(3.8) 

where (3.9) 

is the Frechet derivative of (3.2). 

When the condition (3.8) is applied to (3.6) and (3.7), both give the result a = 0 

which means that R1 and R2 are not recursion operators for the KdVB equation. 

Details of the computation for (3.7) are found in Appendix E. 

The conclusion drawn at this point is either, the recursion operator (R) is not of the 

form of (3.6) or (3.7) or that it does not exist. I then decided to try and find L-B 

symmetries of (3.2) using the invariance condition 

(3.10) 

For a time-evolution equation like (3.2), (3.10) becomes 

(3.11) 
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As H = 0 = ut + auu1 + bu2 + cu3 = 0, we find that (3.11) takes the form 

(3.12) 

The required technique is to use (3.12) for Q = Q(x, t, u, u1 ... uN) with selected 

values of N to generate at least 2 equations involving the derivatives of Q and u. I 

will start with N = 3 and N = 5. As (3.12) holds for all solutions, u = u(x, t) of the 

KdVB equation, we can equate coefficients of the derivatives of u in descending 

order to zero and hence determine the form of Q. The reason for selecting two values 

of N is to try and find a recursion operator by inspection of the two L-B symmetries. 

For N = 3, Q = Q (x, t, u, u 1, u2, u3 ) 

In (3.12) Dt and Dx become 

Dt =at+ utau + utlau, + ut2au2 + ut3au3 

DX= ax+ u,au - U2 au, + u3au2 + u4au3 

(3.13) 

} (3.14) 

We then substitute (3.13) and (3.14) into the invariance condition (3.12) which is 

then expanded and simplified. At the same time the t-derivatives of u are replaced 

by 
ut = - (auu 1 + bu2 + cu3) 

2 u11 = - (au 1 + auu2 + bu3 + cu4) 

ut2 = - (3au1 u2 + auu3 + bu4 + cu5) 
2 u13 = - (3au2 + 4au 1 u3 + auu4 + bu5 + cu6) 

This leads to the lengthy expression given in Appendix F. The coefficients of 
-

descending order derivatives of u in this expression are equated to zero giving a set 

of determining equations involving the derivatives of Q which are then solved to 

give the L-B symmetry 

(3.15) 

(k1, k2 and k3 are arbitrary integration constants) of the KdVB equation 

The details of the computation of (3.15) are found in Appendix F. 

I then used the same technique with Q = Q(x, t, u, u1, u2 , u3, u4, u5) to determine 

any 5th order L-B symmetries of (3.2). The result was the same as (3.15). Details 
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of this computation are found in Appendix G. A determination of 2nd order 
symmetries of (3.2) with Q = Q(x, t, u, u 1, u2 ) gave 

where k 1 and k2 are arbitrary integration constants. 

According to Olver [3] a generalized or L-B symmetry has an infinitesimal generator 

(X) such that 

p . q 

X = L ~I [u] aXj + L <Pa [u] dUa (3.17) 
i=I ex=! 

where ~i [u] = ~i(x, t, u, u1 .•. ) and <l>cx[u] = <l>cx(x, t, u, u1 ... ) are both smooth 

differential functions. 

The associated evolutionary form of (3.17) is 

q 

X(Q) = I Q(X[u] aucx 
CX= l 

where the characteristic (Qcx) is 

p 

Qcx = <Pa - L ~i u f 
i=I 

- aucx 
a= 1 .. . q and uf - axi 

(3.18) 

(3.19) 

In (x, t, u) space a Lie point symmetry transformation has an infinitesimal generator 

(X) of the form 

(3.20) 

where ~ = ~(x, t) 't = 't(x, t) and <!> = <j>(x, t). Its characteristic (Q) is of the form 

(3.21) 
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Lakshmanun and Kaliappan [ 15] determined Lie point symmetries for the KdVB 
equation ut + auu1 + bu2 + cu3 = 0 and found that (3 .20) had the form 

(3.22) 

where a, p and 8 are arbitrary integration constants. The characteristic (Q) of (3.22) 

is 

Q = p - ( apt + 8)u 1 - au1 

= P- (aPt + 8)u1 + a (auu 1 +bu2 +cu3) (3.23) 

Comparing (3.23) with (3.15) we find that they are identical with 

and 

which implies that 8 = - k3. 

This means that the so-called L-B symmetry (3.15) of the KdVB equation is 

completely equivalent to the characteristic of the Lie point symmetry determined by 

Lakshmanan and Kaliappan. 
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4 MAJOR CONCLUSIONS 

In Chapter 2 I critiqued two papers that obtained Lie point symmetries for two 

different PDEs. The papers considered were: 

( 1) "Isogroup and general similarity solution of a nonlinear diffusion equation" by 

S M Waller [5]. W aller obtained point symmetries and a similarity solution 

for the equation 

(4.1 ) 

using differential forms as per the method developed by Harrison and 

Estabrook [ 1]; and 

(2) " A variable coefficient Korteweg-de Vries equation: Similarity analysis and 

exact solution" by Nirmala and Vedan (24], who obtained various point 

symmetries and similarity solutions for the equation 

(4.2) 

for various values of m and n. 

Nirmala and Vedan used the so-called classical method as developed by 

Bluman and Cole [2]. 

For Waller's paper, I first checked his analysis using the closed ideal of differential 

forms 

a. = d<j> - ydx - udt 

da. = -dyAdx-duAdt 

p = (u - ncpn-ly2)dXAdt - cpn dy Adt 

which he used and confirmed that the symmetry generators 

(4.3) 

44 



yx = 84 X + 82 

yt = 83 t + 81 

1 
yY = 11 [(2-n)84 - 83]y 

1 
yu = 0 [284 + (n+ 1)83]u 

y<I> = ¾ [284 - 83J<l> 

he obtained were correct. 

(4.4) 

As a check, I confirmed the results of ( 4.4) by using as a starting point the closed ideal 

a. 1 = d<)>Adt-pdxAdt 

a.2 = d<)>Adx + qdxAdt 

a.3 = d<)>Adx + <)>n dpAdt + n<j>n-l pdxAdt 

CX.4 = - dpAdX - dq Adt 

To obtain a similarity solution, Waller solved the quasilinear PDE 

with the condition 284 - 83 -:,; 0 

By Lagrange's method of characteristics, both Waller and I obtained 

as the similarity variable and 

l 

<j>(x, t) = G(s)(8 1 + 83~ n93 

as the similarity solution for ( 4.1) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 
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i = 1, 2, 3, 4. 

When I substituted (4.9) into (4.1) I obtained the ODE in G(s) 

204 -03-l 

G"(s) + nG(s)-10' (s)2 + _£__ G(sr0 G'(s)(8 +8 ): 93 

8 1 3 
4 

204 -03 -1 

--
1
- G(st-'(8 1 +83t) 83 = 0 (4.10) 

n84 

which agrees with Waller's result only if 83 = 84 = 1. When Waller considers the 

special case of n = -1 he begins by setting 83 = 84 = 1 and obtained the ODE 

o"cs) - ocs)-1o'cs)2 + socs)o' cs)+ ocs)2 = o (4.11) 

( 4.10) also reduces to ( 4.11) under the same conditions. 

(4.11) is then solved to give Waller's similarity solution to (4.1), that is, 

( 4.12) 

where 81 = 82 = 0 and p is an arbitrary constant. 

Waller did not consider the possibility of 2<\ = 83. If this is done then (4.6) reduces 

to 

(4.13) 

where 
3. 

8- = _.1_ i = 1 2 and 84 :;t 0 
I 8 ' ' 

4 

Solving (4.13) by Lagrange's method of characteristics leads to 

(4.14) 

as the similarity variable and 
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q>(x, t) = G(s) 

as the similarity solution. 

For n = -1 the substitution of (4.15) into (4.1) gives the ODE for G(s) 

( 4.16) has the solution G(s) = ~ which means that s 

q>(x, t) 

and 0 1 = 02 = 0 means ( 4.17) becomes 

q>(x, t) 
2t 
X 

which is the same as (4.12) with the arbitrary constant p set to zero. 

(4.15) 

(4. 16) 

( 4.17) 

( 4.18) 

For Nirmala and Vedan's paper I first checked their derivation of point symmetries for 

( 4.2) using the Harrison Estabrook method. Starting with the closed ideal 

a = dz - wdx - ydt 

da = - dw/\dX -dy /\dt 

P = (du - zdx)/\dt 
(4.20) 

and assuming m and n in (4.2) are arbitrary, I obtained the following infinitesimal 

generators in (x, t, u) space 

(4.21) 

These tum out to be the same as the generators found by Nirmala and Vedan using the 

Bluman and Cole method. 
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Also, my similarity solution determined from (4.21) turned out to be 

u = 
(n+l )x +ak 

aatn+I 

where k is an arbitrary constant. (4.22) corresponds to Nirmala and Vedan's 

a(n+ l )x + c 
u = 

aatn+l + b(n+l) 

a, b and c being arbitrary constants if b = 0. 

(4.22) 

(4.23) 

To determine the symmetries for (4.2) if m and n are linearly related I started with 

(4.24) 

where k 1 and k2 are constants to be determined. The Harrison Estabrook method 

gave as components to the isovector 

yt _ (a1 - 2½) - k t 
2 

y x 
a atn+l 

= - ½ x + 3n+l + a4 
(4.25) 

yu = a1u + a3 

where a 1, ½, a3 and a4 are arbitrary constants. (4.24) turned out to have the form 

(4.26) 

Nirmala and Vedan obtained the following expressions equivalent to the isovector 

components 

aatn+I 
= (2+n)x + n+l + b (4.27) 

U(= Vu) = u + a 

where a and b are arbitrary constants. Their result for the linear relationship 

between m and n is 
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m = 3n + 5 (4.28) 

While (4.27) shows some correspondence with (4.25) the linear relationship (4.28) 

does not agree with mine (4.26). 

I next retraced Nirmala and Vedan's analysis starting with their determining equations 

The results 

ijt + atnU ijX + ~tmu XXX = 0 

tUu - 3tXx + mT = 0 

Uu -Tt = 0 Uxu - Xxx = 0 Uuu - 3Xux = 0 

T=T=X=O X U U 

(4.29) 

(4.30) 

where a 1, ½, b and c are arbitrary constants, were arrived at without any trouble. 

(4.30) shows a close correspondence to my results (4.25). 

a2 - 2a 1 Continuing on from this point ( 4.30) implies that = n 

combined with m = k 1 n + k2 gives 

(4.31) 

if a 1 is assumed equal to one. 

If it is assumed that k 1 = 3, then 

Sn = ('½ - 2)k2 (4.32) 

and if it is further assumed that k2 = 5 then 
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(4.33) 

so that m = k 1 n + k2 becomes m = 3n + 5. Also (4.27) follows from (4.30) and 

(4.33). The components of the isovectors obtained using the Harrison Estabrook 

method ( 4.25) show a reasonable correspondence to those obtained using the Bluman 

and Cole method ( 4.30). The Harrison Estabrook method gave the relationship 

between the indices m and n in (4.2) as a condition for one of the determining 

equations to hold. That is the equation ( 4.26) m = n + k2 (k2 1:- 0) arises naturally 

from the analysis. To obtain Nirmala and Vedan's final result, I had to assign an 

arbitrary value to the constant a1 in (4.30). This leads to assigning particular values to 

k 1 and k2 in (4.24) to obtain (4.27) and (4.28). 

The purpose of Chapter 3 is to find any L-B symmetries of the KdVB equation 

(4.34) 

Attempts to find a recursion operator (R) for the L-B symmetries such that 

(4.35) 

using R1 = - (c~ + bDx +mu+ nu 1D~1
) with m + n = a and R2 = - b(D; + ~ 

au 1 D x + c D~1) showed that R 1 and R2 are not recursion operators for L-B 

symmetries of (4.34). As an extension of this approach I tried to find a generalized 

recursion operator of the form aD; + ~Dx + yu + 8 D~1 using ( 4.35) where a, ~. y 

and 8 are yet to be determined functions of (x, t, u) and the x derivatives of u. I was 

unable to solve the set of determining equations for the functions a, ~' y and 8 and I 

suspect that in light of what happened in the subsequent determination of L-B 

symmetries of (4.34) that these determining equations might not be solvable at all. 

A more direct approach to determining L-B symmetries uses the invariance condition 

4.36) 

where Q = Q(x, t, u, u 1 ... uN) is the Nth degree (N arbitrary) evolutionary 

characteristic. 

Using (4.36) wi_th N = 3 and N = 5 gave, in both cases the following form of Q: 
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(4.37) 

where k 1, k2 and k3 are arbitrary constants. Closer inspection of (4.37) shows it to 

be the characteristic of the Lie point symmetries 

( 4 .38) 

This result shows that the 3rd and 5th degree L-B symmetries of (4.34) turn out to be 

point symmetries. The main conclusion drawn from chapter (3) is that there are 

probably no generalized or L-B symmetries for the KdVB equation. This would 

explain why I failed to find a recursion operator using ( 4.35) for the L-B symmetries. 

I think it is quite likely that no such recursion operator exists. Fokas [9] defined the 

exact solvability of a PDE in terms of it admitting a Lax formulation. That is, the 

PDE H = 0 can be expressed in the form 

H = [ D, R] 

where D is the Frechet derivative of the time independent part of the PDE and R is 

of course a recursion operator. The conjectured lack of any L-B symmetries and the 

consequent non-existent recursion operators mean that the KdVB equation ( 4.34) is 

not exactly solvable using symmetry techniques . 
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APPENDIX A 

(1) Nonlinear Diffusion Equation 

Use of the classical method of Bluman & Cole for finding point symmetries of the 

non-linear diffusion equation 

Let (Al) be written as 

As (A2) is invariant under the transformation group X = l;,i axi + 17c)<P i = 1, 2. 

i.e. 

or 

where 

ll (il -17K'(<J>)<l>11 -Tl i~l K(<j>) -17K"(<j>)(<J>,)2 

- 2TJ(/l K'(<j>)<j> 1 = 0 

< 1) _ aTJ + (aTJ _ a~, ) <1> _ a~2 <1> _ a~ 1 c <1> )2 
Tl I - dX I d<j> dX I I ax I 2 d<j> I 

(Al) 

(A2) 

(A3) 

(A4) 

(AS) 
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and 

(A6) 

Substitute (A4) to (A6) in (A3) and equate coefficients of <!> and its derivatives to 

zero, we obtain the following determining equations 

(A7) 

(AS) 

(A9) 

(AlO) 

(Al 1) 

Solving (A 7) to (A 11) we obtain the components of X. 

l 2 
~ I = 2 ~x I + ax I + bx I + 'Y 

~2 = CX + ~X2 

Tl= (4ax + 2b) K (<l>) 
I K'(<l>) 
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where a 1, p, y, a and b are arbitrary constants . Three distinct cases arise 

depending on the form of K(<)>). 

Case I If K(<!>) is an arbitrary function of <I> then (AlO) implies that a= b = 0. This 

gives a 3 parameter group of transformations 

l 
~I = 2 Px1 +y 

S2 = a+ Px2 

T1 = 0 

with the corresponding infinitesimal generators 

X1 = ax1 = ax 

x2 = ax2 = at 

and 

X3 = X1dx1 +2x2ax2 = xax +2tat 

(Al2) 

Case II If K(<j>) is not arbitrary, then (A 10) implies that K(<j>) = A<j>0 where A. and n 

are arbitrary constants and a= 0. This gives a 4 parameter transformation group 

l 
~I= 2 Px1+bx1 +y 

~2 = a+ Px2 

T1 = 2b (~) 

with the corresponding infinitesimal generators (A 12) and 

(Al3) 

Case III If a -;t; 0 then (AlO) implies that (3 + ~) = 0 or n = - ; so that 

K(<I>) = A<j>-413
. This gives a 5 parameter group of transformations with corresponding 

infinitesimal generators (Al2), (Al3) and 

(Al4) 
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Similarity Solutions 

Case I where K( <I>) is an arbitrary function of <I> 

(ii) X = c\ has subsidiary equations 

dx dt dcj> 
-1 =o=o 

which give t = s the similarity variable and <I> = cj>( s) = cj>(t) as the similarity 

solution. Substitution of <I> = cj>(t) into the PDE (Al) gives the trivial solution 

<I> = constant. 

(ii) X = c\ has subsidiary equations 

dx dt dcj> 
a= 1= a 

which give x = s and cj> = <!>(s) = cj>(x). When cj> = cj>(x) is substituted into the PDE 

(Al) we get the solution JK(cj>)dcj> = k 1x + k2 where k 1 and k2 are arbitrary 

constants. 

(iii) 

x2 
-t = s 

X = xdx + 2tdt has subsidiary equations ~x = ~~ = do<!> which leads to 

as the similarity variable and <I> = <!>(s) = <I> (xt
2

) as the corresponding 

2 
similarity solution. On substitution of <j> = {xt ) into (Al) we obtain the following 

ODE ins-

~ [4sK(<j>) dcj> - 2f K(<j>)dcj>] = - t; dcj> 
d t; dt; dt; 

Case II where K(<j>) = <j>n gives the following similarity solutions 

and <I> such that 

<I> = constant 
1 

<I> = [(n+l) (k 1 x+k2)]n+l 
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The additional infinitesimal generator 

h b ·ct· . dx as su s1 iary equations -
X 

dt n d<)> 
= 0 = 2 which give t = s as the similarity 

<I> 
2 2 

variable and ¢ = xn <!>(s) = xn q>(t) which, when substituted into the PDE (Al) 

gives 

[ 
nx2 ]I/n 

<I> = k+2(2+n)t 

where k is an arbitrary constant. 

Case III where K(<I>) = <)> -½ gives the following similarity solutions 

<I> = constant 

<I> such that 

_s!_ [4s<)>-½ d<)> + 6<)>-½] = S d<)> 
<ls ds ds 

and -½ ¾ <)> = x 2 (t + k) 4 

The extra symmetry X = x2dx - 3x<)>d<P has subsidiary equations ct; = dt = d<)> 
X Q 3x<p 

which gives t = s and <I> = x-3<!>(s) = x-3<j>(t) which on substitution in (Al) gives 

the similarity solution <I> = kx- 3 where k is an arbitrary constant. 
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(2) KdV Equation 

The use of differential forms for finding point symmetries of the KdV equation 

ut + uux + Euxxx = 0 where E is a constant [ 1]. 

The closed ideal of required differential forms is: 

a = dz - wdx - ydt 

da = - dw I\ dx - dy I\ dt 

~ = (du - zdx) I\ dt 

and 

y = du /\ dx + uzdt /\ dx - £dw /\ dt 

d~ and dy are both equal to zero and are hence not required for the ideal. 

(Al5) 

Annulling the differential forms (Al5) means setting them equal to zero on the surface 

u = u(x, t) 

so that ii = 0 implies that w = zx and y = zt 
~ 
~ = 0 implies that z = ux 

and hence that w = uxx and y = uxt· 

w, y, z are the necessary prolongation variables. da = 0 implies that ztx = zxt the 

integrability condition for z, while y = 0 gives the KdV equation. The invariant 

condition for a group of transforms or isogroup as it is sometimes called, requires that 

the Lie derivative with respect to the vector operator V for each of the differential 

forms (A15) be a linear combination of the elements of the ideal (A15). The vector 

operator V, also called the isovector, is such that 

V = y x c) + ytc) + yuc) + V 2c) + y Yc) + ywc) 
X l U Z y w (A l6) 

and is equivalent to a prolongated form of X, the infinitesimal generator of the 

isogroup. As the Lie derivative does not change the degree of a differential form and 

a is the only 1-form in (A15) we have 

£ / a ) = V_Jda + d(V _Ja) = ACX (A 17) 
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where A is an arbitrary 0-form. 

If F(x, t, u, z, y, w) = V Ja then 

d(V J a) = dF 

= Fxdx + Ftdt + F0 du + Fzdz + Fydy 

+Fwdw (Al8) 

VJa = F = V2 -wVx-yyt (Al9) 

and V Jda = -Vwdx + yx dw- yY dt + Vtdy 

Substituting (A 18) and (A20) into (A 17) we obtain the following equations: 

Forda 

yx = - F w yt = - F y yw = F x + w F z} 

yY = Ft+ yF z A= F 
2 

and Fu = 0 

(Al9) implies that yz = F + wvx + yVt 

£v (da) = d(£v (a)) = d(Aa) 

= dAAa + Ada 

which is already in the ideal. 

For~ fy(~) = V Jd~ + d(V J ~) } 

= ~Y + s ~ + µda + wAa 

(A20) 

(A21) 

(A22) 

(A23) 

where ~' s and µ are arbitrary 0-forms, w = Adx + Bdt + Cdu + Ddz + Edy + Gdw 

with A, B, C, D, E and G being arbitrary 0-forms. 

Equating coefficients on the basis 2-forms in (A23) and eliminating the arbitrary 0-

forms, we obtain the equations 

yt = yt = 0 - yu + zyx = 0 y w y y 

£(Vt + zvt + wVt) = zV X - yu 
X U Z W W 

(A24) 

- z(V 0

0 
- zyx) + zwV2

- wV 0 

u z z 
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In a similar way 

£v(Y) = VJdy + d(V Jy) 

= ~ y + i;p + µda + w" a } 
(A25) 

= Generalised 2-form on the ideal 

Again equating coefficients of the basis 2-forms and eliminating the arbitrary 0-forms 

we obtain the equations 

yx - 0 yu = 0 yx + £Vt = 0 y - y w u 

c(Vl + wvt - Vw) = yu 
X Z y W 

v~ + v~ + 2uz v~ - V! - v~ + wv; -yvi = o 
-uV2 - zVu - yu + c(zVw -wVw - Vw) 

l U Z X 

+y(Vx - Vu)+ zVx + uz(Vu + uzVt - yt 
Z Z l u u t 

-zV~ + yVi) = 0 

(A26) 

(A21 ), (A22), (A24) and (A26) are the determining equations for the components y x 

yt yu y z yw and VY of the isovector V. Solving the determining equations for 

these components we get 

Vx=k1x+k2t+k3 

yl =3k1t+k4 

Vu= -2k1u + k2 

V
2 

= -3k1z I 
yY = -6k1y- k2w 

Vw = -4k1w 

where k1 , k2 and k3 are arbitrary constants. 

Invariance Transformations of the KdV Equation 

z = ux w = uxx and y = uxt 

yx yt yu y z y Y yw Type 

k1 = 1 X 3t -2u -3z -6y -4w x, t scale change 

(A27) 

k2 = 1 t 0 0 -w 0 Galilean transformation 

k3 = 1 1 0 0 0 0 0 space translation 

k4 = 1 0 0 0 0 0 time translation 
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The infinitesimal generators of the Lie Algebra are: 

X2 = t dx + du 

X3 = ax 
X4 = at 

(A28) 

Similarity solutions to the KdV equation are found by augmenting the ideal (A 15) 

with differential forms obtained by contracting a, da, ~ and y with the isovector V. 

This gives the following new forms F = V Ja, 8 = VJ da, cr =VJ~ and 

't = V Jy each of which is in the ideal. These new forms are next annulled, i.e. set to 

zero on the solution surface u = u(c, t). 

(1) F = V Ja = V2 
- wvx - yVt. When Fis annulled on u = u(x t) we get 

(A29) 

(ii) 8 = V Jda = - Vwdx + Vxdw - VYdt + vt dy. 

On the surface u = u(x t) 

and 

Annulling 8 therefore gives 

Vy _ vx vt - uxxt + uxtt (A30) 

(iii) cr =VJ~ = vudt - vt du - zVxdt + zVtdx 

Annulling cr on u = u (x, t) where z = ux and du= ux dx + utdt gives 

vu = U vx + U vt 
X t (A3 l) 

Finally 
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(iv) -r = V Jy 

which, when annulled on the surface u = u(x, t) gives 

yu = U yx + U yt 
X l 

and (A32) 

Of the annulled forms (A29) to (A32), only (A31) yu = ux y x + u1 V
1 is used to give 

similarity solutions of the KdV equation. We will begin with y x = 1 vu= V1 = 0 so 

that V = ax which has subsidiary equations dt = ~t = ct;. These give s = t as the 

similarity variable and u = u(s) = u(t) as the similarity solution which, on 

substitution in the KdV equation, gives the trivial solution u = k an arbitrary 

constant. 

Letting V1 = 1 and y x = yu = 0 gives V = a
1 

with subsidiary equations 

which give s = x as the similarity variable and u = u(s) = u(x) as the similarity 

solution. Substitution of u = u(x) in the KdV equation gives the ODE 

du d3u 
u - + £ -- = 0 

dx dx3 
(A33) 

Integrating (A33) gives 

1 2 d2u - u + £ -- = k 1 2 dx2 
(A34) 

where k 1 is an arbitrary constant. 

Integrating (A34) gives 

(A35) 
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where k2 is another arbitrary constant. 

d d2u 
Assuming that u • - , (constant) and both d~ and -

2
- • 0 as lxl • oo, we find 

dx 
1 2 ? 3 

that (A34) implies that k 1 = 2 c and that (A35) implies that k2 = 3 c 

(A35) now becomes 

or 
du -------- = 

[ 
2 2 3 1 3]112 

c u+ 3 c - 3 u 

dx 
(£) 1/2 

Using the substitution w2 = c.:cu and 2wdw = ~~ in (A36), we obtain 

dw = (:)112 d
2
x 

w(l-w2)1/2 c 

Integration of (A37) gives 

= (~)112 ~ + k 
£ 2 3 

k3 being an arbitrary constant. 

Eliminating w gives the similarity solution 

(A3 6) 

(A37) 

(A38) 

u = c{3 sech
2[(!f2 

~ + k3 ]- 1} (A39) 

It is worthwhile to consider the linear combination V = c\ + cdx where c is a 

constant which gives a similarity solution similar to A39, that is: 

[
1~112 ] u = 3c (sech2

) 2 ~;) (x - ct)+ k3 (A40) 

(A40) is the soliton or solitary wave solution of the KdV equation with c as the phase 

velocity and k3 determined by the initial conditions. 
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APPENDIXB 

On obtaining point symmetries of the nonlinear diffusion equation 

by the Harrison-Estabrook method starting with the following closed ideal of 

differential forms 

a 1 = d<j>Adt - pdxAdt 

<½ = d<j>Adx + qdxAdt 

Annulling (B2) to (B5) on the solution space <I> = <j>(x, t) where 

and 

d<j> = <l>xdx + <l>t dt 

dp = pxdx + ptdt 

dq = qx dx + qtdt 

gives the following results: 

(i) a 1 = 0 implies that (<l>x - p) dXAdt = 0 and 

p = <l>x the definition of the first prolongation variable p. 

(ii) Similarly a.2 = 0 gives q = <l>t the definition of the second prolongation 

variable q. 

~ 
(iii) a 3 = 0 implies that 

or 

which is the original PDE (B 1) 

(B 1) 

(B2) 

(B3) 

(B4) 

(B5) 
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-(iv) a.4 = 0 implies that (Pt - qx)dXAdt = 0 or <l>xt = <l>ix the integrability 

condition for q>. 

The generators of the invariance groups are the coefficients of the isovector 

(B6) 

in the 5 dimensional space (x, t, q>, p, q). The action of V on the closed ideal is such 

that the Lie derivatives with respect to V of the forms (B2) to (B5) are still on the 

ideal. As the ideal consists only of 2-forms, this means that 

for i = 1, 2, 3, 4 and Ai, Bi, Ci and Di are arbitrary 0-forms. Expanding the 

invariant condition (B7) according to 

for each of the four forms of the ideal we obtain for: 

(i) i = 1 

- VPdxAdt + dV4> Adt - dVtAdq>- pdVX Adt + pdVt Adx 

= A1a1 + B1(½ + C1 0.3 + D1 0.4 

= A 1 (dq>Adt-pdxAdt) +B 1 (dq>Adx+qdxAdt) . 

+ cl (dq>AdX + q>ndpAdt + nq>n-1p2 dxAdt) 

+ D 1 (-dpAdx-dqAdt) 

(ii) 1 = 2 

VqdxAdt + dv<P Adx - dVx Adq> + qdVx Adt - qdV1Adx 

= A2a1 + B2 C½ + C2a3 + D2a4 

(iii) i = 3 

nq>n-ly<l>dpAdt + n(n-l)<j>0
-

2p2 v<l>dXAdt 

+ 2npq>n-lyPdXAdt + dV4> AdX - dVX Adq> 

+ <l>n(dVPAdt - dvt Adp) + n<1>0
-

1p2(dVXAdt - dVt Adx) 

= A3 al + B3a2 + C3 0.3 + D3 0.4 

(B7) 

(B8) 

(B9) 

(BlO) 

(B 11) 
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(iv) i = 4 

where 

dVX Adp -dVP /\dX + dVt Adq - yq/\dt 

= A4a1 + B4°'2 + C4a3 + D4CX4 

dVj = V j dx + yj dt + V j dlh + V j dp + yj dq 
X l $ 't' p q 

j = x, t, <j>, p and q in tum. 

(B12) 

(B 13) 

Using (Bl3) and equating coefficients of the basis differential 2-forrns in (B9) to 

(B 12), and at the same time eliminating the arbitrary 0-forms Ai Bi Ci Di for i = 1, 2, 

3, 4 we obtain the following determining equations for the generators of the 

isogroups: 

yt = yt = V! = yt = 0 
p q 'I' X 

Vx _ yx _ yx _ 0 - - .. -p q 'I' 

yet> = y$ = 0 
p q 

yP = 0 q 

yq - ~ + qV1 = - pvx + qvct> 
I t t $ 

yP - y$ + pVX = pV$ - qVX 
X X cp t 

Vf- v~ = pV~ + q{<j>"(V~ - v~ )- V~} 

+ n<j>-1p2 (V~ + v~) 

n(n-l)<j>n-2p2 yet>+ 2np<j>n-lyp -vt- <!>" V~ + n<j>n-lp2 

(V: + V~) = - p(V~ + <j>"V~) 

+ q(V: + v; - V~ - V~ - n<j>-1Vq,) + n<j>n-1p2(n<j>-1V$ 

+VP - yt) 
p t 

(Bl4) 

(B 15) 

(Bl6) 

(B 17) 

(B 18) 

(B19) 

(B20) 

(B21) 

(B22) 
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We now solve the determining equations (B 14) to (B22) for the components yj 

where j = x, t, q>, p and q in tum of the isovector 

and 

(B 14) implies that vt = a(t) 

(B 15) implies that vx = g(x, t) 

(B 16) implies that y$ = h(x, t, <I>) 

where a, g and h are arbitrary functions of the indicated arguments. 

From (B20) we get 

yP = pV<p - qVX + y<I> - pVX <p t X X 

Then partial differentiating (B26) with respect to q we get 

V P _ y$ V q> yx yx _ 0 
q - P qq> + qx - P qx - t -

As V~ = V~ = 0 then (B27) implies that 

and with (B24) that 

yx = g(x) 

Then using (B 19) and (B20) we get 

From (B30) we find that 

yq = 0 
p 

(B23) 

(B24) 

(B25) 

(B26) 

(B27) 

(B28) 

(B29) 

(B30) 

(B31) 

(B32) 

(B23) to (B25) along with (B30) and (B3 l ) mean that only the coefficient Vq 

contains the variable q. This means that as (B22) is true for all values of q, so that the 

coefficient of q in (B22) must be zero. 
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That is y<I> + yx_ yP_ yt _n,1,-lycp = 0 
q> X p t 't' 

or hep+ g'(x) - (h<I> - g'(x)) - a'(t) - n<j>-Iy<I> = O 

and ye? = 1 { 2g'(x) - a'(t)} 
n (B33) 

(B22) now becomes 

(n-l)<j>n-lp2{2g'(x) - a'(t)} + 2np<j>n-l {hx+p(h<l>-g'(x))} 

- <j>a}t) - <Pn {hxx + p(hcpx -g"(x))} + n<j>n-lp2(g'(x)+a'(t)) 

= - p<j>0 (hxcp+ ph~) + n<j>0
-

1p2 {g'(x) - 2a'(t) + h<I>} (B34) 

Now (B34) is true for all values of p , which means that the terms in (B34) not 

involving p must be zero. 

That is a"(t) ,1,n-l h = 0 
n + '+' xx (B35) 

Now (B35) is true for all values of <I> which means 

(i) a"(t) = 0 and 

(B36) 

where o3 and o1 are arbitrary constants. Also the coefficient of pin (B34) must also 

be zero, which means that 

(B37) 

Now h = ye? = 2<j>g"(x) 
X X n 

from (B33). This, in conjunction with (B37) imply that g"(x) = 0 and 

(B38) 

where o4 and o2 are arbitrary constants. (B33) along with (B36) and (B38) mean 

that 
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(B39) implies that 

vt = Vf = 0 i.e. hx = ht = 0 

(B40) along with (B30) and (B31) mean that 

and 

In summary the components of the isovector are: 

yt = 03 t + 01 yx = 04 X + 02 

y4> = ¾ (204 - 03)<1> 

VP = ¾ { (2-n)o4 - o3 }p 

Vq = ¾ { 284 - (n+l)oJq 

(B39) 

(B40) 

(B41) 

(B42) 
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APPENDIX C 

Details of the use of the Harrison-Estabrook method for finding point symmetries of 

the variable coefficient KdV equation 

(i) The expansion of the Lie derivatives of the differential forms p and y with 

respect to the isovector V. 

f)P) = ~1y+ s1 ~ + µ 1 dcx + w 1 ACX 

= VJ dp + d(V J ~) 

From the ideal (2.S0) 

so that 

(C 1) 

(C2) 

VJ d~ = (Vx ax+ vtal + vuau + v 2az + yYay + vwaw )J (-dz/\ dx /\ dt) 

= - V2dXAdt + yx dz Adt - yt dz AdX (C3) 

where 

and 

VJ p = (Vxax + vtat+ yuau + V2a
2
+ ywaw +Vwdw)J (du A dt 

-zdxAdt) 

= vudt - vtdu - zvx dt + zVldx 

d(VJ P) = dVU Adt - dVtAdU - zdvx Adt - vxdzAdt 

+ zdVtAdx + yt dzAdx 

dVi = Vidx + Vidt +Vi du+ yidz + yi dy +Vi dw 
X l U Z y W 

i = x, t, u, z, y, w in tum. 

On substituting (C3) and (CS) into (Cl), we get (2.61). That is 

(C4) 

(CS) 
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£/P) = -V2dXAdt + dVu Adt - dVt Adu - zdV'Adt 

+ zdVtAdx 

= ~, Y + s 1 P + µ 1 da + wr'a 

= ~
1
(duAdx+cmztndt Adx-PtmdwAdt) 

+ s,(dll/\dt-zdxAdt)-µ, (dwAdx+dyAdt) 

+ (A1dx + B 1dt + C 1 du+ D1dz + E 1dy + G1dw) /\ 

(dz-wdx-ydt) (C6) 

from substituting in the differential forms of the ideal (2.50) 

fy(y) = ~2 y + s2 P + ~ da + wi' a 

= V_J dy + d(VJ y) (C7) 

From the ideal (2.50) 

so that 

y = duAdx + auztndt/\dx - Ptm dwAdt 

dy = at0 (zdll/\dtAdx + udzAdtAdx) (C8) 

a tn(zduAdt Adx + udzAdtAdx) 

= atn z(Vu dt /\dX - vtdu/\dX + vxdU/\dt) 

+ at0 u(V2dtAdx - yt dzAdx + yx dzAdt) (C9) 

V_J 'Y = (Vxdx + vtal + vuau + V2 dz + yYay + vwaw)J 

(duAdx + auztndt/\dx - Ptm dwAdt) 

= yu dx- Vxdu + auzt0 (Vtdx - yx dt) -Ptm(Vwdt - v tdw) 

(ClO) 

From (C 10) we obtain, 
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d(V _J y) = dVu Adx - dVxdu + auztn(dVtAdx - dVx Adt) 

- ~tm(dVW /\ dt -dVtdw) + aztn(vt duAdX - vxdu Adt) 

+ autn(vtdZt\dX - vxdzAdt) + auzntn-Iyt dt /\dX 

(C 11 ) 

On substituting (C9) and (Cl 1) into (C7) we get (2.62). That is, 

fy(y) = atn (zVu+ uV2)dtAdx + dVu Adx - dVx Adu 

+ auztn(dV1 Adx - dVx/\dt) -~tm(dVw Adt - dVt Adw) 

+ auzntn- 1v 1dt Adx + m~tm-lyt dt Adw 

= ~2y+ s2 ~ + µ2da + w2Aa 

= ~2 (duAdx + a uztndt/\dx - ~tm dwAdt) 

+ s2 (dU/\dt - zdxAdt) - µ2(dwAdx + dy Adt) 

+ (A2dx + B2 dt + C2du + D2dz + E2dy + G2dw) A 

(dz - wdx - ydt) (Cl2) 

from substituting in the differential forms of the ideal (2 .50) 

(2) The equating of the coefficients of the basis 2-forms on both sides of (C6) and 

(Cl2) and the elimination of the arbitrary 0-forms. We begin by equating coefficients 

of the basis 2-forms in (C6) to obtain the following set of equations. 

- V ! - z V ~ = - ~ 1 + wC 1 

-zV~=A1 +wD 1 

-zV; = wE 1 

- z V ~ = µ 1 + wG 1 

- v~ - v 1
1 + zv: = - s1 + ye, 

-V~ +zV~ = B 1 +yD 1 

- v~ + zV~ = µl + yEI 

-V~ +zV~ = ~l ~tm +yG 1 

v~ = c1 

(C14) 

(C 15) 

(Cl6) 

(Cl 7) 

(C18) 

(C19) 

(C20) 

(C2 l ) 

(C22) 
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yt = Vt = 0 
y w 

We next eliminate the arbitrary 0-forms from the equations (Cl3) to (C24). 

(C23), (C24) and (Cl7) imply that µ 1 = 0 so therefore by (C20) 

zVx - yu = 0 y y 

(Cl8) and (C22) give 

r, = yu + yt - zvx + yvt 
':, U I U z 

while (C14) and (C22) give 

~ = yt + zV l + wV1 

~I X U Z 

(C21), (C24) and (C27) imply that 

Rtm (V 1 + zV t + wV1) = zVx - yu 
I-' X U Z W W 

From (Cl5) and (Cl9) we obtain 

and zwV~ - wV~ = wB 1 + wyD1 

which upon subtracting give 

On substituting (C26), (C27) and (C29) into (C 13), we obtain 

(C23) 

(C24) 

(C25) 

(C26) 

(C27) 

(C28) 

(C29) 
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- vz + vu - zVx = - auzt0 (Vt + zV 1 + wV 1
) 

X X X U Z 

- z(Vu -zVx) +w(zVx -Vu) u u z z (C30) 

Similarly equating coefficients of the basis 2-forms in (C 12), we obtain the following 

set of equations 

atnzvu + at0 uV2 + vu + auztn (Vt + vx) 
t t X 

+ auzntn-Ivt + ~tmv; 

= ~2auztn + s2z + yA2 - wB2 

vu + vx + auztn vt = J: - wC 
U X U '-:.2 2 

V~ + auztn Vi = - A2 - wD2 

vu + auztnV t = - wE2 y y 

V ! + auztnv ~ - ~tm V ~ = - wG2 - µ2 

v~ - auztnv~ - ~tm v: = S2 -yC2 

- auztn V~ - ~tmv; = - B2 -yD2 

- auztnv; - ~tm v; = - µ2 - yE2 

- V~ = -C2 

- yx = 0 
y 

- V x - R.tffi Vt = 0 
w fJ u 

0 = E2 

- ~tm Yi = G2 

~tmvt = 0 
y 

(C3 l) 

(C32) 

(C33) 

(C34) 

(C35) 

(C36) 

(C37) 

(C38) 

(C39) 

(C40) 

(C41) 

(C42) 

(C43) 

(C44) 

(C45) 

The next step is to eliminate the arbitrary 0-forms from equations (C3 l) to (C45). 

(C23) states that V~ = V ~ = 0 which is consistent with (C45), while (C43) and 

(C34) imply that V~ = 0. This coupled with (C41) means that 

vu = vx = O y y (C46) 
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(C46), (C43) and (C38) imply that 

Then (C35), (C44), (C47) and (C23) imply that 

From (C40) and (C32) we obtain 

i: = yu + yx + auzt" yt + wvx '-:i2 U X U Z 

while (C40) and (C36) give 

r = yx - CXUZtnyx - Atmyw + yVx 
':>2 t u 1-1 u z 

On substituting (C47) (C49) and (C44) into (C39) we obtain 

m~tm-lyt + auzt"(V:- PtmV~)+ ~tm 

(Vw +Vt _yu _yx_wyx_yw+yVt) = O 
W l U X Z y Z 

Finally from (C33) and (C37) we get 

- yV~ - auzt" yV! = yA2 + ywD2 

auzt" wv; + Ptm wv; = wB2 + ywD2 

which on subtracting give 

Substitution of (C49), (C50) and (C52) into (C3 l) gives 

at"(zVu + uV2
) + auzntn-lyt + V~ + yV~ 

- zvx - zyvx + Atffi(Vw + zvw + wVW) 
l Z 1-1 X U Z 

(C47) 

(C48) 

(C49) 

(C50) 

(C5 l) 

+ auzt" cv:- V~ - auzt"V ~ + zv; + yV~) = 0 (C53) 

The determining equations for the components of the isovector are: 
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y t = y t = y x = yu = O 
y w y y 

yx + Atm yt = 0 
w I-' u 

Atm(vt + zvt +wVt) =zVX _yu 
I-' X U Z W W 

yu - yz + wVu + a uztn (Vt + zVt + wVt
2

) 
X Z X U 

+ z(Vu - zyx - yx - wVx) = 0 
U U X Z 

mptm- lyt + auztn (V~ - Ptm V~) + Ptm (V:, + 

yt _ yu _ yx _ wVx _ yw + yVt) = 0 
l U X Z y Z 

atn(zVu + uV2
) + auzntn-lyt + V~ + yV~ 

- zvx - zyvx + Atffi (Vw + zVW + wVW) 
l Z I-' X U Z 

+ auztn(v: - V~ - auzt0 V~ + zV~ + yV~) 

= 0 

(C23) and (C46) 

(C42) 

(C48) 

(C28) 

(C30) 

(C5 l ) 

(C53) 

(3) The solving of the determining equations for the components of the isovector 

(2.52). This is done with the help of the following set of equations (2.60). That is: 

yx = - F yt = - F F = A F = o 
w y z u 

and yz = F-wF -yF w y 

Fu = 0 implies that F = F (x, t, y, z, w) and (2.60) shows that the components yx, 

vt, yw , yY and y z are all independent of u so that 

yx = y t = yw = yY = y z = 0 
u u u u u 

(C54) 

yt = - F y so V~ = - F yy = 0 by (C23). 

Integrating F YY = 0 gives 
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F = a(x, t, z, w)y + b(x, t, z, w) (C55) 

where a and b are arbitrary functions of the arguments shown 

(2.60), (C23) and (C55) imply that 

V t = - F = - aw = 0, so a = a(x, t, z). w yw 

(C28), (C48) and (C54) give 

(C56) 

Differentiating (C56) and (CS l ) with respect toy gives 

Now 

so V ~\ = az = 0 implies a = a(x, t). 

Then V~ = - F yz = - az = 0. 

(C48) and (C56) then give 

yw + 2vt = 0. 
y X 

(C57) 

But V! = - Fyx = - ¾ and above we deduced v; = ax so (C57) becomes¾ = 

0, yielding a = a(t). 

(C55) becomes F = a(t)y + b(x, t, z, w) (C58) 

(2.60) and (C55) mean that 

yx = - F w = - bw, while v: = 0 

implies that bww = 0 which on integrating gives b = g(x, t, z)w + h(x, t, z) where g 

and h are two arbitrary functions. (C58) becomes 
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F = a(t)y + g(x,t,z)w + h(x, t, z) 

From (2.60) and (C59) we get 

(C59) 

which is independent of y so that v; = 0. Also V2 = F - wF w - yF Y = h(x, t, z) 

which means that V~ = V! = 0. 

In summary we have 

yt = yl = yt = yt = yt = 0 X u z y w 
yx = yx = yx = 0 u y w 
yY = 0 u 
yz = yz = yz = 0 u y w 

(C60) 

yw 
u = yw 

y = 0 

= yu = yu = 0 y w 

(C60) and (C5 l) give 

mVt + t(Vw + yt - yu - yx - wVx) 
W t U X Z = 0 (C61) 

As m is an arbitrary real number, then (C6 l) implies that 

yt = 0 (C62) 

and in turn that V~ = 0 so that (C59) becomes 

F = g(x, t, z)w + h(x,t,z) (C63) 

The determining equations now become (C60) and V~ = 0 while (C30) (C5 l) and 

(C53) become 

yu - yz + wVu + z(Vu - yx - wVx) = 0 
X Z U X Z 

V w - yu :_ yx - wVx = 0 
W U X Z 

atn (zVU + uV2 ) + yu + yVU - zvx - zyvx 
t z t z 

(C64) 

(C65) 

(C66) 
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From (C63) and (C260) we get 

yw = Fx +wF2 = gxw+hx +w(g2w +h2) 

yx = -F = - cr w i:, 

These two expressions imply that 

Vx _ yx _ - -g - -g 
Z Z X X 

On substitution of the above expressions in (C65) we get 

(C67) 

From (C60), Vi = 0 which means that yu and vi are independent of w, so as 

(C67) is true for all values of w then g
2 

= 0 which means that 

y x = - g = - g(x t) and V~ = 0 

(C67) becomes F = g(x, t)w + h(x, t, z) 

while (C64), (C65) and (C66) become 

and 

yu - yz + wVu + z(Vu - y x) = 0 
X Z U X 

yw _ yu _ y x = O 
W U X 

atn (zVU + uV2
) + v~ + yV~ - zV~ + ~tm (V;' + wv;) 

- auztn yu = 0 
u 

From (2.60) and (C69) we obtain the following results 

(1) V2 = F - wF w - yF Y = h(x, t, z) 

(C68) 

(C69) 

(C70) 

(C7 l) 

(C72) 

(C73) 

V ~ = Vi = V ~ = 0 means that V2, yu, yx and their derivatives are independent 

of w and (C70) is true for all values of w then 
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yu 
z = 0 (C74) 

(2) yw = F X +wF = z gxw + hx + whz (C75) 

(3) Fz = h = A z 

From (C75) we obtain 

= V~+v; by(C71). 

which means that = yu + yx = O uz xz 

by (C68) and (C74), so that on integrating hzz = 0 we get 

h(x,t,z) = h(x,t)z + k(x,t) = A(x,t)z + k(x,t) 

where k is an arbitrary function of (x, t) (C73) now becomes 

yz = AZ+ k (C76) 

(C67) and gz = 0 means that 

which on integrating gives 

yu = (2gx + A)u + f(x,t) (C77) 

where f is an arbitrary function of (x, t) 

yu = yu = yu = O 
y w z 

means that yu is a function of (x, t, u) only. 

(C70) and (C74) mean that 
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From (C77) we obtain 

while (C68) gives 

v~ = (2gxx + Ax)u + f x 

v~ = 2gx + A 

Substitution of the above equations along with (C76) into (C78) gives 

(C78) 

(C79) 

As f = f(x, t) k = k(x, t) and (C79) is true for all values of z and u we obtain 

gx = 0, gxx = 0 and Ax = 0 which mean that 

g = g(t) V~ = 0 A= A(t)} 

and fx = k 
(C80) 

The results (C80) when combined with (C62), (C68), (C75), (C76) and (C77) give the 

following expressions for the coefficients of the isovector 

V' = 0 yx = -g(t) yw = kx(x, t) + wA(t) } 

V2 = A(t)z + k(x, t) and yu = A(t)u + f(x, t) 
(C81) 

Using the expressions of (C81) and the determining equation (C72) we obtain 

atn { z(Au+f) + u(Az+k) } + A'(t)u 

+ ft + zg'(t) + ~tm kxx - auztn A= 0 (C82) 

(C82) is true for all values of u and z so the coefficients of u, z and uz must all be 

identically equal to zero, which gives the following results: 
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(i) atn (2A. - A) = 0 which means that A = 0 and ),,'(t) = 0 so that (C82) becomes 

(C83) 

(ii) atnk = 0 or k = 0 and kxx = 0 so that (C83) becomes 

{atn f + g'(t)}z + ft = 0 (C84) 

(iii) atn f + g'(t) = 0 (C85) 

(iv) f1 = 0 which, when combined with fx = k = 0 mean that f = a an arbitrary 

constant, while (C85) implies that 

or 

aatn = - g'(t) 

aatn+I 
-g(t) = -- + b 

n+l 

b = an arbitrary constant. 

The coefficients of the isovector are therefore 

yt = 0 

aatn+I 
V x b =~+ 

yu = a 

y w = y z = O 

yY = - aat0w 

(2.63) 
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APPENDIXD 

On substituting (2.65) and (2.68) into (C61) we get 

V! = 0 (C60) means that vu and its derivatives are independent of w. (01 ) is true 

for all values of w so that 

(02) implies that 

(01) now becomes 

g
2 

= 0 and y x = - g(x, t) 

y x = 0 
z 

- (k 1 n + k2)a(t) + t(2gx + h2 - a'(t) - V~) = 0 

On substituting v; = 0 and V 2 = h(x, t, z) into (C64) we get 

v~ - h(x , t , z) + w V ~ + z(V~ - V~) = O 

(05) is true for all values of w and yu and y x are independent of w so that 

y u = 0 
z 

(02) 

(0 3) 

(04) 

(05) 

and V ~ - h(x, t, z) + z(vi - V~) = 0 (06) 

On substituting V~ = v ; = 0 and the appropriate terms from (2.68) into (2.66) we 

get 

at0 
{ z vu + uh(x, t, z)} - auzntn- l a(t) + V~ + 

zgt(x,t) + pcm { gxx w + hxx + 2whxz + w2 hzz } 

- auzt0 {a'(t) + v~} = 0 (07) 

(D7) is true for all values of w so that on equating the coefficients of w and w2 to 

zero, we get 

(0 8) 
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and at0 {zVu + uh(x,t,z)} - auznt0
-

1a(t) + V~ + 

zgt(x,t) + ~tmhx/x,t,z) - auzt0 {a'(t) - V~ } = 0 

V2 = h(x,t,z) and (D9) imply that 

V2 = h1 (x, t)z + hix, t) 

where h 1 and h2 are arbitrary functions of (x, t). On substituting (Dll) and 

V~ = - g/x,t) into (D6) we get 

(D9) 

(D10) 

(D11) 

V~ - h 1 (x,t)z - h2(x,t) + z { V~ + gix,t)} = O (D 12) 

V~ = 0 means that yu and its derivatives are independent of z so that therefore 

V~ = hz(x, t) (D13) 

and (D14) 

Differentiating (D 14) with respect to u gives 

v ~ = o. As v~ = v~ = v~ = o 

then yu is a function of (x, t, u). So on integrating V uuu = 0 we get 

yu = f 1 (x, t)u + f2(x, t) (D15) 

where f 1 and f2 are arbitrary functions of (x, t). Differentiating (D15) with respect 

to x and equating the result to (D 13) we get 

(Dl6) 

As (D 16) is true for all values of u we obtain the expressions 

(D17) 

and (D 18) 
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From (Dl4) we get V~ = f 1(t) = h 1 (x,t)-g/x,t) (Dl9) 

(D 19) implies that g (x, t) = h 1(x, t)x which, on substituting into (D8), implies in xx 

turn that 

This also means that gx/x,t) = 0 so that 

where g 1 and g2 are arbitrary functions oft. 

At this point we have 

yz = h 1 (t)z + fix,t)x (From D 11 and D 18) 

yu = f1(t)u + fix,t) (From D15 and D17) 

yx = - g 1 (t)x - g2(t) (From D21) 

also f1 (t) = h1(t) - g 1(t) (From D19. D20 and D21) 

Substituting the expressions of (D22) into (D4) gives 

Similarly substituting (D22) into (D 10) gives 

atn { zfi(x, t) + u[h 1 (t)z + f2(x,t)x]} - auzntn-l a(t) 

+f;(t)u +f2(x,t\ +z{g;(t)x+g2(t)} 

+ ~tmfi(x,t\xx - auztna'(t) = 0 

(D20) 

(D21) 

(D22) 

(D23) 

(D24) 

(D24) is true for all values of u and z so that on equating the coefficients of u, z and 

uz to zero we get 

th 1(t)- na(t) - ta'(t) = 0 (D25) 

(D26) 
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and 

(D27) implies that 
r, (t) 

at" 

so that f2(xt)xxx = 0 and by (D28) fi(x,t)t = 0 which means that 

f' (t) 
(D29) now becomes f2 (x) = - -1- which on integrating becomes 

at0 

where a 1 is an arbitrary constant. 

(D27) 

(D28) 

(D29) 

(D30) 

(D31) 

f' (t) 
fi{x)t = 0 means that - 1- = ½ where a2 is an arbitrary constant. f{ (t) = ½ at" 

at" 

on integrating gives 

(D32) 

where a3 is an arbitrary constant. 

(D22), (D31) and (D32) mean that 

(D33) 

(D26) and (D31) give 

(D34) 

(D34) is true for all values of x so that 
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which on integrating gi'.'e 

and 

This means that 

and 

a atn+l 
2 
n+l 

a atn+l 
I 

g2 (t) = - n+ 1 

(D23) and (D25) now become 

(
2a atn+l ) 

t ~+ 1 + a3 + a4 - na(t) - ta'(t) = O 

Subtracting (D40) from (D41) gives 

(D42) should be true for all values of n so that 

(D35) 

(D36) 

(D37) 

(D38) 

(D39) 

(D40) 

(D41) 

(D42) 

(D43) 
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also (D44) 

As m and n are linearly related by (2.65) (D43) means that 

(D45) 

The coefficients of the isovector are with relabelling of the four nonzero arbitrary 

constants 

t (al -2½) 
V = k t 

2 

a cxtn+l 
Vx I = -a2x-~n+_l_ +a4 

(2.69) 
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APPENDIXE 

To determine if 
b au 

R = - (D2 + - D + - 1 D- I ) 2 X C X C X 
(E. I) 

is a recursion operator for the KdVB equation 

H = 0 = ut + auu 1 + bu2 + cu3 = 0 (E.2) 

The invariance condition for (E.2) under the L-B symmetry given by X(Q) = Qou 1s 

DH[Q]H=O = 0 or 

For R2 to be a recursion operator of (E.2) 

From (E. I) and (E.3) 

+ C D5 + b D4 + C D3 [au I D- 1] 
X X X C X 

Dt [ul D-x' ] D-1 D D-1 = ult x + u, t x 

D~ [u 1 D-;/ l = Dx [u2D~1 + u 1] 

= u3 D~1 + 2u2 + u 1 Dx 

D~ [u I D~1] = Dx[u3D-;_1 + 2u2 + u1 Dx ] 

= u4 D~1 + 3u3 + 3u2Dx + u1 D; 

(E.4) 

(E.5) 

(E.6) 

(E.7) 

(E.8) 

(E.9) 
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On substituting (E.6) to (E.9) into (E.5), we get 

(E.10) 

Similarly 

(E.11) 

= 0 (E.12) 

(E.12) implies that a = 0. 
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APPENDIX F 

3rd Order L-B Symmetries of the KdVB Equation 

The invariance condition for an L-B symmetry of the KdVB equation is 

If 

then Dx and Dt become 

DX = ax+ ulau + u2au1 + u3au2 + U40u3 

Dt = at + utclu + utJ 0u I + ut2 clu2 + utiu3 
} 

Incorporating (F.2) and (F.3) into (F. l) gives 

Using the expressions 

Qt + utQu + ut1Qu, + ut2Qu2 + ut3Qu3 + aul Q 

+ au(Qx + u I Qu + u2Qu 1 + u3Qu2 + U4 Qu3) 

+ b D/Qx + ulQu + u2Qu, + U3 Qu2 + u4Qu3) 

+ c D~ (Qx + u,Qu + u2Qu, + u3Qu2 + U4Qu3) 

ut = - (auu 1 + bu2 + cu3 ) 

u11 = - (auf + auu2 + bu3 + cu4 ) 

u12 = - (3au 1 u2 + auu3 + bu4 + cu5) 

u13 = - (3au} + 4au 1 u3 + auu4 + bu5 + cu6) 

(F.2) 

(F.3) 

(F.4) 

to eliminate the t-derivatives of u in (F.4) and then by expanding and simplifying we 

obtain the expression 
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2 2 
Qt+ auQx + au 1Q- au 1 Qu 1 - 3au 1u2Qu2 - 3alli Qu

3 
2 

-4au1u3Qu3 + b[u4 Qu3u3 + 2uiQxu3 + ulQuu3 

2 
+ u2Qu1u3 + U3Quzu3) + U3 Qu2u2 + 2U3 (Qxu2 + 

2 
ulQuu2 + u2Qu1u2) + u2 Qu1u1 + 2 ui(Qxu1 

2 
+ ulQuu1) + ul Quu + 2 u,Qxu + Qxx] 

+ c[3 u/Qxu3 + u1Quu3 + u2Qu1u3 + u3Qu2u3 + U4Qu3u3) 

3 2 Q + U4 Qu3u3u3 + 3u4 (Qxu3u3 + U I Quu3u3 + U2 u I u3u3 + 

U3Qu2u3u3 + Qu2u3) + 3uiQxu2 + ulQuuz + u2Qu1u2 

+ U3 Qu2u2 + u2Quu3 + U3Qu1u3 + Qxxu3 + 2 u,Qxuu3 

2 2 
+ 2 u2Qxu1u3 + 2 u3Qxu2u3 + Ul Quuu3 + Uz Qu1u1u3 

2 
+ U3 Qu2uzu3 + 2U I u2Quu I u3 + 2 U I U3Quu2u3 

3 2 
+ 2 u2u3Qu1uzu3) + U3 Qu2u2u3 + 3u3 (Qxu2u2 

+ ulQuu2u2 + u2 Qu1u2u2 + Qu1u2) + 3u3 (Qxu1 + 

ul Quu1 + u2 Qu1u1 + u2 Quuz + 2U1 Qxuuz + uf Quuuz 

+ 2 u2 Qxu1u2 + u~ Qu1u1u2 + 2 u,u2 Quu1u2) + uJ Qu1u1u1 

2 
+ 3ui(Quu1 + Qxu1u1 + u1Quu 1u1) + 3u2 ( Qxu + 

2 3 
ul Quu + QXXUJ + 2 u1Qxuu1 + ul QUUUJ) + ll1 Quuu 

+ 3uf Qxuu + 3u1Qxxu + Qxxx] = O (F.5) 

(F.5) holds for all solutions of the KdVB equation so the coefficients of descending 

order derivatives of u can be equated to zero. The coefficient of u5 in (F.5) is 

(F.6) is true for all values of u 1, u2, u3 and u4 and c °i' 0 which means 

(F.7) 

(F.7) means (F.8) 

where A and B are arbitrary function of the arguments shown. 
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Also (F.9) 

(F.9) ensures that the coefficient of ui is zero and the coefficient of u4 reduces to 

As (FlO) holds for all values of u 1, u2 and u3 then: 

Bxu2 = B - B - B = 0 uu2 - u1u2 - u2u2 

which means (F.8) can now be written as 

Q = A(t)u3 + B(t)u2 + C(x, t, u, u 1) 

Also 

(F.13) makes the coefficients of u~ and ui equal to zero and the invariance 

condition (F.5) reduces to 

? 2 
-2au1u2B -3au2 A-3au 1u3 A+ b[u 2 Cuiui 

2 + 2ui(Cxu1 + u1Cuu1) + ul Cuu + 2u!Cxu + Cxx] 

+ c[3u/Cxu1 + U1Cuu1 + U2Cu1u1) + u? Cu1u1u1 

+ 3u~ (Cuu 1+ Cxu 1u1 + u!Cuu 1u1) + 3u2 (Cxu + ul Cuu 

+ Cxxu 1 + 2u1 Cxuu 1 + u~ Cuuu 1) + uf Cuuu 

+ 3uf Cxuu + 3u1 Cxxu + Cxxx] = O 

The coefficient of u3 in (F.14) is 

(F.15) is true for all values of u 1 and u2 so that Cu 1 u 1 = 0 which means that 

(F.10) 

(F.11) 

(F.12) 

(F.13) 

(F.14) 

(F.15) 
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C(x, t, u, u 1) = C(x, t, u)u 1 + D(x, t, u) (F. 16) 

Also c Cuui = aA which on integrating gives 

auA 
C(x, t, u) = - c- + C(x, t) (F.17) 

Finally ~~ + 3cCxu 
1 

= 0 or by (F.16) and (F.17) 

X dA 
C(x, t) = - 3c dt + C(t) (F.1 8) 

Combining (F.12), (F.16), (F.17) and (F. 18) we have 

(F.19) 

and ciju1 = CUJU[ = 0 i, j = X, u, ul (F.20) 

(F.19) and (F.20) mean that the invariance condition (F.14) reduces to 

(
dB) (au dA x d

2 
A dC) dt U2 + cdt-3c dt2 + dt U1 + 0 t 

+ au ( D x - ~~ dtr) + au I D - 2au I u2 B 

+b[ 2u2 (a~~A -ic dd~)+ufDuu+2u1Dxu+Dxx] 

+ c [3u2 (Dxu + u I Duu) + u f 0 uuu + 3uf 0 xuu + 0 xxx1 = O 

(F.21) 

The coefficient of u2 in (F.21) is 

(F.22) 

(F.22) is true for all values of u 1 which means that 
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3 D + 2abA - 2aB = 0 
C uu C 

which on integrating gives 

au
2 

( bA) D(x, t, u) = 3c B + c + D(x, t)u + E(x, t) (F.23) 

Also 
2b dA dB 

3c 0 xu = 3c dt - dt 

which on integrating gives 

x ab dA dB) 
D(x, t) = 3c \3c dt -dt + D(t) (F.24) 

(F.19) now becomes 

{
auA x dA } 

Q = Au3 + Bu2 + -c- - 3c dt + C u I 

au
2 

bA {ab dA dB ) x } 
+ 3c (B -7) + \3c dt - dt 3c + D u + E (F.25) 

(F.25) means the invariance condition (F.21) reduces to 

(
au dA _ ~ dA + dC)u + au

2 
(dB _ Q dA) 

c dt 3c dt dt I 3c dt c dt 

+ {(2b d
2 
A _ d

2B)~ + dD} u + E 
3c dt2 dt2 3c dt t 

[
au

2 
( bA) {~b dA dB) x } ] + au l 3c B -7 + \3c dt-dt 3c + D u + E 

[
~b dA dB) u ul dA] 

+ au \3c dt - dt 3c + Ex - 3c dt 

+ [2auf ( _ bA) 2u1 ~b dA _ dB) ] 
b 3c B c + 3c \ 3c dt dt + Exx 

+ c Exxx = 0 (F.26) 

The coefficient of u~ in (F.26) is 
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as a, b and c are all nonzero then 

B = 
bA 

C 

The coefficient of u 1 in (F.26) is 

au dA x dA dC ~b dA dB)aux 
c dt - 3c dt + dt + \. 3c dt - dt 3c 

au dA 2b ~b dA dB) 
+ auD + a E - 3c dt + 3c \. 3c dt - dt = O 

(F.27) 

(F.28) 

(F.28) is true for all values of u and the functions A, B, C and D are all functions oft 

only, which means 

2a dA ~b dA dB)ax 
3c dt + \. 3c dt - dt 3c + a D = O (F.29) 

(F.29) is true for all values of x so that 

a ~b dA dB) 
3c \. 3c dt - dt = O 

(F.30) 

(F.27) means that ~~ = * dd~ which when substituted into (F.30) gives dd~ = 0 or 

(F.31) 

where k 1 is an arbitrary constant. 

(F.29) reduces to D=O (F.32) 

and B = 
bk1 (F.33) 

C 

(F.28) reduces to 
dC 

0 (F.34) dt +aE = 
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so that E = E(t) and 

(F.35) 

The invariance equation (F.26) 

dE dt = 0 and E = k2 (F.36) 

where k2 is an arbitrary constant. 

(F.34) implies that 

(F.37) 

(F.31) to (F.37) means that (F.25) becomes 
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APPENDIXG 

5th Order L-B Symmetries of the KdVB Equation 

In the determination of the 5th order L-B symmetries we follow the same technique as 

used in Appendix F for the 3rd order symmetries. In this case 

(G . l ) 

and the differential operators Dx and Dt in the invariance condition (F. l) become 

DX = c\ + u I c\ + U2 au] +u3 au2 + U40U3 + U50u4 + u6au5 

Dt = c)t + Utdu + Utlc)ul + Ut2c)u2 + Ut3c)u3 + Ut4c)u4 + Ut50u5 

Incorporating (G.l ) and (G.2) into (F. l) gives 

} (G.2) 

Qt + ut Qu + utl Qu
1 

+ ut2Qu2 + ut3Qu3 + ut4Qu4 + ut5Qu5 + au IQ 

+ au(Qx + ulQu + u2Qu
1 

+ U3 Qu/ u4Qu3 + u5Qu4 + u6Qu5) 

+ bDxCQx + ulQu + u2Qu
1 

+ u3Qu2 + u4Qu3 + U5 Qu4 + u6Qu5) 

2 
+ cDx (Qx + ulQu + u2Qu

1 
+ U3Qu2 + U4 Qu3 + u5Qu

4 
+ u6Qu5) 

(G.3) 

Using the expressions 

ut = - ( auu 1 + bu2 + cu3) 

utl = - (auf + auu2 + bu3 + cu4 ) 

ut2 = - (3au I u2 + auu3 + bu4 + cu5) 

ut3 = - (3a~ + 4au I u3 + auu4 + bu5 + cu6) 

ut4 = - ( 10au2u3 + Sau I u4 + auu5 + bu6 + cu7 ) 

u15 = - ( I Oauj + l 5au2u4 + 6au I u5 + auu6 + bu7 + cu8) 

to eliminate the t-derivatives of u in (G.3) and then by expanding and simplifying 

we obtain the expression 
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- u5 6au1Qu
5 

- u4 (5au1Qu
4 

+ 15au2Qu
2
) 

- u ~ 10aQu
5 

- u 3(4au 1Qu
3 

+ 10au2Q u
4
) 

- u1 3aQu
3 

- u2 3au 1Qu
2 

- uf aQu
1 

+ u 1a Q 

+ uaQx + Qt 

+ b[ u~ Qu5u5 + 206(Q xu5 + u I Quu5 + u2Qu I u5 

+ U3Qu2u5 + u4Qu3u5 + U5Qu4u5) + u~ Qu4u4 

+ 2 u5(Q xu4 + 0 tQuu4 + 02 Qu1u4 + u3Qu2u4 

+ u4Qu3u4) + u] Qu3u3 + 2u 4 (Qxu3 + 

2 
u I Quu3 + 02Qu 1 u3 + u3Qu2u3) + U3 Qu2u2 

2 
+ 2u3 (Q xu2 + 0 1 Quu2 + 02 Qu 1u2) + U2 Q u1u1 

+ 202 (Qxu1 + 0 1Quu1) + u f Quu + 2u IQ xu 

+ Q xxl + c[3ui Q xu5 + u1Quu5 + 02Qu 1u5 

+ U3Qu2u5 + U4 Qu3u5 + u5Qu4u5 + u6Qu5u5) 

+ u 6
3 Q + 3 u2 (Q + u Q + u2 Q u5u5u5 6 xu5u5 I uu5u5 u I u5u5 

+ U3Qu2u5u5 + U4 Qu3u5u5 + U5 Qu4u5u5 + Qu4u5) 

+ 306(Q xu4 + u!Quu4 + u2 Qu 1u4 + u3Qu2u4 + U4 Qu3u4 

+ U5 Qu4u4 + 02 Q uu5 + U3 Qu1u5 + U4Qu2u5 + u5Qu3u5 + 

Q xxu5 + 20 1Qxuu5 + 202Q xu1u5 + 203Q xu2u5 

2 
+ 204 Q xu3u5 + 20sQ xu4u5 + 0 1 Q uuu5 

+ 2ulu2Q uu1u5 + 2u lu 3Q uu2u5 + 20 1°4Quu3u5 

+ 20 1 ° sQuu4u5 + 0i Qu 1u1u5 + 202u3Q u1u2u5 
2 

+ 202° 4 Qu 1u3u5 + 202° 5Qu1u4u5 + U3 Quzuzu5 

+ 203° 5Qu2u3u5 + 203° 5Qu2u4u5 + ui Q u3u3u5 

+ 2u u5Q + u2 Q ) + u3 Q 4 u3u4u5 5 u4u4u5 5 u4u4u4 

+3u2 (Q +u Q +u2 Q +u3 Q 5 xu4u4 I uu4u4 u1u4u4 u2u4u4 

+ U4 Q U3U4U4 + Q U3U4) + 3 us<Qxu3 + u I Q uu3 

+ u2Qu I u3 + U3Qu2u3 + u4Qu3u3 + U2 Quu4 

+ U3Qu1 u4 + U4 Qu2u4 + Q xxu4 + 2 u1Q xuu4 

202 Q xu1u4 + 2u3Q xu2u4 + 204Q xu3u4 
2 

+ 0 1 Q uuu4 + 20 1° 2Q uu1u4 + 2 0 1°3Quu2u-i 
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2 
+ 20 1 u4Quu3u4 + U2 Qu 1u1u4 + 2u2u3Qu 1u2u4 

+ 2u2 U4 Qu I u3u4 + u~ Qu2u2u4 + 2u3 U4 Qu2u3u4 

+ u 2 Q ) + u 3 Q + 3u 2 (Q 4 U3U3U4 4 u3u3u3 4 XU3U3 

+ u I Quu3u3 + u2Qu 1 u3u3 + U3 Qu2u3u3 + Qu2u3) 

+ 30iQxu2 + ul Quu2 + u2Qu1u2 + U3 Qu2u2 

+ U2 Quu3 + U3 Qu 1 u3 + Qxxu3 + 2u I Qxuu3 
2 

+ 2u2Qxu 1 u3 + 2u3Qxu2u3 + u I Quuu3 

2 
+ 2u1u2Quu 1u3 +

2u1u3Quu2u3 + U2 Qu1u1u3 

+ 2u u Q + u2Q ) + u 3 Q 2 3 u I u2u3 3 u2u2u3 3 u2u2u2 

+ 3u~ (Qxu2u2 + ul Quu2u2 + u2Qu1u2u2 + Qu1u2) 

+ 3u3 (Qxu 1 + u!Quu 1 + u2Qu 1u1 + u2 Quu2 + Qxxu2 

+ 20 1Qxuu2 +2u2Qxu 1u2 + uf Quuu2 + 2uiu2Quu 1u2 

+ u3 Q ) + u3 Q + 3u 2 (Q 2 U]U]U2 2 U]U]U] 2 XU]U] 

+ u, Quu u + Quu ) + 3u2(Qxu + ul Quu 
I I I 

2 3 
+ Qxxu 1 + 2uIQxuu 1 + ul Quuu 1) + ul Quuu 

2 
+ 3u I Qxuu + 30 1 Qxxu + Qxxx] = O (G.4) 

(G.4) holds for all solutions of the KdVB equation so the coefficients of descending 

order derivatives of u can be equated to zero. The coefficient of u7 in (G.4) is 

3c(Qxu5 + ul Quu5 + u2 Qu 1u5 + U3 Qu2u5 

+ U4 Qu3u5 + u5Qu4u5 + 06 Qu5u5) = O 

As c is not zero and (G.5) is true for all values of u 1, u2, u3, u4 , u5 and u6 then 

(G.6) implies that 

(G.5) 

(G.6) 

(G.7) 
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where A and B are arbitrary functions of the arguments shown. 

Also (G.8) 

(G.8) ensures that the coefficients of u~ and uJ are zero and the coefficient of u6 

reduces to 

(G.9) 

As (G.9) holds for all values of u 1, u2 , u3 , u4 and u5 then 

(G.10) 

which means (G.7) can now be written as 

(G.11 ) 

and (G.12) 

(G.12) makes the coefficients of u~ and u~ zero. (G.11) and (G.1 2) mean that the 

coefficient of u5 in the invariance condition (G.4) becomes 

dA 
dt Sau I A + 3c(Cxu3 + u I Cuu3 

+ U2 Cu u + U3 Cu u + U4 Cu u ) = Q 
13 23 33 

(G.13) 

(G.1 3) is true for all values of u1, u2, u3 and u4 and as c is not zero then 

(G. 14) 
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(G.14) means that (G.11 ) becomes 

Q = Au5 + Bu4 + C(x,t,u)u3 + D(x,t,u,u 1 ,u2 ) (G.15) 

Al 3 C 5 A O C SaA h. h . . . 
so c uu

3 
- a = or uu

3 
= 3c w 1c on mtegratmg gives 

SaAu 
C(x,t,u) = 3c: + C(x,t) (G.16) 

While 3cCxu
3 

+ dd~ = 0 on integrating gives 

(
x )dA C(x,t) = - 3c dt + C(t) (G.17) 

(G.15) to (G.17) mean that 

(G.18) implies that the coefficients of uJ and uJ are zero. The coefficient of u4 in 

(G.4) is 

(G.19) 

(G.20) 

Also D = l0
3

aAc which on integrating and by (G.20) means that u 1u2 

10aAu 1 = 3c + D(x,t,u) (G.21) 

While Duu
2 

= ic ( 4aB -
10

;:A) which on integrating with the help of (G.21) gives 

104 



2au ( SbA) D(x,t,u) = 3c 2B - 3c + D(x,t) (G.22) 

Finally Dxu
2 

= ic l3~ t -~~) which on integrating with the help of (G.22) gives 

x ~b dA dB) 
D(x,t) = 3c \3c dt - dt + D(t) (G.23) 

(G.20) to (G.23) means that (G.18) becomes 

(G.24) ensures that the coefficients of Uj and u~ in the invariance condition (G.4) 

are zero. The coefficient of u3 in (G.4) is 

4au dA -~ ct
2 

A + dC _ 3au ( SauA - ~ dA + c) 
3c dt 3c dt2 dt I 3c 3c dt 

[ 
1 [1b dA dB) 2au 1 ( SbA) 10au2A] 

- l0au2B + 2b 3c \3c dt-dt + 3c 2B -3c + 3c 

[ 
2atJi ( 5bA)] + 3c Exu, +u 1Euu, + u2Eu

1
u

1 
+3c 2B - 3c = 0 

(G.25) 

(G.25) is true for all values of x, u, u I and u2 while A, B and Care all arbitrary 

functions oft which means that 

(G.26) 

Integrating (G.26) gives 
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? 

au1 ( 5bA) E(x,t,u,u 1) = 3c 3B -3c + E(x,t,u)u 1 + F(x,t,u) (G.27) 

Also E = J_[4ab (5bA _ 2B)+ 5a
2 

uA _ ax dA + 3ac] (G.2S) 
uu 1 3c 3c 3c c c dt 

Integrating (G.28) with the help of (G.27) gives 

E( ) _ J_ [4abu (5bA _ 2B) sa2u
2 
A_ axu dA 3 C E( )] x,t,u - 3c 3c 3c + 2c c dt + au + x,t 

Finally 

4au dA x d2 A dC 2b ~b dA dB) 
3c dt - 3c dt2 + dt + 3c \. 3c dt - dt 

+ 3c Exui = 0 

From (G.29) 

au dA 
Exu1 = - 3c2 dt + E(x,t\ 

Substituting (G.31) into (G.30) gives 

{ 
au dA } 4au dA x d2 A 

3c - 3c2 dt + E(x,t\ + 3c dt- 3c dt2 

dC 2b ~b dA dB) 
+ dt + 3c \. 3c dt - dt = O 

(G.32) is true for all values of u, which means 

(G.33) means 

as a is nonzero. 

~ dA _ O 
3c dt -

dA _ d2A _ O 
dt - dt2 -

(G.29) 

(G.30) 

(G.31) 

(G.32) 

(G.33) 

(G.34) 
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Integrating (G.34) gives 

where k1 is an arbitrary constant. 

From (G.32) and (G.34) we obtain 

l ~b dB dC) 
E(x,t)x = 3c ~ 3c dt - dt 

which on integrating gives 

x ~b dB dC) 
E(x,t) = 3c ~ 3c dt - dt + E(t) 

(G.27), (G.29), (G.35) and (G.36) mean that (G.24) becomes 

2 

{
10ak1 u 2au ( 5bk1) ~ dB } au 1 

3c + 3c 2B - 3c - 3c dt + D u2 + 3c 

(3B _ 5bk1 )+ {4abu(5bk1 _ 2B) + 5a
2

k1u
2 

+ auC 
3c 9c2 3c 6c2 c 

x (2b dB dC) ] +- - - -- +E u1 +F(x,t,u) 
3c 3c dt dt 

(G.35) 

(G.36) 

(G.37) 

(G.37) ensures that the coefficient of ul in (G.4) is zero and the coefficient of u ~ 

reduces to 

(G.38) means that 

5bk 1 -B = O 
3c (G.38) 

(G.39) 
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(G.39) means that the coefficient of u2 in the invariance condition (G.4) reduces to 

2 2 
dD 10a k1 u 1 _ 2au [ 10ak1 u 1 2au ( 5bk1) ] 
dt 3c I 3c + 3c 2B - 3c + D 

+b[-2_ dC +2u1{4ab(5bk1 _ 2B)+ 10a
2

k1u + aC]} 
3c dt 9c2 3c 6c2 c 

[ 
2 (20a

2
k1J ] + c u I 3c + u I F uu + F xu = 0 (G.40) 

(G.40) is true for all values of u~ which means 

(G.41) 

As a is nonzero (G.41) means that 

(G.42) 

and from (G.38) that 

B = 0 (G.43) 

(G.42) and (G.43) reduce (G.37) to 

{
auC x dC } 

Q = Cu3 + Du2 + c-- 3c dt + E u 1 + F(x,t,u) (G.44) 

(G.44) with suitable redesignation of the arbitrary functions C, D, E and F is identical 

to (F.19). Furthermore, substitution of (G.44) into the invariance condition (G.4) 

gives 

+au(Fx-~~ !~)+au 1 F-2au 1u2D 

+ b [ 2u2(auc1C - 31c !~)+ uf Fuu + 2u1Fxu + Fxx] 

+ C [3u2(Fxu+u1Duu) + u~ Fuuu + 3uf Fxuu + FxxxJ = 0 (G.45) 
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(G.45) is also identical to the invariance condition (F.21) in Appendix F, again with 

suitable redesignation of arbitrary functions. (G.44) and (G.45) mean that the final 

form of the 5th order L-B symmetry reduces to 

where k 1, k2 and k3 are arbitrary constants. 
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APPENDIXH 

Similarity solutions for the variable coefficient KdV equation 

where m and n have arbitrary values 

yu - U yt - U yx = 0 
l X 

Using the infinitesimal generator 

atn+I 
(H3) implies that yx - -- yu = 1 and yt = - n+l 

(H2) are 

dt o= dx du 

(
atn+I ) = -1 

n+l 

dt = 0 means the similarity variable 

t = s = constant 

(H4) and (HS) mean that 

du= 
dx 

(
USn+I) 
n+l 

which on integrating gives 

(
asn+J)-1 

U = l1+l X + f(s) 

as the similarity solution. 

On substituting (H6) into (H 1) we get the ODE in s 

(Hl) 

(H2) 

(H3) 

0 so the subsidiary equations of 

(H4) 

(HS ) 

(H6) 
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- -

which on solving gives 

k 
f(s) = Sn+l 

(H8) and (H6) give the solution 

(n+l)f(s) 

s 

u = (n+l)x+ak 
atn+l 

(H7) 

(H8) 

Substituting (H9) into H(l) verifies that (H9) is a solution of the variable coefficient 

KdV equation. 
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