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ABSTRACT 

This thesis examines the efficiency of some commonly used experimental 

designs in situations where the assumption of independent errors is 

violated. In particular this research mainly involves finding efficient run 

orders for various models of two level factorial experiments, three level 

factorial experiments and response surface designs when errors are 

assumed to follow either first order moving average model or first order 

autoregressive model. In this thesis, attention is given to systematic 

methods of allocating treatments based on various algorithms which 

provide more efficient designs and lead to good estimates of the 

parameters. 
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CHAPTER 1 

INTRODUCTION 

In this chapter we discuss, in a preliminary way, some general 

philosophy necessary to the understanding of the theory and practice of 

experimental design, in particular factorial experiments. 

1.1 Factorial Experiments 

In this section we introduce the concepts and notation used in our 

investigation such as design of experiments, factorial experiment, 2k 

design, design matrix, etc. 

1.1.1 Design of Experiments 

The responses for the various conditions of the explanatory variables or 

treatments are customarily observed from an experiment. Each treatment 

is generally allocated to a single trial in an experiment. Such a trial is 

called an experimental unit or plot. Allocation of the treatments to the 

experimental units in an experiment is called the design of the 

experiment. 

Estimates of the parameters are obtained by statistical methodology. The 

precision of estimates generally depend on the way of allocating 

treatments to the plots. In this thesis, attention is given to systematic 

methods of allocating treatments based on various algorithms. This is 

found to give more efficient designs which lead to good estimates of the 

parameters. 

Certain standard types of design for certain types of problem and criteria 

for measuring the efficiency of a proposed design can be found by using 
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statistical theory. According to the Owen L.Davies view (Davies; 1978), 

the advantages of the statistical planning of experiments are: 

(i) We can take precautions before the research, that necessary steps 

are found to provide the required information. 

(ii) All possible sources of errors are investigated. 

(iii) An optimal number of observations may be found such that the 

experiment provides the required information with sufficient 

precision to avoid the unnecessary expense. It is very essential in 

industrial experiments. 

Experimental design is heavily used not only in the biological field but 

also in the industrial field. Statistical theory gives standard designs such 

as Randomized Block Design, Latin Square, Split-Plot Design, Factorial 

Design, etc. This thesis is mainly focused on factorial design and its 

efficiency. 

1.1.2 Factorial Design 

Many experimental situations need the investigation of the effects of 

varying two or more factors. For a complete exploration of such a 

situation it is not sufficient to vary one factor at a time, it may be 

necessary to examine all combinations of the different factor levels to 

explain the effect of each factor. Such an experiment is called a factorial 

experiment. 

Any attribute of the experimental conditions which may be assigned in 

the experimental design, is called a factor. For example, temperature, 

pressure, spacing between plants, different operators, different batches of 

raw material and so on. There are two types of factors, namely qualitative 

and quantitative. If a factor can be measured numerically, it is called a 
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quantitative factor; otherwise, it is called a qualitative factor. The various 

values of a factor chosen in an experiment are known as factor levels. 

Consider an experiment in which the effects of three factors are analyzed. 

Suppose the process can be carried out by each of two methods M1 and 

M2; the main stage can be carried out at each of three temperatures Tl, 

T2 and T3; four batches of raw material B1, B2, B3 and B4 can be used. 

Statistically, methods, temperatures and raw material are called factors . 

Since methods and raw material cannot be measured numerically, so 

these factors are called qualitative factors. Since temperature can be 

measured numerically, it is a quantitative factor. The "Method" factor 

has two levels due to the two different methods applied in this 

experiment. The "Temperature" and "Raw Material" have three levels 

and four levels respectively due to the three different temperatures and 

the four different raw materials used in this experiment. Thus 2 x 3 x 4 = 

24 different sets of experimental conditions are available. Statistically it 

is known as 2 x 3 x 4 factorial design. The twenty four different sets of 

experimental conditions are the treatments and the 24 different 

experimental units are called runs. 

In general, if there are f 
I 

levels for the 1st factor, f 
2 

levels for the 2nd 

factor, .... .... f k levels for the kth factor then the experiment is called f 
I 

x 

f 
2 

•••••••• x f k factorial design. Each combination of levels of different 

factors is a treatment in the factorial experiment. If f 1 = f 2 = f 
3 

= ..... . 
= f k = 2 then the design is called a 2k factorial design. That means, k 

factors are involved in this design and each having 2 levels. If f 1 = f 2 = 

..... = f k = 3 then the design is called 3k factorial design. That means, k 

factors are involved in this design and each having 3 levels. • 

The advantages of factorial design are: 

(i) To investigate a number of different factors simultaneously. 
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(ii) If we need to investigate a large number of factors in an 

experiment, screening is needed to give a rough indication of 

which factors are important. 

(iii) If we investigate the interaction between different levels of several 

factors, it will give greater comprehensiveness. 

(iv) If the errors are independent and identically distributed, each 

main effect is estimated exactly with same degree of precision . 

1.1.3 2k Design 

Consider an experiment with k number of factors and each having 2 

levels. The factors are denoted by capital letters A, B, C ... .. K. The high 

level(+) of the factor is denoted by corresponding small letters a, b, c, 

..... k. Further low level (-) is indicated by absence of the corresponding 

factor. Obviously, one level is higher than other level for a quantitative 

factor, but we arbitrarily call one level high and other level low for a 

qualitative factor. Let us now introduce the standard notation such as 1, 

a, b, ab, c .. .... , (abed ..... k) in a 2k factorial design. '1' denotes that all k 

factors are at low level; 'a' denotes that only factor A is at high level and 

other factors B, C, ...... Kare at low level; 'ab' denotes that factors A and B 

are at high level and other factors C, D ...... ,Kare at low level and so on. 

The mean responses at those treatment combinations are also indicated 

by the symbols 1, a, b, ab, ........ (abc ... ... k) . 

The term 'effect' of a factor, generally used in factorial design, is the 

change in response produced by a change in the level of th~ factor. That 

means, the effect is the difference between the average response of all 

trials carried out at the high level and the low level. 
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The main effect of a factor is an average effect. That means the main 

effect is the difference between the average response at high level and the 

average response at low level. If the effect of one factor is different at 

different levels of another then it is called a two factor interaction effect. 

Numerically the two factor interaction can be defined as half of the 

difference between the effect of one factor when other the factor is at 

higher level and the effect of corresponding one factor when other factor 

is at low level. Similarly, the three factor interaction is half of difference 

between the effect of a two factor interaction when other the factor is at 

higher level and the effect of the corresponding two factor interaction 

when the other factor is at low level. K-factor interactions may be 

obtained by this similar approach. All these definitions can be explained 

by the simple example of 23 factorial design. 

Let A, B, C be three factors and each having 2 levels, so that 23 = 8 

different treatment combinations are possible. They are low A, low B, 

low C; high A, low B, low C; low A, high B, low C; high A, high B, low C; 

low A low B, high C; high A, low B, high C low A, high B, high C; high 

A, high B, high C; which are statistically denoted by 1, a, b, ab, c, ac, be, 

abc. These different treatment combinations are simply denoted in Table 

1.1. 

Tablel.1 

Run Code A B C 

1 1 - - -

2 a + - -

3 b - + -

4 ab + + -

5 C - - + 

6 ac + - + 

7 be - + + 

8 abc + + + 

5 



Main effect A= (Average of A at high level)-(Average of A at low level) 

= ¼(a+ ab+ ac + abc) - ¼ (1 + b + c + be) 

Similarly, 

Main effect B = ¼ (b + ab + be + abc) - ¼ (1 + a + c + ac) and 

MaineffectC = ¼(c + ac +be+ abc)- ¼(1 +a+ b+ ab) 

Interaction effect AB = ½ [(effect of A when Bis at high level) 

- (effect of A when Bis at low level)] 

= ½{½([abc + ab] - [be+ b])- ½([ac + a] - [be+ b])} 

= ¼ (abc+ab+c+l)- ¼ (ac+bc+a+b) 

Similarly, 

Interaction effect BC = ¼ (abc+bc+a+l)- ¼ (ab+ac+a+b), 

Interaction effect AC = ¼ (abc+ac+b+ 1)- ¼ (ab+bc+c+a) and 

Interaction effect ABC = ¼ (abc+a+b+c)- ¼ (ab+ac+bc+l) 

In general, for k factors and each having 2 levels, the interaction effect of 

ABCD .. .... K = (½l-1 (a - 1) (b - 1) ...... (k - 1) 

Table 1.2 

Effect 

Runs Code A B C AB 

1 1 - - - + 

2 a + - - -

3 b - + - -

4 ab + + - + 

5 C - - + + 

6 ac + - + -

7 be - + + -

8 abc + + + + 

(1.1) 

AC BC ABC 

+ + -

- + + 

+ - + 

- - -

- - + 

+ - -

- + -

+ + + 

We can easily see that in the expansion of the main effect A, all treatment 

combinations containing 'a' have the plus sign and not containing 'a' 
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have the minus sign. All other main effects can be written in similar 

manner. The signs for any interaction are equal to those obtained by 

multiplying together the signs for the main effects corresponding to the 

letters in the interaction. For example, if factor A is at high level(+ 1) and 

factor B is at low level(-1) then interaction between A and B is negative 

one. That is (-1) x (+1) = (-1). Thus, the signs for all the effects in a 23 

experiment may be given in Tablel.2 . 

1.1.4 Parametrization 

The general model for a 23 experiment is 

yijk =µ+ai +13j +yk +ail3j +13j'Yk +aiyk +ail3 jyk+Eijk (1.2) 

where Y ijk :The response in a trial with factor A, at the ith level, factor 

B at the jth level and factor Cat the kth level. 

µ 

p. 
J 

: True mean of all trials 

: ith level of main effect of A 

: jth level of main effect of B 

: kth level of main effect of C 

: interaction effect of A and B 

: interaction effect of B and C 

: interaction effect of A and C 

o: ip jY k: interaction effect of A, Band C 

and E iik's (for all i,j,k) are independent identical normally distributed 

with mean zero and common variance cr 
2

. 

Since the factor A has two levels, therefore the low level • and the high 

level of the factor A effect can be written as -a and a respectively. Hence, 

2a is the main effect of factor A. Similarly other main effects of factor B 

and Care 213 and 2y respectively. As far as interactions are concerned, 2(a 

x 13), 2(13 x y), 2(a x y) and 2(a x 13 x y) are interaction effects of AB, BC, AC 
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and ABC respectively. That means, the estimated values ofµ, a, ~. y, a~, 

~y, ay and a~y are given as follows. 

1 
µ = - ( abc + ab + ac + be + a + b + c + 1) 

8 
1 1 

a = - ( abc + ab + ac + a) - - (be + b + c + 1) 
8 8 
1 1 

13 = - ( abc + ab + be + b) - - ( ac + a + c + 1) 
8 8 
1 1 

y = - ( abc + ac + be + c) - - ( ab + a + b + 1) 
8 8 

1 1 
a~ = - ( abc + ab + c + 1) - - ( ac + be + a + b) 

8 8 
1 1 !3y = - ( abc + be + a + 1) - - ( ab + ac + b + c) 
8 8 
1 1 

ay = - ( abc + ac + b + l) - - ( ab + be + a + c) 
8 8 

1 1 
a~y = -( abc + a + b + c) - - ( ab + be + ca + 1) 

8 8 

We can use dummy variables X1, ~, ~ .... Xk to represent the factors A, B, 

.......... K. If factors are two level then Xi (i = 1, 2 ..... k) is defined as 

follows. 

[
-1 if corresponding factor at low level 

Xi = + 1 if corresponding factor at high level 

Therefore, in the 23 factorial experiment, the eight treatment combinations 

can be written as (-1, -1, -1); (+1, -1, -1); (-1, +1, -1); (+1, +1, -1); (-1, -1, 

+1); (+1, -1, +1); (-1, +1, +1); (+1, +1, +1). The model can then be written 

as: 

yj = ~o + P1X1 + P2X2 + P3X3 + ~4X1X2 + PsX2X3 + p6xlx3 + 

~ 7 X 1X 2 X 3 + Ej j = 1,2, ...... n. (1.3) 

where Po=µ, P1 = a, P2 = P, P3 = y, ~4 = ap, Ps = PY, P6 = ay, and ~1 = apy 

Equation (1.3) can be represented in matrix form. That is, 

y =XP+E; (1.4) 
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Xis the (n x 8) design matrix whose elements are plus one and negative 

one, ~ is a (8xl) parameter vector and n is the number of observations. 

1.1.5 Design Matrix 

If the model is 'main effects only' ( that is, no interaction in the model, a~ 

= ~y = ay = a~y =O ) in the 23 factorial design, then the design matrix X, 

using the run order on page 3, will be given as follows . 

+l -1 -1 -1 

+l +l -1 -1 

+l -1 +l -1 

+l +l +l -1 
X= (1.5) 

+l -1 -1 +l 

+l +l -1 +l 

+l -1 +l +l 

+l +l +l +l 

If the model is a full model (including all main effects and all possible 

interactions) in the 23 factorial design, the design matrix X will be given 

as follows. 

+1 -1 -1 -1 +1 +1 +1 -1 

+1 -1 -1 +1 +1 -1 -1 +1 

+1 -1 +1 -1 -1 +1 -1 +1 

+1 -1 +1 +1 -1 -1 +1 -1 
X= 

+1 +l -1 -1 -1 -1 +l +1 

+1 +1 -1 +l -1 +l -1 -1 

+l +l +l -1 +1 -1 -1 -1 

+1 +1 +1 +l +l +l +1 +1 (1.6) 

We can get different designs by permuting the rows of the above design 

matrix. Since the matrix has 8 rows, so it can be arranged in 8! ways. 

Because of the arbitrary allocation of high(+) /low(-) levels, the above 
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arrangements can be reduced by 23 = 8 times. Th . 1 8! at 1s, on y - = 7 ! 
8 

arrangements are necessary. Further due to the arbitrary assignment of 

factors A, B and C, 7! arrangements are reduced by 3! = 6 times. That is, 

there are 
7 

! = 5 !x 7 = 840 possible designs available. 
6 

Another procedure for obtaining a design matrix Xis given below. 

Stepl: We have to keep all elements of the first column as +1 to include 

the overall mean. 

Step2: An arbitrary choice of main effects of factor A, B, Care represented 

by three orthogonal columns in which each column contains four 

+ls and four -ls. 

Step3: All possible multiplication of these orthogonal columns will 

provide all interactions of AB, BC, AC and ABC. 

For step 2 we use a matrix whose columns consist of all possible 

arrangements of four + ls and four -ls. As far as arbitrary high(+) / low(-) 

levels of factor is concerned, we can keep last number as + 1. Therefore, 
7C

3 
= 35 different arrangements are possible. We denote this matrix as M 

and it is given in the Appendix 1. Note that for step 2 a full factorial is 

obtained only if the third chosen column is not the product of the other 

two; otherwise we get a repeated half-factorial. 

1.1.6 Analysis 

The model is 

y =X~+ E 

Total error= Q =E 1 E 

rank. The least squares estimator of f3, minimizing Q, is given by 
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~ = (X 1X)- 1 X 1Y 

and 

(1.7) 

Let C= (X 1X) then the matrix C is called the information matrix. Let D = 

c-1 then the matrix D is called the dispersion matrix of the parameters. 

Therefore, 

Cov(~)= (x 'xf' cr 2 = c-1 cr 2 = Dcr 2 

(1 .8) 

Here (X 1X ) = n Ik where n is the number of observations, k is the 

number of parameters involved in the model and I is a (k x k) identity 

1 
matrix. Therefore C = n Ik and D = - Ik . 

n 

1.1.7 Orthogonality 

We have seen that the information matrix C is a diagonal matrix with 

respect to design matrix X. That means, off-diagonal elements of the C 

matrix are zero. Therefore the inverse matrix of C is also diagonal. 

That means, the estimator of one parameter is independent of the other 

parameter estimators. That is, orthogonality provides that all the main 

effects and interaction effects of the factorial design can be 

independently estimated without entanglement. 

Mathematically, the two linear functions of the observatio:µs x1 •••• ••• xn 

such that LI = al xi + a2 x2 + .... . an xn and L2 = bl \ + b2 x2··· .. ··· .. . + bn xn 

are said to be orthogonal if I, a i bi = 0 provided not all a;, b; are zero. 

From Equation (1.7), we can see that if the columns of the design matrix 
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are orthogonal the corresponding parameter estimates will be 

independent. 

Generally, fully orthogonal experiments are more efficient. That is, for a 

given number of trials they estimate the effects with greater precision. 

1.2 Correlated Models 

We have assumed in the previous sections that all £i's are independent in 

the model, but errors may be serially correlated in a real experiment. The 

estimation of the model may therefore be influenced by the above 

mentioned correlation. Thus, this type of difficult situation needs to be 

analysed in the real experiment. This is also one of the main interests in 

my research. 

If the fh observation error £i is associated with either (i-lt observation 

error £i_ 1 or (i+lt observation error £i+i then the errors are said to be 

serially correlated. If£ is high and £i+l tends to be high then it is said to be 
I 

a positive serial correlation. If£. is high and £_ tends to be low, then it is 
I 1+1 

said to be negatively serially correlated. If observations are serially 

correlated, the standard error for estimated values of the model 

parameters may be dramatically wrong. Therefore, this may lead to 

incorrect interpretation of the result of the experiment. 

For example, the responses might be affected by hidden variables. Such a 

variable is called a lurking variable. Examples of lurking variable are 

slight variations in quality of starting material, slight changes in 

techniques by operators in different shifts, weather conditions, etc. The 

lurking variable causes serial correlation. In most practical situations we 

might expect observations to be positively serially correlated. 

This correlation needs to be allowed for in order to use regression 

analysis. In practice this is attempted by one of two ways namely, 

(i) Breaking the links by using randomization. 

(ii) Selecting the appropriate design for the model dependence like 

MA(l) or AR(l) or etc. and using an appropriate analysis. 
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From this analysis, we conclude that the independence assumption is 

commonly violated in the practical experiment so that our model needs to 

be modified to a general linear model. 

That is 
Y=Xj3+E (1.9) 

where V is (n x n) positive definite covariance-variance matrix. We can 
I 
-

find a non singular matrix K such that V = K1 Kand write K = V 2 . 

(1.10) 

then Cov(E*) = Cov(K-1 E) 

= (K - 1
)

1Cov(E)K- 1 

= (K-1 )t KtKK-102 
(1.11) 

2 
=lnCT. 

It shows that the errors(£*) are uncorrelated. Therefore, we finally get, 

* 2 E ~ N(O, lnCT ) (1.12) 

This is look like a our original model with independent errors. Therefore, 

as usual the least squares estimate of 13 is given by 

~ = rcx· )1 x· J-1 cx·)1 y· 
= cx1v-1x)-1 cx1v-1Y) and (1.13) 

(1 .14) 

It is noticeable that the information matrix C = X1 V-1 X is no longer a 

diagonal matrix. Therefore the estimator of one parai;neter is not 

independent of other parameters. That means, we have lost the 

orthogonal property. 

If the errors in successive observations are assumed to follow a first order 
moving average MA(l) process with Ei = ai + oai-l where a/s are 
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independent, zero mean random shocks with variance d and -1 < o < 1, 

then Cov(Ei Ei-l) = E(Ei Ei-l) = ocr 2 

Var( Ei) = E(E~) = (1 + o2 )cr2 

0 
Hence, correlation coefficient between Ei and Ei-l = p = --2 ; -0.5 < p < 

l+o 

0.5 and the error covariance matrix V has the form: 
1 p O 0 

p 1 p 0 0 

V= 

0 0 0 

0 0 0 

p 1 p 

p 1 

The (i,jt element of v-1 can be written as 

cv-1) .. =(1+02)(-o)j-i Di-lDn-j 
u D 

l- 02n+2 
where D =---c-­

n 1- 02 

n 

for i ~ j 

(1.15) 

(1.16) 

Alternatively, consider a first order auto regressive process with 
Ei = p Ei-1 +ai, where the ai 's are independent ,mean zero random shocks 

i 

and variance d and 1 < p < 1. Thus, Ei= pi-j Ej + Iak for i > j and 
k=j 

therefore Cov( E i , E i ) = pi-id for i > j . Hence the correlation between 

any two observations is pli-jl. Thus, the V matrix has the form: 

1 p p2 pn-1 

p 1 p p2 pn-2 

V = (1 .17) 

n-1 n-2 n-3 
p p p p 1 
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Therefore, v- 1 = (l -p 2 
)-

1 S 

Where SI I = snn = 1, sii = 1 + p2 for i=2,3, .. ... (n-1) and 

s,; =[~P 
[Cheng & Steinberg, 1991]. 

1.3 Efficiency 

if 

if 

Ii -jl = i 
Ii -jj > 1 

(1.18) 

Efficiency measures how good the estimators of the parameters are for a 

specific design. A good design will give a 'small' dispersion matrix D or 

'large' information matrix C. It is possible that, at the stage of planning 

the experiment can be improved by considering efficiency. 

1.3.1 Definition of the Efficiency 

Three different measures of efficiency are considered here. These 

measures are defined in terms of the covariance matrix of the estimators 

in the generalized linear model. They are 

(i) D-efficiency: Determinant ICI i ; a where a 1s the number of 

parameters involved in the model. For example, using the 

information matrix C defined defined on page 11, the D-efficiency for 

the main effects 23 factorial experiment with independent errors is 

(ii) A-efficiency: Sum of the eigenvalues of matrix c-1. That is , it is 

equivalently tr(C1). The A-efficiency for same example considered 

above, is ½ = ½ . 
(iii) E-efficiency: Maximum of the eigenvalues of matrix c-1. The E­

efficiency for the same example is ½. 

It is noticeable that if the errors are correlated, C = X1 V 1 X and the 

efficiency of the design depends on the run order. One of the intentions of 
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this research is that we need to choose a run order which will be efficient 

for a given correlation model. 

1.3.2 Some Results on Partitioned Matrices 

If we are only concerned about a subset of the parameter vector such as 

main effects only or excluding the overall mean, then the (n x k) design 

matrix X and the parameter vector~ can be partitioned as X = (X1 I X2) and 

~ = [::] respectively, where X, and X, are (n x p) and (n x q) matrices 

respectively (k = p +q). ~ o and ~- are (p xl) and (q x 1) parameter vectors 

respectively. Therefore our original model Equation(l.9) can be written as 

Y = [x,ix, {:: ]+ E (1.19) 

According to the above partition, the information matrix C and dispersion 

matrix D can be written as 

and 

(1.20) 

where C11 and D11 are (p x p) matrices, C12 and D12 are (p x q) matrices, C21 

and D21 are (q x p) matrices, C22 and D22 are (q x q) matrices. Since C = D·1, 

Therefore 

D12
] = [I Q] 

D 22 Q I 
(1 .21) 

We can get from Equation (1 .21 ), 

(1.22) 

The usefulness of the above partition is explained by following examples. 

(1) Calculate the efficiency when the overall mean is not of interest, but it 

is in the model. Therefore X1 is the first column of the design matrix 

X and ~o is called a nuisance parameter, in otherwords ~0 is the mean 
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and r is the vector of parameters of real interest. Hence ell= rv-l ! 

= LL v ii , where v ii is the (i,j) th element of matrix V. 
i j 

From Equation (1 .20), 

=le,, [C 22 -c;\c,2c2, JI 
= lc"n;'2I (1 .23) 

D;1
2 1s the adjusted information matrix. Efficiency measures 

excluding the mean should use this. But since e 11 is a constant single 

element, therefore the order of D-efficiency for different designs will 

be the same including or excluding the mean. 

(2) Find the efficiency when higher order interactions are not in the 

model. That is, the model is reduced (~ · =Q). This implies that 

matrices e l2 1 e 21 1 en and D l2 1 D21 1 D22 are dropped out from the 

matrix e and D respectively. Therefore e = e ll and IC!= IC11 I. In the 

case of a reduced model the information matrix e ll can be easily 

obtained from the full model because the design matrix X for the full 

model is invertible, making the full model dispersion matrix easy to 

calculate. 

That is, we can get from Equation(l .21) , 

Cj\ = Dll - D1 2D2
1
2D21 (1 .24) 

Here Cj\ is the actual dispersion matrix, and D is obtained by 

partitioning the dispersion matrix we would get from using the full 

model. 

1.4 3k Design 

Sometimes the effects of several factors are investigated in which one or 

more of the factors are investigated at three levels. If there are k factors 

with each having 3 levels then it is called 3k design. 
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3k design abbreviations are different from the 2k design. Consider as an 

example the 32 design. It is common to represent the factors by capital 

letters and the three levels by 0, 1, 2. Alternatively a0 ,a, and a 2 are levels 

of the factor A and b0 , b , and b 2 are levels of the factor B. Therefore 

various representation of the treatment combinations of a 32 factorial 

design are given below. 

1st Method of abbreviation 00 10 20 01 11 21 02 12 22 

A treatment ' (0, 0)' or '(a0,bo)' indicates that factors A and B are at zero 

level; A treatment '(1,0)' or ' (a1,b0)' indicates that factor A is at first level 

and factor B is at zero level and so on. 

1.4.1 Effects for 3k Design 

It has already been shown that when a factor is investigated at two levels, 

its main effect is uniquely defined. Note that the effects for factors with 

two levels cannot be simply extended to factors with three levels. When 

a factor is examined at three levels, its main effect is defined as 

differences between the means corresponding to different levels of the 

factors. For example [Davies, 1978] let y1,y2 and y3 be the mean of 

three levels respectively. The possible difference are y, -y2,y2 -y3, 

Y, -y3, Y1 _ _!_(y2 +y3), y2 _ _!_(y1 +y3) and so on. The comparisons of 
2 2 

interest will depend on the nature of the factors, in particular whether 

they are qualitative or quantitative. For qualitative factors in which one 

level denotes a control with mean y1 and other two denote treatments, 

the comparisons of interest are either y 2 - y 1 and y 3 - y1 or y 3 - y 2 and 

1 y 1 - -(y 2 + y 3 ). For quantitative factors, comparisons of interest will be 
2 

those giving the most information on this regard such as linear and 

quadratic. For example, the comparisons y 3 -y 1 or (-1, 0, 1) and 
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y3 - 2y2 + y1 or (1, -2, 1) represent the linear and quadratic regression 

effects of the quantitative factor. 

1.4.2 Parametrization 

Tl 
T2 
T3 
T4 
Ts 
T6 
T1 
TB 
TQ 

Consider the 32 factorial structure when factors are quantitative. The 

possible combination of treatments are interpreted by the following table. 

Table 1.3 

Factor B 
b0 (-1) b, (0) b, (1) 

a
0 

(-1) Tl T4 T1 
Factor A a1 (0) T2 Ts TB 

a2 (1) T3 T6 T9 

where Tk = ai x bi (i, j = 0, 1, 2 and k = 1, 2, ., ., 9) is the k th treatment 

combination. The effect of the factors A and B are represented and 

calculated in the following manner. 

A possible model of 3
2 factorial experiment is given below. 

Y=Po +p,x, +P 2X2 +P11X ~ +P 22 X; +P ,2 X,X2 +P 112 x :x 2 +P 122 X,X; 

+P 1122 X~X; +E 
(1.25) 

where X1 and X2 are two factors, ~= (P0 ,P"P2,P11 ,P22,P ,2,P112 ,P 122, P1122) 1 

is a parameter vector and E- NII(O, cr 2 I9 ) . 

According to the parametrization and allocation of the treatment, design 
will be set up in the following manner. 

Mean Linear Quadratic 3 4 
xn X, X, x i ., x,2 X, X, X,2 X, xl x,2 X,2 X/ 
1 -1 -1 1 1 1 -1 -1 1 
1 0 -1 0 1 0 0 0 0 
1 1 -1 1 1 -1 -1 1 1 
1 -1 0 1 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 
1 1 0 1 0 0 0 0 0 
1 -1 1 1 1 -1 1 -1 1 
1 0 1 0 1 0 0 0 0 
1 1 1 1 1 1 1 1 1 

(1.26) 
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abbreviation: 3 = 3rd order= Linear x Quadratic. 
4 = 4th order = Quadratic x Quadratic. 

We can easily see that some columns are not orthogonal to other 

columns. For example column X
0 

is not orthogonal to column X/, X/, etc. 

Note that it is algebraically easy to work with set of orthogonal variables 

rather than original variables such as X
0

, X/ , ., ., etc. Orthogonal variables 

may be obtained by considering a reparametrization. That means, the 

model needs to be reparametrized in order to make orthogonal variables 

and give easy interpretation. As far as reparametrization is concerned, 

the new design matrix is given below. 

Mean Lin A Lin B QudA QudB Lin A QudA Lin A QudA 

1 
1 
1 
1 
1 
1 
1 
1 
1 

X X X X 

Lin B Lin B Qud B QudB 
-1 -1 1 1 1 -1 -1 1 
0 -1 -2 1 0 2 0 -2 
1 -1 1 1 -1 -1 1 1 

-1 0 1 -2 -1 0 2 -2 
0 0 -2 -2 0 0 0 4 
1 0 1 -2 1 0 -2 -2 

-1 1 1 1 -1 1 -1 1 
0 1 -2 1 0 -2 0 -2 
1 1 1 1 1 1 1 1 

(1.27) 

It is observed that the contrasts corresponding to the linear, quadratic, 

interaction effects, etc. have different variances. Since measures of the 

efficiency are defined in terms of covariance matrix, therefore efficiency 

for the 32 factorial experiment cannot be measured jointly. To enable 

them to be jointly assessed, they need to be rescaled to have the same 

variance. That is, unscaled effects need to be rescaled to have common 

zty cr2 
variance. Because the unscaled effect ai = -; - has variance -

1 
-, where 

zizi zizi 

Y = (Y1 ,Y2 ,Y3 ,Y4 ,Y5 ,Y6 ,Y7 ,Y8 ,Y9)' is the vector of response obs.ervations and 

zi is the th column of the above design matrix (1.27), a standardized effect 

Ai = (z;zJ½ai = z'.Y ½ has common variance d . Therefore the 
cz:zi) 2 

appropriate design for a 32 factorial design is given below. 
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Mean Lin A Lin B QudA Qud B Lin A QudA Lin A QudA 

YJ9 
YJ9 
YJ9 
YJ9 
YJ9 
YJ9 
YJ9 
YJ9 
YJ9 

X X X X 

Lin B Lin B Qud B QudB 

-Y~ -YJ6 y✓l8 Y✓is YJ6 -Y✓i2 -Y✓i2 y✓-36 
0 -YJ6 -y ./18 Y✓is 0 Ym 0 -yJ¼ 

y~ -YJ6 y✓l8 Y✓is -YJ6 -Y✓i2 Ym y✓-36 

-Y~ 0 y✓l8 -y✓18 -YJ6 0 Ym -yJ¼ 
0 0 -y ./18 -y✓18 0 0 0 /✓36 

y~ 0 y✓l8 -YJfg YJ6 0 -Y✓i2 -yJ¼ 
-Y~ YJ6 y✓l8 Ym -YJ6 Ym -Y✓i2 y✓-36 

0 YJ6 -y./18 Ym 0 -Y✓i2 0 -yJ¼ 
y~ YJ6 y✓l8 Ym YJ6 Ym Ym y✓-36 

(1.28) 

Therefore, the effects such as linear, quadratic and interaction for a 32 

factorial experiment are given as follows. 

Main effect : 
1 

Linear A= - (a
2
-a

0
)(b

2
+ 6

1
+ 6

0
) 

3 

Quadratic A = 2. (a2- 2a
1
+ a

0
)( 6

2
+ 6

1
+ 6

0
) 

6 
. 1 

Lmear B = - (a2+a1+ a
0
)(62- 6

0
) 

3 

Quadratic B = _!_ (a
2
+a

1
+ a

0
)( 6

2
-26

1 
+6

0
) 

6 

Interaction effect: 

Lin Ax Lin B = _!_ (a
2
-a

0
)( 6

2
- 6

0
) 

2 

Lin Ax Qud B = _!_ (a
2
-a

0
)( b

2
-2b

1 
+b

0
) 

4 

Qud Ax Lin B = _!_ (a
2

- 2a
1
+ a

0
)( 6

2
- 6

0
) 

4 
1 

Qud Ax Qud B = - (a
2

- 2a
1
+ a

0
)( b

2
-2b

1 
+b

0
) 

8 
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1.5 Response Surface Design 

The general purpose of the response surface experiment is given below. 

(i) To identify which variables are relevant. 

(ii) To get some inside information about the variables, such as 

whether variables act linearly or not, which variables interact with 

each other, etc. 

(iii) To seek an optimum "mixture" of the levels of the factors 

involved. 

It is commonly observed that a response (or output) variable of the 

factorial experiment depends on the levels of a number of quantitative 

predictors (or input) variable. This type of situation can be written in 

mathematical form. That is, response variable Y is a function of level of 

these variables X1, X2 •• •••• , Xk. It can be written as 

(1.30) 

where X
1 

,X
2 
.. .. .. ,Xk are factors involved or (X1 ,X2 ...... ,Xk) is called factor 

space or region of interest, E is a random error which satisfied our usual 

assumption and 11 = f(X 1 ,X2 .... .. ,Xk) which is not only a polynomial 

pattern but also unknown, is called the response surface. Note that if 

there is only one input variable, we can visualize the response variable as 

curve. It is known as response curve. 

Further, it is convenient to work with coded variables si instead of the 

actual numerical measures of the variables Xi . Let Xe be the center of the 

region and d be the difference between Xe and actual level of interest for 

Xi . Therefore, coded variable si is defined as follows. 

r= Xi-Xe 
<:>, d 

Note that it is actually linear transformations of the original Xi . 

For example, response in a chemical investigation might be yield(Y) of 

sulfuric acid and the input variables affecting this yield might be the 
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pressure(XJ and temperature(X2) of the reaction. The mathematical 

pattern is 

y = f (XI I X2) + E 

esponse (Y) 

Figure 1.5.1 

Region of 
Interest 

or 
Factor Space 

It can be drawn in three dimensional space. That is, response surface can 

be obtained in three dimensional space. It is shown in the Figure(l.5.1). 

In general, if function f is approximated by a polynomial of degree d, the 

model is called a d th order model and at least one of the factors level 

should be d+ 1. For example, if function f is approximated by a 

polynomial of degree 1, this level of the factor is 2 and a 1st order model 

of the function f has the form : 

k 

f(X1 ,xz-·····,xJ = ~o + L~ixi 
i=l 

where ~ is a parameter vector,~ t = (~ 0 , ~ 1, ...... ~k) 

(1.31) 

If function f is approximated by a polynomial of degree 2, then at least 

one of the factors level is 3 and a 2nd order model of the function f has the 

form: 

k k 

f(Xl ,xz-·····,xk) = ~o + L~ixi + L~iixf + I L~ijxixj (1.32) 
i=l i=l j( <i) i 

where ~ is a parameter vector and 
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Since a lot of responses are observed when factors are more than three, so 

it is very difficult to investigate these situations. This difficulty is 

overcome by using fractional replication in the response surface design. 

1.6 Aim of the Research 

The main aim of this research is to find an efficient run order for various 

models of two level factorial experiments, three level factorial 

experiments, etc. when errors are assumed to follow either first order 

moving average model or first order autoregressive model. Further, we 

are trying to get a general procedure for various model to obtain an 

efficient design. For this, Chapter 2 and Chapter 3 cover 2-level and 3-

level factorial experiments respectively and Chapter 4 deals with 

response surface estimation. 
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CHAPTER2 

RESULTS FOR 2-LEVEL FACTORIAL EXPERIMENTS 

In this chapter, we discuss the results for the 2-level factorial experiment 

and find the statistical and mathematical reasons for these results when 

successive observations are serially correlated. Finally suggestions will be 

given how to get most efficient design for various situations. 

2.1 MA(l) Correlated Models in the 23 Factorial Experiment 

The aim of this section is to discuss the efficiency of the design of a 23 

factorial experiment when the errors are assumed to follow MA(l) 

correlated model. Three cases will be considered: 

(i) Main effects only . 

(ii) Full model. 

(iii) No highest order interaction in the model. 

2.1.1 Main Effects Only 

Constantine [1989] investigated the efficiency of designs for the mam 

effects model of the 23 factorial experiment when the errors are assumed 

to follow MA(l) correlated models. The D-efficiency criterion, explained 

in section 1.3.1, was initially used to find the most efficient design. He 

showed theoretically that a 1st order linear approximation V-1 may be 

used to find the efficient run order of the experiment. To confirm this, the 

basic definition of the D-efficiency and a value based on h~s linear 

approximation of v-1 approach were compared for finding the efficient 

design. Finally he showed numerically that the same design is obtained as 

most efficient in both cases. 
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From his analysis, he concluded that having maximum or mm1mum 

number of sign changes in each column of the design is most efficient 

with respect to positive or negative association respectively between 

successive observations. In 2-level factorial experiment, a transition from 

either -1 to 1 or 1 to -1 is a one sign change and it is explained below by a 

simple example. Consider the design, Equation (1.5) in page 9, the number 

of sign changes in the 1st, 2nd, 3rd and 4th column of the design matrix 

are 0, 7, 3, 1 respectively. 

The following shortcomings were found in his approach: 

(i) When he calculate the D-efficiency, he included the overall mean 

column in the design matrix. Since this is a nuisance parameter, it is 

not an appropriate method to take this parameter into account. 

Efficiency should be calculated using the adjusted information 

matrix however it does not affect the ordering of the designs (see 

section 1.3.2 ). 

(ii) Only 35 different designs are considered for a 23 factorial 

experiment by Constantine, but actually 840 different designs are 

possible for a 23 factorial experiment (see section 1.1.5). Further, 

some of his designs were not full factorial design. 

(iii) D-efficiencies for p = 0.25, as given in table format in his paper 

[Constantine 1989], are wrongly calculated. 

Let ijkl denote the main effects design matrix consisting of the ith, jth, kth 

and 1th columns of the matrix X Equation(l.6) given in the section 1.1.5. 

where 1 $ i, j, k, 1 $ 8 . That means, columns i, j, k, 1 are considered as 

columns of the main effect design matrix. This notation was used by 

Constantine. For example, 1468 means 1st, 4th, 6th and gth column of the 

said design matrix X. Using his notation D-efficiencies are correctly 

calculated for his designs and given in Table 2.1. 
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Table 2.1 

Design D-efficiency Design D-efficiency 

1468 10.053 1247 8.1652 

1467 9.6125 1268 8. 1263 

1478 9.2092 1356 7.7134 

1346 9.3290 1578 7.7028 

1678 8.8306 1267 7.8237 

1348 8.9139 1234 7.9067 

1456 9.0609 1358 7.4706 

1347 8.5460 1278 7.4443 

1368 8.5699 1236 7.5954 

1458 8.7635 1357 7.1379 

1367 8.1830 1245 7.7700 

1246 8.9133 1238 7.2123 

1457 8.3848 1256 7.3747 

1568 8.3238 1258 7.0840 

1378 7.8506 1237 6.9578 

1248 8.4552 1257 6.8245 

1567 7.9311 1235 6.6211 

1345 8.1323 

We use another notation to produce all 840 full factorial 23 designs. That is 

i, j, k denotes ith, jth and kth column of matrix M given in Appendix 1, 

where 1::;; i, j, k ::;; 35. That means, if an overall mean column is included in 

the design matrix, columns 1 *, i, j, k are considered as columns of the 

main effect design, where 1 * is a (8 x 1) column vector which contains all 

plus . It is known as the nuisance parameter column. 

We find that the design with columns 1 *, 8, 17, 21 of the M matrix 

provides the highest D-efficiency value 10.053 for p= 0.25 among the 840 

designs. Therefore column 1 *, 8, 17, 21 is the main effect design matrix 

which is most efficient too. This design is the same as design 1468 which 

was selected as the most efficient design by Constantine. The design 

matrix is given below. 
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+1 +1 -1 -1 

+1 -1 +l +l 

+l +1 +1 -1 

+l -1 -1 +l 

+1 -1 +l -1 

+1 +l -1 +1 

+1 -1 -1 -1 

+1 +1 +l +1 

It is observed from this design that sign changes of column 2, 3, and 4 of 

this design are 6, 5 and 7 respectively. This is the maximum possible 

number of sign changes in the i main effect factorial design. Therefore, 

maximum number of sign changes in each column of the design matrix is 

the most efficient design when successive observations are positively 

correlated. The dispersion matrix D is given below with respect to the 

design with column 1 *, 8, 17, 21 of the matrix. 

0.1787 -0.007 0.0000 0.0000 

-0.007 0.0818 0.0000 0.0000 
D= 

0.0000 0.0000 0.0976 0.0084 

0.0000 0.0000 0.0084 0.0695 

The variances for estimates of the parameters are given by diagonal 

elements of the D matrix, in which the first diagonal element of the D 

matrix represent the variance of the nuisance parameter. Therefore, the 

(3x3) lower part of the D matrix, called here the o· matrix, is appropriate 

for efficiency measures. Since, variance for the estimates of the parameters 

are 0.082, 0.098, 0.069 which are quit small, so that it is preferable to 

estimate the parameters. In addition, the covariance of the estimates of the 

first parameter and second parameter, and first parameter and third 

parameter are zero. That means, there is no correlation between those 

estimates. Since correlation coefficient between the second and third 

parameter estimates is 0.102, therefore those two parameter estimates are 

weakly correlated. We may conclude from these argument that 

parameters are estimated effectively. 
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A histogram of D-efficiency values for all 840 design is given in Appendix 

2. The alternative measures of A-efficiency and E-efficiency are also 

considered, but these measures give the same efficient design as we found 

earlier. That means, any one of the efficiency measures is enough to find 

the efficient design under this situation. Thus, we concentrate only D­

efficiency alone. We have discussed up to this point efficiency for a single 

value p = 0.25. Next we are trying to find efficient designs among the 840 

designs for various values of p (-0.5 < p < 0.5). Results are given in Table 

2.2 and Figure 2.1. 

Table 2.2 

Maximum Design from Sign 

p values D-efficiency M matrix Changes 

-0.4 12.375 t 15, 28 ...... 

-0.3 10.558 t 15, 28 

-0.2 9.379 t 15, 28 
• 2, 2, 3 

-0.1 8.567 t 15, 28 ..A 

0.0 8.000 Any one 

0.1 9.198 8, 17, 21 ...... 

0.2 10.969 8, 17, 21 •6,5,7 
0.3 13.827 8, 17, 21 

0.4 19.342 8, 17, 21 .-,A 

It is possible to get the sign changes for the main effect columns of the 23 

factorial experiment design matrix as 1, 2, 3 when p is negative, but it is 

not a full factorial design. Therefore minimum sign changes for the main 

effect columns of the 23 full factorial experiment design matrix are 2, 2, 3. 

This corresponding design is found as most efficient design when p is 

negative. That means, minimum number of sign changes for the main 

effect columns of the 23 full factorial experiment design matrix· is most 

efficient design when pis negative. 
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Note that p = 0 means successive observations are not correlated. 

That is, 

Therefore C = X 1v· 1x = 81 4 [ ·: Xis a (8 x 4) orthogonal matrix] 

Hence D-efficiency = ICI¼ = [8 4 ]¼ = 8 (2.1) 

Thus, in the uncorrelated case we can say that D-efficiency does not 

depends on the design matrix. Therefore any design may be chosen as the 

most efficient design for this case. 

20 -
0 

>-
g 15 -
Q) 

:§ 0 m 
6 0 

0 
0 

l'.) -
0 0 

0 
0 

I I I I I I I I I 

-0.4 -0.3 -02 -0.1 0.0 0.1 02 0.3 0.4 

Correlat ion Values 

Figure 2.1 

We can see from the Figure(2.1), large positive correlation or small 

negative correlation appears to give a large gain in D-efficiency. Therefore 

D-efficiency of the design not only depends on the sign changes of the 

design matrix but also depends on the value of the correlation between 

successive observations. 

However, we can see from Table 2.2 that the same design with column 1 *, 

8, 17, 21 from M matrix is the most efficient for various positive 

correlation between successive observations, and same design with 

column 1*, 1, 15, 28 from M matrix is the most efficient for various 

negative correlation between successive observations. Therefore, since 

positive correlation is more likely in practice, in our future analysis the 

correlation between successive observations is kept as positive constant (p 

= 0.25). 
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2.1.2 Full Model 

The full model of two level factorial experiment includes both all main 

effects and all interaction effects of the factors. In some situations under 

this model, all the effects can be calculated, but it cannot be tested due to 

the unknown error term. It is known as a saturated design. 

If we consider the full model of the 23 factorial, the design matrix X is a 

(8x8) full orthogonal matrix. An example is given in the Equation(l.6), 

section 1.1.5. Thus, Xt X = 8 I
8 

Therefore, X-1 = _!_ Xt 
8 

Hence, the dispersion matrix can be written as follows. 

D = (XtY-1 Xf 

= x-1 V (X}I 

= -
1 

Xt V X [ ·: Xis a (8 x 8) orthogonal matrix] 82 

(2.2) 

(2.3) 

We can algebraically prove that D-efficiency or A-efficiency or E­

efficiency for various full designs has always same value. The 

mathematical proof for these results is considered in two cases, given 

below. 

(i) The nmsance parameter (overall mean) 1s included in the design 

matrix. 

D-efficiency = IC!¼ 

31 



-¼ 
= [¾1v1] a [ ·: Xis a (8 x 8) orthogonal matrix] (2.4) 

We can easily say from Equation(2.4) that D-efficiency is not dependent 

on the design matrix X and only depends on the covariance matrix V 

which is a constant matrix. Therefore, D-efficiency is a constant value for 

any orthogonal full design matrix. 

trace(D) = trace(--;- Xt V X) 
8 

= --;- trace(Xt XV) [ ·: Trace property] 
8 

= --;- trace( 81
8 

V) [·:Xis a (8 x 8) orthogonal matrix] 
8 

1 
trace(D) = - trace(V). 

8 

A-efficiency= sum of the eigenvalues of C 1 

= trace(D) 

1 
= - trace(V). 

8 

(2.5) 

(2.6) 

According to the Equation(2 .5), the trace of the D matrix is also constant. 

Therefore A-efficiency for various designs of full model is constant. 

Let A, be an eigenvalue of matrix D. Thus ID- /\,II= 0 . By using the 

Equation(2.2), it is equivalent to I¾ V - A,ll = 0. Hence eigenvalues A, of D 

are eigenvalues of ..!. V and vice versa. Therefore E-efficiency for any 
8 

orthogonal full design matrix is constant. 

(ii) Nuisance parameter is not included in the efficiency measure, ·but is in 

the model. 

The partition of the information matrix C provided from Equation(l.23) 

that, ICI = IC 11 IIC22. 1I where C11 = r_v- 1 ! is a single element and ! is a (8xl) 
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column matrix whose elements are one. Hence IC 22 1 I ~ l~~l,I . Since ICI is a 

constant for the full model case, so !Cn, I is also a constant. From section 

1.3.2, D-efficiency = IC 22 11Xa-IJ. Therefore D-efficiency for this case is a 

constant too. 

trace(D) = sum of the diagonal element of D. 

= d 11 + trace(D22) . 

Since trace(D) is a constant in the full model case and d 11= 
8
\ l1 Vl is a 

constant, so that trace(D22) is a constant. Therefore A-efficiency= trace(D22) 

is also a constant. 

Under this situation, the E-efficiency is the largest eigenvalue of C221 • The 

matrix C can be partitioned as follows. 

C ~ [{] V-' [! I XJ, where Xis an x (n-1 ) matrix whose columns are 

orthogonal to l . 

C = [rv-'1 rv-'x l 
x1v-11 x1v-1x 

[ v-111
1v- '] Hence, C 221 = x t y -1 - 11v-' 1 X. 

(2.7) 

(2.8) 

. [ y -lu ty -1] . 
Let V = v-1 

- f V-' l then C221= XtV X. The dimension of the matrices 

C22.1 and v· are (n-1) x (n-1) and (n x n) respectively, and one eigenvalue of 

V matrix is zero with corresponding eigenvector l1. Suppose the non zero 

eigenvalues of the V matrix are namely \, A-2 , ., . , . , A-
0

_1 which are constant 

due to the constant V matrix, and corresponding eigenvectors are namely 

~,,~2 , .,., . ,~n-J · Because of the orthogonality property of eigenvectors, 

these are all orthogonal to 1, so are basis for the column space of X. 
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Therefore, they can be represented as Xg 1, Xg2 , ., ., ., Xg
0

_1, where gi 's 

are (n-1) column vectors for j = 1, 2, ., ., ., n-1. 

Consider C22 1gi = X 1V*Xgi ; j = 1, 2, ., ., n-1. 

=X1V·v . 
-J 

= X1 \.2'.'. i [ ·: .2'.'. j is the eigenvector of v ·matrix] 

= A·U· [ ·: v =Xu . andX1X=I ]. J-J -J -J n-1 
(2.9) 

Since this is true for all j = 1, 2, ., ., .,(n-lt so that constant values of A1 , A2 , 

., ., ., A
0

_
1 

are the eigenvalues of the matrix C221 • Therefore the maximum 

eigenvalue of the matrix C221 is a constant. That is, E-efficiency is also 

constant under this situation. 

Hence, the measures of D-efficiency, A-efficiency and E-efficiency are no 

longer useful for the full model due to the constant measure. Note that it 

is explained only for three factors case, but this result is true for any 

number of factors . 

Measures of efficiency need thus to be redefined for the full model case. 

For this, a new E·-efficiency is defined as the maximum value of the 

diagonal elements of D matrix excluding the first diagonal element. That 

is, E·-efficiency is the maximum variance for the estimates of the 

parameter except nuisance parameter. Smaller variation is commonly 

desired in an experiment. Therefore the minimum value of E·-efficiency is 

the most efficient design. That means, this criterion looks like a minimax 

criterion which is used to find the most efficient design in the full model 

case. 

By considering the 23 factorial experiment for the full modet. the E·­

efficiency of various designs is investigated when the correlation between 

successive observations is 0.25. Note that only three different E·­

efficiencies namely 0.1328, 0.1484, 0.1641 are obtained among the 840 

designs. That means, three different groups of designs are available. Sign 
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changes for full design matrix of different groups are 3, 3, 4, 4, 4, 5, 5; 2, 3, 

3, 4, 5, 6 and 1, 3, 3, 4, 4, 6, 7. Therefore, these groups are distinguished by 

minimum number sign changes of the full design matrix being either 3, 2 

or 1. Maximum of the minimum number of sign changes of the full design 

matrix gives best £·-efficiency. Therefore, we can conclude that 

maximising the minimum number of sign changes of the full design 

matrix provides an efficient design for the full model. 

The diagonal elements of the D = 
1 

X1 V X matrix, which give the 
n 2 

variance of the parameter estimates, for full model of the 2" factorial 

experiment can be given as follows. 

l p 0 

p l p 0 

d .. =-
1 (x, . 

lJ 8 2 J 
. . . x nj 

p 1 xnj 

1 n n-1 

d" =-(Ix~ + 2p I.,x ii x i+Ii) for j = 1 .... n. (2.10) 
64 i=I i=I 

where xii is the (i,j t element of (n x n) design matrix X and takes the value 

+ 1 or -1 . Note that there is a relationship between the expression 

n-1 

I, X;i xi+Ii and number of sign changes of the particular column. That is, 
i=I 

n-1 

I, X;ixi+l i = (n-1) - 2Si for all j = 1, ., ., ., n, where Si is the total number of 
i= I 

sign changes fort column. 

n 

Since I, x~ = n is always constant, thus it is indicated that d ii is small if 
i=I 

n-1 

either I, x;i xi+Ii 
i=I 

n-1 

is negative when p is positive or I, X;ix i+ li is positive 
i=I 

when p is negative. Since smaller variance of the parameters estimates 

gives a more efficient design, the sequence {x ij r=I for the t column of the 
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design matrix X should be either -1, 1, -1, 1, ... ...... when pis positive or -1, 

-1, -1, ... -1, 1, ... 1, 1, 1 when p is negative. We can therefore 

mathematically say that having maximum/ minimum number of sign 

changes of the single column when correlation between successive 

observations is positive/negative leads to the smallest possible variance 

for the corresponding parameter estimate. For the full model with MA(l) 

errors, the variance of the estimator depends only on the number of sign 

changes in the corresponding column. 

A model which is reduced from the full model by equating some 

parameters to zero, is defined as a reduced model. The design matrix for 

the reduce model is obtained by deleting some columns from the full 

design matrix. The actual covariance matrix DR for the reduced model is 

given below. 

DR = [X 1v- 1 xr' [·: Xis not a full design matrix]. 

= Ci'i [·: According to the partition notation] 

= D
11 

- D
12

D;1
2
D2 1 [·: From Equation(l .25) ]. 

Due to orthogonal property and MA(l) correlation model, the off diagonal 

elements of the dispersion matrix D are relatively small. That is, the 

elements of the matrices D12 and D21 are small which are negligible. That 

means, DR is approximately same as D1r This gives a strategy for 

suggesting designs which should be efficient for the reduced model. An 

example is given in the next section. 

2.1.3 No Highest Order Interaction in the Model 

The higher order interactions are often assumed to be negligible in real 

life factorial experiments. For example, due to the lack of replication 

sometimes it may be used as an error term. We now consider the case 

when the highest order interaction is not in the model. That means, this is 

not a full model, so the D-efficiency criterion can be used to evaluate the 

efficient design. 
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All 840 different designs of the 23 factorial experiment are considered to 

investigate this situation practically when p = 0.25. Only seven different 

D-efficiency values are obtained for the various 840 different designs. This 

information is clearly given in the Figure(2.2). 
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C 
O> . ., 
Q) 

0 

200 

0 tlO 

.2l 
E 
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D-efficiency 

Figure 2.2 

Since the minimum and maximum number of sign changes for any 

column, except the nuisance parameter column, of the design matrix 

which is obtained from 23 factorial experiment are one and seven 

respectively, so that seven different numbers of sign changes are possible 

for the interaction AxBxC column. This may be the reason for seven 

different values of D-efficiency. The Figure(2.3) confirms that the D­

efficiency of the model is determined by the number of sign changes of 

the interaction AxBxC which is not in the model. 
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Figure 2.3 
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It is indicated that the minimum sign change of interaction AxBxC, which 

is one, gives the highest O-efficiency for the said model. That is, an 

efficient design for this model is generally obtained when the number of 

sign changes in the highest order interaction AxBxC is one. Next this 

result is to be proved algebraically. 

[·: From Equation(l.20)] 

= 1D11D 22 -D1 2D211 

= 1D 11 D22 1 [·: correlated model and orthogonal • D12 = Q = D 21 ] 

= ID 11 llct 88I [·: particularly this case 0 22 = d 88]. (2.11) 

The interaction AxBxC is the highest order interaction in the 23 factorial 

experiment and d 88 is the variance of the interaction AxBxC effect. It is 

desired to have a small variance for the other parameters. That means, a 

small determinant of D 11 is wanted. But the determinant of D is constant, 

so that d
88 

needs to be large. With reference to the Equation (2.10), it can be 

made by considering the situation either minimum number of sign 

changes in the 8th column of the design matrix X when p is positive or 

maximum number of sign changes in the 8th column of the design matrix 

X when p is negative. That is, to provide an efficient design, the column 

corresponding to the interaction AxBxC for the full design matrix X may 

be allocated as either -1, -1, -1, -1, 1, 1, 1, 1 when p is positive or -1, 1, -1, 

1, -1, 1, -1, 1 when pis negative. We can see that this result coincides with 

our practical results. 

But Figure(2 .2) tell us only twenty-four different designs are available as 

most efficient among the 840 designs. That is, twenty-four different 

efficient designs are obtained when the number of sign changes at the 

higher order interaction Ax BxC of the 23 factorial experiment is one. 
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A general procedure to obtain an efficient design for 2 level factorial 

experiments when the highest order interaction is not in the model, is 

given below. 

Step 1: Define the odd set and even set. 

If the number of factors is an odd number, odd set = {l, 2factor 

interaction, 4factor interaction, . . . . } and even set = {longest 

string in the design, main effects, 3factor interaction, Sfactor 

interaction, .... . .. } . 

If the number of factors is an even number, odd set = {main 

effects, 3factor interaction, Sfactor interaction, .... } and even set 

= {l, longest string in the design, 2factor interaction, 4factor 

interaction, ....... } . 

Step 2: To get the design, write down the odd set followed by the even set 

or vice versa. 

For example, odd set and even set for the 23 factorial experiment are {l, ab, 

ac, be} and {abc, a, b, c} respectively. Therefore a suitable run order for an 

efficient design when the highest order interaction is not in the model is 1, 

ab, ac, be, abc, a, b, c and corresponding design matrix is given below. 

+1 -1 -1 -1 +1 +1 +1 

+1 +1 +1 -1 +1 -1 -1 

+1 +1 -1 +1 -1 +1 -1 

+1 -1 +1 +1 -1 -1 +1 

+1 +1 +1 +1 +1 +1 +1 
(2.12) 

+1 +1 -1 -1 -1 -1 +1 

+1 -1 +1 -1 -1 +1 -1 

+1 -1 -1 +1 +1 -1 -1 

Th . h f 2nd 3th 4th 5th 6th 7th 1 f h" d . . e sign c anges or , , , , , co umns o t 1s es1gn matnx are 

4, 5, 3, 3, 7, 4 respectively. 
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Consider an other example when the number of factors is even. The odd 

set and even set for the 24 factorial experiment are (a, b, c, d, abc, abd, acd, 

bed) and (1, abed, ab, ac, ad, be, bd, cd ) respectively. Therefore a suitable 

run order for an efficient design when the highest order 

interaction(ABCD) is not in the model, is a, b, c, d, abc, abd, acd, bed, 1, 

abed, ab, ac, ad, be, bd, cd and corresponding design matrix is given 

below. 

+l +1 -1 -1 -1 -1 -1 -1 +1 +1 +1 +1 +l +1 -1 

+1 -1 +l -1 -1 -1 +l +1 -1 -1 +1 +1 +1 -1 +1 

+1 -1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +l -1 +l +l 

+l -1 -1 -1 +l +l +1 -1 +1 -1 -1 -1 +1 +1 +l 

+l +l +1 +l -1 +l +l -1 +l -1 -1 +l -1 -1 -1 

+l +l +1 -1 +l +l -1 +l -1 +l -1 -1 +1 -1 -1 

+1 +1 -1 +l +1 -1 +l +l -1 -1 +l -1 -1 +1 -1 

+l -1 +1 +1 +l -1 -1 -1 +1 +l +l -1 -1 -1 +l 

+l -1 -1 -1 -1 +1 +l +1 +l +l +l -1 -1 -1 -1 

+1 +1 +1 +1 +I +I +I +l +1 +l +1 +l +l +1 +1 

+l +1 +1 -1 -1 +I -1 -1 -1 -1 +I -1 -1 +1 +l 

+1 +l -1 +1 -1 -1 +1 -1 -1 +1 -1 -1 +1 -1 +1 

+1 +1 -1 -1 +l -1 -1 +1 +1 -1 -1 +1 -1 -1 +1 

+1 -1 +1 +1 -1 -1 -1 +1 +1 -1 -1 -1 +1 +1 -1 

+1 -1 +1 -1 +1 -1 +1 -1 -1 +1 -1 +1 -1 +1 -1 

+1 -1 -1 +1 +1 +1 -1 -1 -1 -1 +1 +1 +1 -1 -1 

The s. hanges for 2nd 3th 4th 5th 6th t h 8th 9th 10th 11th 12th 13th 14th 15th 1gn C , , , , , , , , , , , , , 

columns of this design matrix are 5, 10, 13, 9, 5, 12, 8, 7, 11, 4, 8, 12, 9, 6 

respectively. 

In both case, we can see from the above designs that the number of sign 

changes for highest order interaction is one. That means, the above 

mentioned procedure gives an efficient run order for 2-level "factorial 

experiment when the highest order interaction is not in the model. 
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2.2 AR(l) Correlated Models in the 23 Factorial Experiment 

This section is similar to section 2.1. The only difference is that successive 

observations are assumed to follow an AR(l) correlated model. Three 

cases of the 23 factorial experiment will be considered under this situation: 

(i) Main effects only 

(ii) Full model 

(iii) No highest order interaction in the model. 

2.2.1 Main Effects Only 

Ching-Shui Cheng and David M.Steinberg [Cheng & Steinberg, 1991] 

investigated the effect of different run orders on the efficiency of the 

design for the main effects model of the 2-level factorial experiment when 

observations are correlated by a first order autoregressive error model. 

The D-efficiency criterion is used to find the efficient design. Results of 

this situation were found to be similar to Constantine's results. That is, 

run orders with many sign changes will be efficient when observations 

are positively correlated. According to this result, they provided an 

algorithm to find the efficient run order for any number of factors. It is 

known as the reverse foldover algorithm. According to their algorithm 

[Cheng & Steinberg, 1991], the following steps are needed to find the most 

efficient run order. 

" (1) Select as the first generator the longest string in the design. If there 

are several such strings, any may be selected. 

(2) Select the remaining generators, choosing at each step the longest 

string in the design that preserves a generator set. Ties may be 

broken arbitrarily. 

(3) Choose any run as the first run in the design. 

( 4) Having written down the first 2u runs, 0 ~ u ~ k - p, generate the next 

2u as follows: write down the 2u runs in reverse order and multiply 

each of the new runs by the (u+lt generator. 

(5) Repeat step 4 until the entire design has been generated." 
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They used the 24 factorial experiment for illustration. Here we consider 

the 23 factorial experiment which makes it easier to check their algorithm 

due to the possibility of examining all 840 designs. Therefore we are 

trying to confirm this algorithm via the 23 factorial experiment 

systematically rather than using randomized run orders of the 24 

experiment. 

Consider the 23 factorial experiment to find the efficient run order with 

respect to the reverse foldover algorithm. The run order 'abc' is the first 

generator. Any two runs with two factors at high level can be used as 

remaining generators, say 'ab' and 'be'. Let 'a' be the first run. According 

to step 4, the first two runs are 'a' and 'be'[·: ax abc = be]. Reversing the 

order and multiplying by 'ab', third and fourth run orders will be 'ac' [·: 

be x ab = ac] and 'b' [·: a x ab = b] respectively. Again reversing the order 

and multiplying by 'be' provides the complete run order: a, be, ac, b, c, ab, 

1, abc and the design matrix given below according to this run order. 

+1 +1 -1 -1 

+1 -1 +1 +1 

+1 +1 -1 +1 

+1 -1 +1 -1 

+1 -1 -1 +1 
(2.13) 

+1 +1 +1 -1 

+1 -1 -1 -1 

+1 +1 +1 +1 

This run order has the 18 sign changes which is the total maximum 

possible. According to our notation of section 2.1.1, representation of this 

design is columns 1 *, 8, 21, 17 of the M matrix. This design is the same as 

Constantine's efficient design. 

Note that the algorithm gives different run orders depending on the 

selection of first run order. For example, if we select the first run order as 

'1' and generator as 'abc', 'ab' and 'be' then the final run order will be 1, 

abc, c, ab, ac, b, a, be. However, the total number of sign changes for this 
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design is eighteen and D-efficiency of the new design will be the same as 

the earlier design Equation(2.13) due to the arbitrary allocation of 

high/low levels. That means, the D-efficiency value does not change if we 

interchange all plus one and all negative one for particular column. 

We find that the design with columns 1 *, 8, 17, 21 of the M matrix 

provides the highest D-efficiency value 11.5441 for p = 0.25 among the 

840 designs. Therefore column 1 *, 8, 17, 21 is the main effects design 

matrix which is most efficient. That is, the most efficient design of the 23 

factorial experiment, which is obtained by an exhaustive search, coincides 

with the efficient design of 2-level factorial experiment which is obtained 

by the foldover algorithm. 

The dispersion matrix D is given below with respect to the design with 

column 1 *, 8, 17, 21 of matrix M when p = 0.25. 

D= 

0.1923 

0.0000 

0.0000 

0.1233 

0.0000 0.0000 

0.0199 -0.0017 

0.0000 0.0199 0.1015 0.0199 

0.0000 -0.0017 0.0199 0.1233 

We can see that variances of the parameter estimates are very small and 

off diagonal elements of the D matrix are almost zero. It indicates that 

parameters will be effectively estimated by the above mentioned design 

matrix. A histogram of D-efficiency values for 840 design under this 

situation is given in Appendix 3. The alternative measures of A-efficiency 

and E-efficiency were considered to find different efficient designs, but 

these measures also give same efficient design as we found earlier. 

Since this is an AR(l) model, theoretically p lies between negative one to 

positive one. Therefore we need to consider the D-efficiency for various 

values of p. Results are given in Table(2.3) and Figure(2.4). 
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Table 2.3 

p values Maximum Design from 
I 

Sign 
D-efficiencv M matrix_ Changes 

-0.9 86.4043 1. 15, 28 
-0.8 41.8552 1, 15, 28 
-0.7 27.1016 1, 15, 28 
-0.6 19.8109 1, 15, 28 
-0.5 15.5193 1, 15, 28 • 2,2,3 
-0.4 12.7424 1, 15, 28 
-0.3 10.8478 1, 15, 28 
-0.2 9.5242 1, 15, 28 
-0.1 8.6053 1, 15, 28 ~ 
0.0 8 Anvone ~ 
0.1 9.1421 8, 17,21 
0.2 10.6305 8, 17,21 
0.3 12.6011 8, 17,21 
0.4 15.2838 8, 17,21 
0.5 19.0957 8, 17,21 • 6,5, 7 
0.6 24.8742 8, 17,21 
0.7 34.5774 8, 17,21 
0.8 54.0859 8, 17,21 
0.9 112.8235 8 17 21 ~ 

Note that p = 0 situation is similar to section 2.1.1 (see Equation2 .1). We 

can say from Table 2.3 that the efficient design depends only on the 

correlation sign. We can see from the Table 2.2 and Table 2.3 that D­

efficiency values for both cases are almost same when p values are small 

and same efficient design is found whether the MA(l) or AR(l) model is 

assumed. 
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We wish to know how D-efficiency is affected by the total number of sign 

changes of the design matrix X when p is either large or small. 840 designs 

44 



were considered for this when p = 0.25 and p = 0.9 . D-efficiency versus 

total number of sign changes of the design matrix X were plotted in both 

cases. These are given in Appendix 4 & 5 . We can see from Appendix 4 & 5 

that D-efficiency is gradually increased as the total number of sign 

changes of the design matrix X increases. However the maximum D­

efficiency value for a given number of total sign changes is in general 

greater than the minimum D-efficiency value obtained where there is one 

more sign change. We can observe that very few designs overlapped 

when p = 0.25, but lot of designs overlapped when p = 0.9. That is, the 

amount of overlap of the range of D-efficiency values in successive 

numbers of sign changes is increased as p value increase. This will be 

discussed in section 2.2.3 algebraically. 

2.2.2 Algorithm for Minimum Number of Sign Changes of Design Matrix 

We have already mentioned that the minimum / maximum number of sign 

changes of the design matrix is most efficient when the correlation 

coefficient is negative/ positive. But Cheng and Steinberg only gave an 

algorithm to get the maximum number sign changes in the run order. We 

are providing below an algorithm which gives the minimum number of 

sign changes in the run order. Steps for the algorithm are given below. 

Step 1: Select the first run order as longest string in the design. 

Step 2: Select as generators the main effects high level. Viz. a, b, c, ., ., 

etc. 

Step 3: Having written down the first 2u runs, 0 $ u $ k - p, generate 

the next 2u as follows: write down the 2u runs in order and 

multiply reversibly each of the new runs by the (u+ lt 
generator. 

Step 4: Repeat step 3 until the entire design has been generated. 

Step 5: After obtaining the entire design, move the first run to the 

end. 
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Consider a 23 experiment as an example. 

Step 1: 

Step 2: 

abc is a first run order because it is the longest string in the 

design. 

a, b, c are the generators, being the high level of the main 

effects. 

Step 3&4: Since (abc) x (a) = be, so first two run orders are abc, be. 

Step 5: 

Further, (abc, be) x (b) = c, ac, so first four run orders are 

abc, be, c, ac. If we apply the same procedure, run orders of 

the design matrix will be abc, be, c, ac, a, 1, b, ab. 

Final run orders of the design are be, c, ac, a, 1, b, ab, abc. 

The design matrix is obtained by algorithm and given below. 

+1 -1 +1 +1 

+1 -1 -1 +1 

+l +l -1 +1 

+l +1 -1 -1 

+l -1 -1 -1 
(2.14) 

+l -1 +1 -1 

+1 +1 +l -1 

+1 +1 +1 +1 

Using our notation, this design matrix is denoted by columns 1', 1,15, 28 

of the M matrix which is same as we found earlier. This algorithm is now 

tested only three factors case. It will be tested for four factors in section 

2.3. 

2.2.3 Full Model 

In this section, all possible effects of a 23 factorial experiment are 

considered when errors are assumed to follow AR(l) correlated models. 

In the 23 factorial experiment, an (8 x 8) orthogonal design matrix can be 

obtained for full model case. Hence, D-efficiency, A-efficiency_ and E­

efficiency are no longer useful here too to find an efficient design (see 

section 2.1.2). According to the same argument of section 2.1 .2, E·­

efficiency is again used to find the efficient design. 
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considered separately. We now try to find the reason for this 

algebraically. 

If pis small then p2, ., ., ., p7 are negligible. Therefore, the V Equation(l.17) 

matrix under the AR(l) situation looks like a MA(l) situation V matrix 

Equation(l.15). Hence, the dispersion matrix D = 
8
\ Xt V X (see Equation 

(2.15)) for the full model when errors are assumed to follow an AR(l) 

correlated model is approximately the same as the dispersion matrix D of 

full model when errors are assumed to follow an MA(l) correlated model. 

It indicates that E'-efficiencies are theoretically approximately the same in 

both cases when p is small. That means, our earlier result is theoretically 

confirmed for full model case when pis small. Next, we discuss about the 

main effect model case. 

'1 1 X21 X71 Xg1 I p p2 p6 p7 '11 x,2 X17 '18 

x,2 x:!2 X72 Xs2 p I p p 2 pl p6 Xzl X22 X17 '28 

I 
D= -

32 
(2.15) 

X17 X:?7 X77 Xg7 p 6 pl p• p I p X7 1 X72 X77 X7g 

•1s x28 X78 '88 p7 p6 pl p I •s1 •s2 Xg7 x88 

Since we are considering about the main effects model, the D-efficiency 

criterion can be used to find the efficient design rather than E"- efficiency. 

By using the partition concept of the full model, C11 is enough to calculate 

the D-efficiency for main effects model and is defined as 

[D 11 - D12D;~ D 2 1 r (see Equation(l.24)). Remember Equation(2.3) for full 

model that, D = ~ Xt V X. 
8 

Since if p is small then p2
, ., . , . , p7 are negligible, therefore we can easily 

understand from Equation(2.15) that the elements of the partition matrix 

D12 and D21 are small. That is, C11 = D;\ and the t diagonal element of the 
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8 7 

D matrix is A .ii = -
1-(I,, xt + 2p I,, xiixi+I) if p is small. That means, the 

64 
i=l i=l 

main effects model with AR(l) correlated errors will give similar results to 

the main effects model with MA(l) errors if p is small. Therefore, we can 

generally say that we don't need to think about the error correlated 

models such as MA(l) or AR(l) if pis small. 

Returning to the full model when errors are assumed to follow an AR(l) 

correlated model, the t diagonal element(\) of the D matrix 

(Equation(2.15)) is given below. 

I 8 7 6 5 2 

A.ti::: 64(2.. x ij + 2p I x •l i+l. j + 2p
2 2.. x 1j xi+:!.j + 2p

3 2.. x ij xi+J, ;+, ... + .. . +2p
6 L, xij x i+6.j + 2p 

7 
x ,j xi+J.J) (2 .16) 

i:I i=l 1:z:\ i= I i=I 

Due to the different lags, the product of the x . and x. k ' may be either 
IJ I+ ,J 

positive or negative. For example, if we want more sign changes in the t 
column (viz. lag one), the product of the xii and x;+z.j (viz. lag two) will tend 

to be positive and so on. 

We can easily see from Equation(2.16) that a diagonal element of the D 

matrix highly depends on the sign changes at different lags in the 

corresponding column if p is large. That means, £·-efficiency depends on 

other lags too. Due to the different patterns of sign changes, we have got 

five different E·-efficiency values for full model when pis large. 

2.2.4 No Highest Order Interaction in the Model 

We can obviously see from the previous section that this situation is 

similar to the same model pattern with MA(l) correlated errors when p is 

small. Therefore, this case is investigated here only for large p value. 

All 840 different designs of 23 factorial experiment are considered to 

investigate this situation practically when p = 0.9. Seven different groups 
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of D-efficiency values are obtained for the various 840 different designs 

due to the seven possible sign changes of interaction AxBxC column. 

Within a group, different D-efficiency values are obtained due to the 

different pattern in the corresponding column. This information is clearly 

given in the Fig ure(2.5) . 

70 -

50 -
I 

1 
I I I I I I 

2 3 4 5 6 7 
Num ber of Sgn Olangesin A xB xC 

Figure 2.5 

The Figure(2.5) clearly indicates that the D-efficiency for the model is 

determined largely by the number of lag-one sign changes of interaction 

AxBxC which is not in the model. It is indicated that the minimum sign 

change of interaction AxBxC which is one, gives highest D-efficiency for 

the said model. That is, an efficient design for this model is generally 

obtained when the number of lag one sign changes of the higher order 

interaction AxBxC is one. Algebraic proof and method of approach to 

obtain the efficient design, given in section 2.1.3, are still valid for this 

situation too. 

2.3 24 Factorial Experiment 

The purpose of this section is to investigate whether results of the 23 

factorial experiment are relevant to the 24 factorial experiment or ·not. We 

have already mentioned in the previous section that the first order 

autoregressive error correlated model is approximately the same as the 

first order moving average correlated model unless p is large. Therefore, 

two cases of the first order autoregressive error correlated model are 
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sufficient to satisfy the both error correlated model such as AR(l) and 

MA(l). They are (i) pis small 

(ii) p is large. 

Cheng and Steinberg [Cheng & Steinberg, 1991] suggested by usmg 

reverse foldover algorithm that the same efficient design will be obtained 

for the main effects 2' factorial experiment, if p is either small or large. 

By using the reverse foldover algorithm for the 2' factorial experiment, 

this run order will be: 1, abed, d, abc, cd, ab, c, abd, ad, be, acd, b, ad, be, 

a, bed. According to this run order, sign changes for the main effect 

columns of the design matrix are 14, 15, 13 and 11 respectively. According 

to the Constantine method, 15, 14, 13 and 12 sign changes for main effects 

columns of the design are possible for 24 factorial experiment. However 

those designs are not full factorial design. It is explained by following 

simple example. 

+l -1 +l -1 +l 

+l +l -1 +l -1 

+1 -1 +1 -1 +l 

+1 +1 -1 +1 -1 

+1 -1 +l +l -1 

+l +l -1 -1 +l 

+1 -1 +1 +l -1 

+1 +1 -1 -1 +1 

+1 -1 -1 +1 +1 

+1 +1 +1 -1 -1 

+1 -1 -1 +1 +1 

+1 +1 +1 -1 -1 

+1 -1 -1 -1 -1 

+1 +1 +1 +1 +1 

+1 -1 -1 -1 -1 

+l +1 +1 +1 +1 
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The sign changes for the second, third, fourth and fifth columns of the 

above design are 15, 14, 13 and 12 respectively. This is an orthogonal 

design but not full factorial design. 

Following the discussion in section 1.1.5, the number for different run 

orders of the 24 factorial experiment is 54486432000 [ 
16 

! ] . Due to the 
16 * 4! 

huge number of designs, it is infeasible to examine all possible designs of 

the 24 factorial experiment. Instead, different designs are obtained by 

randomly changing the run orders of the 24 factorial experiment. Different 

run orders are randomly taken from standard run order (1, a, b, ab, c, ac, 

be, abc, d, ad, bd, abd, cd, acd, bed, abed) of the 24 factorial experiment. 

Table 2.4 

D-ef ficiency 501 Designs D-efficiency Five 

for foldover Summary 

algorithm 

Min L. Median U. 

Quartile Quartile 

p = 0.25 24.062 15.359 17.547 18.247 18.798 

Main 

effect 

Sign 14, 15, 13, 11 6, 6, 3, 6 7, 9, 8, 5 9, 6, 10, 7 8, 7, 12, 7 

changes 

p = 0.9 250.036 90.389 130.014 141.6765 153.878 

Main 

effect 

Sign 14, 15, 13, 11 7, 4, 5, 6 10,8,6,5 8, 6, 7, 10 9,8,8,8 

changes 

Five hundred and one random designs are taken to test our uncertainty. 

For this, we find the D-efficiency when errors are assumed to follow a 

first order auto regressive model and the number of sign changes for main 

effects of the above mentioned five hundred and one designs. 
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We found that all five hundred and one design D-efficiency values are 

smaller than the reverse foldover algorithm design D-efficiency, for both 

small(0.25) and large(0.9) values of p. The results are given in Table 2.4. 

From this, we can say that the reverse foldover algorithm may be used for 

four factors. 

Next, consider the case of negatively correlated errors. We gave an 

algorithm for negative correlation in the section 2.2.3. It was examined 

only for three factors. Next, we verify this algorithm for four factors. 

Table 2.5 

D-efficiency 501 Designs D-efficiency Five 

for foldover Summary 

algorithm 

Min L. Median U. 

Quartile Quartile 

p = -0.25 21.859 14.349 16.497 17.124 17.767 

Main 

effect 11, 13, 

Sign 7, 4, 2, 2 9, 10 10, 7, 5, 12 7, 11, 7, 7 7, 5, 10, 8 

changes 

p = -0.9 209.1702 68.278 107.029 119.297 133.244 

Main 

effect 13, 11, 

Sign 7, 4, 2, 2 9, 9 6, 10, 9, 9 11, 8, 7, 6 6, 6, 7,10 

changes 

By using this algorithm for the 24 factorial experiment, the chosen run 

order will be: bed, cd, acd, ad, d, bd, abd, ab, b, 1, a, ac, c, be, abc, abed. If 

p = -0.25, D-efficiency for this run order is 21.8592 and sign changes for 

main effect columns of the design matrix are 7, 4, 2 and 2 respectively. 

Five hundred and one random designs, which are obtained by the 
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procedure described earlier, are taken to test this algorithm. We found 

that D-efficiency using the algorithm is higher than all five hundred and 

one random D-efficiency values. The results are given in Table 2.5. 

Therefore, this algorithm appears to be useful for any number of factors to 

find the most efficient design when correlation between successive 

observations is negative. 
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CHAPTER3 

RESULTS FOR 3-LEVEL FACTORIAL EXPERIMENTS 

3.1 Preface 

The structure and notation for a 3-level factorial experiment have already 

been discussed in sections 1.4.1 & 1.4.2. Since this is a 3-level factorial 

experiment, both linear and quadratic effects need to be considered when 

we are going to investigate the efficient run order for a 3-level experiment, 

and a very huge number of designs is available in this situation. Therefore, 

efficient designs will be found by using a random sample as was done for 

the 24 factorial experiment. Three different models will be considered: 

(i) Linear effects only 

(ii) Main effects only 

(iii) Main effects and Linear interactions. 

Since none of these situations comprise a full model, the D-efficiency 

criterion will not be constant, so can be used to find the efficient run order 

for the 3-level factorial experiment. 

3.2 Linear Effects Only 

Initially, we are considering the linear effects of the 32 factorial experiment 

when errors are assumed to follow a first order moving average model. We 

have taken one thousand random designs from the standard form (see 

Equation 1.26) for this investigation when the correlation coefficient is 0.25. 

The highest D-efficiency value among the thousand randqm designs was 
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9 .0267. Therefore, the most efficient design among the said designs and 

corresponding dispersion matrix Dare given below. 

[ 

0.1593 -0.0035 0.0008] 
D = -0.0035 0.1196 0.0108 

0.0008 0.0108 0.10356 

Since the variances of the parameters, which are the diagonal elements of 

the D matrix, are small and the off diagonal elements are very small too, 

this suggests that the parameters are estimated effectively. 

+1 +1 +1 

+1 0 0 

+1 +1 0 

+1 -1 0 

+1 +1 -1 

+1 -1 +1 

+1 -1 -1 

+1 0 +1 

+1 0 -1 

Note that this is an orthogonal full factorial design matrix, and number of 

sign changes in the second and third columns of the above design matrix 

are three and four respectively. 

We have found from the results of the 2-level mam effect factorial 

experiment that maximum possible sign changes for the each column of the 

design matrix will provide good estimators for the parameters. We have 

difficulty to use this concept for the 3-level factorial experiment, because 

the second level of the 3-level factorial experiment is denoted as zero. That 

means, it is not clear how to define sign changes for each linear effect 

column in such a way that it relates to the variance of the parameter. 

Therefore, we have to get some information about the zero algebraically. 
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With reference to the full model and the reduced model on page 31 and 

page 36 respectively, the actual covariance matrix DR can be represented as 

D11 -D 12D2iD 21 • Due to the very small values of the D12 and D21 , DR is 

approximately same as D11 and the t diagonal element of D11 is given as 

follows . 

p 0 

p 1 p 0 

0 p 1 p 0 

0 0 

0 0 

0 p 

Q Q p 1 X9j 

(3.1) 

where x . takes the values either -1 or O or 1 for all i = 1 . .. 9. 
I) 

(3 .2) 

Since small variance is more desirable to estimate the parameters 

effectively, we want dii to be small. If zero comes in between the negative 

one and positive one, the product will be zero. In fact, if the product is 

negative one, the diagonal element d .. will be small. To make d .. smaller we 
JJ )) 

can arrange the column in the following manner. First write down the 

alternative numbers except zero then fill the rest of the column by zero. For 

example, one of the linear effect columns for 32 design should be 1, -1, 1, -1, 

l, -1, 0, 0, 0 and the number of sign changes of this column is five, where 

only transition either from -1 to 1 or from 1 to -1 are counted as sign 

changes here. 
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These results suggest that it may be possible to get the efficient run order 

by maximising the sign changes. In the next section, an algorithm is 

suggested for getting the efficient run order for the linear effect of the 3-

level factorial experiment when errors are assumed to follow the MA(l) 

model. 

3.2.1 Algorithm for the Linear Effects of the 3-Level Factorial Experiment 

Before giving the algorithm steps, we have to keep some mathematical 

operations in mind which are explained below. 

Let a
0 

= -1, a1 = 0 and a2 = + 1 

then ai x ai = a2 for i = 0, 2; 

ai x a1 = a1 for i = 0, 2; 

and a1 x a2 = a0 ; 

where a
0

, a
1 

and a
2 

are called first, second and third level of the factor A. 

Step 1: Select the first run order as the third level of each factor . 

Step 2: Select the first generator as the first level of each factor. 

Step 3: Generate the new run order as follows. Having written down 

the runs in order, multiply by generators in reverse order and 

add to form the new run order. If the same run is produced 

again, it is to be ignored at that position 

Step 4: Select the other generators sequentially by increasing the level 

for one factor when other factor levels are constant. [Example 

for 32 factorial experiment : a0b0, a1b0, a2b0, a0b 1, a1b 1 , a2 b 1, ., ., 

etc.] 

Step 5: Repeat from step 3 until the entire design has been generated. 

58 



Consider a 32 factorial experiment as an example. 

Step 1: Since a2 and 62 are the third levels of the factors A and B 

respectively, a
2 
6

2 
is the first run order. 

Step 2: Since a
0 

and 60 are the first level of the factors A and B 

respectively, a
0 
6

0 
is the first generator. 

Step 3: The second run order is a262 x a
0
b

0 
= a060 • [Considered as an 

order pair multiplication]. 

Step 4: The second generator is a1b0 • Therefore, the run orders will be 

a
0 
6

0 
x a1 60 

= a1 62 and a2 62 x a1 60 = a1 60 • That is, the first four 

run orders are a2b2, a
0
b0, a1 62 and a1 60 • The third generator is a2 

6
0

• Since a1 60 x a2b0 = a1b2 and a1b2 x a2 60 = a1 60 are already in 

the run order, so these two run orders are ignored at this point. 

Therefore the new runs will be a0 60 
x a2 60 = a0 62 and a2 62 x a2 6 0 

= a
2 
6

0
• The first six run orders are a2 62, a0 60, a1 62, a1b0, a0b2 and 

a
2 

6
0

• The fourth generator is a
0
b 1• According to the similar 

manner, runs are a0b 1, a2b1 and a1b1; other runs, which are 

repeated again, are ignored. 

and a1b 1• 

+1 +1 +1 

+1 -1 -1 

+1 0 +1 

+1 0 -1 

+1 -1 +1 (3.3) 

+1 +1 -1 

+1 -1 0 

+1 +1 0 

+1 0 0 
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The design matrix obtained by the algorithm is given in Equation(3.3 ). Sign 

changes for the second and third column of this design matrix are 4 and 5 

respectively. D-efficiency for this design matrix is 10.0797 which is higher 

than the D-efficiency values for all thousand random designs when p = 

0.25. Therefore, this design seems to be a most efficient design. That means, 

this method is useful to find the efficient design under this situation. 

However, we next examine this method for three factors in order to test the 

algorithm. 

According to the given algorithm, the run orders for the linear effect of 33 

factorial design are a2 b2 c2, a0 b0 c0, a1 b2 c2, a1 b0 c0, a0 b2 c2, a2 b0 c0, a0 b 1 c2, a2b 1c0, 

al bl c2, al b l co, a2 bl c2, ao bl co, ao bo c2, a2 b2 co, al bo c2, al b2 Co, a2 bo C2, ao b2 co, a2 bo cl, 

a0 b2 cJ/ a1 b0 c1, a1 b2 c1, a0 b0 c1, a2 b2 cJ/ a2 b 1 c1, a0 b1 cJ/ a1 b 1 c1• The design matrix 

of these run orders is given in Equation(3.4 ). 

The sign changes of the second, third, fourth columns of this design matrix 

are 9, 16 and 17 respectively. The D-efficiency for this design matrix is 

31.0177 when p = 0.25 and the dispersion matrix Dis given below. 

0.0547 -0.0006 -0.0005 -0.0004 

-0.0006 0.0389 0.0033 0.0008 
D= 

-0.0005 0.0033 0.0301 0.0007 

-0.0004 0.0008 0.0007 0.02886 

Five hundred random designs are taken for testing purpose. The highest 

D-efficiency among the five hundred design matrix is 24.691 when p = 

0.25. Thus the D-efficiency which is obtained by the algorithm is much 

higher than all five hundred random designs D-efficiency. That suggest 
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that the algorithm is still useful to find an efficient design for the linear 

effect of the 3-level factorial experiment. 

+1 +1 +1 +1 

+1 -1 -1 -1 

+1 0 +1 +1 

+1 0 -1 -1 

+1 -1 +1 +1 

+1 +1 -1 -1 

+1 -1 0 +1 

+1 +1 0 -1 

+1 0 0 +1 

+1 0 0 -1 

+1 +1 0 +1 

+1 -1 0 -1 

+1 -1 -1 +1 

+1 +1 +1 -1 

+1 0 -1 +l 

+l 0 +1 -1 

+l +1 -1 +l 

+l -1 +1 -1 

+1 +1 -1 0 

+1 -1 +1 0 

+1 0 -1 0 (3.4) 

+1 0 +1 0 

+1 -1 -1 0 

+1 +1 +1 0 

+1 +1 0 0 

+1 -1 0 0 

+1 0 0 0 

Next, we need to consider the linear effects of the 32 factorial experiment 

when errors are assumed to follow a first order auto regressive model. 

Since if p is small then p2
, p3, ., ., ., p8 are small, so the error covariance 
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matrix which is defined as first order auto regressive pattern, is 

approximately the same as the error covariance matrix for a first order 

moving average pattern. Therefore, it is enough to consider this situation 

only for large p. 

One thousand designs for the linear effect of the 32 factorial experiment are 

chosen randomly to investigate this situation when errors are assumed to 

follow a first order auto regressive model (p = 0.90). The highest D­

efficiency among the thousand designs is 92.6948, but the D-efficiency 

which is obtained by the algorithm is 94.8094. That is, the algorithm will 

provide the efficient design here too. 

Five hundred designs for the linear effect of the 33 factorial experiment are 

chosen randomly to investigate this situation when errors are assumed to 

follow first order auto regressive model (p = 0.90). A histogram of D­

efficiency values for all five hundred designs is given in Appendix 6. The 

highest D-efficiency among the five hundred designs is 233.2113, but the 

D-efficiency which is obtained by the algorithm is 296.5731. That means, 

the highest D-efficiency is obtained by the algorithm. Therefore, the 

algorithm provide an efficient design here too. Note that variance of the 

parameters is the sum of product terms at 1•t, 2nd
, ., ., 8th lag. The large 

value of D-efficiency is obtained due to this reason. 

We can conclude that the design which has the maximum possible number 

of sign changes and maximum possible zero's pooled together in each 

linear effect column of the design, is a most efficient design when 

correlation between successive observation is positive, whether the MA(l) 

or AR(l) model is assumed. The above algorithm give an efficient run 

order in both cases. 
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3.3 Main Effects Only 

Main effects of three level factorial experiment include both linear and 

quadratic effects of the main factors. In the design matrix, the three levels 

for the linear and quadratic effect are denoted by -1, 0, 1 and 1, -2, 1 

respectively. That is, negative one and zero in the linear effect column 

convert to the quadratic effect column as positive one and negative two 

respectively in order to get an orthogonal full factorial design. In this 

situation, we need to use the standardised orthogonal design matrix in 

order to compare the variance of the parameters (see section 1.4.2). 

Note that, maximum or minimum number of sign changes in the linear 

effect columns will provide poor sign changes in the quadratic effect 

column. For example, the maximum number of sign changes in the linear 

effect column of the 32 factorial experiment is achieved with 1, -1, 1, -1, 1, -

1, 0, 0, 0 and the corresponding quadratic effect column is 1, 1, 1, 1, 1, 1, -2, 

-2, -2. The sign changes of the linear and quadratic effect columns are 5 and 

1 respectively. On the other hand, the minimum number of sign changes in 

the linear effect column of the 32 factorial experiment is achieved with 1, 1, 

1, 0, 0, 0, -1, -1, -1 and the corresponding quadratic effect column is again 1, 

l, 1, -2, -2, -2, 1, 1, 1. The sign changes of the linear and quadratic effect 

columns are O and 2 respectively. Therefore, we cannot simply extend the 

above mentioned algorithm (linear effect algorithm) here. Instead, we try 

to analyze this situation the other way around. That is, the sign changes for 

quadratic effect column are first considered then we can set up the linear 

effect column with respect to the quadratic effect column. 

If the design has an orthogonal design matrix, the total minimum and 

maximum number of sign changes for the quadratic main effect columns of 
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the 32 factorial experiment are 3 and 12 respectively. That means, there are 

ten different groups of designs available according to the sign changes for 

the quadratic main effect columns of the 32 factorial experiment. One 

design from each group is arbitrarily chosen for this study and the run 

orders are given below. 

Group 1: (a2 bJ (a0 b0) (a2 b0) (a0 b2) (a2 bJ (a0 bJ (a1 b) (a, b2) (a1 b0) . 

Group 2: (a
0 

b0) (a2 bJ (a2 b0) (a, b2) (a1 b0) (a1 b) (a0 b) (a2 b) (a0 bJ . 

Group 3: (a
0 

b
2

) (a
0 
b

0
) (a

2 
b

0
) (a

0 
b

1
) (a

2 
b2) (a

2 
b

1
) (a

1 
b

1
) (a

1 
b

2
) (a

1 
b

0
). 

Group 4: (a
2 

b
0

) (a
1 
b

0
) (a2 b2) (a0 b0) (a1 b2) (a1 b) (a0 b1) (a2 b) (a0 bJ . 

Group 5: (a
2 

b
2

) (a
0 
b

2
) (a

2 
b) (a

2 
b

0
) (a

0 
b) (a

0 
b

0
) (a1 b 1

) (a1 b2
) (a1 b0

). 

Group 6: (a
0 

b
2

) (a1 b0
) (a2 b2) (a0 b) (a1 b2) (a1 b) (a2 b) (a0 b0) (a2 b0). 

Group 7: (a
2 
b

2) (a
0 

b
0) (a

2 
b

1) (a
0 
b

2) (a
1 
b) (a

2 
b

0) (a
0 
b

1) (a
1 
b

2) (a
1 

b
0
). 

Group 8: (a
0 
b

0) (a
1 

b
2) (a

0 
b) (a

2 
b

2) (a
1 

b
1) (a

1 
b

0) (a
2 
b

1) (a
0 

b2) (a2 b0
). 

Group 9: (a
0 
b) (a

2 
b

0) (a
0 
b2) (a1 b) (a

0 
b0) (a, b2) (a2 b) (a1 b0) (a2 bJ 

Group 10: (a
2 
b

2) (a
1 
bJ (a

2 
b) (a

0 
b2) (a1 b) (a

0 
b

0) (a
0 
b) (a1 b0 ) (a2 b0

). 

3.3.1 MA(l) Correlated Model 

D-efficiencies for the main effect of the 32 factorial experiment according to 

the above mentioned run orders are calculated when errors are assumed to 

follow an MA(l) correlated model (p = 0.25). Results are given in Table 3.1. 

We can see from Table 3.1 that the total number of sign changes for groups 

1, 2 and 5 are constant which is ten. But corresponding D-efficiencies are 

slightly increased, at the same time the total number of sign changes for the 

quadratic effect columns of the above mentioned groups are increased and 

total number of sign changes for the linear effect columns of the above 

mentioned groups are decreased. The slight increase of the D-efficiency 
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seems to depend more on the total sign changes of the quadratic effect 

columns. The same situation is applicable for groups 7 and 8. 

Table 3.1 

Groups Sign Changes D-efficiency 

Linear Quadratic Total 

Group 1 7 3 10 1.1022 

Group 2 6 4 10 1.1121 

Group 3 3 5 09 1.0473 

Group 4 5 6 11 1.1615 

Group 5 3 7 10 1.1146 

Group 6 4 8 12 1.2003 

Group 7 6 9 15 1.3096 

Group 8 5 10 15 1.3267 

Group 9 5 11 16 1.3879 

Group 10 4 12 16 1.3711 

However, D-efficiency for the groups 4 and 5 are 1.1615 and 1.1146, and 

the total number of sign changes for the quadratic effect columns of the 

group 4 and 5 are six and seven, but the total number of sign changes for 

the design of the groups 4 and 5 are eleven and ten respectively. That is, D­

efficiency seems to depend not only on the total number of sign changes 

for the quadratic effect columns but also depends on the total number of 

sign changes for the design. 

Further, the total number of sign changes for the groups 9 and 10 are 

constant which is sixteen. But corresponding D-efficiencies are slightly 

decreased, at the same time total number of sign changes for the quadratic 
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effect columns of the groups 9 and 10 are increased and total number of 

sign changes for the linear effect columns of the above mentioned groups 

are decreased. Thus D-efficiency seems to depend mostly on the sign 

changes for the quadratic effect columns; although group 9 has the highest 

D-efficiency among the ten groups and has the highest total sign changes 

of the design, but not the highest number of quadratic sign changes. 

14 -

13 -

1.1 -

I I I I I I I I 

9 n n ~ ~ ~ ~ ~ 

Total Number of Sgn Olanges 

Figure 3.1 

D-efficiency versus total number of sign changes is plotted and given in 

Figure 3.1. From this, we can easily see that D-efficiency increased as total 

number of sign changes increase. 

We may conclude from the above arguments that maximum possible sign 

changes within the main effect columns of the orthogonal full factorial 

design is an efficient design. 

According to the above result, an efficient run order may be obtained by 

the following procedure. 

Step 1: Try to make the maximum possible total sign ~hanges for the 

quadratic effect columns of the main effects. This can be done 
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by keeping the -2s apart as much as possible subject to 

orthogonality. 

Step 2: Maximise the sign changes for the linear effect columns of the 

main effects subject to chosen quadratic effect columns and full 

factorial. 

Since we arrived at this procedure by only exam1mng ten arbitrary 

designs, one thousand random designs are taken from standard run order 

of the 32 factorial experiment in order to test the procedure. Necessary 

results are given in the Table 3.2. 

Table 3.2 

D-efficiency 

Minimum Median Maximum 

Values 0.9588 1.1495 1.3822 

1 -1 1 1 1 1 0 1 -2 1 1 -1 -1 1 1 

1 1 1 1 1 1 -1 1 1 1 1 0 0 -2 -2 

1 1 0 1 -2 1 1 -1 1 1 1 -1 1 1 1 

1 -1 0 1 -2 1 -1 0 1 -2 1 1 -1 1 1 

Corresponding 1 0 0 -2 -2 1 1 0 1 -2 1 0 1 -2 1 

Design 1 0 1 -2 1 1 1 1 1 1 1 1 0 1 -2 

1 0 -1 -2 1 1 -1 -1 1 1 1 0 -1 -2 1 

1 -1 -1 1 1 1 0 0 -2 -2 1 1 1 1 1 

1 1 -1 1 1 1 0 -1 -2 1 1 -1 0 1 -2 

Sign Changes 2 1 2 2 3 1 2 4 2 3 6 5 

Total 7 10 16 
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The highest D-efficiency among the thousand random designs is 1.3822 

and corresponding total sign changes for linear, quadratic and design are 

5, 11 and 16 respectively. This suggest that the procedure is valid. 

Since we have discussed up to this point two factors only, next we are 

considering the three level factorial experiment for three factors when 

errors are assumed to follow the MA(l) correlated (p = 0.25) model. For 

this, five hundred 33 full factorial designs are taken. Histogram of the D­

efficiency is given in the Appendix 7. Results are given in the Table 3.3. 

Table 3.3 

D-efficiency Sign Changes 

Linear Quadratic Total 

Minimum 1.0374 14 30 44 

Median 1.1416 18 35 53 

Maximum 1.2901 26 38 64 

We can see from Table 3.3 that minimum D-efficiency is 1.0374 and 

maximum D-efficiency is 1.2901. Note that the difference between these 

two values is quite small, but the difference between the total sign changes 

for linear effect columns when D-efficiency is minimum and the total sign 

changes for linear effect columns when D-efficiency is maximum, is high 

compared with quadratic effect columns. This suggest that, D-efficiency 

does not much depend on the sign changes for the linear effect columns of 

the 33 main effect factorial experiment. Next we find the run order 

according to the our earlier suggestion and corresponding design is given 

in Equation(3.5). The sign changes of second, third, fourth, fifth, sixth and 

seventh columns of this design matrix are 6, 7, 8, 18, 18 and 18 respectively. 

D-efficiency for this design is 1.3979 which is higher than maximum D-
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efficiency of the five hundred designs. That means, our suggestion IS 

useful to find the efficient run order. 

1 -1 -1 -1 

1 0 1 0 -2 1 -2 

1 1 0 -1 1 -2 1 

1 0 -1 0 -2 -2 

1 -1 -1 1 1 

1 0 1 -1 -2 1 1 

1 1 0 1 -2 1 

1 0 -1 -1 -2 1 

1 -1 1 0 1 1 -2 

1 0 0 -1 -2 -2 1 

1 1 1 0 1 1 -2 

1 0 -1 1 -2 1 

1 -1 1 -1 1 1 1 

1 0 0 0 -2 -2 -2 

1 1 -1 -1 1 1 1 

1 0 1 1 -2 1 

1 -1 -1 0 1 -2 

1 0 0 1 -2 -2 1 

1 1 1 -1 1 1 1 

1 -1 0 1 1 -2 1 

1 1 -1 0 1 1 -2 (3.5) 
1 -1 0 -1 -2 1 

1 1 1 1 1 1 

1 1 0 0 1 -2 -2 

1 -1 1 -1 1 1 1 

1 -1 0 0 1 -2 -2 

1 1 -1 1 1 1 1 

3.3.2 AR(l) Correlated Model 

If p is small, the first order autoregressive error correlated model is similar 

to the first order moving average error correlated model. Therefore, we 
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now investigate the main effect of the 32 factorial experiment only for large 

p (0.9) when errors are assumed to follow the AR(l) correlated model. 

One thousand random designs are taken from standard run order of the 32 

factorial experiment in order to investigate this situation. Necessary results 

are given in the Table 3.4. 

Table 3.4 

D-ef ficiency 

Minimum Median Maximum 

Values 4.9994 8.2028 12.4513 

1 -1 0 1 -2 1 1 0 1 -2 1 1 0 1 -2 

1 -1 -1 1 1 1 1 1 1 1 1 -1 -1 1 1 

1 -1 1 1 1 1 1 0 1 -2 1 1 1 1 1 

1 0 1 -2 1 1 -1 -1 1 1 1 -1 0 1 -2 

Corresponding 1 0 -1 -2 1 1 0 -1 -2 1 1 0 -1 -2 1 

Design 1 0 0 -2 -2 1 0 1 -2 1 1 -1 1 1 1 

1 1 1 1 1 1 0 0 -2 -2 1 0 0 -2 -2 

1 1 -1 1 1 1 -1 1 1 1 1 1 -1 1 1 

1 1 0 1 -2 1 1 -1 1 1 1 0 1 -2 1 

Sign Changes 0 3 2 4 2 2 2 5 3 3 5 5 

Total 9 11 16 

We can say from the Table 3.4 that D-efficiency is increased as total number 

of sign changes for the design increases. Maximum D-efficiency is obtained 

when the total number of sign changes is sixteen which is the maximum 

total number of possible sign changes for a 32 orthogonal full factorial 

experiment. That is, maximum sign changes for each columns of the design 

which is an orthogonal full factorial design, is an efficient design here too. 

Thus, our earlier suggestion is useful to obtain the efficient design here too. 
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Next we are investigating this result for the main effects of the 33 factorial 

experiment when errors are assumed to follow AR(l) correlated model. For 

this, five hundred 33 full factorial designs are taken. Results are given in 

the Table 3.5 

Table 3.5 

D-efficiency Sign Changes 

Linear Quadratic Total 

Minimum 6.9822 08 37 45 

Median 8.8213 19 34 53 

Maximum 11.7356 23 45 68 

We can see from the Table 3.5 that D-efficiency is increased as total number 

of sign changes increases, especially total number of sign changes increases 

for quadratic effect columns. However, substantial total sign changes for 

the linear effect columns is needed to obtain large D-efficiency. 

According to the Equation(3.5) design, D-efficiency for AR(l) correlated 

model (p = 0.9) is 12.8939 which is higher than maximum D-efficiency of 

the five hundred random designs. That means, our procedure is very 

useful to obtain efficient run order either MA(l) or AR(l) correlated model. 

3.4 Main Effects and Linear Interactions 

In this case, all possible main effects and linear interactions are considered 

as a model. This model corresponds to quadratic response surface (see 

section 1.5). However, this is not a full model. Therefore, we can use D­

efficiency criterion to find the efficient design. We four:i-d the efficient 

design among the thousand random designs of the 32 factorial design 
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whether the MA(l) or AR(l) model is assumed. However, we were unable 

to find a reliable method to obtain the efficient run order. In this situation, 

we may suggest that before planning the design, efficient run orders need 

to be found from random designs by using a computer program such as 

Splus. This program is given in the Appendix 8. 

It is noticeable that for 3-level factorial experiment, there is a compromise 

between estimating the linear effects efficiently and estimating the 

quadratic effects and interactions. It is not clear how to weight the 

contributions of these different types of effects. The standardization used 

in this Chapter is only one possible method. In order to over come this 

situation, the problem of choosing an efficient run order for the estimation 

of a quadratic response surface will be considered more carefully in 

Chapter 4. 
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CHAPTER4 

RESPONSE SURFACES 

4.1 Preface 

This section is entirely different from earlier Chapters. Response surface 

experiments are often used to find an optimum setting. It is explained in 

section 1.5. Our main interest of research is to find the efficient design. 

Unfortunately, the measure of efficiency used earlier may not be relevant 

here. Therefore, we are going to use a different criterion specifically for this 

type of experiment [12]. 

Let Y0 be the true mean response at the optimal setting of X0 and Y0 be the 

true mean response at the estimated optimal setting of X 0. Therefore, 

'Loss' is given as Y0 - Y0 when the optimum is a maximum or Y0 - Y0 for 

a minimum, which represent the difference between the mean response at 

the true optimum setting and the mean response at the estimated optimum 

setting. We can assume without loss of generality that the optimum is a 

minimum. Note that the expected 'Loss' function is a risk function. 

Therefore, our criterion is that optimal setting for response experiments 

will be obtained when risk is minimized. 

We will use the usual quadratic response function and assume this is exact 

rather than an approximation. The one factor case will be studied first to 

illustrate the approach. 

4.2 One Factor 

In this situation, responses are taken to find the optimum solution for one 

factor with three levels. We shall assume that responses are given by the 

following formula. 
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(4.1) 

where Y and X are response and explanatory variable respectively, E is a 

random error term and Po, P1 and P2 are parameters. Algebraically, the 

mean response can be written as follows. 

Y =constant+ P2 (X + Jh_ )2 
2P 2 

(4.2) 

This equation indicates that responses will be provided by a parabola. For 

turning point, dY = 0 
dX 

• 2R (X+Jh_) =O 
l-' 2 2P2 

• 

Therefore, the response at the turning point is given below. 

Y0 = constant + P2(X0 +Jh_)2 
2p2 

Y = constant [ ·: X = -P 1 ] 
a o 2P2 

(4.3) 

(4.4) 

Similarly, 
A A A A 

2 0 

Y =Po + P1X + ~2X 1s the estimated response curve and 

is the turning point for the estimated response curve, 

A A A A A A 

whereP 0 =P 0 +1t0, P1=P 1 +1t1 and P2= P2+1t2, Po, P1 and P2 are estimators 

for the parameters Po, P1 and P2 respectively, and 1t0 , 1t1 and 7t2 are errors 

for the parameter estimates. The joint distribution of these errors will 

depend on the design of the experiment. Therefore the response at this 

estimated turning point is given below. 

Y
0
• =constant+ p2 (X. + Jh_ )2 

o 2P2 
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y 

X 

Figure 4.1 

All above mentioned quantities are clearly described by the Figure 4.1. Our 

basic idea for finding the optimum design is that the optimum design 

should make the expected loss ( Y0 - Y0 ) a minimum. In what follows, we 

are considering an algebraic approach to find the minimum expected loss. 

Loss for the response = Y0 - Y0 

= P2 [-~ 1 + 11_ J2 

2p2 2P2 

= h[_l CP1 + 1C 1 )(1 + 2:.l_)-1 - h ]2 
4 P2 P2 P2 

1 A 1t2 7t ~ A 2 = -[(1-11 +1t1 )(1--+-2 - ...... . ..... ) -1-11] 
4P2 P2 P2 

= _1_[rc 2 _ 2hn 7t + Pf n2 J 
4P2 I ~2 I 2 ~ ~ 2 

(4.6) 

[·:2nd order approximation] . 

Expected values for this loss = E[ Y0 - Y0 ] 

= -
1
-[Var(n 1 )-2hcov(1t 11t2 ) + P! Var(1t 2 )] 

4~2 ~2 ~2 

[ ·: E~rc) = 0 for all i] 
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= -
1-z1rrz 

4~2 

where Z' = [ l t,•] = [l 2X 0 ] and 

TI=[ Var(n 1) Cov(n 1n 2 )] 

Cov(n 11t 2 ) Var( 7t 2 ) 

= dispersion matrix of parameters 

(4.7) 

= [Xt V 1 Xf ; X is a design matrix and V is the error covariance 

matrix. 

Now we use this result to find the optimum solution for the 31 factorial 

experiment when errors are assumed to follow MA(l) correlated models (p 

= 0.25). In this situation, we have only two different designs available. 

Because, we do not need to consider 1, -1, 0 as the correlation model is time 

reversible. That 1s, the design matrix X 1s either X, = [: - ~ ~] or 

x,=l: _: :J and the V matrix is given below 

If X = X. 

then X
1 
V

1 x = [ ~ 
-0.75 

0 

0.5 

0 

0.25 

1 

0.25 +] 
-0.75] 0.5 0 ~ . Hence II = [ 0 i]-
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1 [ {0.5 o][ 1 ] From Equation(4.7) therefore, E1 [Y0 -Yo]= 
4

B
2 

l 2Xol 
O 1 2

x
0 

1 2 
= -[0.5+4X 0 ]. 

4B2 

[ 
0.375 -0.125] 

Similarly, if X=Xb then IT = . 
-0.125 1.375 

l ? 
EJY0 -Y0] =-[0.375-0.5X 0 +5.5X0]. 

4B2 

~ 
al 
0 
~ 
X 
w 

5 

4 

3 

2 

0 ., 0 

X 

Figure 4.2 

Since we need the minimum of the E1 and E2, we don't need to be 

concerned about the quantity -
1
-. Therefore, we can draw a graph 

4B2 

E[ Y0 - Y0 ] (without-
1
-) versus X

0
• It is given in the Figure 4.2. We can see 

4B 2 

from Figure 4.2 that if X0 is closer to zero, E2 [ Y0 - Y0 ] is smaller; otherwise 

E
1

[ Y0 - Y0 ] is smaller. Note that since the difference between E1 [ Y0 - Y0 ] 

and E2[ Y0 - Y0 ] is very small when X0 is closer to zero, we could argue that 

EJ Y0 - Y0 ] is minimum almost everywhere, and that the best efficient 
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design for the 31 factorial experiment, when errors are assumed to follow 

MA(l) model, is X ~ X, ~[: 
-1 l] 
0 0 

1 1 

Anyway we can algebraically interpret the situation more accurately as is 

given below. 

[

E2[Yo - Yo] 

Minim um Expected loss = 

E1 [Yo - Yo] 

if - 0.16 < X0 < 0.5 

if other wise. 

[

Xb if -0.16<X 0 <0.5 

That is, efficient design X = 

xa if otherwise. 

Here, we have uncertainty because we don't know anything about the X
0 

before the experiment. In this situation, one approach is that a prior 

distribution for X
0 

can be assumed, for example a normal distribution with 

mean zero and variance d. This is a reasonable assumption, because zero 

mean and normal distribution gives a symmetrical pattern for the prior, 

and standard deviation cr provides a measure of the uncertainty about the 

location of the optimum. 

In this view E[ Y0 - Y0 ] can be denoted as the conditional expectation of 

loss(L = Y0 - Y0 ) given X0 (E[L/X0]). 

That is, 

and 

Therefore, 

E[L/X0] = EJ Y0 - Y0] for all i = 1,2. 

E[LJ = E[E[L/X0]] 

E[LJ = E[-
1
-[0.5+4X~]] 

4~2 
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1 
= -[0.5 + 4d] [·: E[X 0 ]=0] 

4~2 

1 2 E[L2] = E[-[0.375-0.5X 0 + 5.5X 0 ]] 
4~2 

= - 1
-[0.375 + 5.5d] 

4~ 2 

Hence, if d > 0.08 then E[LJ< E[L2]; otherwise E[L2]< E[LJ That means, if 

d > 0.08, the best design Xis X. ; otherwise choose the design Xb . 

4.2 More Than One Factor 

First, we are considering the quadratic response surface in two variables, 

when errors are assumed to follow MA(l) correlated models. Therefore, the 

mean response of the experiment is measured by the following equation. 

Y=~o +~ 1X 1 +~ 2 X2 +b 11 X~ +b 22 X~ +2b 12X 1X2 

It can be explained by matrix form. That is, 

(4.9) 

(4.10) 

Note that it can be similarly written in the matrix form for more than two 

explanatory variables under the above mentioned situation. 

For turning point of the Equation(4.10), 1~ = 0. Since this is a matrix 

differention, finally we get ~ + 2BX = Q 
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That is, (4.11) 

1 A - I A 

Similarly the estimated optimal factor levels are given by X0 = - 2 B ~, 

where and 

7t 1, 1t 2 ,<1> 11, <p 22 and <1> 12 are the errors in the estimates of the parameter. 

The responses at the turning point and estimated turning point are given 

below. 

Y0 = ~o +X ~~+X ~BX 0 

and 

y _ = Ao +X~A+X ~BX o-o I-' - o!: - o -

Loss for the response = Y 6 - Y 0 

= X6~-X~~+X6BX0 -X~BX 0 

= X6BX0 - 2X6BX0 +X ~BX 0 [·:~=-2BX 0 ] 

= [X0-X0 ]1B[X0 -X0 ] 

1 A A 

Let us consider X0 = -
2 

B-1 ~ 

= _ _!_[B+<1>r1[A+1t] 
2 !: -

= _ _!_[I+ff1<1>r1[B-1A+B -1 1tJ 
2 !: -

1 1 _ = [I-B-1<I>][Xo-2ff1TI] [·:Xo=-2B1~] 
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Hence, 

X 0 -X0 = -B-1 [½~ + <I>X 0 ] [·: First order approximation in the error terms] 

1 1 
Therefore, Y

0
- -Y0 =[-n+<I>X 0 fB -1[-7t+<I>X 0 ] 2- - 2- -

Expected values for this error= E [Y0 - Y0 ] 

Hence 

and 

d - . = E[1t -1t -] = E[n . 1t -] 1,J I J J I for all i, j = 1,2 

di,jk = E[ni<l>jk] =E[<l>jk7ti] for all i, j, k = 1,2 

dij,kI = E[<l>ij<l>kl] = E[<l>kl<l>ij] for all i, j, k, 1 = 1,2 

(4.15) 

(4.17) 

The parameter error dispersion matrix D= (Xt V 1 Xf, where V assumed to 

follow either MA(l) or AR(l) correlated models, is given below. 

81 



7t I 1t 2 <1>11 <1> 22 <1>1 2 

7t I d1,1 d1 2 di . I I d1 .22 d 1 12 

1t 2 d 1,2 d 2.2 d 2. 11 d 2.22 d2 .12 

D= <1>11 d1 II d2.11 d11 . 11 d11 .22 d11 .12 (4.18) 

<1> 22 dl ,22 d 2.22 d11 ,22 d 22.22 d 22.12 

<1>1 2 dl ,12 d 2. 12 d11 .12 d 22. 12 d 12,12 

Since we don't know X01 and X021 we assume a prior distribution for X0 . 

Here we take X0 to be bivariate normally distributed with mean (0, 0)1 and 

covariance matrix d I2.That is, the joint probability density function f(x0 1 

,x02) is given below. 

2 2 
1 Xo 1 + Xo2 

f ( X o 1,X o2) =--2 exp[- 2 ] 
2ncr 2cr 

(4.19) 

In this view, E[Y0 - Y0 ] can be written as the conditional expectation of loss 

L = Y0 - Y0 given X01 and X02 and denoted by E[L I Xw X0J. 

Therefore, E[L] = E[E[L I X10, X20]] 

1 2 2 
Thus, E[L] = E[ IBl[ll o + 111 X1 0 + 11 2 X 20 + 1111 X 10 + 11 22 X 20 + 111 2X1 0 X 20 ] 

1 2 2 
=1Bl[11 0 +11 110' +11 22 0' J (4.20) 

[·: E[X0J = E[X02] = 0 and independence] 

Unfortunately, the minimum expected loss for the overall design still can 

not be calculated, because ll o , 11 11 and 11 22 depend on the B matrix 

elements. That means, we can not apply our criterion directly. Hence, we 

have to analyse this situation by cases. 

Note that since IBI is a constant and we need the minimum value of the 

expected optimum for the various design, we don't need to be concerned 
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about the scaling constantlBI . We will consider three cases for the contours 

of the true response surface, as given below. 

Case 1: True contour pattern is a circle. 

If the contours are circular, b 11 = b22 and b12= 0. 

Since b 11 now factors out of our criterion, we are arbitrarily choosing b 11 = 1. 

1 
Therefore, T\ o = -(d 1 1 + d2 2 ) 

4 ' ' 

T\11=d1111 +d1212 ' . 

(4.21) 

Case 2: True contour pattern is an ellipse 

If the contours are like this type of ellipse, b22 = ab11 and b12= 0. 

1 
llo =-(ad11 +d 22 )b11 4 . ' 

Thus, 

83 



In this case, we are arbitrarily choosing 6 11 = 1 and a= 2. 

1 
Hence, 17 0 = 4(2d1.1 +d 2_2 ) 

11 22 = 2d12.12 + d22.22 

( 4.22) 

Case 3: True contour pattern is an ellipse which is in some direction. 

If the contour like this type of ellipse, b22 = ab 11 and 6 12 not equal to zero. In 

this case, expected optimum is defined by the Equation(4.20) and 17 0 , 17 11 and 

17 22 are also defined by the Equation(4.17). For numerical investigation, we 

are choosing b 11 = 1, b 12 = 1, b22 = 2. 

Thus, 

11 11 =2d11.11 +d 12.12 -2d11.12 

11 22 = 2d12.12 + d22.22 - 2d22.12 

Therefore, 

1 2 
E[L] = 4[(2du +d 2,2 -2d1.2)+(2d 11 .11 +3d 12.12 +d 22.22 -2d 11 _1,2 -2d 22.12 )cr ] 

[ ·: IBI = 1] ( 4.23) 
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Next, we want to find an efficient run order for a central composite design 

via this criterion when errors are assumed to follow MA(l) model ( p = 

0.25). It is infeasible to examine all possible run orders for two factor central 

composite designs for all mentioned cases. Therefore, five hundred run 

orders are randomly taken to find an efficient central composite design. 

In order to make random central composite design, the following steps are 

needed. Fourteen central composite points, as generated for two factors by 

the Minitab, are considered as the standard run order and given below. 

Random designs will be made by randomly reordering the rows. This type 

of approach will be made for all cases. 

-1 -1 

1 -1 

-1 1 

1 1 

-1414 0 

1.414 0 

0 -1.414 

0 1.414 
(4 .24) 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

Since the expected loss depends on the d for all three cases (see Equations 

(4.21), (4.22) & (4.23)) and cr provides a measure of the uncertainty about 

the location of the optimum, we choose two values of s, one "large" and 

other one "small" related to the size of the factor space. Now consider the 

prior probability that the optimum is inside the experimental region, that 
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is, P(R) =ff f(x 01 , x 02 ) dx 01 dx 02 , where f(x01 ,x02 ) is a joint probability density 
R 

function of variables X01 and X02 and R is a region which we are interest. 

Therefore, 

1 x2 +x 2 

P(R) = fJ [ ~]2 exp(- 01 
2 °2

) dx 01 dx 02 [·:using Equation (4.19)] 
R 27C0'2 20' 

The coordinate (x01 , x02) can be written as a poolar coordinate. That is, 

XO! = rcose and X02 = rsin0, 0 ~ e ~ 27C and O ~ r ~ .Ji 

./22rt 1 2 
Hence, P(R)= f f--2 exp(-~)rd8dr [·:change of variables] 

0 0 27CCJ 20' 

2 
r ./2 = [- exp(- - 2 )] 0 

20' 

1 = 1-exp(--) 
0' 2 

If cr = 0.3 then P(R) = 1 and if cr = 0.8 then P(R) = 0.80. so these two values are 

used in the investigation representing a concentrated and a diffuse prior 

respectively. Least expected losses among the five hundred random 

designs for easel, case2 and case3 are 0.1029, 0.07669 and 0.1499 

respectively when cr = 0.3, and 0.4017, 0.2948 and 0.5685 respectively when 

CJ= 0.8. 

A histogram for the expected loss calculated for five hundred random 

designs, is given in Appendix 9, 10 and 11 for all three cases when cr = 0.3, 

and in Appendix 12, 13 and 14 for all three cases when cr = 0.8. This is very 

useful to see how the minimum expected loss compares with other 

expected losses. 

By considering the dispersion matrix and corresponding design, we found 

that maximum sign changes for the linear effect columns and linear 
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interaction column provide small variance of the parameter estimates. Note 

that the linear interaction effect column contains only four values which are 

1 and -1 and rest of this column are filled by zero. That means, maximum 

sign changes for the linear interaction column is three. As far as 1 and -1 are 

concerned in the liner effect columns, maximum possible sign changes for 

these columns are two and one if we want to make three sign changes in 

the linear interaction column. That means, we can not make the maximum 

sign changes for the linear effect columns and the linear interaction column 

simultaneously. 

1 0 0 0 0 0 

1 0 -1.414 0 1.999 0 

1 0 0 0 0 0 

1 0 0 0 0 0 

1 -1.414 0 1.999 0 0 

1 1 1 1 1 

1 -1 1 1 -1 

1 -1 -1 1 1 1 
(4.25) 

1 -1 1 1 1 -1 

1 1.414 0 1.999 0 0 

1 0 0 0 0 0 

1 0 0 0 0 0 

1 0 1.414 0 1.999 0 

1 0 0 0 0 0 

Further, we found that if the values -1.414 and 1.414 are widely separated 

in the linear effect columns, the variance of the quadratic estimates is small. 

Since we have to make the maximum sign changes in the linear effect 

columns, the pattern of the one linear effect column should be 0, 0, 0, 0, -

1.414, 1, 1, -1, -1, 1.414, 0, 0, 0, 0 and other one should be 0, -1.416, 0, 0, 0, 1, 

-1, -1, 1, 0, 0, 0, 1.416, 0 to make small variance for the eshmates of the 
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parameter when p is positive. Therefore, the recommended two factor 

central composite design for our model is given in Equation(4.25). 

The sign changes for the linear effect columns and the linear interaction 

column are 3, 2 and 3 respectively. The expected losses for this design are 

given in the Table 4.1. 

Table 4.1 

Expected Loss 

Case 1 Case 2 Case 3 

cr = 0.3 0.1017 * 0.0769 ** 0.1533 ** 

cr = 0.8 0.3982 * 0.3037 ** 0.6068 ** 

The single star '* ' indicates that these expected losses are less than 

minimum expected loss among the five hundred random designs under the 

similar situation. 

The double star '** ' indicates that these expected losses are little bit higher 

than minimum expected loss among the five hundred random designs 

under the similar situation, but the expected loss for this design is less than 

the expected loss for the most of the random designs. This statement is 

confirmed by the histograms which are given in the Appendix 11, 12, 13, 14, 

15 and 16. 

That means, the expected loss for the particular design is less than expected 

loss for the most of the random designs. Therefore, we can say that our 

earlier argument is useful to make an efficient run order for this central 

composite design. 
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Finally, we can conclude that maximum sign changes in the linear effect 

columns subject to produce the maximum sign changes in the linear 

interaction column, and -1.414 and 1.414 are largely separated in the linear 

effect columns, is an efficient central composite design when errors are 

positively correlated with MA(l) model. 
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i' 1 2 3 4 
1 1 1 1 1 
1 1 1 1 1 
1 1 -1 -1 -1 
1 -1 1 -1 -1 
1 -1 -1 1 -1 
1 -1 -1 -1 1 
1 -1 -1 -1 -1 
1 1 1 1 1 

12 13 14 15 16 
1 1 1 1 -1 

-1 -1 -1 -1 1 
-1 -1 -1 -1 1 
1 -1 -1 -1 1 

-1 1 1 -1 -1 
-1 1 -1 1 -1 
1 -1 1 1 -1 
1 1 1 1 1 

Appendix 1 

M matrix 

5 6 
1 1 
1 -1 

-1 1 
-1 1 
-1 -1 
-1 -1 
1 -1 
1 1 

17 18 
-1 -1 
1 1 
1 1 

-1 -1 
1 -1 

-1 1 
-1 -1 
1 1 

7 8 
1 1 

-1 -1 
1 1 

-1 -1 
1 -1 

-1 1 
-1 -1 
1 1 

19 20 
-1 -1 
1 1 
1 -1 

-1 1 
-1 1 
-1 -1 
1 -1 
1 1 

9 10 11 
1 1 1 

-1 -1 -1 
1 -1 -1 

-1 1 1 
-1 1 -1 
-1 -1 1 
1 -1 -1 
1 1 1 

21 22 23 
-1 -1 -1 
1 1 1 

-1 -1 -1 
1 1 -1 

-1 -1 1 
1 -1 1 

-1 1 -1 
1 1 1 

90 



24 25 26 27 28 29 30 31 32 33 34 35 
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

-1 -1 1 1 1 1 1 1 -1 -1 -1 -1 
-1 -1 1 1 1 -1 -1 -1 1 1 1 -1 
1 -1 1 -1 -1 1 1 -1 1 1 -1 1 

-1 1 -1 1 -1 1 -1 1 1 -1 1 1 
1 1 -1 -1 1 -1 1 1 -1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 
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Appendix 2 
Histograrn for the D-efficiency of the (2x2x2) factorial Design 

when errors are assumed to MA(1) model 
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Appendix 3 
Histogram ·for the D-efficiency of the (2x2x2) factorial Design 

when errors are assumed to AR(1) model 
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Appendix 4 
O-efficiency versus Total Number of Sign changes when correlation coefficient[AR(1 )] is 0.25 
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Ap~endix 5 
O-efficiency versus Total Number of Sign c anges when correlation coefficient[AR(1 )] is 0.9 
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Appendix 6 
Histogram for the D-efficiency of the (3x3x3) factorial Design 

when correlation coefficient[AR(1 )] is 0.9 
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APPENDIX 8 

rr<-0 . 25 
{MAV32mat< -MAV32mat(rr) 
MA32mat<-c(0 , 0 , 0 , 0,0,0 , 0 , 0 , 0,0,0) 
for (kin 0 : 1000) 
{ it<-k+l 
if(it <100 1) 
{samp<-sample(l:9,9) 
sl32samp<-ssl32[samp , ] 
sl32samp . tra<-t(s132samp) 
MAV32matinv<-solve(MAV32mat) 
MA32Exa<-sl32samp . tra%*%MAV32matinv%*%sl32samp 

MA32re<-det(MA32Exa)A(l/6) 
InvMA32Exa<-solve(MA32Exa) 
MA32Dstar<-InvMA32Exa[2 : 6 , 2 : 6] 
MA32Deff<-det(MA32Dstar)A(-1/5) 
MA32mat<-rbind(MA32mat,c(samp,MA32re,MA32Deff)) }}} 

rr<-0 . 25 
{ARV32mat<-ARV32mat(rr) 
AR32mat<-c(0,0,0,O,0,0,0,0,0 , 0,0) 
for (k in 0 : 1000) 
{ it<-k+l 
if(it<1001) 
{samp<-sample(l : 9,9) 
sl32samp<-ssl32[samp,] 
sl32samp . tra<-t(s132samp) 
ARV32matinv<-solve(ARV32mat) 
AR32Exa<-s132samp . tra%*%ARV32matinv%*%s132samp 

AR32re<-det(AR32Exa)A(l/6) 
InvAR32Exa<-solve(AR32Exa) 
AR32Dstar<-InvAR32Exa[2:6,2 : 6] 
AR32Deff<-det(AR32Dstar)A( - 1/5) 
AR32mat<-rbind(AR32mat , c(samp,AR32re , AR32Deff)) }}} 

> ssl32 
sme s11 s12 sql sq2 

[ 1, l 0.3333333 -0 . 4082483 -0 . 4082483 0.2357023 0 . 2357023 
[ 2 , l 0 . 3333333 0 . 0000000 -0 . 4082483 -0 . 4714045 0.2357023 
[ 3 , l 0.3333333 0.4082483 - 0.4082483 0 . 2357023 0 . 2357023 
[ 4, ] 0 . 3333333 -0 . 4082483 0 . 0000000 0 . 2357023 -0 . 4714045 
[ 5 , l 0.3333333 0.0000000 0.0000000 -0.4714045 -0 . 4714045 
[ 6, l 0 . 3333333 0 . 4082483 0.0000000 0 . 2357023 -0 . 4714045 
[ 7, l 0 . 3333333 -0 . 4082483 0 . 4082483 0.2357023 0 . 2357023 
[ 8, l 0 . 3333333 0 . 0000000 0 . 4082483 -0 . 4714045 0 . 2357023 
[ 9 , l 0 . 3333333 0.4082483 0 . 4082483 0.2357023 0 . 2357023 
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Appendix 9 
Histogram for the Expected Loss case 1 when s = 0.3 
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Appendix 10 
t-iistogran1 for the Expected Loss case 2 when s = 0.3 
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Appendix 1 ·1 
Histogram for the Expected Loss case 3 when s = 0.3 
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Appendix 12 
1-1 istogran1 for the Expected Loss case ·1 when s = 0.8 
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Appendix 13 
Histogram for the Expected Loss case 2 when s = 0.8 
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