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ABSTRACT 

Beef ultimate pH (pHu) is an economically important trait related to meat quality. 

Values of pHu higher than the normal 5.5 have a detrimental effect on tenderness, 

colour and keeping quality. The amount of lactic acid that is produced by the 

conversion of the glycogen stored in the muscle at time of slaughter (Go) determines 

pHu. 

A novel biochemically-based approach for pHu analysis was evaluated in the detection 

of quantitative trait loci (QTL) affecting this characteristic. The procedure proposed by 

Pleasants et al. (1999) transforms pHu to the underlying glycogen generating a new 

variable, named predicted glycogen (PG0). This model may overcome the limitations 

in pHu investigations derived from its typical skewed distribution, characterised by a 

peaked primary mode at 5.5 and a long tail that comprise high pHu values. In addition 

to PG0, G0, pHu and the logarithmic transformation of pHu (LpHu) were analysed in: a 

simulated back-cross involving two inbred lines based on a model including a QTL 

and polygenic effects influencing G0 and thus pHu; and in experimental data from a 

reciprocal back-cross between Jersey and Limousin implemented by AgResearch. 

The significance levels achieved by LpHu did not differ from pHu, indicating that there 

was no advantage of using this transformation. Evidence of QTL was clearer for PGo 

than pHu in the simulation. A better performance of PG0 compared to pHu was 

observed when there were more elevated pHu values. Results from the experimental 

data did not confirm the superiority of PG0 in QTL detection. With the exception of one 

value of 6.2, pHu data obtained in the experiment were close to 5.5. 

It is concluded that PG0 may improve the significance in QTL searching compared to 

pHu when pHu include high values that lead to the typical skewed distribution. The 

new procedure can also be exploited in other investigations utilising pHu. Additional 

research work involving the characterisation of G0 and pHu is recommended to re­

evaluate the parameters assumed in the implementation of this innovative approach. 
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CHAPTER ONE 

INTRODUCTION 

The quality of product, in addition to the quantity produced per unit input, affects the 

economic efficiency of any meat-producing system. In an ideal marketplace, the value 

of beef presented in a similar way is determined by aspects of meat quality 

differences, which will impact returns from the production systems (Purchas et al. , 

1989). Although "taste", price and healthfulness were identified as the three primary 

motivators related to meat purchase and consumption, if beef fails to meet quality 

expectations, price and healthfulness were irrelevant (Chambers and Bowers, 1993). 

Ultimate pH is a meat characteristic that is not directly evaluated by consumers but 

has a strong influence on some of the most relevant quality attributes: colour and 

tenderness. Meat colour is the first criterion used by consumers to judge meat quality 

and acceptability. High pH values (>6.0) lead to dark cutting or dark, firm and dry 

meat which is rejected by consumers because of its unacceptable colour (Abril et al., 

2001) . On the other hand, intermediate pH beef (5. 7-6.2) has been associated with 

reduced tenderness, which has been rated by consumers as the most important 

aspect of eating quality (Tarrant, 1998). High pH values also reduce the shelf life due 

to altered bacterial growth (Gill and Newton, 1981). 

Meat pH is often used as a means of monitoring meat quality and a pH below a 

threshold of pH 5.8 is usually demanded for chilled beef markets (Wright et al. , 1994). 

The percentage of carcasses that fail this specification in New Zealand has been 

estimated to be about 10 to 30% (Graafhuis and Devine, 1994; Smith et al., 1996). 

These percentages indicate that too many carcasses have variable and sub-optimal 

meat quality parameters. An evaluation of the economic impact of this problem in New 

Zealand suggests that a lower incidence of high pH leads to financial benefits by 

reducing costs and increasing the potential price of the product (Wright et al. , 1994). 

Several studies have been carried out to understand factors contributing to high pH 

beef. However, the distorted distribution of ultimate pH has hindered this task. The 

frequency distribution of ultimate pH in slaughtered animals typically presents a peak 
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around pH of 5.5 and a long upper tail with a variable proportion of values up to 7.0-

7.2. 

Recently a biochemically-based approach to analyse beef pH has been developed. 

The gradual fall in muscle pH following slaughter, from approximately neutral values 

(7.0) to around 5.5, results from the post-mortem accumulation of lactic acid in the 

muscle that is produced by the conversion of glycogen. If muscle glycogen levels at 

slaughter are low, the supply of substrate for glycolysis is limited resulting in a lower 

concentration of lactic acid and a higher ultimate pH. Pleasants et al. (1999) proposed 

a mathematical model that includes knowledge of the biochemical pathways from 

glycogen to lactic acid in a manner suitable for statistical analysis. In this study, the 

new approach is applied in the detection of quantitative trait loci (QTL) for ultimate pH. 

It is now known that a proportion of the variation in some economically important traits 

can be attributed to one or few major genes, known as QTL. Knowledge of the 

existence and chromosomal location of QTL can be exploited through breeding 

programs utilizing strategies that include molecular information (MAS, marker-assisted 

selection). MAS is especially appealing in the genetic improvement of meat quality 

traits as it would allow the evaluation of live breeding animals of both sexes at a 

young age and this may increase the genetic response compared to traditional 

methods of selection. 

Different methods have been developed to identify QTL using linked markers (Haley 

and Knott, 1992; Knott et al., 1996). However, the standard techniques have not 

specifically incorporated the information about the biological processes involved in the 

expression of a specific trait. The objective of this study is to evaluate the effect of 

applying the new approach in QTL detection in two situations: a simulated back-cross 

involving two inbred lines; and in experimental data that was collected in a project 

carried out by AgResearch and the University of Adelaide, using a double-back-cross 

between Jersey and Limousin. The variables to be analysed include muscle glycogen 

in the live animals, actual ultimate pH, logarithmic transformation of pH and glycogen 

predicted from the pH information based on the new methodology. 
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