Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

THE STRUCTURE OF

THE BACTERIOPHAGE ALPHA DNA MOLECULE

A thesis presented

in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy

in

Biochemistry

at

Massey University

WILLIAM DAVID SUTTON

1969

ABSTRACT

Selective precipitation with polyethylene glycol is an efficient method for concentrating and purifying bacteriophage a and other phages.

The phage a DNA molecule has a molecular weight of 33 million. When prepared by phenol extraction of crude phage suspensions, it contains many single-strand breaks. When prepared by phenol extraction of purified phage, it contains approximately one randomly-located single-strand break per molecule. The number of single-strand breaks can be further reduced by changing the conditions of the phenol extraction.

The complementary single strands of a DNA can be separated by MAK chromatography followed by self-annealing and hydroxylapatite chromatography, but this procedure results in extensive breakage of the strands. An alternative procedure has been developed using CsCl gradient centrifuging in the presence of polyguanylic acid (polyG) to give an efficient separation of the intact strands in 100 μ g. quantities.

Both the L strand and the H strand of a DNA form complexes with polyG, although to different extents. The PolyG binding sites in the L strand appear to be confined to a small segment having a similar buoyant density to the H strand.

Sequences of consecutive pyrimidine nucleotides of all lengths up to 13 have been detected in diphenylamine-formic acid digests of a DNA. There is a slight general tendency towards clustering of the pyrimidine nucleotides, sequences of lengths 1-4 being present at below random frequencies, and longer sequences being present at above random frequencies. These same general features are found in diphenylamine digests of the separated H and L strands. The distribution of pyrimidine nucleotide sequence lengths in a DNA does not appear to follow a mythmic code of the type found in RNA phages.

Preliminary analyses have been made of the longest pyrimidine nucleotide sequences in a DNA, and of the distribution of various sequences between the two strands.

The dialysis of pyrimidine deoxyoligonucleotides was investigated, and found to be strongly influenced by cytosine content. This may reflect an unusual conformation of cytosine-rich oligonucleotides at low ionic strength. Gel filtration was found to provide a satisfactory method for the preliminary fractionation of diphenylamine digests on the basis of chain length.

p.(iii)

ACKNOWLEDGEMENTS

It is a pleasure to acknowledge the debt to my supervisor, Dr. G.B. Petersen, who provided advice, information and encouragement at all stages of this work.

I am also greatly indebted to Professor R.D. Batt for his support, and to Dr. G.W. Butler, Director, Plant Chemistry Division D.S.I.R., for providing laboratory space and facilities.

I have been supported by awards from the University Grants Committee and the Kippenberger Memorial Trust Fund.

TABLE OF CONTENTS

	page
Title Page	(1)
Abstract	(ii)
Actnowledgements	(iv)
Table of Contents	(v)
Abbreviations	(viii)
List of Tables	(ix)
List of Pigures	(xi)

INTRODUCTION

The Structure of Phage DNA Molecules	1.
Sequence Determination in DNA	3.
The Aims of the present work	8.

METHODS

Phage and Bacterial Strains	13.
Bulk Growth of Phage Alpha	
Phage Assays	15.
Growth of Radioactive Phages	
Phenol Extraction of Phage DNA	
Electron Microscopy of Phages and Phage DNA	16.
Boundary Sedimentation of TNA	
Zone Sedimentation through Sucrose Gradients	18.
Alkali Denstarration of DNA	19.
Handling of Single-stranded DNA	
Shearing of DNA	20.
Annealing of INA	
MAK Chrometography	
Hydromylapatite Chromatography	21.
Density Gradient Centrifuging	22.
Diphenylamine Digests	24.
Carrier Digests	25.

p.(vi)

70.

77.

	page
Ion-Exchange Chromatography of Oligonucleotides	26.
Urea Solutions	28.
Desalting of Oligonucleotides	
Triethylamonium Bicarbonate Buffers	29.
Dephosphorylated Digests	30.
Paper Chromatography of Oligonucleotides	31.
Phosphate Estimations	32.
Radioactivity Estimations	33.
Counting of ³³ P/ ³² P Ratios	35.
Ultraviolet Absorption Measurements	
Nucleotide Sequence Prequencies	36.
Estimation of Errors	37.

RESULTS

The Growth and Purification of Bacteriophage Alpha	38.
The Preparation of Strand-Intact Alpha INA	40.
Separation of the Complementary Strands of Alpha INA	48.
The Molecular Anatomy of Alpha DNA	53.
Pyrimidine Nucleotide Sequences in Alpha DNA	57.
Pyrimidine Nucleotide Sequences in the Separated Complementary Strands of Alpha DNA	61.
DISCUSSION	
The Molecular Structure of Alpha DNA	64.
Sequences of Consecutive Pyrimidine Nucleotides	

BIBLIOGRAPHY

in Alpha DNA

APPENDIX I.

The Use of Polyethylene Glycol for the Concentration and Purification of Bacteriophages fl and T7 APPENDIX II.

Dialysis of Pyrimidine Oligodamynucleotides

APPENDIX III.

Gel Filtration of Pyrimidine Decxyoligonucleotides

ABBREVIATIONS

α	alpha		
p.f.u.	plaque-forming units		
DNA, RNA	decryribanucleic acid, ribanucleic acid		
L strand	purine-rich strand of alpha DNA		
H strand	pyrimidine-rich strand of alpha DNA		
INase	dearyribonuclease		
A,G,C,T	admine, guanine, cytosine, thymine		
polyG	polyriboguanylic acid		
polyIG, po	blyUG copolymer of guanylic acid with inosinic acid,		
PEG	polyethylene glycol uridylic acid		
MAK	methylated albumin adsorbed on kleselguhr		
SDDC	sodium diethyldithiocarbasste		
EDTA	dissince than stetra-acetic acid		
tris	tris(hydroxymethyl) amingaethane		
SSC	0.15 M NaCl, 0.015 M sodium citrate (pH 7)		
SP	saline phosphate buffer pH 6.8, containing 0.05 M phosphate		
PB	phosphate buffer pH 7.0		
DEAE-	N,N-diethylamino-ethyl-		
TCA	trichloroacetic acid		
PPO	2,5-diphenyloxazole		
POPOP	1,4-bis-(5-phenyloxazoly1-2)-benzene		
Ру	pyrimidine nucleotide		
P	esterified phosphate (5' to the left, 3' to the right)		
đ	deaxy~		
A, n, c	absorbance, refractive index, extinction		
η, ρ	intrinsic viscosity, density		
S	sedimentation coefficient at infinite dilution		
I, M	ionic strength, molarity		
P.S.F.	percantege sequence frequency		
S.E.	standard error		

LIST OF TABLES

table		page
1.	Precipitation of Phage Alpha by Low Concentrations of Polyethylene Glycol	38 39
2.	Recovery of Ultraviolet Absorption after Precipitation of Phage Alpha by PEG	39-40
3.	Recovery of p.f.u. after Precipitation of Phage Alpha by PEG	39-40
4.	Base-compositions of the Separated H and L Strands of Alpha DNA	48-49
5.	Percentage Sequence Frequencies of Inorganic Phosphate and Isopliths of Chain Length 1-6 in Diphenylamine Digests of Alpha DNA	57-58
6.	Percentage Distribution of the Isomers of Chain Length Groups 1-6 in Diphenylamine Digests of Alpha DNA	\$7-58
7.	Percentage Sequence Prequencies of the Pyrimidine Nucleotide Sequences of Length 1-6 in Diphenylamine Digests of Alpha DNA, as Compared with a Random Distribution	57-58
8.	Percentage Sequence Prequencies of the Longest Pyrimidine Nucleotide Sequences in Alpha DNA	59-6 0
9.	The Distribution of Isopliths of Chain Length 1-7 in the Separated Strands of Alpha DNA	61-62
10.	The Distribution of Isomers of Chain Length 1-5 in Diphenylamine Digests of the Separated Strands of Alpha DNA	62-63
11.	Ratio of the Distribution of Some Sequences of Pyrimidine Nucleotides Between the two Strands of Alpha DNA	62-63
12.	Ratio of the Distribution of Some Sequences of Pyrimidine Nucleotides Between the two Strands of Alpha DNA, as Measured by a Double Label Method	63-64
13.	Cytosime Content of the Isopliths of Length 1-6 in Diphenylandne Digests of Alpha DNA and E. coli DNA	74-75

p. (x)

table		page
Appendix I. 1.	Precipitation of Phage fl by Low Concentrations of Polyethylene Glycol	Appendix I. p.1
Appendix I. 2.	Recovery of Phage fl After Precipitation by Polyethylene Glycol	
Appendix II. 1.	Reduction of Specific Activity on Re-dialysis	Appendix II. p.4

LIST OF FIGURES

figure		
1.	PEG Gradient Elution of Phage Alpha from a Celite Column	39-40
2.	The Ultraviolet Absorption Spectrum of Purified Phage Alpha	39-4 0
3.	Electron Microscopy of Phage Alpha Prepared by PEG precipitation	39-4 0
4.	Measurement of the Molecular Weight of Native Alpha DNA by Zone Sedimentation	41-42
5.	Zone Sedimentation and Boundary Sedimentation of Nicked Alpha DNA	43-44
6.	Routine Assays for DNA Intactness by Boundary Sedimentation	44-45
7.	The Distribution of Strand Breakage Between the H and L Strands of Phage Alpha DNA	44-45
8.	Zone Sedimentation of Phage Lambda DNA After Incubation with Intact and Osmotically-lysed Alpha Phage	45-46
9.	Boundary Sedimentation of Denstured Alpha DNA Showing 75% Strand-Intactness	46-47
10.	Strand-Intactness and the Temperature of Phenol Extraction	46-47
11.	Gradient Elution MAK Chromatography of Denatured Alpha DNA	49-5 0
12.	CsCl Gradient Centrifuging of Fractions from MAK Column Chromatography	49-5 0
13.	MAK Chromstography of Denatured Alpha DNA by Interrupted Gradient Elution	49 - 5 0
14.	Hydroxylapatite Chromatography of a Self-annealed L Strand Praction of Alpha DNA	49-50
15.	Zone Sedimentation of H and L Strands of Alpha DNA Prepared by Column Chromatography	49-50

		p.(xii)
figure		page
16.	Cs ₂ SO ₄ Density Gradient Centrifuging of Mercuric Complexes of Denatured Alpha DNA	\$1-52
17.	Effect of PolyG on the Buoyant Density of Denatured Alpha ENA	51-52
18.	Separation and Assay of PolyG Complexes of the H and L Strands of Alpha DNA by Preparative CsCl Gradient Centrifuging	52-53
19.	Zone Sedimentation of H and L Strands of Alpha DNA Prepared by CsCl Gradient Centrifuging	52-53
2 0.	Analytical CsCl Gradient Centrifuging of Denatured Alpha DNA - PolyG Complexes	53-54
21.	CsCl Gradient Centrifuging of the "Third Band" of Denatured Alpha DNA in the Presence of PolyG	5 3-54
22.	CsCl Gradient Centrifuging of the Isolated L Strands of Alpha INA in the Presence of PolyG	54-55
23.	CsCl Gradient Centrifuging of Purified ³² P-labelled H and L Strand Preparations of Alpha DNA	55 - 5 6
24.	CsCl Gradient Centrifuging of Sheared and Unsheared Denatured Alpha ENA in the Presence of PolyG	
25.	CsCl Gradient Centrifuging of Sheared and Unsheared Isolated H and L Strands of Alpha INA in the Presence of PolyG	
26.	Separation of Isopliths by Ion-exchange Chromatography	57-58
27.	Separation of Isomers of Chain Length 1-2 by Ion- exchange Chromatography	
28.	Separation of Isomers of Chain Length 3-4 by Ion- exchange Chromatography	
29.	Separation of Isomers of Chain Length 5-6 by Ion- exchange Chromstography	
30.	Separation of the Longest Isopliths from a Diphenylomine Digest of Phage Alpha DNA	58-59
31.	Separation of Isomers of Chain Length Hight from a Dinhemylamine Digest of Phage Alpha DNA	

		p.(xiii)
figure		page
32. Separ	ation of Isomers of Chain Length Nime	58-59
33. Separ	ation of Isomers of Chain Length Ten	
34. Separ	ation of Isomers of Chain Length Eleven	
35. Separ	ation of Isomers of Chain Length Twelve	
36. Separa	ation of Isomers of Chain Length Thirteen	
37. Rechr Lengt Phage	omatography of the Thymins-rich Isomers of h Eleven from a Diphenylamine Digest of Alpha INA	59-6 0
38. Separ From by 2-1	ation of Dephosphorylated Oligonucleotides a Diphenylamine Digest of Phage Alpha INA Dimensional Paper Chromatography	60-61
39. Alten Single	native Explanations for the Origin of c-strand Breaks in Purified Alpha DNA	65-66
40. The D Isopl	istribution of Pyrimidine and Purine iths in Some Microbial Polynucleotides	71-72
Appendix I.	1. PEG Gradient Elution of Phage T7 from a Celite Column	Appendix I. p.1
Appendix I.	2. Electron Microscopy of Phage T7 Prepared by PEG Precipitation	
Appendix I.	3. Electron Microscopy of Phage T7 Prepared by Differential Centrifuging	
Appendix I.	4. Electron Microscopy of Phage fl Prepared by Selective Precipitation with PEG	
Appendix II	. 1. Olignicary nelectides in the Diffusate	Appendix II. p.1-2
Appendix II	. 2. Separation of Isopliths in a Mixed Diphenylamine Digest of Bacteriophage INA	Appendix II. p.2-3

p.(xiv)

figure		page
Appendix II. 3.	Chain Length and the Loss of Oligodeoxynucleotides During Dialysis	Appendix II. p.2-3
Appendix II. 4.	Cytosine Content and the Loss of Oligodeoxynucleotides During Dialysis	Appendix II. p.3-4
Appendix II. S.	Base Composition and the Effect of Chain Length on the Dialysis of Oligodamaynucleotides	
Appendix II. 6.	Dialysis of Purified Tetramucleotides Against Distilled Water	Appendix II. p.5-6
Appendix II. 7.	Dialysis of Purified Pentanucleotides Against 0.1 M Triethylaumonium bicarbonate	Appendix II. p.7-8
Appendix III. 1.	Gel Filtration of Mixed Pentanucleotides	Appendix III. p.1-2
Appendix III. 2.	A Base Composition Effect on Gel Filtration at pH 2.6	
Appendix III. 3.	Preliminary Fractionation of Diphenylamine Digests by Gel Filtration	Appendix III. p.2-3
Appendix III. 4.	Gel Filtration of a Simple Mixture of Oligonucleotides on Sephadex G50	
Appandix III. S.	Effect of the Triethylemanium (Tea ⁺) Cation on the Gel Filtration of Oligonucleotides	Appendix III. p.3-